WorldWideScience

Sample records for integrating geospatial technologies

  1. Collective Sensing: Integrating Geospatial Technologies to Understand Urban Systems—An Overview

    Directory of Open Access Journals (Sweden)

    Geoffrey J. Hay

    2011-08-01

    Full Text Available Cities are complex systems composed of numerous interacting components that evolve over multiple spatio-temporal scales. Consequently, no single data source is sufficient to satisfy the information needs required to map, monitor, model, and ultimately understand and manage our interaction within such urban systems. Remote sensing technology provides a key data source for mapping such environments, but is not sufficient for fully understanding them. In this article we provide a condensed urban perspective of critical geospatial technologies and techniques: (i Remote Sensing; (ii Geographic Information Systems; (iii object-based image analysis; and (iv sensor webs, and recommend a holistic integration of these technologies within the language of open geospatial consortium (OGC standards in-order to more fully understand urban systems. We then discuss the potential of this integration and conclude that this extends the monitoring and mapping options beyond “hard infrastructure” by addressing “humans as sensors”, mobility and human-environment interactions, and future improvements to quality of life and of social infrastructures.

  2. Geospatial semantic web

    CERN Document Server

    Zhang, Chuanrong; Li, Weidong

    2015-01-01

    This book covers key issues related to Geospatial Semantic Web, including geospatial web services for spatial data interoperability; geospatial ontology for semantic interoperability; ontology creation, sharing, and integration; querying knowledge and information from heterogeneous data source; interfaces for Geospatial Semantic Web, VGI (Volunteered Geographic Information) and Geospatial Semantic Web; challenges of Geospatial Semantic Web; and development of Geospatial Semantic Web applications. This book also describes state-of-the-art technologies that attempt to solve these problems such as WFS, WMS, RDF, OWL, and GeoSPARQL, and demonstrates how to use the Geospatial Semantic Web technologies to solve practical real-world problems such as spatial data interoperability.

  3. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  4. Geospatial Technologies and Geography Education in a Changing World : Geospatial Practices and Lessons Learned

    NARCIS (Netherlands)

    2015-01-01

    Book published by IGU Commission on Geographical Education. It focuses particularly on what has been learned from geospatial projects and research from the past decades of implementing geospatial technologies in formal and informal education.

  5. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  6. Learning transfer of geospatial technologies in secondary science and mathematics core areas

    Science.gov (United States)

    Nielsen, Curtis P.

    The purpose of this study was to investigate the transfer of geospatial technology knowledge and skill presented in a social sciences course context to other core areas of the curriculum. Specifically, this study explored the transfer of geospatial technology knowledge and skill to the STEM-related core areas of science and mathematics among ninth-grade students. Haskell's (2001) research on "levels of transfer" provided the theoretical framework for this study, which sought to demonstrate the experimental group's higher ability to transfer geospatial skills, higher mean assignment scores, higher post-test scores, higher geospatial skill application and deeper levels of transfer application than the control group. The participants of the study consisted of thirty ninth-graders enrolled in U.S. History, Earth Science and Integrated Mathematics 1 courses. The primary investigator of this study had no previous classroom experiences with this group of students. The participants who were enrolled in the school's existing two-section class configuration were assigned to experimental and control groups. The experimental group had ready access to Macintosh MacBook laptop computers, and the control group had ready access to Macintosh iPads. All participants in U.S. History received instruction with and were required to use ArcGIS Explorer Online during a Westward Expansion project. All participants were given the ArcGIS Explorer Online content assessment following the completion of the U.S. History project. Once the project in U.S. History was completed, Earth Science and Integrated Mathematics 1 began units of instruction beginning with a multiple-choice content pre-test created by the classroom teachers. Experimental participants received the same unit of instruction without the use or influence of ArcGIS Explorer Online. At the end of the Earth Science and Integrated Math 1 units, the same multiple-choice test was administered as the content post-test. Following the

  7. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    Science.gov (United States)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  8. Integrated Sustainable Planning for Industrial Region Using Geospatial Technology

    Science.gov (United States)

    Tiwari, Manish K.; Saxena, Aruna; Katare, Vivek

    2012-07-01

    The Geospatial techniques and its scope of applications have undergone an order of magnitude change since its advent and now it has been universally accepted as a most important and modern tool for mapping and monitoring of various natural resources as well as amenities and infrastructure. The huge and voluminous spatial database generated from various Remote Sensing platforms needs proper management like storage, retrieval, manipulation and analysis to extract desired information, which is beyond the capability of human brain. This is where the computer aided GIS technology came into existence. A GIS with major input from Remote Sensing satellites for the natural resource management applications must be able to handle the spatiotemporal data, supporting spatiotemporal quarries and other spatial operations. Software and the computer-based tools are designed to make things easier to the user and to improve the efficiency and quality of information processing tasks. The natural resources are a common heritage, which we have shared with the past generations, and our future generation will be inheriting these resources from us. Our greed for resource and our tremendous technological capacity to exploit them at a much larger scale has created a situation where we have started withdrawing from the future stocks. Bhopal capital region had attracted the attention of the planners from the beginning of the five-year plan strategy for Industrial development. However, a number of projects were carried out in the individual Districts (Bhopal, Rajgarh, Shajapur, Raisen, Sehore) which also gave fruitful results, but no serious efforts have been made to involve the entire region. No use of latest Geospatial technique (Remote Sensing, GIS, GPS) to prepare a well structured computerized data base without which it is very different to retrieve, analyze and compare the data for monitoring as well as for planning the developmental activities in future.

  9. Geospatial Technology: A Tool to Aid in the Elimination of Malaria in Bangladesh

    Directory of Open Access Journals (Sweden)

    Karen E. Kirk

    2014-12-01

    Full Text Available Bangladesh is a malaria endemic country. There are 13 districts in the country bordering India and Myanmar that are at risk of malaria. The majority of malaria morbidity and mortality cases are in the Chittagong Hill Tracts, the mountainous southeastern region of Bangladesh. In recent years, malaria burden has declined in the country. In this study, we reviewed and summarized published data (through 2014 on the use of geospatial technologies on malaria epidemiology in Bangladesh and outlined potential contributions of geospatial technologies for eliminating malaria in the country. We completed a literature review using “malaria, Bangladesh” search terms and found 218 articles published in peer-reviewed journals listed in PubMed. After a detailed review, 201 articles were excluded because they did not meet our inclusion criteria, 17 articles were selected for final evaluation. Published studies indicated geospatial technologies tools (Geographic Information System, Global Positioning System, and Remote Sensing were used to determine vector-breeding sites, land cover classification, accessibility to health facility, treatment seeking behaviors, and risk mapping at the household, regional, and national levels in Bangladesh. To achieve the goal of malaria elimination in Bangladesh, we concluded that further research using geospatial technologies should be integrated into the country’s ongoing surveillance system to identify and better assess progress towards malaria elimination.

  10. Geo-spatial technologies in urban environments policy, practice, and pixels

    CERN Document Server

    Jensen, Ryan R; McLean, Daniel

    2004-01-01

    Using Geospatial Technologies in Urban Environments simultaneously fills two gaping vacuums in the scholarly literature on urban geography. The first is the clear and straightforward application of geospatial technologies to practical urban issues. By using remote sensing and statistical techniques (correlation-regression analysis, the expansion method, factor analysis, and analysis of variance), the - thors of these 12 chapters contribute significantly to our understanding of how geospatial methodologies enhance urban studies. For example, the GIS Specialty Group of the Association of American Geographers (AAG) has the largest m- bership of all the AAG specialty groups, followed by the Urban Geography S- cialty Group. Moreover, the Urban Geography Specialty Group has the largest number of cross-memberships with the GIS Specialty Group. This book advances this important geospatial and urban link. Second, the book fills a wide void in the urban-environment literature. Although the Annals of the Association of ...

  11. Grid Enabled Geospatial Catalogue Web Service

    Science.gov (United States)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  12. A Research Agenda for Geospatial Technologies and Learning

    Science.gov (United States)

    Baker, Tom R.; Battersby, Sarah; Bednarz, Sarah W.; Bodzin, Alec M.; Kolvoord, Bob; Moore, Steven; Sinton, Diana; Uttal, David

    2015-01-01

    Knowledge around geospatial technologies and learning remains sparse, inconsistent, and overly anecdotal. Studies are needed that are better structured; more systematic and replicable; attentive to progress and findings in the cognate fields of science, technology, engineering, and math education; and coordinated for multidisciplinary approaches.…

  13. Recent innovation of geospatial information technology to support disaster risk management and responses

    Science.gov (United States)

    Une, Hiroshi; Nakano, Takayuki

    2018-05-01

    Geographic location is one of the most fundamental and indispensable information elements in the field of disaster response and prevention. For example, in the case of the Tohoku Earthquake in 2011, aerial photos taken immediately after the earthquake greatly improved information sharing among different government offices and facilitated rescue and recovery operations, and maps prepared after the disaster assisted in the rapid reconstruction of affected local communities. Thanks to the recent development of geospatial information technology, this information has become more essential for disaster response activities. Advancements in web mapping technology allows us to better understand the situation by overlaying various location-specific data on base maps on the web and specifying the areas on which activities should be focused. Through 3-D modelling technology, we can have a more realistic understanding of the relationship between disaster and topography. Geospatial information technology can sup-port proper preparation and emergency responses against disasters by individuals and local communities through hazard mapping and other information services using mobile devices. Thus, geospatial information technology is playing a more vital role on all stages of disaster risk management and responses. In acknowledging geospatial information's vital role in disaster risk reduction, the Sendai Framework for Disaster Risk Reduction 2015-2030, adopted at the Third United Nations World Conference on Disaster Risk Reduction, repeatedly reveals the importance of utilizing geospatial information technology for disaster risk reduction. This presentation aims to report the recent practical applications of geospatial information technology for disaster risk management and responses.

  14. INTEGRATING GEOSPATIAL TECHNOLOGIES AND SECONDARY STUDENT PROJECTS: THE GEOSPATIAL SEMESTER

    Directory of Open Access Journals (Sweden)

    Bob Kolvoord

    2012-12-01

    Full Text Available Resumen:El Semestre Geoespacial es una actividad de educación geográfica centrada en que los estudiantes del último curso de secundaria en los institutos norteamericanos, adquieran competencias y habilidades específicas en sistemas de información geográfica, GPS y teledetección. A través de una metodología de aprendizaje basado en proyectos, los alumnos se motivan e implican en la realización de trabajos de investigación en los que analizan, e incluso proponen soluciones, diferentes procesos, problemas o cuestiones de naturaleza espacial. El proyecto está coordinado por la Universidad James Madison y lleva siete años implantándose en diferentes institutos del Estado de Virginia, implicando a más de 20 centros educativos y 1.500 alumnos. Los alumnos que superan esta asignatura de la enseñanza secundaria obtienen la convalidación de determinados créditos académicos de la Universidad de referencia.Palabras clave:Sistemas de información geográfica, enseñanza, didáctica de la geografía, semestre geoespacial.Abstract:The Geospatial Semester is a geographical education activity focused on students in their final year of secondary schools in the U.S., acquiring specific skills in GIS, GPS and remote sensing. Through a methodology for project-based learning, students are motivated and involved in conducting research using geographic information systems and analyze, and even propose solutions, different processes, problems or issues spatial in nature. The Geospatial Semester university management not only ensures proper coaching, guidance and GIS training for teachers of colleges, but has established a system whereby students who pass this course of secondary education gain the recognition of certain credits from the University.Key words:Geographic information system, teaching, geographic education, geospatial semester. Résumé:Le semestre géospatial est une activité axée sur l'éducation géographique des étudiants en derni

  15. Persistent Teaching Practices after Geospatial Technology Professional Development

    Science.gov (United States)

    Rubino-Hare, Lori A.; Whitworth, Brooke A.; Bloom, Nena E.; Claesgens, Jennifer M.; Fredrickson, Kristi M.; Sample, James C.

    2016-01-01

    This case study described teachers with varying technology skills who were implementing the use of geospatial technology (GST) within project-based instruction (PBI) at varying grade levels and contexts 1 to 2 years following professional development. The sample consisted of 10 fifth- to ninth-grade teachers. Data sources included artifacts,…

  16. Integrating Free and Open Source Solutions into Geospatial Science Education

    Directory of Open Access Journals (Sweden)

    Vaclav Petras

    2015-06-01

    Full Text Available While free and open source software becomes increasingly important in geospatial research and industry, open science perspectives are generally less reflected in universities’ educational programs. We present an example of how free and open source software can be incorporated into geospatial education to promote open and reproducible science. Since 2008 graduate students at North Carolina State University have the opportunity to take a course on geospatial modeling and analysis that is taught with both proprietary and free and open source software. In this course, students perform geospatial tasks simultaneously in the proprietary package ArcGIS and the free and open source package GRASS GIS. By ensuring that students learn to distinguish between geospatial concepts and software specifics, students become more flexible and stronger spatial thinkers when choosing solutions for their independent work in the future. We also discuss ways to continually update and improve our publicly available teaching materials for reuse by teachers, self-learners and other members of the GIS community. Only when free and open source software is fully integrated into geospatial education, we will be able to encourage a culture of openness and, thus, enable greater reproducibility in research and development applications.

  17. Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies

    Science.gov (United States)

    Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.

    2007-12-01

    The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water

  18. Geospatial technology perspectives for mining vis-a-vis sustainable forest ecosystems

    Directory of Open Access Journals (Sweden)

    Goparaju Laxmi

    2017-06-01

    Full Text Available Forests, the backbone of biogeochemical cycles and life supporting systems, are under severe pressure due to varied anthropogenic activities. Mining activities are one among the major reasons for forest destruction questioning the survivability and sustainability of flora and fauna existing in that area. Thus, monitoring and managing the impact of mining activities on natural resources at regular intervals is necessary to check the status of their depleted conditions, and to take up restoration and conservative measurements. Geospatial technology provides means to identify the impact of different mining operations on forest ecosystems and helps in proposing initiatives for safeguarding the forest environment. In this context, the present study highlights the problems related to mining in forest ecosystems and elucidates how geospatial technology can be employed at various stages of mining activities to achieve a sustainable forest ecosystem. The study collates information from various sources and highlights the role of geospatial technology in mining industries and reclamation process.

  19. Capacity Building through Geospatial Education in Planning and School Curricula

    Science.gov (United States)

    Kumar, P.; Siddiqui, A.; Gupta, K.; Jain, S.; Krishna Murthy, Y. V. N.

    2014-11-01

    Geospatial technology has widespread usage in development planning and resource management. It offers pragmatic tools to help urban and regional planners to realize their goals. On the request of Ministry of Urban Development, Govt. of India, the Indian Institute of Remote Sensing (IIRS), Dehradun has taken an initiative to study the model syllabi of All India Council for Technical Education for planning curricula of Bachelor and Master (five disciplines) programmes. It is inferred that geospatial content across the semesters in various planning fields needs revision. It is also realized that students pursuing planning curricula are invariably exposed to spatial mapping tools but the popular digital drafting software have limitations on geospatial analysis of planning phenomena. Therefore, students need exposure on geospatial technologies to understand various real world phenomena. Inputs were given to seamlessly merge and incorporate geospatial components throughout the semesters wherever seems relevant. Another initiative by IIRS was taken to enhance the understanding and essence of space and geospatial technologies amongst the young minds at 10+2 level. The content was proposed in a manner such that youngsters start realizing the innumerable contributions made by space and geospatial technologies in their day-to-day life. This effort both at school and college level would help in not only enhancing job opportunities for young generation but also utilizing the untapped human resource potential. In the era of smart cities, higher economic growth and aspirations for a better tomorrow, integration of Geospatial technologies with conventional wisdom can no longer be ignored.

  20. A Practice Approach of Multi-source Geospatial Data Integration for Web-based Geoinformation Services

    Science.gov (United States)

    Huang, W.; Jiang, J.; Zha, Z.; Zhang, H.; Wang, C.; Zhang, J.

    2014-04-01

    Geospatial data resources are the foundation of the construction of geo portal which is designed to provide online geoinformation services for the government, enterprise and public. It is vital to keep geospatial data fresh, accurate and comprehensive in order to satisfy the requirements of application and development of geographic location, route navigation, geo search and so on. One of the major problems we are facing is data acquisition. For us, integrating multi-sources geospatial data is the mainly means of data acquisition. This paper introduced a practice integration approach of multi-source geospatial data with different data model, structure and format, which provided the construction of National Geospatial Information Service Platform of China (NGISP) with effective technical supports. NGISP is the China's official geo portal which provides online geoinformation services based on internet, e-government network and classified network. Within the NGISP architecture, there are three kinds of nodes: national, provincial and municipal. Therefore, the geospatial data is from these nodes and the different datasets are heterogeneous. According to the results of analysis of the heterogeneous datasets, the first thing we do is to define the basic principles of data fusion, including following aspects: 1. location precision; 2.geometric representation; 3. up-to-date state; 4. attribute values; and 5. spatial relationship. Then the technical procedure is researched and the method that used to process different categories of features such as road, railway, boundary, river, settlement and building is proposed based on the principles. A case study in Jiangsu province demonstrated the applicability of the principle, procedure and method of multi-source geospatial data integration.

  1. Reviews of Geospatial Information Technology and Collaborative Data Delivery for Disaster Risk Management

    Directory of Open Access Journals (Sweden)

    Hiroyuki Miyazaki

    2015-09-01

    Full Text Available Due to the fact that geospatial information technology is considered necessary for disaster risk management (DRM, the need for more effective collaborations between providers and end users in data delivery is increasing. This paper reviews the following: (i schemes of disaster risk management and collaborative data operation in DRM; (ii geospatial information technology in terms of applications to the schemes reviewed; and (iii ongoing practices of collaborative data delivery with the schemes reviewed. This paper concludes by discussing the future of collaborative data delivery and the progress of the technologies.

  2. Technologies Connotation and Developing Characteristics of Open Geospatial Information Platform

    Directory of Open Access Journals (Sweden)

    GUO Renzhong

    2016-02-01

    Full Text Available Based on the background of developments of surveying,mapping and geoinformation,aimed at the demands of data fusion,real-time sharing,in-depth processing and personalization,this paper analyzes significant features of geo-spatial service in digital city,focuses on theory,method and key techniques of open environment of cloud computing,multi-path data updating,full-scale urban geocoding,multi-source spatial data integration,adaptive geo-processing and adaptive Web mapping.As the basis for it,the Open Geospatial information platform is developed,and successfully implicated in digital Shenzhen.

  3. Integrated web system of geospatial data services for climate research

    Science.gov (United States)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  4. Geospatial Technology In Environmental Impact Assessments – Retrospective.

    Directory of Open Access Journals (Sweden)

    Goparaju Laxmi

    2015-10-01

    Full Text Available Environmental Impact Assessments are studies conducted to give us an insight into the various impacts caused by an upcoming industry or any developmental activity. It should address various social, economic and environmental issues ensuring that negative impacts are mitigated. In this context, geospatial technology has been used widely in recent times.

  5. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    Science.gov (United States)

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  6. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  7. Business models for implementing geospatial technologies in transportation decision-making

    Science.gov (United States)

    2007-03-31

    This report describes six State DOTs business models for implementing geospatial technologies. It provides a comparison of the organizational factors influencing how Arizona DOT, Delaware DOT, Georgia DOT, Montana DOT, North Carolina DOT, and Okla...

  8. Infrastructure for the Geospatial Web

    Science.gov (United States)

    Lake, Ron; Farley, Jim

    Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.

  9. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    Science.gov (United States)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We

  10. Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support

    Science.gov (United States)

    Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.

    2017-12-01

    The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.

  11. GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. Mohan

    2016-06-01

    Full Text Available In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  12. Bim and Gis: when Parametric Modeling Meets Geospatial Data

    Science.gov (United States)

    Barazzetti, L.; Banfi, F.

    2017-12-01

    Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.

  13. BIM AND GIS: WHEN PARAMETRIC MODELING MEETS GEOSPATIAL DATA

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2017-12-01

    Full Text Available Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building scale to the infrastructure (where geospatial data cannot be neglected has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by “pure” GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator industry, as well as new solutions for parametric modelling with additional geoinformation.

  14. Preparing Preservice Teachers to Incorporate Geospatial Technologies in Geography Teaching

    Science.gov (United States)

    Harte, Wendy

    2017-01-01

    This study evaluated the efficacy of geospatial technology (GT) learning experiences in two geography curriculum courses to determine their effectiveness for developing preservice teacher confidence and preparing preservice teachers to incorporate GT in their teaching practices. Surveys were used to collect data from preservice teachers at three…

  15. Development of Rural Emergency Medical System (REMS) with Geospatial Technology in Malaysia

    Science.gov (United States)

    Ooi, W. H.; Shahrizal, I. M.; Noordin, A.; Nurulain, M. I.; Norhan, M. Y.

    2014-02-01

    Emergency medical services are dedicated services in providing out-of-hospital transport to definitive care or patients with illnesses and injuries. In this service the response time and the preparedness of medical services is of prime importance. The application of space and geospatial technology such as satellite navigation system and Geographical Information System (GIS) was proven to improve the emergency operation in many developed countries. In collaboration with a medical service NGO, the National Space Agency (ANGKASA) has developed a prototype Rural Emergency Medical System (REMS), focusing on providing medical services to rural areas and incorporating satellite based tracking module integrated with GIS and patience database to improve the response time of the paramedic team during emergency. With the aim to benefit the grassroots community by exploiting space technology, the project was able to prove the system concept which will be addressed in this paper.

  16. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    Science.gov (United States)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher

  17. Towards Geo-spatial Information Science in Big Data Era

    Directory of Open Access Journals (Sweden)

    LI Deren

    2016-04-01

    Full Text Available Since the 1990s, with the advent of worldwide information revolution and the development of internet, geospatial information science have also come of age, which pushed forward the building of digital Earth and cyber city. As we entered the 21st century, with the development and integration of global information technology and industrialization, internet of things and cloud computing came into being, human society enters into the big data era. This article covers the key features (ubiquitous, multi-dimension and dynamics, internet+networking, full automation and real-time, from sensing to recognition, crowdsourcing and VGI, and service-oriented of geospatial information science in the big data era and addresses the key technical issues (non-linear four dimensional Earth reference frame system, space based enhanced GNSS, space-air and land unified network communication techniques, on board processing techniques for multi-sources image data, smart interface service techniques for space-borne information, space based resource scheduling and network security, design and developing of a payloads based multi-functional satellite platform. That needs to be resolved to provide a new definition of geospatial information science in big data era. Based on the discussion in this paper, the author finally proposes a new definition of geospatial information science (geomatics, i.e. Geomatics is a multiple discipline science and technology which, using a systematic approach, integrates all the means for spatio-temporal data acquisition, information extraction, networked management, knowledge discovering, spatial sensing and recognition, as well as intelligent location based services of any physical objects and human activities around the earth and its environment. Starting from this new definition, geospatial information science will get much more chances and find much more tasks in big data era for generation of smart earth and smart city . Our profession

  18. Python geospatial development

    CERN Document Server

    Westra, Erik

    2013-01-01

    This is a tutorial style book that will teach usage of Python tools for GIS using simple practical examples and then show you how to build a complete mapping application from scratch. The book assumes basic knowledge of Python. No knowledge of Open Source GIS is required.Experienced Python developers who want to learn about geospatial concepts, work with geospatial data, solve spatial problems, and build mapbased applications.This book will be useful those who want to get up to speed with Open Source GIS in order to build GIS applications or integrate GeoSpatial features into their existing ap

  19. Geo-spatial Service and Application based on National E-government Network Platform and Cloud

    Science.gov (United States)

    Meng, X.; Deng, Y.; Li, H.; Yao, L.; Shi, J.

    2014-04-01

    With the acceleration of China's informatization process, our party and government take a substantive stride in advancing development and application of digital technology, which promotes the evolution of e-government and its informatization. Meanwhile, as a service mode based on innovative resources, cloud computing may connect huge pools together to provide a variety of IT services, and has become one relatively mature technical pattern with further studies and massive practical applications. Based on cloud computing technology and national e-government network platform, "National Natural Resources and Geospatial Database (NRGD)" project integrated and transformed natural resources and geospatial information dispersed in various sectors and regions, established logically unified and physically dispersed fundamental database and developed national integrated information database system supporting main e-government applications. Cross-sector e-government applications and services are realized to provide long-term, stable and standardized natural resources and geospatial fundamental information products and services for national egovernment and public users.

  20. The geospatial web how geobrowsers, social software and the web 2 0 are shaping the network society

    CERN Document Server

    Scharl, Arno; Tochtermann, Klaus

    2007-01-01

    The Geospatial Web will have a profound impact on managing knowledge, structuring work flows within and across organizations, and communicating with like-minded individuals in virtual communities. The enabling technologies for the Geospatial Web are geo-browsers such as NASA World Wind, Google Earth and Microsoft Live Local 3D. These three-dimensional platforms revolutionize the production and consumption of media products. They not only reveal the geographic distribution of Web resources and services, but also bring together people of similar interests, browsing behavior, or geographic location. This book summarizes the latest research on the Geospatial Web's technical foundations, describes information services and collaborative tools built on top of geo-browsers, and investigates the environmental, social and economic impacts of geospatial applications. The role of contextual knowledge in shaping the emerging network society deserves particular attention. By integrating geospatial and semantic technology, ...

  1. Nebhydro: Sharing Geospatial Data to Supportwater Management in Nebraska

    Science.gov (United States)

    Kamble, B.; Irmak, A.; Hubbard, K.; Deogun, J.; Dvorak, B.

    2012-12-01

    Recent advances in web-enabled geographical technologies have the potential to make a dramatic impact on development of highly interactive spatial applications on the web for visualization of large-scale geospatial data by water resources and irrigation scientists. Spatial and point scale water resources data visualization are an emerging and challenging application domain. Query based visual explorations of geospatial hydrological data can play an important role in stimulating scientific hypotheses and seeking causal relationships among hydro variables. The Nebraska Hydrological Information System (NebHydro) utilizes ESRI's ArcGIS server technology to increase technological awareness among farmers, irrigation managers and policy makers. Web-based geospatial applications are an effective way to expose scientific hydrological datasets to the research community and the public. NebHydro uses Adobe Flex technology to offer an online visualization and data analysis system for presentation of social and economic data. Internet mapping services is an integrated product of GIS and Internet technologies; it is a favored solution to achieve the interoperability of GIS. The development of Internet based GIS services in the state of Nebraska showcases the benefits of sharing geospatial hydrological data among agencies, resource managers and policy makers. Geospatial hydrological Information (Evapotranspiration from Remote Sensing, vegetation indices (NDVI), USGS Stream gauge data, Climatic data etc.) is generally generated through model simulation (METRIC, SWAP, Linux, Python based scripting etc). Information is compiled into and stored within object oriented relational spatial databases using a geodatabase information model that supports the key data types needed by applications including features, relationships, networks, imagery, terrains, maps and layers. The system provides online access, querying, visualization, and analysis of the hydrological data from several sources

  2. Implementing a High School Level Geospatial Technologies and Spatial Thinking Course

    Science.gov (United States)

    Nielsen, Curtis P.; Oberle, Alex; Sugumaran, Ramanathan

    2011-01-01

    Understanding geospatial technologies (GSTs) and spatial thinking is increasingly vital to contemporary life including common activities and hobbies; learning in science, mathematics, and social science; and employment within fields as diverse as engineering, health, business, and planning. As such, there is a need for a stand-alone K-12…

  3. Examining the Effect of Enactment of a Geospatial Curriculum on Students' Geospatial Thinking and Reasoning

    Science.gov (United States)

    Bodzin, Alec M.; Fu, Qiong; Kulo, Violet; Peffer, Tamara

    2014-08-01

    A potential method for teaching geospatial thinking and reasoning (GTR) is through geospatially enabled learning technologies. We developed an energy resources geospatial curriculum that included learning activities with geographic information systems and virtual globes. This study investigated how 13 urban middle school teachers implemented and varied the enactment of the curriculum with their students and investigated which teacher- and student-level factors accounted for students' GTR posttest achievement. Data included biweekly implementation surveys from teachers and energy resources content and GTR pre- and posttest achievement measures from 1,049 students. Students significantly increased both their energy resources content knowledge and their GTR skills related to energy resources at the end of the curriculum enactment. Both multiple regression and hierarchical linear modeling found that students' initial GTR abilities and gain in energy content knowledge were significantly explanatory variables for their geospatial achievement at the end of curriculum enactment, p critical components of the curriculum or the number of years the teachers had taught the curriculum, did not have significant effects on students' geospatial posttest achievement. The findings from this study provide support that learning with geospatially enabled learning technologies can support GTR with urban middle-level learners.

  4. Geospatial Information Service System Based on GeoSOT Grid & Encoding

    Directory of Open Access Journals (Sweden)

    LI Shizhong

    2016-12-01

    Full Text Available With the rapid development of the space and earth observation technology, it is important to establish a multi-source, multi-scale and unified cross-platform reference for global data. In practice, the production and maintenance of geospatial data are scattered in different units, and the standard of the data grid varies between departments and systems. All these bring out the disunity of standards among different historical periods or orgnizations. Aiming at geospatial information security library for the national high resolution earth observation, there are some demands for global display, associated retrieval and template applications and other integrated services for geospatial data. Based on GeoSOT grid and encoding theory system, "geospatial information security library information of globally unified grid encoding management" data subdivision organization solutions have been proposed; system-level analyses, researches and designs have been carried out. The experimental results show that the data organization and management method based on GeoSOT can significantly improve the overall efficiency of the geospatial information security service system.

  5. Allocation of Tutors and Study Centers in Distance Learning Using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    Shahid Nawaz Khan

    2018-05-01

    Full Text Available Allama Iqbal Open University (AIOU is Pakistan’s largest distance learning institute, providing education to 1.4 million students. This is a fairly large setup across a country where students are highly geographically distributed. Currently, the system works using a manual approach, which is not efficient. Allocation of tutors and study centers to students plays a key role in creating a better learning environment for distance learning. Assigning tutors and study centers to distance learning students is a challenging task when there is a huge geographic spread. Using geospatial technologies in open and distance learning can fix allocation problems. This research analyzes real data from the twin cities Islamabad and Rawalpindi. The results show that geospatial technologies can be used for efficient and proper resource utilization and allocation, which in turn can save time and money. The overall idea fits into an improved distance learning framework and related analytics.

  6. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Science.gov (United States)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  7. A geospatial search engine for discovering multi-format geospatial data across the web

    Science.gov (United States)

    Christopher Bone; Alan Ager; Ken Bunzel; Lauren Tierney

    2014-01-01

    The volume of publically available geospatial data on the web is rapidly increasing due to advances in server-based technologies and the ease at which data can now be created. However, challenges remain with connecting individuals searching for geospatial data with servers and websites where such data exist. The objective of this paper is to present a publically...

  8. Evaluating Progression in Students' Relational Thinking While Working on Tasks with Geospatial Technologies

    NARCIS (Netherlands)

    Favier, Tim|info:eu-repo/dai/nl/33811534X; van der Schee, Joop|info:eu-repo/dai/nl/072719575

    2014-01-01

    One of the facets of geographic literacy is the ability to think in a structured way about geographic relationships. Geospatial technologies offer many opportunities to stimulate students’ geographic relational thinking. The question is: How can these opportunities be effectuated? This paper

  9. From Geomatics to Geospatial Intelligent Service Science

    Directory of Open Access Journals (Sweden)

    LI Deren

    2017-10-01

    Full Text Available The paper reviews the 60 years of development from traditional surveying and mapping to today's geospatial intelligent service science.The three important stages of surveying and mapping, namely analogue,analytical and digital stage are summarized.The author introduces the integration of GNSS,RS and GIS(3S,which forms the rise of geospatial informatics(Geomatics.The development of geo-spatial information science in digital earth era is analyzed,and the latest progress of geo-spatial information science towards real-time intelligent service in smart earth era is discussed.This paper focuses on the three development levels of "Internet plus" spatial information intelligent service.In the era of big data,the traditional geomatics will surely take advantage of the integration of communication,navigation,remote sensing,artificial intelligence,virtual reality and brain cognition science,and become geospatial intelligent service science,thereby making contributions to national economy,defense and people's livelihood.

  10. GeoSearch: A lightweight broking middleware for geospatial resources discovery

    Science.gov (United States)

    Gui, Z.; Yang, C.; Liu, K.; Xia, J.

    2012-12-01

    With petabytes of geodata, thousands of geospatial web services available over the Internet, it is critical to support geoscience research and applications by finding the best-fit geospatial resources from the massive and heterogeneous resources. Past decades' developments witnessed the operation of many service components to facilitate geospatial resource management and discovery. However, efficient and accurate geospatial resource discovery is still a big challenge due to the following reasons: 1)The entry barriers (also called "learning curves") hinder the usability of discovery services to end users. Different portals and catalogues always adopt various access protocols, metadata formats and GUI styles to organize, present and publish metadata. It is hard for end users to learn all these technical details and differences. 2)The cost for federating heterogeneous services is high. To provide sufficient resources and facilitate data discovery, many registries adopt periodic harvesting mechanism to retrieve metadata from other federated catalogues. These time-consuming processes lead to network and storage burdens, data redundancy, and also the overhead of maintaining data consistency. 3)The heterogeneous semantics issues in data discovery. Since the keyword matching is still the primary search method in many operational discovery services, the search accuracy (precision and recall) is hard to guarantee. Semantic technologies (such as semantic reasoning and similarity evaluation) offer a solution to solve these issues. However, integrating semantic technologies with existing service is challenging due to the expandability limitations on the service frameworks and metadata templates. 4)The capabilities to help users make final selection are inadequate. Most of the existing search portals lack intuitive and diverse information visualization methods and functions (sort, filter) to present, explore and analyze search results. Furthermore, the presentation of the value

  11. INTEGRATED IMAGING APPROACHES SUPPORTING THE EXCAVATION ACTIVITIES. MULTI-SCALE GEOSPATIAL DOCUMENTATION IN HIERAPOLIS (TK

    Directory of Open Access Journals (Sweden)

    A. Spanò

    2018-05-01

    Full Text Available The paper focuses on the exploration of the suitability and the discretization of applicability issues about advanced surveying integrated techniques, mainly based on image-based approaches compared and integrated to range-based ones that have been developed with the use of the cutting-edge solutions tested on field. The investigated techniques integrate both technological devices for 3D data acquisition and thus editing and management systems to handle metric models and multi-dimensional data in a geospatial perspective, in order to innovate and speed up the extraction of information during the archaeological excavation activities. These factors, have been experienced in the outstanding site of the Hierapolis of Phrygia ancient city (Turkey, downstream the 2017 surveying missions, in order to produce high-scale metric deliverables in terms of high-detailed Digital Surface Models (DSM, 3D continuous surface models and high-resolution orthoimages products. In particular, the potentialities in the use of UAV platforms for low altitude acquisitions in aerial photogrammetric approach, together with terrestrial panoramic acquisitions (Trimble V10 imaging rover, have been investigated with a comparison toward consolidated Terrestrial Laser Scanning (TLS measurements. One of the main purposes of the paper is to evaluate the results offered by the technologies used independently and using integrated approaches. A section of the study in fact, is specifically dedicated to experimenting the union of different sensor dense clouds: both dense clouds derived from UAV have been integrated with terrestrial Lidar clouds, to evaluate their fusion. Different test cases have been considered, representing typical situations that can be encountered in archaeological sites.

  12. A FRAMEWORK FOR AN OPEN SOURCE GEOSPATIAL CERTIFICATION MODEL

    Directory of Open Access Journals (Sweden)

    T. U. R. Khan

    2016-06-01

    Full Text Available The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission “Making geospatial education and opportunities accessible to all”. Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the “Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM. The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and

  13. a Framework for AN Open Source Geospatial Certification Model

    Science.gov (United States)

    Khan, T. U. R.; Davis, P.; Behr, F.-J.

    2016-06-01

    The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105

  14. Geospatial technology and the "exposome": new perspectives on addiction.

    Science.gov (United States)

    Stahler, Gerald J; Mennis, Jeremy; Baron, David A

    2013-08-01

    Addiction represents one of the greatest public health problems facing the United States. Advances in addiction research have focused on the neurobiology of this disease. We discuss potential new breakthroughs in understanding the other side of gene-environment interactions-the environmental context or "exposome" of addiction. Such research has recently been made possible by advances in geospatial technologies together with new mobile and sensor computing platforms. These advances have fostered interdisciplinary collaborations focusing on the intersection of environment and behavior in addiction research. Although issues of privacy protection for study participants remain, these advances could potentially improve our understanding of initiation of drug use and relapse and help develop innovative technology-based interventions to improve treatment and continuing care services.

  15. Mapping a Difference: The Power of Geospatial Visualization

    Science.gov (United States)

    Kolvoord, B.

    2015-12-01

    Geospatial Technologies (GST), such as GIS, GPS and remote sensing, offer students and teachers the opportunity to study the "why" of where. By making maps and collecting location-based data, students can pursue authentic problems using sophisticated tools. The proliferation of web- and cloud-based tools has made these technologies broadly accessible to schools. In addition, strong spatial thinking skills have been shown to be a key factor in supporting students that want to study science, technology, engineering, and mathematics (STEM) disciplines (Wai, Lubinski and Benbow) and pursue STEM careers. Geospatial technologies strongly scaffold the development of these spatial thinking skills. For the last ten years, the Geospatial Semester, a unique dual-enrollment partnership between James Madison University and Virginia high schools, has provided students with the opportunity to use GST's to hone their spatial thinking skills and to do extended projects of local interest, including environmental, geological and ecological studies. Along with strong spatial thinking skills, these students have also shown strong problem solving skills, often beyond those of fellow students in AP classes. Programs like the Geospatial Semester are scalable and within the reach of many college and university departments, allowing strong engagement with K-12 schools. In this presentation, we'll share details of the Geospatial Semester and research results on the impact of the use of these technologies on students' spatial thinking skills, and discuss the success and challenges of developing K-12 partnerships centered on geospatial visualization.

  16. Improving the Slum Planning Through Geospatial Decision Support System

    Science.gov (United States)

    Shekhar, S.

    2014-11-01

    In India, a number of schemes and programmes have been launched from time to time in order to promote integrated city development and to enable the slum dwellers to gain access to the basic services. Despite the use of geospatial technologies in planning, the local, state and central governments have only been partially successful in dealing with these problems. The study on existing policies and programmes also proved that when the government is the sole provider or mediator, GIS can become a tool of coercion rather than participatory decision-making. It has also been observed that local level administrators who have adopted Geospatial technology for local planning continue to base decision-making on existing political processes. In this juncture, geospatial decision support system (GSDSS) can provide a framework for integrating database management systems with analytical models, graphical display, tabular reporting capabilities and the expert knowledge of decision makers. This assists decision-makers to generate and evaluate alternative solutions to spatial problems. During this process, decision-makers undertake a process of decision research - producing a large number of possible decision alternatives and provide opportunities to involve the community in decision making. The objective is to help decision makers and planners to find solutions through a quantitative spatial evaluation and verification process. The study investigates the options for slum development in a formal framework of RAY (Rajiv Awas Yojana), an ambitious program of Indian Government for slum development. The software modules for realizing the GSDSS were developed using the ArcGIS and Community -VIZ software for Gulbarga city.

  17. SWOT analysis on National Common Geospatial Information Service Platform of China

    Science.gov (United States)

    Zheng, Xinyan; He, Biao

    2010-11-01

    Currently, the trend of International Surveying and Mapping is shifting from map production to integrated service of geospatial information, such as GOS of U.S. etc. Under this circumstance, the Surveying and Mapping of China is inevitably shifting from 4D product service to NCGISPC (National Common Geospatial Information Service Platform of China)-centered service. Although State Bureau of Surveying and Mapping of China has already provided a great quantity of geospatial information service to various lines of business, such as emergency and disaster management, transportation, water resource, agriculture etc. The shortcomings of the traditional service mode are more and more obvious, due to the highly emerging requirement of e-government construction, the remarkable development of IT technology and emerging online geospatial service demands of various lines of business. NCGISPC, which aimed to provide multiple authoritative online one-stop geospatial information service and API for further development to government, business and public, is now the strategic core of SBSM (State Bureau of Surveying and Mapping of China). This paper focuses on the paradigm shift that NCGISPC brings up by using SWOT (Strength, Weakness, Opportunity and Threat) analysis, compared to the service mode that based on 4D product. Though NCGISPC is still at its early stage, it represents the future service mode of geospatial information of China, and surely will have great impact not only on the construction of digital China, but also on the way that everyone uses geospatial information service.

  18. Leveraging geospatial data, technology, and methods for improving the health of communities: priorities and strategies from an expert panel convened by the CDC.

    Science.gov (United States)

    Elmore, Kim; Flanagan, Barry; Jones, Nicholas F; Heitgerd, Janet L

    2010-04-01

    In 2008, CDC convened an expert panel to gather input on the use of geospatial science in surveillance, research and program activities focused on CDC's Healthy Communities Goal. The panel suggested six priorities: spatially enable and strengthen public health surveillance infrastructure; develop metrics for geospatial categorization of community health and health inequity; evaluate the feasibility and validity of standard metrics of community health and health inequities; support and develop GIScience and geospatial analysis; provide geospatial capacity building, training and education; and, engage non-traditional partners. Following the meeting, the strategies and action items suggested by the expert panel were reviewed by a CDC subcommittee to determine priorities relative to ongoing CDC geospatial activities, recognizing that many activities may need to occur either in parallel, or occur multiple times across phases. Phase A of the action items centers on developing leadership support. Phase B focuses on developing internal and external capacity in both physical (e.g., software and hardware) and intellectual infrastructure. Phase C of the action items plan concerns the development and integration of geospatial methods. In summary, the panel members provided critical input to the development of CDC's strategic thinking on integrating geospatial methods and research issues across program efforts in support of its Healthy Communities Goal.

  19. An Effective Framework for Distributed Geospatial Query Processing in Grids

    Directory of Open Access Journals (Sweden)

    CHEN, B.

    2010-08-01

    Full Text Available The emergence of Internet has greatly revolutionized the way that geospatial information is collected, managed, processed and integrated. There are several important research issues to be addressed for distributed geospatial applications. First, the performance of geospatial applications is needed to be considered in the Internet environment. In this regard, the Grid as an effective distributed computing paradigm is a good choice. The Grid uses a series of middleware to interconnect and merge various distributed resources into a super-computer with capability of high performance computation. Secondly, it is necessary to ensure the secure use of independent geospatial applications in the Internet environment. The Grid just provides the utility of secure access to distributed geospatial resources. Additionally, it makes good sense to overcome the heterogeneity between individual geospatial information systems in Internet. The Open Geospatial Consortium (OGC proposes a number of generalized geospatial standards e.g. OGC Web Services (OWS to achieve interoperable access to geospatial applications. The OWS solution is feasible and widely adopted by both the academic community and the industry community. Therefore, we propose an integrated framework by incorporating OWS standards into Grids. Upon the framework distributed geospatial queries can be performed in an interoperable, high-performance and secure Grid environment.

  20. Methods and Tools to Align Curriculum to the Skills and Competencies Needed by the Workforce - an Example from Geospatial Science and Technology

    Science.gov (United States)

    Johnson, A. B.

    2012-12-01

    to create customized curriculum integrating geospatial science and technology into geoscience programs.

  1. An Application of Geospatial Information Systems (GIS) Technology to Anatomic Dental Charting

    OpenAIRE

    Bartling, William C.; Schleyer, Titus K.L.

    2003-01-01

    Historically, an anatomic dental chart is a compilation of color-coded symbols and numbers used within a template, either paper or computerized, to create a graphic record of a patient’s oral health status. This poster depicts how Geospatial Information System (GIS) technology can be used to create an accurate, current anatomic dental chart that contains detailed information not present in current charting systems.

  2. A Spatial Data Infrastructure Integrating Multisource Heterogeneous Geospatial Data and Time Series: A Study Case in Agriculture

    Directory of Open Access Journals (Sweden)

    Gloria Bordogna

    2016-05-01

    Full Text Available Currently, the best practice to support land planning calls for the development of Spatial Data Infrastructures (SDI capable of integrating both geospatial datasets and time series information from multiple sources, e.g., multitemporal satellite data and Volunteered Geographic Information (VGI. This paper describes an original OGC standard interoperable SDI architecture and a geospatial data and metadata workflow for creating and managing multisource heterogeneous geospatial datasets and time series, and discusses it in the framework of the Space4Agri project study case developed to support the agricultural sector in Lombardy region, Northern Italy. The main novel contributions go beyond the application domain for which the SDI has been developed and are the following: the ingestion within an a-centric SDI, potentially distributed in several nodes on the Internet to support scalability, of products derived by processing remote sensing images, authoritative data, georeferenced in-situ measurements and voluntary information (VGI created by farmers and agronomists using an original Smart App; the workflow automation for publishing sets and time series of heterogeneous multisource geospatial data and relative web services; and, finally, the project geoportal, that can ease the analysis of the geospatial datasets and time series by providing complex intelligent spatio-temporal query and answering facilities.

  3. A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    Isabel C. Pérez Hoyos

    2016-03-01

    Full Text Available Groundwater Dependent Ecosystem (GDE protection is increasingly being recognized as essential for the sustainable management and allocation of water resources. GDE services are crucial for human well-being and for a variety of flora and fauna. However, the conservation of GDEs is only possible if knowledge about their location and extent is available. Several studies have focused on the identification of GDEs at specific locations using ground-based measurements. However, recent progress in remote sensing technologies and their integration with Geographic Information Systems (GIS has provided alternative ways to map GDEs at a much larger spatial extent. This paper presents a review of the geospatial methods that have been used to map and delineate GDEs at spatial different extents. Additionally, a summary of the satellite sensors useful for identification of GDEs and the integration of remote sensing data with ground-based measurements in the process of mapping GDEs is presented.

  4. An approach for heterogeneous and loosely coupled geospatial data distributed computing

    Science.gov (United States)

    Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui

    2010-07-01

    Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.

  5. Lsiviewer 2.0 - a Client-Oriented Online Visualization Tool for Geospatial Vector Data

    Science.gov (United States)

    Manikanta, K.; Rajan, K. S.

    2017-09-01

    Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of serverdominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer - a simple, easy-to-use and robust online geospatial data visualisation system for the user's own data that harness the client's capabilities for data rendering and user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35 MB, showed that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical system.

  6. Bridging IMO e-Navigation Policy and Offshore Oil and Gas Operations through Geospatial Standards

    Directory of Open Access Journals (Sweden)

    Filipe Modesto Da Rocha

    2016-04-01

    Full Text Available In offshore industry activities, the suitable onboard provision of assets location and geospatial marine information during operations is essential. Currently, most companies use its own data structures, resulting in incompatibility between processes. In order to promote the data exchange, oil and gas industry associations have pursued initiatives to standardize spatial information. In turn, the IMO - International Maritime Organization - started the implementation of e-Navigation policy, which is the standardization of technologies and protocols applied to maritime information and navigation. This paper shows relationship and integration points between maritime activities of oil and gas industry and e-Navigation technologies and processes, highlighting geospatial information. This paper also preludes out an initiative for a suitable product specification for the offshore oil and gas industry, compliant with e-Navigation and IHO S-100 international standards.

  7. The African Geospatial Sciences Institute (agsi): a New Approach to Geospatial Training in North Africa

    Science.gov (United States)

    Oeldenberger, S.; Khaled, K. B.

    2012-07-01

    The African Geospatial Sciences Institute (AGSI) is currently being established in Tunisia as a non-profit, non-governmental organization (NGO). Its objective is to accelerate the geospatial capacity development in North-Africa, providing the facilities for geospatial project and management training to regional government employees, university graduates, private individuals and companies. With typical course durations between one and six months, including part-time programs and long-term mentoring, its focus is on practical training, providing actual project execution experience. The AGSI will complement formal university education and will work closely with geospatial certification organizations and the geospatial industry. In the context of closer cooperation between neighboring North Africa and the European Community, the AGSI will be embedded in a network of several participating European and African universities, e. g. the ITC, and international organizations, such as the ISPRS, the ICA and the OGC. Through a close cooperation with African organizations, such as the AARSE, the RCMRD and RECTAS, the network and exchange of ideas, experiences, technology and capabilities will be extended to Saharan and sub-Saharan Africa. A board of trustees will be steering the AGSI operations and will ensure that practical training concepts and contents are certifiable and can be applied within a credit system to graduate and post-graduate education at European and African universities. The geospatial training activities of the AGSI are centered on a facility with approximately 30 part- and full-time general staff and lecturers in Tunis during the first year. The AGSI will operate a small aircraft with a medium-format aerial camera and compact LIDAR instrument for local, community-scale data capture. Surveying training, the photogrammetric processing of aerial images, GIS data capture and remote sensing training will be the main components of the practical training courses

  8. Strategizing Teacher Professional Development for Classroom Uses of Geospatial Data and Tools

    Science.gov (United States)

    Zalles, Daniel R.; Manitakos, James

    2016-01-01

    Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE), a 4.5-year National Science Foundation funded project, explored the strategies that stimulate teacher commitment to the project's driving innovation: having students use geospatial information technology (GIT) to learn about weather, climate,…

  9. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    Science.gov (United States)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  10. Remote Sensing and Geospatial Technological Applications for Site-specific Management of Fruit and Nut Crops: A Review

    Directory of Open Access Journals (Sweden)

    Joel O. Paz

    2010-08-01

    Full Text Available Site-specific crop management (SSCM is one facet of precision agriculture which is helping increase production with minimal input. It has enhanced the cost-benefit scenario in crop production. Even though the SSCM is very widely used in row crop agriculture like corn, wheat, rice, soybean, etc. it has very little application in cash crops like fruit and nut. The main goal of this review paper was to conduct a comprehensive review of advanced technologies, including geospatial technologies, used in site-specific management of fruit and nut crops. The review explores various remote sensing data from different platforms like satellite, LIDAR, aerial, and field imaging. The study analyzes the use of satellite sensors, such as Quickbird, Landsat, SPOT, and IRS imagery as well as hyperspectral narrow-band remote sensing data in study of fruit and nut crops in blueberry, citrus, peach, apple, etc. The study also explores other geospatial technologies such as GPS, GIS spatial modeling, advanced image processing techniques, and information technology for suitability study, orchard delineation, and classification accuracy assessment. The study also provides an example of a geospatial model developed in ArcGIS ModelBuilder to automate the blueberry production suitability analysis. The GIS spatial model is developed using various crop characteristics such as chilling hours, soil permeability, drainage, and pH, and land cover to determine the best sites for growing blueberry in Georgia, U.S. The study also provides a list of spectral reflectance curves developed for some fruit and nut crops, blueberry, crowberry, redblush citrus, orange, prickly pear, and peach. The study also explains these curves in detail to help researchers choose the image platform, sensor, and spectrum wavelength for various fruit and nut crops SSCM.

  11. Issues on Building Kazakhstan Geospatial Portal to Implement E-Government

    Science.gov (United States)

    Sagadiyev, K.; Kang, H. K.; Li, K. J.

    2016-06-01

    A main issue in developing e-government is about how to integrate and organize many complicated processes and different stakeholders. Interestingly geospatial information provides an efficient framework to integrate and organized them. In particular, it is very useful to integrate the process of land management in e-government with geospatial information framework, since most of land management tasks are related with geospatial properties. In this paper, we present a use-case on the e-government project in Kazakhstan for land management. We develop a geoportal to connect many tasks and different users via geospatial information framework. This geoportal is based on open source geospatial software including GeoServer, PostGIS, and OpenLayers. With this geoportal, we expect three achievements as follows. First we establish a transparent governmental process, which is one of main goal of e-government. Every stakeholder monitors what is happening in land management process. Second, we can significantly reduce the time and efforts in the government process. For example, a grant procedure for a building construction has taken more than one year with more than 50 steps. It is expected that this procedure would be reduced to 2 weeks by the geoportal framework. Third we provide a collaborative environment between different governmental structures via the geoportal, while many conflicts and mismatches have been a critical issue of governmental administration processes.

  12. ISSUES ON BUILDING KAZAKHSTAN GEOSPATIAL PORTAL TO IMPLEMENT E-GOVERNMENT

    Directory of Open Access Journals (Sweden)

    K. Sagadiyev

    2016-06-01

    Full Text Available A main issue in developing e-government is about how to integrate and organize many complicated processes and different stakeholders. Interestingly geospatial information provides an efficient framework to integrate and organized them. In particular, it is very useful to integrate the process of land management in e-government with geospatial information framework, since most of land management tasks are related with geospatial properties. In this paper, we present a use-case on the e-government project in Kazakhstan for land management. We develop a geoportal to connect many tasks and different users via geospatial information framework. This geoportal is based on open source geospatial software including GeoServer, PostGIS, and OpenLayers. With this geoportal, we expect three achievements as follows. First we establish a transparent governmental process, which is one of main goal of e-government. Every stakeholder monitors what is happening in land management process. Second, we can significantly reduce the time and efforts in the government process. For example, a grant procedure for a building construction has taken more than one year with more than 50 steps. It is expected that this procedure would be reduced to 2 weeks by the geoportal framework. Third we provide a collaborative environment between different governmental structures via the geoportal, while many conflicts and mismatches have been a critical issue of governmental administration processes.

  13. Economic Assessment of the Use Value of Geospatial Information

    Directory of Open Access Journals (Sweden)

    Richard Bernknopf

    2015-07-01

    Full Text Available Geospatial data inform decision makers. An economic model that involves application of spatial and temporal scientific, technical, and economic data in decision making is described. The value of information (VOI contained in geospatial data is the difference between the net benefits (in present value terms of a decision with and without the information. A range of technologies is used to collect and distribute geospatial data. These technical activities are linked to examples that show how the data can be applied in decision making, which is a cultural activity. The economic model for assessing the VOI in geospatial data for decision making is applied to three examples: (1 a retrospective model about environmental regulation of agrochemicals; (2 a prospective model about the impact and mitigation of earthquakes in urban areas; and (3 a prospective model about developing private–public geospatial information for an ecosystem services market. Each example demonstrates the potential value of geospatial information in a decision with uncertain information.

  14. Economic assessment of the use value of geospatial information

    Science.gov (United States)

    Bernknopf, Richard L.; Shapiro, Carl D.

    2015-01-01

    Geospatial data inform decision makers. An economic model that involves application of spatial and temporal scientific, technical, and economic data in decision making is described. The value of information (VOI) contained in geospatial data is the difference between the net benefits (in present value terms) of a decision with and without the information. A range of technologies is used to collect and distribute geospatial data. These technical activities are linked to examples that show how the data can be applied in decision making, which is a cultural activity. The economic model for assessing the VOI in geospatial data for decision making is applied to three examples: (1) a retrospective model about environmental regulation of agrochemicals; (2) a prospective model about the impact and mitigation of earthquakes in urban areas; and (3) a prospective model about developing private–public geospatial information for an ecosystem services market. Each example demonstrates the potential value of geospatial information in a decision with uncertain information.

  15. Searches over graphs representing geospatial-temporal remote sensing data

    Science.gov (United States)

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  16. A study on state of Geospatial courses in Indian Universities

    Science.gov (United States)

    Shekhar, S.

    2014-12-01

    Today the world is dominated by three technologies such as Nano technology, Bio technology and Geospatial technology. This increases the huge demand for experts in the respective field for disseminating the knowledge as well as for an innovative research. Therefore, the prime need is to train the existing fraternity to gain progressive knowledge in these technologies and impart the same to student community. The geospatial technology faces some peculiar problem than other two technologies because of its interdisciplinary, multi-disciplinary nature. It attracts students and mid career professionals from various disciplines including Physics, Computer science, Engineering, Geography, Geology, Agriculture, Forestry, Town Planning and so on. Hence there is always competition to crab and stabilize their position. The students of Master's degree in Geospatial science are facing two types of problem. The first one is no unique identity in the academic field. Neither they are exempted for National eligibility Test for Lecturer ship nor given an opportunity to have the exam in geospatial science. The second one is differential treatment by the industrial world. The students are either given low grade jobs or poorly paid for their job. Thus, it is a serious issue about the future of this course in the Universities and its recognition in the academic and industrial world. The universities should make this course towards more job oriented in consultation with the Industries and Industries should come forward to share their demands and requirements to the Universities, so that necessary changes in the curriculum can be made to meet the industrial requirements.

  17. A big data geospatial analytics platform - Physical Analytics Integrated Repository and Services (PAIRS)

    Science.gov (United States)

    Hamann, H.; Jimenez Marianno, F.; Klein, L.; Albrecht, C.; Freitag, M.; Hinds, N.; Lu, S.

    2015-12-01

    A big data geospatial analytics platform:Physical Analytics Information Repository and Services (PAIRS)Fernando Marianno, Levente Klein, Siyuan Lu, Conrad Albrecht, Marcus Freitag, Nigel Hinds, Hendrik HamannIBM TJ Watson Research Center, Yorktown Heights, NY 10598A major challenge in leveraging big geospatial data sets is the ability to quickly integrate multiple data sources into physical and statistical models and be run these models in real time. A geospatial data platform called Physical Analytics Information and Services (PAIRS) is developed on top of open source hardware and software stack to manage Terabyte of data. A new data interpolation and re gridding is implemented where any geospatial data layers can be associated with a set of global grid where the grid resolutions is doubling for consecutive layers. Each pixel on the PAIRS grid have an index that is a combination of locations and time stamp. The indexing allow quick access to data sets that are part of a global data layers and allowing to retrieve only the data of interest. PAIRS takes advantages of parallel processing framework (Hadoop) in a cloud environment to digest, curate, and analyze the data sets while being very robust and stable. The data is stored on a distributed no-SQL database (Hbase) across multiple server, data upload and retrieval is parallelized where the original analytics task is broken up is smaller areas/volume, analyzed independently, and then reassembled for the original geographical area. The differentiating aspect of PAIRS is the ability to accelerate model development across large geographical regions and spatial resolution ranging from 0.1 m up to hundreds of kilometer. System performance is benchmarked on real time automated data ingestion and retrieval of Modis and Landsat data layers. The data layers are curated for sensor error, verified for correctness, and analyzed statistically to detect local anomalies. Multi-layer query enable PAIRS to filter different data

  18. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  19. Automatic geospatial information Web service composition based on ontology interface matching

    Science.gov (United States)

    Xu, Xianbin; Wu, Qunyong; Wang, Qinmin

    2008-10-01

    With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.

  20. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    Science.gov (United States)

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  1. Mobile Traffic Alert and Tourist Route Guidance System Design Using Geospatial Data

    Science.gov (United States)

    Bhattacharya, D.; Painho, M.; Mishra, S.; Gupta, A.

    2017-09-01

    The present study describes an integrated system for traffic data collection and alert warning. Geographical information based decision making related to traffic destinations and routes is proposed through the design. The system includes a geospatial database having profile relating to a user of a mobile device. The processing and understanding of scanned maps, other digital data input leads to route guidance. The system includes a server configured to receive traffic information relating to a route and location information relating to the mobile device. Server is configured to send a traffic alert to the mobile device when the traffic information and the location information indicate that the mobile device is traveling toward traffic congestion. Proposed system has geospatial and mobile data sets pertaining to Bangalore city in India. It is envisaged to be helpful for touristic purposes as a route guidance and alert relaying information system to tourists for proximity to sites worth seeing in a city they have entered into. The system is modular in architecture and the novelty lies in integration of different modules carrying different technologies for a complete traffic information system. Generic information processing and delivery system has been tested to be functional and speedy under test geospatial domains. In a restricted prototype model with geo-referenced route data required information has been delivered correctly over sustained trials to designated cell numbers, with average time frame of 27.5 seconds, maximum 50 and minimum 5 seconds. Traffic geo-data set trials testing is underway.

  2. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    Science.gov (United States)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  3. A resource-oriented architecture for a Geospatial Web

    Science.gov (United States)

    Mazzetti, Paolo; Nativi, Stefano

    2010-05-01

    In this presentation we discuss some architectural issues on the design of an architecture for a Geospatial Web, that is an information system for sharing geospatial resources according to the Web paradigm. The success of the Web in building a multi-purpose information space, has raised questions about the possibility of adopting the same approach for systems dedicated to the sharing of more specific resources, such as the geospatial information, that is information characterized by spatial/temporal reference. To this aim an investigation on the nature of the Web and on the validity of its paradigm for geospatial resources is required. The Web was born in the early 90's to provide "a shared information space through which people and machines could communicate" [Berners-Lee 1996]. It was originally built around a small set of specifications (e.g. URI, HTTP, HTML, etc.); however, in the last two decades several other technologies and specifications have been introduced in order to extend its capabilities. Most of them (e.g. the SOAP family) actually aimed to transform the Web in a generic Distributed Computing Infrastructure. While these efforts were definitely successful enabling the adoption of service-oriented approaches for machine-to-machine interactions supporting complex business processes (e.g. for e-Government and e-Business applications), they do not fit in the original concept of the Web. In the year 2000, R. T. Fielding, one of the designers of the original Web specifications, proposes a new architectural style for distributed systems, called REST (Representational State Transfer), aiming to capture the fundamental characteristics of the Web as it was originally conceived [Fielding 2000]. In this view, the nature of the Web lies not so much in the technologies, as in the way they are used. Maintaining the Web architecture conform to the REST style would then assure the scalability, extensibility and low entry barrier of the original Web. On the contrary

  4. Two Contrasting Approaches to Building High School Teacher Capacity to Teach About Local Climate Change Using Powerful Geospatial Data and Visualization Technology

    Science.gov (United States)

    Zalles, D. R.

    2011-12-01

    The presentation will compare and contrast two different place-based approaches to helping high school science teachers use geospatial data visualization technology to teach about climate change in their local regions. The approaches are being used in the development, piloting, and dissemination of two projects for high school science led by the author: the NASA-funded Data-enhanced Investigations for Climate Change Education (DICCE) and the NSF funded Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE). DICCE is bringing an extensive portal of Earth observation data, the Goddard Interactive Online Visualization and Analysis Infrastructure, to high school classrooms. STORE is making available data for viewing results of a particular IPCC-sanctioned climate change model in relation to recent data about average temperatures, precipitation, and land cover for study areas in central California and western New York State. Across the two projects, partner teachers of academically and ethnically diverse students from five states are participating in professional development and pilot testing. Powerful geospatial data representation technologies are difficult to implement in high school science because of challenges that teachers and students encounter navigating data access and making sense of data characteristics and nomenclature. Hence, on DICCE, the researchers are testing the theory that by providing a scaffolded technology-supported process for instructional design, starting from fundamental questions about the content domain, teachers will make better instructional decisions. Conversely, the STORE approach is rooted in the perspective that co-design of curricular materials among researchers and teacher partners that work off of "starter" lessons covering focal skills and understandings will lead to the most effective utilizations of the technology in the classroom. The projects' goals and strategies for student

  5. An Automated End-To Multi-Agent Qos Based Architecture for Selection of Geospatial Web Services

    Science.gov (United States)

    Shah, M.; Verma, Y.; Nandakumar, R.

    2012-07-01

    Over the past decade, Service-Oriented Architecture (SOA) and Web services have gained wide popularity and acceptance from researchers and industries all over the world. SOA makes it easy to build business applications with common services, and it provides like: reduced integration expense, better asset reuse, higher business agility, and reduction of business risk. Building of framework for acquiring useful geospatial information for potential users is a crucial problem faced by the GIS domain. Geospatial Web services solve this problem. With the help of web service technology, geospatial web services can provide useful geospatial information to potential users in a better way than traditional geographic information system (GIS). A geospatial Web service is a modular application designed to enable the discovery, access, and chaining of geospatial information and services across the web that are often both computation and data-intensive that involve diverse sources of data and complex processing functions. With the proliferation of web services published over the internet, multiple web services may provide similar functionality, but with different non-functional properties. Thus, Quality of Service (QoS) offers a metric to differentiate the services and their service providers. In a quality-driven selection of web services, it is important to consider non-functional properties of the web service so as to satisfy the constraints or requirements of the end users. The main intent of this paper is to build an automated end-to-end multi-agent based solution to provide the best-fit web service to service requester based on QoS.

  6. The Race to Document Archaeological Sites Ahead of Rising Sea Levels: Recent Applications of Geospatial Technologies in the Archaeology of Polynesia

    Directory of Open Access Journals (Sweden)

    Mark D. McCoy

    2018-01-01

    Full Text Available Marine environments are rich in natural resources, and therefore, have been targeted for human occupation from at least the Pleistocene. In the modern day, the preservation and documentation of the physical archaeological evidence of human occupation and use of coasts, islands, and the ocean must now include mitigating the impacts of global climate change. Here, I review recent efforts to document archaeological sites across the islands of Polynesia using geospatial technology, specifically remote sensing, high-resolution documentation, and the creation of archaeological site geodatabases. I discuss these geospatial technologies in terms of planning for likely future impacts from sea level rise; a problem that will be felt across the region, and based on current evidence, will affect more than 12% of all known sites in New Zealand (Aotearoa.

  7. Application of geo-spatial technologies in coastal vulnerability studies due to Sea Level Rise (SLR) along the Central Orissa Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.

    This chapter emphasizes the regional and local level coastal vulnerability studies due to sea level rise and the subsequent coastal inundation along the low-lying coastal areas using the advanced geo-spatial technologies. Natural hazards...

  8. Automated geospatial Web Services composition based on geodata quality requirements

    Science.gov (United States)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  9. National Geospatial Program

    Science.gov (United States)

    Carswell, William J.

    2011-01-01

    The National Geospatial Program (NGP; http://www.usgs.gov/ngpo/) satisfies the needs of customers by providing geospatial products and services that customers incorporate into their decisionmaking and operational activities. These products and services provide geospatial data that are organized and maintained in cost-effective ways and developed by working with partners and organizations whose activities align with those of the program. To accomplish its mission, the NGP— organizes, maintains, publishes, and disseminates the geospatial baseline of the Nation's topography, natural landscape, and manmade environment through The National Map

  10. Assessing the socioeconomic impact and value of open geospatial information

    Science.gov (United States)

    Pearlman, Francoise; Pearlman, Jay; Bernknopf, Richard; Coote, Andrew; Craglia, Massimo; Friedl, Lawrence; Gallo, Jason; Hertzfeld, Henry; Jolly, Claire; Macauley, Molly K.; Shapiro, Carl; Smart, Alan

    2016-03-10

    The production and accessibility of geospatial information including Earth observation is changing greatly both technically and in terms of human participation. Advances in technology have changed the way that geospatial data are produced and accessed, resulting in more efficient processes and greater accessibility than ever before. Improved technology has also created opportunities for increased participation in the gathering and interpretation of data through crowdsourcing and citizen science efforts. Increased accessibility has resulted in greater participation in the use of data as prices for Government-produced data have fallen and barriers to access have been reduced.

  11. Center of Excellence for Geospatial Information Science research plan 2013-18

    Science.gov (United States)

    Usery, E. Lynn

    2013-01-01

    The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.

  12. Brokered virtual hubs for facilitating access and use of geospatial Open Data

    Science.gov (United States)

    Mazzetti, Paolo; Latre, Miguel; Kamali, Nargess; Brumana, Raffaella; Braumann, Stefan; Nativi, Stefano

    2016-04-01

    Open Data is a major trend in current information technology scenario and it is often publicised as one of the pillars of the information society in the near future. In particular, geospatial Open Data have a huge potential also for Earth Sciences, through the enablement of innovative applications and services integrating heterogeneous information. However, open does not mean usable. As it was recognized at the very beginning of the Web revolution, many different degrees of openness exist: from simple sharing in a proprietary format to advanced sharing in standard formats and including semantic information. Therefore, to fully unleash the potential of geospatial Open Data, advanced infrastructures are needed to increase the data openness degree, enhancing their usability. In October 2014, the ENERGIC OD (European NEtwork for Redistributing Geospatial Information to user Communities - Open Data) project, funded by the European Union under the Competitiveness and Innovation framework Programme (CIP), has started. In response to the EU call, the general objective of the project is to "facilitate the use of open (freely available) geographic data from different sources for the creation of innovative applications and services through the creation of Virtual Hubs". The ENERGIC OD Virtual Hubs aim to facilitate the use of geospatial Open Data by lowering and possibly removing the main barriers which hampers geo-information (GI) usage by end-users and application developers. Data and services heterogeneity is recognized as one of the major barriers to Open Data (re-)use. It imposes end-users and developers to spend a lot of effort in accessing different infrastructures and harmonizing datasets. Such heterogeneity cannot be completely removed through the adoption of standard specifications for service interfaces, metadata and data models, since different infrastructures adopt different standards to answer to specific challenges and to address specific use-cases. Thus

  13. Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project

    Science.gov (United States)

    Rodila, D.; Bacu, V.; Gorgan, D.

    2012-04-01

    focus is to integrate in the proposed platform the Cloud infrastructure, which is still a paradigm with critical problems to be solved despite the great efforts and investments. Cloud computing comes as a new way of delivering resources while using a large set of old as well as new technologies and tools for providing the necessary functionalities. The main challenges in the Cloud computing, most of them identified also in the Open Cloud Manifesto 2009, address resource management and monitoring, data and application interoperability and portability, security, scalability, software licensing, etc. We propose a platform able to execute different Geospatial applications on different parallel and distributed architectures such as Grid, Cloud, Multicore, etc. with the possibility of choosing among these architectures based on application characteristics and complexity, user requirements, necessary performances, cost support, etc. The execution redirection on a selected architecture is realized through a specialized component and has the purpose of offering a flexible way in achieving the best performances considering the existing restrictions.

  14. The Value of Information and Geospatial Technologies for the analysis of tidal current patterns in the Guanabara Bay (Rio de Janeiro)

    Science.gov (United States)

    Isotta Cristofori, Elena; Demarchi, Alessandro; Facello, Anna; Cámaro, Walther; Hermosilla, Fernando; López, Jaime

    2016-04-01

    The study and validation of tidal current patterns relies on the combination of several data sources such as numerical weather prediction models, hydrodynamic models, weather stations, current drifters and remote sensing observations. The assessment of the accuracy and the reliability of produced patterns and the communication of results, including an easy to understand visualization of data, is crucial for a variety of stakeholders including decision-makers. The large diffusion of geospatial equipment such as GPS, current drifters, aerial photogrammetry, allows to collect data in the field using mobile and portable devices with a relative limited effort in terms of time and economic resources. Theses real-time measurements are essential in order to validate the models and specifically to assess the skill of the model during critical environmental conditions. Moreover, the considerable development in remote sensing technologies, cartographic services and GPS applications have enabled the creation of Geographic Information Systems (GIS) capable to store, analyze, manage and integrate spatial or geographical information with hydro-meteorological data. This valuable contribution of Information and geospatial technologies can benefit manifold decision-makers including high level sport athletes. While the numerical approach, commonly used to validate models with in-situ data, is more familiar for scientific users, high level sport users are not familiar with a numerical representations of data. Therefore the integration of data collected in the field into a GIS allows an immediate visualization of performed analysis into geographic maps. This visualization represents a particularly effective way to communicate current patterns assessment results and uncertainty in information, leading to an increase of confidence level about the forecast. The aim of this paper is to present the methodology set-up in collaboration with the Austrian Sailing Federation, for the study of

  15. A Javascript GIS Platform Based on Invocable Geospatial Web Services

    Directory of Open Access Journals (Sweden)

    Konstantinos Evangelidis

    2018-04-01

    Full Text Available Semantic Web technologies are being increasingly adopted by the geospatial community during last decade through the utilization of open standards for expressing and serving geospatial data. This was also dramatically assisted by the ever-increasing access and usage of geographic mapping and location-based services via smart devices in people’s daily activities. In this paper, we explore the developmental framework of a pure JavaScript client-side GIS platform exclusively based on invocable geospatial Web services. We also extend JavaScript utilization on the server side by deploying a node server acting as a bridge between open source WPS libraries and popular geoprocessing engines. The vehicle for such an exploration is a cross platform Web browser capable of interpreting JavaScript commands to achieve interaction with geospatial providers. The tool is a generic Web interface providing capabilities of acquiring spatial datasets, composing layouts and applying geospatial processes. In an ideal form the end-user will have to identify those services, which satisfy a geo-related need and put them in the appropriate row. The final output may act as a potential collector of freely available geospatial web services. Its server-side components may exploit geospatial processing suppliers composing that way a light-weight fully transparent open Web GIS platform.

  16. MOBILE TRAFFIC ALERT AND TOURIST ROUTE GUIDANCE SYSTEM DESIGN USING GEOSPATIAL DATA

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya

    2017-09-01

    Full Text Available The present study describes an integrated system for traffic data collection and alert warning. Geographical information based decision making related to traffic destinations and routes is proposed through the design. The system includes a geospatial database having profile relating to a user of a mobile device. The processing and understanding of scanned maps, other digital data input leads to route guidance. The system includes a server configured to receive traffic information relating to a route and location information relating to the mobile device. Server is configured to send a traffic alert to the mobile device when the traffic information and the location information indicate that the mobile device is traveling toward traffic congestion. Proposed system has geospatial and mobile data sets pertaining to Bangalore city in India. It is envisaged to be helpful for touristic purposes as a route guidance and alert relaying information system to tourists for proximity to sites worth seeing in a city they have entered into. The system is modular in architecture and the novelty lies in integration of different modules carrying different technologies for a complete traffic information system. Generic information processing and delivery system has been tested to be functional and speedy under test geospatial domains. In a restricted prototype model with geo-referenced route data required information has been delivered correctly over sustained trials to designated cell numbers, with average time frame of 27.5 seconds, maximum 50 and minimum 5 seconds. Traffic geo-data set trials testing is underway.

  17. Comparison results of forest cover mapping of Peninsular Malaysia using geospatial technology

    Science.gov (United States)

    Hamid, Wan Abdul; Abd Rahman, Shukri B. Wan

    2016-06-01

    Climate change and global warming transpire due to several factors. Among them is deforestation which occur mostly in developing countries including Malaysia where forested areas are converted to other land use for tangible economic returns and to a smaller extent, as subsistence for local communities. As a cause for concern, efforts have been taken by the World Resource Institute (WRI) and World Wildlife Fund (WWF) to monitor forest loss using geospatial technology - interpreting time-based remote sensing imageries and producing statistics of forested areas lost since 2001. In Peninsular Malaysia, the Forestry Department of Peninsular Malaysia(FDPM) has conducted forest cover mapping for the region using the same technology since 2011, producing GIS maps for 2009-2010,2011-2012,2013-2014 and 2015. This paper focuses on the comparative study of the results generated from WRI,WWF and FDPM interpretations between 2010 and 2015, the methodologies used, the similarities and differences, challenges and recommendations for future enhancement of forest cover mapping technique.

  18. A CLOUD-BASED PLATFORM SUPPORTING GEOSPATIAL COLLABORATION FOR GIS EDUCATION

    Directory of Open Access Journals (Sweden)

    X. Cheng

    2015-05-01

    Full Text Available GIS-related education needs support of geo-data and geospatial software. Although there are large amount of geographic information resources distributed on the web, the discovery, process and integration of these resources are still unsolved. Researchers and teachers always searched geo-data by common search engines but results were not satisfied. They also spent much money and energy on purchase and maintenance of various kinds of geospatial software. Aimed at these problems, a cloud-based geospatial collaboration platform called GeoSquare was designed and implemented. The platform serves as a geoportal encouraging geospatial data, information, and knowledge sharing through highly interactive and expressive graphic interfaces. Researchers and teachers can solve their problems effectively in this one-stop solution. Functions, specific design and implementation details are presented in this paper. Site of GeoSquare is: http://geosquare.tianditu.com/

  19. a Cloud-Based Platform Supporting Geospatial Collaboration for GIS Education

    Science.gov (United States)

    Cheng, X.; Gui, Z.; Hu, K.; Gao, S.; Shen, P.; Wu, H.

    2015-05-01

    GIS-related education needs support of geo-data and geospatial software. Although there are large amount of geographic information resources distributed on the web, the discovery, process and integration of these resources are still unsolved. Researchers and teachers always searched geo-data by common search engines but results were not satisfied. They also spent much money and energy on purchase and maintenance of various kinds of geospatial software. Aimed at these problems, a cloud-based geospatial collaboration platform called GeoSquare was designed and implemented. The platform serves as a geoportal encouraging geospatial data, information, and knowledge sharing through highly interactive and expressive graphic interfaces. Researchers and teachers can solve their problems effectively in this one-stop solution. Functions, specific design and implementation details are presented in this paper. Site of GeoSquare is: http://geosquare.tianditu.com/

  20. Establishment of the Northeast Coastal Watershed Geospatial Data Network (NECWGDN)

    Energy Technology Data Exchange (ETDEWEB)

    Hannigan, Robyn [University of Massachusetts Boston

    2014-02-17

    The goals of NECWGDN were to establish integrated geospatial databases that interfaced with existing open-source (water.html) environmental data server technologies (e.g., HydroDesktop) and included ecological and human data to enable evaluation, prediction, and adaptation in coastal environments to climate- and human-induced threats to the coastal marine resources within the Gulf of Maine. We have completed the development and testing of a "test bed" architecture that is compatible with HydroDesktop and have identified key metadata structures that will enable seamless integration and delivery of environmental, ecological, and human data as well as models to predict threats to end-users. Uniquely this database integrates point as well as model data and so offers capacities to end-users that are unique among databases. Future efforts will focus on the development of integrated environmental-human dimension models that can serve, in near real time, visualizations of threats to coastal resources and habitats.

  1. Graduate Ethics Curricula for Future Geospatial Technology Professionals (Invited)

    Science.gov (United States)

    Wright, D. J.; Dibiase, D.; Harvey, F.; Solem, M.

    2009-12-01

    Professionalism in today's rapidly-growing, multidisciplinary geographic information science field (e.g., geographic information systems or GIS, remote sensing, cartography, quantitative spatial analysis), now involves a commitment to ethical practice as informed by a more sophisticated understanding of the ethical implications of geographic technologies. The lack of privacy introduced by mobile mapping devices, the use of GIS for military and surveillance purposes, the appropriate use of data collected using these technologies for policy decisions (especially for conservation and sustainability) and general consequences of inequities that arise through biased access to geospatial tools and derived data all continue to be challenging issues and topics of deep concern for many. Students and professionals working with GIS and related technologies should develop a sound grasp of these issues and a thorough comprehension of the concerns impacting their use and development in today's world. However, while most people agree that ethics matters for GIS, we often have difficulty putting ethical issues into practice. An ongoing project supported by NSF seeks to bridge this gap by providing a sound basis for future ethical consideration of a variety of issues. A model seminar curriculum is under development by a team of geographic information science and technology (GIS&T) researchers and professional ethicists, along with protocols for course evaluations. In the curricula students first investigate the nature of professions in general and the characteristics of a GIS&T profession in particular. They hone moral reasoning skills through methodical analyses of case studies in relation to various GIS Code of Ethics and Rules of Conduct. They learn to unveil the "moral ecologies" of a profession through actual interviews with real practitioners in the field. Assignments thus far include readings, class discussions, practitioner interviews, and preparations of original case

  2. Interactive Visualization and Analysis of Geospatial Data Sets - TrikeND-iGlobe

    Science.gov (United States)

    Rosebrock, Uwe; Hogan, Patrick; Chandola, Varun

    2013-04-01

    The visualization of scientific datasets is becoming an ever-increasing challenge as advances in computing technologies have enabled scientists to build high resolution climate models that have produced petabytes of climate data. To interrogate and analyze these large datasets in real-time is a task that pushes the boundaries of computing hardware and software. But integration of climate datasets with geospatial data requires considerable amount of effort and close familiarity of various data formats and projection systems, which has prevented widespread utilization outside of climate community. TrikeND-iGlobe is a sophisticated software tool that bridges this gap, allows easy integration of climate datasets with geospatial datasets and provides sophisticated visualization and analysis capabilities. The objective for TrikeND-iGlobe is the continued building of an open source 4D virtual globe application using NASA World Wind technology that integrates analysis of climate model outputs with remote sensing observations as well as demographic and environmental data sets. This will facilitate a better understanding of global and regional phenomenon, and the impact analysis of climate extreme events. The critical aim is real-time interactive interrogation. At the data centric level the primary aim is to enable the user to interact with the data in real-time for the purpose of analysis - locally or remotely. TrikeND-iGlobe provides the basis for the incorporation of modular tools that provide extended interactions with the data, including sub-setting, aggregation, re-shaping, time series analysis methods and animation to produce publication-quality imagery. TrikeND-iGlobe may be run locally or can be accessed via a web interface supported by high-performance visualization compute nodes placed close to the data. It supports visualizing heterogeneous data formats: traditional geospatial datasets along with scientific data sets with geographic coordinates (NetCDF, HDF, etc

  3. An operative dengue risk stratification system in Argentina based on geospatial technology

    Directory of Open Access Journals (Sweden)

    Ximena Porcasi

    2012-09-01

    Full Text Available Based on an agreement between the Ministry of Health and the National Space Activities Commission in Argentina, an integrated informatics platform for dengue risk using geospatial technology for the surveillance and prediction of risk areas for dengue fever has been designed. The task was focused on developing stratification based on environmental (historical and current, viral, social and entomological situation for >3,000 cities as part of a system. The platform, developed with open-source software with pattern design, following the European Space Agency standards for space informatics, delivers two products: a national risk map consisting of point vectors for each city/town/locality and an approximate 50 m resolution urban risk map modelling the risk inside selected high-risk cities. The operative system, architecture and tools used in the development are described, including a detailed list of end users’ requirements. Additionally, an algorithm based on bibliography and landscape epidemiology concepts is presented and discussed. The system, in operation since September 2011, is capable of continuously improving the algorithms producing improved risk stratifications without a complete set of inputs. The platform was specifically developed for surveillance of dengue fever as this disease has reemerged in Argentina but the aim is to widen the scope to include also other relevant vector-borne diseases such as chagas, malaria and leishmaniasis as well as other countries belonging to south region of Latin America.

  4. Web GIS in practice IX: a demonstration of geospatial visual analytics using Microsoft Live Labs Pivot technology and WHO mortality data.

    Science.gov (United States)

    Kamel Boulos, Maged N; Viangteeravat, Teeradache; Anyanwu, Matthew N; Ra Nagisetty, Venkateswara; Kuscu, Emin

    2011-03-16

    The goal of visual analytics is to facilitate the discourse between the user and the data by providing dynamic displays and versatile visual interaction opportunities with the data that can support analytical reasoning and the exploration of data from multiple user-customisable aspects. This paper introduces geospatial visual analytics, a specialised subtype of visual analytics, and provides pointers to a number of learning resources about the subject, as well as some examples of human health, surveillance, emergency management and epidemiology-related geospatial visual analytics applications and examples of free software tools that readers can experiment with, such as Google Public Data Explorer. The authors also present a practical demonstration of geospatial visual analytics using partial data for 35 countries from a publicly available World Health Organization (WHO) mortality dataset and Microsoft Live Labs Pivot technology, a free, general purpose visual analytics tool that offers a fresh way to visually browse and arrange massive amounts of data and images online and also supports geographic and temporal classifications of datasets featuring geospatial and temporal components. Interested readers can download a Zip archive (included with the manuscript as an additional file) containing all files, modules and library functions used to deploy the WHO mortality data Pivot collection described in this paper.

  5. Geospatial Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: To process, store, and disseminate geospatial data to the Department of Defense and other Federal agencies.DESCRIPTION: The Geospatial Services Laboratory...

  6. A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs

    Science.gov (United States)

    Ennis, Andrew; Nugent, Chris; Morrow, Philip; Chen, Liming; Ioannidis, George; Stan, Alexandru; Rachev, Preslav

    2015-01-01

    With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the “right” information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for. PMID:26205265

  7. Geomorphic Regionalization of Coastal Zone Using Geospatial Technology

    Directory of Open Access Journals (Sweden)

    Manoranjan Mishra

    2016-08-01

    Full Text Available The world coastal environment is made of diversified landforms and are also potentially vulnerable to climate variability, delta sinking, extreme events and anthropogenic interferences. Sustainable management of coastal resources and transforming quality ecosystem services to future generation are the goals of Integrated Coastal Zone Management (ICZM. Geographical homogenous unit are the basic implementation locus and back bone of these kinds of integrated management strategy and activities. However, coastal zone management projects in developing world using use arbitrary land-ward and sea-ward boundaries from physical reference as unit of management. The oversimplified fixed distance approaches are not able to map the spatial and temporal changes in coastal systems. The spatio-temporal variations of coastal systems are configured in geomorphic landforms and further that work on interaction between natural forces and anthropogenic inputs. The present research work is an attempt to present a simplified method of regionalization geomorphic landforms using geospatial platforms for delineating Orissa coast into smaller homogenous geographic unit as reference point for future management. Geomorphic landforms are reconstructed using Enhanced Thematic Mapper Plus (ETM+ imagery, Survey of India topomaps, field survey and Digital Elevation Model data at geographic information system (GIS plat form. Seventy geomorphic features covering an area of 5033.64 km2 were identified and further, regionalized into five homogenous geographic units. The need of time is to recognize unsustainable coastal systems in these homogenous geographic units by fine tuning development parameters and also same time allowing coastal systems to adapt naturally to any kind of variability. Although, the methodology applied to Orissa for delineation homogenous geographic area but it can be replicated to any coast in world.

  8. Research and Practical Trends in Geospatial Sciences

    Science.gov (United States)

    Karpik, A. P.; Musikhin, I. A.

    2016-06-01

    In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  9. Restful Implementation of Catalogue Service for Geospatial Data Provenance

    Science.gov (United States)

    Jiang, L. C.; Yue, P.; Lu, X. C.

    2013-10-01

    Provenance, also known as lineage, is important in understanding the derivation history of data products. Geospatial data provenance helps data consumers to evaluate the quality and reliability of geospatial data. In a service-oriented environment, where data are often consumed or produced by distributed services, provenance could be managed by following the same service-oriented paradigm. The Open Geospatial Consortium (OGC) Catalogue Service for the Web (CSW) is used for the registration and query of geospatial data provenance by extending ebXML Registry Information Model (ebRIM). Recent advance of the REpresentational State Transfer (REST) paradigm has shown great promise for the easy integration of distributed resources. RESTful Web Service aims to provide a standard way for Web clients to communicate with servers based on REST principles. The existing approach for provenance catalogue service could be improved by adopting the RESTful design. This paper presents the design and implementation of a catalogue service for geospatial data provenance following RESTful architecture style. A middleware named REST Converter is added on the top of the legacy catalogue service to support a RESTful style interface. The REST Converter is composed of a resource request dispatcher and six resource handlers. A prototype service is developed to demonstrate the applicability of the approach.

  10. OpenSearch technology for geospatial resources discovery

    Science.gov (United States)

    Papeschi, Fabrizio; Enrico, Boldrini; Mazzetti, Paolo

    2010-05-01

    In 2005, the term Web 2.0 has been coined by Tim O'Reilly to describe a quickly growing set of Web-based applications that share a common philosophy of "mutually maximizing collective intelligence and added value for each participant by formalized and dynamic information sharing". Around this same period, OpenSearch a new Web 2.0 technology, was developed. More properly, OpenSearch is a collection of technologies that allow publishing of search results in a format suitable for syndication and aggregation. It is a way for websites and search engines to publish search results in a standard and accessible format. Due to its strong impact on the way the Web is perceived by users and also due its relevance for businesses, Web 2.0 has attracted the attention of both mass media and the scientific community. This explosive growth in popularity of Web 2.0 technologies like OpenSearch, and practical applications of Service Oriented Architecture (SOA) resulted in an increased interest in similarities, convergence, and a potential synergy of these two concepts. SOA is considered as the philosophy of encapsulating application logic in services with a uniformly defined interface and making these publicly available via discovery mechanisms. Service consumers may then retrieve these services, compose and use them according to their current needs. A great degree of similarity between SOA and Web 2.0 may be leading to a convergence between the two paradigms. They also expose divergent elements, such as the Web 2.0 support to the human interaction in opposition to the typical SOA machine-to-machine interaction. According to these considerations, the Geospatial Information (GI) domain, is also moving first steps towards a new approach of data publishing and discovering, in particular taking advantage of the OpenSearch technology. A specific GI niche is represented by the OGC Catalog Service for Web (CSW) that is part of the OGC Web Services (OWS) specifications suite, which provides a

  11. Updating Geospatial Data from Large Scale Data Sources

    Science.gov (United States)

    Zhao, R.; Chen, J.; Wang, D.; Shang, Y.; Wang, Z.; Li, X.; Ai, T.

    2011-08-01

    In the past decades, many geospatial databases have been established at national, regional and municipal levels over the world. Nowadays, it has been widely recognized that how to update these established geo-spatial database and keep them up to date is most critical for the value of geo-spatial database. So, more and more efforts have been devoted to the continuous updating of these geospatial databases. Currently, there exist two main types of methods for Geo-spatial database updating: directly updating with remote sensing images or field surveying materials, and indirectly updating with other updated data result such as larger scale newly updated data. The former method is the basis because the update data sources in the two methods finally root from field surveying and remote sensing. The later method is often more economical and faster than the former. Therefore, after the larger scale database is updated, the smaller scale database should be updated correspondingly in order to keep the consistency of multi-scale geo-spatial database. In this situation, it is very reasonable to apply map generalization technology into the process of geo-spatial database updating. The latter is recognized as one of most promising methods of geo-spatial database updating, especially in collaborative updating environment in terms of map scale, i.e , different scale database are produced and maintained separately by different level organizations such as in China. This paper is focused on applying digital map generalization into the updating of geo-spatial database from large scale in the collaborative updating environment for SDI. The requirements of the application of map generalization into spatial database updating are analyzed firstly. A brief review on geospatial data updating based digital map generalization is then given. Based on the requirements analysis and review, we analyze the key factors for implementing updating geospatial data from large scale including technical

  12. Geospatializing The Klang Gate Quartz Ridge in Malaysia: A Technological Perspective

    Science.gov (United States)

    Azahari Razak, Khamarrul; Mohamad, Zakaria; Zaki Ibrahim, Mohd; Azad Rosle, Qalam; Hattanajmie Abd Wahab, Mohd; Abu Bakar, Rabieahtul; Mohd Akib, Wan Abdul Aziz Wan

    2015-04-01

    Establishment of inventories on geological heritage, or geoheritage resources is a step forward for a comprehensive geoheritage management leading to a better conservation at national and global levels. Compiling and updating inventory of geoheritage is a tedious process and even so in a tropical environment. Malaysia has a tremendous list of geodiversity and generating its national database is a multi-institutional effort and worthwhile investment. However, producing accurate and reliable characteristics of such landform and spectacular geological features remained elusive. The advanced and modern mapping techniques have revolutionized the mapping, monitoring and modelling of the earth surface processes and landforms. Yet the methods for quantification of geodiversity physical features are not fully utilized in Malaysia for a better understanding its processes and activity. This study provides a better insight into the use of advanced active remote sensing technology for characterizing the forested Quartz Ridge in Malaysia. We have developed the novel method and tested in the Klang Gates Quartz Ridge, Selangor. The granitic country rock made up by quartz mineral is known as the longest quartz ridge in Malaysia and characterized by rugged topography, steep slopes, densely vegetated terrain and also rich-biodiversity area. This study presents an integrated field methodological framework and processing scheme by taking into account the climatic, topographic, geologic, and anthropogenic challenges in an equatorial region. Advanced terrestrial laser scanning system was used to accurately capture, map and model the ridge carried out within a relatively stringent time period. The high frequency Global Navigation Satellite System and modern Total Station coupled with the optical satellite and radar imageries and also advanced spatial analysis were fully utilized in the field campaign and data assessment performed during the recent monsoon season. As a result, the mapping

  13. IMPRINT Analysis of an Unmanned Air System Geospatial Information Process

    National Research Council Canada - National Science Library

    Hunn, Bruce P; Schweitzer, Kristin M; Cahir, John A; Finch, Mary M

    2008-01-01

    ... intelligence, geospatial analysis cell. The Improved Performance Research Integration Tool (IMPRINT) modeling program was used to understand this process and to assess crew workload during several test scenarios...

  14. RESEARCH AND PRACTICAL TRENDS IN GEOSPATIAL SCIENCES

    Directory of Open Access Journals (Sweden)

    A. P. Karpik

    2016-06-01

    Full Text Available In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  15. Representation of activity in images using geospatial temporal graphs

    Science.gov (United States)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.; Rintoul, Mark Daniel; Watson, Jean-Paul; Strip, David R.; Diegert, Carl

    2018-05-01

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  16. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    Science.gov (United States)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This

  17. Geospatial Authentication

    Science.gov (United States)

    Lyle, Stacey D.

    2009-01-01

    A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server.

  18. Adoption of Geospatial Systems towards evolving Sustainable Himalayan Mountain Development

    Science.gov (United States)

    Murthy, M. S. R.; Bajracharya, B.; Pradhan, S.; Shestra, B.; Bajracharya, R.; Shakya, K.; Wesselmann, S.; Ali, M.; Bajracharya, S.; Pradhan, S.

    2014-11-01

    Natural resources dependence of mountain communities, rapid social and developmental changes, disaster proneness and climate change are conceived as the critical factors regulating sustainable Himalayan mountain development. The Himalayan region posed by typical geographic settings, diverse physical and cultural diversity present a formidable challenge to collect and manage data, information and understands varied socio-ecological settings. Recent advances in earth observation, near real-time data, in-situ measurements and in combination of information and communication technology have transformed the way we collect, process, and generate information and how we use such information for societal benefits. Glacier dynamics, land cover changes, disaster risk reduction systems, food security and ecosystem conservation are a few thematic areas where geospatial information and knowledge have significantly contributed to informed decision making systems over the region. The emergence and adoption of near-real time systems, unmanned aerial vehicles (UAV), board-scale citizen science (crowd-sourcing), mobile services and mapping, and cloud computing have paved the way towards developing automated environmental monitoring systems, enhanced scientific understanding of geophysical and biophysical processes, coupled management of socio-ecological systems and community based adaptation models tailored to mountain specific environment. There are differentiated capacities among the ICIMOD regional member countries with regard to utilization of earth observation and geospatial technologies. The region can greatly benefit from a coordinated and collaborative approach to capture the opportunities offered by earth observation and geospatial technologies. The regional level data sharing, knowledge exchange, and Himalayan GEO supporting geospatial platforms, spatial data infrastructure, unique region specific satellite systems to address trans-boundary challenges would go a long way in

  19. Geospatial Semantics and the Semantic Web

    CERN Document Server

    Ashish, Naveen

    2011-01-01

    The availability of geographic and geospatial information and services, especially on the open Web has become abundant in the last several years with the proliferation of online maps, geo-coding services, geospatial Web services and geospatially enabled applications. The need for geospatial reasoning has significantly increased in many everyday applications including personal digital assistants, Web search applications, local aware mobile services, specialized systems for emergency response, medical triaging, intelligence analysis and more. Geospatial Semantics and the Semantic Web: Foundation

  20. Geospatial Analysis Platform and tools: supporting planning and decision making across scales, borders, sectors and disciplines

    CSIR Research Space (South Africa)

    Naude, AH

    2008-04-01

    Full Text Available observation and geospatial analysis technologies, as well as the associated need for spatially explicit and sectorally integrated growth and development plans (including plans that deal with multi-scale or cross-border issues), the required statistical... planning. This requires planning and analysis that can (1) facilitate the sharing of spatial and other data, (2) deal with multi-scale or cross-border issues, as well as can (3) support the understanding of patterns and inter-regional dynamics at regional...

  1. Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Bhaduri, Budhendra L [ORNL; Cheriyadat, Anil M [ORNL; Arrowood, Lloyd [Y-12 National Security Complex; Bright, Eddie A [ORNL; Gleason, Shaun Scott [ORNL; Diegert, Carl [Sandia National Laboratories (SNL); Katsaggelos, Aggelos K [ORNL; Pappas, Thrasos N [ORNL; Porter, Reid [Los Alamos National Laboratory (LANL); Bollinger, Jim [Savannah River National Laboratory (SRNL); Chen, Barry [Lawrence Livermore National Laboratory (LLNL); Hohimer, Ryan [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. In this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.

  2. Creating 3D models of historical buildings using geospatial data

    Science.gov (United States)

    Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria

    2017-07-01

    Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.

  3. The Implementation of a Geospatial Information Technology (GIT)-Supported Land Use Change Curriculum with Urban Middle School Learners to Promote Spatial Thinking

    Science.gov (United States)

    Bodzin, Alec M.

    2011-01-01

    This study investigated whether a geospatial information technology (GIT)-supported science curriculum helped students in an urban middle school understand land use change (LUC) concepts and enhanced their spatial thinking. Five 8th grade earth and space science classes in an urban middle school consisting of three different ability level tracks…

  4. Geospatial health

    DEFF Research Database (Denmark)

    Utzinger, Jürg; Rinaldi, Laura; Malone, John B.

    2011-01-01

    Geospatial Health is an international, peer-reviewed scientific journal produced by the Global Network for Geospatial Health (GnosisGIS). This network was founded in 2000 and the inaugural issue of its official journal was published in November 2006 with the aim to cover all aspects of geographical...... information system (GIS) applications, remote sensing and other spatial analytic tools focusing on human and veterinary health. The University of Naples Federico II is the publisher, producing two issues per year, both as hard copy and an open-access online version. The journal is referenced in major...... databases, including CABI, ISI Web of Knowledge and PubMed. In 2008, it was assigned its first impact factor (1.47), which has now reached 1.71. Geospatial Health is managed by an editor-in-chief and two associate editors, supported by five regional editors and a 23-member strong editorial board...

  5. Identification of phreatophytic groundwater dependent ecosystems using geospatial technologies

    Science.gov (United States)

    Perez Hoyos, Isabel Cristina

    The protection of groundwater dependent ecosystems (GDEs) is increasingly being recognized as an essential aspect for the sustainable management and allocation of water resources. Ecosystem services are crucial for human well-being and for a variety of flora and fauna. However, the conservation of GDEs is only possible if knowledge about their location and extent is available. Several studies have focused on the identification of GDEs at specific locations using ground-based measurements. However, recent progress in technologies such as remote sensing and their integration with geographic information systems (GIS) has provided alternative ways to map GDEs at much larger spatial extents. This study is concerned with the discovery of patterns in geospatial data sets using data mining techniques for mapping phreatophytic GDEs in the United States at 1 km spatial resolution. A methodology to identify the probability of an ecosystem to be groundwater dependent is developed. Probabilities are obtained by modeling the relationship between the known locations of GDEs and main factors influencing groundwater dependency, namely water table depth (WTD) and aridity index (AI). A methodology is proposed to predict WTD at 1 km spatial resolution using relevant geospatial data sets calibrated with WTD observations. An ensemble learning algorithm called random forest (RF) is used in order to model the distribution of groundwater in three study areas: Nevada, California, and Washington, as well as in the entire United States. RF regression performance is compared with a single regression tree (RT). The comparison is based on contrasting training error, true prediction error, and variable importance estimates of both methods. Additionally, remote sensing variables are omitted from the process of fitting the RF model to the data to evaluate the deterioration in the model performance when these variables are not used as an input. Research results suggest that although the prediction

  6. Student Focused Geospatial Curriculum Initiatives: Internships and Certificate Programs at NCCU

    Science.gov (United States)

    Vlahovic, G.; Malhotra, R.

    2009-12-01

    This paper reports recent efforts by the Department of Environmental, Earth and Geospatial Sciences faculty at North Carolina Central University (NCCU) to develop a leading geospatial sciences program that will be considered a model for other Historically Black College/University (HBCU) peers nationally. NCCU was established in 1909 and is the nation’s first state supported public liberal arts college funded for African Americans. In the most recent annual ranking of America’s best black colleges by the US News and World Report (Best Colleges 2010), NCCU was ranked 10th in the nation. As one of only two HBCUs in the southeast offering an undergraduate degree in Geography (McKee, J.O. and C. V. Dixon. Geography in Historically Black Colleges/ Universities in the Southeast, in The Role of the South in Making of American Geography: Centennial of the AAG, 2004), NCCU is uniquely positioned to positively affect talent and diversity of the geospatial discipline in the future. Therefore, successful creation of research and internship pathways for NCCU students has national implications because it will increase the number of minority students joining the workforce and applying to PhD programs. Several related efforts will be described, including research and internship projects with Fugro EarthData Inc., Center for Remote Sensing and Mapping Science at the University of Georgia, Center for Earthquake Research and Information at the University of Memphis and the City of Durham. The authors will also outline requirements and recent successes of ASPRS Provisional Certification Program, developed and pioneered as collaborative effort between ASPRS and NCCU. This certificate program allows graduating students majoring in geospatial technologies and allied fields to become provisionally certified by passing peer-review and taking the certification exam. At NCCU, projects and certification are conducted under the aegis of the Geospatial Research, Innovative Teaching and

  7. An Ontology-supported Approach for Automatic Chaining of Web Services in Geospatial Knowledge Discovery

    Science.gov (United States)

    di, L.; Yue, P.; Yang, W.; Yu, G.

    2006-12-01

    Recent developments in geospatial semantic Web have shown promise for automatic discovery, access, and use of geospatial Web services to quickly and efficiently solve particular application problems. With the semantic Web technology, it is highly feasible to construct intelligent geospatial knowledge systems that can provide answers to many geospatial application questions. A key challenge in constructing such intelligent knowledge system is to automate the creation of a chain or process workflow that involves multiple services and highly diversified data and can generate the answer to a specific question of users. This presentation discusses an approach for automating composition of geospatial Web service chains by employing geospatial semantics described by geospatial ontologies. It shows how ontology-based geospatial semantics are used for enabling the automatic discovery, mediation, and chaining of geospatial Web services. OWL-S is used to represent the geospatial semantics of individual Web services and the type of the services it belongs to and the type of the data it can handle. The hierarchy and classification of service types are described in the service ontology. The hierarchy and classification of data types are presented in the data ontology. For answering users' geospatial questions, an Artificial Intelligent (AI) planning algorithm is used to construct the service chain by using the service and data logics expressed in the ontologies. The chain can be expressed as a graph with nodes representing services and connection weights representing degrees of semantic matching between nodes. The graph is a visual representation of logical geo-processing path for answering users' questions. The graph can be instantiated to a physical service workflow for execution to generate the answer to a user's question. A prototype system, which includes real world geospatial applications, is implemented to demonstrate the concept and approach.

  8. TOWARDS IMPLEMENTATION OF THE FOG COMPUTING CONCEPT INTO THE GEOSPATIAL DATA INFRASTRUCTURES

    Directory of Open Access Journals (Sweden)

    E. A. Panidi

    2016-01-01

    Full Text Available The information technologies and Global Network technologies in particular are developing very quickly. According to this, the problem remains actual that incorporates implementation issues for the general-purpose technologies into the information systems which operate with geospatial data. The paper discusses the implementation feasibility for a number of new approaches and concepts that solve the problems of spatial data publish and management on the Global Network. A brief review describes some contemporary concepts and technologies used for distributed data storage and management, which provide combined use of server-side and client-side resources. In particular, the concepts of Cloud Computing, Fog Computing, and Internet of Things, also with Java Web Start, WebRTC and WebTorrent technologies are mentioned. The author's experience is described briefly, which incorporates the number of projects devoted to the development of the portable solutions for geospatial data and GIS software publication on the Global Network.

  9. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    Science.gov (United States)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During

  10. Bridging the Gap between NASA Hydrological Data and the Geospatial Community

    Science.gov (United States)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Nigro, Joseph; Gary, Mark; Maidment, David; Hooper, Richard

    2011-01-01

    There is a vast and ever increasing amount of data on the Earth interconnected energy and hydrological systems, available from NASA remote sensing and modeling systems, and yet, one challenge persists: increasing the usefulness of these data for, and thus their use by, the geospatial communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of the geospatial end users, to thus better able to bridge the gap between NASA data and the geospatial communities. This paper will cover some of the hydrological data sets available from HDISC, and the various tools and services developed for data searching, data subletting ; format conversion. online visualization and analysis; interoperable access; etc.; to facilitate the integration of NASA hydrological data by end users. The NASA Goddard data analysis and visualization system, Giovanni, is described. Two case examples of user-customized data services are given, involving the EPA BASINS (Better Assessment Science Integrating point & Non-point Sources) project and the CUAHSI Hydrologic Information System, with the common requirement of on-the-fly retrieval of long duration time series for a geographical point

  11. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    Science.gov (United States)

    de Rigo, Daniele; Corti, Paolo; Caudullo, Giovanni; McInerney, Daniel; Di Leo, Margherita; San-Miguel-Ayanz, Jesús

    2013-04-01

    Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty [1]. This is characteristic of science-based support for environmental policy at European scale [1], and key aspects have also long been investigated by European Commission transnational research [2-5]. Parameters ofthe neededdata- transformations ? = {?1????m} (a.5) Wide-scale transdisciplinary modelling for environment. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making [6-10]. In WSTMe, the characteristic heterogeneity of available spatial information (a) and complexity of the required data-transformation modelling (D- TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility [11-15]. This challenging shift toward open data [16] and reproducible research [11] (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors [1,14,17-19] within the impressively growing interconnection among domain-specific computational models and frameworks. From a computational science perspective, transdisciplinary approaches to integrated natural resources modelling and management (INRMM) [20] can exploit advanced geospatial modelling techniques with an awesome battery of free scientific software [21,22] for generating new information and knowledge from the plethora of composite data [23-26]. From the perspective

  12. National Geospatial-Intelligence Agency Academic Research Program

    Science.gov (United States)

    Loomer, S. A.

    2004-12-01

    "Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.

  13. Geospatial Cyberinfrastructure and Geoprocessing Web—A Review of Commonalities and Differences of E-Science Approaches

    Directory of Open Access Journals (Sweden)

    Barbara Hofer

    2013-08-01

    Full Text Available Online geoprocessing gains momentum through increased online data repositories, web service infrastructures, online modeling capabilities and the required online computational resources. Advantages of online geoprocessing include reuse of data and services, extended collaboration possibilities among scientists, and efficiency thanks to distributed computing facilities. In the field of Geographic Information Science (GIScience, two recent approaches exist that have the goal of supporting science in online environments: the geospatial cyberinfrastructure and the geoprocessing web. Due to its historical development, the geospatial cyberinfrastructure has strengths related to the technologies required for data storage and processing. The geoprocessing web focuses on providing components for model development and sharing. These components shall allow expert users to develop, execute and document geoprocessing workflows in online environments. Despite this difference in the emphasis of the two approaches, the objectives, concepts and technologies they use overlap. This paper provides a review of the definitions and representative implementations of the two approaches. The provided overview clarifies which aspects of e-Science are highlighted in approaches differentiated in the geographic information domain. The discussion of the two approaches leads to the conclusion that synergies in research on e-Science environments shall be extended. Full-fledged e-Science environments will require the integration of approaches with different strengths.

  14. Indigenous knowledges driving technological innovation

    Science.gov (United States)

    Lilian Alessa; Carlos Andrade; Phil Cash Cash; Christian P. Giardina; Matt Hamabata; Craig Hammer; Kai Henifin; Lee Joachim; Jay T. Johnson; Kekuhi Kealiikanakaoleohaililani; Deanna Kingston; Andrew Kliskey; Renee Pualani Louis; Amanda Lynch; Daryn McKenny; Chels Marshall; Mere Roberts; Taupouri Tangaro; Jyl Wheaton-Abraham; Everett. Wingert

    2011-01-01

    This policy brief explores the use and expands the conversation on the ability of geospatial technologies to represent Indigenous cultural knowledge. Indigenous peoples' use of geospatial technologies has already proven to be a critical step for protecting tribal self-determination. However, the ontological frameworks and techniques of Western geospatial...

  15. Geospatial Data Management Platform for Urban Groundwater

    Science.gov (United States)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis

  16. Geospatial Brokering - Challenges and Future Directions

    Science.gov (United States)

    White, C. E.

    2012-12-01

    An important feature of many brokers is to facilitate straightforward human access to scientific data while maintaining programmatic access to it for system solutions. Standards-based protocols are critical for this, and there are a number of protocols to choose from. In this discussion, we will present a web application solution that leverages certain protocols - e.g., OGC CSW, REST, and OpenSearch - to provide programmatic as well as human access to geospatial resources. We will also discuss managing resources to reduce duplication yet increase discoverability, federated search solutions, and architectures that combine human-friendly interfaces with powerful underlying data management. The changing requirements witnessed in brokering solutions over time, our recent experience participating in the EarthCube brokering hack-a-thon, and evolving interoperability standards provide insight to future technological and philosophical directions planned for geospatial broker solutions. There has been much change over the past decade, but with the unprecedented data collaboration of recent years, in many ways the challenges and opportunities are just beginning.

  17. A Geospatial Online Instruction Model

    OpenAIRE

    Athena OWEN-NAGEL; John C. RODGERS III; Shrinidhi AMBINAKUDIGE

    2012-01-01

    The objective of this study is to present a pedagogical model for teaching geospatial courses through an online format and to critique the model’s effectiveness. Offering geospatial courses through an online format provides avenues to a wider student population, many of whom are not able to take traditional on-campus courses. Yet internet-based teaching effectiveness has not yet been clearly demonstrated for geospatial courses. The pedagogical model implemented in this study heavily utilizes ...

  18. Geospatial data infrastructure: The development of metadata for geo-information in China

    Science.gov (United States)

    Xu, Baiquan; Yan, Shiqiang; Wang, Qianju; Lian, Jian; Wu, Xiaoping; Ding, Keyong

    2014-03-01

    Stores of geoscience records are in constant flux. These stores are continually added to by new information, ideas and data, which are frequently revised. The geoscience record is in restrained by human thought and technology for handling information. Conventional methods strive, with limited success, to maintain geoscience records which are readily susceptible and renewable. The information system must adapt to the diversity of ideas and data in geoscience and their changes through time. In China, more than 400,000 types of important geological data are collected and produced in geological work during the last two decades, including oil, natural gas and marine data, mine exploration, geophysical, geochemical, remote sensing and important local geological survey and research reports. Numerous geospatial databases are formed and stored in National Geological Archives (NGA) with available formats of MapGIS, ArcGIS, ArcINFO, Metalfile, Raster, SQL Server, Access and JPEG. But there is no effective way to warrant that the quality of information is adequate in theory and practice for decision making. The need for fast, reliable, accurate and up-to-date information by providing the Geographic Information System (GIS) communities are becoming insistent for all geoinformation producers and users in China. Since 2010, a series of geoinformation projects have been carried out under the leadership of the Ministry of Land and Resources (MLR), including (1) Integration, update and maintenance of geoinformation databases; (2) Standards research on clusterization and industrialization of information services; (3) Platform construction of geological data sharing; (4) Construction of key borehole databases; (5) Product development of information services. "Nine-System" of the basic framework has been proposed for the development and improvement of the geospatial data infrastructure, which are focused on the construction of the cluster organization, cluster service, convergence

  19. Geospatial data infrastructure: The development of metadata for geo-information in China

    International Nuclear Information System (INIS)

    Xu, Baiquan; Yan, Shiqiang; Wang, Qianju; Lian, Jian; Wu, Xiaoping; Ding, Keyong

    2014-01-01

    Stores of geoscience records are in constant flux. These stores are continually added to by new information, ideas and data, which are frequently revised. The geoscience record is in restrained by human thought and technology for handling information. Conventional methods strive, with limited success, to maintain geoscience records which are readily susceptible and renewable. The information system must adapt to the diversity of ideas and data in geoscience and their changes through time. In China, more than 400,000 types of important geological data are collected and produced in geological work during the last two decades, including oil, natural gas and marine data, mine exploration, geophysical, geochemical, remote sensing and important local geological survey and research reports. Numerous geospatial databases are formed and stored in National Geological Archives (NGA) with available formats of MapGIS, ArcGIS, ArcINFO, Metalfile, Raster, SQL Server, Access and JPEG. But there is no effective way to warrant that the quality of information is adequate in theory and practice for decision making. The need for fast, reliable, accurate and up-to-date information by providing the Geographic Information System (GIS) communities are becoming insistent for all geoinformation producers and users in China. Since 2010, a series of geoinformation projects have been carried out under the leadership of the Ministry of Land and Resources (MLR), including (1) Integration, update and maintenance of geoinformation databases; (2) Standards research on clusterization and industrialization of information services; (3) Platform construction of geological data sharing; (4) Construction of key borehole databases; (5) Product development of information services. ''Nine-System'' of the basic framework has been proposed for the development and improvement of the geospatial data infrastructure, which are focused on the construction of the cluster organization, cluster

  20. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  1. Geospatial Information Response Team

    Science.gov (United States)

    Witt, Emitt C.

    2010-01-01

    Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of

  2. HETEROGENEOUS INTEGRATION TECHNOLOGY

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0168 HETEROGENEOUS INTEGRATION TECHNOLOGY Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...Final September 1, 2016 – May 1, 2017 4. TITLE AND SUBTITLE HETEROGENEOUS INTEGRATION TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A...provide a structure for this review. The history and the current status of integration technologies in each category are examined and product examples are

  3. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    Science.gov (United States)

    Singh, R.; Percivall, G.

    2009-12-01

    Infrastructure and the broader GEOSS architecture. Of specific interest to this session is the work on geospatial workflows and geo-processing and data discovery and access. CCIP demonstrates standards-based interoperability between geospatial applications in the service of Climate Change analysis. CCIP is planned to be a yearly exercise. It consists of a network of online data services (WCS, WFS, SOS), analysis services (WPS, WCPS, WMS), and clients that exercise those services. In 2009, CCIP focuses on Australia, and the initial application of existing OGC services to climate studies. The results of the 2009 CCIP will serve as requirements for more complex geo-processing services to be developed for CCIP 2010. The benefits of CCIP include accelerating the implementation of the GCOS, and building confidence that implementations using multi-vendor interoperable technologies can help resolve vexing climate change questions. AIP-2: Architecture Implementation Pilot, Phase 2 CCIP: Climate Challenge Integration Plugfest GEO: Group on Earth Observations GEOSS: Global Earth Observing System of Systems GCOS: Global Climate Observing System OGC: Open Geospatial Consortium SOS: Sensor Observation Service WCS: Web Coverage Service WCPS: Web Coverage Processing Service WFS: Web Feature Service WMS: Web Mapping Service

  4. Open geospatial infrastructure for data management and analytics in interdisciplinary research

    DEFF Research Database (Denmark)

    Jeppesen, Jacob Høxbroe; Ebeid, Emad Samuel Malki; Jacobsen, Rune Hylsberg

    2018-01-01

    , and information and communications technology needed to promote the implementation of precision agriculture is limited by proprietary integrations and non-standardized data formats and connections. In this paper, an open geospatial data infrastructure is presented, based on standards defined by the Open...... software, and was complemented by open data from governmental offices along with ESA satellite imagery. Four use cases are presented, covering analysis of nearly 50 000 crop fields and providing seamless interaction with an emulated machine terminal. They act to showcase both for how the infrastructure......The terms Internet of Things and Big Data are currently subject to much attention, though the specific impact of these terms in our practical lives are difficult to apprehend. Data-driven approaches do lead to new possibilities, and significant improvements within a broad range of domains can...

  5. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    International Nuclear Information System (INIS)

    Suliman, M D H; Mahmud, M; Reba, M N M; S, L W

    2014-01-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue

  6. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    Science.gov (United States)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue

  7. Users Manual for the Geospatial Stream Flow Model (GeoSFM)

    Science.gov (United States)

    Artan, Guleid A.; Asante, Kwabena; Smith, Jodie; Pervez, Md Shahriar; Entenmann, Debbie; Verdin, James P.; Rowland, James

    2008-01-01

    The monitoring of wide-area hydrologic events requires the manipulation of large amounts of geospatial and time series data into concise information products that characterize the location and magnitude of the event. To perform these manipulations, scientists at the U.S. Geological Survey Center for Earth Resources Observation and Science (EROS), with the cooperation of the U.S. Agency for International Development, Office of Foreign Disaster Assistance (USAID/OFDA), have implemented a hydrologic modeling system. The system includes a data assimilation component to generate data for a Geospatial Stream Flow Model (GeoSFM) that can be run operationally to identify and map wide-area streamflow anomalies. GeoSFM integrates a geographical information system (GIS) for geospatial preprocessing and postprocessing tasks and hydrologic modeling routines implemented as dynamically linked libraries (DLLs) for time series manipulations. Model results include maps that depicting the status of streamflow and soil water conditions. This Users Manual provides step-by-step instructions for running the model and for downloading and processing the input data required for initial model parameterization and daily operation.

  8. MultiSpec: A Desktop and Online Geospatial Image Data Processing Tool

    Science.gov (United States)

    Biehl, L. L.; Hsu, W. K.; Maud, A. R. M.; Yeh, T. T.

    2017-12-01

    MultiSpec is an easy to learn and use, freeware image processing tool for interactively analyzing a broad spectrum of geospatial image data, with capabilities such as image display, unsupervised and supervised classification, feature extraction, feature enhancement, and several other functions. Originally developed for Macintosh and Windows desktop computers, it has a community of several thousand users worldwide, including researchers and educators, as a practical and robust solution for analyzing multispectral and hyperspectral remote sensing data in several different file formats. More recently MultiSpec was adapted to run in the HUBzero collaboration platform so that it can be used within a web browser, allowing new user communities to be engaged through science gateways. MultiSpec Online has also been extended to interoperate with other components (e.g., data management) in HUBzero through integration with the geospatial data building blocks (GABBs) project. This integration enables a user to directly launch MultiSpec Online from data that is stored and/or shared in a HUBzero gateway and to save output data from MultiSpec Online to hub storage, allowing data sharing and multi-step workflows without having to move data between different systems. MultiSpec has also been used in K-12 classes for which one example is the GLOBE program (www.globe.gov) and in outreach material such as that provided by the USGS (eros.usgs.gov/educational-activities). MultiSpec Online now provides teachers with another way to use MultiSpec without having to install the desktop tool. Recently MultiSpec Online was used in a geospatial data session with 30-35 middle school students at the Turned Onto Technology and Leadership (TOTAL) Camp in the summers of 2016 and 2017 at Purdue University. The students worked on a flood mapping exercise using Landsat 5 data to learn about land remote sensing using supervised classification techniques. Online documentation is available for Multi

  9. A Geospatial Data Recommender System based on Metadata and User Behaviour

    Science.gov (United States)

    Li, Y.; Jiang, Y.; Yang, C. P.; Armstrong, E. M.; Huang, T.; Moroni, D. F.; Finch, C. J.; McGibbney, L. J.

    2017-12-01

    Earth observations are produced in a fast velocity through real time sensors, reaching tera- to peta- bytes of geospatial data daily. Discovering and accessing the right data from the massive geospatial data is like finding needle in the haystack. To help researchers find the right data for study and decision support, quite a lot of research focusing on improving search performance have been proposed including recommendation algorithm. However, few papers have discussed the way to implement a recommendation algorithm in geospatial data retrieval system. In order to address this problem, we propose a recommendation engine to improve discovering relevant geospatial data by mining and utilizing metadata and user behavior data: 1) metadata based recommendation considers the correlation of each attribute (i.e., spatiotemporal, categorical, and ordinal) to data to be found. In particular, phrase extraction method is used to improve the accuracy of the description similarity; 2) user behavior data are utilized to predict the interest of a user through collaborative filtering; 3) an integration method is designed to combine the results of the above two methods to achieve better recommendation Experiments show that in the hybrid recommendation list, the all the precisions are larger than 0.8 from position 1 to 10.

  10. Avionics systems integration technology

    Science.gov (United States)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  11. The Geospatial Web and Local Geographical Education

    Science.gov (United States)

    Harris, Trevor M.; Rouse, L. Jesse; Bergeron, Susan J.

    2010-01-01

    Recent innovations in the Geospatial Web represent a paradigm shift in Web mapping by enabling educators to explore geography in the classroom by dynamically using a rapidly growing suite of impressive online geospatial tools. Coupled with access to spatial data repositories and User-Generated Content, the Geospatial Web provides a powerful…

  12. Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing

    Science.gov (United States)

    Tang, Jingyin; Matyas, Corene J.

    2018-02-01

    Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.

  13. Geospatial Data as a Service: Towards planetary scale real-time analytics

    Science.gov (United States)

    Evans, B. J. K.; Larraondo, P. R.; Antony, J.; Richards, C. J.

    2017-12-01

    The rapid growth of earth systems, environmental and geophysical datasets poses a challenge to both end-users and infrastructure providers. For infrastructure and data providers, tasks like managing, indexing and storing large collections of geospatial data needs to take into consideration the various use cases by which consumers will want to access and use the data. Considerable investment has been made by the Earth Science community to produce suitable real-time analytics platforms for geospatial data. There are currently different interfaces that have been defined to provide data services. Unfortunately, there is considerable difference on the standards, protocols or data models which have been designed to target specific communities or working groups. The Australian National University's National Computational Infrastructure (NCI) is used for a wide range of activities in the geospatial community. Earth observations, climate and weather forecasting are examples of these communities which generate large amounts of geospatial data. The NCI has been carrying out significant effort to develop a data and services model that enables the cross-disciplinary use of data. Recent developments in cloud and distributed computing provide a publicly accessible platform where new infrastructures can be built. One of the key components these technologies offer is the possibility of having "limitless" compute power next to where the data is stored. This model is rapidly transforming data delivery from centralised monolithic services towards ubiquitous distributed services that scale up and down adapting to fluctuations in the demand. NCI has developed GSKY, a scalable, distributed server which presents a new approach for geospatial data discovery and delivery based on OGC standards. We will present the architecture and motivating use-cases that drove GSKY's collaborative design, development and production deployment. We show our approach offers the community valuable exploratory

  14. VISA: AN AUTOMATIC AWARE AND VISUAL AIDS MECHANISM FOR IMPROVING THE CORRECT USE OF GEOSPATIAL DATA

    Directory of Open Access Journals (Sweden)

    J. H. Hong

    2016-06-01

    Full Text Available With the fast growth of internet-based sharing mechanism and OpenGIS technology, users nowadays enjoy the luxury to quickly locate and access a variety of geospatial data for the tasks at hands. While this sharing innovation tremendously expand the possibility of application and reduce the development cost, users nevertheless have to deal with all kinds of “differences” implicitly hidden behind the acquired georesources. We argue the next generation of GIS-based environment, regardless internet-based or not, must have built-in knowledge to automatically and correctly assess the fitness of data use and present the analyzed results to users in an intuitive and meaningful way. The VISA approach proposed in this paper refer to four different types of visual aids that can be respectively used for addressing analyzed results, namely, virtual layer, informative window, symbol transformation and augmented TOC. The VISA-enabled interface works in an automatic-aware fashion, where the standardized metadata serve as the known facts about the selected geospatial resources, algorithms for analyzing the differences of temporality and quality of the geospatial resources were designed and the transformation of analyzed results into visual aids were automatically executed. It successfully presents a new way for bridging the communication gaps between systems and users. GIS has been long seen as a powerful integration tool, but its achievements would be highly restricted if it fails to provide a friendly and correct working platform.

  15. NativeView: A Geospatial Curriculum for Native Nation Building

    Science.gov (United States)

    Rattling Leaf, J.

    2007-12-01

    In the spirit of collaboration and reciprocity, James Rattling Leaf of Sinte Gleska University on the Rosebud Reservation of South Dakota will present recent developments, experiences, insights and a vision for education in Indian Country. As a thirty-year young institution, Sinte Gleska University is founded by a strong vision of ancestral leadership and the values of the Lakota Way of Life. Sinte Gleska University (SGU) has initiated the development of a Geospatial Education Curriculum project. NativeView: A Geospatial Curriculum for Native Nation Building is a two-year project that entails a disciplined approach towards the development of a relevant Geospatial academic curriculum. This project is designed to meet the educational and land management needs of the Rosebud Lakota Tribe through the utilization of Geographic Information Systems (GIS), Remote Sensing (RS) and Global Positioning Systems (GPS). In conjunction with the strategy and progress of this academic project, a formal presentation and demonstration of the SGU based Geospatial software RezMapper software will exemplify an innovative example of state of the art information technology. RezMapper is an interactive CD software package focused toward the 21 Lakota communities on the Rosebud Reservation that utilizes an ingenious concept of multimedia mapping and state of the art data compression and presentation. This ongoing development utilizes geographic data, imagery from space, historical aerial photography and cultural features such as historic Lakota documents, language, song, video and historical photographs in a multimedia fashion. As a tangible product, RezMapper will be a project deliverable tool for use in the classroom and to a broad range of learners.

  16. Information gathering, management and transferring for geospatial intelligence - A conceptual approach to create a spatial data infrastructure

    Science.gov (United States)

    Nunes, Paulo; Correia, Anacleto; Teodoro, M. Filomena

    2017-06-01

    Since long ago, information is a key factor for military organizations. In military context the success of joint and combined operations depends on the accurate information and knowledge flow concerning the operational theatre: provision of resources, environment evolution, targets' location, where and when an event will occur. Modern military operations cannot be conceive without maps and geospatial information. Staffs and forces on the field request large volume of information during the planning and execution process, horizontal and vertical geospatial information integration is critical for decision cycle. Information and knowledge management are fundamental to clarify an environment full of uncertainty. Geospatial information (GI) management rises as a branch of information and knowledge management, responsible for the conversion process from raw data collect by human or electronic sensors to knowledge. Geospatial information and intelligence systems allow us to integrate all other forms of intelligence and act as a main platform to process and display geospatial-time referenced events. Combining explicit knowledge with person know-how to generate a continuous learning cycle that supports real time decisions, mitigates the influences of fog of war and provides the knowledge supremacy. This paper presents the analysis done after applying a questionnaire and interviews about the GI and intelligence management in a military organization. The study intended to identify the stakeholder's requirements for a military spatial data infrastructure as well as the requirements for a future software system development.

  17. Qualitative-Geospatial Methods of Exploring Person-Place Transactions in Aging Adults: A Scoping Review.

    Science.gov (United States)

    Hand, Carri; Huot, Suzanne; Laliberte Rudman, Debbie; Wijekoon, Sachindri

    2017-06-01

    Research exploring how places shape and interact with the lives of aging adults must be grounded in the places where aging adults live and participate. Combined participatory geospatial and qualitative methods have the potential to illuminate the complex processes enacted between person and place to create much-needed knowledge in this area. The purpose of this scoping review was to identify methods that can be used to study person-place relationships among aging adults and their neighborhoods by determining the extent and nature of research with aging adults that combines qualitative methods with participatory geospatial methods. A systematic search of nine databases identified 1,965 articles published from 1995 to late 2015. We extracted data and assessed whether the geospatial and qualitative methods were supported by a specified methodology, the methods of data analysis, and the extent of integration of geospatial and qualitative methods. Fifteen studies were included and used the photovoice method, global positioning system tracking plus interview, or go-along interviews. Most included articles provided sufficient detail about data collection methods, yet limited detail about methodologies supporting the study designs and/or data analysis. Approaches that combine participatory geospatial and qualitative methods are beginning to emerge in the aging literature. By more explicitly grounding studies in a methodology, better integrating different types of data during analysis, and reflecting on methods as they are applied, these methods can be further developed and utilized to provide crucial place-based knowledge that can support aging adults' health, well-being, engagement, and participation. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. OSGeo - Open Source Geospatial Foundation

    Directory of Open Access Journals (Sweden)

    Margherita Di Leo

    2012-09-01

    Full Text Available L'esigenza nata verso la fine del 2005 di selezionare ed organizzare più di 200 progetti FOSS4G porta alla nascita nel Febbraio2006 di OSGeo (the Open Source Geospatial Foundation, organizzazione internazionale la cui mission è promuovere lo sviluppo collaborativo di software libero focalizzato sull'informazione geografica (FOSS4G.Open   Source   Geospatial   Foundation (OSGeoThe Open Source Geospatial Foundation (OSGeo  is  a  not-for-profit  organization, created  in  early  2006  to  the  aim  at  sup-porting   the   collaborative   development of  geospatial  open  source  software,  and promote its widespread use. The founda-tion provides financial, organizational and legal support to the broader open source geospatial community. It also serves as an independent  legal  entity  to  which  com-munity  members  can  contribute  code, funding  and  other  resources,  secure  in the knowledge that their contributions will be maintained for public benefit. OSGeo also  serves  as  an  outreach  and  advocacy organization for the open source geospa-tial  community,  and  provides  a  common forum  and  shared  infrastructure  for  im-proving  cross-project  collaboration.  The foundation's projects are all freely available and  useable  under  an  OSI-certified  open source license. The Italian OSGeo local chapter is named GFOSS.it     (Associazione     Italiana     per l'informazione Geografica Libera.

  19. A Geospatial Online Instruction Model

    Science.gov (United States)

    Rodgers, John C., III; Owen-Nagel, Athena; Ambinakudige, Shrinidhi

    2012-01-01

    The objective of this study is to present a pedagogical model for teaching geospatial courses through an online format and to critique the model's effectiveness. Offering geospatial courses through an online format provides avenues to a wider student population, many of whom are not able to take traditional on-campus courses. Yet internet-based…

  20. Applying Geospatial Technologies for International Development and Public Health: The USAID/NASA SERVIR Program

    Science.gov (United States)

    Hemmings, Sarah; Limaye, Ashutosh; Irwin, Dan

    2011-01-01

    Background: SERVIR -- the Regional Visualization and Monitoring System -- helps people use Earth observations and predictive models based on data from orbiting satellites to make timely decisions that benefit society. SERVIR operates through a network of regional hubs in Mesoamerica, East Africa, and the Hindu Kush-Himalayas. USAID and NASA support SERVIR, with the long-term goal of transferring SERVIR capabilities to the host countries. Objective/Purpose: The purpose of this presentation is to describe how the SERVIR system helps the SERVIR regions cope with eight areas of societal benefit identified by the Group on Earth Observations (GEO): health, disasters, ecosystems, biodiversity, weather, water, climate, and agriculture. This presentation will describe environmental health applications of data in the SERVIR system, as well as ongoing and future efforts to incorporate additional health applications into the SERVIR system. Methods: This presentation will discuss how the SERVIR Program makes environmental data available for use in environmental health applications. SERVIR accomplishes its mission by providing member nations with access to geospatial data and predictive models, information visualization, training and capacity building, and partnership development. SERVIR conducts needs assessments in partner regions, develops custom applications of Earth observation data, and makes NASA and partner data available through an online geospatial data portal at SERVIRglobal.net. Results: Decision makers use SERVIR to improve their ability to monitor air quality, extreme weather, biodiversity, and changes in land cover. In past several years, the system has been used over 50 times to respond to environmental threats such as wildfires, floods, landslides, and harmful algal blooms. Given that the SERVIR regions are experiencing increased stress under larger climate variability than historic observations, SERVIR provides information to support the development of

  1. A web service for service composition to aid geospatial modelers

    Science.gov (United States)

    Bigagli, L.; Santoro, M.; Roncella, R.; Mazzetti, P.

    2012-04-01

    The identification of appropriate mechanisms for process reuse, chaining and composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. In the Earth and Space Sciences, such a facility could primarily enable integrated and interoperable modeling, for what several approaches have been proposed and developed, over the last years. In fact, GEOSS is specifically tasked with the development of the so-called "Model Web". At increasing levels of abstraction and generalization, the initial stove-pipe software tools have evolved to community-wide modeling frameworks, to Component-Based Architecture solution, and, more recently, started to embrace Service-Oriented Architectures technologies, such as the OGC WPS specification and the WS-* stack of W3C standards for service composition. However, so far, the level of abstraction seems too low for implementing the Model Web vision, and far too complex technological aspects must still be addressed by both providers and users, resulting in limited usability and, eventually, difficult uptake. As by the recent ICT trend of resource virtualization, it has been suggested that users in need of a particular processing capability, required by a given modeling workflow, may benefit from outsourcing the composition activities into an external first-class service, according to the Composition as a Service (CaaS) approach. A CaaS system provides the necessary interoperability service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general) in the form of executable workflows. This work introduces the architecture of a CaaS system, as a distributed information system for creating, validating, editing, storing, publishing, and executing geospatial workflows. This way, the users can be freed from the need of a composition infrastructure and

  2. Developing a Cloud-Based Online Geospatial Information Sharing and Geoprocessing Platform to Facilitate Collaborative Education and Research

    Science.gov (United States)

    Yang, Z. L.; Cao, J.; Hu, K.; Gui, Z. P.; Wu, H. Y.; You, L.

    2016-06-01

    Efficient online discovering and applying geospatial information resources (GIRs) is critical in Earth Science domain as while for cross-disciplinary applications. However, to achieve it is challenging due to the heterogeneity, complexity and privacy of online GIRs. In this article, GeoSquare, a collaborative online geospatial information sharing and geoprocessing platform, was developed to tackle this problem. Specifically, (1) GIRs registration and multi-view query functions allow users to publish and discover GIRs more effectively. (2) Online geoprocessing and real-time execution status checking help users process data and conduct analysis without pre-installation of cumbersome professional tools on their own machines. (3) A service chain orchestration function enables domain experts to contribute and share their domain knowledge with community members through workflow modeling. (4) User inventory management allows registered users to collect and manage their own GIRs, monitor their execution status, and track their own geoprocessing histories. Besides, to enhance the flexibility and capacity of GeoSquare, distributed storage and cloud computing technologies are employed. To support interactive teaching and training, GeoSquare adopts the rich internet application (RIA) technology to create user-friendly graphical user interface (GUI). Results show that GeoSquare can integrate and foster collaboration between dispersed GIRs, computing resources and people. Subsequently, educators and researchers can share and exchange resources in an efficient and harmonious way.

  3. Geospatial Google Street View with Virtual Reality: A Motivational Approach for Spatial Training Education

    Directory of Open Access Journals (Sweden)

    Carlos Carbonell-Carrera

    2017-08-01

    Full Text Available Motivation is a determining factor in the learning process, and encourages the student to participate in activities that increase their performance. Learning strategies supplemented by computer technology in a scenario-based learning environment can improve students′ motivation for spatial knowledge acquisition. In this sense, a workshop carried out with 43-second year engineering students supported by Google Street View mobile geospatial application for location-based tasks is presented, in which participants work in an immersive wayfinding 3D urban environment on virtual reality. Students use their own smartphones with Google Street View application integrated in virtual reality (VR 3D glasses with a joystick as locomotion interface. The tool to analyse the motivational factor of this pedagogical approach is the multidimensional measurement device Intrinsic Motivation Inventory with six subscales: interest, perceived competence, perceived choice, effort, tension, and value, measured on a seven point Likert scale. Scores in all subscales considered are above 4 on a scale of 7. A usability study conducted at the end of the experiment provides values above 3 on a scale of 5 in efficacy, efficiency and satisfaction. The results of the experiment carried out indicate that geospatial Google Street View application in Virtual Reality is a motivating educational purpose in the field of spatial training.

  4. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    Science.gov (United States)

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  5. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    Science.gov (United States)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  6. Geospatial Database for Strata Objects Based on Land Administration Domain Model (ladm)

    Science.gov (United States)

    Nasorudin, N. N.; Hassan, M. I.; Zulkifli, N. A.; Rahman, A. Abdul

    2016-09-01

    Recently in our country, the construction of buildings become more complex and it seems that strata objects database becomes more important in registering the real world as people now own and use multilevel of spaces. Furthermore, strata title was increasingly important and need to be well-managed. LADM is a standard model for land administration and it allows integrated 2D and 3D representation of spatial units. LADM also known as ISO 19152. The aim of this paper is to develop a strata objects database using LADM. This paper discusses the current 2D geospatial database and needs for 3D geospatial database in future. This paper also attempts to develop a strata objects database using a standard data model (LADM) and to analyze the developed strata objects database using LADM data model. The current cadastre system in Malaysia includes the strata title is discussed in this paper. The problems in the 2D geospatial database were listed and the needs for 3D geospatial database in future also is discussed. The processes to design a strata objects database are conceptual, logical and physical database design. The strata objects database will allow us to find the information on both non-spatial and spatial strata title information thus shows the location of the strata unit. This development of strata objects database may help to handle the strata title and information.

  7. Rural and remote dental services shortages: filling the gaps through geo-spatial analysis evidence-based targeting.

    Science.gov (United States)

    Shiika, Yulia; Kruger, Estie; Tennant, Marc

    Australia has a significant mal-distribution of its limited dental workforce. Outside the major capital cities, the distribution of accessible dental care is at best patchy. This study applied geo-spatial analysis technology to locate gaps in dental service accessibility for rural and remote dwelling Australians, in order to test the hypothesis that there are a few key location points in Australia where further dental services could make a significant contribution to ameliorating the immediate shortage crisis. A total of 2,086 dental practices were located in country areas, covering a combined catchment area of 1.84 million square kilometers, based on 50 km catchment zones around each clinic. Geo-spatial analysis technology was used to identify gaps in the accessibility of dental services for rural and remote dwelling Australians. An extraction of data was obtained to analyse the integrated geographically-aligned database. Results: Resolution of the lack of dental practices for 74 townships (of greater than 500 residents) across Australia could potentially address access for 104,000 people. An examination of the socio-economic mix found that the majority of the dental practices (84%) are located in areas classified as less disadvantaged. Output from the study provided a cohesive national map that has identified locations that could have health improvement via the targeting of dental services to that location. The study identified potential location sites for dental clinics, to address the current inequity in accessing dental services in rural and remote Australia.

  8. A Geospatial Cyberinfrastructure for Urban Economic Analysis and Spatial Decision-Making

    Directory of Open Access Journals (Sweden)

    Michael F. Goodchild

    2013-05-01

    Full Text Available Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on our efforts to design and develop a geospatial cyberinfrastructure (GCI for urban economic analysis and simulation. This GCI provides an operational graphic user interface, built upon a service-oriented architecture to allow (1 widespread sharing and seamless integration of distributed geospatial data; (2 an effective way to address the uncertainty and positional errors encountered in fusing data from diverse sources; (3 the decomposition of complex planning questions into atomic spatial analysis tasks and the generation of a web service chain to tackle such complex problems; and (4 capturing and representing provenance of geospatial data to trace its flow in the modeling task. The Greater Los Angeles Region serves as the test bed. We expect this work to contribute to effective spatial policy analysis and decision-making through the adoption of advanced GCI and to broaden the application coverage of GCI to include urban economic simulations.

  9. Visualization and Ontology of Geospatial Intelligence

    Science.gov (United States)

    Chan, Yupo

    Recent events have deepened our conviction that many human endeavors are best described in a geospatial context. This is evidenced in the prevalence of location-based services, as afforded by the ubiquitous cell phone usage. It is also manifested by the popularity of such internet engines as Google Earth. As we commute to work, travel on business or pleasure, we make decisions based on the geospatial information provided by such location-based services. When corporations devise their business plans, they also rely heavily on such geospatial data. By definition, local, state and federal governments provide services according to geographic boundaries. One estimate suggests that 85 percent of data contain spatial attributes.

  10. The Future of Geospatial Standards

    Science.gov (United States)

    Bermudez, L. E.; Simonis, I.

    2016-12-01

    The OGC is an international not-for-profit standards development organization (SDO) committed to making quality standards for the geospatial community. A community of more than 500 member organizations with more than 6,000 people registered at the OGC communication platform drives the development of standards that are freely available for anyone to use and to improve sharing of the world's geospatial data. OGC standards are applied in a variety of application domains including Environment, Defense and Intelligence, Smart Cities, Aviation, Disaster Management, Agriculture, Business Development and Decision Support, and Meteorology. Profiles help to apply information models to different communities, thus adapting to particular needs of that community while ensuring interoperability by using common base models and appropriate support services. Other standards address orthogonal aspects such as handling of Big Data, Crowd-sourced information, Geosemantics, or container for offline data usage. Like most SDOs, the OGC develops and maintains standards through a formal consensus process under the OGC Standards Program (OGC-SP) wherein requirements and use cases are discussed in forums generally open to the public (Domain Working Groups, or DWGs), and Standards Working Groups (SWGs) are established to create standards. However, OGC is unique among SDOs in that it also operates the OGC Interoperability Program (OGC-IP) to provide real-world testing of existing and proposed standards. The OGC-IP is considered the experimental playground, where new technologies are researched and developed in a user-driven process. Its goal is to prototype, test, demonstrate, and promote OGC Standards in a structured environment. Results from the OGC-IP often become requirements for new OGC standards or identify deficiencies in existing OGC standards that can be addressed. This presentation will provide an analysis of the work advanced in the OGC consortium including standards and testbeds

  11. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    Science.gov (United States)

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  12. Increasing the value of geospatial informatics with open approaches for Big Data

    Science.gov (United States)

    Percivall, G.; Bermudez, L. E.

    2017-12-01

    Open approaches to big data provide geoscientists with new capabilities to address problems of unmatched size and complexity. Consensus approaches for Big Geo Data have been addressed in multiple international workshops and testbeds organized by the Open Geospatial Consortium (OGC) in the past year. Participants came from government (NASA, ESA, USGS, NOAA, DOE); research (ORNL, NCSA, IU, JPL, CRIM, RENCI); industry (ESRI, Digital Globe, IBM, rasdaman); standards (JTC 1/NIST); and open source software communities. Results from the workshops and testbeds are documented in Testbed reports and a White Paper published by the OGC. The White Paper identifies the following set of use cases: Collection and Ingest: Remote sensed data processing; Data stream processing Prepare and Structure: SQL and NoSQL databases; Data linking; Feature identification Analytics and Visualization: Spatial-temporal analytics; Machine Learning; Data Exploration Modeling and Prediction: Integrated environmental models; Urban 4D models. Open implementations were developed in the Arctic Spatial Data Pilot using Discrete Global Grid Systems (DGGS) and in Testbeds using WPS and ESGF to publish climate predictions. Further development activities to advance open implementations of Big Geo Data include the following: Open Cloud Computing: Avoid vendor lock-in through API interoperability and Application portability. Open Source Extensions: Implement geospatial data representations in projects from Apache, Location Tech, and OSGeo. Investigate parallelization strategies for N-Dimensional spatial data. Geospatial Data Representations: Schemas to improve processing and analysis using geospatial concepts: Features, Coverages, DGGS. Use geospatial encodings like NetCDF and GeoPackge. Big Linked Geodata: Use linked data methods scaled to big geodata. Analysis Ready Data: Support "Download as last resort" and "Analytics as a service". Promote elements common to "datacubes."

  13. Development of Web GIS for complex processing and visualization of climate geospatial datasets as an integral part of dedicated Virtual Research Environment

    Science.gov (United States)

    Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander

    2017-04-01

    For comprehensive usage of large geospatial meteorological and climate datasets it is necessary to create a distributed software infrastructure based on the spatial data infrastructure (SDI) approach. Currently, it is generally accepted that the development of client applications as integrated elements of such infrastructure should be based on the usage of modern web and GIS technologies. The paper describes the Web GIS for complex processing and visualization of geospatial (mainly in NetCDF and PostGIS formats) datasets as an integral part of the dedicated Virtual Research Environment for comprehensive study of ongoing and possible future climate change, and analysis of their implications, providing full information and computing support for the study of economic, political and social consequences of global climate change at the global and regional levels. The Web GIS consists of two basic software parts: 1. Server-side part representing PHP applications of the SDI geoportal and realizing the functionality of interaction with computational core backend, WMS/WFS/WPS cartographical services, as well as implementing an open API for browser-based client software. Being the secondary one, this part provides a limited set of procedures accessible via standard HTTP interface. 2. Front-end part representing Web GIS client developed according to a "single page application" technology based on JavaScript libraries OpenLayers (http://openlayers.org/), ExtJS (https://www.sencha.com/products/extjs), GeoExt (http://geoext.org/). It implements application business logic and provides intuitive user interface similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Boundless/OpenGeo architecture was used as a basis for Web-GIS client development. According to general INSPIRE requirements to data visualization Web GIS provides such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map

  14. Geospatial Informational Security Risks and Concerns of the U.S. Air Force GeoBase Program

    National Research Council Canada - National Science Library

    Bryant, Scott A

    2007-01-01

    Technological advancements such as Geospatial Information Systems (GIS) and the Internet have made it easier and affordable to share information, which enables complex and time sensitive decisions to be made with higher confidence...

  15. Local Government GIS and Geospatial Capabilities : Suitability for Integrated Transportation & Land Use Planning (California SB 375)

    Science.gov (United States)

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates.

  16. Creating of Central Geospatial Database of the Slovak Republic and Procedures of its Revision

    Science.gov (United States)

    Miškolci, M.; Šafář, V.; Šrámková, R.

    2016-06-01

    The article describes the creation of initial three dimensional geodatabase from planning and designing through the determination of technological and manufacturing processes to practical using of Central Geospatial Database (CGD - official name in Slovak language is Centrálna Priestorová Databáza - CPD) and shortly describes procedures of its revision. CGD ensures proper collection, processing, storing, transferring and displaying of digital geospatial information. CGD is used by Ministry of Defense (MoD) for defense and crisis management tasks and by Integrated rescue system. For military personnel CGD is run on MoD intranet, and for other users outside of MoD is transmutated to ZbGIS (Primary Geodatabase of Slovak Republic) and is run on public web site. CGD is a global set of geo-spatial information. CGD is a vector computer model which completely covers entire territory of Slovakia. Seamless CGD is created by digitizing of real world using of photogrammetric stereoscopic methods and measurements of objects properties. Basic vector model of CGD (from photogrammetric processing) is then taken out to the field for inspection and additional gathering of objects properties in the whole area of mapping. Finally real-world objects are spatially modeled as a entities of three-dimensional database. CGD gives us opportunity, to get know the territory complexly in all the three spatial dimensions. Every entity in CGD has recorded the time of collection, which allows the individual to assess the timeliness of information. CGD can be utilized for the purposes of geographical analysis, geo-referencing, cartographic purposes as well as various special-purpose mapping and has the ambition to cover the needs not only the MoD, but to become a reference model for the national geographical infrastructure.

  17. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science through data reuse

    Science.gov (United States)

    Soranno, Patricia A.; Bissell, E.G.; Cheruvelil, Kendra S.; Christel, Samuel T.; Collins, Sarah M.; Fergus, C. Emi; Filstrup, Christopher T.; Lapierre, Jean-Francois; Lotting, Noah R.; Oliver, Samantha K.; Scott, Caren E.; Smith, Nicole J.; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A.; Gries, Corinna; Henry, Emily N.; Skaff, Nick K.; Stanley, Emily H.; Stow, Craig A.; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E.

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km2). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated

  18. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse.

    Science.gov (United States)

    Soranno, Patricia A; Bissell, Edward G; Cheruvelil, Kendra S; Christel, Samuel T; Collins, Sarah M; Fergus, C Emi; Filstrup, Christopher T; Lapierre, Jean-Francois; Lottig, Noah R; Oliver, Samantha K; Scott, Caren E; Smith, Nicole J; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A; Gries, Corinna; Henry, Emily N; Skaff, Nick K; Stanley, Emily H; Stow, Craig A; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km(2)). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated

  19. Geospatial Information is the Cornerstone of Effective Hazards Response

    Science.gov (United States)

    Newell, Mark

    2008-01-01

    Every day there are hundreds of natural disasters world-wide. Some are dramatic, whereas others are barely noticeable. A natural disaster is commonly defined as a natural event with catastrophic consequences for living things in the vicinity. Those events include earthquakes, floods, hurricanes, landslides, tsunami, volcanoes, and wildfires. Man-made disasters are events that are caused by man either intentionally or by accident, and that directly or indirectly threaten public health and well-being. These occurrences span the spectrum from terrorist attacks to accidental oil spills. To assist in responding to natural and potential man-made disasters, the U.S. Geological Survey (USGS) has established the Geospatial Information Response Team (GIRT) (http://www.usgs.gov/emergency/). The primary purpose of the GIRT is to ensure rapid coordination and availability of geospatial information for effective response by emergency responders, and land and resource managers, and for scientific analysis. The GIRT is responsible for establishing monitoring procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing relevant geospatial products and services. The GIRT is focused on supporting programs, offices, other agencies, and the public in mission response to hazards. The GIRT will leverage the USGS Geospatial Liaison Network and partnerships with the Department of Homeland Security (DHS), National Geospatial-Intelligence Agency (NGA), and Northern Command (NORTHCOM) to coordinate the provisioning and deployment of USGS geospatial data, products, services, and equipment. The USGS geospatial liaisons will coordinate geospatial information sharing with State, local, and tribal governments, and ensure geospatial liaison back-up support procedures are in place. The GIRT will coordinate disposition of USGS staff in support of DHS response center activities as requested by DHS. The GIRT

  20. A Python Geospatial Language Toolkit

    Science.gov (United States)

    Fillmore, D.; Pletzer, A.; Galloy, M.

    2012-12-01

    The volume and scope of geospatial data archives, such as collections of satellite remote sensing or climate model products, has been rapidly increasing and will continue to do so in the near future. The recently launched (October 2011) Suomi National Polar-orbiting Partnership satellite (NPP) for instance, is the first of a new generation of Earth observation platforms that will monitor the atmosphere, oceans, and ecosystems, and its suite of instruments will generate several terabytes each day in the form of multi-spectral images and derived datasets. Full exploitation of such data for scientific analysis and decision support applications has become a major computational challenge. Geophysical data exploration and knowledge discovery could benefit, in particular, from intelligent mechanisms for extracting and manipulating subsets of data relevant to the problem of interest. Potential developments include enhanced support for natural language queries and directives to geospatial datasets. The translation of natural language (that is, human spoken or written phrases) into complex but unambiguous objects and actions can be based on a context, or knowledge domain, that represents the underlying geospatial concepts. This poster describes a prototype Python module that maps English phrases onto basic geospatial objects and operations. This module, along with the associated computational geometry methods, enables the resolution of natural language directives that include geographic regions of arbitrary shape and complexity.

  1. A geospatial database model for the management of remote sensing datasets at multiple spectral, spatial, and temporal scales

    Science.gov (United States)

    Ifimov, Gabriela; Pigeau, Grace; Arroyo-Mora, J. Pablo; Soffer, Raymond; Leblanc, George

    2017-10-01

    In this study the development and implementation of a geospatial database model for the management of multiscale datasets encompassing airborne imagery and associated metadata is presented. To develop the multi-source geospatial database we have used a Relational Database Management System (RDBMS) on a Structure Query Language (SQL) server which was then integrated into ArcGIS and implemented as a geodatabase. The acquired datasets were compiled, standardized, and integrated into the RDBMS, where logical associations between different types of information were linked (e.g. location, date, and instrument). Airborne data, at different processing levels (digital numbers through geocorrected reflectance), were implemented in the geospatial database where the datasets are linked spatially and temporally. An example dataset consisting of airborne hyperspectral imagery, collected for inter and intra-annual vegetation characterization and detection of potential hydrocarbon seepage events over pipeline areas, is presented. Our work provides a model for the management of airborne imagery, which is a challenging aspect of data management in remote sensing, especially when large volumes of data are collected.

  2. HARVESTING, INTEGRATING AND DISTRIBUTING LARGE OPEN GEOSPATIAL DATASETS USING FREE AND OPEN-SOURCE SOFTWARE

    Directory of Open Access Journals (Sweden)

    R. Oliveira

    2016-06-01

    Full Text Available Federal, State and Local government agencies in the USA are investing heavily on the dissemination of Open Data sets produced by each of them. The main driver behind this thrust is to increase agencies’ transparency and accountability, as well as to improve citizens’ awareness. However, not all Open Data sets are easy to access and integrate with other Open Data sets available even from the same agency. The City and County of Denver Open Data Portal distributes several types of geospatial datasets, one of them is the city parcels information containing 224,256 records. Although this data layer contains many pieces of information it is incomplete for some custom purposes. Open-Source Software were used to first collect data from diverse City of Denver Open Data sets, then upload them to a repository in the Cloud where they were processed using a PostgreSQL installation on the Cloud and Python scripts. Our method was able to extract non-spatial information from a ‘not-ready-to-download’ source that could then be combined with the initial data set to enhance its potential use.

  3. Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals

    Science.gov (United States)

    Zamyadi, A.; Pouliot, J.; Bédard, Y.

    2013-09-01

    Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial

  4. Technology integration plan

    International Nuclear Information System (INIS)

    Henry, R.; Sumpter, K.C.

    1995-01-01

    In 1992, the Secretary of Energy directed the Assistant Secretary for Environmental Management (EM) to develop an integrated, long-term, spent nuclear fuel (SNF) management program. In response, EM created the Integrated SNF Program to assess the US Department of Energy (DOE) SNF and SNF storage facilities. As shown in Figure 1 the Integrated SNF Program is responsible for life-cycle management of DOE SNF; that is characterization, processing, interim storage and preparation for disposal. In order to implement the Program it was recognized that technology needs must be identified. A Technology Integration Program was formed to integrate the DOE complex-wide efforts for establishing timely, cost effective and consistent technical criteria for the development of technical solutions. The program is directed toward identification of: (a) what activities need to be done, (b) when they need to be completed, and (c) what priority should be assigned to the various activities

  5. Influences of geo-spatial location on pre-exposure prophylaxis use in South Africa: positioning microbicides for better product uptake.

    Science.gov (United States)

    Govender, Eliza M; Mansoor, Leila E; Abdool Karim, Quarraisha

    2017-06-01

    Young women bear a disproportionately high burden of HIV infection in sub-Saharan Africa, prioritising pre-exposure prophylaxis (PrEP) can be an integral part of HIV prevention combination strategies. Women initiated HIV prevention technology options will require consistent adherence, an imperative for product effectiveness. With several PrEP clinical trials underway; exploring women's acceptability to advances in HIV prevention technologies can better facilitate demand creation for future PrEP roll out. This study utilised the opportunity of post-trial access to CAPRISA 008 women (trial) and non-trial women from three geo-spatial settings (urban, rural and peri-urban) to identify microbicide acceptability and how product associations of microbicides can influence future HIV prevention choices. Six participatory workshops using participatory action research with art-based activities and discussion groups were conducted in KwaZulu-Natal with 104 women from various geo-spatial locations and social status to understand microbicide acceptability and product associations. The data were analysed using thematic analysis. The study found that women's acceptability and product association of the tenofovir gel microbicide differed according to rural and urban areas. Most urban women identified confidence, sexiness and classiness as key associations that will encourage microbicide acceptability and use, while rural women identified respect, responsibility and confidence as the key product associations, with increased focus on the individual and collective family/community benefits of product acceptance and use. Urban-rural differences suggest a market segmentation that is contextualised to be locally responsive to promote HIV prevention technologies. Various sexual encounters further determined the types of HIV prevention technologies women would consider. In line with WHO's recommendation that PrEP should be an additional prevention choice for people at risk of HIV, this

  6. Integrating Geospatial Technologies to Examine Urban Land Use Change: A Design Partnership

    Science.gov (United States)

    Bodzin, Alec M.; Cirucci, Lori

    2009-01-01

    This article describes a design partnership that investigated how to integrate Google Earth, remotely sensed satellite and aerial imagery, with other instructional resources to investigate ground cover and land use in diverse middle school classrooms. Data analysis from the implementation study revealed that students acquired skills for…

  7. Environmental consequences of Pollution and its Impact on climate Using Geospatial Technology

    Science.gov (United States)

    Kumar, Amit; Vandana, Vandana

    2016-07-01

    Modern transportation is an indispensable ingredient for development, allowing the pressure group of labor, supplies and goods, and enabling general public to access key resources and services. Climate change is a most important threat to sustainable development in any developing or developed country. Urban air pollution is on the rise, due to rapid economic and inhabitants growth and an increase in motorization. Modern transport is fundamental for improvement, allowing the movement of goods and enabling general public to access key resources and services. Travel today is relatively faster and people across the world are travelling more than ever before. Its stipulate regarding forecast is an indispensable part of transportation development in order to evaluate future needs of an urban area. Over increasing traffic concentration posed continued threat to ambient air quality and responsible for producing agents of physical condition hazards. Geospatial technology provides the smartest approach to resolve these inconvenience as it can cover a large area in a fraction of time. The research work focuses on the recognition of traffic intensities with increasing of SO2, NO2 and noise level considered at particular traffic sites in the Varanasi, Uttar Pradesh, India. SO2, NO2 and Noise levels recorded in the city, are much higher than the permissible level and are likely to causes associated health and psychological illnesses to nearby inhabitant. Keywords: Population growth; Traffic; Transportation

  8. Some Key Technologies of Geospatial Information System for China Water Census

    Directory of Open Access Journals (Sweden)

    CAI Yang

    2015-05-01

    Full Text Available We have pioneered research on geospatial information system for national water census and its application. Aiming to the main issues such as information obtaining, data management, quality control, and project organization, the overall thought is given. It is based on taking fundamental data as supporting and data model as precursor, and viewing intelligent tool as protective role, and combing the management theory with technical methods. The key techniques developed include the digital basin extraction, data modeling orienting to the object of water resources, data acquisition and processing within certain rules and the application of multidimensional theme.

  9. Technology Integration Experiences of Teachers

    Science.gov (United States)

    Çoklar, Ahmet Naci; Yurdakul, Isil Kabakçi

    2017-01-01

    Teachers are important providers of educational sustainability. Teachers' ability to adapt themselves to rapidly developing technologies applicable to learning environments is connected with technology integration. The purpose of this study is to investigate teachers' technology integration experiences in the course of learning and teaching…

  10. Geospatial field applications within United States Department of Agriculture, Veterinary Services.

    Science.gov (United States)

    FitzMaurice, Priscilla L; Freier, Jerome E; Geter, Kenneth D

    2007-01-01

    Epidemiologists, veterinary medical officers and animal health technicians within Veterinary Services (VS) are actively utilising global positioning system (GPS) technology to obtain positional data on livestock and poultry operations throughout the United States. Geospatial data, if acquired for monitoring and surveillance purposes, are stored within the VS Generic Database (GDB). If the information is collected in response to an animal disease outbreak, the data are entered into the Emergency Management Response System (EMRS). The Spatial Epidemiology group within the Centers for Epidemiology and Animal Health (CEAH) has established minimum data accuracy standards for geodata acquisition. To ensure that field-collected geographic coordinates meet these minimum standards, field personnel are trained in proper data collection procedures. Positional accuracy is validated with digital atlases, aerial photographs, Web-based parcel maps, or address geocoding. Several geospatial methods and technologies are under investigation for future use within VS. These include the direct transfer of coordinates from GPS receivers to computers, GPS-enabled digital cameras, tablet PCs, and GPS receivers preloaded with custom ArcGIS maps - all with the objective of reducing transcription and data entry errors and improving the ease of data collection in the field.

  11. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  12. Examining the Relationship among High-School Teachers' Technology Self-Efficacy, Attitudes towards Technology Integration, and Quality of Technology Integration

    Science.gov (United States)

    Gonzales, Stacey

    2013-01-01

    This quantitative study explored the relationships among high-school teachers' (n = 74) technology self-efficacy, teachers' attitudes towards technology integration, and quality of teachers' technology integration into instruction. This study offered the unique perspectives of in-service high-school teachers as they have first-hand experience…

  13. Open cyberGIS software for geospatial research and education in the big data era

    Science.gov (United States)

    Wang, Shaowen; Liu, Yan; Padmanabhan, Anand

    CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.

  14. Geospatial Technology in Disease Mapping, E- Surveillance and Health Care for Rural Population in South India

    Science.gov (United States)

    Praveenkumar, B. A.; Suresh, K.; Nikhil, A.; Rohan, M.; Nikhila, B. S.; Rohit, C. K.; Srinivas, A.

    2014-11-01

    Providing Healthcare to rural population has been a challenge to the medical service providers especially in developing countries. For this to be effective, scalable and sustainable, certain strategic decisions have to be taken during the planning phase. Also, there is a big gap between the services available and the availability of doctors and medical resources in rural areas. Use of Information Technology can aid this deficiency to a good extent. In this paper, a mobile application has been developed to gather data from the field. A cloud based interface has been developed to store the data in the cloud for effective usage and management of the data. A decision tree based solution developed in this paper helps in diagnosing a patient based on his health parameters. Interactive geospatial maps have been developed to provide effective data visualization facility. This will help both the user community as well as decision makers to carry out long term strategy planning.

  15. Academic research opportunities at the National Geospatial-Intelligence Agency(NGA)

    Science.gov (United States)

    Loomer, Scott A.

    2006-05-01

    The vision of the National Geospatial-Intelligence Agency (NGA) is to "Know the Earth...Show the Way." To achieve this vision, the NGA provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. Academia plays a key role in the NGA research and development program through the NGA Academic Research Program. This multi-disciplinary program of basic research in geospatial intelligence topics provides grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program are: *NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. *Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. *Intelligence Community Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how researchers and institutions can apply for grants under the program. In addition, other opportunities for academia to engage with NGA through

  16. Online Resources to Support Professional Development for Managing and Preserving Geospatial Data

    Science.gov (United States)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    Improved capabilities of information and communication technologies (ICT) enable the development of new systems and applications for collecting, managing, disseminating, and using scientific data. New knowledge, skills, and techniques are also being developed to leverage these new ICT capabilities and improve scientific data management practices throughout the entire data lifecycle. In light of these developments and in response to increasing recognition of the wider value of scientific data for society, government agencies are requiring plans for the management, stewardship, and public dissemination of data and research products that are created by government-funded studies. Recognizing that data management and dissemination have not been part of traditional science education programs, new educational programs and learning resources are being developed to prepare new and practicing scientists, data scientists, data managers, and other data professionals with skills in data science and data management. Professional development and training programs also are being developed to address the need for scientists and professionals to improve their expertise in using the tools and techniques for managing and preserving scientific data. The Geospatial Data Preservation Resource Center offers an online catalog of various open access publications, open source tools, and freely available information for the management and stewardship of geospatial data and related resources, such as maps, GIS, and remote sensing data. Containing over 500 resources that can be found by type, topic, or search query, the geopreservation.org website enables discovery of various types of resources to improve capabilities for managing and preserving geospatial data. Applications and software tools can be found for use online or for download. Online journal articles, presentations, reports, blogs, and forums are also available through the website. Available education and training materials include

  17. Gamification and geospatial health management

    Science.gov (United States)

    Wortley, David

    2014-06-01

    Sensor and Measurement technologies are rapidly developing for many consumer applications which have the potential to make a major impact on business and society. One of the most important areas for building a sustainable future is in health management. This opportunity arises because of the growing popularity of lifestyle monitoring devices such as the Jawbone UP bracelet, Nike Fuelband and Samsung Galaxy GEAR. These devices measure physical activity and calorie consumption and, when visualised on mobile and portable devices, enable users to take more responsibility for their personal health. This presentation looks at how the process of gamification can be applied to develop important geospatial health management applications that could not only improve the health of nations but also significantly address some of the issues in global health such as the ageing society and obesity.

  18. Gamification and geospatial health management

    International Nuclear Information System (INIS)

    Wortley, David

    2014-01-01

    Sensor and Measurement technologies are rapidly developing for many consumer applications which have the potential to make a major impact on business and society. One of the most important areas for building a sustainable future is in health management. This opportunity arises because of the growing popularity of lifestyle monitoring devices such as the Jawbone UP bracelet, Nike Fuelband and Samsung Galaxy GEAR. These devices measure physical activity and calorie consumption and, when visualised on mobile and portable devices, enable users to take more responsibility for their personal health. This presentation looks at how the process of gamification can be applied to develop important geospatial health management applications that could not only improve the health of nations but also significantly address some of the issues in global health such as the ageing society and obesity

  19. The Impact of a Technology Integration Academy on Instructional Technology Integration in a Texas School District

    Science.gov (United States)

    Burkholder, Karla

    2013-01-01

    This applied dissertation was designed to determine the impact of a technology integration professional development on high school teachers' technology integration and students' use of computers in core content areas. The District invested in technology for all classrooms, as well as 1:1 technology for all secondary students with an expectation…

  20. Local government GIS and geospatial capabilities : suitability for integrated transportation and land use planning (California SB 375).

    Science.gov (United States)

    2009-11-01

    This report examines two linked phenomena in transportation planning: the geospatial analysis capabilities of local planning agencies and the increasing demands on such capabilities imposed by comprehensive planning mandates. The particular examples ...

  1. GeoSpatial Data Analysis for DHS Programs

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Eric G.; Burke, John S.; Carlson, Carrie A.; Gillen, David S.; Joslyn, Cliff A.; Olsen, Bryan K.; Critchlow, Terence J.

    2009-05-10

    The Department of Homeland Security law enforcement faces the continual challenge of analyzing their custom data sources in a geospatial context. From a strategic perspective law enforcement has certain requirements to first broadly characterize a given situation using their custom data sources and then once it is summarily understood, to geospatially analyze their data in detail.

  2. Geographic Medical History: Advances in Geospatial Technology Present New Potentials in Medical Practice

    Science.gov (United States)

    Faruque, F. S.; Finley, R. W.

    2016-06-01

    Genes, behaviour, and the environment are known to be the major risk factors for common diseases. When the patient visits a physician, typical questions include family history (genes) and lifestyle of the patient (behaviour), but questions concerning environmental risk factors often remain unasked. It is ironic that 25 centuries ago Hippocrates, known as the father of medicine, noted the importance of environmental exposure in medical investigation as documented in his classic work, "Airs, Waters, Places", yet the practice of routinely incorporating environmental risk factors is still not in place. Modern epigenetic studies have found that unhealthy lifestyle and environmental factors can cause changes to our genes that can increase disease risk factors. Therefore, attempting to solve the puzzle of diseases using heredity and lifestyle alone will be incomplete without accounting for the environmental exposures. The primary reason why environmental exposure has not yet been a routine part of the patient's medical history is mostly due to our inability to provide clinicians useful measures of environmental exposures suitable for their clinical practices. This presentation will discuss advances in geospatial technology that show the potential to catalyse a paradigm shift in medical practice and health research by allowing environmental risk factors to be documented as the patient's "Geographic Medical History". In order to accomplish this we need information on: a) relevant spatiotemporal environmental variables, and b) location of the individual in that person's dynamic environment. Common environmental agents that are known to interact with genetic make-up include air pollutants, mold spores, pesticides, etc. Until recently, the other component, location of an individual was limited to a static representation such as residential or workplace location. Now, with the development of mobile technology, changes in an individual's location can be tracked in real time if

  3. GEOGRAPHIC MEDICAL HISTORY: ADVANCES IN GEOSPATIAL TECHNOLOGY PRESENT NEW POTENTIALS IN MEDICAL PRACTICE

    Directory of Open Access Journals (Sweden)

    F. S. Faruque

    2016-06-01

    Full Text Available Genes, behaviour, and the environment are known to be the major risk factors for common diseases. When the patient visits a physician, typical questions include family history (genes and lifestyle of the patient (behaviour, but questions concerning environmental risk factors often remain unasked. It is ironic that 25 centuries ago Hippocrates, known as the father of medicine, noted the importance of environmental exposure in medical investigation as documented in his classic work, “Airs, Waters, Places”, yet the practice of routinely incorporating environmental risk factors is still not in place. Modern epigenetic studies have found that unhealthy lifestyle and environmental factors can cause changes to our genes that can increase disease risk factors. Therefore, attempting to solve the puzzle of diseases using heredity and lifestyle alone will be incomplete without accounting for the environmental exposures. The primary reason why environmental exposure has not yet been a routine part of the patient’s medical history is mostly due to our inability to provide clinicians useful measures of environmental exposures suitable for their clinical practices. This presentation will discuss advances in geospatial technology that show the potential to catalyse a paradigm shift in medical practice and health research by allowing environmental risk factors to be documented as the patient’s “Geographic Medical History”. In order to accomplish this we need information on: a relevant spatiotemporal environmental variables, and b location of the individual in that person’s dynamic environment. Common environmental agents that are known to interact with genetic make-up include air pollutants, mold spores, pesticides, etc. Until recently, the other component, location of an individual was limited to a static representation such as residential or workplace location. Now, with the development of mobile technology, changes in an individual’s location

  4. Educational Technology: Integration?

    Science.gov (United States)

    Christensen, Dean L.; Tennyson, Robert D.

    This paper presents a perspective of the current state of technology-assisted instruction integrating computer language, artificial intelligence (AI), and a review of cognitive science applied to instruction. The following topics are briefly discussed: (1) the language of instructional technology, i.e., programming languages, including authoring…

  5. Challenges in sharing of geospatial data by data custodians in South Africa

    Science.gov (United States)

    Kay, Sissiel E.

    2018-05-01

    As most development planning and rendering of public services happens at a place or in a space, geospatial data is required. This geospatial data is best managed through a spatial data infrastructure, which has as a key objective to share geospatial data. The collection and maintenance of geospatial data is expensive and time consuming and so the principle of "collect once - use many times" should apply. It is best to obtain the geospatial data from the authoritative source - the appointed data custodian. In South Africa the South African Spatial Data Infrastructure (SASDI) is the means to achieve the requirement for geospatial data sharing. This requires geospatial data sharing to take place between the data custodian and the user. All data custodians are expected to comply with the Spatial Data Infrastructure Act (SDI Act) in terms of geo-spatial data sharing. Currently data custodians are experiencing challenges with regard to the sharing of geospatial data. This research is based on the current ten data themes selected by the Committee for Spatial Information and the organisations identified as the data custodians for these ten data themes. The objectives are to determine whether the identified data custodians comply with the SDI Act with respect to geospatial data sharing, and if not what are the reasons for this. Through an international comparative assessment it then determines if the compliance with the SDI Act is not too onerous on the data custodians. The research concludes that there are challenges with geospatial data sharing in South Africa and that the data custodians only partially comply with the SDI Act in terms of geospatial data sharing. However, it is shown that the South African legislation is not too onerous on the data custodians.

  6. The geospatial data quality REST API for primary biodiversity data.

    Science.gov (United States)

    Otegui, Javier; Guralnick, Robert P

    2016-06-01

    We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets. The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. Evaluating the Open Source Data Containers for Handling Big Geospatial Raster Data

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2018-04-01

    Full Text Available Big geospatial raster data pose a grand challenge to data management technologies for effective big data query and processing. To address these challenges, various big data container solutions have been developed or enhanced to facilitate data storage, retrieval, and analysis. Data containers were also developed or enhanced to handle geospatial data. For example, Rasdaman was developed to handle raster data and GeoSpark/SpatialHadoop were enhanced from Spark/Hadoop to handle vector data. However, there are few studies to systematically compare and evaluate the features and performances of these popular data containers. This paper provides a comprehensive evaluation of six popular data containers (i.e., Rasdaman, SciDB, Spark, ClimateSpark, Hive, and MongoDB for handling multi-dimensional, array-based geospatial raster datasets. Their architectures, technologies, capabilities, and performance are compared and evaluated from two perspectives: (a system design and architecture (distributed architecture, logical data model, physical data model, and data operations; and (b practical use experience and performance (data preprocessing, data uploading, query speed, and resource consumption. Four major conclusions are offered: (1 no data containers, except ClimateSpark, have good support for the HDF data format used in this paper, requiring time- and resource-consuming data preprocessing to load data; (2 SciDB, Rasdaman, and MongoDB handle small/mediate volumes of data query well, whereas Spark and ClimateSpark can handle large volumes of data with stable resource consumption; (3 SciDB and Rasdaman provide mature array-based data operation and analytical functions, while the others lack these functions for users; and (4 SciDB, Spark, and Hive have better support of user defined functions (UDFs to extend the system capability.

  8. Elementary Education Pre-Service Teachers' Development of Mathematics Technology Integration Skills in a Technology Integration Course

    Science.gov (United States)

    Polly, Drew

    2015-01-01

    Preparing pre-service teachers to effectively integrate technology in the classroom requires rich experiences that deepen their knowledge of technology, pedagogy, and content and the intersection of these aspects. This study examined elementary education pre-service teachers' development of skills and knowledge in a technology integration course…

  9. Planning for Integrating Teaching Technologies

    Directory of Open Access Journals (Sweden)

    Mandie Aaron

    2004-06-01

    Full Text Available Teaching technologies offer pedagogical advantages which vary with specific contexts. Successfully integrating them hinges on clearly identifying pedagogical goals, then planning for the many decisions that technological change demands. In examining different ways of organizing this process, we have applied planning tools from other domains - Fault Tree Analysis and Capability Maturity Modeling- at the school and college levels. In another approach, we have examined attempts to broadly model the integration process at the university level. Our studies demonstrate that the use of a variety of tools and techniques can render the integration of teaching technologies more systematic.

  10. Contextual object understanding through geospatial analysis and reasoning (COUGAR)

    Science.gov (United States)

    Douglas, Joel; Antone, Matthew; Coggins, James; Rhodes, Bradley J.; Sobel, Erik; Stolle, Frank; Vinciguerra, Lori; Zandipour, Majid; Zhong, Yu

    2009-05-01

    Military operations in urban areas often require detailed knowledge of the location and identity of commonly occurring objects and spatial features. The ability to rapidly acquire and reason over urban scenes is critically important to such tasks as mission and route planning, visibility prediction, communications simulation, target recognition, and inference of higher-level form and function. Under DARPA's Urban Reasoning and Geospatial ExploitatioN Technology (URGENT) Program, the BAE Systems team has developed a system that combines a suite of complementary feature extraction and matching algorithms with higher-level inference and contextual reasoning to detect, segment, and classify urban entities of interest in a fully automated fashion. Our system operates solely on colored 3D point clouds, and considers object categories with a wide range of specificity (fire hydrants, windows, parking lots), scale (street lights, roads, buildings, forests), and shape (compact shapes, extended regions, terrain). As no single method can recognize the diverse set of categories under consideration, we have integrated multiple state-of-the-art technologies that couple hierarchical associative reasoning with robust computer vision and machine learning techniques. Our solution leverages contextual cues and evidence propagation from features to objects to scenes in order to exploit the combined descriptive power of 3D shape, appearance, and learned inter-object spatial relationships. The result is a set of tools designed to significantly enhance the productivity of analysts in exploiting emerging 3D data sources.

  11. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  12. Biosecurity and geospatial analysis of mycoplasma infections in ...

    African Journals Online (AJOL)

    Geospatial database of farm locations and biosecurity measures are essential to control disease outbreaks. A study was conducted to establish geospatial database on poultry farms in Al-Jabal Al-Gharbi region of Libya, to evaluate the biosecurity level of each farm and to determine the seroprevalence of mycoplasma and ...

  13. Geospatial Modelling for Micro Zonation of Groundwater Regime in Western Assam, India

    Science.gov (United States)

    Singh, R. P.

    2016-12-01

    Water, most precious natural resource on earth, is vital to sustain the natural system and human civilisation on the earth. The Assam state located in north-eastern part of India has a relatively good source of ground water due to their geographic and physiographic location but there is problem deterioration of groundwater quality causing major health problem in the area. In this study, I tried a integrated study of remote sensing and GIS and chemical analysis of groundwater samples to throw a light over groundwater regime and provides information for decision makers to make sustainable water resource management. The geospatial modelling performed by integrating hydrogeomorphic features. Geomorphology, lineament, Drainage, Landuse/landcover layer were generated through visual interpretation on satellite image (LISS III) based on tone, texture, shape, size, and arrangement of the features. Slope layer was prepared by using SRTM DEM data set .The LULC of the area were categories in to 6 classes of Agricultural field, Forest area ,River, Settlement , Tree-clad area and Wetlands. The geospatial modelling performed through weightage and rank method in GIS, depending on the influence of the features on ground water regime. To Assess the ground water quality of the area 45 groundwater samples have been collected from the field and chemical analysis performed through the standard method in the laboratory. The overall assessment of the ground water quality of the area analyse through Water Quality Index and found that about 70% samples are not potable for drinking purposes due to higher concentration Arsenic, Fluoride and Iron. It appears that, source of all these pollutants geologically and geomorphologically derived. Interpolated layer of Water Quality Index and geospatial modelled Groundwater potential layer provides a holistic view of groundwater scenario and provide direction for better planning and groundwater resource management. Study will be discussed in details

  14. The National 3-D Geospatial Information Web-Based Service of Korea

    Science.gov (United States)

    Lee, D. T.; Kim, C. W.; Kang, I. G.

    2013-09-01

    3D geospatial information systems should provide efficient spatial analysis tools and able to use all capabilities of the third dimension, and a visualization. Currently, many human activities make steps toward the third dimension like land use, urban and landscape planning, cadastre, environmental monitoring, transportation monitoring, real estate market, military applications, etc. To reflect this trend, the Korean government has been started to construct the 3D geospatial data and service platform. Since the geospatial information was introduced in Korea, the construction of geospatial information (3D geospatial information, digital maps, aerial photographs, ortho photographs, etc.) has been led by the central government. The purpose of this study is to introduce the Korean government-lead 3D geospatial information web-based service for the people who interested in this industry and we would like to introduce not only the present conditions of constructed 3D geospatial data but methodologies and applications of 3D geospatial information. About 15% (about 3,278.74 km2) of the total urban area's 3D geospatial data have been constructed by the national geographic information institute (NGII) of Korea from 2005 to 2012. Especially in six metropolitan cities and Dokdo (island belongs to Korea) on level of detail (LOD) 4 which is photo-realistic textured 3D models including corresponding ortho photographs were constructed in 2012. In this paper, we represented web-based 3D map service system composition and infrastructure and comparison of V-world with Google Earth service will be presented. We also represented Open API based service cases and discussed about the protection of location privacy when we construct 3D indoor building models. In order to prevent an invasion of privacy, we processed image blurring, elimination and camouflage. The importance of public-private cooperation and advanced geospatial information policy is emphasized in Korea. Thus, the progress of

  15. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  16. Teacher Beliefs and Technology Integration

    Science.gov (United States)

    Kim, ChanMin; Kim, Min Kyu; Lee, Chiajung; Spector, J. Michael; DeMeester, Karen

    2013-01-01

    The purpose of this exploratory mixed methods study was to investigate how teacher beliefs were related to technology integration practices. We were interested in how and to what extent teachers' (a) beliefs about the nature of knowledge and learning, (b) beliefs about effective ways of teaching, and (c) technology integration practices were…

  17. NCI's Distributed Geospatial Data Server

    Science.gov (United States)

    Larraondo, P. R.; Evans, B. J. K.; Antony, J.

    2016-12-01

    Earth systems, environmental and geophysics datasets are an extremely valuable source of information about the state and evolution of the Earth. However, different disciplines and applications require this data to be post-processed in different ways before it can be used. For researchers experimenting with algorithms across large datasets or combining multiple data sets, the traditional approach to batch data processing and storing all the output for later analysis rapidly becomes unfeasible, and often requires additional work to publish for others to use. Recent developments on distributed computing using interactive access to significant cloud infrastructure opens the door for new ways of processing data on demand, hence alleviating the need for storage space for each individual copy of each product. The Australian National Computational Infrastructure (NCI) has developed a highly distributed geospatial data server which supports interactive processing of large geospatial data products, including satellite Earth Observation data and global model data, using flexible user-defined functions. This system dynamically and efficiently distributes the required computations among cloud nodes and thus provides a scalable analysis capability. In many cases this completely alleviates the need to preprocess and store the data as products. This system presents a standards-compliant interface, allowing ready accessibility for users of the data. Typical data wrangling problems such as handling different file formats and data types, or harmonising the coordinate projections or temporal and spatial resolutions, can now be handled automatically by this service. The geospatial data server exposes functionality for specifying how the data should be aggregated and transformed. The resulting products can be served using several standards such as the Open Geospatial Consortium's (OGC) Web Map Service (WMS) or Web Feature Service (WFS), Open Street Map tiles, or raw binary arrays under

  18. Business and technology integrated model

    OpenAIRE

    Noce, Irapuan; Carvalho, João Álvaro

    2011-01-01

    There is a growing interest in business modeling and architecture in the areas of management and information systems. One of the issues in the area is the lack of integration between the modeling techniques that are employed to support business development and those used for technology modeling. This paper proposes a modeling approach that is capable of integrating the modeling of the business and of the technology. By depicting the business model, the organization structure and the technolog...

  19. Authentic Learning Exercises as a Means to Influence Preservice Teachers' Technology Integration Self-Efficacy and Intentions to Integrate Technology

    Science.gov (United States)

    Banas, Jennifer R.; York, Cindy S.

    2014-01-01

    This study explored the impact of authentic learning exercises, as an instructional strategy, on preservice teachers' technology integration self-efficacy and intentions to integrate technology. Also explored was the predictive relationship between change in preservice teachers' technology integration self-efficacy and change in intentions to…

  20. Heterogeneous Integration Technology

    Science.gov (United States)

    2017-05-19

    integrated CMOS imaging system for high frame rate applications [171]. .................... 68 Figure 83: CPU-DRAM Memory Landscape . [127... film transistors (TFT) were integrated with GaN HEMTs on the same wafer at AFRL. The thin film transistor fabrication using metal-oxide...second layer. Layer transfer produces the best quality devices compared to other additive technologies such as re-crystallization of thin films [148

  1. Activity-Based Intelligence prevedere il futuro osservando il presente con gli strumenti Hexagon Geospatial

    Directory of Open Access Journals (Sweden)

    Massimo Zotti

    2015-06-01

    Full Text Available The intelligence of human activities on the earth's surface, obtained through the analysis of earth observation data and other geospatial information, is vital for the planning and execution of any military action, for peacekeeping or for humanitarian emergencies. The success of these actions largely depends on the ability to analyze timely data from multiple sources. However, the proliferation of new sources of intelligence in a Geospatial big data scenario increasingly complicate the analysis of such activities by human analysts. Modern technologies solve these problems by enabling the Activity Based Intelligence, a methodology that improves the efficiency and timeliness of intelligence through the analysis of historical, current and future activity, to identify patterns, trends and relationships hidden in large data collections from different sources.

  2. Revelation of `Hidden' Balinese Geospatial Heritage on A Map

    Science.gov (United States)

    Soeria Atmadja, Dicky A. S.; Wikantika, Ketut; Budi Harto, Agung; Putra, Daffa Gifary M.

    2018-05-01

    Bali is not just about beautiful nature. It also has a unique and interesting cultural heritage, including `hidden' geospatial heritage. Tri Hita Karana is a Hinduism concept of life consisting of human relation to God, to other humans and to the nature (Parahiyangan, Pawongan and Palemahan), Based on it, - in term of geospatial aspect - the Balinese derived its spatial orientation, spatial planning & lay out, measurement as well as color and typography. Introducing these particular heritage would be a very interesting contribution to Bali tourism. As a respond to these issues, a question arise on how to reveal these unique and highly valuable geospatial heritage on a map which can be used to introduce and disseminate them to the tourists. Symbols (patterns & colors), orientation, distance, scale, layout and toponimy have been well known as elements of a map. There is an chance to apply Balinese geospatial heritage in representing these map elements.

  3. Interoperability in planetary research for geospatial data analysis

    Science.gov (United States)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  4. Free and Open Source Software for Geospatial in the field of planetary science

    Science.gov (United States)

    Frigeri, A.

    2012-12-01

    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and

  5. BPELPower—A BPEL execution engine for geospatial web services

    Science.gov (United States)

    Yu, Genong (Eugene); Zhao, Peisheng; Di, Liping; Chen, Aijun; Deng, Meixia; Bai, Yuqi

    2012-10-01

    The Business Process Execution Language (BPEL) has become a popular choice for orchestrating and executing workflows in the Web environment. As one special kind of scientific workflow, geospatial Web processing workflows are data-intensive, deal with complex structures in data and geographic features, and execute automatically with limited human intervention. To enable the proper execution and coordination of geospatial workflows, a specially enhanced BPEL execution engine is required. BPELPower was designed, developed, and implemented as a generic BPEL execution engine with enhancements for executing geospatial workflows. The enhancements are especially in its capabilities in handling Geography Markup Language (GML) and standard geospatial Web services, such as the Web Processing Service (WPS) and the Web Feature Service (WFS). BPELPower has been used in several demonstrations over the decade. Two scenarios were discussed in detail to demonstrate the capabilities of BPELPower. That study showed a standard-compliant, Web-based approach for properly supporting geospatial processing, with the only enhancement at the implementation level. Pattern-based evaluation and performance improvement of the engine are discussed: BPELPower directly supports 22 workflow control patterns and 17 workflow data patterns. In the future, the engine will be enhanced with high performance parallel processing and broad Web paradigms.

  6. Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data.

    Science.gov (United States)

    Sebastian Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez

    2007-01-01

    The island of Puerto Rico has both a high population density and a long history of ineffective land use planning. This study integrates geospatial technology and population census data to understand how people use and develop the lands. We define three new regions for Puerto Rico: Urban (16%), Densely Populated Rural (36%), and Sparsely Populated Rural (48%). Eleven...

  7. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Science.gov (United States)

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  8. Modern Technologies aspects for Oceanographic Data Management and Dissemination : The HNODC Implementation

    Science.gov (United States)

    Lykiardopoulos, A.; Iona, A.; Lakes, V.; Batis, A.; Balopoulos, E.

    2009-04-01

    The development of new technologies for the aim of enhancing Web Applications with Dynamically data access was the starting point for Geospatial Web Applications to developed at the same time as well. By the means of these technologies the Web Applications embed the capability of presenting Geographical representations of the Geo Information. The induction in nowadays, of the state of the art technologies known as Web Services, enforce the Web Applications to have interoperability among them i.e. to be able to process requests from each other via a network. In particular throughout the Oceanographic Community, modern Geographical Information systems based on Geospatial Web Services are now developed or will be developed shortly in the near future, with capabilities of managing the information itself fully through Web Based Geographical Interfaces. The exploitation of HNODC Data Base, through a Web Based Application enhanced with Web Services by the use of open source tolls may be consider as an ideal case of such implementation. Hellenic National Oceanographic Data Center (HNODC) as a National Public Oceanographic Data provider and at the same time a member of the International Net of Oceanographic Data Centers( IOC/IODE), owns a very big volume of Data and Relevant information about the Marine Ecosystem. For the efficient management and exploitation of these Data, a relational Data Base has been constructed with a storage of over 300.000 station data concerning, physical, chemical and biological Oceanographic information. The development of a modern Web Application for the End User worldwide to be able to explore and navigate throughout HNODC data via the use of an interface with the capability of presenting Geographical representations of the Geo Information, is today a fact. The application is constituted with State of the art software components and tools such as: • Geospatial and no Spatial Web Services mechanisms • Geospatial open source tools for the

  9. Using Geospatial Information Technology in Natural Resources Management: The Case of Urban Land Management In West Africa

    Directory of Open Access Journals (Sweden)

    Yaw A. Twumasi

    2008-02-01

    Full Text Available In the past several decades, Lagos Metropolis emerged as one of the fastesturbanizing cities in the West African Sub-region. In the absence of a regular use ofgeospatial information management systems, limited effort had been made to keep track ofchanges in the natural environment in the rapidly growing city for policy making in landadministration. The ubiquitous energy radiated by the rapid urbanization rate in the areanot only created unprecedented consequences by diminishing the quality of theenvironment and natural resources but it raises serious implications for land managementin the region. The factors fuelling the land crisis in the area which are not far fetchedconsists of socio-economic, ecological and policy elements. To tackle these issues in amega city, up-to-date knowledge would be required to capture and analyze landinformation trends. Such an effort will help manage the city’s expansion as well asinfrastructure development through the right choices in planning and (spatial designsusing the latest tools in geospatial technologies of Geographic Information Systems GISand remote sensing. This study investigates the spatial implications of the rapid expansionof metropolitan Lagos for land management using GIS and Remote sensing technology.The result of the research provides a valuable road map that can enable planners contributeto improved land administration necessary for effective management of natural resources.

  10. DIGI-vis: Distributed interactive geospatial information visualization

    KAUST Repository

    Ponto, Kevin

    2010-03-01

    Geospatial information systems provide an abundance of information for researchers and scientists. Unfortunately this type of data can usually only be analyzed a few megapixels at a time, giving researchers a very narrow view into these voluminous data sets. We propose a distributed data gathering and visualization system that allows researchers to view these data at hundreds of megapixels simultaneously. This system allows scientists to view real-time geospatial information at unprecedented levels expediting analysis, interrogation, and discovery. ©2010 IEEE.

  11. Integrative production technology theory and applications

    CERN Document Server

    Özdemir, Denis

    2017-01-01

    This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students. .

  12. National Geospatial Data Asset Lifecycle Baseline Maturity Assessment for the Federal Geographic Data Committee

    Science.gov (United States)

    Peltz-Lewis, L. A.; Blake-Coleman, W.; Johnston, J.; DeLoatch, I. B.

    2014-12-01

    The Federal Geographic Data Committee (FGDC) is designing a portfolio management process for 193 geospatial datasets contained within the 16 topical National Spatial Data Infrastructure themes managed under OMB Circular A-16 "Coordination of Geographic Information and Related Spatial Data Activities." The 193 datasets are designated as National Geospatial Data Assets (NGDA) because of their significance in implementing to the missions of multiple levels of government, partners and stakeholders. As a starting point, the data managers of these NGDAs will conduct a baseline maturity assessment of the dataset(s) for which they are responsible. The maturity is measured against benchmarks related to each of the seven stages of the data lifecycle management framework promulgated within the OMB Circular A-16 Supplemental Guidance issued by OMB in November 2010. This framework was developed by the interagency Lifecycle Management Work Group (LMWG), consisting of 16 Federal agencies, under the 2004 Presidential Initiative the Geospatial Line of Business,using OMB Circular A-130" Management of Federal Information Resources" as guidance The seven lifecycle stages are: Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive. This paper will focus on the Lifecycle Baseline Maturity Assessment, and efforts to integration the FGDC approach with other data maturity assessments.

  13. Modeling photovoltaic diffusion: an analysis of geospatial datasets

    International Nuclear Information System (INIS)

    Davidson, Carolyn; Drury, Easan; Lopez, Anthony; Elmore, Ryan; Margolis, Robert

    2014-01-01

    This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information—population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others—to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state. (letter)

  14. Web-Based Geospatial Tools to Address Hazard Mitigation, Natural Resource Management, and Other Societal Issues

    Science.gov (United States)

    Hearn,, Paul P.

    2009-01-01

    Federal, State, and local government agencies in the United States face a broad range of issues on a daily basis. Among these are natural hazard mitigation, homeland security, emergency response, economic and community development, water supply, and health and safety services. The U.S. Geological Survey (USGS) helps decision makers address these issues by providing natural hazard assessments, information on energy, mineral, water and biological resources, maps, and other geospatial information. Increasingly, decision makers at all levels are challenged not by the lack of information, but by the absence of effective tools to synthesize the large volume of data available, and to utilize the data to frame policy options in a straightforward and understandable manner. While geographic information system (GIS) technology has been widely applied to this end, systems with the necessary analytical power have been usable only by trained operators. The USGS is addressing the need for more accessible, manageable data tools by developing a suite of Web-based geospatial applications that will incorporate USGS and cooperating partner data into the decision making process for a variety of critical issues. Examples of Web-based geospatial tools being used to address societal issues follow.

  15. Geospatial Services in Special Libraries: A Needs Assessment Perspective

    Science.gov (United States)

    Barnes, Ilana

    2013-01-01

    Once limited to geographers and mapmakers, Geographic Information Systems (GIS) has taken a growing central role in information management and visualization. Geospatial services run a gamut of different products and services from Google maps to ArcGIS servers to Mobile development. Geospatial services are not new. Libraries have been writing about…

  16. Environmental consequences of Pollution and its Impact on earth's surface climate Using Geospatial Technology

    Science.gov (United States)

    Kumar, Amit

    2016-07-01

    Modern transportation is an indispensable ingredient for development, allowing the pressure group of labor, supplies and goods, and enabling general public to access key resources and services. Climate change is a most important threat to sustainable development in any developing or developed country. Urban air pollution is on the rise, due to rapid economic and inhabitants growth and an increase in motorization. Modern transport is fundamental for improvement, allowing the movement of goods and enabling general public to access key resources and services. Travel today is relatively faster and people across the world are travelling more than ever before. Its stipulate regarding forecast is an indispensable part of transportation development in order to evaluate future needs of an urban area. Over increasing traffic concentration posed continued threat to ambient air quality and responsible for producing agents of physical condition hazards. Geospatial technology provides the smartest approach to resolve these inconvenience as it can cover a large area in a fraction of time. The research work focuses on the recognition of traffic intensities with increasing of SO2, NO2 and noise level considered at particular traffic sites in the Varanasi, Uttar Pradesh, India. SO2, NO2 and Noise levels recorded in the city, are much higher than the permissible level and are likely to causes associated health and psychological illnesses to nearby inhabitant.

  17. Open Source Web Based Geospatial Processing with OMAR

    Directory of Open Access Journals (Sweden)

    Mark Lucas

    2009-01-01

    Full Text Available The availability of geospatial data sets is exploding. New satellites, aerial platforms, video feeds, global positioning system tagged digital photos, and traditional GIS information are dramatically increasing across the globe. These raw materials need to be dynamically processed, combined and correlated to generate value added information products to answer a wide range of questions. This article provides an overview of OMAR web based geospatial processing. OMAR is part of the Open Source Software Image Map project under the Open Source Geospatial Foundation. The primary contributors of OSSIM make their livings by providing professional services to US Government agencies and programs. OMAR provides one example that open source software solutions are increasingly being deployed in US government agencies. We will also summarize the capabilities of OMAR and its plans for near term development.

  18. The Value of Information - Accounting for a New Geospatial Paradigm

    Science.gov (United States)

    Pearlman, J.; Coote, A. M.

    2014-12-01

    A new frontier in consideration of socio-economic benefit is valuing information as an asset, often referred to as Infonomics. Conventional financial practice does not easily provide a mechanism for valuing information and yet clearly for many of the largest corporations, such as Google and Facebook, it is their principal asset. This is exacerbated for public sector organizations, as those that information-centric rather than information-enabled are relatively few - statistics, archiving and mapping agencies are perhaps the only examples - so it's not at the top of the agenda for Government. However, it is a hugely important issue when valuing Geospatial data and information. Geospatial data allows public institutions to operate, and facilitates the provision of essential services for emergency response and national defense. In this respect, geospatial data is strongly analogous to other types of public infrastructure, such as utilities and roads. The use of Geospatial data is widespread from companies in the transportation or construction sectors to individual planning for daily events. The categorization of geospatial data as infrastructure is critical to decisions related to investment in its management, maintenance and upgrade over time. Geospatial data depreciates in the same way that physical infrastructure depreciates. It needs to be maintained otherwise its functionality and value in use declines. We have coined the term geo-infonomics to encapsulate the concept. This presentation will develop the arguments around its importance and current avenues of research.

  19. High performance geospatial and climate data visualization using GeoJS

    Science.gov (United States)

    Chaudhary, A.; Beezley, J. D.

    2015-12-01

    GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring

  20. Technology Integration through Professional Learning Community

    Science.gov (United States)

    Cifuentes, Lauren; Maxwell, Gerri; Bulu, Sanser

    2011-01-01

    We describe efforts to build a learning community to support technology integration in three rural school districts and the contributions of various program strategies toward teacher growth. The Stages of Adoption Inventory, classroom observations, the Questionnaire for Technology Integration, interviews, STAR evaluation surveys, a survey of…

  1. Teacher Models of Technology Integration.

    Science.gov (United States)

    Peterman, Leinda

    2003-01-01

    Provides examples of best practices in technology integration from five Technology Innovation Challenge Grant (TICG) programs, funded through the Department of Education to meet the No Child Left Behind technology goals. Highlights include professional development activities in Louisiana and New Mexico; collaborative learning applications; and…

  2. Technology Integration and Technology Leadership in Schools as Learning Organizations

    Science.gov (United States)

    Cakir, Recep

    2012-01-01

    The purpose of this study was to investigate technology integration in primary schools from the perspective of leadership in learning organizations. To that end, the study examines two groups: school administrators who play effective roles in technology integration in schools and computer teachers who are mainly responsible for schools' technology…

  3. Development of system integration technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kang, D. J.; Kim, K. K. and others

    1999-03-01

    The objective of this report is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330 MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop system integration technology for effective design of the reactor. For the conceptual design of SMART, preliminary design requirements including the top-tier requirements and design bases were evaluated and established. Furthermore, in the view of the application of codes and standards to the SMART design, existing laws, codes and standards were analyzed and evaluated with respect to its applicability. As a part of this evaluation, directions and guidelines were proposed for the development of new codes and standards which shall be applied to the SMART design. Regarding the integration of SMART conceptual designs, major design activities and interfaces between design departments were established and coordinated through the design process. For the effective management of all design schedules, a work performance evaluation system was developed and applied to the design process. As the results of this activity, an integrated output of SMART designs was produced. Two additional scopes performed in this project include the preliminary economic analysis on the SMART utilization for seawater desalination, and the planning of verification tests for technology implemented into SMART and establishing development plan of the computer codes to be used for SMART design in the next phase. The technical cooperation with foreign country and international organization for securing technologies for integral reactor design and its application was coordinated and managed through this project. (author)

  4. Market Integration, Choice of Technology and Welfare

    DEFF Research Database (Denmark)

    Hansen, Jørgen Drud; Nielsen, Jørgen Ulff-Møller

    2010-01-01

    technologies. Market integration may induce a technological restructuring where firms either diversify their technologies or switch to a homogeneous technology. In general, market integration improves welfare. However, a small decrease of trade costs which induces a switch from heterogeneous technologies...... to a homogeneous technology may locally reduce global welfare. The model also shows that productivity differences lead to intra-industry firm heterogeneity in size and exports similar to the "new-new" trade models with monopolistic competition....

  5. Towards Geo-spatial Hypermedia: Concepts and Prototype Implementation

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Vestergaard, Peter Posselt; Ørbæk, Peter

    2002-01-01

    This paper combines spatial hypermedia with techniques from Geographical Information Systems and location based services. We describe the Topos 3D Spatial Hypermedia system and how it has been developed to support geo-spatial hypermedia coupling hypermedia information to model representations...... of real world buildings and landscapes. The prototype experiments are primarily aimed at supporting architects and landscape architects in their work on site. Here it is useful to be able to superimpose and add different layers of information to, e.g. a landscape depending on the task being worked on. We...... and indirect navigation. Finally, we conclude with a number of research issues which are central to the future development of geo-spatial hypermedia, including design issues in combining metaphorical and literal hypermedia space, as well as a discussion of the role of spatial parsing in a geo-spatial context....

  6. Using the Geospatial Web to Deliver and Teach Giscience Education Programs

    Science.gov (United States)

    Veenendaal, B.

    2015-05-01

    Geographic information science (GIScience) education has undergone enormous changes over the past years. One major factor influencing this change is the role of the geospatial web in GIScience. In addition to the use of the web for enabling and enhancing GIScience education, it is also used as the infrastructure for communicating and collaborating among geospatial data and users. The web becomes both the means and the content for a geospatial education program. However, the web does not replace the traditional face-to-face environment, but rather is a means to enhance it, expand it and enable an authentic and real world learning environment. This paper outlines the use of the web in both the delivery and content of the GIScience program at Curtin University. The teaching of the geospatial web, web and cloud based mapping, and geospatial web services are key components of the program, and the use of the web and online learning are important to deliver this program. Some examples of authentic and real world learning environments are provided including joint learning activities with partner universities.

  7. Rural Elementary School Teachers' Technology Integration

    Science.gov (United States)

    Howley, Aimee; Wood, Lawrence; Hough, Brian

    2011-01-01

    Based on survey responses from more than 500 third-grade teachers, this study addressed three research questions relating to technology integration and its impact in rural elementary schools. The first analyses compared rural with non-rural teachers, revealing that the rural teachers had more positive attitudes toward technology integration. Then…

  8. Towards a framework for geospatial tangible user interfaces in collaborative urban planning

    Science.gov (United States)

    Maquil, Valérie; Leopold, Ulrich; De Sousa, Luís Moreira; Schwartz, Lou; Tobias, Eric

    2018-03-01

    The increasing complexity of urban planning projects today requires new approaches to better integrate stakeholders with different professional backgrounds throughout a city. Traditional tools used in urban planning are designed for experts and offer little opportunity for participation and collaborative design. This paper introduces the concept of geospatial tangible user interfaces (GTUI) and reports on the design and implementation as well as the usability of such a GTUI to support stakeholder participation in collaborative urban planning. The proposed system uses physical objects to interact with large digital maps and geospatial data projected onto a tabletop. It is implemented using a PostGIS database, a web map server providing OGC web services, the computer vision framework reacTIVision, a Java-based TUIO client, and GeoTools. We describe how a GTUI has be instantiated and evaluated within the scope of two case studies related to real world collaborative urban planning scenarios. Our results confirm the feasibility of our proposed GTUI solutions to (a) instantiate different urban planning scenarios, (b) support collaboration, and (c) ensure an acceptable usability.

  9. Towards a framework for geospatial tangible user interfaces in collaborative urban planning

    Science.gov (United States)

    Maquil, Valérie; Leopold, Ulrich; De Sousa, Luís Moreira; Schwartz, Lou; Tobias, Eric

    2018-04-01

    The increasing complexity of urban planning projects today requires new approaches to better integrate stakeholders with different professional backgrounds throughout a city. Traditional tools used in urban planning are designed for experts and offer little opportunity for participation and collaborative design. This paper introduces the concept of geospatial tangible user interfaces (GTUI) and reports on the design and implementation as well as the usability of such a GTUI to support stakeholder participation in collaborative urban planning. The proposed system uses physical objects to interact with large digital maps and geospatial data projected onto a tabletop. It is implemented using a PostGIS database, a web map server providing OGC web services, the computer vision framework reacTIVision, a Java-based TUIO client, and GeoTools. We describe how a GTUI has be instantiated and evaluated within the scope of two case studies related to real world collaborative urban planning scenarios. Our results confirm the feasibility of our proposed GTUI solutions to (a) instantiate different urban planning scenarios, (b) support collaboration, and (c) ensure an acceptable usability.

  10. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    Science.gov (United States)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  11. Leveraging the geospatial advantage

    Science.gov (United States)

    Ben Butler; Andrew Bailey

    2013-01-01

    The Wildland Fire Decision Support System (WFDSS) web-based application leverages geospatial data to inform strategic decisions on wildland fires. A specialized data team, working within the Wildland Fire Management Research Development and Application group (WFM RD&A), assembles authoritative national-level data sets defining values to be protected. The use of...

  12. A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US

    Science.gov (United States)

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID

  13. Strategic Analysis of Technology Integration at Allstream

    OpenAIRE

    Brown, Jeff

    2011-01-01

    Innovation has been defined as the combination of invention and commercialization. Invention without commercialization is rarely, if ever, profitable. For the purposes of this paper the definition of innovation will be further expanded into the concept of technology integration. Successful technology integration not only includes new technology introduction, but also the operationalization of the new technology within each business unit of the enterprise. This paper conducts an analysis of Al...

  14. Geospatial Information Categories Mapping in a Cross-lingual Environment: A Case Study of “Surface Water” Categories in Chinese and American Topographic Maps

    Directory of Open Access Journals (Sweden)

    Xi Kuai

    2016-06-01

    Full Text Available The need for integrating geospatial information (GI data from various heterogeneous sources has seen increased importance for geographic information system (GIS interoperability. Using domain ontologies to clarify and integrate the semantics of data is considered as a crucial step for successful semantic integration in the GI domain. Nevertheless, mechanisms are still needed to facilitate semantic mapping between GI ontologies described in different natural languages. This research establishes a formal ontology model for cross-lingual geospatial information ontology mapping. By first extracting semantic primitives from a free-text definition of categories in two GI classification standards with different natural languages, an ontology-driven approach is used, and a formal ontology model is established to formally represent these semantic primitives into semantic statements, in which the spatial-related properties and relations are considered as crucial statements for the representation and identification of the semantics of the GI categories. Then, an algorithm is proposed to compare these semantic statements in a cross-lingual environment. We further design a similarity calculation algorithm based on the proposed formal ontology model to distance the semantic similarities and identify the mapping relationships between categories. In particular, we work with two GI classification standards for Chinese and American topographic maps. The experimental results demonstrate the feasibility and reliability of the proposed model for cross-lingual geospatial information ontology mapping.

  15. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    Science.gov (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  16. Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment.

    Science.gov (United States)

    Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay

    2011-09-01

    Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.

  17. Extending Database Integration Technology

    National Research Council Canada - National Science Library

    Buneman, Peter

    1999-01-01

    Formal approaches to the semantics of databases and database languages can have immediate and practical consequences in extending database integration technologies to include a vastly greater range...

  18. Integrating rehabilitation engineering technology with biologics.

    Science.gov (United States)

    Collinger, Jennifer L; Dicianno, Brad E; Weber, Douglas J; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M; Boninger, Michael L

    2011-06-01

    Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Development of Geospatial Map Based Portal for New Delhi Municipal Council

    Science.gov (United States)

    Gupta, A. Kumar Chandra; Kumar, P.; Sharma, P. Kumar

    2017-09-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Portal (GMP) for New Delhi Municipal Council (NDMC) of NCT of Delhi. The GMP has been developed as a map based spatial decision support system (SDSS) for planning and development of NDMC area to the NDMC department and It's heaving the inbuilt information searching tools (identifying of location, nearest utilities locations, distance measurement etc.) for the citizens of NCTD. The GMP is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net) technology. The GMP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMP includes Circle, Division, Sub-division boundaries of department pertaining to New Delhi Municipal Council, Parcels of residential, commercial, and government buildings, basic amenities (Police Stations, Hospitals, Schools, Banks, ATMs and Fire Stations etc.), Over-ground and Underground utility network lines, Roads, Railway features. GMP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for development and management of MCD area. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  20. DEVELOPMENT OF GEOSPATIAL MAP BASED PORTAL FOR NEW DELHI MUNICIPAL COUNCIL

    Directory of Open Access Journals (Sweden)

    A. Kumar Chandra Gupta

    2017-09-01

    Full Text Available The Geospatial Delhi Limited (GSDL, a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD to the Government of National Capital Territory of Delhi (GNCTD and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD. This paper describes the development of Geospatial Map based Portal (GMP for New Delhi Municipal Council (NDMC of NCT of Delhi. The GMP has been developed as a map based spatial decision support system (SDSS for planning and development of NDMC area to the NDMC department and It’s heaving the inbuilt information searching tools (identifying of location, nearest utilities locations, distance measurement etc. for the citizens of NCTD. The GMP is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net technology. The GMP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN connectivity. Spatial data to GMP includes Circle, Division, Sub-division boundaries of department pertaining to New Delhi Municipal Council, Parcels of residential, commercial, and government buildings, basic amenities (Police Stations, Hospitals, Schools, Banks, ATMs and Fire Stations etc., Over-ground and Underground utility network lines, Roads, Railway features. GMP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for development and management of MCD area. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  1. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  2. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  3. Toward a Comprehensive Framework for Evaluating the Core Integration Features of Enterprise Integration Middleware Technologies

    Directory of Open Access Journals (Sweden)

    Hossein Moradi

    2013-01-01

    Full Text Available To achieve greater automation of their business processes, organizations face the challenge of integrating disparate systems. In attempting to overcome this problem, organizations are turning to different kinds of enterprise integration. Implementing enterprise integration is a complex task involving both technological and business challenges and requires appropriate middleware technologies. Different enterprise integration solutions provide various functions and features which lead to the complexity of their evaluation process. To overcome this complexity, appropriate tools for evaluating the core integration features of enterprise integration solutions is required. This paper proposes a new comprehensive framework for evaluating the core integration features of both intra-enterprise and inter-enterprise Integration's enabling technologies, which simplify the process of evaluating the requirements met by enterprise integration middleware technologies.The proposed framework for evaluating the core integration features of enterprise integration middleware technologies was enhanced using the structural and conceptual aspects of previous frameworks. It offers a new schema for which various enterprise integration middleware technologies are categorized in different classifications and are evaluated based on their supporting level for the core integration features' criteria. These criteria include the functional and supporting features. The proposed framework, which is a revised version of our previous framework in this area, has developed the scope, structure and content of the mentioned framework.

  4. Integrating Product and Technology Development

    DEFF Research Database (Denmark)

    Meijer, Ellen Brilhuis; Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2016-01-01

    .g. managing dependencies) and opportunities (e.g. streamlining development). This paper presents five existing reference models for technology development (TD), which were identified via a systematic literature review, where their possible integration with product development (PD) reference models......Although dual innovation projects, defined in this article as the concurrent development of products and technologies, often occur in industry, these are only scarcely supported methodologically. Limited research has been done about dual innovation projects and their inherent challenges (e...... was investigated. Based on the specific characteristics desired for dual innovation projects, such as integrated product development and coverage of multiple development stages, a set of selection criteria was employed to select suitable PD and TD reference models. The integration and adaptation of the selected...

  5. Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration

    Science.gov (United States)

    Davies, Randall S.

    2011-01-01

    Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…

  6. GIBS Geospatial Data Abstraction Library (GDAL)

    Data.gov (United States)

    National Aeronautics and Space Administration — GDAL is an open source translator library for raster geospatial data formats that presents a single abstract data model to the calling application for all supported...

  7. High Resolution Dsm and Classified Volumetric Generation: AN Operational Approach to the Improvement of Geospatial Intelligence

    Science.gov (United States)

    Boccardo, P.; Gentili, G.

    2011-09-01

    As mentioned by Bacastow and Bellafiore, Geospatial Intelligence (GEOINT) is a field of knowledge, a process, and a profession. As knowledge, it is information integrated in a coherent space-time context that supports descriptions, explanations, or forecasts of human activities with which decision makers take action. As a process, it is the means by which data and information are collected, manipulated, geospatially reasoned, and disseminated to decision-makers. The geospatial intelligence professional establishes the scope of activities, interdisciplinary associations, competencies, and standards in academe, government, and the private sectors. Taking into account the fact that GEOINT is crucial for broad organizations, BLOM Group, a leading International provider within acquisition, processing and modeling of geographic information and ITHACA, a non-profit organization devoted to products and services delivering to the UN System in the field of geomatics, set up and provided GEOINT data to the main Italian companies operating in the field of mobile phone networking. This data, extremely useful for telecom network planning, have derived and produced using a standardized and effective (from the production point of view) approach. In this paper, all the procedures used for the production are described and tested with the aim to investigate the suitability of the data and the procedures themselves to any others possible fields of application.

  8. Integrating Informatics Technologies into Oracle

    Directory of Open Access Journals (Sweden)

    Manole VELICANU

    2006-01-01

    Full Text Available A characteristic of the actual informatics’ context is the interference of the technologies, which assumes that for creating an informatics product, is necessary to use integrate many technologies. This thing is also used for database systems which had integrated, in the past few years, almost everything is new in informatics technology. The idea is that when using database management systems - DBMS the user can benefit all the necessary interfaces and instruments for developing an application with databases from the very beginning to the end, no matter the type of application and the work environment. For example, if the database application needs any Internet facilities these could be appealed from the products that the DBMS is working with offers. The concept of the interference of informatics technologies has many advantages, which all contribute to increasing the efficiency of the activities that develop and maintain complex databases applications.

  9. Buried Waste Integrated Demonstration lessons learned: 1993 technology demonstrations

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Owens, K.J.

    1994-01-01

    An integrated technology demonstration was conducted by the Buried Waste Integrated Demonstration (BWID) at the Idaho National Engineering Laboratory Cold Test Pit in the summer of 1993. This program and demonstration was sponsored by the US Department of Energy Office of Technology Development. The demonstration included six technologies representing a synergistic system for the characterization and retrieval of a buried hazardous waste site. The integrated technology demonstration proved very successful and a summary of the technical accomplishments is presented. Upon completion of the integrated technology demonstration, cognizant program personnel participated in a lessons learned exercise. This exercise was conducted at the Simplot Decision Support Center at Idaho State University and lessons learned activity captured additional information relative to the integration of technologies for demonstration purposes. This information will be used by BWID to enhance program planning and strengthen future technology demonstrations

  10. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also

  11. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    As part of the ongoing task of making Deactivation and Decommissioning (D and D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D and D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been

  12. Geospatial Information System Capability Maturity Models

    Science.gov (United States)

    2017-06-01

    To explore how State departments of transportation (DOTs) evaluate geospatial tool applications and services within their own agencies, particularly their experiences using capability maturity models (CMMs) such as the Urban and Regional Information ...

  13. Characterization, Monitoring and Sensor Technology Integrated Program

    International Nuclear Information System (INIS)

    1993-01-01

    This booklet contains summary sheets that describe FY 1993 characterization, monitoring, and sensor technology (CMST) development projects. Currently, 32 projects are funded, 22 through the OTD Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP), 8 through the OTD Program Research and Development Announcement (PRDA) activity managed by the Morgantown Energy Technology Center (METC), and 2 through Interagency Agreements (IAGs). This booklet is not inclusive of those CMST projects which are funded through Integrated Demonstrations (IDs) and other Integrated Programs (IPs). The projects are in six areas: Expedited Site Characterization; Contaminants in Soils and Groundwater; Geophysical and Hydrogeological Measurements; Mixed Wastes in Drums, Burial Grounds, and USTs; Remediation, D ampersand D, and Waste Process Monitoring; and Performance Specifications and Program Support. A task description, technology needs, accomplishments and technology transfer information is given for each project

  14. Lowering the barriers for accessing distributed geospatial big data to advance spatial data science: the PolarHub solution

    Science.gov (United States)

    Li, W.

    2017-12-01

    Data is the crux of science. The widespread availability of big data today is of particular importance for fostering new forms of geospatial innovation. This paper reports a state-of-the-art solution that addresses a key cyberinfrastructure research problem—providing ready access to big, distributed geospatial data resources on the Web. We first formulate this data-access problem and introduce its indispensable elements, including identifying the cyber-location, space and time coverage, theme, and quality of the dataset. We then propose strategies to tackle each data-access issue and make the data more discoverable and usable for geospatial data users and decision makers. Among these strategies is large-scale web crawling as a key technique to support automatic collection of online geospatial data that are highly distributed, intrinsically heterogeneous, and known to be dynamic. To better understand the content and scientific meanings of the data, methods including space-time filtering, ontology-based thematic classification, and service quality evaluation are incorporated. To serve a broad scientific user community, these techniques are integrated into an operational data crawling system, PolarHub, which is also an important cyberinfrastructure building block to support effective data discovery. A series of experiments were conducted to demonstrate the outstanding performance of the PolarHub system. We expect this work to contribute significantly in building the theoretical and methodological foundation for data-driven geography and the emerging spatial data science.

  15. Grid enablement of OpenGeospatial Web Services: the G-OWS Working Group

    Science.gov (United States)

    Mazzetti, Paolo

    2010-05-01

    In last decades two main paradigms for resource sharing emerged and reached maturity: the Web and the Grid. They both demonstrate suitable for building Distributed Computing Infrastructures (DCIs) supporting the coordinated sharing of resources (i.e. data, information, services, etc) on the Internet. Grid and Web DCIs have much in common as a result of their underlying Internet technology (protocols, models and specifications). However, being based on different requirements and architectural approaches, they show some differences as well. The Web's "major goal was to be a shared information space through which people and machines could communicate" [Berners-Lee 1996]. The success of the Web, and its consequent pervasiveness, made it appealing for building specialized systems like the Spatial Data Infrastructures (SDIs). In this systems the introduction of Web-based geo-information technologies enables specialized services for geospatial data sharing and processing. The Grid was born to achieve "flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources" [Foster 2001]. It specifically focuses on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In the Earth and Space Sciences (ESS) the most part of handled information is geo-referred (geo-information) since spatial and temporal meta-information is of primary importance in many application domains: Earth Sciences, Disasters Management, Environmental Sciences, etc. On the other hand, in several application areas there is the need of running complex models which require the large processing and storage capabilities that the Grids are able to provide. Therefore the integration of geo-information and Grid technologies might be a valuable approach in order to enable advanced ESS applications. Currently both geo-information and Grid technologies have reached a high level of maturity, allowing to build such an

  16. Fast Deployment on the Cloud of Integrated Postgres, API and a Jupyter Notebook for Geospatial Collaboration

    Science.gov (United States)

    Fatland, R.; Tan, A.; Arendt, A. A.

    2016-12-01

    We describe a Python-based implementation of a PostgreSQL database accessed through an Application Programming Interface (API) hosted on the Amazon Web Services public cloud. The data is geospatial and concerns hydrological model results in the glaciated catchment basins of southcentral and southeast Alaska. This implementation, however, is intended to be generalized to other forms of geophysical data, particularly data that is intended to be shared across a collaborative team or publicly. An example (moderate-size) dataset is provided together with the code base and a complete installation tutorial on GitHub. An enthusiastic scientist with some familiarity with software installation can replicate the example system in two hours. This installation includes database, API, a test Client and a supporting Jupyter Notebook, specifically oriented towards Python 3 and markup text to comprise an executable paper. The installation 'on the cloud' often engenders discussion and consideration of cloud cost and safety. By treating the process as somewhat "cookbook" we hope to first demonstrate the feasibility of the proposition. A discussion of cost and data security is provided in this presentation and in the accompanying tutorial/documentation. This geospatial data system case study is part of a larger effort at the University of Washington to enable research teams to take advantage of the public cloud to meet challenges in data management and analysis.

  17. Tenured Teachers & Technology Integration in the Classroom

    Science.gov (United States)

    Cox, Jerad

    2013-01-01

    This article explores teachers' technology integration in the classroom through 2 means: 1) what researchers are saying about emerging trends and best practices as well as, 2) the author's research assignment regarding the technology integration experiences of longer tenured teachers. More tenured teachers are different than their younger…

  18. Integrating Technology: The Principals' Role and Effect

    Science.gov (United States)

    Machado, Lucas J.; Chung, Chia-Jung

    2015-01-01

    There are many factors that influence technology integration in the classroom such as teacher willingness, availability of hardware, and professional development of staff. Taking into account these elements, this paper describes research on technology integration with a focus on principals' attitudes. The role of the principal in classroom…

  19. Development of Geospatial Map Based Portal for Delimitation of Mcd Wards

    Science.gov (United States)

    Gupta, A. Kumar Chandra; Kumar, P.; Sharma, P. Kumar

    2017-09-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Portal for Delimitation of MCD Wards (GMPDW) and election of 3 Municipal Corporations of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for delimitation of MCD Wards and draw of peripheral wards boundaries to planning and management of MCD Election process of State Election Commission, and as an MCD election related information searching tools (Polling Station, MCD Wards and Assembly constituency etc.,) for the citizens of NCTD. The GMPDW is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net) technology. The GMPDW is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMPDW includes Enumeration Block (EB) and Enumeration Blocks Group (EBG) boundaries of Citizens of Delhi, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMPDW could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of MCD election. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  20. DEVELOPMENT OF GEOSPATIAL MAP BASED PORTAL FOR DELIMITATION OF MCD WARDS

    Directory of Open Access Journals (Sweden)

    A. Kumar Chandra Gupta

    2017-09-01

    Full Text Available The Geospatial Delhi Limited (GSDL, a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD to the Government of National Capital Territory of Delhi (GNCTD and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD. This paper describes the development of Geospatial Map based Portal for Delimitation of MCD Wards (GMPDW and election of 3 Municipal Corporations of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS for delimitation of MCD Wards and draw of peripheral wards boundaries to planning and management of MCD Election process of State Election Commission, and as an MCD election related information searching tools (Polling Station, MCD Wards and Assembly constituency etc., for the citizens of NCTD. The GMPDW is based on Client-Server architecture model. It has been developed using Arc GIS Server 10.0 with .NET (pronounced dot net technology. The GMPDW is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN connectivity. Spatial data to GMPDW includes Enumeration Block (EB and Enumeration Blocks Group (EBG boundaries of Citizens of Delhi, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.. GMPDW could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of MCD election. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  1. Web mapping system for complex processing and visualization of environmental geospatial datasets

    Science.gov (United States)

    Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor

    2016-04-01

    Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial

  2. Web-Based Geospatial Visualization of GPM Data with CesiumJS

    Science.gov (United States)

    Lammers, Matt

    2018-01-01

    Advancements in the capabilities of JavaScript frameworks and web browsing technology have made online visualization of large geospatial datasets such as those coming from precipitation satellites viable. These data benefit from being visualized on and above a three-dimensional surface. The open-source JavaScript framework CesiumJS (http://cesiumjs.org), developed by Analytical Graphics, Inc., leverages the WebGL protocol to do just that. This presentation will describe how CesiumJS has been used in three-dimensional visualization products developed as part of the NASA Precipitation Processing System (PPS) STORM data-order website. Existing methods of interacting with Global Precipitation Measurement (GPM) Mission data primarily focus on two-dimensional static images, whether displaying vertical slices or horizontal surface/height-level maps. These methods limit interactivity with the robust three-dimensional data coming from the GPM core satellite. Integrating the data with CesiumJS in a web-based user interface has allowed us to create the following products. We have linked with the data-order interface an on-the-fly visualization tool for any GPM/partner satellite orbit. A version of this tool also focuses on high-impact weather events. It enables viewing of combined radar and microwave-derived precipitation data on mobile devices and in a way that can be embedded into other websites. We also have used CesiumJS to visualize a method of integrating gridded precipitation data with modeled wind speeds that animates over time. Emphasis in the presentation will be placed on how a variety of technical methods were used to create these tools, and how the flexibility of the CesiumJS framework facilitates creative approaches to interact with the data.

  3. Factors That Influence Technology Integration in the Classroom

    Science.gov (United States)

    Montgomery, Maureen C.

    2017-01-01

    Education is one area where the use of technology has had great impact on student learning. The integration of technology in teaching and learning can significantly influence the outcome of education in the classroom. However, there are a myriad of factors that influence technology integration in the classroom. The purpose of this study was to…

  4. Integrating Information & Communications Technologies into the Classroom

    Science.gov (United States)

    Tomei, Lawrence, Ed.

    2007-01-01

    "Integrating Information & Communications Technologies Into the Classroom" examines topics critical to business, computer science, and information technology education, such as: school improvement and reform, standards-based technology education programs, data-driven decision making, and strategic technology education planning. This book also…

  5. Integrated Magnetic MEMS Relays: Status of the Technology

    Directory of Open Access Journals (Sweden)

    Giuseppe Schiavone

    2014-08-01

    Full Text Available The development and application of magnetic technologies employing microfabricated magnetic structures for the production of switching components has generated enormous interest in the scientific and industrial communities over the last decade. Magnetic actuation offers many benefits when compared to other schemes for microelectromechanical systems (MEMS, including the generation of forces that have higher magnitude and longer range. Magnetic actuation can be achieved using different excitation sources, which create challenges related to the integration with other technologies, such as CMOS (Complementary Metal Oxide Semiconductor, and the requirement to reduce power consumption. Novel designs and technologies are therefore sought to enable the use of magnetic switching architectures in integrated MEMS devices, without incurring excessive energy consumption. This article reviews the status of magnetic MEMS technology and presents devices recently developed by various research groups, with key focuses on integrability and effective power management, in addition to the ability to integrate the technology with other microelectronic fabrication processes.

  6. A NoSQL–SQL Hybrid Organization and Management Approach for Real-Time Geospatial Data: A Case Study of Public Security Video Surveillance

    Directory of Open Access Journals (Sweden)

    Chen Wu

    2017-01-01

    Full Text Available With the widespread deployment of ground, air and space sensor sources (internet of things or IoT, social networks, sensor networks, the integrated applications of real-time geospatial data from ubiquitous sensors, especially in public security and smart city domains, are becoming challenging issues. The traditional geographic information system (GIS mostly manages time-discretized geospatial data by means of the Structured Query Language (SQL database management system (DBMS and emphasizes query and retrieval of massive historical geospatial data on disk. This limits its capability for on-the-fly access of real-time geospatial data for online analysis in real time. This paper proposes a hybrid database organization and management approach with SQL relational databases (RDB and not only SQL (NoSQL databases (including the main memory database, MMDB, and distributed files system, DFS. This hybrid approach makes full use of the advantages of NoSQL and SQL DBMS for the real-time access of input data and structured on-the-fly analysis results which can meet the requirements of increased spatio-temporal big data linking analysis. The MMDB facilitates real-time access of the latest input data such as the sensor web and IoT, and supports the real-time query for online geospatial analysis. The RDB stores change information such as multi-modal features and abnormal events extracted from real-time input data. The DFS on disk manages the massive geospatial data, and the extensible storage architecture and distributed scheduling of a NoSQL database satisfy the performance requirements of incremental storage and multi-user concurrent access. A case study of geographic video (GeoVideo surveillance of public security is presented to prove the feasibility of this hybrid organization and management approach.

  7. Climate Change and Future U.S. Electricity Infrastructure: the Nexus between Water Availability, Land Suitability, and Low-Carbon Technologies

    Science.gov (United States)

    Rice, J.; Halter, T.; Hejazi, M. I.; Jensen, E.; Liu, L.; Olson, J.; Patel, P.; Vernon, C. R.; Voisin, N.; Zuljevic, N.

    2014-12-01

    Integrated assessment models project the future electricity generation mix under different policy, technology, and socioeconomic scenarios, but they do not directly address site-specific factors such as interconnection costs, population density, land use restrictions, air quality, NIMBY concerns, or water availability that might affect the feasibility of achieving the technology mix. Moreover, since these factors can change over time due to climate, policy, socioeconomics, and so on, it is important to examine the dynamic feasibility of integrated assessment scenarios "on the ground." This paper explores insights from coupling an integrated assessment model (GCAM-USA) with a geospatial power plant siting model (the Capacity Expansion Regional Feasibility model, CERF) within a larger multi-model framework that includes regional climate, hydrologic, and water management modeling. GCAM-USA is a dynamic-recursive market equilibrium model simulating the impact of carbon policies on global and national markets for energy commodities and other goods; one of its outputs is the electricity generation mix and expansion at the state-level. It also simulates water demands from all sectors that are downscaled as input to the water management modeling. CERF simulates siting decisions by dynamically representing suitable areas for different generation technologies with geospatial analyses (informed by technology-specific siting criteria, such as required mean streamflow per the Clean Water Act), and then choosing siting locations to minimize interconnection costs (to electric transmission and gas pipelines). CERF results are compared across three scenarios simulated by GCAM-USA: 1) a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail, 2) a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward nuclear, carbon capture and sequestration (CCS), and renewables, and 3) a repeat of scenario (2) in which CCS technologies are

  8. MapFactory - Towards a mapping design pattern for big geospatial data

    Science.gov (United States)

    Rautenbach, Victoria; Coetzee, Serena

    2018-05-01

    With big geospatial data emerging, cartographers and geographic information scientists have to find new ways of dealing with the volume, variety, velocity, and veracity (4Vs) of the data. This requires the development of tools that allow processing, filtering, analysing, and visualising of big data through multidisciplinary collaboration. In this paper, we present the MapFactory design pattern that will be used for the creation of different maps according to the (input) design specification for big geospatial data. The design specification is based on elements from ISO19115-1:2014 Geographic information - Metadata - Part 1: Fundamentals that would guide the design and development of the map or set of maps to be produced. The results of the exploratory research suggest that the MapFactory design pattern will help with software reuse and communication. The MapFactory design pattern will aid software developers to build the tools that are required to automate map making with big geospatial data. The resulting maps would assist cartographers and others to make sense of big geospatial data.

  9. Collaboration Among Institutions to Bring Geospatial Technology to an Underserved Rural Region

    Science.gov (United States)

    Johnson, T.

    2012-12-01

    The University of Maine at Machias and Washington County Community College, the two smallest and most remote public institutions in Maine, provide important education and workforce development services in a rural and economically-challenged region. Through an innovative collaboration supported by the National Science Foundation, the two institutions have developed geospatial technology (GST) programs designed to meet the specific workforce needs of the region, affording students with the opportunity to pursue degrees, certificates and minors. Prior to this effort, neither school had the resources to maintain a GST laboratory or to offer courses consistently. The region had almost no GST capacity with which to manage critical environmental resources and grapple with economic, public safety, and public health challenges. Several statewide studies had shown a growing need for more GST technicians and training for incumbent workers. The new programs are designed to produce a small number of specialist technicians with associate's degrees and a large number of ancillary users with significant GST expertise from courses, certificates or minors. Course content is shaped by workforce research in Maine and elsewhere, and all courses are offered in either blended, online or short-term intensive formats to provide access to incumbent workers and extend the geographic reach of the programs. Through the university's Geographic Information Systems (GIS) Service Center, students from both institutions engage in real-world projects, and are linked with employers via internships. This has the added plus of providing low-cost and no-cost GIS services to area clients, generating demand. Many of these projects and internships lead to work for graduates, even through the economic downturn. By creating courses that serve multiple audiences, each contributing a small number to the total enrollment, the programs constitute a sustainable model that serves the growing needs of the region

  10. Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges

    DEFF Research Database (Denmark)

    Li, Songnian; Dragicevic, Suzana; Anton, François

    2016-01-01

    Big data has now become a strong focus of global interest that is increasingly attracting the attention of academia, industry, government and other organizations. Big data can be situated in the disciplinary area of traditional geospatial data handling theory and methods. The increasing volume...... for Photogrammetry and Remote Sensing (ISPRS) Technical Commission II (TC II) revisits the existing geospatial data handling methods and theories to determine if they are still capable of handling emerging geospatial big data. Further, the paper synthesises problems, major issues and challenges with current...... developments as well as recommending what needs to be developed further in the near future....

  11. Towards the Development of a Taxonomy for Visualisation of Streamed Geospatial Data

    Science.gov (United States)

    Sibolla, B. H.; Van Zyl, T.; Coetzee, S.

    2016-06-01

    Geospatial data has very specific characteristics that need to be carefully captured in its visualisation, in order for the user and the viewer to gain knowledge from it. The science of visualisation has gained much traction over the last decade as a response to various visualisation challenges. During the development of an open source based, dynamic two-dimensional visualisation library, that caters for geospatial streaming data, it was found necessary to conduct a review of existing geospatial visualisation taxonomies. The review was done in order to inform the design phase of the library development, such that either an existing taxonomy can be adopted or extended to fit the needs at hand. The major challenge in this case is to develop dynamic two dimensional visualisations that enable human interaction in order to assist the user to understand the data streams that are continuously being updated. This paper reviews the existing geospatial data visualisation taxonomies that have been developed over the years. Based on the review, an adopted taxonomy for visualisation of geospatial streaming data is presented. Example applications of this taxonomy are also provided. The adopted taxonomy will then be used to develop the information model for the visualisation library in a further study.

  12. Technological Integration of Acquisitions in Digital Industries

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Toppenberg, Gustav

    2015-01-01

    providers to extend the platform core and to derive network effects by consolidating platform user groups, and (b) complement providers to create monopoly positions for the complements and for innovation complementarity. To enable these acquisition benefits, acquirers face technological integration...... challenges in process and product integration. Through a case study of Network Solutions Corp. (NSC), a Fortune 500 company that has acquired more than 175 business units, we develop four propositions explaining how the benefits of platform core and complement acquisitions are differently contingent......Acquisitions have become essential tools to retain the technological edge in digital industries. This paper analyses the technological integration challenges in such acquisitions. Acquirers in digital industries are typically platform leaders in platform markets. They acquire (a) other platform...

  13. Supporting learner-centered technology integration through situated mentoring

    Science.gov (United States)

    Rosenberg, Marian Goode

    Situated mentoring was used as a professional development method to help 11 high school science teachers integrate learner-centered technology. The teachers' learner-centered technology beliefs and practices as well as their perception of barriers to learner-centered technology integration were explored before and after participating in the mentoring program. In addition, the participants' thoughts about the effectiveness of various components of the mentoring program were analyzed along with the mentor's observations of their practices. Situated mentoring can be effective for supporting learner-centered technology integration, in particular decreasing the barriers teachers experience. Goal setting, collaborative planning, reflection, and onsite just-in-time support were thought to be the most valuable components of the mentoring program.

  14. Integrating Open Access Geospatial Data to Map the Habitat Suitability of the Declining Corn Bunting (Miliaria calandra

    Directory of Open Access Journals (Sweden)

    Abdulhakim M. Abdi

    2013-09-01

    Full Text Available The efficacy of integrating open access geospatial data to produce habitat suitability maps for the corn bunting (Miliaria calandra was investigated. Landsat Enhanced Thematic Mapper Plus (ETM+, Shuttle Radar Topography Mission (SRTM and Corine (Coordination of Information on the Environment land cover data for the year 2000 (CLC2000 were processed to extract explanatory variables and divided into three sets; Satellite (ETM+, SRTM, CLC2000 and Combined (CLC2000 + Satellite. Presence-absence data for M. calandra, collected during structured surveys for the Catalan Breeding Bird Atlas, were provided by the Catalan Ornithological Institute. The dataset was partitioned into an equal number of presence and absence points by dividing it into five groups, each composed of 88 randomly selected presence points to match the number of absences. A logistic regression model was then built for each group. Models were evaluated using area under the curve (AUC of the receiver operating characteristic (ROC. Results of the five groups were averaged to produce mean Satellite, CLC2000 and Combined models. The mean AUC values were 0.69, 0.81 and 0.90 for the CLC2000, Satellite and the Combined model, respectively. The probability of M. calandra presence had the strongest positive correlation with land surface temperature, modified soil adjusted vegetation index, coefficient of variation for ETM+ band 5 and the fraction of non-irrigated arable land.

  15. Information Integration Technology Demonstration (IITD)

    National Research Council Canada - National Science Library

    Loe, Richard

    2001-01-01

    The objectives of the Information Integration Technology Demonstration (IITD) were to investigate, design a software architecture and demonstrate a capability to display intelligence data from multiple disciplines...

  16. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.

    Science.gov (United States)

    Shen, Hui-Min; Hu, Liang; Fu, Xin

    2018-01-07

    With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.

  17. Developing Pre-service Teachers' Technology Integration ...

    African Journals Online (AJOL)

    Developing Pre-service Teachers' Technology Integration Competencies in Science and Mathematics Teaching: Experiences from Tanzania and Uganda. ... This study investigated the ICT integration practices in pre-service teacher education in the School of Education at Makerere University (College of Education and ...

  18. Organizational Culture: Technology Integration. Review of Literature and Data Gathering

    Science.gov (United States)

    Simpson, Selena E.

    2008-01-01

    Background: Communities of practice and technology integration within such communities requires much attention in the future of education and developing organizations. Purpose: To examine the effectiveness of technology integration and how communities of practice plays a role in the successful implementation of technology integration for teacher…

  19. Evaluating hydrological response to forecasted land-use change—scenario testing with the automated geospatial watershed assessment (AGWA) tool

    Science.gov (United States)

    Kepner, William G.; Semmens, Darius J.; Hernandez, Mariano; Goodrich, David C.

    2009-01-01

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions to maintain the sustainable nature of our ecosystem services now and into the future. During the past two decades, important advances in the integration of remote imagery, computer processing, and spatial-analysis technologies have been used to develop landscape information that can be integrated with hydrologic models to determine long-term change and make predictive inferences about the future. Two diverse case studies in northwest Oregon (Willamette River basin) and southeastern Arizona (San Pedro River) were examined in regard to future land use scenarios relative to their impact on surface water conditions (e.g., sediment yield and surface runoff) using hydrologic models associated with the Automated Geospatial Watershed Assessment (AGWA) tool. The base reference grid for land cover was modified in both study locations to reflect stakeholder preferences 20 to 60 yrs into the future, and the consequences of landscape change were evaluated relative to the selected future scenarios. The two studies provide examples of integrating hydrologic modeling with a scenario analysis framework to evaluate plausible future forecasts and to understand the potential impact of landscape change on ecosystem services.

  20. The relationship between technology leadership roles and profiles of school principals and technology integration in primary school classrooms

    Directory of Open Access Journals (Sweden)

    Mustafa SAMANCIOĞLU

    2015-12-01

    Full Text Available The purpose of this study was to investigate the relationship between technology leadership behaviors of school principals and teachers’ level of technology integration, and to determine technology leadership profiles based on teacher views and examine their association with technology integration. The researchers administered two questionnaires to 352 teachers working at sixteen primary schools in a large city in southeastern Turkey. The results revealed a positive, but weak relationship between technology leadership and technology integration. Furthermore, it was concluded that there were positive but weak relationships among technology integration and human centeredness, communication and collaboration, vision and support sub-dimensions of technology leadership. Two technology leadership profiles (high-TLP=65.6% and low-TLP=34.4% were constructed as a result of cluster analysis. A statistically significant difference was detected between teachers’ technology integration perceptions which were categorized into two profiles. The paper concludes by suggestions for implications to strengthen the link between technology leadership and technology integration.

  1. Stakeholder Alignment and Changing Geospatial Information Capabilities

    Science.gov (United States)

    Winter, S.; Cutcher-Gershenfeld, J.; King, J. L.

    2015-12-01

    Changing geospatial information capabilities can have major economic and social effects on activities such as drought monitoring, weather forecasts, agricultural productivity projections, water and air quality assessments, the effects of forestry practices and so on. Whose interests are served by such changes? Two common mistakes are assuming stability in the community of stakeholders and consistency in stakeholder behavior. Stakeholder communities can reconfigure dramatically as some leave the discussion, others enter, and circumstances shift — all resulting in dynamic points of alignment and misalignment . New stakeholders can bring new interests, and existing stakeholders can change their positions. Stakeholders and their interests need to be be considered as geospatial information capabilities change, but this is easier said than done. New ways of thinking about stakeholder alignment in light of changes in capability are presented.

  2. Integrating Technology Tools for Students Struggling with Written Language

    Science.gov (United States)

    Fedora, Pledger

    2015-01-01

    This exploratory study was designed to assess the experience of preservice teachers when integrating written language technology and their likelihood of applying that technology in their future classrooms. Results suggest that after experiencing technology integration, preservice teachers are more likely to use it in their future teaching.

  3. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    Science.gov (United States)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  4. Soil Functional Mapping: A Geospatial Framework for Scaling Soil Carbon Cycling

    Science.gov (United States)

    Lawrence, C. R.

    2017-12-01

    Climate change is dramatically altering biogeochemical cycles in most terrestrial ecosystems, particularly the cycles of water and carbon (C). These changes will affect myriad ecosystem processes of importance, including plant productivity, C exports to aquatic systems, and terrestrial C storage. Soil C storage represents a critical feedback to climate change as soils store more C than the atmosphere and aboveground plant biomass combined. While we know plant and soil C cycling are strongly coupled with soil moisture, substantial unknowns remain regarding how these relationships can be scaled up from soil profiles to ecosystems. This greatly limits our ability to build a process-based understanding of the controls on and consequences of climate change at regional scales. In an effort to address this limitation we: (1) describe an approach to classifying soils that is based on underlying differences in soil functional characteristics and (2) examine the utility of this approach as a scaling tool that honors the underlying soil processes. First, geospatial datasets are analyzed in the context of our current understanding of soil C and water cycling in order to predict soil functional units that can be mapped at the scale of ecosystems or watersheds. Next, the integrity of each soil functional unit is evaluated using available soil C data and mapping units are refined as needed. Finally, targeted sampling is conducted to further differentiate functional units or fill in any data gaps that are identified. Completion of this workflow provides new geospatial datasets that are based on specific soil functions, in this case the coupling of soil C and water cycling, and are well suited for integration with regional-scale soil models. Preliminary results from this effort highlight the advantages of a scaling approach that balances theory, measurement, and modeling.

  5. DIGI-vis: Distributed interactive geospatial information visualization

    KAUST Repository

    Ponto, Kevin; Kuester, Falk

    2010-01-01

    data sets. We propose a distributed data gathering and visualization system that allows researchers to view these data at hundreds of megapixels simultaneously. This system allows scientists to view real-time geospatial information at unprecedented

  6. The Impact of Technology Integration through a Transformative Approach

    Science.gov (United States)

    Cubillos, Jo Ann

    2013-01-01

    The integration of technology into classroom instruction in K-12 schools remains problematic. The problems associated with this integration are troubling, as technology integration may change a teacher's pedagogy toward more innovative approaches that increase student achievement. The purpose of this study was to document teachers' experiences as…

  7. 3D geospatial visualizations: Animation and motion effects on spatial objects

    Science.gov (United States)

    Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos

    2018-02-01

    Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.

  8. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  9. Technology in Education: Technology Integration into the School's Curriculum

    Science.gov (United States)

    Culver, Bobby L., Jr.

    2017-01-01

    Integrating technology into the school's curriculum is a very contentious issue. However, it is an important issue that schools need to consider and assess. The purpose of this study was to examine the relationship between K-5th grade teachers' perceptions of proficiency of technology equipment, experience with technology in education, and…

  10. The new geospatial tools: global transparency enhancing safeguards verification

    International Nuclear Information System (INIS)

    Pabian, Frank Vincent

    2010-01-01

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  11. Integrated Micro Product and Technology Development

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the issues of integrated micro product and technology development. The implications of the decisions in the design phase on the subsequent manufacturing processes are considered vital. A coherent process chain is a necessary prerequisite for the realisation of the industrial...... potential of micro technology....

  12. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  13. Risk-Aversion: Understanding Teachers' Resistance to Technology Integration

    Science.gov (United States)

    Howard, Sarah K.

    2013-01-01

    Teachers who do not integrate technology are often labelled as "resistant" to change. Yet, considerable uncertainties remain about appropriate uses and actual value of technology in teaching and learning, which can make integration and change seem risky. The purpose of this article is to explore the nature of teachers' analytical and…

  14. Technology Integration Support Levels for In-Service Teachers

    Science.gov (United States)

    Williams, Mable Evans

    2017-01-01

    In-service teachers across the globe are expected to integrate technology in their respective instructional content area. The purpose of this qualitative study was to explore the perceptions of in-service teachers concerning building-level support for technology integration. Participants in the study were asked to participate in semi-structured…

  15. Development of the Integrated Information Technology System

    National Research Council Canada - National Science Library

    2005-01-01

    The Integrated Medical Information Technology System (IMITS) Program is focused on implementation of advanced technology solutions that eliminate inefficiencies, increase utilization and improve quality of care for active duty forces...

  16. Developing a distributed HTML5-based search engine for geospatial resource discovery

    Science.gov (United States)

    ZHOU, N.; XIA, J.; Nebert, D.; Yang, C.; Gui, Z.; Liu, K.

    2013-12-01

    With explosive growth of data, Geospatial Cyberinfrastructure(GCI) components are developed to manage geospatial resources, such as data discovery and data publishing. However, the efficiency of geospatial resources discovery is still challenging in that: (1) existing GCIs are usually developed for users of specific domains. Users may have to visit a number of GCIs to find appropriate resources; (2) The complexity of decentralized network environment usually results in slow response and pool user experience; (3) Users who use different browsers and devices may have very different user experiences because of the diversity of front-end platforms (e.g. Silverlight, Flash or HTML). To address these issues, we developed a distributed and HTML5-based search engine. Specifically, (1)the search engine adopts a brokering approach to retrieve geospatial metadata from various and distributed GCIs; (2) the asynchronous record retrieval mode enhances the search performance and user interactivity; (3) the search engine based on HTML5 is able to provide unified access capabilities for users with different devices (e.g. tablet and smartphone).

  17. Teachers' Preparation Needs for Integrating Technology in the Classroom

    Science.gov (United States)

    Jackson, Barcus C.

    2013-01-01

    School districts across the country are charged with preparing the next generation for competing in a global economy and have spent billions of dollars on technology acquisition and Internet use. However, teachers do not feel prepared to integrate technology in the classroom. To prepare teachers for technology integration, the most common approach…

  18. Active and Passive Technology Integration: A Novel Approach for Managing Technology's Influence on Learning Experiences in Context-Aware Learning Spaces

    Science.gov (United States)

    Laine, Teemu H.; Nygren, Eeva

    2016-01-01

    Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…

  19. Sustaining Integrated Technology in Undergraduate Mathematics

    Science.gov (United States)

    Oates, Greg

    2011-01-01

    The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing contemporary tertiary mathematics. This article reports on some significant findings of a wider study investigating the use of technology in undergraduate mathematics. It first discusses a taxonomy developed to…

  20. Nansat: a Scientist-Orientated Python Package for Geospatial Data Processing

    Directory of Open Access Journals (Sweden)

    Anton A. Korosov

    2016-10-01

    Full Text Available Nansat is a Python toolbox for analysing and processing 2-dimensional geospatial data, such as satellite imagery, output from numerical models, and gridded in-situ data. It is created with strong focus on facilitating research, and development of algorithms and autonomous processing systems. Nansat extends the widely used Geospatial Abstraction Data Library (GDAL by adding scientific meaning to the datasets through metadata, and by adding common functionality for data analysis and handling (e.g., exporting to various data formats. Nansat uses metadata vocabularies that follow international metadata standards, in particular the Climate and Forecast (CF conventions, and the NASA Directory Interchange Format (DIF and Global Change Master Directory (GCMD keywords. Functionality that is commonly needed in scientific work, such as seamless access to local or remote geospatial data in various file formats, collocation of datasets from different sources and geometries, and visualization, is also built into Nansat. The paper presents Nansat workflows, its functional structure, and examples of typical applications.

  1. Integrating neural network technology and noise analysis

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Oak Ridge National Lab., TN

    1995-01-01

    The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)

  2. A Smart Web-Based Geospatial Data Discovery System with Oceanographic Data as an Example

    Directory of Open Access Journals (Sweden)

    Yongyao Jiang

    2018-02-01

    Full Text Available Discovering and accessing geospatial data presents a significant challenge for the Earth sciences community as massive amounts of data are being produced on a daily basis. In this article, we report a smart web-based geospatial data discovery system that mines and utilizes data relevancy from metadata user behavior. Specifically, (1 the system enables semantic query expansion and suggestion to assist users in finding more relevant data; (2 machine-learned ranking is utilized to provide the optimal search ranking based on a number of identified ranking features that can reflect users’ search preferences; (3 a hybrid recommendation module is designed to allow users to discover related data considering metadata attributes and user behavior; (4 an integrated graphic user interface design is developed to quickly and intuitively guide data consumers to the appropriate data resources. As a proof of concept, we focus on a well-defined domain-oceanography and use oceanographic data discovery as an example. Experiments and a search example show that the proposed system can improve the scientific community’s data search experience by providing query expansion, suggestion, better search ranking, and data recommendation via a user-friendly interface.

  3. Integration of element technology and system supporting thermonuclear fusion

    International Nuclear Information System (INIS)

    2003-01-01

    A special committee for integrated system technology survey on thermonuclear fusion (TNF) was begun on June, 1999, under an aim to generally summarize whole of shapes on technology to realize TNF reactor to summarize present state of every technologies and their positioning in whole of their TNF technology. On a base of survey of these recent informations, this report is comprehensively summarized for an integrated system technology on TNF. It has outlines on magnetic field enclosing method, outlines on inertia enclosing method, element technology supporting TNF, new power generation techniques, and ripple effects on TNF technology. (G.K.)

  4. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  5. lawn: An R client for the Turf JavaScript Library for Geospatial Analysis

    Science.gov (United States)

    lawn is an R package to provide access to the geospatial analysis capabilities in the Turf javascript library. Turf expects data in GeoJSON format. Given that many datasets are now available natively in GeoJSON providing an easier method for conducting geospatial analyses on thes...

  6. Mapping the world: cartographic and geographic visualization by the United Nations Geospatial Information Section (formerly Cartographic Section)

    Science.gov (United States)

    Kagawa, Ayako; Le Sourd, Guillaume

    2018-05-01

    United Nations Secretariat activities, mapping began in 1946, and by 1951, the need for maps increased and an office with a team of cartographers was established. Since then, with the development of technologies including internet, remote sensing, unmanned aerial systems, relationship database management and information systems, geospatial information provides an ever-increasing variation of support to the work of the Organization for planning of operations, decision-making and monitoring of crises. However, the need for maps has remained intact. This presentation aims to highlight some of the cartographic representation styles over the decades by reviewing the evolution of selected maps by the office, and noting the changing cognitive and semiotic aspects of cartographic and geographic visualization required by the United Nations. Through presentation and analysis of these maps, the changing dynamics of the Organization in information management can be reflected, with a reminder of the continuing and expanding deconstructionist role of a cartographer, now geospatial information management experts.

  7. EXPERIENCES WITH ACQUIRING HIGHLY REDUNDANT SPATIAL DATA TO SUPPORT DRIVERLESS VEHICLE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Z. Koppanyi

    2018-05-01

    Full Text Available As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors’ quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  8. Experiences with Acquiring Highly Redundant Spatial Data to Support Driverless Vehicle Technologies

    Science.gov (United States)

    Koppanyi, Z.; Toth, C. K.

    2018-05-01

    As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors' quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  9. From Technology Teacher to Technology Integration Specialist: Preparing for a Paradigm Shift

    Science.gov (United States)

    Dalrymple, Jennifer Lynn Penry

    2017-01-01

    This dissertation examines the effectiveness of a professional development program designed specifically to provide foundational knowledge and skills to Technology Teachers in preparation for a transition to a Technology Integration Specialist position. Specifically, it evaluates the Technology Teachers' changes in knowledge and beliefs as a…

  10. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  11. KINGDOM OF SAUDI ARABIA GEOSPATIAL INFORMATION INFRASTRUCTURE – AN INITIAL STUDY

    Directory of Open Access Journals (Sweden)

    S. H. Alsultan

    2015-10-01

    Full Text Available This paper reviews the current Geographic Information System (Longley et al. implementation and status in the Kingdom of Saudi Arabia (KSA. Based on the review, several problems were identified and discussed. The characteristic of these problems show that the country needs a national geospatial centre. As a new initiative for a national geospatial centre, a study is being conducted especially on best practice from other countries, availability of national committee for standards and policies on data sharing, and the best proposed organization structure inside the administration for the KSA. The study also covers the degree of readiness and awareness among the main GIS stakeholders within the country as well as private parties. At the end of this paper, strategic steps for the national geospatial management centre were proposed as the initial output of the study.

  12. A Geospatial Decision Support System Toolkit, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and commercialize a working prototype Geospatial Decision Support Toolkit (GeoKit). GeoKit will enable scientists, agencies, and stakeholders to...

  13. Educational Technology: A Review of the Integration, Resources, and Effectiveness of Technology in K-12 Classrooms

    Directory of Open Access Journals (Sweden)

    Adolph Delgado

    2015-09-01

    Full Text Available There is no questioning that the way people live, interact, communicate, and conduct business is undergoing a profound, rapid change. This change is often referred to as the “digital revolution,” which is the advancement of technology from analog, electronic and mechanical tools to the digital tools available today. Moreover, technology has begun to change education, affecting how students acquire the skill sets needed to prepare for college and a career and how educators integrate digital technological instructional strategies to teach. Numerous studies have been published discussing the barriers of integrating technology, the estimated amount of investment that is needed in order to fully support educational technology, and, of course, the effectiveness of technology in the classroom. As such, this article presents a critical review of the transitions that technology integration has made over the years; the amount of resources and funding that has been allocated to immerse school with technology; and the conflicting results presented on effectiveness of using is technology in education. Through synthesis of selected themes, we found a plethora of technological instructional strategies being used to integrate technology into K-12 classrooms. Also, though there have been large investments made to integrate technology into K-12 classrooms to equip students with the skills needed to prepare for college and a career, the practical use of this investment has not been impressive. Lastly, several meta-analyses showed promising results of effectiveness of technology in the classroom. However, several inherent methodological and study design issues dampen the amount of variance that technology accounts for.

  14. GSKY: A scalable distributed geospatial data server on the cloud

    Science.gov (United States)

    Rozas Larraondo, Pablo; Pringle, Sean; Antony, Joseph; Evans, Ben

    2017-04-01

    Earth systems, environmental and geophysical datasets are an extremely valuable sources of information about the state and evolution of the Earth. Being able to combine information coming from different geospatial collections is in increasing demand by the scientific community, and requires managing and manipulating data with different formats and performing operations such as map reprojections, resampling and other transformations. Due to the large data volume inherent in these collections, storing multiple copies of them is unfeasible and so such data manipulation must be performed on-the-fly using efficient, high performance techniques. Ideally this should be performed using a trusted data service and common system libraries to ensure wide use and reproducibility. Recent developments in distributed computing based on dynamic access to significant cloud infrastructure opens the door for such new ways of processing geospatial data on demand. The National Computational Infrastructure (NCI), hosted at the Australian National University (ANU), has over 10 Petabytes of nationally significant research data collections. Some of these collections, which comprise a variety of observed and modelled geospatial data, are now made available via a highly distributed geospatial data server, called GSKY (pronounced [jee-skee]). GSKY supports on demand processing of large geospatial data products such as satellite earth observation data as well as numerical weather products, allowing interactive exploration and analysis of the data. It dynamically and efficiently distributes the required computations among cloud nodes providing a scalable analysis framework that can adapt to serve large number of concurrent users. Typical geospatial workflows handling different file formats and data types, or blending data in different coordinate projections and spatio-temporal resolutions, is handled transparently by GSKY. This is achieved by decoupling the data ingestion and indexing process as

  15. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  16. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were set up, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  17. The new geospatial tools: global transparency enhancing safeguards verification

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank Vincent [Los Alamos National Laboratory

    2010-09-16

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  18. Cab technology integration laboratory demonstration with moving map technology

    Science.gov (United States)

    2013-03-31

    A human performance study was conducted at the John A. Volpe National Transportation Systems Center (Volpe Center) using a locomotive research simulatorthe Cab Technology Integration Laboratory (CTIL)that was acquired by the Federal Railroad Ad...

  19. Digital Technologies Supporting Person-Centered Integrated Care - A Perspective.

    Science.gov (United States)

    Øvretveit, John

    2017-09-25

    Shared electronic health and social care records in some service systems are already showing some of the benefits of digital technology and digital data for integrating health and social care. These records are one example of the beginning "digitalisation" of services that gives a glimpse of the potential of digital technology and systems for building coordinated and individualized integrated care. Yet the promise has been greater than the benefits, and progress has been slow compared to other industries. This paper describes for non-technical readers how information technology was used to support integrated care schemes in six EU services, and suggests practical ways forward to use the new opportunities to build person-centered integrated care.

  20. Interoperable cross-domain semantic and geospatial framework for automatic change detection

    Science.gov (United States)

    Kuo, Chiao-Ling; Hong, Jung-Hong

    2016-01-01

    With the increasingly diverse types of geospatial data established over the last few decades, semantic interoperability in integrated applications has attracted much interest in the field of Geographic Information System (GIS). This paper proposes a new strategy and framework to process cross-domain geodata at the semantic level. This framework leverages the semantic equivalence of concepts between domains through bridge ontology and facilitates the integrated use of different domain data, which has been long considered as an essential superiority of GIS, but is impeded by the lack of understanding about the semantics implicitly hidden in the data. We choose the task of change detection to demonstrate how the introduction of ontology concept can effectively make the integration possible. We analyze the common properties of geodata and change detection factors, then construct rules and summarize possible change scenario for making final decisions. The use of topographic map data to detect changes in land use shows promising success, as far as the improvement of efficiency and level of automation is concerned. We believe the ontology-oriented approach will enable a new way for data integration across different domains from the perspective of semantic interoperability, and even open a new dimensionality for the future GIS.

  1. Integrating Technology into Peer Leader Responsibilities

    Science.gov (United States)

    Johnson, Melissa L.

    2012-01-01

    Technology has become an integral part of landscape of higher education. Students are coming to college with an arsenal of technological tools at their disposal. These tools are being used for informal, everyday communication as well as for formal learning in the classroom. At the same time, higher education is experiencing an increase in peer…

  2. Sextant: Visualizing time-evolving linked geospatial data

    NARCIS (Netherlands)

    C. Nikolaou (Charalampos); K. Dogani (Kallirroi); K. Bereta (Konstantina); G. Garbis (George); M. Karpathiotakis (Manos); K. Kyzirakos (Konstantinos); M. Koubarakis (Manolis)

    2015-01-01

    textabstractThe linked open data cloud is constantly evolving as datasets get continuously updated with newer versions. As a result, representing, querying, and visualizing the temporal dimension of linked data is crucial. This is especially important for geospatial datasets that form the backbone

  3. Managing the Technology Acquisition Integration Paradox at SAP

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kude, Thomas; Popp, Karl Michael

    2016-01-01

    rests in ensuring critical speed while not compromising accuracy in the integration process. For SAP, the Product Council became a vital component in its technology acquisition capability that allows the company to retain its technological edge in the hypercompetitive software industry.......In this paper, we report on a novel approach developed by SAP AG, the German enterprise software company, for managing the integration of acquisitions of companies to access innovative technologies and related capabilities: the Product Council approach. The value of the Product Council approach...

  4. Perceptions and Practice: The Relationship between Teacher Perceptions of Technology Use and Level of Classroom Technology Integration

    Science.gov (United States)

    Sawyer, Laura M.

    2017-01-01

    This correlational-predictive study investigated the relationship between teacher perceptions of technology use and observed classroom technology integration level using the "Technology Uses and Perceptions Survey" (TUPS) and the "Technology Integration Matrix-Observation" (TIM-O) instruments, developed by the Florida Center…

  5. Geospatial metadata retrieval from web services

    Directory of Open Access Journals (Sweden)

    Ivanildo Barbosa

    Full Text Available Nowadays, producers of geospatial data in either raster or vector formats are able to make them available on the World Wide Web by deploying web services that enable users to access and query on those contents even without specific software for geoprocessing. Several providers around the world have deployed instances of WMS (Web Map Service, WFS (Web Feature Service and WCS (Web Coverage Service, all of them specified by the Open Geospatial Consortium (OGC. In consequence, metadata about the available contents can be retrieved to be compared with similar offline datasets from other sources. This paper presents a brief summary and describes the matching process between the specifications for OGC web services (WMS, WFS and WCS and the specifications for metadata required by the ISO 19115 - adopted as reference for several national metadata profiles, including the Brazilian one. This process focuses on retrieving metadata about the identification and data quality packages as well as indicates the directions to retrieve metadata related to other packages. Therefore, users are able to assess whether the provided contents fit to their purposes.

  6. A cross-sectional ecological analysis of international and sub-national health inequalities in commercial geospatial resource availability.

    Science.gov (United States)

    Dotse-Gborgbortsi, Winfred; Wardrop, Nicola; Adewole, Ademola; Thomas, Mair L H; Wright, Jim

    2018-05-23

    Commercial geospatial data resources are frequently used to understand healthcare utilisation. Although there is widespread evidence of a digital divide for other digital resources and infra-structure, it is unclear how commercial geospatial data resources are distributed relative to health need. To examine the distribution of commercial geospatial data resources relative to health needs, we assembled coverage and quality metrics for commercial geocoding, neighbourhood characterisation, and travel time calculation resources for 183 countries. We developed a country-level, composite index of commercial geospatial data quality/availability and examined its distribution relative to age-standardised all-cause and cause specific (for three main causes of death) mortality using two inequality metrics, the slope index of inequality and relative concentration index. In two sub-national case studies, we also examined geocoding success rates versus area deprivation by district in Eastern Region, Ghana and Lagos State, Nigeria. Internationally, commercial geospatial data resources were inversely related to all-cause mortality. This relationship was more pronounced when examining mortality due to communicable diseases. Commercial geospatial data resources for calculating patient travel times were more equitably distributed relative to health need than resources for characterising neighbourhoods or geocoding patient addresses. Countries such as South Africa have comparatively high commercial geospatial data availability despite high mortality, whilst countries such as South Korea have comparatively low data availability and low mortality. Sub-nationally, evidence was mixed as to whether geocoding success was lowest in more deprived districts. To our knowledge, this is the first global analysis of commercial geospatial data resources in relation to health outcomes. In countries such as South Africa where there is high mortality but also comparatively rich commercial geospatial

  7. Preservice and In-Service Teachers' Perceptions toward Technology Benefits and Integration

    Science.gov (United States)

    Spaulding, Michael

    2013-01-01

    This study examined preservice teacher attitudes toward and expected technology integration practices as compared to in-service teachers' attitudes toward and actual (self-reported) practice of technology integration. The preservice teachers revealed a greater level of confidence in their ability to integrate technology and more positive beliefs…

  8. Leveraging Technology for Refugee Integration

    DEFF Research Database (Denmark)

    Abu Jarour, Safa'a; Krasnova, Hanna; Wenninger, Helena

    2016-01-01

    , especially smartphones, is an important distinction of the current refugees’ crisis. ICT may support integrative efforts undertaken by local authorities and other stakeholders. Nonetheless, the question how ICTs can be applied to support refugees and how detrimental effects for them and the hosting societies...... of ICT use by refugees on an operational level, and how ICT systems should be designed and culturally adapted.......Spurred by the military conflicts, refugees’ crisis has swept Europe by surprise. With a challenge of integrating refugees into hosting societies comes the question about the role that ICTs could play in the ongoing integration efforts. Indeed, unprecedented reliance of refugees on technology...

  9. Imprementation of Vgi-Based Geoportal for Empowering Citizen's Geospatial Observatories Related to Urban Disaster Management

    Science.gov (United States)

    Lee, Sanghoon

    2016-06-01

    The volunteered geospatial information (VGI) will be efficient and cost-effective method for generating and sharing large disasterrelated geospatial data. The national mapping organizations have played the role of major geospatial collector have been moving toward the considering public participation data collecting method. Due to VGI can conduct to encourage public participation and empower citizens, mapping agency could make a partnership with members of the VGI community to help to provide well-structured geospatial data. In order to effectively be understood and sharing the public semantics, datasets and action model of the public participation GeoPortal, the implemented VGI-GeoPortal designated as the basis of ISO 19154, ISO 19101 and OGC Reference Model. The proof of concepts of VGI-GeoPortal has been implemented urban flooding use-case in Republic of Korea to collect from the public, and analyze disaster-related geospatial data including high-disaster potential information such as the location of poor drainage sewer, small signs of occurring landslide, flooding vulnerability of urban structure, and etc.

  10. Streamlining geospatial metadata in the Semantic Web

    Science.gov (United States)

    Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola

    2016-04-01

    In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.

  11. Development of Geospatial Map Based Election Portal

    Science.gov (United States)

    Gupta, A. Kumar Chandra; Kumar, P.; Vasanth Kumar, N.

    2014-11-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Election portal (GMEP) of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for pertain to planning and management of Department of Chief Electoral Officer, and as an election related information searching tools (Polling Station, Assembly and parliamentary constituency etc.,) for the citizens of NCTD. The GMEP is based on Client-Server architecture model. It has been developed using ArcGIS Server 10.0 with J2EE front-end on Microsoft Windows environment. The GMEP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMEP includes delimited precinct area boundaries of Voters Area of Polling stations, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMEP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of elections. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  12. Integrating Adult Learning and Technologies for Effective Education: Strategic Approaches

    Science.gov (United States)

    Wang, Victor C. X.

    2010-01-01

    As adult learners and educators pioneer the use of technology in the new century, attention has been focused on developing strategic approaches to effectively integrate adult learning and technology in different learning environments. "Integrating Adult Learning and Technologies for Effective Education: Strategic Approaches" provides innovative…

  13. Making Technology Ready: Integrated Systems Health Management

    Science.gov (United States)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  14. A PUBLIC PLATFORM FOR GEOSPATIAL DATA SHARING FOR DISASTER RISK MANAGEMENT

    Directory of Open Access Journals (Sweden)

    S. Balbo

    2014-01-01

    This paper presents a case study scenario of setting up a Web platform based on GeoNode. It is a public platform called MASDAP and promoted by the Government of Malawi in order to support development of the country and build resilience against natural disasters. A substantial amount of geospatial data has already been collected about hydrogeological risk, as well as several other-disasters related information. Moreover this platform will help to ensure that the data created by a number of past or ongoing projects is maintained and that this information remains accessible and useful. An Integrated Flood Risk Management Plan for a river basin has already been included in the platform and other data from future disaster risk management projects will be added as well.

  15. Combining Project-based Instruction, Earth Science Content, and GIS Technology in Teacher Professional Development: Is this Holistic Approach Sustainable?

    Science.gov (United States)

    Rubino-Hare, L.; Bloom, N.; Claesgens, J.; Fredrickson, K.; Henderson-Dahms, C.; Sample, J. C.

    2012-12-01

    From 2009-2011, with support from the National Science Foundation (ITEST, DRL-0929846) and Science Foundation Arizona (MSAG-0412-09), educators, geologists and geographers at Northern Arizona University (NAU) partnered to offer professional development for interdisciplinary teams of secondary and middle school teachers with a focus on project-based instruction (PBI) using geospatial technologies (GST). While participating in professional development teachers received support and were held accountable to NAU staff. They implemented activities and pedagogical strategies presented, increased knowledge, skills, and confidence teaching with project-based instruction integrating GST, and their students demonstrated learning gains. Changes in student understanding are only observed when teachers continue to implement change, so the question remained: did these changes in practice sustain after official project support ended? In order to determine what, if anything, teachers sustained from the professional development and the factors that promoted or hindered sustained use of teaching with GST and PBI, data were collected one to two years following the professional development. Research questions included a) what pedagogical practices did teachers sustain following the professional learning experiences? and b) what contexts were present in schools that supported or limited the use of geospatial technologies as a teaching and learning tool? Findings from this study indicate that teachers fall into three categories of sustaining implementation - reformed implementers, mechanical implementers and non-implementers. School context was less of a factor in level of implementation than teachers' beliefs and philosophy of teaching and teachers' understanding of technology integration (teaching with technology vs. teaching technology). Case studies of teacher experiences will be presented along with implications for future professional development.

  16. AGWA: The Automated Geospatial Watershed Assessment Tool

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment Tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  17. Technology Integration Coursework and Finding Meaning in Pre-Service Teachers' Reflective Practice

    Science.gov (United States)

    Kimmons, Royce; Miller, Brant G.; Amador, Julie; Desjardins, Christopher David; Hall, Cassidy

    2015-01-01

    This study seeks to inform teacher preparation programs regarding technology integration by understanding (1) relationships between tasks with specific technologies and pre-service teachers' critical thinking about technology integration and (2) relationships between how pre-service teachers are critically thinking about technology integration and…

  18. Integrating technologies for scalable ecology and conservation

    NARCIS (Netherlands)

    Marvin, D.C.; Koh, L.P.; Lynam, A.J.; Wich, S.; Davies, A.B.; Krishnamurthy, R.; Stokes, E.; Starkey, R.; Asner, G.P.

    Integration of multiple technologies greatly increases the spatial and temporal scales over which ecological patterns and processes can be studied, and threats to protected ecosystems can be identified and mitigated. A range of technology options relevant to ecologists and conservation practitioners

  19. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  20. Toward integrated design of waste management technologies

    International Nuclear Information System (INIS)

    Carnes, S.A.; Wolfe, A.K.

    1994-01-01

    Implementation of waste management technologies has been hindered by the intervention of diverse interests. Relying on a perceived history of inadequate and improper management, operations, and technological design, critics have stymied the implementation of scientifically and governmentally approved technologies and facilities, leading to a critical shortage of hazardous, mixed, and radioactive waste management capacity. The research and development (R ampersand D) required to identify technologies that are simultaneously (1) scientifically valid, (2) economically sound, and (3) publicly acceptable must necessarily address, in an integrated and interdisciplinary manner, these three criteria and how best to achieve the integration of stakeholders early in the technology implementation process (i.e., R ampersand D, demonstration, and commercialization). The goal of this paper is to initiate an identification of factors likely to render radioactive and hazardous waste management technologies publicly acceptable and to provide guidance on how technological R ampersand D might be revised to enhance the acceptability of alternative waste management technologies. Principal among these factors are the equitable distribution of costs, risks, and benefits of waste management policies and technologies, the equitable distribution of authority for making waste management policy and selecting technologies for implementation, and the equitable distribution of responsibility for resolving waste management problems. Stakeholder participation in assessing the likely distribution of these factors and mitigative mechanisms to enhance their equitable distribution, together with stakeholder participation in policy and technology R ampersand D, as informed by stakeholder assessments, should enhance the identification of acceptable policies and technologies

  1. Operational Marine Data Acquisition and Delivery Powered by Web and Geospatial Standards

    Science.gov (United States)

    Thomas, R.; Buck, J. J. H.

    2015-12-01

    As novel sensor types and new platforms are deployed to monitor the global oceans, the volumes of scientific and environmental data collected in the marine context are rapidly growing. In order to use these data in both the traditional operational modes and in innovative "Big Data" applications the data must be readily understood by software agents. One approach to achieving this is the application of both World Wide Web and Open Geospatial Consortium standards: namely Linked Data1 and Sensor Web Enablement2 (SWE). The British Oceanographic Data Centre (BODC) is adopting this strategy in a number of European Commission funded projects (NETMAR; SenseOCEAN; Ocean Data Interoperability Platform - ODIP; and AtlantOS) to combine its existing data archiving architecture with SWE components (such as Sensor Observation Services) and a Linked Data interface. These will evolve the data management and data transfer from a process that requires significant manual intervention to an automated operational process enabling the rapid, standards-based, ingestion and delivery of data. This poster will show the current capabilities of BODC and the status of on-going implementation of this strategy. References1. World Wide Web Consortium. (2013). Linked Data. Available:http://www.w3.org/standards/semanticweb/data. Last accessed 7th April 20152. Open Geospatial Consortium. (2014). Sensor Web Enablement (SWE). Available:http://www.opengeospatial.org/ogc/markets-technologies/swe. Last accessed 8th October 2014

  2. InP membrane on silicon integration technology

    NARCIS (Netherlands)

    Smit, M.K.

    2013-01-01

    Integration of light sources in silicon photonics is usually done with an active InP-based layer stack on a silicon-based photonic circuit-layer. InP Membrane On Silicon (IMOS) technology integrates all functionality in a single InP-based layer.

  3. SCHISTOSOMIASIS: GEOSPATIAL SURVEILLANCE AND RESPONSE SYSTEMS IN SOUTHEAST ASIA

    Directory of Open Access Journals (Sweden)

    J. Malone

    2016-10-01

    Full Text Available Geographic information system (GIS and remote sensing (RS from Earth-observing satellites offer opportunities for rapid assessment of areas endemic for vector-borne diseases including estimates of populations at risk and guidance to intervention strategies. This presentation deals with GIS and RS applications for the control of schistosomiasis in China and the Philippines. It includes large-scale risk mapping including identification of suitable habitats for Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. Predictions of infection risk are discussed with reference to ecological transformations and the potential impact of climate change and the potential for long-term temperature increases in the North as well as the impact on rivers, lakes and water resource developments. Potential integration of geospatial mapping and modeling in schistosomiasis surveillance and response systems in Asia within Global Earth Observation System of Systems (GEOSS guidelines in the health societal benefit area is discussed.

  4. Data Quality, Provenance and IPR Management services: their role in empowering geospatial data suppliers and users

    Science.gov (United States)

    Millard, Keiran

    2015-04-01

    This paper looks at current experiences of geospatial users and geospatial suppliers and how they have been limited by suitable frameworks for managing and communicating data quality, data provenance and intellectual property rights (IPR). Current political and technological drivers mean that increasing volumes of geospatial data are available through a plethora of different products and services, and whilst this is inherently a good thing it does create a new generation of challenges. This paper consider two examples of where these issues have been examined and looks at the challenges and possible solutions from a data user and data supplier perspective. The first example is the IQmulus project that is researching fusion environments for big geospatial point clouds and coverages. The second example is the EU Emodnet programme that is establishing thematic data portals for public marine and coastal data. IQmulus examines big geospatial data; the data from sources such as LIDAR, SONAR and numerical simulations; these data are simply too big for routine and ad-hoc analysis, yet they could realise a myriad of disparate, and readily useable, information products with the right infrastructure in place. IQmulus is researching how to deliver this infrastructure technically, but a financially sustainable delivery depends on being able to track and manage ownership and IPR across the numerous data sets being processed. This becomes complex when the data is composed of multiple overlapping coverages, however managing this allows for uses to be delivered highly-bespoke products to meet their budget and technical needs. The Emodnet programme delivers harmonised marine data at the EU scale across seven thematic portals. As part of the Emodnet programme a series of 'check points' have been initiated to examine how useful these services and other public data services actually are to solve real-world problems. One key finding is that users have been confused by the fact that often

  5. Integration of geospatial multi-mode transportation Systems in Kuala Lumpur

    Science.gov (United States)

    Ismail, M. A.; Said, M. N.

    2014-06-01

    Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis.

  6. Integration of geospatial multi-mode transportation Systems in Kuala Lumpur

    International Nuclear Information System (INIS)

    Ismail, M A; Said, M N

    2014-01-01

    Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis

  7. Nigerian teachers' perception of barriers to technology integration ...

    African Journals Online (AJOL)

    This paper documents chemistry teachers' perceptions of barriers to technology integration into the chemistry lessons. Underlying the study was a conceptual underpinning which focused on the concept of ICT integration, competencies of integration and chemistry curriculum. 13 participants were recruited for the study.

  8. Integrated technology projects for rural communities

    Energy Technology Data Exchange (ETDEWEB)

    Forestier-Walker, C O

    1982-10-01

    Integrated Technology Projects (ITP) are set up so that they interact concurrently in ways that are compatible with local cultures, religions, traditions, and life styles. This management approach can take into account the low productivity of arid and semi-arid regions by increasing water, power, and fertilizer inputs in ways that will integrate their supply with other activities and minimize costs. The author illustrates how integrated agricultural, water and sanitation, energy, and housing modules can accomplish this. 1 reference, 4 figures, 5 tables. (DCK)

  9. Challenge of Effective Technology Integration into Teaching and Learning

    Science.gov (United States)

    Ramorola, M. Z.

    2013-01-01

    South African teachers are faced with challenges in integrating technology effectively into a coherent framework at school level. There seems to be little evidence of technology integration into classroom activities such as systematic planning and implementation of lessons that require learners to think critically, work collaboratively, and use…

  10. Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration

    Directory of Open Access Journals (Sweden)

    Antonio Rovira

    2018-04-01

    Full Text Available This paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs using different solar concentration technologies: parabolic trough collectors (PTC, linear Fresnel reflectors (LFR and central tower receiver (CT. Each solar technology (i.e. PTC, LFR and CT is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG, increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.

  11. Solar Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Solar Maps Solar Maps These solar maps provide average daily total solar resource information on disability, contact the Geospatial Data Science Team. U.S. State Solar Resource Maps Access state maps of MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY × U.S. Solar Resource

  12. Fast Updating National Geo-Spatial Databases with High Resolution Imagery: China's Methodology and Experience

    Science.gov (United States)

    Chen, J.; Wang, D.; Zhao, R. L.; Zhang, H.; Liao, A.; Jiu, J.

    2014-04-01

    Geospatial databases are irreplaceable national treasure of immense importance. Their up-to-dateness referring to its consistency with respect to the real world plays a critical role in its value and applications. The continuous updating of map databases at 1:50,000 scales is a massive and difficult task for larger countries of the size of more than several million's kilometer squares. This paper presents the research and technological development to support the national map updating at 1:50,000 scales in China, including the development of updating models and methods, production tools and systems for large-scale and rapid updating, as well as the design and implementation of the continuous updating workflow. The use of many data sources and the integration of these data to form a high accuracy, quality checked product were required. It had in turn required up to date techniques of image matching, semantic integration, generalization, data base management and conflict resolution. Design and develop specific software tools and packages to support the large-scale updating production with high resolution imagery and large-scale data generalization, such as map generalization, GIS-supported change interpretation from imagery, DEM interpolation, image matching-based orthophoto generation, data control at different levels. A national 1:50,000 databases updating strategy and its production workflow were designed, including a full coverage updating pattern characterized by all element topographic data modeling, change detection in all related areas, and whole process data quality controlling, a series of technical production specifications, and a network of updating production units in different geographic places in the country.

  13. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    Directory of Open Access Journals (Sweden)

    Shaoming Pan

    Full Text Available Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  14. Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.

    Science.gov (United States)

    Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen

    2015-01-01

    Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.

  15. Program Integration for International Technology Exchange

    International Nuclear Information System (INIS)

    Rea, J.L.

    1993-01-01

    Sandia National Laboratories (SNL), Albuquerque, New Mexico, supports the International Technology Exchange Division (ITED) through the integration of all international activities conducted within the DOE's Office of Environmental Management (EM)

  16. Architecture of a Process Broker for Interoperable Geospatial Modeling on the Web

    Directory of Open Access Journals (Sweden)

    Lorenzo Bigagli

    2015-04-01

    Full Text Available The identification of appropriate mechanisms for process sharing and reuse by means of composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. Modelers in need of running complex workflows may benefit from outsourcing process composition to a dedicated external service, according to the brokering approach. This work introduces our architecture of a process broker, as a distributed information system for creating, validating, editing, storing, publishing and executing geospatial-modeling workflows. The broker provides a service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general in the form of interoperable, executable workflows. The described solution has been experimentally applied in several use scenarios in the context of EU-funded projects and the Global Earth Observation System of Systems.

  17. Two Inseparable Facets of Technology Integration Programs: Technology and Theoretical Framework

    Science.gov (United States)

    Demir, Servet

    2011-01-01

    This paper considers the process of program development aiming at technology integration for teachers. For this consideration, the paper focused on an integration program which was recently developed as part of a larger project. The participants of this program were 45 in-service teachers. The program continued four weeks and the conduct of the…

  18. Technology solutions for wind integration in Ercot

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-23

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  19. Technology solutions for wind integration in ERCOT

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  20. Office of Technology Development integrated program for development of in situ remediation technologies

    International Nuclear Information System (INIS)

    Peterson, M.

    1992-08-01

    The Department of Energy's Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R ampersand D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment

  1. Experiencing Technology Integration in Education: Children's Perceptions

    Science.gov (United States)

    Baytak, Ahmet; Tarman, Bülent; Ayas, Cemalettin

    2011-01-01

    The purpose of this phenomenological study was to explore the experiences of six children using technologies in their education. Data were collected via in-depth interviews, classroom observations, and home observations. The results showed that students have common perceptions toward their experience with technology integration. Furthermore, the…

  2. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  3. IMPREMENTATION OF VGI-BASED GEOPORTAL FOR EMPOWERING CITIZEN’S GEOSPATIAL OBSERVATORIES RELATED TO URBAN DISASTER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    S. Lee

    2016-06-01

    Full Text Available The volunteered geospatial information (VGI will be efficient and cost-effective method for generating and sharing large disasterrelated geospatial data. The national mapping organizations have played the role of major geospatial collector have been moving toward the considering public participation data collecting method. Due to VGI can conduct to encourage public participation and empower citizens, mapping agency could make a partnership with members of the VGI community to help to provide well-structured geospatial data. In order to effectively be understood and sharing the public semantics, datasets and action model of the public participation GeoPortal, the implemented VGI-GeoPortal designated as the basis of ISO 19154, ISO 19101 and OGC Reference Model. The proof of concepts of VGI-GeoPortal has been implemented urban flooding use-case in Republic of Korea to collect from the public, and analyze disaster-related geospatial data including high-disaster potential information such as the location of poor drainage sewer, small signs of occurring landslide, flooding vulnerability of urban structure, and etc.

  4. DEVELOPING WEB MAPPING APPLICATION USING ARCGIS SERVER WEB APPLICATION DEVELOPMEN FRAMEWORK (ADF FOR GEOSPATIAL DATA GENERATED DURING REHABILITATION AND RECONSTRUCTION PROCESS OF POST-TSUNAMI 2004 DISASTER IN ACEH

    Directory of Open Access Journals (Sweden)

    Nizamuddin Nizamuddin

    2014-04-01

    Full Text Available ESRI ArcGIS Server is equipped with ArcGIS Server Web Application Development Framework (ADF and ArcGIS Web Controls integration for Visual Studio.NET. Both the ArcGIS Server Manager for .NET and ArcGIS Web Controls can be easily utilized for developing the ASP.NET based ESRI Web mapping application. In  this study we implemented both tools for developing the ASP.NET based ESRI Web mapping application for geospatial data generated dring rehabilitation and reconstruction process of post-tsunami 2004 disaster in Aceh province. Rehabilitation and reconstruction process has produced a tremendous amount of geospatial data. This method was chosen in this study because in the process of developing  a web mapping application, one can easily and quickly create Mapping Services of huge geospatial data and also develop Web mapping application without writing any code. However, when utilizing Visual Studio.NET 2008, one needs to have some coding ability.

  5. Wearable smart systems: from technologies to integrated systems.

    Science.gov (United States)

    Lymberis, A

    2011-01-01

    Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.

  6. Artistic Technology Integration: Stories From Primary and Elementary Classrooms

    Science.gov (United States)

    Steckel, Barbara; Shinas, Valerie Harlow; Van Vaerenewyck, Leah

    2015-01-01

    The purpose of this article is to inform teachers about the ways technology can be integrated to add value to literacy instruction. Artistic technology-integrated literacy and disciplinary instruction in preK through grade 4 classrooms is described through the stories of five teachers who were identified as both strong teachers of literacy and…

  7. Building secure network by integrated technology

    International Nuclear Information System (INIS)

    An Dehai; Xu Rongsheng; Liu Baoxu

    2000-01-01

    The author introduces a method which can realize the most powerful network security prevention by the network security integrated technologies such as firewall, realtime monitor, network scanner, Web detection and security, etc

  8. GEOINFORMATIONAL TECHNOLOGY IN THE SYSTEM ‘BANK OF SPATIAL DATA KRASNOYARSK REGION’

    Directory of Open Access Journals (Sweden)

    A. A. Kadochnikov

    2015-01-01

    Full Text Available Formation and effective use of geospatial data is today one of the most pressing problems facing the scientific community and public authorities. Are posed the task of technological and organizational support geographically distributed systems for collecting, processing, storing and providing spatial data and metadata. These systems must provide its users with remote access to digital geographic information, provide them with information interaction. Consider the stages and features of the creation of the state information system, the ‘Bank of spatial data’ for interagency cooperation and integration projects of Krasnoyarsk region along line cataloging, storage, analytical processing and publishing of geospatial data. Considerable attention is given to web services, software interfaces and generally accepted standards. In developing the software many different software libraries and components were used. Web mapping user interface was created using a number of open source libraries. To create a server-side web application author used GIS platforms MapGuide Open Source and Minnesota MapServer. GeoWebCache was another essential component of distributed web mapping environmental monitoring applications.

  9. Transportation of Large Wind Components: A Review of Existing Geospatial Data

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Meghan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.

  10. OPTIMIZATION OF LAND USE SUITABILITY FOR AGRICULTURE USING INTEGRATED GEOSPATIAL MODEL AND GENETIC ALGORITHMS

    Directory of Open Access Journals (Sweden)

    S. B. Mansor

    2012-08-01

    Full Text Available In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.

  11. Integrating technologies for scalable ecology and conservation

    OpenAIRE

    David C. Marvin; Lian Pin Koh; Antony J. Lynam; Serge Wich; Andrew B. Davies; Ramesh Krishnamurthy; Emma Stokes; Ruth Starkey; Gregory P. Asner

    2016-01-01

    Integration of multiple technologies greatly increases the spatial and temporal scales over which ecological patterns and processes can be studied, and threats to protected ecosystems can be identified and mitigated. A range of technology options relevant to ecologists and conservation practitioners are described, including ways they can be linked to increase the dimensionality of data collection efforts. Remote sensing, ground-based, and data fusion technologies are broadly discussed in the ...

  12. Development of a landscape integrity model framework to support regional conservation planning.

    Science.gov (United States)

    Walston, Leroy J; Hartmann, Heidi M

    2018-01-01

    Land managers increasingly rely upon landscape assessments to understand the status of natural resources and identify conservation priorities. Many of these landscape planning efforts rely on geospatial models that characterize the ecological integrity of the landscape. These general models utilize measures of habitat disturbance and human activity to map indices of ecological integrity. We built upon these modeling frameworks by developing a Landscape Integrity Index (LII) model using geospatial datasets of the human footprint, as well as incorporation of other indicators of ecological integrity such as biodiversity and vegetation departure. Our LII model serves as a general indicator of ecological integrity in a regional context of human activity, biodiversity, and change in habitat composition. We also discuss the application of the LII framework in two related coarse-filter landscape conservation approaches to expand the size and connectedness of protected areas as regional mitigation for anticipated land-use changes.

  13. Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data

    Directory of Open Access Journals (Sweden)

    Zhenlong Li

    2016-09-01

    Full Text Available Efficient processing of big geospatial data is crucial for tackling global and regional challenges such as climate change and natural disasters, but it is challenging not only due to the massive data volume but also due to the intrinsic complexity and high dimensions of the geospatial datasets. While traditional computing infrastructure does not scale well with the rapidly increasing data volume, Hadoop has attracted increasing attention in geoscience communities for handling big geospatial data. Recently, many studies were carried out to investigate adopting Hadoop for processing big geospatial data, but how to adjust the computing resources to efficiently handle the dynamic geoprocessing workload was barely explored. To bridge this gap, we propose a novel framework to automatically scale the Hadoop cluster in the cloud environment to allocate the right amount of computing resources based on the dynamic geoprocessing workload. The framework and auto-scaling algorithms are introduced, and a prototype system was developed to demonstrate the feasibility and efficiency of the proposed scaling mechanism using Digital Elevation Model (DEM interpolation as an example. Experimental results show that this auto-scaling framework could (1 significantly reduce the computing resource utilization (by 80% in our example while delivering similar performance as a full-powered cluster; and (2 effectively handle the spike processing workload by automatically increasing the computing resources to ensure the processing is finished within an acceptable time. Such an auto-scaling approach provides a valuable reference to optimize the performance of geospatial applications to address data- and computational-intensity challenges in GIScience in a more cost-efficient manner.

  14. Experiences of technology integration in home care nursing.

    Science.gov (United States)

    Johnson, K A; Valdez, R S; Casper, G R; Kossman, S P; Carayon, P; Or, C K L; Burke, L J; Brennan, P F

    2008-11-06

    The infusion of health care technologies into the home leads to substantial changes in the nature of work for home care nurses and their patients. Nurses and nursing practice must change to capitalize on these innovations. As part of a randomized field experiment evaluating web-based support for home care of patients with chronic heart disease, we engaged nine nurses in a dialogue about their experience integrating this modification of care delivery into their practice. They shared their perceptions of the work they needed to do and their perceptions and expectations for patients and themselves in using technologies to promote and manage self-care. We document three overarching themes that identify preexisting factors that influenced integration or represent the consequences of technology integration into home care: doing tasks differently, making accommodations in the home for devices and computers, and being mindful of existing expectations and skills of both nurses and patients.

  15. Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology

    Science.gov (United States)

    Bahl, Inder J.

    Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.

  16. Comparative study of cocoa black ants temporal population distribution utilizing geospatial analysis

    Science.gov (United States)

    Adnan, N. A.; Bakar, S.; Mazlan, A. H.; Yusoff, Z. Mohd; Rasam, A. R. Abdul

    2018-02-01

    Cocoa plantation also subjected to diseases and pests infestation. Some pests not only reduced the yield but also inhibit the growth of trees. Therefore, the Malaysia Cocoa Board (MCB) has explored Cocoa Black Ants (CBA) as one of their biological control mechanism to reduce the pest infestation of the Cocoa Pod Borer (CPB). CPB is capable to cause damage to cocoa beans, and later on will reduce the quality of dried cocoa beans. This study tries to integrate the use of geospatial analysis in understanding population distribution pattern of CBA to enhance its capability in controlling CPB infestation. Two objectives of the study are i) to generate temporal CBA distribution of cocoa plantation for two different blocks, and ii) to compare visually the CBA population distribution pattern with the aid of geospatial technique. This study managed to find the CBA population pattern which indicated spatially modest amount of low pattern distribution in February of 2007 until reaching the highest levels of ant populations in September 2007 and decreasing by the end of the year in 2009 for two different blocks (i.e 10B and 18A). Therefore, the usage of GIS is important to explain the CBA pattern population in the mature cocoa field. This finding might to be used as an indicator to examine the optimum distribution of CBA, which needed as a biological control agent against the CPB in the future.

  17. A Senior Teacher's Implementation of Technology Integration

    Science.gov (United States)

    Tsai, Hsien-Chang

    2015-01-01

    This study investigated whether a senior teacher with many years of teaching experience, despite lacking adequate technology skills or contending with other barriers, can sufficiently implement technology integration in the classroom. The research was conducted between October 2013 and January 2014 and was focused on a junior high school biology…

  18. Digital Technologies Supporting Person-Centered Integrated Care – A Perspective

    Directory of Open Access Journals (Sweden)

    John Øvretveit

    2017-09-01

    Full Text Available Shared electronic health and social care records in some service systems are already showing some of the benefits of digital technology and digital data for integrating health and social care. These records are one example of the beginning “digitalisation” of services that gives a glimpse of the potential of digital technology and systems for building coordinated and individualized integrated care. Yet the promise has been greater than the benefits, and progress has been slow compared to other industries. This paper describes for non-technical readers how information technology was used to support integrated care schemes in six EU services, and suggests practical ways forward to use the new opportunities to build person-centered integrated care.

  19. Digital Technologies Supporting Person-Centered Integrated Care – A Perspective

    Science.gov (United States)

    2017-01-01

    Shared electronic health and social care records in some service systems are already showing some of the benefits of digital technology and digital data for integrating health and social care. These records are one example of the beginning “digitalisation” of services that gives a glimpse of the potential of digital technology and systems for building coordinated and individualized integrated care. Yet the promise has been greater than the benefits, and progress has been slow compared to other industries. This paper describes for non-technical readers how information technology was used to support integrated care schemes in six EU services, and suggests practical ways forward to use the new opportunities to build person-centered integrated care. PMID:29588629

  20. A high-performance trench capacitor integrated in a passive integration technology

    International Nuclear Information System (INIS)

    Geiselbrechtinger, Angelika; Büyüktas, Kevni; Allers, Karl-Heinz; Hartung, Wolfgang

    2009-01-01

    The requirements for the electrical characteristics of passive on-chip devices become more and more important. The electrical performance of RF circuits is predominantly restricted by the passives. New technologies and new device concepts are necessary to meet the demands. In this work, a trench capacitor developed for RF applications is presented for the first time. This so-called SilCap (silicon capacitor) device features very high capacitance density, extreme low-voltage dependence, excellent temperature stability, good RF performance and a high breakthrough voltage. First, the device function and the technological concept are introduced. The concept is realized without implementing cost-intensive high-k materials. This trench capacitor is integrated in the front end of line of a passive integration technology. The achieved specific capacitance density is compared to a standard planar capacitor. Performance of the SilCap in terms of quality factor and breakthrough voltage is shown. Finally, reliability data of this trench capacitor are presented with special focus on extrinsic and dielectric lifetime

  1. Mobile Technology and CAD Technology Integration in Teaching Architectural Design Process for Producing Creative Product

    Science.gov (United States)

    Bin Hassan, Isham Shah; Ismail, Mohd Arif; Mustafa, Ramlee

    2011-01-01

    The purpose of this research is to examine the effect of integrating the mobile and CAD technology on teaching architectural design process for Malaysian polytechnic architectural students in producing a creative product. The website is set up based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  2. Integrated care information technology.

    Science.gov (United States)

    Rowe, Ian; Brimacombe, Phil

    2003-02-21

    Counties Manukau District Health Board (CMDHB) uses information technology (IT) to drive its Integrated Care strategy. IT enables the sharing of relevant health information between care providers. This information sharing is critical to closing the gaps between fragmented areas of the health system. The tragic case of James Whakaruru demonstrates how people have been falling through those gaps. The starting point of the Integrated Care strategic initiative was the transmission of electronic discharges and referral status messages from CMDHB's secondary provider, South Auckland Health (SAH), to GPs in the district. Successful pilots of a Well Child system and a diabetes disease management system embracing primary and secondary providers followed this. The improved information flowing from hospital to GPs now enables GPs to provide better management for their patients. The Well Child system pilot helped improve reported immunization rates in a high health need area from 40% to 90%. The diabetes system pilot helped reduce the proportion of patients with HbA1c rang:9 from 47% to 16%. IT has been implemented as an integral component of an overall Integrated Care strategic initiative. Within this context, Integrated Care IT has helped to achieve significant improvements in care outcomes, broken down barriers between health system silos, and contributed to the establishment of a system of care continuum that is better for patients.

  3. Geospatial Technologies and i-Tree Echo Inventory for Predicting Climate Change on Urban Environment

    Science.gov (United States)

    Sriharan, S.; Robinson, L.; Ghariban, N.; Comar, M.; Pope, B.; Frey, G.

    2015-12-01

    Urban forests can be useful both in mitigating climate change and in helping cities adapt to higher temperatures and other impacts of climate change. Understanding and managing the impacts of climate change on the urban forest trees and natural communities will help us maintain their environmental, cultural, and economic benefits. Tree Inventory can provide important information on tree species, height, crown width, overall condition, health and maintenance needs. This presentation will demonstrate that a trees database system is necessary for developing a sustainable urban tree program. Virginia State University (VSU) campus benefits from large number and diversity of trees that are helping us by cleaning the air, retaining water, and providing shade on the buildings to reduce energy cost. The objectives of this study were to develop campus inventory of the trees, identify the tree species, map the locations of the trees with user-friendly tools such as i-Tree Eco and geospatial technologies by assessing the cost/benefit of employing student labor for training and ground validation of the results, and help campus landscape managers implement adaptive responses to climate change impacts. Data was collected on the location, species, and size of trees by using i-Tree urban forestry analysis software. This data was transferred to i-Tree inventory system for demonstrating types of trees, diameter of the trees, height of the trees, and vintage of the trees. The study site was mapped by collecting waypoints with GPS (Global Positioning System) at the trees and uploading these waypoints in ArcMap. The results of this study showed that: (i) students make good field crews, (ii) if more trees were placed in the proper area, the heating and cooling costs will reduce, and (iii) trees database system is necessary for planning, designing, planting, and maintenance, and removal of campus trees Research sponsored by the NIFA Grant, "Urban Forestry Management" (2012-38821-20153).

  4. GPS Technology for the Development of Business Information Systems

    Directory of Open Access Journals (Sweden)

    Mihaela MURESAN

    2006-01-01

    Full Text Available The use of the GPS system opens the way for a new generation of information systems using geospatial information. The geoinformation provided by the GPS system could be used in various applications, such as: positioning and monitoring the behavior of the objects static or in movement, navigating, measuring the surfaces etc. These new approach introduces the concept of image handling for decision support which involves a better geoimage handling in order to make easier for decision makers to discover, access, and integrate geospatial information in decision-support scenarios. A very useful application is the risk management for the vehicles with direct benefits in terms of competitivity, for the transport organizations, and of road transport safety, for the society. The safety of the road transport is a priority in the light of the policy on trans-European networks for transport (TEN-T and according to the actual and future trend related to the freight on the road (75% of the freight goes by road according to the Third report on Economic and social Cohesion, February 2004. The implementation of a high technology solution based on GPS communication for the monitoring of transports along the whole itinerary and the immediate alert in case of various non-procedural behavior, increases the road transport security and avoids accidents and disasters. Minimizing the risk for the road transport is a general concern at the EU level, as well as at the national level. The design and the development of transport risk management information systems will contribute to stimulate the implementation of the new technologies in the current transport organizations' activity and to change the internal processes according to the philosophy introduced by the information society. The transport risk management system integrates detection and communication intelligent equipment, various communication technologies and networking solutions with powerful computers and

  5. Distributed Multi-interface Catalogue for Geospatial Data

    Science.gov (United States)

    Nativi, S.; Bigagli, L.; Mazzetti, P.; Mattia, U.; Boldrini, E.

    2007-12-01

    Several geosciences communities (e.g. atmospheric science, oceanography, hydrology) have developed tailored data and metadata models and service protocol specifications for enabling online data discovery, inventory, evaluation, access and download. These specifications are conceived either profiling geospatial information standards or extending the well-accepted geosciences data models and protocols in order to capture more semantics. These artifacts have generated a set of related catalog -and inventory services- characterizing different communities, initiatives and projects. In fact, these geospatial data catalogs are discovery and access systems that use metadata as the target for query on geospatial information. The indexed and searchable metadata provide a disciplined vocabulary against which intelligent geospatial search can be performed within or among communities. There exists a clear need to conceive and achieve solutions to implement interoperability among geosciences communities, in the context of the more general geospatial information interoperability framework. Such solutions should provide search and access capabilities across catalogs, inventory lists and their registered resources. Thus, the development of catalog clearinghouse solutions is a near-term challenge in support of fully functional and useful infrastructures for spatial data (e.g. INSPIRE, GMES, NSDI, GEOSS). This implies the implementation of components for query distribution and virtual resource aggregation. These solutions must implement distributed discovery functionalities in an heterogeneous environment, requiring metadata profiles harmonization as well as protocol adaptation and mediation. We present a catalog clearinghouse solution for the interoperability of several well-known cataloguing systems (e.g. OGC CSW, THREDDS catalog and data services). The solution implements consistent resource discovery and evaluation over a dynamic federation of several well-known cataloguing and

  6. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    Science.gov (United States)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  7. SMART CITIES INTELLIGENCE SYSTEM (SMACiSYS INTEGRATING SENSOR WEB WITH SPATIAL DATA INFRASTRUCTURES (SENSDI

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya

    2017-09-01

    Full Text Available The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS with sensor-web access (SENSDI utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  8. Multi-source Geospatial Data Analysis with Google Earth Engine

    Science.gov (United States)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  9. The national atlas as a metaphor for improved use of a national geospatial data infrastructure

    NARCIS (Netherlands)

    Aditya Kurniawan Muhammad, T.

    2007-01-01

    Geospatial Data infrastructures have been developed worldwide. Geoportals have been created as an interface to allow users or the community to discover and use geospatial data offered by providers of these initiatives. This study focuses on the development of a web national atlas as an alternative

  10. MEMS-LSI Integrated Microchip using Pseudo-SoC Technology

    Science.gov (United States)

    Funaki, Hideyuki; Itaya, Kazuhiko; Yamada, Hiroshi; Onozuka, Yutaka; Iida, Atsuko

    The authors have developed pseudo-SoC technology to realize MEMS-LSI integrated micro-chip. The pseudo-SoC technology consists of three technologies which are wafer reconfiguration technology, inter-chip redistribution layer technology, and pseudo-SoC thinning technology. In the wafer reconfiguration technology, the filling of resin and surface step between heterogeneous chips were improved through the optimization of vacuum printing process and resin material. These improvements reduced the warpage of reconfiguration wafer, leading to achievement of the reconfiguration wafer with 5 inch in diameter. In the inter-chip redistribution layer technology, the interface adherence between planar layer and inter-chip redistribution layer was improved, leading to the inter-chip redistribution layer with 1μm/1μm in line/space on reconfiguration wafer. In the pseudo-SoC thinning technology, thin pseudo-SoC device with 100μm in thickness was achieved through developing mechanical backside grinding process technology. Furthermore, ultra-thin pseudo-SoC which integrated electrostatic MEMS light valve and PWM driver IC was prototyped through developing the ultra-thin MEMS encapsulation technology.

  11. GEOSPATIAL DATA INTEGRATION FOR ASSESSING LANDSLIDE HAZARD ON ENGINEERED SLOPES

    Directory of Open Access Journals (Sweden)

    P. E. Miller

    2012-07-01

    Full Text Available Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator’s hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator’s existing field-based approaches.

  12. Toward a Broader Understanding of Teacher Technology Integration Beliefs and Values

    Science.gov (United States)

    Kimmons, Royce; Hall, Cassidy

    2016-01-01

    In authentic K-12 settings, technology integration is influenced by the decisions and perspectives of a variety of stakeholders, but current research and practice related to teacher technology integration tends to revolve only around pedagogical and technical skill factors influencing integration, thereby ignoring the institutional realities that…

  13. High Performance Processing and Analysis of Geospatial Data Using CUDA on GPU

    Directory of Open Access Journals (Sweden)

    STOJANOVIC, N.

    2014-11-01

    Full Text Available In this paper, the high-performance processing of massive geospatial data on many-core GPU (Graphic Processing Unit is presented. We use CUDA (Compute Unified Device Architecture programming framework to implement parallel processing of common Geographic Information Systems (GIS algorithms, such as viewshed analysis and map-matching. Experimental evaluation indicates the improvement in performance with respect to CPU-based solutions and shows feasibility of using GPU and CUDA for parallel implementation of GIS algorithms over large-scale geospatial datasets.

  14. GeoBoost: accelerating research involving the geospatial metadata of virus GenBank records.

    Science.gov (United States)

    Tahsin, Tasnia; Weissenbacher, Davy; O'Connor, Karen; Magge, Arjun; Scotch, Matthew; Gonzalez-Hernandez, Graciela

    2018-05-01

    GeoBoost is a command-line software package developed to address sparse or incomplete metadata in GenBank sequence records that relate to the location of the infected host (LOIH) of viruses. Given a set of GenBank accession numbers corresponding to virus GenBank records, GeoBoost extracts, integrates and normalizes geographic information reflecting the LOIH of the viruses using integrated information from GenBank metadata and related full-text publications. In addition, to facilitate probabilistic geospatial modeling, GeoBoost assigns probability scores for each possible LOIH. Binaries and resources required for running GeoBoost are packed into a single zipped file and freely available for download at https://tinyurl.com/geoboost. A video tutorial is included to help users quickly and easily install and run the software. The software is implemented in Java 1.8, and supported on MS Windows and Linux platforms. gragon@upenn.edu. Supplementary data are available at Bioinformatics online.

  15. Integration of energy efficient technologies in UK supermarkets

    International Nuclear Information System (INIS)

    Ochieng, E.G.; Jones, N.; Price, A.D.F.; Ruan, X.; Egbu, C.O; Zuofa, T.

    2014-01-01

    The purpose of this paper is twofold: to determine if the integration of energy efficient technologies in UK supermarkets can determine consumer behaviour, and to establish if such activities can help satisfying the environmental elements of the clients corporate social responsibilities (CSR) in an attempt to create a competitive advantage. A literature review of existing material considered the history and drivers of sustainability, the types of energy efficient technologies and factors concerning CSR and consumer behaviour in relation to the supermarket industry. Interviews with 15 senior store managers were recorded and transcribed. The opinions of the senior store managers were then sought and analysed using qualitative research software NVivo software. Validity of the data was achieved at a later stage through workshops. The results of this paper suggested that there is a definite lack of awareness and knowledge amongst customers regarding energy efficient technologies. From the findings, it was further established that the key driver for retailers who integrate energy efficient technologies is fiscal incentives, although it was suggested some retailers use CSR strategies to report there are environmental achievements it was ultimately found that cost savings were the primary driver. - Highlights: • The effect of sustainability towards consumer behaviour was explored. • Majority of consumers are unaware of energy efficient technologies. • Energy efficient technologies do not determine or create shifts in paradigm in consumer actions. • Stores are driven to integrate energy efficient technologies more by government legislation. • Participants were clear in making the point that their image and reputation was based on trust

  16. A systemic model for differentiating school technology integration

    Directory of Open Access Journals (Sweden)

    Tel Amiel

    2016-07-01

    Full Text Available School technology integration rarely begins with school or educator choice. It is part of a wider context where external and internal factors have direct influence on the goals and tools that are adopted over time. The objective of this study is to investigate the systemic conditions that contribute or inhibit the development of different activities by teachers making use of new media. We compiled a list of well-known conditions for technology integration success and mapped these in the historical and culturally bound perspective of activity theory (cultural historical activity theory. We conducted a multiple case study analysis of four schools, public and private. The results point to unique and distinctive scenarios even when homogeneity would be expected, reinforcing the argument that material conditions do not determine pedagogical outcomes nor do they determine changes in practice. Beyond this, the study proposes a methodology that can help elicit tensions in technology integration, pointing to avenues for school development.

  17. Episode-Centered Guidelines for Teacher Belief Change toward Technology Integration

    Science.gov (United States)

    Er, Erkan; Kim, ChanMin

    2017-01-01

    Teachers' episodic memories influence their beliefs. The investigation of episodic memories can help identify the teacher beliefs that limit technology-integration. We propose the Episode-Centered Belief Change (ECBC) model that utilizes teachers' episodic memories for changing beliefs impeding effective technology integration. We also propose…

  18. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  19. Automated Geospatial Watershed Assessment Tool (AGWA) Poster Presentation

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  20. Geospatial Information Relevant to the Flood Protection Available on The Mainstream Web

    Directory of Open Access Journals (Sweden)

    Kliment Tomáš

    2014-03-01

    Full Text Available Flood protection is one of several disciplines where geospatial data is very important and is a crucial component. Its management, processing and sharing form the foundation for their efficient use; therefore, special attention is required in the development of effective, precise, standardized, and interoperable models for the discovery and publishing of data on the Web. This paper describes the design of a methodology to discover Open Geospatial Consortium (OGC services on the Web and collect descriptive information, i.e., metadata in a geocatalogue. A pilot implementation of the proposed methodology - Geocatalogue of geospatial information provided by OGC services discovered on Google (hereinafter “Geocatalogue” - was used to search for available resources relevant to the area of flood protection. The result is an analysis of the availability of resources discovered through their metadata collected from the OGC services (WMS, WFS, etc. and the resources they provide (WMS layers, WFS objects, etc. within the domain of flood protection.

  1. Sensor Technology Integration for Efficient and Cost-Effective D and D

    International Nuclear Information System (INIS)

    Varona, J. M.; Lagos, L. E.

    2002-01-01

    The deactivation and decommissioning of radiologically contaminated facilities require the use of a multitude of technologies to perform characterization, decontamination, dismantlement, and waste management. Current baseline technologies do not provide adequate tools to perform this work in an efficient and cost-effective manner. Examples of such tasks that can be modified to enhance the D and D work include: floor and wall decontamination, pipe decontamination, and surveillance and monitoring. FIU-HCET's Technology Development, Integration and Deployment (TDID) group aims to enhance the D and D process by integrating sensor technology to existing decontamination and remote surveillance tools. These integrated systems have been demonstrated throughout the DOE Complex and commercial nuclear facilities undergoing decommissioning. Finding new ways of integrating technologies utilized in the decommissioning and surveillance and monitoring process has been a goal of this group during the past several years. Current and previous integration projects include: Mobile Integrated Piping Decontamination and Characterization System, On-Line Decontamination and Characterization System, In-Situ Pipe Decontamination and Unplugging System, Remote Hazardous Environment Surveyor (RHES), and the Online Handheld grit blasting decontamination system As a result of integrating sensors with D and D tools, the resulting technologies have removed the downtime currently found in baseline processes by allowing operators and project managers to have real-time contamination data during the specified D and D process. This added component allows project managers to verify that full decontamination and surveillance has been conducted. Through successful demonstration and deployments of the TDID-developed technologies, FIU-HCET has provided tools that can impact the cost, schedule and health and safety of D and D operations in a positive way, leading to shorter downtimes and significant cost

  2. CMOS analog integrated circuit design technology; CMOS anarogu IC sekkei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Fujisawa, A. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-08-10

    In the field of the LSI (large scale integrated circuit) in rapid progress toward high integration and advanced functions, CAD (computer-aided design) technology has become indispensable to LSI development within a short period. Fuji Electric has developed design technologies and automatic design system to develop high-quality analog ICs (integrated circuits), including power supply ICs. within a short period. This paper describes CMOS (complementary metal-oxide semiconductor) analog macro cell, circuit simulation, automatic routing, and backannotation technologies. (author)

  3. INTEGRATING MOBILE TECHNOLOGY IN ESL CLASSROOMS

    OpenAIRE

    K. Manigandan; N. Santha Kumar; B. Devi

    2017-01-01

    It’s the right time to know more about mobile technology and mobile learning in the present digital era where mobile phones have become an integral part of everyone’s life. In recent years there have been amazing advances in mobile technology. Mobile learning has enabled various institutions, colleges and schools throughout the world in order to modernize aspects of teaching, learning and training. The key words in mobile learning are “facilitate, support, enhance, extend”.

  4. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling

    Data.gov (United States)

    National Aeronautics and Space Administration — The Composites Integrated Modeling (CIM) Element developed low cost, lightweight, and efficient composite structures, materials and manufacturing technologies with...

  5. Using Action Research Projects to Examine Teacher Technology Integration Practices

    Science.gov (United States)

    Dawson, Kara

    2012-01-01

    This study examined the technology integration practices of teachers involved in a statewide initiative via one cycle of action research. It differs from other studies of teacher technology integration practices because it simultaneously involved and provided direct benefits to teachers and researchers. The study used thematic analysis to provide…

  6. Geospatial cryptography: enabling researchers to access private, spatially referenced, human subjects data for cancer control and prevention.

    Science.gov (United States)

    Jacquez, Geoffrey M; Essex, Aleksander; Curtis, Andrew; Kohler, Betsy; Sherman, Recinda; Emam, Khaled El; Shi, Chen; Kaufmann, Andy; Beale, Linda; Cusick, Thomas; Goldberg, Daniel; Goovaerts, Pierre

    2017-07-01

    As the volume, accuracy and precision of digital geographic information have increased, concerns regarding individual privacy and confidentiality have come to the forefront. Not only do these challenge a basic tenet underlying the advancement of science by posing substantial obstacles to the sharing of data to validate research results, but they are obstacles to conducting certain research projects in the first place. Geospatial cryptography involves the specification, design, implementation and application of cryptographic techniques to address privacy, confidentiality and security concerns for geographically referenced data. This article defines geospatial cryptography and demonstrates its application in cancer control and surveillance. Four use cases are considered: (1) national-level de-duplication among state or province-based cancer registries; (2) sharing of confidential data across cancer registries to support case aggregation across administrative geographies; (3) secure data linkage; and (4) cancer cluster investigation and surveillance. A secure multi-party system for geospatial cryptography is developed. Solutions under geospatial cryptography are presented and computation time is calculated. As services provided by cancer registries to the research community, de-duplication, case aggregation across administrative geographies and secure data linkage are often time-consuming and in some instances precluded by confidentiality and security concerns. Geospatial cryptography provides secure solutions that hold significant promise for addressing these concerns and for accelerating the pace of research with human subjects data residing in our nation's cancer registries. Pursuit of the research directions posed herein conceivably would lead to a geospatially encrypted geographic information system (GEGIS) designed specifically to promote the sharing and spatial analysis of confidential data. Geospatial cryptography holds substantial promise for accelerating the

  7. Integration of GMR Sensors with Different Technologies.

    Science.gov (United States)

    Cubells-Beltrán, María-Dolores; Reig, Càndid; Madrenas, Jordi; De Marcellis, Andrea; Santos, Joana; Cardoso, Susana; Freitas, Paulo P

    2016-06-22

    Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications.

  8. Big Data analytics in the Geo-Spatial Domain

    NARCIS (Netherlands)

    R.A. Goncalves (Romulo); M.G. Ivanova (Milena); M.L. Kersten (Martin); H. Scholten; S. Zlatanova; F. Alvanaki (Foteini); P. Nourian (Pirouz); E. Dias

    2014-01-01

    htmlabstractBig data collections in many scientific domains have inherently rich spatial and geo-spatial features. Spatial location is among the core aspects of data in Earth observation sciences, astronomy, and seismology to name a few. The goal of our project is to design an efficient data

  9. Predicting nurses' use of healthcare technology using the technology acceptance model: an integrative review.

    Science.gov (United States)

    Strudwick, Gillian

    2015-05-01

    The benefits of healthcare technologies can only be attained if nurses accept and intend to fully use them. One of the most common models utilized to understand user acceptance of technology is the Technology Acceptance Model. This model and modified versions of it have only recently been applied in the healthcare literature among nurse participants. An integrative literature review was conducted on this topic. Ovid/MEDLINE, PubMed, Google Scholar, and CINAHL were searched yielding a total of 982 references. Upon eliminating duplicates and applying the inclusion and exclusion criteria, the review included a total of four dissertations, three symposium proceedings, and 13 peer-reviewed journal articles. These documents were appraised and reviewed. The results show that a modified Technology Acceptance Model with added variables could provide a better explanation of nurses' acceptance of healthcare technology. These added variables to modified versions of the Technology Acceptance Model are discussed, and the studies' methodologies are critiqued. Limitations of the studies included in the integrative review are also examined.

  10. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  11. A New Framework for Evaluating the Functional Capabilities of Intra-Enterprise Application Integration Technologies

    Directory of Open Access Journals (Sweden)

    Hossein Moradi

    2010-10-01

    Full Text Available Enterprise Application Integration (EAI technologies facilitate the sharing of information and business processes of interrelated information systems in order to achieve the target integrated systems. Different EAI solutions and technologies provide various capabilities which lead to the complexity of their evaluation process. To reduce this complexity, appropriate tools for evaluating the functional capabilities of EAI technologies are required. This paper proposes a new framework for evaluating the functional capabilities of EAI technologies, which simplify the process of evaluating the functional capabilities of intra-enterprise integration technologies and solutions.The proposed framework for evaluating the EAI technologies was enhanced using the structural and conceptual aspects of previous frameworks. It offers a new schema for which various EAI technologies are categorized in different classes and are evaluated based on their supporting level for functional integration capabilities’ criteria.The new framework offers two lists containing integration technologies and their associated classifications, and functional capabilities of integration technologies. The proposed framework is a novel one which can be used by information system experts for evaluation and comparison purposes of various integration technologies.

  12. Electroless plating technology of integral hohlraum Cu target

    International Nuclear Information System (INIS)

    Liu Jiguang; Fu Qu; Wan Xiaobo; Zhou Lan; Xiao Jiang

    2005-01-01

    The electroless plating method of making integral hohlraum Cu target and corrosion-resistant technology of target's surface were researched. The actual process was as follows, choosing plexiglass (PMMA) as arbor, taking cationic activation and electroless plating Cu on the arbor surface, taking arbor surface passivation and chemical etching by C 6 H 5 N 3 solution. The technology is easy to realize and its cost is lower, so it is of great reference value for fabricating other integral hohlraum metal or alloy targets used for inertial confinement fusion study. (author)

  13. Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank V [Los Alamos National Laboratory

    2012-08-14

    This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previously used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant

  14. Student Collaboration and School Educational Technology: Technology Integration Practices in the Classroom

    Science.gov (United States)

    Scalise, Kathleen

    2016-01-01

    With the onset of Web 2.0 and 3.0--the social and semantic webs--a next wave for integration of educational technology into the classroom is occurring. The aim of this paper is to show how some teachers are increasingly bringing collaboration and shared meaning-making through technology environments into learning environments (Evergreen Education…

  15. Teachers' Perceptions of Technology Integration in a Unified School District

    Science.gov (United States)

    Bloodman, Suzette L.

    2014-01-01

    A unified school district (USD) continues to invest millions of dollars into its technology integration initiatives with minimal academic gains. Since teachers are essential to effective technology integration, the purpose of this phenomenological study was to analyze the perceptions of 13 teachers within the USD relative to how they could more…

  16. The computational design of Geological Disposal Technology Integration System

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Iwamoto, Hiroshi; Kobayashi, Shigeki; Neyama, Atsushi; Endo, Shuji; Shindo, Tomonori

    2002-03-01

    In order to develop 'Geological Disposal Technology Integration System' that is intended to systematize as knowledge base for fundamental study, the computational design of an indispensable database and image processing function to 'Geological Disposal Technology Integration System' was done, the prototype was made for trial purposes, and the function was confirmed. (1) Database of Integration System which systematized necessary information and relating information as an examination of a whole of repository composition and managed were constructed, and the system function was constructed as a system composed of image processing, analytical information management, the repository component management, and the system security function. (2) The range of the data treated with this system and information was examined, the design examination of the database structure was done, and the design examination of the image processing function of the data preserved in an integrated database was done. (3) The prototype of the database concerning a basic function, the system operation interface, and the image processing function was manufactured to verify the feasibility of the 'Geological Disposal Technology Integration System' based on the result of the design examination and the function was confirmed. (author)

  17. Learning R for geospatial analysis

    CERN Document Server

    Dorman, Michael

    2014-01-01

    This book is intended for anyone who wants to learn how to efficiently analyze geospatial data with R, including GIS analysts, researchers, educators, and students who work with spatial data and who are interested in expanding their capabilities through programming. The book assumes familiarity with the basic geographic information concepts (such as spatial coordinates), but no prior experience with R and/or programming is required. By focusing on R exclusively, you will not need to depend on any external software-a working installation of R is all that is necessary to begin.

  18. 75 FR 20388 - International Business Machines Corporation, Global Technology Services Business Unit, Integrated...

    Science.gov (United States)

    2010-04-19

    ... Machines Corporation, Global Technology Services Business Unit, Integrated Technology Services, Cost and... Technology Services Business Unit, Integrated Technology Services, Cost and Expense Team working from various... Technology Services Business Unit. The company reports that workers leased from Datrose, Inc., were employed...

  19. A Framework for Integration of IVHM Technologies for Intelligent Integration for Vehicle Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Mike

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of IIVM. These real-time responses allow the IIVM to modify the effected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  20. Exchanging the Context between OGC Geospatial Web clients and GIS applications using Atom

    Science.gov (United States)

    Maso, Joan; Díaz, Paula; Riverola, Anna; Pons, Xavier

    2013-04-01

    Currently, the discovery and sharing of geospatial information over the web still presents difficulties. News distribution through website content was simplified by the use of Really Simple Syndication (RSS) and Atom syndication formats. This communication exposes an extension of Atom to redistribute references to geospatial information in a Spatial Data Infrastructure distributed environment. A geospatial client can save the status of an application that involves several OGC services of different kind and direct data and share this status with other users that need the same information and use different client vendor products in an interoperable way. The extensibility of the Atom format was essential to define a format that could be used in RSS enabled web browser, Mass Market map viewers and emerging geospatial enable integrated clients that support Open Geospatial Consortium (OGC) services. Since OWS Context has been designed as an Atom extension, it is possible to see the document in common places where Atom documents are valid. Internet web browsers are able to present the document as a list of items with title, abstract, time, description and downloading features. OWS Context uses GeoRSS so that, the document can be to be interpreted by both Google maps and Bing Maps as items that have the extent represented in a dynamic map. Another way to explode a OWS Context is to develop an XSLT to transform the Atom feed into an HTML5 document that shows the exact status of the client view window that saved the context document. To accomplish so, we use the width and height of the client window, and the extent of the view in world (geographic) coordinates in order to calculate the scale of the map. Then, we can mix elements in world coordinates (such as CF-NetCDF files or GML) with elements in pixel coordinates (such as WMS maps, WMTS tiles and direct SVG content). A smarter map browser application called MiraMon Map Browser is able to write a context document and read

  1. Technology Integration Initiative In Support of Outage Management

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Weatherby; David Gertman

    2012-07-01

    Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Often, command and control during outages is maintained in the outage control center where many of the underlying technologies supporting outage control are the same as those used in the 1980’s. This research reports on the use of advanced integrating software technologies and hand held mobile devices as a means by which to reduce cycle time, improve accuracy, and enhance transparency among outage team members. This paper reports on the first phase of research supported by the DOE Light Water Reactor Sustainability (LWRS) Program that is performed in close collaboration with industry to examine the introduction of newly available technology allowing for safe and efficient outage performance. It is thought that this research will result in: improved resource management among various plant stakeholder groups, reduced paper work, and enhanced overall situation awareness for the outage control center management team. A description of field data collection methods, including personnel interview data, success factors, end-user evaluation and integration of hand held devices in achieving an integrated design are also evaluated. Finally, the necessity of obtaining operations cooperation support in field studies and technology evaluation is acknowledged.

  2. Photonic integrated circuits : a new approach to laser technology

    NARCIS (Netherlands)

    Piramidowicz, R.; Stopinski, S.T.; Lawniczuk, K.; Welikow, K.; Szczepanski, P.; Leijtens, X.J.M.; Smit, M.K.

    2012-01-01

    In this work a brief review on photonic integrated circuits (PICs) is presented with a specific focus on integrated lasers and amplifiers. The work presents the history of development of the integration technology in photonics and its comparison to microelectronics. The major part of the review is

  3. Integration of Information Technologies in Enterprise Application Development

    OpenAIRE

    Iulia SURUGIU

    2012-01-01

    Healthcare enterprises are disconnected. In the era of integrated information systems and Internet explosion, the necessity of information systems integration reside from business process evolution, on the one hand, and from information technology tendencies, on the other hand. In order to become more efficient and adaptive to change, healthcare organizations are tremendously preoccupied of business process automation, flexibility and complexity. The need of information systems integration ar...

  4. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  5. Integration of multi-technology on oil spill emergency preparedness.

    Science.gov (United States)

    Liao, Zhenliang; Hannam, Phillip M; Xia, Xiaowei; Zhao, Tingting

    2012-10-01

    This paper focuses on the integration of technologies including Case-Based Reasoning (CBR), Genetic Algorithm (GA) and Artificial Neural Network (ANN) for establishing emergency preparedness for oil spill accidents. In CBR, the Frame method is used to define case representation, and the HEOM (Heterogeneous Euclidean-Overlap Metric) is improved to define the similarity of case properties. In GA, we introduce an Improved Genetic Algorithm (IGA) that achieves case adaptation, in which technologies include the Multi-Parameter Cascade Code method, the Small Section method for generation of an initial population, the Multi-Factor Integrated Fitness Function, and Niche technology for genetic operations including selection, crossover, and mutation. In ANN, a modified back-propagation algorithm is employed to train the algorithm to quickly improve system preparedness. Through the analysis of 32 fabricated oil spill cases, an oil spill emergency preparedness system based on the integration of CBR, GA and ANN is introduced. In particular, the development of ANN is presented and analyzed. The paper also discusses the efficacy of our integration approach. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Authoring Tours of Geospatial Data With KML and Google Earth

    Science.gov (United States)

    Barcay, D. P.; Weiss-Malik, M.

    2008-12-01

    As virtual globes become widely adopted by the general public, the use of geospatial data has expanded greatly. With the popularization of Google Earth and other platforms, GIS systems have become virtual reality platforms. Using these platforms, a casual user can easily explore the world, browse massive data-sets, create powerful 3D visualizations, and share those visualizations with millions of people using the KML language. This technology has raised the bar for professionals and academics alike. It is now expected that studies and projects will be accompanied by compelling, high-quality visualizations. In this new landscape, a presentation of geospatial data can be the most effective form of advertisement for a project: engaging both the general public and the scientific community in a unified interactive experience. On the other hand, merely dumping a dataset into a virtual globe can be a disorienting, alienating experience for many users. To create an effective, far-reaching presentation, an author must take care to make their data approachable to a wide variety of users with varying knowledge of the subject matter, expertise in virtual globes, and attention spans. To that end, we present techniques for creating self-guided interactive tours of data represented in KML and visualized in Google Earth. Using these methods, we provide the ability to move the camera through the world while dynamically varying the content, style, and visibility of the displayed data. Such tours can automatically guide users through massive, complex datasets: engaging a broad user-base, and conveying subtle concepts that aren't immediately apparent when viewing the raw data. To the casual user these techniques result in an extremely compelling experience similar to watching video. Unlike video though, these techniques maintain the rich interactive environment provided by the virtual globe, allowing users to explore the data in detail and to add other data sources to the presentation.

  7. A Needs Analysis for Technology Integration Plan: Challenges and Needs of Teachers

    Science.gov (United States)

    Vatanartiran, Sinem; Karadeniz, Sirin

    2015-01-01

    Lack of technology leadership and technology integration plans are important obstacles for using technology effectively in schools. We carried out a large-scale study to be able to design a technology integration plan for one of the pilot provinces that Fatih Project was initiated. The purpose of this research is to examine the perceived…

  8. Technology and diabetes self-management: An integrative review

    OpenAIRE

    Hunt, Caralise W

    2015-01-01

    Technology can be used to supplement healthcare provider diabetes care by providing both educational and motivational support. Education can be provided using technology allowing patients to learn new practices and routines related to diabetes management. Technology can support daily diabetes self-management activities including blood glucose monitoring, exercising, healthy eating, taking medication, monitoring for complications, and problem-solving. This article describes an integrative revi...

  9. A Geo-Event-Based Geospatial Information Service: A Case Study of Typhoon Hazard

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-03-01

    Full Text Available Social media is valuable in propagating information during disasters for its timely and available characteristics nowadays, and assists in making decisions when tagged with locations. Considering the ambiguity and inaccuracy in some social data, additional authoritative data are needed for important verification. However, current works often fail to leverage both social and authoritative data and, on most occasions, the data are used in disaster analysis after the fact. Moreover, current works organize the data from the perspective of the spatial location, but not from the perspective of the disaster, making it difficult to dynamically analyze the disaster. All of the disaster-related data around the affected locations need to be retrieved. To solve these limitations, this study develops a geo-event-based geospatial information service (GEGIS framework and proceeded as follows: (1 a geo-event-related ontology was constructed to provide a uniform semantic basis for the system; (2 geo-events and attributes were extracted from the web using a natural language process (NLP and used in the semantic similarity match of the geospatial resources; and (3 a geospatial information service prototype system was designed and implemented for automatically retrieving and organizing geo-event-related geospatial resources. A case study of a typhoon hazard is analyzed here within the GEGIS and shows that the system would be effective when typhoons occur.

  10. Theoretical multi-tier trust framework for the geospatial domain

    CSIR Research Space (South Africa)

    Umuhoza, D

    2010-01-01

    Full Text Available chain or workflow from data acquisition to knowledge discovery. The author’s present work in progress of a theoretical multi-tier trust framework for processing chain from data acquisition to knowledge discovery in geospatial domain. Holistic trust...

  11. Integrating Educational Technologies into the Culinary Classroom and Instructional Kitchen

    Science.gov (United States)

    Glass, Samuel

    2005-01-01

    The integration of educational technologies has and will continue to change the nature of education. From the advent of the printed word to the current use of computer assisted teaching and learning, the use of technology is an integral part of modern day realities and approaches to education. The purpose of this paper is to review some of the…

  12. Integration of GMR Sensors with Different Technologies

    Directory of Open Access Journals (Sweden)

    María-Dolores Cubells-Beltrán

    2016-06-01

    Full Text Available Less than thirty years after the giant magnetoresistance (GMR effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications.

  13. Ten Items of Integrated Technology Developed by CNPC

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The technological work of China National Petroleum Corporation (CNPC) was based on the company's general development strategy to become a multinational giant with international competitiveness during the 10th FiveYear Plan Period (2001-2005). The technological efforts were focused on strengthening strategic management of technology to identify the technological development targets, optimizing allocation of technological resources and increasing technological investment to highlight creation of key technology. Aiming at the important and key technologies needed for main business development,CNPC launched 15 technological projects at the State level with a 100 percent completion rate and 379 other projects at the corporate level with a 92.8 percent completion rate. With a number of high-level results achieved, CNPC has developed 10 items of integrated technology.

  14. Geospatial big data and cartography : research challenges and opportunities for making maps that matter

    OpenAIRE

    Robinson, Anthony C.; Demsar, Urska; Moore, Antoni B.; Buckley, Aileen; Jiang, Bin; Field, Kenneth; Kraak, Menno-Jan; Camboim, Silvana P; Sluter, Claudia R

    2017-01-01

    Geospatial big data present a new set of challenges and opportunities for cartographic researchers in technical, methodological, and artistic realms. New computational and technical paradigms for cartography are accompanying the rise of geospatial big data. Additionally, the art and science of cartography needs to focus its contemporary efforts on work that connects to outside disciplines and is grounded in problems that are important to humankind and its sustainability. Following the develop...

  15. Describing Geospatial Assets in the Web of Data: A Metadata Management Scenario

    Directory of Open Access Journals (Sweden)

    Cristiano Fugazza

    2016-12-01

    Full Text Available Metadata management is an essential enabling factor for geospatial assets because discovery, retrieval, and actual usage of the latter are tightly bound to the quality of these descriptions. Unfortunately, the multi-faceted landscape of metadata formats, requirements, and conventions makes it difficult to identify editing tools that can be easily tailored to the specificities of a given project, workgroup, and Community of Practice. Our solution is a template-driven metadata editing tool that can be customised to any XML-based schema. Its output is constituted by standards-compliant metadata records that also have a semantics-aware counterpart eliciting novel exploitation techniques. Moreover, external data sources can easily be plugged in to provide autocompletion functionalities on the basis of the data structures made available on the Web of Data. Beside presenting the essentials on customisation of the editor by means of two use cases, we extend the methodology to the whole life cycle of geospatial metadata. We demonstrate the novel capabilities enabled by RDF-based metadata representation with respect to traditional metadata management in the geospatial domain.

  16. TPACK Competencies and Technology Integration Self-Efficacy Perceptions of Pre-Service Teachers

    Science.gov (United States)

    Keser, Hafize; Karaoglan Yilmaz, Fatma Gizem; Yilmaz, Ramazan

    2015-01-01

    This study compared the technological pedagogical content knowledge (TPACK) competency of pre-service teachers with their self-efficacy perception towards technology integration, based on various variables; and the correlation between their TPACK competencies and self-efficacy perceptions towards technology integration were examined. The study…

  17. The relationship between technology leadership roles and profiles of school principals and technology integration in primary school classrooms

    OpenAIRE

    Mustafa SAMANCIOĞLU; Murat BAĞLIBEL; Mahmut KALMAN; Mehmet SİNCAR

    2015-01-01

    The purpose of this study was to investigate the relationship between technology leadership behaviors of school principals and teachers’ level of technology integration, and to determine technology leadership profiles based on teacher views and examine their association with technology integration. The researchers administered two questionnaires to 352 teachers working at sixteen primary schools in a large city in southeastern Turkey. The results revealed a positive, but weak relationship bet...

  18. A research on the security of wisdom campus based on geospatial big data

    Science.gov (United States)

    Wang, Haiying

    2018-05-01

    There are some difficulties in wisdom campus, such as geospatial big data sharing, function expansion, data management, analysis and mining geospatial big data for a characteristic, especially the problem of data security can't guarantee cause prominent attention increasingly. In this article we put forward a data-oriented software architecture which is designed by the ideology of orienting data and data as kernel, solve the problem of traditional software architecture broaden the campus space data research, develop the application of wisdom campus.

  19. The use of software agents and distributed objects to integrate enterprises: Compatible or competing technologies?

    Energy Technology Data Exchange (ETDEWEB)

    Pancerella, C.M.

    1998-04-01

    Distributed object and software agent technologies are two integration methods for connecting enterprises. The two technologies have overlapping goals--interoperability and architectural support for integrating software components--though to date little or no integration of the two technologies has been made at the enterprise level. The primary difference between these two technologies is that distributed object technologies focus on the problems inherent in connecting distributed heterogeneous systems whereas software agent technologies focus on the problems involved with coordination and knowledge exchange across domain boundaries. This paper addresses the integration of these technologies in support of enterprise integration across organizational and geographic boundaries. The authors discuss enterprise integration issues, review their experiences with both technologies, and make recommendations for future work. Neither technology is a panacea. Good software engineering techniques must be applied to integrate an enterprise because scalability and a distributed software development team are realities.

  20. Dynamic Server-Based KML Code Generator Method for Level-of-Detail Traversal of Geospatial Data

    Science.gov (United States)

    Baxes, Gregory; Mixon, Brian; Linger, TIm

    2013-01-01

    Web-based geospatial client applications such as Google Earth and NASA World Wind must listen to data requests, access appropriate stored data, and compile a data response to the requesting client application. This process occurs repeatedly to support multiple client requests and application instances. Newer Web-based geospatial clients also provide user-interactive functionality that is dependent on fast and efficient server responses. With massively large datasets, server-client interaction can become severely impeded because the server must determine the best way to assemble data to meet the client applications request. In client applications such as Google Earth, the user interactively wanders through the data using visually guided panning and zooming actions. With these actions, the client application is continually issuing data requests to the server without knowledge of the server s data structure or extraction/assembly paradigm. A method for efficiently controlling the networked access of a Web-based geospatial browser to server-based datasets in particular, massively sized datasets has been developed. The method specifically uses the Keyhole Markup Language (KML), an Open Geospatial Consortium (OGS) standard used by Google Earth and other KML-compliant geospatial client applications. The innovation is based on establishing a dynamic cascading KML strategy that is initiated by a KML launch file provided by a data server host to a Google Earth or similar KMLcompliant geospatial client application user. Upon execution, the launch KML code issues a request for image data covering an initial geographic region. The server responds with the requested data along with subsequent dynamically generated KML code that directs the client application to make follow-on requests for higher level of detail (LOD) imagery to replace the initial imagery as the user navigates into the dataset. The approach provides an efficient data traversal path and mechanism that can be

  1. Technology management: case study of an integrated health system.

    Science.gov (United States)

    Dahl, D H; McFarlan, T K

    1994-12-01

    Technology management has assumed a role of vital importance in today's health care environment. Capital reserves and operating income have been stretched by pervasive and expensive technologies, while overall reimbursement has been reduced. It is imperative for hospitals to develop and consistently use technology management processes that begin prior to a technology's introduction in the hospital and continue throughout its life cycle. At Samaritan Health System (SHS), an integrated health care delivery system based in Phoenix, technology management provides tools to improve decision making and assist in the system's integration strategy as well as control expenses. SHS uses a systemwide technology-specific plan to guide acquisition and/or funding decisions. This plan describes how particular technologies can help achieve SHS' organizational goals such as promoting system integration and/or improving patient outcomes while providing good economic value. After technologies are targeted in this systemwide plan they are prioritized using a two-stage capital prioritization process. The first stage of the capital prioritization process considers the quantitative and qualitative factors critical for equitable capital distribution across the system. The second stage develops a sense of ownership among the parties that affect and are affected by the allocation at a facility level. This process promotes an efficient, effective, equitable, and defensible approach to resource allocation and technology decision making. Minimizing equipment maintenance expenditures is also an integral part of technology management at SHS. The keys to reducing maintenance expenditures are having a process in place that supports a routine fiscal evaluation of maintenance coverage options and ensuring that manufacturers are obligated to provide critical maintenance resources at the time of equipment purchase. Maintenance service options under consideration in this report include full

  2. Integrated CMOS sensor technologies for the CLIC tracker

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2017-01-01

    Integrated technologies are attractive candidates for an all silicon tracker at the proposed future multi-TeV linear e+e- collider CLIC. In this context CMOS circuitry on a high resistivity epitaxial layer has been studied using the ALICE Investigator test-chip. Test-beam campaigns have been performed to study the Investigator performance and a Technology Computer Aided Design based simulation chain has been developed to further explore the sensor technology.

  3. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities.

    Science.gov (United States)

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas

    2015-07-14

    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today's technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  4. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities

    Science.gov (United States)

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas

    2015-01-01

    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today’s technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  5. Research on presentation and query service of geo-spatial data based on ontology

    Science.gov (United States)

    Li, Hong-wei; Li, Qin-chao; Cai, Chang

    2008-10-01

    The paper analyzed the deficiency on presentation and query of geo-spatial data existed in current GIS, discussed the advantages that ontology possessed in formalization of geo-spatial data and the presentation of semantic granularity, taken land-use classification system as an example to construct domain ontology, and described it by OWL; realized the grade level and category presentation of land-use data benefited from the thoughts of vertical and horizontal navigation; and then discussed query mode of geo-spatial data based on ontology, including data query based on types and grade levels, instances and spatial relation, and synthetic query based on types and instances; these methods enriched query mode of current GIS, and is a useful attempt; point out that the key point of the presentation and query of spatial data based on ontology is to construct domain ontology that can correctly reflect geo-concept and its spatial relation and realize its fine formalization description.

  6. Offshore platform integration and floatover technology

    CERN Document Server

    Liu, Gengshen

    2017-01-01

    This book discusses offshore platform integration technology, focusing on the floatover methodology and its applications. It also addresses topics related to safety and cost-effectiveness, as well as ensuring the success of a project through careful planning and established detailed operation procedure/working manuals, which are rarely found in the published literature. Unlike other publications in this area, the book not only includes details of technology development, but also presents real project cases in the discussion to make it more comprehensible. Each topic is illustrated with carefully created sketches to show the complex operation procedures. .

  7. Physical Education Student Teachers' Technology Integration Self-Efficacy

    Science.gov (United States)

    Krause, Jennifer M.

    2017-01-01

    Pre- and in-service physical education teachers have evaluated themselves as not being very well prepared or proficient in technology use. Thus, better preparation of PE teachers to integrate technology is necessary. In this study, I examined the effects of technology-related mastery experiences, vicarious experiences, and social persuasion on…

  8. Factors Relevant to Utility Integration of Intermittent Renewable Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Parsons, B.

    1993-08-24

    This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among fmdings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface, (2) cost penalties have not occurred at low to moderate penetration levels (and high levels am feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also indentified.

  9. Factors relevant to utility integration of intermittent renewable technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yih-huei; Parsons, B.K.

    1993-08-01

    This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among findings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface; (2) cost penalties have not occurred at low to moderate penetration levels (and high levels are feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also identified.

  10. Technology for Building Systems Integration and Optimization – Landscape Report

    Energy Technology Data Exchange (ETDEWEB)

    William Goetzler, Matt Guernsey, Youssef Bargach

    2018-01-31

    BTO's Commercial Building Integration (CBI) program helps advance a range of innovative building integration and optimization technologies and solutions, paving the way for high-performing buildings that could use 50-70% less energy than typical buildings. CBI’s work focuses on early stage technology innovation, with an emphasis on how components and systems work together and how whole buildings are integrated and optimized. This landscape study outlines the current body of knowledge, capabilities, and the broader array of solutions supporting integration and optimization in commercial buildings. CBI seeks to support solutions for both existing buildings and new construction, which often present very different challenges.

  11. GEOREFERENCING IN GNSS-CHALLENGED ENVIRONMENT: INTEGRATING UWB AND IMU TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    C. K. Toth

    2017-05-01

    Full Text Available Acquiring geospatial data in GNSS compromised environments remains a problem in mapping and positioning in general. Urban canyons, heavily vegetated areas, indoor environments represent different levels of GNSS signal availability from weak to no signal reception. Even outdoors, with multiple GNSS systems, with an ever-increasing number of satellites, there are many situations with limited or no access to GNSS signals. Independent navigation sensors, such as IMU can provide high-data rate information but their initial accuracy degrades quickly, as the measurement data drift over time unless positioning fixes are provided from another source. At The Ohio State University’s Satellite Positioning and Inertial Navigation (SPIN Laboratory, as one feasible solution, Ultra- Wideband (UWB radio units are used to aid positioning and navigating in GNSS compromised environments, including indoor and outdoor scenarios. Here we report about experiences obtained with georeferencing a pushcart based sensor system under canopied areas. The positioning system is based on UWB and IMU sensor integration, and provides sensor platform orientation for an electromagnetic inference (EMI sensor. Performance evaluation results are provided for various test scenarios, confirming acceptable results for applications where high accuracy is not required.

  12. Seeing the System: Dynamics and Complexity of Technology Integration in Secondary Schools

    Science.gov (United States)

    Howard, Sarah K.; Thompson, Kate

    2016-01-01

    This paper introduces system dynamics modeling to understand, visualize and explore technology integration in schools, through the development of a theoretical model of technology-related change in teachers' practice. Technology integration is a dynamic social practice, within the social system of education. It is difficult, if not nearly…

  13. Assessment and monitoring of land degradation using geospatial technology in Bathinda district, Punjab, India

    Science.gov (United States)

    Ahmad, Naseer; Pandey, Puneeta

    2018-02-01

    Land degradation leads to alteration of ecological and economic functions due to a decrease in productivity and quality of the land. The aim of the present study was to assess land degradation with the help of geospatial technology - remote sensing (RS) and geographical information system (GIS) - in Bathinda district, Punjab. The severity of land degradation was estimated quantitatively by analyzing the physico-chemical parameters in the laboratory to determine saline or salt-free soils and calcareous or sodic soils and further correlating them with satellite-based studies. The pH varied between 7.37 and 8.59, electrical conductivity (EC) between 1.97 and 8.78 dS m-1 and the methyl orange or total alkalinity between 0.070 and 0.223 (HCO3-) g L-1 as CaCO3. The spatial variability in these soil parameters was depicted through soil maps generated in a GIS environment. The results revealed that the soil in the study area was exposed to salt intrusion, which could be mainly attributed to irrigation practices in the state of Punjab. Most of the soil samples of the study area were slightly or moderately saline with a few salt-free sites. Furthermore, the majority of the soil samples were calcareous and a few samples were alkaline or sodic in nature. A comparative analysis of temporal satellite datasets of Landsat 7 ETM+ and Landsat 8 OLI_TIRS of 2000 and 2014, respectively, revealed that the water body showed a slight decreasing trend from 2.46 km2 in 2000 to 1.87 km2 in 2014, while the human settlements and other built-up areas expanded from 586.25 to 891.09 km2 in a span of 14 years. The results also showed a decrease in area under barren land from 68.9847 km2 in 2000 to 15.26 km2 in 2014. A significant correlation was observed between the digital number (DN) of the near-infrared band and pH and EC. Therefore, it is suggested that the present study can be applied to projects with special relevance to soil scientists, environmental scientists and planning agencies that

  14. Geo-Spatial Multi-criteria Analysis for Wave Energy System Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Ana; Pacheco, Miguel (Instituto Hidrografico, Rua das Trinas, 49, Lisboa (PT)); Jorge, Raquel Lopes, M. F. P.; Gato, L. M. C. (IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, Lisboa (PT))

    2007-07-01

    The growing requirements for renewable energy production lead to the development of a new series of systems, including wave energy conversion systems. Due to their sensitivity and the impact of the aggressive marine environment, the selection of the most adequate location for these systems is a major and very important task. Several factors, such as technological limitations, environmental conditions, administrative and logistic conditions, have to be taken into account in order to support the decision for best location. This paper describes a geo-spatial multi-criteria analysis methodology, based on geographic information systems technology, for selection of the best location to deploy a wave energy farm. This methodology is not conversion system dependent and therefore can be easily customized for different systems and conditions. Selection factors can include, for example, ocean depth, bottom type, underwater cables, marine protected areas, ports location, shoreline, power grid location, military exercise areas, climatology of wave significant height, period and direction. A case study demonstrating this methodology is presented, for an area offshore the Portuguese southwest coast. The system output allows a clear identification of the best spots for a wave energy farm. It is not just a simple Boolean result showing valid and invalid locations, but a layer with a graded suitability for farm deployment.

  15. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology

    Science.gov (United States)

    Chase, Arlen F.; Fisher, Christopher T.; Leisz, Stephen J.; Weishampel, John F.

    2012-01-01

    The application of light detection and ranging (LiDAR), a laser-based remote-sensing technology that is capable of penetrating overlying vegetation and forest canopies, is generating a fundamental shift in Mesoamerican archaeology and has the potential to transform research in forested areas world-wide. Much as radiocarbon dating that half a century ago moved archaeology forward by grounding archaeological remains in time, LiDAR is proving to be a catalyst for an improved spatial understanding of the past. With LiDAR, ancient societies can be contextualized within a fully defined landscape. Interpretations about the scale and organization of densely forested sites no longer are constrained by sample size, as they were when mapping required laborious on-ground survey. The ability to articulate ancient landscapes fully permits a better understanding of the complexity of ancient Mesoamerican urbanism and also aids in modern conservation efforts. The importance of this geospatial innovation is demonstrated with newly acquired LiDAR data from the archaeological sites of Caracol, Cayo, Belize and Angamuco, Michoacán, Mexico. These data illustrate the potential of technology to act as a catalytic enabler of rapid transformational change in archaeological research and interpretation and also underscore the value of on-the-ground archaeological investigation in validating and contextualizing results. PMID:22802623

  16. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology.

    Science.gov (United States)

    Chase, Arlen F; Chase, Diane Z; Fisher, Christopher T; Leisz, Stephen J; Weishampel, John F

    2012-08-07

    The application of light detection and ranging (LiDAR), a laser-based remote-sensing technology that is capable of penetrating overlying vegetation and forest canopies, is generating a fundamental shift in Mesoamerican archaeology and has the potential to transform research in forested areas world-wide. Much as radiocarbon dating that half a century ago moved archaeology forward by grounding archaeological remains in time, LiDAR is proving to be a catalyst for an improved spatial understanding of the past. With LiDAR, ancient societies can be contextualized within a fully defined landscape. Interpretations about the scale and organization of densely forested sites no longer are constrained by sample size, as they were when mapping required laborious on-ground survey. The ability to articulate ancient landscapes fully permits a better understanding of the complexity of ancient Mesoamerican urbanism and also aids in modern conservation efforts. The importance of this geospatial innovation is demonstrated with newly acquired LiDAR data from the archaeological sites of Caracol, Cayo, Belize and Angamuco, Michoacán, Mexico. These data illustrate the potential of technology to act as a catalytic enabler of rapid transformational change in archaeological research and interpretation and also underscore the value of on-the-ground archaeological investigation in validating and contextualizing results.

  17. 3D Integration of MEMS and IC: Design, technology and simulations

    OpenAIRE

    Schjølberg-Henriksen, Kari

    2009-01-01

    * 3D integration: Opportunities and trends* e-CUBES: Tire pressure monitoring system (TPMS)* Package design including thermo-mechanical modeling* Technology development* Sensor packaging concept* Gold stud bump bonding* Device characterization and testing* Summary and outlook 3D Integration of MEMS and IC: Design, technology and simulations

  18. Climate Change Science Teaching through Integration of Technology in Instruction and Research

    Science.gov (United States)

    Sriharan, S.; Ozbay, G.; Robinson, L.; Klimkowski, V.

    2015-12-01

    This presentation demonstrates the importance of collaborations between the institutions with common focus on offering the academic program on climate change science. Virginia State University (VSU) developed and established the course on climate change and adaptation, AGRI 350 for undergraduates, in cooperation with two HBCUs, Delaware State University (DSU) and Morgan State University (MSU). This program was developed to enhance the science curriculum with funding from the USDA NIFA. The hands-on research opportunities for students were supported by the NSF HBCU UP Supplement Grant at VSU. The technical guidance and lesson plans were available through the courtesy of the AMS and faculty/student team training at the NCAR. In the initial stages, the faculty members participated in faculty development workshops hosted by the AMS and NCAR. This contributed to trained faculty members developing the courses on Climate Change at VSU, DSU, and MSU. To create awareness of global climate change and exposure of students to international programs, seven students from VSU, MSU, and DSU participated in the Climate Change course (ENS 320) at the University of Sunshine Coast (USC), Australia. This international experience included faculty members in using SimCLIM for climate change data into decision-making with regard to potential changes to cropping systems and tree growth. The Climate Change program at VSU, DSU, and MSU is emerging into comprehensive academic program which includes use of case studies and exchange of students' reflections with their peers through discussion board and videoconferencing, hands-on research on water quality monitoring and mapping the study sites, and integration of geospatial technologies and i-Tree. In addition, the students' engagement in intensive research was conducted through hands-on experience with Scanning Electron Microscopy in the Marine Science Department, University of Hawaii at Hilo in summer 2015.

  19. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  20. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  1. An IRT Analysis of Preservice Teacher Self-Efficacy in Technology Integration

    Science.gov (United States)

    Browne, Jeremy

    2011-01-01

    The need for rigorously developed measures of preservice teacher traits regarding technology integration training has been acknowledged (Kay 2006), but such instruments are still extremely rare. The Technology Integration Confidence Scale (TICS) represents one such measure, but past analyses of its functioning have been limited by sample size and…

  2. Smart Power: New power integrated circuit technologies and their applications

    Science.gov (United States)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  3. 75 FR 10309 - Announcement of National Geospatial Advisory Committee Meeting

    Science.gov (United States)

    2010-03-05

    ... Geospatial Advisory Committee (NGAC) will meet on March 24-25, 2010 at the One Washington Circle Hotel, 1... implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting...

  4. GEO-SPATIAL MODELING OF TRAVEL TIME TO MEDICAL FACILITIES IN MUNA BARAT DISTRICT, SOUTHEAST SULAWESI PROVINCE, INDONESIA

    Directory of Open Access Journals (Sweden)

    Nelson Sula

    2018-03-01

    Full Text Available Background: Health services are strongly influenced by regional topography. Road infrastructure is a key in access to health services. The geographic information system becomes a tool in modeling access to health services. Objective: To analyze geospatial data of the travel time to medical facilities in Muna Barat district, Southeast Sulawesi Province, Indonesia. Methods: This research used geospatial analysis with classification of raster data then overlaid with raster data such as Digital Elevation Modeling (DEM, Road of Vector data, and the point of Public Health Center (Puskesmas. Results: The result of geospatial analysis showed that the travel time to Puskesmas in Napano Kusambi and Kusambi sub districts is between 90-120 minutes, and travel time to the hospital in Kusambi sub district is required more than 2 hours. Conclusion: The output of this geospatial analysis can be an input for local government in planning infrastructure development in Muna Barat District, Indonesia.

  5. Integration thermal processes through Pinch technology

    International Nuclear Information System (INIS)

    Rios H, Carlos Mario; Grisales Rincon, Rogelio; Cardona, Carlos Ariel

    2004-01-01

    This paper presents the techniques of heat integration used for process optimization, their fortresses and weaknesses during the implementation in several specific process are also discussed. It is focused to the pinch technology, explaining algorithms for method applications in the industry. The paper provides the concepts and models involved in different types of commercial software applying this method for energy cost reduction, both in design of new plants and improve of old ones. As complement to benefits of the energy cost reduction it is analysed other favorable aspects of process integration, as the emissions waste reduction and the combined heat end power systems

  6. Rural School Math and Science Teachers' Technology Integration Familiarization

    Science.gov (United States)

    Kalonde, Gilbert

    2017-01-01

    This study explored the significance of technology integration familiarization and the subsequent PD provided to rural middle school teachers with several opportunities to gain technological skills for technology use in rural middle school math and science classrooms. In order to explore the use of technology in rural schools, this study surveyed…

  7. Phenomenological Investigation of Elementary School Teachers Who Successfully Integrated Instructional Technology into the Curriculum

    Science.gov (United States)

    Walker, Lori Raquel; Shepard, MaryFriend

    2011-01-01

    Technology integration in school curricula promotes student achievement, yet many teachers are not successfully integrating technology for learning. This phenomenological study explored the strategies of 10 elementary teachers in Georgia who overcame barriers to technology integration to successfully incorporate lessons within the public school…

  8. Integrative Technologies Complicate Communication during Development Work Context: Industry-Academy Collaboration

    Directory of Open Access Journals (Sweden)

    Pauliina Mansikkamäki

    2007-06-01

    Full Text Available A competition in the electronics industry is hard. For most companies, strong technological know-how will be a competitiveness factor in the future. The future technologies will be increasingly based on a combination of innovations from several branches of science. Also, many innovations are based on external technology integration. The days are over when one company could internally create all of the technology it needs to maintain its competitiveness. One approach of promising framework for the development of a new integrative technology is an industrial R&D network combined with industrial-academic collaboration. However, this kind of collaboration is a challenging undertaking. Companies in a value network might have very different expectations regarding a new technology due to differences in their position in the value network or their company strategy. One of the main challenges in an R&D network is to translate the expectations of all parties involved into new technology solutions so that all in the R&D network feel they have obtained benefit. One of key factors on creating successful industrial-academic collaboration is open and trustful communication. But, there are communication challenges, intellectual property sharing problems, and discussions regarding the sharing of cost and benefits. Developing a new integrative technology structure requires seamless teamwork, holistic and interdisciplinary understanding, and open communication throughout the R&D team and the industrial-academic network. The focus of this paper is on network communication, knowledge communication and team communication. The results of this study indicate that successful communication in an industrial-academic R&D network to develop a new integrative technology improves knowledge creation and accelerates commercialization of the technology.

  9. Factors Influencing the Integration of Technology by Community College Adjunct Faculty

    Science.gov (United States)

    Paver, Jonathan David

    2012-01-01

    This research examined the factors that predict intention to integrate technology into instruction by community college adjunct faculty. For this study the integration of technology was defined as beyond simple occasional use, within the next academic year. The decomposed theory of planned behavior was tested for its predictive ability with this…

  10. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  11. Revisiting Teacher Adoption of Technology: Research Implications and Recommendations for Successful Full Technology Integration

    Science.gov (United States)

    Buckenmeyer, Janet

    2008-01-01

    Most teachers are still failing to fully integrate technologies in their classrooms to improve student achievement. If certain conditions exist, however, they are more likely to accept and use appropriate technologies in significant instructional ways. Relevant professional development and continuous access to needed resources are two significant…

  12. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    International Nuclear Information System (INIS)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun

    2004-02-01

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds

  13. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2004-02-15

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds.

  14. Organizational needs for managing and preserving geospatial data and related electronic records

    Directory of Open Access Journals (Sweden)

    R R Downs

    2006-01-01

    Full Text Available Government agencies and other organizations are required to manage and preserve records that they create and use to facilitate future access and reuse. The increasing use of geospatial data and related electronic records presents new challenges for these organizations, which have relied on traditional practices for managing and preserving records in printed form. This article reports on an investigation of current and future needs for managing and preserving geospatial electronic records on the part of localand state-level organizations in the New York City metropolitan region. It introduces the study and describes organizational needs observed, including needs for organizational coordination and interorganizational cooperation throughout the entire data lifecycle.

  15. Integrated Microelectronics and Photonics Active Cooling Technology (IMPACT)

    National Research Council Canada - National Science Library

    Bowers, John

    2003-01-01

    ...) coolers and their integration with microelectronics and photonics. The majority of our research involves the development of this new technology through nanostructured materials design and growth...

  16. SPECTRAL COLOR INDICES BASED GEOSPATIAL MODELING OF SOIL ORGANIC MATTER IN CHITWAN DISTRICT, NEPAL

    Directory of Open Access Journals (Sweden)

    U. K. Mandal

    2016-06-01

    Full Text Available Space Technology provides a resourceful-cost effective means to assess soil nutrients essential for soil management plan. Soil organic matter (SOM is one of valuable controlling productivity of crops by providing nutrient in farming systems. Geospatial modeling of soil organic matter is essential if there is unavailability of soil test laboratories and its strong spatial correlation. In the present analysis, soil organic matter is modeled from satellite image derived spectral color indices. Brightness Index (BI, Coloration Index (CI, Hue Index (HI, Redness Index (RI and Saturation Index (SI were calculated by converting DN value to radiance and radiance to reflectance from Thematic Mapper image. Geospatial model was developed by regressing SOM with color indices and producing multiple regression model using stepwise regression technique. The multiple regression equation between SOM and spectral indices was significant with R = 0. 56 at 95% confidence level. The resulting MLR equation was then used for the spatial prediction for the entire study area. Redness Index was found higher significance in estimating the SOM. It was used to predict SOM as auxiliary variables using cokringing spatial interpolation technique. It was tested in seven VDCs of Chitwan district of Nepal using Thematic Mapper remotely sensed data. SOM was found to be measured ranging from 0.15% to 4.75 %, with a mean of 2.24 %. Remotely sensed data derived spectral color indices have the potential as useful auxiliary variables for estimating SOM content to generate soil fertility management plans.

  17. Geospatial Health: the first five years

    Directory of Open Access Journals (Sweden)

    Jürg Utzinger

    2011-11-01

    Full Text Available Geospatial Health is an international, peer-reviewed scientific journal produced by the Global Network for Geospatial Health (GnosisGIS. This network was founded in 2000 and the inaugural issue of its official journal was published in November 2006 with the aim to cover all aspects of geographical information system (GIS applications, remote sensing and other spatial analytic tools focusing on human and veterinary health. The University of Naples Federico II is the publisher, producing two issues per year, both as hard copy and an open-access online version. The journal is referenced in major databases, including CABI, ISI Web of Knowledge and PubMed. In 2008, it was assigned its first impact factor (1.47, which has now reached 1.71. Geospatial Health is managed by an editor-in-chief and two associate editors, supported by five regional editors and a 23-member strong editorial board. This overview takes stock of the first five years of publishing: 133 contributions have been published so far, primarily original research (79.7%, followed by reviews (7.5%, announcements (6.0%, editorials and meeting reports (3.0% each and a preface in the first issue. A content analysis of all the original research articles and reviews reveals that three quarters of the publications focus on human health with the remainder dealing with veterinary health. Two thirds of the papers come from Africa, Asia and Europe with similar numbers of contributions from each continent. Studies of more than 35 different diseases, injuries and risk factors have been presented. Malaria and schistosomiasis were identified as the two most important diseases (11.2% each. Almost half the contributions were based on GIS, one third on spatial analysis, often using advanced Bayesian geostatistics (13.8%, and one quarter on remote sensing. The 120 original research articles, reviews and editorials were produced by 505 authors based at institutions and universities in 52 countries

  18. Affordable Integrated Technology Projects Science Education towards New Horizons

    Science.gov (United States)

    Paoletti, Franco; Carlucci, Lisa Marie

    2009-03-01

    The new-era concept of education supports a type of instruction whereby technology directly acts as a conduit of change, fundamentally altering what is learned, how it is learned, and the role of the educator in the classroom. In our current world, the learning about technology itself has become a goal and a means to successful participation in today's society. Efficient integration of technology to enhance and support the educational process will: 1) provide educators with the resources and the freedom to actualize innovative educational programs; 2) allow educators to be successful in challenging each student to reach his/her highest potential to ultimately increase academic achievement. This study analyzes what technology integration into education means identifying the benefits and the challenges that educators need to meet in order to be successful in their efforts while providing examples of how to successfully implement effective programs under budgetary constraints.

  19. The Teacher Technology Integration Experience: Practice and Reflection in the Classroom

    Directory of Open Access Journals (Sweden)

    Dana Ruggiero

    2015-05-01

    Full Text Available Previous studies indicated that the technology integration practices of teachers in the classroom often did not match their teaching styles. Researchers concluded that this was due, at least partially, to external barriers that prevented teachers from using technology in ways that matched their practiced teaching style. Many of these barriers, such as professional support and access to hardware and software, have been largely diminished over the last twenty years due to an influx of money and strategies for enhancing technology in primary and secondary schools in the United States. This mixed-methods research study was designed to examine the question, “What technology do teachers use and how do they use that technology to facilitate student learning?” K-12 classroom teachers were purposefully selected based on their full-time employment in a public, private, or religious school in a Midwestern state in the United States, supported by the endorsement of a school official. There were 1048 teachers from over 100 school corporations who completed an online survey consisting of six questions about classroom technology tools and professional development involving technology. Survey results suggest that technology integration is pervasive in the classroom with the most often used technology tool identified as PowerPoint. Moreover, teachers identified that training about technology is most effective when it is contextually based in their own classroom. Follow-up interviews were conducted with ten percent (n=111 of the teachers in order to examine the relationship between teachers’ daily classroom use of technology and their pedagogical practices. Results suggest a close relationship; for example, teachers with student-centric technology activities were supported by student-centric pedagogical practices in other areas. Moreover, teachers with strongly student-centered practices tended to exhibit a more pronounced need to create learning

  20. Environment, safety, and health information technology systems integration.

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, David A.; Bayer, Gregory W.

    2006-02-01

    The ES&H Information Systems department, motivated by the numerous isolated information technology systems under its control, undertook a significant integration effort. This effort was planned and executed over the course of several years and parts of it still continue today. The effect was to help move the ES&H Information Systems department toward integration with the corporate Information Solutions and Services center.