WorldWideScience

Sample records for integrating 3d ultrasound

  1. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    Science.gov (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  2. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.

    Science.gov (United States)

    Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T

    2009-10-01

    State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.

  3. Front-End ASICs for 3-D Ultrasound : From Beamforming to Digitization

    NARCIS (Netherlands)

    Chen, C.

    2018-01-01

    This thesis describes the analysis, design and evaluation of front-end application-specific integrated circuits (ASICs) for 3-D medical ultrasound imaging, with the focus on the receive electronics. They are specifically designed for next-generation miniature 3-D ultrasound devices, such as

  4. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    Science.gov (United States)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  5. Low-Power Receive-Electronics for a Miniature 3D Ultrasound Probe

    NARCIS (Netherlands)

    Yu, Z.

    2012-01-01

    This thesis describes the design of a front-end application-specific integrated circuit (ASIC), which will be put into the tip of a miniature ultrasound probe for 3D Trans-Esophageal Echocardiography (TEE). To enable 3D TEE, a matrix piezoelectric ultrasound transducer with more than 2000 elements

  6. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... a channel limited 2-D transducer array and the conventional 3-D beamforming technique, Parallel Beamforming. The first part of the scientific contributions demonstrate that 3-D synthetic aperture imaging achieves a better image quality than the Parallel Beamforming technique. Data were obtained using both...

  7. 2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec

    2018-02-01

    Ultrasound in infertility diagnostics: Ultrasound is used for examination of uterus, tubes, ovaries and peritoneal cause of infertility. It can be used in different menstrual phases: proliferative, periovulatory and secretory phase. Examination of uterus: A 2D scan can measure the size of the uterus (length, width and depth and a 2D flow (colour and power doppler. With 3D technology we can measure the whole volume with VOCAL (virtual organ computer-aided analysis and 3D circulation with the index (VI – vascular index, FI – flow index and VFI – vascular flow index in the uterus. A 2D scan can help us define uterine malformations, fibroids and adenomyosis to a certain extent. However, a 3D scan offers more accurate diagnosis of these malformations. Endometrium is examined separately. With 2D the width is measured and morphology and focal lesions (polyp, fibroids, adhesions are examined. With 3D the real sagital plane for the width measurement can be defined . We can measure the volume of endometrium and subendometrium and 3D circulation in endometrium and subendometrium. The FIS (f luid instlation sonography is very useful when examining the endometrium; saline or gel can be used for uterine instalation. We can measure and define the position of the structures in the endometrium more accurately when they are surrouned by saline or gel. We can view these structures with a surface view, similar to the one used for hysteroscopy. With this information we can explain the pathology to the patient and easily plan the surgical procedures. Examination of the tubes: With 2D US we can see the tubes in the pelvis only if there are dilatations, but sometimes it is difficult to distinguish them from the neighbouring forma- tions. With a 3D ultrasound we can define the shape and continuity of the tube and we can view the tube from different angles (inversion mode. Different contrast media are used for determining tubal patency. Tubal patency can be diagnosed with 2D Hy

  8. 4D ultrasound and 3D MRI registration of beating heart

    International Nuclear Information System (INIS)

    Herlambang, N.; Matsumiya, K.; Masamune, K.; Dohi, T.; Liao, H.; Tsukihara, H.; Takamoto, S.

    2007-01-01

    To realize intra-cardiac surgery without cardio-pulmonary bypass, a medical imaging technique with both high image quality and data acquisition rate that is fast enough to follow heart beat movements is required. In this research, we proposed a method that utilized the image quality of MRI and the speed of ultrasound. We developed a 4D image reconstruction method using image registration of 3D MRI and 4D ultrasound images. The registration method consists of rigid registration between 3D MRI and 3D ultrasound with the same heart beat phase, and non-rigid registration between 3D ultrasound images from different heart beat phases. Non-rigid registration was performed with B-spline based registration using variable spring model. In phantom experiment using balloon phantom, registration accuracy was less than 2 mm for total heart volume variation range of 10%. We applied our registration method on 3D MRI and 4D ultrasound images of a volunteer's beating heart data and confirmed through visual observation that heart beat pattern was well reproduced. (orig.)

  9. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    Science.gov (United States)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  10. 2D/ 3D Quantitative Ultrasound of the Breast

    Science.gov (United States)

    Nasief, Haidy Gerges

    Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to

  11. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    Science.gov (United States)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  12. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Michael [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: ormying@polyu.edu.hk; Sin Manhong [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Pang, Shuk-fan [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-11-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = {pi}/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects.

  13. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    International Nuclear Information System (INIS)

    Ying, Michael; Sin Manhong; Pang, Shuk-fan

    2005-01-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = π/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects

  14. 3D ultrasound imaging : Fast and cost-effective morphometry of musculoskeletal tissue

    NARCIS (Netherlands)

    Weide, Guido; Van Der Zwaard, Stephan; Huijing, Peter A.; Jaspers, Richard T.; Harlaar, Jaap

    2017-01-01

    The developmental goal of 3D ultrasound imaging (3DUS) is to engineer a modality to perform 3D morphological ultrasound analysis of human muscles. 3DUS images are constructed from calibrated freehand 2D B-mode ultrasound images, which are positioned into a voxel array. Ultrasound (US) imaging allows

  15. Picture perfect: benefits and risk of fetal 3D ultrasound.

    Science.gov (United States)

    Wiseman, Claudia S; Kiehl, Ermalynn M

    2007-01-01

    The purpose of this literature review was to survey available information and research related to routine three-dimensional (3D) ultrasound technology in obstetrics, with an emphasis on current medical uses, safety, and availability issues. Several data bases, including Cochrane, WHO, NIH, CINALH, Blackwell Synergy, ERIC, PubMed, and Medline, were used along with information from Internet search engines. Although fetal 3D ultrasound is used in both medical and commercial settings, recent studies focus on its possible uses rather than the more difficult issues of safety and commercial applications. Professional organizations associated with ultrasound technology support limiting ultrasounds in pregnancy to medically necessary events, whereas commercial venues use "direct to consumer" marketing to promote this technology as a way to "see" the baby before it is born. How safe is routine or frequent use of 3D ultrasound? Further research is needed to address these important questions.

  16. A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.

    Science.gov (United States)

    Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius

    2017-06-01

    The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.

  17. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    Directory of Open Access Journals (Sweden)

    Elisee Ilunga-Mbuyamba

    2016-04-01

    Full Text Available In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t and after (3D-iCEUS e n d tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation. Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified.

  18. Chest wall segmentation in automated 3D breast ultrasound scans.

    Science.gov (United States)

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    Science.gov (United States)

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical

  20. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    the important diagnostic information in a noninvasive manner. Diagnostic and therapeutic decisions often require accurate estimates of e.g., organ, cyst, or tumor volumes. 3-D ultrasound imaging can provide these measurements without relying on the geometrical assumptions and operator-dependent skills involved...... is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D scanners is limiting their market share. Row-column addressing of 2-D transducer arrays is a low cost alternative to fully addressed 2-D arrays, for 3-D ultrasound imaging. Using row....... Based on a set of acoustical measurements the center frequency, bandwidth, surface pressure, sensitivity, and acoustical cross-talks were evaluated and discussed. The imaging quality assessments were carried out based on Field II simulations as well as phantom measurements. Moreover, an analysis...

  1. The Application of Ultrasound in 3D Bio-Printing.

    Science.gov (United States)

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  2. The Application of Ultrasound in 3D Bio-Printing

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2016-05-01

    Full Text Available Three-dimensional (3D bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  3. GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Liu Li

    2013-01-01

    Full Text Available Speckle suppression plays an important role in improving ultrasound (US image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU- based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.

  4. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Science.gov (United States)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  5. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging.

    Science.gov (United States)

    Ibrahim, Aya; Hager, Pascal A; Bartolini, Andrea; Angiolini, Federico; Arditi, Marcel; Thiran, Jean-Philippe; Benini, Luca; De Micheli, Giovanni

    2017-08-01

    Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.

  6. Actuator-Assisted Calibration of Freehand 3D Ultrasound System.

    Science.gov (United States)

    Koo, Terry K; Silvia, Nathaniel

    2018-01-01

    Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified "collinear point target" phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration.

  7. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  8. Automated 3D ultrasound measurement of the angle of progression in labor.

    Science.gov (United States)

    Montaguti, Elisa; Rizzo, Nicola; Pilu, Gianluigi; Youssef, Aly

    2018-01-01

    To assess the feasibility and reliability of an automated technique for the assessment of the angle of progression (AoP) in labor by using three-dimensional (3D) ultrasound. AoP was assessed by using 3D transperineal ultrasound by two operators in 52 women in active labor to evaluate intra- and interobserver reproducibility. Furthermore, intermethod agreement between automated and manual techniques on 3D images, and between automated technique on 3D vs 2D images were evaluated. Automated measurements were feasible in all cases. Automated measurements were considered acceptable in 141 (90.4%) out of the 156 on the first assessments and in all 156 after repeating measurements for unacceptable evaluations. The automated technique on 3D images demonstrated good intra- and interobserver reproducibility. The 3D-automated technique showed a very good agreement with the 3D manual technique. Notably, AoP calculated with the 3D automated technique were significantly wider in comparison with those measured manually on 3D images (133 ± 17° vs 118 ± 21°, p = 0.013). The assessment of the angle of progression through 3D ultrasound is highly reproducible. However, automated software leads to a systematic overestimation of AoP in comparison with the standard manual technique thus hindering its use in clinical practice in its present form.

  9. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    National Research Council Canada - National Science Library

    Carson, Paul

    1997-01-01

    This project is to improve the diagnosis and management of patients with breast cancer through development and evaluation of 3D ultrasound imaging and quantification techniques emphasizing vascularity...

  10. Localization of liver tumors in freehand 3D laparoscopic ultrasound

    Science.gov (United States)

    Shahin, O.; Martens, V.; Besirevic, A.; Kleemann, M.; Schlaefer, A.

    2012-02-01

    The aim of minimally invasive laparoscopic liver interventions is to completely resect or ablate tumors while minimizing the trauma caused by the operation. However, restrictions such as limited field of view and reduced depth perception can hinder the surgeon's capabilities to precisely localize the tumor. Typically, preoperative data is acquired to find the tumor(s) and plan the surgery. Nevertheless, determining the precise position of the tumor is required, not only before but also during the operation. The standard use of ultrasound in hepatic surgery is to explore the liver and identify tumors. Meanwhile, the surgeon mentally builds a 3D context to localize tumors. This work aims to upgrade the use of ultrasound in laparoscopic liver surgery. We propose an approach to segment and localize tumors intra-operatively in 3D ultrasound. We reconstruct a 3D laparoscopic ultrasound volume containing a tumor. The 3D image is then preprocessed and semi-automatically segmented using a level set algorithm. During the surgery, for each subsequent reconstructed volume, a fast update of the tumor position is accomplished via registration using the previously segmented and localized tumor as a prior knowledge. The approach was tested on a liver phantom with artificial tumors. The tumors were localized in approximately two seconds with a mean error of less than 0.5 mm. The strengths of this technique are that it can be performed intra-operatively, it helps the surgeon to accurately determine the location, shape and volume of the tumor, and it is repeatable throughout the operation.

  11. 3D segmentation of kidney tumors from freehand 2D ultrasound

    Science.gov (United States)

    Ahmad, Anis; Cool, Derek; Chew, Ben H.; Pautler, Stephen E.; Peters, Terry M.

    2006-03-01

    To completely remove a tumor from a diseased kidney, while minimizing the resection of healthy tissue, the surgeon must be able to accurately determine its location, size and shape. Currently, the surgeon mentally estimates these parameters by examining pre-operative Computed Tomography (CT) images of the patient's anatomy. However, these images do not reflect the state of the abdomen or organ during surgery. Furthermore, these images can be difficult to place in proper clinical context. We propose using Ultrasound (US) to acquire images of the tumor and the surrounding tissues in real-time, then segmenting these US images to present the tumor as a three dimensional (3D) surface. Given the common use of laparoscopic procedures that inhibit the range of motion of the operator, we propose segmenting arbitrarily placed and oriented US slices individually using a tracked US probe. Given the known location and orientation of the US probe, we can assign 3D coordinates to the segmented slices and use them as input to a 3D surface reconstruction algorithm. We have implemented two approaches for 3D segmentation from freehand 2D ultrasound. Each approach was evaluated on a tissue-mimicking phantom of a kidney tumor. The performance of our approach was determined by measuring RMS surface error between the segmentation and the known gold standard and was found to be below 0.8 mm.

  12. Crouzon syndrome associated with acanthosis nigricans: prenatal 2D and 3D ultrasound findings and postnatal 3D CT findings

    DEFF Research Database (Denmark)

    Nørgaard, P.; Hagen, CP; Hove, H.

    2012-01-01

    Crouzon syndrome with acanthosis nigricans (CAN) is a very rare condition with an approximate prevalence of 1 per 1 million newborns. We add the first report on prenatal 2D and 3D ultrasound findings in CAN. In addition we present the postnatal 3D CT findings. The diagnosis was confirmed...

  13. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Advantages and disadvantages of 3D ultrasound of thyroid nodules including thin slice volume rendering

    Directory of Open Access Journals (Sweden)

    Slapa Rafal

    2011-01-01

    Full Text Available Abstract Background The purpose of this study was to assess the advantages and disadvantages of 3D gray-scale and power Doppler ultrasound, including thin slice volume rendering (TSVR, applied for evaluation of thyroid nodules. Methods The retrospective evaluation by two observers of volumes of 71 thyroid nodules (55 benign, 16 cancers was performed using a new TSVR technique. Dedicated 4D ultrasound scanner with an automatic 6-12 MHz 4D probe was used. Statistical analysis was performed with Stata v. 8.2. Results Multiple logistic regression analysis demonstrated that independent risk factors of thyroid cancers identified by 3D ultrasound include: (a ill-defined borders of the nodule on MPR presentation, (b a lobulated shape of the nodule in the c-plane and (c a density of central vessels in the nodule within the minimal or maximal ranges. Combination of features provided sensitivity 100% and specificity 60-69% for thyroid cancer. Calcification/microcalcification-like echogenic foci on 3D ultrasound proved not to be a risk factor of thyroid cancer. Storage of the 3D data of the whole nodules enabled subsequent evaluation of new parameters and with new rendering algorithms. Conclusions Our results indicate that 3D ultrasound is a practical and reproducible method for the evaluation of thyroid nodules. 3D ultrasound stores volumes comprising the whole lesion or organ. Future detailed evaluations of the data are possible, looking for features that were not fully appreciated at the time of collection or applying new algorithms for volume rendering in order to gain important information. Three-dimensional ultrasound data could be included in thyroid cancer databases. Further multicenter large scale studies are warranted.

  15. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, A.K.; Bow, W.J.; Strong, D.S. [and others

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  16. Intraoperative neuronavigation integrated high resolution 3D ultrasound for brainshift and tumor resection control

    Directory of Open Access Journals (Sweden)

    Giovani A.

    2015-06-01

    Full Text Available INTRODUCTION: The link between the neurosurgeon’s knowledge and the scientific improvements made a dramatic change in the field expressed both in impressive drop in the mortality and morbidity rates that were operated in the beginning of the XXth century and in operating with high rates of success cases that were considered inoperable in the past. Neuronavigation systems have been used for many years on surgical orientation purposes especially for small, deep seated lesions where the use of neuronavigation is correlated with smaller corticotomies and with the extended use of transulcal approaches. The major problem of neuronavigation, the brainshift once the dura is opened can be solved either by integrated ultrasound or intraoperative MRI which is out of reach for many neurosurgical departments. METHOD: The procedure of neuronavigation and ultrasonic localization of the tumor is described starting with positioning the patient in the visual field of the neuronavigation integrated 3D ultrasonography system to the control of tumor resection by repeating the ultrasonographic scan in the end of the procedure. DISCUSSION: As demonstrated by many clinical trials on gliomas, the more tumor removed, the better long term control of tumor regrowth and the longer survival with a good quality of life. Of course, no matter how aggressive the surgery, no new deficits are acceptable in the modern era neurosurgery. There are many adjuvant methods for the neurosurgeon to achieve this maximal and safe tumor removal, including the 3T MRI combined with tractography and functional MRI, the intraoperative neuronavigation and neurophysiologic monitoring in both anesthetized and awake patients. The ultrasonography integrated in neuronavigaton comes as a welcomed addition to this adjuvants to help the surgeon achieve the set purpose. CONCLUSION: With the use of this real time imaging device, the common problem of brainshift encountered with the neuronavigation systems

  17. 2D sparse array transducer optimization for 3D ultrasound imaging

    International Nuclear Information System (INIS)

    Choi, Jae Hoon; Park, Kwan Kyu

    2014-01-01

    A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

  18. Learning process for performing and analyzing 3D/4D transperineal ultrasound imaging and interobserver reliability study.

    Science.gov (United States)

    Siafarikas, F; Staer-Jensen, J; Braekken, I H; Bø, K; Engh, M Ellström

    2013-03-01

    To evaluate the learning process for acquiring three- and four-dimensional (3D/4D) transperineal ultrasound volumes of the levator hiatus (LH) dimensions at rest, during pelvic floor muscle (PFM) contraction and on Valsalva maneuver, and for analyzing the ultrasound volumes, as well as to perform an interobserver reliability study between two independent ultrasound examiners. This was a prospective study including 22 women. We monitored the learning process of an inexperienced examiner (IE) performing 3D/4D transperineal ultrasonography and analyzing the volumes. The examination included acquiring volumes during three PFM contractions and three Valsalva maneuvers. LH dimensions were determined in the axial plane. The learning process was documented by estimating agreement between the IE and an experienced examiner (E) using the intraclass correlation coefficient. Agreement was calculated in blocks of 10 ultrasound examinations and analyzed volumes. After the learning process was complete the interobserver reliability for the technique was calculated between these two independent examiners. For offline analysis of the first 10 ultrasound volumes obtained by E, good to very good agreement between E and IE was achieved for all LH measurements except for the left and right levator-urethra gap and pubic arc. For the next 10 analyzed volumes, agreement improved for all LH measurements. Volumes that had been obtained by IE and E were then re-evaluated by IE, and good to very good agreement was found for all LH measurements indicating consistency in volume acquisition. The interobserver reliability study showed excellent ICC values (ICC, 0.81-0.97) for all LH measurements except the pubic arc (ICC = 0.67). 3D/4D transperineal ultrasound is a reliable technique that can be learned in a short period of time. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  19. Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.

    Science.gov (United States)

    Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William

    2018-06-04

    The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.

  20. Inter-rater reliability in the classification of supraspinatus tendon tears using 3D ultrasound – a question of experience?

    Directory of Open Access Journals (Sweden)

    Giorgio Tamborrini

    2016-09-01

    Full Text Available Background: Three-dimensional (3D ultrasound of the shoulder is characterized by a comparable accuracy to two-dimensional (2D ultrasound. No studies investigating 2D versus 3D inter-rater reliability in the detection of supraspinatus tendon tears taking into account the level of experience of the raters have been carried out so far. Objectives: The aim of this study was to determine the inter-rater reliability in the analysis of 3D ultrasound image sets of the supraspinatus tendon between sonographer with different levels of experience. Patients and methods: Non-interventional, prospective, observational pilot study of 2309 images of 127 adult patients suffering from unilateral shoulder pain. 3D ultrasound image sets were scored by three raters independently. The intra-and interrater reliabilities were calculated. Results: There was an excellent intra-rater reliability of rater A in the overall classification of supraspinatus tendon tears (2D vs 3D κ = 0.892, pairwise reliability 93.81%, 3D scoring round 1 vs 3D scoring round 2 κ = 0.875, pairwise reliability 92.857%. The inter-rater reliability was only moderate compared to rater B on 3D (κ = 0.497, pairwise reliability 70.95% and fair compared to rater C (κ = 0.238, pairwise reliability 42.38%. Conclusions: The reliability of 3D ultrasound of the supraspinatus tendon depends on the level of experience of the sonographer. Experience in 2D ultrasound does not seem to be sufficient for the analysis of 3D ultrasound imaging sets. Therefore, for a 3D ultrasound analysis new diagnostic criteria have to be established and taught even to experienced 2D sonographers to improve reproducibility.

  1. Prenatal 3D Ultrasound Diagnostics in Cleidocranial Dysplasia

    DEFF Research Database (Denmark)

    Hermann, NV; Hove, HD; Jørgensen, C

    2009-01-01

    A 34-year-old Caucasian woman with cleidocranial dysplasia (CCD) and a known family history of CCD was referred for an ultrasound examination in the first trimester of her second pregnancy. Molecular genetic analysis of the RUNX2 gene was non-informative. A routine 2D ultrasound examination carried...

  2. A 3D ultrasound study of sinus tract formation in hidradenitis suppurativa

    DEFF Research Database (Denmark)

    Wortsman, Ximena; Jemec, Gregor

    2013-01-01

    Imaging of hidradenitis suppurativa allows the study of both the lesion morphology and evolution. Hidradenitis lesions of different stages were studied using 3D ultrasound in a cross sectional pilot study. A total of 25 HS patients (18 female/ 7 male, aged 18-46 year-old) and 10 healthy controls (5...... female/5 male, aged 21-49 year-old) were studied. All patients were referred by dermatologists. All examinations were performed on the right axilla and compared with both controls and the skin outside the lesional areas. 3D ultrasound images demonstrated enlargement of the deepest portion of the hair...

  3. Usefulness limitation of 3D-ultrasound diagnosis of breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Yong Seok; Chung, Soo Young; Yang, Ik; Lee, Kyung Won; Kim, Hong Dae; Shin, Sang Joon; Chung, Bong Wha [College of Medicine, Hallym Univ., Seoul (Korea, Republic of)

    2001-09-01

    To compare 3D ultrasound (3D-US) with 2D ultrasound (2D-US) in terms of their usefulness and limitations in the diagnosis of breast masses. We obtained 2D and 3D US images of 37 breast lesions present in 20 cases of fibroadenoma, nine of cancer, and eight of fibrocystic disease proven in a total of 26 cases [ fibroadenoma (n=13), breast cancer (n=9), fibrocystic disease (n=4)] by histologic examination, and by clinical evaluation and clinical evaluation with sonographic imaging in eleven. When comparing 3D and 2D-US images we had no prior information regarding detection rate according to the size of lesions, whether or not internal and boundary echo patterns could be interpreted, accurate differentiation between tumorous and non-tumorous lesions, or the accuracy with which benign and malignant tumors could be differentiated. For lesions of 1 cm or less in diameter the detection rate of 3D-US was lower than that of 2D-US, but for lesions over 1 cm there was no difference between the two modalities. In fibroadenoma and breast cancer, 3D-US was more useful than 2D-US for the evaluation of both internal and boundary echo, but with fibrocystic disease and in the diagnosis of tumor/non-tumor, there was no significant difference. In breast cancer, however, 3D-US more accurately determined malignancy, and in fibroadenoma, because of the pseudospicule revealed by 3D-US, this modality was less exact in determining benignancy. In the evaluation of internal and boundary echo in breast mass diagnosis, 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was low, and since in some benign cases a pseudospicule was apparent, the possibility of confusion with malignancy arose. For these reasons, the usefulness of 3D-US was limited.

  4. Usefulness limitation of 3D-ultrasound diagnosis of breast masses

    International Nuclear Information System (INIS)

    Cheon, Yong Seok; Chung, Soo Young; Yang, Ik; Lee, Kyung Won; Kim, Hong Dae; Shin, Sang Joon; Chung, Bong Wha

    2001-01-01

    To compare 3D ultrasound (3D-US) with 2D ultrasound (2D-US) in terms of their usefulness and limitations in the diagnosis of breast masses. We obtained 2D and 3D US images of 37 breast lesions present in 20 cases of fibroadenoma, nine of cancer, and eight of fibrocystic disease proven in a total of 26 cases [ fibroadenoma (n=13), breast cancer (n=9), fibrocystic disease (n=4)] by histologic examination, and by clinical evaluation and clinical evaluation with sonographic imaging in eleven. When comparing 3D and 2D-US images we had no prior information regarding detection rate according to the size of lesions, whether or not internal and boundary echo patterns could be interpreted, accurate differentiation between tumorous and non-tumorous lesions, or the accuracy with which benign and malignant tumors could be differentiated. For lesions of 1 cm or less in diameter the detection rate of 3D-US was lower than that of 2D-US, but for lesions over 1 cm there was no difference between the two modalities. In fibroadenoma and breast cancer, 3D-US was more useful than 2D-US for the evaluation of both internal and boundary echo, but with fibrocystic disease and in the diagnosis of tumor/non-tumor, there was no significant difference. In breast cancer, however, 3D-US more accurately determined malignancy, and in fibroadenoma, because of the pseudospicule revealed by 3D-US, this modality was less exact in determining benignancy. In the evaluation of internal and boundary echo in breast mass diagnosis, 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was low, and since in some benign cases a pseudospicule was apparent, the possibility of confusion with malignancy arose. For these reasons, the usefulness of 3D-US was limited

  5. Acrania/encephalocele sequence (exencephaly) associated with 92,XXXX karyotype: early prenatal diagnosis at 9(+5) weeks by 3D transvaginal ultrasound and coelocentesis.

    Science.gov (United States)

    Tonni, Gabriele; Ventura, Alessandro; Bonasoni, Maria Paola

    2009-09-01

    A 27-year-old pregnant woman was diagnosed by 3D transvaginal ultrasound as carrying a fetus of 9(+5) weeks gestation affected by acrania/encephalocele (exencephaly) sequence. A 2D transvaginal ultrasound-guided aspiration of 5 mL of extra-coelomic fluid was performed under cervical block before uterine suction. Conventional cytogenetic analysis demonstrated a 92,XXXX karyotype. Transvaginal 2D ultrasound-guided coelocentesis for rapid karyotyping can be proposed to women who are near to miscarriage or in cases where a prenatal ultrasound diagnosis of congenital anomaly is performed at an early stage of development. Genetic analysis can be performed using traditional cytogenetic analysis or can be aided by fluorescence in situ hybridization (FISH). Coelocentesis may become an integral part of first trimester armamentarium and may be clinically useful in the understanding of the pathogenesis of early prenatally diagnosed congenital anomalies.

  6. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Poulin, Eric; Gardi, Lori; Fenster, Aaron; Pouliot, Jean; Beaulieu, Luc

    2015-01-01

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments

  7. Are 3D ultrasound and office hysteroscopy useful for the assessment of uterine cavity after late foetal loss?

    Science.gov (United States)

    Thellier, E; Levaillant, J-M; Pourcelot, A-G; Houllier, M; Fernandez, H; Capmas, P

    2018-05-01

    To assess the efficacy of office hysteroscopy and 3D ultrasound for the diagnostic of uterine anomalies after late foetal loss. This retrospective observational study took place in the gynaecologic unit of a teaching hospital from 2009 to 2014. Women with late foetal loss (<22 weeks of gestation) had an office hysteroscopy and 3D ultrasound within three months after delivery. The results of the ultrasound and hysteroscopy were recorded and compared. Eighty women were included with a mean age of 29.8 years (28.2-31.4). Forty-seven women had both hysteroscopy and 3D ultrasound, and a uterine cavity's anomaly (bicornuate uterus, T-Shape uterus and septate uterus) was found in ten women (21%) at 3D sonography and in 13 women (28%) at office hysteroscopy. Concordance between the two exams was very good with a kappa at 0.83. In three cases, a uterine cavity's anomaly was found at hysteroscopy whereas sonography was normal. Anomalies at ultrasound (uterine cavity's anomaly, myometrium anomaly or ovarian anomaly) were found in 27.6% of cases. Both 3D ultrasound and office hysteroscopy are useful for assessment of the uterine cavity after late foetal loss. The application of these two exams is important, as hysteroscopy is generally used for assessment of the uterine cavity and endometrium, while 3D ultrasound is generally used to identify the precise type of uterine malformation and for the examination of the myometrium and annexes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. 3D power Doppler ultrasound in early diagnosis of preeclampsia.

    Science.gov (United States)

    Neto, R Moreira; Ramos, J G L

    2016-01-01

    Preeclampsia is a known cause of maternal, fetal and neonatal morbidity and mortality. Thus, evaluation of the predicting value of comparing 3D power Doppler indices (3DPD) of uteroplacental circulation (UPC) in the first and second trimester in patients who developed preeclampsia (PE) and those who did not and testing the hypothesis that the parameters of vascularization and placenta flow intensity, as determined by three-dimensional ultrasound (3D), are different in normal pregnancies compared with preeclampsia, could be a suitable screening method. A prospective observational study using 3D power Doppler were performed to evaluate the placental perfusion in 96 pregnant women who came to do the ultrasound routine between 11 and 14 weeks. The placental vascular index (VI), flow index (FI), blood vessels and blood flow index (VFI) by three-dimensional Doppler histogram were calculated. All patients repeated the exam between 16 and 20 weeks. The outcome was scored as normal or preeclamptic. Placental vascular indices including VI, FI and VFI were significantly lower in preeclamptic placentas compared with controls in the study performed in the second trimester (ppower Doppler assessment of placental vascular indices in the second trimester has the potential to detect women at risk for subsequent development of PE. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  9. A framework for human spine imaging using a freehand 3D ultrasound system

    NARCIS (Netherlands)

    Purnama, Ketut E.; Wilkinson, Michael H.F.; Veldhuizen, Albert G.; van Ooijen, Peter M.A.; Lubbers, Jaap; Burgerhof, Johannes G.M.; Sardjono, Tri A.; Verkerke, Gijsbertus Jacob

    2010-01-01

    The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis

  10. Diagnosis of an Omphalocele with 3 Dimension Ultrasound

    Directory of Open Access Journals (Sweden)

    Vural Dagli

    2006-12-01

    Full Text Available Fetal omphalocele is a congenital defect of the abdominal wall that allows some of the abdominal organs to protrude through it. It might be associated with chromosomal abnormalities and fetal anomalies.Two dimension (2D ultrasound is the main diagnosis\tmethod. 3D ultrasound can make the diagnosis easier. In this case report we present an omphalocele diagnosed with ultrasound prenatally. We discuss the role of 2D and 3D ultrasound while diagnosing omphalocele prenatally.

  11. Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography.

    Science.gov (United States)

    Golatta, Michael; Baggs, Christina; Schweitzer-Martin, Mirjam; Domschke, Christoph; Schott, Sarah; Harcos, Aba; Scharf, Alexander; Junkermann, Hans; Rauch, Geraldine; Rom, Joachim; Sohn, Christof; Heil, Joerg

    2015-04-01

    Automated three-dimensional (3D) breast ultrasound (US) systems are meant to overcome the shortcomings of hand-held ultrasound (HHUS). The aim of this study is to analyze and compare clinical performance of an automated 3D-US system by comparing it with HHUS, mammography and the clinical gold standard (defined as the combination of HHUS, mammography and-if indicated-histology). Nine hundred and eighty three patients (=1,966 breasts) were enrolled in this monocentric, explorative and prospective cohort study. All examinations were analyzed blinded to the patients´ history and to the results of the routine imaging. The agreement of automated 3D-US with HHUS, mammography and the gold standard was assessed with kappa statistics. Sensitivity, specificity and positive and negative predictive value were calculated to assess the test performance. Blinded to the results of the gold standard the agreement between automated 3D-US and HHUS or mammography was fair, given by a Kappa coefficient of 0.31 (95% CI [0.26;0.36], p automated 3D-US the sensitivity improved to 84% (NPV = 99%, specificity = 85%). The results of this study let us suggest, that automated 3D-US might be a helpful new tool in breast imaging, especially in screening.

  12. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.

    Science.gov (United States)

    Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin

    2017-07-01

    Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.

  13. 4-D ICE: A 2-D Array Transducer With Integrated ASIC in a 10-Fr Catheter for Real-Time 3-D Intracardiac Echocardiography.

    Science.gov (United States)

    Wildes, Douglas; Lee, Warren; Haider, Bruno; Cogan, Scott; Sundaresan, Krishnakumar; Mills, David M; Yetter, Christopher; Hart, Patrick H; Haun, Christopher R; Concepcion, Mikael; Kirkhorn, Johan; Bitoun, Marc

    2016-12-01

    We developed a 2.5 ×6.6 mm 2 2 -D array transducer with integrated transmit/receive application-specific integrated circuit (ASIC) for real-time 3-D intracardiac echocardiography (4-D ICE) applications. The ASIC and transducer design were optimized so that the high-voltage transmit, low-voltage time-gain control and preamp, subaperture beamformer, and digital control circuits for each transducer element all fit within the 0.019-mm 2 area of the element. The transducer assembly was deployed in a 10-Fr (3.3-mm diameter) catheter, integrated with a GE Vivid E9 ultrasound imaging system, and evaluated in three preclinical studies. The 2-D image quality and imaging modes were comparable to commercial 2-D ICE catheters. The 4-D field of view was at least 90 ° ×60 ° ×8 cm and could be imaged at 30 vol/s, sufficient to visualize cardiac anatomy and other diagnostic and therapy catheters. 4-D ICE should significantly reduce X-ray fluoroscopy use and dose during electrophysiology ablation procedures. 4-D ICE may be able to replace transesophageal echocardiography (TEE), and the associated risks and costs of general anesthesia, for guidance of some structural heart procedures.

  14. Realistic deformable 3D numeric phantom for transcutaneous ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sergio Shiguemi, E-mail: fernando.okara@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Engenharia

    2017-01-15

    Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young's Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes. (author)

  15. Wall stress analysis of abdominal aortic aneurysms using 3D ultrasound

    NARCIS (Netherlands)

    Kok, A. M.; Nguyen, V.L.; Speelman, L.; Schurink, G.W.H.; van de Vosse, F.N.; Lopata, R.G.P.

    2014-01-01

    Wall stress analysis of abdominal aortic aneurysms is a novel tool that has proven high potential to improve risk stratification of abdominal aortic aneurysms (AAAs). Wall stress analysis is based on computed tomography (CT) and magnetic resonance imaging, however, 3D ultrasound (US) has not been

  16. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    Science.gov (United States)

    2000-09-01

    Boehm, T., Shing, Y ., Fdkai, N., Vasios, G., Lane, 29. Parke, A., Bhattacherjee, P., Palmer, R. M., and Lazarus , N. R. W. S., Flynn, E., Birkhead, J...P. L. Utility of 3D ultrasound in the R. A., Moses, M., Lane, W. S., Cao, Y ., Sage, E. H., and Folkman , J. discrimination and detection of breast...References/Appendices 7), (Abstracts y (mm) (min/set) 6,7,9,10,18); 5) expanding the field of view 5x5x5 subvols. 0.17 5.3 by combining several partially

  17. Automatic localization of the da Vinci surgical instrument tips in 3-D transrectal ultrasound.

    Science.gov (United States)

    Mohareri, Omid; Ramezani, Mahdi; Adebar, Troy K; Abolmaesumi, Purang; Salcudean, Septimiu E

    2013-09-01

    Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci surgical system is the current state-of-the-art treatment option for clinically confined prostate cancer. Given the limited field of view of the surgical site in RALRP, several groups have proposed the integration of transrectal ultrasound (TRUS) imaging in the surgical workflow to assist with accurate resection of the prostate and the sparing of the neurovascular bundles (NVBs). We previously introduced a robotic TRUS manipulator and a method for automatically tracking da Vinci surgical instruments with the TRUS imaging plane, in order to facilitate the integration of intraoperative TRUS in RALRP. Rapid and automatic registration of the kinematic frames of the da Vinci surgical system and the robotic TRUS probe manipulator is a critical component of the instrument tracking system. In this paper, we propose a fully automatic registration technique based on automatic 3-D TRUS localization of robot instrument tips pressed against the air-tissue boundary anterior to the prostate. The detection approach uses a multiscale filtering technique to identify and localize surgical instrument tips in the TRUS volume, and could also be used to detect other surface fiducials in 3-D ultrasound. Experiments have been performed using a tissue phantom and two ex vivo tissue samples to show the feasibility of the proposed methods. Also, an initial in vivo evaluation of the system has been carried out on a live anaesthetized dog with a da Vinci Si surgical system and a target registration error (defined as the root mean square distance of corresponding points after registration) of 2.68 mm has been achieved. Results show this method's accuracy and consistency for automatic registration of TRUS images to the da Vinci surgical system.

  18. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  19. Prenatal diagnosis of bilateral anophthalmia by 3D "reverse face" view ultrasound and magnetic resonance imaging.

    Science.gov (United States)

    Araujo Júnior, Edward; Kawanami, Tatiana Emy; Nardozza, Luciano Marcondes Machado; Milani, Hérbene José Figuinha; Oliveira, Patrícia Soares; Moron, Antonio Fernandes

    2012-12-01

    Primary anophthalmia is a rare congenital malformation that affects 0.6/10,000 liveborn infants. It is usually associated with central nervous system malformations, aneuploidies, cytomegalovirus infection and mental retardation and it can also be part of genetic conditions such as Fraser, Goltz, Goldenhar, Waardenburg and Lenz syndromes. Neonatal prognosis depends on whether anophthalmia is an isolated malformation, or it is associated with other defects or part of a syndrome. A healthy 43-year-old woman, G4 P3 with three previous healthy children, was referred to our clinic for a routine obstetric ultrasound at 28 weeks' gestation. The fetal eye globes and lenses could not be seen on two-dimensional (2D) ultrasound, which led to the diagnosis of bilateral congenital anophthalmia. No other fetal malformations were detected. At 30 weeks' gestation, a three-dimensional (3D) ultrasound was performed using the rendering mode and "reverse face" view. Using this technique, the absence of both eye globes could be clearly seen through a "slit". 3D-ultrasound allowed the parents to better understand their child's problem and possible postnatal implications. Fetal magnetic resonance imaging (MRI) was also performed, to study the fetal cortex in more detail. This exam revealed right cerebral hemisphere sulci and gyri hypoplasia. At 41 1/7 weeks, she went into spontaneous labor and delivered vaginally a 3525 g male infant with Apgar scores of 9 and 10. Postnatal exams confirmed bilateral congenital anophthalmia. This is the first case report in the literature of prenatal diagnosis of bilateral anophthalmia using 3D "reverse face" view ultrasound and MRI. Copyright © 2012. Published by Elsevier B.V.

  20. Design of 3D integrated circuits and systems

    CERN Document Server

    Sharma, Rohit

    2014-01-01

    Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and sys

  1. A Front-End ASIC with Receive Sub-array Beamforming Integrated with a 32 × 32 PZT Matrix Transducer for 3-D Transesophageal Echocardiography

    NARCIS (Netherlands)

    Chen, C.; Chen, Z.; Bera, Deep; Raghunathan, S.B.; ShabaniMotlagh, M.; Noothout, E.C.; Chang, Z.Y.; Ponte, Jacco; Prins, Christian; Vos, H.J.; Bosch, Johan G.; Verweij, M.D.; de Jong, N.; Pertijs, M.A.P.

    2017-01-01

    This paper presents a power-and area-efficient front-end application-specific integrated circuit (ASIC) that is directly integrated with an array of 32 × 32 piezoelectric transducer elements to enable next-generation miniature ultrasound probes for real-time 3-D transesophageal echocardiography.

  2. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    Science.gov (United States)

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact.

  3. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    Science.gov (United States)

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  4. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system.

    Science.gov (United States)

    Baumann, Michael; Mozer, Pierre; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space and thus renders optimization efficient. The method was tested on 237 prostate volumes acquired from 14 different patients for 3D to 3D and 3D to orthogonal 2D slices registration. The 3D-3D version of the algorithm converged correctly in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r.m.s.) and 3.84mm (max). The 3D to slices method yielded a success rate of 88.9% in 2.3s with an accuracy of 1.37mm (r.m.s.) and 4.3mm (max).

  5. Preoperative prediction of lymph node metastasis and deep stromal invasion in women with invasive cervical cancer: prospective multicenter study using 2D and 3D ultrasound.

    Science.gov (United States)

    Pálsdóttir, K; Fischerova, D; Franchi, D; Testa, A; Di Legge, A; Epstein, E

    2015-04-01

    To determine how various objective two-dimensional (2D) and three-dimensional (3D) ultrasound parameters allow prediction of deep stromal tumor invasion and lymph node involvement, in comparison to subjective ultrasound assessment, in women scheduled for surgery for cervical cancer. This was a prospective multicenter trial including 104 women with cervical cancer at FIGO Stages IA2-IIB, verified histologically. Patients scheduled for surgery underwent a preoperative ultrasound examination. The value of various 2D (size, color score) and 3D (volume, vascular indices) ultrasound parameters was compared to that of subjective assessment in the prediction of deep stromal tumor invasion and lymph node involvement. Histology obtained from radical hysterectomy or trachelectomy and pelvic lymphadenectomy was considered as the gold standard for assessment. All women underwent pelvic lymphadenectomy, with 99 (95%) undergoing subsequent radical surgery; five underwent only pelvic lymphadenectomy because of the presence of a positive sentinel lymph node. Women with deep stromal invasion or lymph node involvement had significantly larger tumors (diameter and volume) but there was no correlation with vascular indices measured on 3D ultrasound. Subjective evaluation was superior (AUC, 0.93; sensitivity, 90.5%; specificity, 97.2%) in the prediction of deep stromal invasion when compared to any objective measurement technique, with maximal tumor diameter at 20.5-mm cut-off (AUC, 0.83; sensitivity, 90.5%; specificity, 61.1%) and 3D tumor volume at 9.1-mm(3) cut-off (AUC, 0.85; sensitivity, 79.4%; specificity, 83.3%) providing the best performance among the objective parameters. Both subjective assessment and objective measurements were poorly predictive of lymph node involvement. In women with cervical cancer, subjective ultrasound evaluation allowed better prediction of deep stromal invasion than did objective measurements; however, neither subjective evaluation nor objective

  6. Obtaining raised density connections by thermosonic microwelding in 3D integrated microcircuits

    Directory of Open Access Journals (Sweden)

    Lanin V. L.

    2014-06-01

    Full Text Available The authors consider the processes of obtaining raised density microwelded connections in 3D-integrated microcircuits by the thermosonic microwelding. The processes include the use of the raised frequencies of ultrasound, application of the microinstrument with a thinning of the working end and precision devices for ball formation, which provide reproducibility of connections quality. At a small step of contact pads, the use of a wire of small diameter (not more than 25 µm is necessary for devices with a multilevel arrangement of leads and chess arrangement of contact pads on the chip, providing the maximum length of the formed crosspieces does not exceed 4—5 mm.

  7. Feasibility of Ultrasound-Based Computational Fluid Dynamics as a Mitral Valve Regurgitation Quantification Technique: Comparison with 2-D and 3-D Proximal Isovelocity Surface Area-Based Methods.

    Science.gov (United States)

    Jamil, Muhammad; Ahmad, Omar; Poh, Kian Keong; Yap, Choon Hwai

    2017-07-01

    Current Doppler echocardiography quantification of mitral regurgitation (MR) severity has shortcomings. Proximal isovelocity surface area (PISA)-based methods, for example, are unable to account for the fact that ultrasound Doppler can measure only one velocity component: toward or away from the transducer. In the present study, we used ultrasound-based computational fluid dynamics (Ub-CFD) to quantify mitral regurgitation and study its advantages and disadvantages compared with 2-D and 3-D PISA methods. For Ub-CFD, patient-specific mitral valve geometry and velocity data were obtained from clinical ultrasound followed by 3-D CFD simulations at an assumed flow rate. We then obtained the average ratio of the ultrasound Doppler velocities to CFD velocities in the flow convergence region, and scaled CFD flow rate with this ratio as the final measured flow rate. We evaluated Ub-CFD, 2-D PISA and 3-D PISA with an in vitro flow loop, which featured regurgitation flow through (i) a simplified flat plate with round orifice and (ii) a 3-D printed realistic mitral valve and regurgitation orifice. The Ub-CFD and 3-D PISA methods had higher precision than the 2-D PISA method. Ub-CFD had consistent accuracy under all conditions tested, whereas 2-D PISA had the lowest overall accuracy. In vitro investigations indicated that the accuracy of 2-D and 3-D PISA depended significantly on the choice of aliasing velocity. Evaluation of these techniques was also performed for two clinical cases, and the dependency of PISA on aliasing velocity was similarly observed. Ub-CFD was robustly accurate and precise and has promise for future translation to clinical practice. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Can 3D ultrasound identify trochlea dysplasia in newborns? Evaluation and applicability of a technique

    Energy Technology Data Exchange (ETDEWEB)

    Kohlhof, Hendrik, E-mail: Hendrik.Kohlhof@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Heidt, Christoph, E-mail: Christoph.heidt@kispi.uzh.ch [Department of Orthopedic Surgery, University Children' s Hospital Zurich, Steinwiesstrasse 74, 8032 Switzerland (Switzerland); Bähler, Alexandrine, E-mail: Alexandrine.baehler@insel.ch [Department of Pediatric Radiology, University Children' s Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Kohl, Sandro, E-mail: sandro.kohl@insel.ch [Department of Orthopedic Surgery, University Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Gravius, Sascha, E-mail: sascha.gravius@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Friedrich, Max J., E-mail: Max.Friedrich@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Ziebarth, Kai, E-mail: kai.ziebarth@insel.ch [Department of Orthopedic Surgery, University Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Stranzinger, Enno, E-mail: Enno.Stranzinger@insel.ch [Department of Pediatric Radiology, University Children' s Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland)

    2015-06-15

    Highlights: • We evaluated a possible screening method for trochlea dysplasia. • 3D ultrasound was used to perform the measurements on standardized axial planes. • The evaluation of the technique showed comparable results to other studies. • This technique may be used as a screening technique as it is quick and easy to perform. - Abstract: Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy

  9. Can 3D ultrasound identify trochlea dysplasia in newborns? Evaluation and applicability of a technique

    International Nuclear Information System (INIS)

    Kohlhof, Hendrik; Heidt, Christoph; Bähler, Alexandrine; Kohl, Sandro; Gravius, Sascha; Friedrich, Max J.; Ziebarth, Kai; Stranzinger, Enno

    2015-01-01

    Highlights: • We evaluated a possible screening method for trochlea dysplasia. • 3D ultrasound was used to perform the measurements on standardized axial planes. • The evaluation of the technique showed comparable results to other studies. • This technique may be used as a screening technique as it is quick and easy to perform. - Abstract: Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy

  10. 3D Characterization of corneal deformation using ultrasound speckle tracking

    Directory of Open Access Journals (Sweden)

    Keyton Clayson

    2017-11-01

    Full Text Available The three-dimensional (3D mechanical response of the cornea to intraocular pressure (IOP elevation has not been previously reported. In this study, we use an ultrasound speckle tracking technique to measure the 3D displacements and strains within the central 5.5mm of porcine corneas during the whole globe inflation. Inflation tests were performed on dextran-treated corneas (treated with a 10% dextran solution and untreated corneas. The dextran-treated corneas showed an inflation response expected of a thin spherical shell, with through-thickness thinning and in-plane stretch, although the strain magnitudes exhibited a heterogeneous spatial distribution from the central to more peripheral cornea. The untreated eyes demonstrated a response consistent with swelling during experimentation, with through-thickness expansion overriding the inflation response. The average volume ratios obtained in both groups was near 1 confirming general incompressibility, but local regions of volume loss or expansion were observed. These results suggest that biomechanical measurements in 3D provide important new insight to understand the mechanical response of ocular tissues such as the cornea.

  11. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    International Nuclear Information System (INIS)

    Hornblower, V D M; Yu, E; Fenster, A; Battista, J J; Malthaner, R A

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo

  12. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    Energy Technology Data Exchange (ETDEWEB)

    Hornblower, V D M [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Yu, E [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Fenster, A [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Battista, J J [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Malthaner, R A [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada)

    2007-01-07

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  13. Thermal Management in Fine-Grained 3-D Integrated Circuits

    OpenAIRE

    Iqbal, Md Arif; Macha, Naveen Kumar; Danesh, Wafi; Hossain, Sehtab; Rahman, Mostafizur

    2018-01-01

    For beyond 2-D CMOS logic, various 3-D integration approaches specially transistor based 3-D integrations such as monolithic 3-D [1], Skybridge [2], SN3D [3] holds most promise. However, such 3D architectures within small form factor increase hotspots and demand careful consideration of thermal management at all levels of integration [4] as stacked transistors are detached from the substrate (i.e., heat sink). Traditional system level approaches such as liquid cooling [5], heat spreader [6], ...

  14. Integrated low power ultrasound sensor interfaces

    OpenAIRE

    Gustafsson, Martin

    2005-01-01

    Imagine that the technical development can take the ultrasound measurement systems from the large piece of machinery today, to a coin size system tomorrow. The factor that has reduced the size of electronic systems over time is integration and integrated circuits. In this thesis circuit simulator models of complete ultrasound systems are used to design custom integrated circuits. These circuits are optimized for low power consumption and small size. The models that are used predict the acoust...

  15. Laser Ultrasound Spectroscopy Scanning for 3D Printed Parts

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Guendalyn Kendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-04

    One of the challenges of additive manufacturing is quality control due to the possibility of unseen flaws in the final product. The current methods of inspection are lacking in detail, too slow for practical use, or unable to validate internal structure. This report examines the use of laser ultrasound spectroscopy in layer by layer scans of 3D printed parts as they are created. The result is fast and detailed quality control. An additional advantage of this method is the ability to cancel a print as soon as a defect is detected, therefore saving materials and time. This technique, though simple in concept, has been a challenge to implement. I discuss tweaking the 3D printer configuration, and finding the optimal settings for laser scanning small parts made of ABS plastic, as well as the limits of how small of a detail the laser can detect. These settings include the frequency of the ultrasonic transducer, the speed of the laser, and the distance from the laser to the part.

  16. Characterization of Breast Masses Using a New Method of Ultrasound Contrast Agent Imaging in 3D Mapping of Vascular Anomalies

    National Research Council Canada - National Science Library

    LeCarpentier, Gerald

    2002-01-01

    .... The purpose of this work is to develop an innovative dual-transducer method to control the destruction and imaging of ultrasound contrast during 3D ultrasound scanning of suspicious breast masses...

  17. Ovarian morphology in polycystic ovary syndrome: estimates from 2D and 3D ultrasound and magnetic resonance imaging and their correlation to anti-Müllerian hormone.

    Science.gov (United States)

    Nylander, Malin; Frøssing, Signe; Bjerre, Anne H; Chabanova, Elizaveta; Clausen, Helle V; Faber, Jens; Skouby, Sven O

    2017-08-01

    Background Due to improved ultrasound scanners, new three-dimensional (3D) modalities, and novel Anti-Müllerian hormone (AMH)-assays, the ultrasound criteria for polycystic ovarian morphology are under debate and the appropriate thresholds are often requested. Purpose To quantify the differences in estimates of ovarian volume and antral follicle count (AFC) from two-dimensional (2D) and 3D transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI). Material and Methods A cross-sectional study on 66 overweight women with polycystic ovary syndrome (PCOS) according to Rotterdam criteria. Ovarian volume and AFC were estimated from MRI, 2D TVUS, and 3D TVUS, and serum AMH levels were assessed. Bland-Altman statistics were used for comparison. Results Participants had a median age of 29 years (age range, 19-44 years) with a mean BMI of 32.7 kg/m 2 (SD 4.5). Ovarian volume from 2D TVUS was 1.48 mL (95% confidence interval [CI], 0.94-2.03; P ovarian volume and AFC as compared with 3D TVUS and MRI. Serum AMH correlated best with AFC from 3D TVUS, followed by MRI and 2D TVUS. The advantage of 3D TVUS might be of minor clinical importance when diagnosing PCOS, but useful when the actual AFC are of interest, e.g. in fertility counseling and research.

  18. [Interest using 3D ultrasound and MRI fusion biopsy for prostate cancer detection].

    Science.gov (United States)

    Marien, A; De Castro Abreu, A; Gill, I; Villers, A; Ukimura, O

    2017-09-01

    The strategic therapy for prostate cancer depends on histo-pronostics data, which could be upgraded by obtaining targeted biopsies (TB) with MRI (magnetic resonance imagery) fusion 3D ultrasound. To compare diagnostic yield of image fusion guided prostate biopsy using image fusion of multi-parametric MRI (mpMRI) with 3D-TRUS. Between January 2010 and April 2013, 179 consecutive patients underwent outpatient TRUS biopsy using the real-time 3D TRUS tracking system (Urostation™). These patients underwent MRI-TRUS fusion targeted biopsies (TB) with 3D volume data of the MRI elastically fused with 3D TRUS at the time of biopsy. A hundred and seventy-three patients had TBs with fusion. Mean biopsy core per patient were 11.1 (6-14) for SB and 2.4 (1-6) for TB. SBs were positive in 11% compared to 56% for TB (Pperform the higher level of MR/US fusion and should be use for active surveillance. 4. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    Science.gov (United States)

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  20. SU-F-J-176: Development of a Patient-Specific 3D Couplant Pad for Ultrasound IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Chang, A [Soonchunhyang University Hospital, Seoul (Korea, Republic of); Ye, S [Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: to overcome the several issues of ultrasound image-guided radiation therapy (US IGRT) such as probe pressure and optical tracking disability by using a patient-specific three-dimensional couplant pad (CP) fabricated by a patient’s skin mold using a 3D printing technique. Methods: A CP was then fabricated by pouring gelatin solution into a fixed-shape container accommodating the patient skin mold fabricated by a 3D printer. A breast phantom was fabricated with the compound of gelatin and agarose and a phantom study was carried out. From four patients who underwent US IGRT, total 486 ultrasound images with and without a CP were acquired before treatment. Effectiveness of the use of the CP was evaluated. Results: The positioning accuracies in the phantom study were 0.9 ± 0.3 mm and 1.3 ± 0.4 mm with and without the CP in 3D vector amplitude, respectively. In the patient study, the use of CP reduced the mean target shift from 4.7 mm to 3.7 mm in 3D vector amplitude and the one standard deviation from 2.2 mm to 1.7 mm. It also improved the image contrast around the treatment target by 10 %. The centroid offset of the target volume affected from the US scanning coverage and the target deformation due to the excessive probe pressure was decreased from 4.4 mm to 2.9 mm due to the use of CP. Its difference among three different users was statistically significant (p=0.020) without the use of CP but not significantly different (p=0.133) with the use of CP. Conclusion: Our patient-specific 3D CP using a mold by 3D printing technique is a promising strategy for improving tracking accuracy, image quality, and inter-observer variation for ultrasound-based image guided radiotherapy. In addition to its conventional advantage of non-invasiveness, US can be more facilitated in radiotherapy by the developed CP.

  1. SU-F-J-176: Development of a Patient-Specific 3D Couplant Pad for Ultrasound IGRT

    International Nuclear Information System (INIS)

    Kim, H; Chang, A; Ye, S

    2016-01-01

    Purpose: to overcome the several issues of ultrasound image-guided radiation therapy (US IGRT) such as probe pressure and optical tracking disability by using a patient-specific three-dimensional couplant pad (CP) fabricated by a patient’s skin mold using a 3D printing technique. Methods: A CP was then fabricated by pouring gelatin solution into a fixed-shape container accommodating the patient skin mold fabricated by a 3D printer. A breast phantom was fabricated with the compound of gelatin and agarose and a phantom study was carried out. From four patients who underwent US IGRT, total 486 ultrasound images with and without a CP were acquired before treatment. Effectiveness of the use of the CP was evaluated. Results: The positioning accuracies in the phantom study were 0.9 ± 0.3 mm and 1.3 ± 0.4 mm with and without the CP in 3D vector amplitude, respectively. In the patient study, the use of CP reduced the mean target shift from 4.7 mm to 3.7 mm in 3D vector amplitude and the one standard deviation from 2.2 mm to 1.7 mm. It also improved the image contrast around the treatment target by 10 %. The centroid offset of the target volume affected from the US scanning coverage and the target deformation due to the excessive probe pressure was decreased from 4.4 mm to 2.9 mm due to the use of CP. Its difference among three different users was statistically significant (p=0.020) without the use of CP but not significantly different (p=0.133) with the use of CP. Conclusion: Our patient-specific 3D CP using a mold by 3D printing technique is a promising strategy for improving tracking accuracy, image quality, and inter-observer variation for ultrasound-based image guided radiotherapy. In addition to its conventional advantage of non-invasiveness, US can be more facilitated in radiotherapy by the developed CP.

  2. Has 4D transperineal ultrasound additional value over 2D transperineal ultrasound for diagnosing obstructed defaecation syndrome?

    Science.gov (United States)

    van Gruting, I M A; Kluivers, K; Sultan, A H; De Bin, R; Stankiewicz, A; Blake, H; Thakar, R

    2018-06-08

    To establish the diagnostic test accuracy of both two-dimensional (2D) and four-dimensional (4D) transperineal ultrasound, to assess if 4D ultrasound imaging provides additional value in the diagnosis of posterior pelvic floor disorders in women with obstructed defaecation syndrome. In this prospective cohort study, 121 consecutive women with obstructed defaecation syndrome were recruited. Symptoms of obstructed defaecation and signs of pelvic organ prolapse were assessed using validated methods. All women underwent both 2D transperineal ultrasound (Pro-focus, 8802 transducer, BK-medical) and 4D transperineal ultrasound (Voluson i, RAB4-8-RS transducer, GE). Imaging analysis was performed by two blinded observers. Pelvic floor disorders were dichotomised into presence or absence according pre-defined cut-off values. In the absence of a reference standard a composite reference standard was created from a combination of results of evacuation proctogram, magnetic resonance imaging and endovaginal ultrasound. Primary outcome measures were diagnostic test characteristics of 2D and 4D transperineal ultrasound for diagnosis or rectocele, enterocele, intussusception and anismus. Secondary outcome measures were interobserver agreement, agreement between the two techniques and correlation of signs and symptoms to imaging findings. For diagnosis of all four posterior pelvic floor disorders there was no difference in sensitivity and specificity between 2D and 4D TPUS (p= 0.131 - 1.000). A good agreement between 2D and 4D TPUS was found for the diagnosis of rectocele (ĸ 0.675) and a moderate agreement for diagnosis of enterocele, intussusception and anismus (ĸ 0.465 - 0.545). There was no difference in rectocele depth measurements between both TPUS techniques (19.9 mm vs 19.0 mm, p=0.802). Inter-observer agreement was comparable for both techniques, however 2D TPUS had an excellent interobserver agreement for diagnosis of enterocele and rectocele depth measurements. Diagnosis

  3. Integration of multi-modality imaging for accurate 3D reconstruction of human coronary arteries in vivo

    International Nuclear Information System (INIS)

    Giannoglou, George D.; Chatzizisis, Yiannis S.; Sianos, George; Tsikaderis, Dimitrios; Matakos, Antonis; Koutkias, Vassilios; Diamantopoulos, Panagiotis; Maglaveras, Nicos; Parcharidis, George E.; Louridas, George E.

    2006-01-01

    In conventional intravascular ultrasound (IVUS)-based three-dimensional (3D) reconstruction of human coronary arteries, IVUS images are arranged linearly generating a straight vessel volume. However, with this approach real vessel curvature is neglected. To overcome this limitation an imaging method was developed based on integration of IVUS and biplane coronary angiography (BCA). In 17 coronary arteries from nine patients, IVUS and BCA were performed. From each angiographic projection, a single end-diastolic frame was selected and in each frame the IVUS catheter was interactively detected for the extraction of 3D catheter path. Ultrasound data was obtained with a sheath-based catheter and recorded on S-VHS videotape. S-VHS data was digitized and lumen and media-adventitia contours were semi-automatically detected in end-diastolic IVUS images. Each pair of contours was aligned perpendicularly to the catheter path and rotated in space by implementing an algorithm based on Frenet-Serret rules. Lumen and media-adventitia contours were interpolated through generation of intermediate contours creating a real 3D lumen and vessel volume, respectively. The absolute orientation of the reconstructed lumen was determined by back-projecting it onto both angiographic planes and comparing the projected lumen with the actual angiographic lumen. In conclusion, our method is capable of performing rapid and accurate 3D reconstruction of human coronary arteries in vivo. This technique can be utilized for reliable plaque morphometric, geometrical and hemodynamic analyses

  4. Development of 3D integrated circuits for HEP

    International Nuclear Information System (INIS)

    Yarema, R.; Fermilab

    2006-01-01

    Three dimensional integrated circuits are well suited to improving circuit bandwidth and increasing effective circuit density. Recent advances in industry have made 3D integrated circuits an option for HEP. The 3D technology is discussed in this paper and several examples are shown. Design of a 3D demonstrator chip for the ILC is presented

  5. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode.

    Science.gov (United States)

    Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph

    2018-06-01

    Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.

  6. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    Science.gov (United States)

    Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.

    2013-11-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular system. There is the potential to use this system to monitor the progression of ventriculomegaly over time in patients with IVH.

  7. Copper Electrodeposition for 3D Integration

    OpenAIRE

    Beica , Rozalia; Sharbono , Charles; Ritzdorf , Tom

    2008-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838); International audience; Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturizatio...

  8. Automated 3D ultrasound elastography of the breast: a phantom validation study

    Science.gov (United States)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  9. Integration of virtual and real scenes within an integral 3D imaging environment

    Science.gov (United States)

    Ren, Jinsong; Aggoun, Amar; McCormick, Malcolm

    2002-11-01

    The Imaging Technologies group at De Montfort University has developed an integral 3D imaging system, which is seen as the most likely vehicle for 3D television avoiding psychological effects. To create real fascinating three-dimensional television programs, a virtual studio that performs the task of generating, editing and integrating the 3D contents involving virtual and real scenes is required. The paper presents, for the first time, the procedures, factors and methods of integrating computer-generated virtual scenes with real objects captured using the 3D integral imaging camera system. The method of computer generation of 3D integral images, where the lens array is modelled instead of the physical camera is described. In the model each micro-lens that captures different elemental images of the virtual scene is treated as an extended pinhole camera. An integration process named integrated rendering is illustrated. Detailed discussion and deep investigation are focused on depth extraction from captured integral 3D images. The depth calculation method from the disparity and the multiple baseline method that is used to improve the precision of depth estimation are also presented. The concept of colour SSD and its further improvement in the precision is proposed and verified.

  10. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.

    Science.gov (United States)

    Arvanitis, Costas D; McDannold, Nathan

    2013-11-01

    Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM

  11. 3D integrated superconducting qubits

    Science.gov (United States)

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  12. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    Science.gov (United States)

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    International Nuclear Information System (INIS)

    Kishimoto, J; Lawrence, K St; De Ribaupierre, S; Fenster, A; Lee, D S C; Mehta, R

    2013-01-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of 3 for a single observer. Results from ANOVA for three observers segmenting three patients of IVH grade II did not show any significant differences (p > 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular system. There is the potential to use this system to monitor the progression of ventriculomegaly over time in patients with IVH. (paper)

  14. 3D Integration for Superconducting Qubits

    Science.gov (United States)

    Rosenberg, Danna; Kim, David; Yost, Donna-Ruth; Mallek, Justin; Yoder, Jonilyn; Das, Rabindra; Racz, Livia; Hover, David; Weber, Steven; Kerman, Andrew; Oliver, William

    Superconducting qubits are a prime candidate for constructing a large-scale quantum processor due to their lithographic scalability, speed, and relatively long coherence times. Moving beyond the few qubit level, however, requires the use of a three-dimensional approach for routing control and readout lines. 3D integration techniques can be used to construct a structure where the sensitive qubits are shielded from a potentially-lossy readout and interconnect chip by an intermediate chip with through-substrate vias, with indium bump bonds providing structural support and electrical conductivity. We will discuss our work developing 3D-integrated coupled qubits, focusing on the characterization of 3D integration components and the effects on qubit performance and design. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  15. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.

    Science.gov (United States)

    Nakamoto, Masahiko; Nakada, Kazuhisa; Sato, Yoshinobu; Konishi, Kozo; Hashizume, Makoto; Tamura, Shinichi

    2008-02-01

    This paper describes a ultrasound (3-D US) system that aims to achieve augmented reality (AR) visualization during laparoscopic surgery, especially for the liver. To acquire 3-D US data of the liver, the tip of a laparoscopic ultrasound probe is tracked inside the abdominal cavity using a magnetic tracker. The accuracy of magnetic trackers, however, is greatly affected by magnetic field distortion that results from the close proximity of metal objects and electronic equipment, which is usually unavoidable in the operating room. In this paper, we describe a calibration method for intraoperative magnetic distortion that can be applied to laparoscopic 3-D US data acquisition; we evaluate the accuracy and feasibility of the method by in vitro and in vivo experiments. Although calibration data can be acquired freehand using a magneto-optic hybrid tracker, there are two problems associated with this method--error caused by the time delay between measurements of the optical and magnetic trackers, and instability of the calibration accuracy that results from the uniformity and density of calibration data. A temporal calibration procedure is developed to estimate the time delay, which is then integrated into the calibration, and a distortion model is formulated by zeroth-degree to fourth-degree polynomial fitting to the calibration data. In the in vivo experiment using a pig, the positional error caused by magnetic distortion was reduced from 44.1 to 2.9 mm. The standard deviation of corrected target positions was less than 1.0 mm. Freehand acquisition of calibration data was performed smoothly using a magneto-optic hybrid sampling tool through a trocar under guidance by realtime 3-D monitoring of the tool trajectory; data acquisition time was less than 2 min. The present study suggests that our proposed method could correct for magnetic field distortion inside the patient's abdomen during a laparoscopic procedure within a clinically permissible period of time, as well as

  16. Sci-Thur AM: YIS – 03: Combining sagittally-reconstructed 3D and live-2D ultrasound for high-dose-rate prostate brachytherapy needle segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Hrinivich, Thomas; Hoover, Douglas; Surry, Kathleen; Edirisinghe, Chandima; D’Souza, David; Fenster, Aaron; Wong, Eugene [University of Western Ontario, London Regional Cancer Program/LHSC, London Regional Cancer Program/LHSC, Robarts Research Institute, London Regional Cancer Program/LHSC, Robarts Research Institute, University of Western Ontario (Canada)

    2016-08-15

    Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were used to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.

  17. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-01-01

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 ± 1.5% error, 4.4 ± 3.0% error for CT, and 3.1 ± 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  18. Automated 3D ultrasound elastography of the breast: a phantom validation study

    International Nuclear Information System (INIS)

    Hendriks, Gijs A G M; Holländer, Branislav; Menssen, Jan; Hansen, Hendrik H G; De Korte, Chris L; Milkowski, Andy

    2016-01-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s −1 ) and by three protocols: Go–Go (pre- and post-volumes with identical start and end positions), Go–Return (similar to Go–Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go–Go protocol was shown to be superior with better strain image quality (CNR e and SNR e ) than Go–Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go–Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go–Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to

  19. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.

    Science.gov (United States)

    Ipsen, Svenja; Bruder, Ralf; O'Brien, Rick; Keall, Paul J; Schweikard, Achim; Poulsen, Per R

    2016-10-01

    %/2 mm γ-tests. The overall tracking system latency was 172 ms. The mean 2D root-mean-square tracking error was 1.03 mm (0.80 mm prostate, 1.31 mm lung). MLC tracking improved the dose delivery in all cases with an overall reduction in the γ-failure rate of 91.2% (3%/3 mm) and 89.9% (2%/2 mm) compared to no motion compensation. Low modulation VMAT plans had no (3%/3 mm) or minimal (2%/2 mm) residual γ-failures while tracking reduced the γ-failure rate from 17.4% to 2.8% (3%/3 mm) and from 33.9% to 6.5% (2%/2 mm) for plans with high modulation. Real-time 4D ultrasound tracking was successfully integrated with online MLC tracking for the first time. The developed framework showed an accuracy and latency comparable with other MLC tracking methods while holding the potential to measure and adapt to target motion, including rotation and deformation, noninvasively.

  20. FINAL INTERIM REPORT, CANDIDATE SITES, MACHINES IN USE, DATA STORAGE AND TRANSMISSION METHODS: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    Science.gov (United States)

    The purpose of this Work Assignment, 02-03, is to examine the feasibility of collecting transmitting, and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant women. The study will also examine the reliability of measurements obtained from 3-D images< ...

  1. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [University of Luebeck, Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck (Germany); Jauer, P; Schweikard, A; Ernst, F [University of Luebeck, Luebeck (Germany)

    2016-06-15

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  2. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    International Nuclear Information System (INIS)

    Kuhlemann, I; Jauer, P; Schweikard, A; Ernst, F

    2016-01-01

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  3. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn

    2014-01-01

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  4. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  5. Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation

    International Nuclear Information System (INIS)

    Wei Zhouping; Wan Gang; Gardi, Lori; Mills, Gregory; Downey, Donal; Fenster, Aaron

    2004-01-01

    Current transperineal prostate brachytherapy uses transrectal ultrasound (TRUS) guidance and a template at a fixed position to guide needles along parallel trajectories. However, pubic arch interference (PAI) with the implant path obstructs part of the prostate from being targeted by the brachytherapy needles along parallel trajectories. To solve the PAI problem, some investigators have explored other insertion trajectories than parallel, i.e., oblique. However, parallel trajectory constraints in current brachytherapy procedure do not allow oblique insertion. In this paper, we describe a robot-assisted, three-dimensional (3D) TRUS guided approach to solve this problem. Our prototype consists of a commercial robot, and a 3D TRUS imaging system including an ultrasound machine, image acquisition apparatus and 3D TRUS image reconstruction, and display software. In our approach, we use the robot as a movable needle guide, i.e., the robot positions the needle before insertion, but the physician inserts the needle into the patient's prostate. In a later phase of our work, we will include robot insertion. By unifying the robot, ultrasound transducer, and the 3D TRUS image coordinate systems, the position of the template hole can be accurately related to 3D TRUS image coordinate system, allowing accurate and consistent insertion of the needle via the template hole into the targeted position in the prostate. The unification of the various coordinate systems includes two steps, i.e., 3D image calibration and robot calibration. Our testing of the system showed that the needle placement accuracy of the robot system at the 'patient's' skin position was 0.15 mm±0.06 mm, and the mean needle angulation error was 0.07 deg. . The fiducial localization error (FLE) in localizing the intersections of the nylon strings for image calibration was 0.13 mm, and the FLE in localizing the divots for robot calibration was 0.37 mm. The fiducial registration error for image calibration was 0

  6. P32INCREASED PERCENTAGE RESECTION OF TUMOUR VOLUME USING NEURONAVIGATIONAL 3D INTRAOPERATIVE ULTRASOUND: A SINGLE UNIT EXPERIENCE

    OpenAIRE

    Vaqas, B.; O'Neill, K.; Awad, M.

    2014-01-01

    INTRODUCTION: The use of intraoperative 3D navigational ultrasound (Sonowand) offers a relatively inexpensive method of obtaining imaging of intrinsic brain tumours during resection which takes in account brain shift during surgery and also allows better visualisation of the tumour margin to help control resection. We designed a study to measure the volume of tumour resection in 25 consecutive Sonowand cases compared to 25 matched non-ultrasound guided controls. METHOD: A retrospective consec...

  7. The Use of 3D Power Doppler Ultrasound in the Quantification of Blood Vessels in Uterine Fibroids: Feasibility and Reproducibility

    NARCIS (Netherlands)

    Nieuwenhuis, L.L.; Betjes, H.E.; Hehenkamp, W.J.K.; Heymans, M.W.; Brölmann, H.A.M.; Huirne, J.A.F.

    2015-01-01

    Background: To evaluate the interobserver agreement and discriminating value of three-dimensional power Doppler ultrasound (3D PDUS) in patients with fibroids. Methods: An observational prospective cohort study in 19 patients with fibroids. 3D PDUS was performed by one examiner and evaluated by

  8. Simulation and training of ultrasound supported anaesthesia: a low-cost approach

    Science.gov (United States)

    Schaaf, T.; Lamontain, M.; Hilpert, J.; Schilling, F.; Tolxdorff, T.

    2010-03-01

    The use of ultrasound imaging technology during techniques of peripheral nerve blockade offers several clinical benefits. Here we report on a new method to educate residents in ultrasound-guided regional anesthesia. The daily challenge for the anesthesiologists is the 3D angle-depending handling of the stimulation needle and the ultrasound probe while watching the 2D ultrasound image on the monitor. Purpose: Our approach describes how a computer-aided simulation and training set for ultrasound-guided regional anesthesia could be built based on wireless low-cost devices and an interactive simulation of a 2D ultrasound image. For training purposes the injection needle and the ultrasound probe are replaced by wireless Bluetooth-connected 3D tracking devices, which are embedded in WII-mote controllers (Nintendo-Brand). In correlation to the tracked 3D positions of the needle and transducer models the visibility and position of the needle should be simulated in the 2D generated ultrasound image. Conclusion: In future, this tracking and visualization software module could be integrated in a more complex training set, where complex injection paths could be trained based on a 3D segmented model and the training results could be part of a curricular e-learning module.

  9. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    Science.gov (United States)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections group in retaining knowledge of difficult instances of sectional anatomy after the retention interval. The benefit

  10. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2015-10-26

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano-particle based metallic ink. The integration of lens enhances the gain by around 7 dB giving a peak gain of about 16.4 dBi at 9.4 GHz. The helical antenna operates in the end-fire mode and radiates a left-hand circularly polarized (LHCP) pattern. The 3-dB axial ratio (AR) bandwidth of the antenna with lens is 3.2 %. Due to integration of lens and fully printed processing, this antenna configuration offers high gain performance and requires low cost for manufacturing.

  11. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    Science.gov (United States)

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-06-01

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.

  12. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  13. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  14. 3D Flow reconstruction using ultrasound PIV

    Science.gov (United States)

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.

    2011-04-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.

  15. The Correlation Between the GFR and the Renal Dimensions in Glomerulopathy Patients: Comparison of 2D and 3D Ultrasound

    International Nuclear Information System (INIS)

    Kim, Gyoung Min; Lee, Hak Jong; Hwang, Sung Il; Chin, Ho Jun

    2011-01-01

    We wanted to determine the correlation between the renal length as measured on two dimensional (2D) ultrasonography (US) and the renal parenchymal volume as measured with a new three-dimensional (3D) volume probe ultrasound system. We also wanted to determine the correlation between the renal length or renal parenchymal volume and the glomerular filtration rate (GFR) in patients with glomerulopathy. From July 2007 to December 2007, 26 patients who were pathologically confirmed to have glomerulopathy by biopsy were enrolled. Renal length was measured with 2D US and the renal parenchymal volume was measured with 3D US just prior to biopsy. The GFR was obtained from the electronic medical records. Pearson's correlation coefficients were used to analyze the correlation between the renal length and the renal parenchymal volume, the correlation between the renal length and the GFR and the correlation between the renal parenchymal volume and the GFR. The renal length and the renal parenchymal volume showed strong positive correlation (r = 0.850, p = 0.0001). The correlation coefficient between the renal length and the GFR was 0.623 (p = 0.0007) and the correlation coefficient between the renal volume and the GFR was 0.590 (p = 0.0015). Both the renal length and renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. The renal length showed strong positive correlations with the renal parenchymal volume. Both the renal length and the renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. In glomerulopathy patients, the renal dimensions measured by ultrasound can reflect the status of the GFR, and the measurement of the 2D renal length could be sufficient for follow up. Further studies are needed to evaluate the role of 3D US for assessing patients with renal disease

  16. Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering

    Science.gov (United States)

    Engle, B. J.; Roberts, R. A.; Grandin, R. J.

    2018-04-01

    This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.

  17. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: Application of a personalized, 3D-printed tumor model using CT images.

    Directory of Open Access Journals (Sweden)

    Ye Ra Choi

    Full Text Available To evaluate accuracy and reliability of three-dimensional ultrasound (3D US for response evaluation of hepatic metastasis from colorectal cancer (CRC using a personalized 3D-printed tumor model.Twenty patients with liver metastasis from CRC who underwent baseline and after chemotherapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT were fabricated. Two radiologists measured volume of each 3D printing model using 3D US. With CT as a reference, we compared difference between CT and US tumor volume. The response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST criteria.3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL, 8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05. 3D US provided a high correlation coefficient with CT (r = 0.953, r = 0.97 as well as a high inter-observer intraclass correlation (0.978; 0.958-0.988. Regarding response, 3D US was in agreement with CT in 17 and 18 out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961.3D US tumor volume using a personalized 3D-printed model is an accurate and reliable method for the response evaluation in comparison with CT tumor volume.

  18. A 3D Hybrid Integration Methodology for Terabit Transceivers

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2015-01-01

    integration are described. An equivalent circuit model of the via-throughs connecting the RF circuitry to the modulator is proposed and its lumped element parameters are extracted. Wire bonding transitions between the driving and RF circuitry were designed and simulated. An optimized 3D interposer design......This paper presents a three-dimensional (3D) hybrid integration methodology for terabit transceivers. The simulation methodology for multi-conductor structures are explained. The effect of ground vias on the RF circuitry and the preferred interposer substrate material for large bandwidth 3D hybrid...

  19. The 3D Lagrangian Integral Method. Henrik Koblitz Rasmussen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2003-01-01

    . This are processes such as thermo-forming, gas-assisted injection moulding and all kind of simultaneous multi-component polymer processing operations. Though, in all polymer processing operations free surfaces (or interfaces) are present and the dynamic of these surfaces are of interest. In the "3D Lagrangian...... Integral Method" to simulate viscoelastic flow, the governing equations are solved for the particle positions (Lagrangian kinematics). Therefore, the transient motion of surfaces can be followed in a particularly simple fashion even in 3D viscoelastic flow. The "3D Lagrangian Integral Method" is described...

  20. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    Science.gov (United States)

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  1. Status and perspectives of pixel sensors based on 3D vertical integration

    Energy Technology Data Exchange (ETDEWEB)

    Re, Valerio [Università di Bergamo, Dipartimento di Ingegneria, Viale Marconi, 5, 24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi, 6, 27100 Pavia (Italy)

    2014-11-21

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP.

  2. Status and perspectives of pixel sensors based on 3D vertical integration

    International Nuclear Information System (INIS)

    Re, Valerio

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP

  3. A 10-Fr ultrasound catheter with integrated micromotor for 4-D intracardiac echocardiography.

    Science.gov (United States)

    Lee, Warren; Griffin, Weston; Wildes, Douglas; Buckley, Donald; Topka, Terry; Chodakauskas, Thaddeus; Langer, Mark; Calisti, Serge; Bergstøl, Svein; Malacrida, Jean-Pierre; Lanteri, Frédéric; Maffre, Jennifer; McDaniel, Ben; Shivkumar, Kalyanam; Cummings, Jennifer; Callans, David; Silvestry, Frank; Packer, Douglas

    2011-07-01

    We developed prototype real-time 3-D intracardiac echocardiography catheters with integrated micromotors, allowing internal oscillation of a low-profile 64-element, 6.2-MHz phased-array transducer in the elevation direction. Components were designed to facilitate rotation of the array, including a low-torque flexible transducer interconnect and miniature fixtures for the transducer and micromotor. The catheter tip prototypes were integrated with two-way deflectable 10-Fr catheters and used in in vivo animal testing at multiple facilities. The 4-D ICE catheters were capable of imaging a 90° azimuth by up to 180° elevation field of view. Volume rates ranged from 1 vol/sec (180° elevation) to approximately 10 vol/sec (60° elevation). We successfully imaged electrophysiology catheters, atrial septal puncture procedures, and detailed cardiac anatomy. The elevation oscillation enabled 3-D visualization of devices and anatomy, providing new clinical information and perspective not possible with current 2-D imaging catheters.

  4. 3D Inkjet Printed Helical Antenna with Integrated Lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-08-30

    The gain of an antenna can be enhanced through the integration of a lens, although this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, through a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB, which provides a peak gain of about 12.9 dBi at 8.8 GHz. The 3-dB axial ratio (AR) bandwidth of the antenna with the lens is 5.5%. This work also reports the complete characterization of this new process in terms of minimum features sizes and achievable conductivities. Due to monolithic integration of the lens through a fully printed process, this antenna configuration offers high gain performance by using a low cost and rapid fabrication technique. © 2016 IEEE.

  5. 3D quantitative breast ultrasound analysis for differentiating fibroadenomas and carcinomas smaller than 1 cm

    Energy Technology Data Exchange (ETDEWEB)

    Meel-van den Abeelen, A.S.S., E-mail: aisha.vandenabeelen@radboudumc.nl [Department of Biomechanical Engineering, MIRA-Institute, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Medical UltraSound Imaging Center (MUSIC), department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Weijers, G. [Medical UltraSound Imaging Center (MUSIC), department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Zelst, J.C.M. van [Radboud University Nijmegen Medical Centre, Department of Radiology and Nuclear Medicine, PO Box 9101, 6500 HB Nijmegen (Netherlands); Thijssen, J.M. [Medical UltraSound Imaging Center (MUSIC), department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Mann, R.M. [Radboud University Nijmegen Medical Centre, Department of Radiology and Nuclear Medicine, PO Box 9101, 6500 HB Nijmegen (Netherlands); Korte, C.L. de [Medical UltraSound Imaging Center (MUSIC), department of Radiology and Nuclear Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2017-03-15

    Purpose: In (3D) ultrasound, accurate discrimination of small solid masses is difficult, resulting in a high frequency of biopsies for benign lesions. In this study, we investigate whether 3D quantitative breast ultrasound (3DQBUS) analysis can be used for improving non-invasive discrimination between benign and malignant lesions. Methods and materials: 3D US studies of 112 biopsied solid breast lesions (size <1 cm), were included (34 fibroadenomas and 78 invasive ductal carcinomas). The lesions were manually delineated and, based on sonographic criteria used by radiologists, 3 regions of interest were defined in 3D for analysis: ROI (ellipsoid covering the inside of the lesion), PER (peritumoural surrounding: 0.5 mm around the lesion), and POS (posterior-tumoural acoustic phenomena: region below the lesion with the same size as delineated for the lesion). After automatic gain correction (AGC), the mean and standard deviation of the echo level within the regions were calculated. For the ROI and POS also the residual attenuation coefficient was estimated in decibel per cm [dB/cm]. The resulting eight features were used for classification of the lesions by a logistic regression analysis. The classification accuracy was evaluated by leave-one-out cross-validation. Receiver operating characteristic (ROC) curves were constructed to assess the performance of the classification. All lesions were delineated by two readers and results were compared to assess the effect of the manual delineation. Results: The area under the ROC curve was 0.86 for both readers. At 100% sensitivity, a specificity of 26% and 50% was achieved for reader 1 and 2, respectively. Inter-reader variability in lesion delineation was marginal and did not affect the accuracy of the technique. The area under the ROC curve of 0.86 was reached for the second reader when the results of the first reader were used as training set yielding a sensitivity of 100% and a specificity of 40%. Consequently, 3DQBUS

  6. 3D quantitative breast ultrasound analysis for differentiating fibroadenomas and carcinomas smaller than 1 cm

    International Nuclear Information System (INIS)

    Meel-van den Abeelen, A.S.S.; Weijers, G.; Zelst, J.C.M. van; Thijssen, J.M.; Mann, R.M.; Korte, C.L. de

    2017-01-01

    Purpose: In (3D) ultrasound, accurate discrimination of small solid masses is difficult, resulting in a high frequency of biopsies for benign lesions. In this study, we investigate whether 3D quantitative breast ultrasound (3DQBUS) analysis can be used for improving non-invasive discrimination between benign and malignant lesions. Methods and materials: 3D US studies of 112 biopsied solid breast lesions (size <1 cm), were included (34 fibroadenomas and 78 invasive ductal carcinomas). The lesions were manually delineated and, based on sonographic criteria used by radiologists, 3 regions of interest were defined in 3D for analysis: ROI (ellipsoid covering the inside of the lesion), PER (peritumoural surrounding: 0.5 mm around the lesion), and POS (posterior-tumoural acoustic phenomena: region below the lesion with the same size as delineated for the lesion). After automatic gain correction (AGC), the mean and standard deviation of the echo level within the regions were calculated. For the ROI and POS also the residual attenuation coefficient was estimated in decibel per cm [dB/cm]. The resulting eight features were used for classification of the lesions by a logistic regression analysis. The classification accuracy was evaluated by leave-one-out cross-validation. Receiver operating characteristic (ROC) curves were constructed to assess the performance of the classification. All lesions were delineated by two readers and results were compared to assess the effect of the manual delineation. Results: The area under the ROC curve was 0.86 for both readers. At 100% sensitivity, a specificity of 26% and 50% was achieved for reader 1 and 2, respectively. Inter-reader variability in lesion delineation was marginal and did not affect the accuracy of the technique. The area under the ROC curve of 0.86 was reached for the second reader when the results of the first reader were used as training set yielding a sensitivity of 100% and a specificity of 40%. Consequently, 3DQBUS

  7. 3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results

    Science.gov (United States)

    Gemmeke, Hartmut; Hopp, Torsten; Zapf, Michael; Kaiser, Clemens; Ruiter, Nicole V.

    2017-11-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). Current experimental USCT systems are still focused in elevation dimension resulting in a large slice thickness, limited depth of field, loss of out-of-plane reflections, and a large number of movement steps to acquire a stack of images. 3D USCT emitting and receiving spherical wave fronts overcomes these limitations. We built an optimized 3D USCT, realizing for the first time the full benefits of a 3D system. The point spread function could be shown to be nearly isotropic in 3D, to have very low spatial variability and fit the predicted values. The contrast of the phantom images is very satisfactory in spite of imaging with a sparse aperture. The resolution and imaged details of the reflectivity reconstruction are comparable to a 3 T MRI volume. Important for the obtained resolution are the simultaneously obtained results of the transmission tomography. The KIT 3D USCT was then tested in a pilot study on ten patients. The primary goals of the pilot study were to test the USCT device, the data acquisition protocols, the image reconstruction methods and the image fusion techniques in a clinical environment. The study was conducted successfully; the data acquisition could be carried out for all patients with an average imaging time of six minutes per breast. The reconstructions provide promising images. Overlaid volumes of the modalities show qualitative and quantitative information at a glance. This paper gives a summary of the involved techniques, methods, and first results.

  8. 3-D fracture analysis using a partial-reduced integration scheme

    International Nuclear Information System (INIS)

    Leitch, B.W.

    1987-01-01

    This paper presents details of 3-D elastic-plastic analyses of axially orientated external surface flaw in an internally pressurized thin-walled cylinder and discusses the variation of the J-integral values around the crack tip. A partial-reduced-integration-penalty method is introduced to minimize this variation of the J-integral near the crack tip. Utilizing 3-D symmetry, an eighth segment of a tube containing an elliptically shaped external surface flaw is modelled using 20-noded isoparametric elements. The crack-tip elements are collapsed to form a 1/r stress singularity about the curved crack front. The finite element model is subjected to internal pressure and axial pressure-generated loads. The virtual crack extension method is used to determine linear elastic stress intensity factors from the J-integral results at various points around the crack front. Despite the different material constants and the thinner wall thickness in this analysis, the elastic results compare favourably with those obtained by other researchers. The nonlinear stress-strain behaviour of the tube material is modelled using an incremental theory of plasticity. Variations of the J-integral values around the curved crack front of the 3-D flaw were seen. These variations could not be resolved by neglecting the immediate crack-tip elements J-integral results in favour of the more remote contour paths or else smoothed out when all the path results are averaged. Numerical incompatabilities in the 20-noded 3-D finite elements used to model the surface flaw were found. A partial-reduced integration scheme, using a combination of full and reduced integration elements, is proposed to determine J-integral results for 3-D fracture analyses. This procedure is applied to the analysis of an external semicircular surface flaw projecting halfway into the tube wall thickness. Examples of the J-integral values, before and after the partial-reduced integration method is employed, are given around the

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. In ...

  10. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.

    Science.gov (United States)

    Burtnyk, Mathieu; N'Djin, William Apoutou; Kobelevskiy, Ilya; Bronskill, Michael; Chopra, Rajiv

    2010-11-21

    MRI-controlled transurethral ultrasound therapy uses a linear array of transducer elements and active temperature feedback to create volumes of thermal coagulation shaped to predefined prostate geometries in 3D. The specific aims of this work were to demonstrate the accuracy and repeatability of producing large volumes of thermal coagulation (>10 cc) that conform to 3D human prostate shapes in a tissue-mimicking gel phantom, and to evaluate quantitatively the accuracy with which numerical simulations predict these 3D heating volumes under carefully controlled conditions. Eleven conformal 3D experiments were performed in a tissue-mimicking phantom within a 1.5T MR imager to obtain non-invasive temperature measurements during heating. Temperature feedback was used to control the rotation rate and ultrasound power of transurethral devices with up to five 3.5 × 5 mm active transducer elements. Heating patterns shaped to human prostate geometries were generated using devices operating at 4.7 or 8.0 MHz with surface acoustic intensities of up to 10 W cm(-2). Simulations were informed by transducer surface velocity measurements acquired with a scanning laser vibrometer enabling improved calculations of the acoustic pressure distribution in a gel phantom. Temperature dynamics were determined according to a FDTD solution to Pennes' BHTE. The 3D heating patterns produced in vitro were shaped very accurately to the prostate target volumes, within the spatial resolution of the MRI thermometry images. The volume of the treatment difference falling outside ± 1 mm of the target boundary was, on average, 0.21 cc or 1.5% of the prostate volume. The numerical simulations predicted the extent and shape of the coagulation boundary produced in gel to within (mean ± stdev [min, max]): 0.5 ± 0.4 [-1.0, 2.1] and -0.05 ± 0.4 [-1.2, 1.4] mm for the treatments at 4.7 and 8.0 MHz, respectively. The temperatures across all MRI thermometry images were predicted within -0.3 ± 1.6 °C and 0

  11. Volumetry and biomechanical parameters detected by 3D and 2D ultrasound in patients with and without an abdominal aortic aneurysm.

    Science.gov (United States)

    Batagini, Nayara Cioffi; Ventura, Carlos Augusto Pinto; Raghavan, Madhavan L; Chammas, Maria Cristina; Tachibana, Adriano; da Silva, Erasmo Simão

    2016-06-01

    The objective was to demonstrate the ability of ultrasound (US) with 3D properties to evaluate volumetry and biomechanical parameters of the aorta in patients with and without abdominal aortic aneurysm (AAA). Thirty-one patients with normal aortas (group 1), 46 patients with AAA measuring 3.0-5.5 cm (group 2) and 31 patients with AAA ⩾ 5.5 cm (group 3) underwent a 2D/3D-US examination of the infra-renal aorta, and the images were post-processed prior to being analyzed. In the maximum diameter, the global circumferential strain and the global maximum rotation assessed by 2D speckle-tracking algorithms were compared among the three groups. The volumetry data obtained using 3D-US from 40 AAA patients were compared with the volumetry data obtained by a contemporary computed tomography (CT) scan. The median global circumferential strain was 2.0% (interquartile range (IR): 1.0-3.0), 1.0% (IR: 1.0-2.0) and 1.0% (IR: 1.0-1.75) in groups 1, 2 and 3, respectively (p volumetry and biomechanical characteristics of AAA. © The Author(s) 2016.

  12. 3D Integration for Wireless Multimedia

    Science.gov (United States)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  13. Experimental study of sector and linear array ultrasound accuracy and the influence of navigated 3D-reconstruction as compared to MRI in a brain tumor model.

    Science.gov (United States)

    Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan

    2018-03-01

    Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.

  14. Integration of real-time 3D capture, reconstruction, and light-field display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  15. MULTI SENSOR DATA INTEGRATION FOR AN ACCURATE 3D MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    S. Chhatkuli

    2015-05-01

    Full Text Available The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other’s weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  16. Reproducibility of the interpretation of coronal 3D ultrasound view of the uterus to evaluate the position of Essure® 3 months after hysteroscopic procedure.

    Science.gov (United States)

    Capmas, P; Letendre, I; Levaillant, J-M; Fuchs, F; Panel, P; Chambon, G; Villefranque, V; Levy-Zauberman, Y; Fernandez, H

    2017-09-01

    Three-dimensional sonography is a good alternative method to assess the position of microinserts. Adequate position after three months allows for the interruption of other contraception. Objective is to evaluate inter-observer reproducibility of the interpretation of coronal transvaginal 3D ultrasound view of the uterus to evaluate the position of Essure ® . Inter-observer reproducibility study. Fifty women underwent successful bilateral placement of microinserts (Essure ® ) by hysteroscopy in the Department of Gynaecology of a teaching hospital and were included in the study. At three month, 3D ultrasound coronal views of the fifty uterus (accounting for one hundred microinserts) were assessed by five different observers and microinsert position was classified according to the classification described by Legendre et al. Inter-observer reproducibility in reading the 3D coronal view of the uterus was evaluated. The k-value was disparate, from 0.26 to 0.82. Inter-observer reproducibility then ranged from fair to almost perfect, depending on a prior knowledge of the position classification. Transvaginal 3D coronal view of the uterus is sufficient to assess the positioning of the microinserts when the practionner or the surgeon is familiar with the classification method. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.

    Science.gov (United States)

    N'djin, William Apoutou; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2012-01-01

    Transurethral ultrasound therapy uses real-time magnetic resonance (MR) temperature feedback to enable the 3D control of thermal therapy accurately in a region within the prostate. Previous canine studies showed the feasibility of this method in vivo. The aim of this study was to reduce the procedure time, while maintaining targeting accuracy, by investigating new combinations of treatment parameters. Simulations and validation experiments in gel phantoms were used, with a collection of nine 3D realistic target prostate boundaries obtained from previous preclinical studies, where multi-slice MR images were acquired with the transurethral device in place. Acoustic power and rotation rate were varied based on temperature feedback at the prostate boundary. Maximum acoustic power and rotation rate were optimised interdependently, as a function of prostate radius and transducer operating frequency. The concept of dual frequency transducers was studied, using the fundamental frequency or the third harmonic component depending on the prostate radius. Numerical modelling enabled assessment of the effects of several acoustic parameters on treatment outcomes. The range of treatable prostate radii extended with increasing power, and tended to narrow with decreasing frequency. Reducing the frequency from 8 MHz to 4 MHz or increasing the surface acoustic power from 10 to 20 W/cm(2) led to treatment times shorter by up to 50% under appropriate conditions. A dual frequency configuration of 4/12 MHz with 20 W/cm(2) ultrasound intensity exposure can treat entire prostates up to 40 cm(3) in volume within 30 min. The interdependence between power and frequency may, however, require integrating multi-parametric functions in the controller for future optimisations.

  18. Evaluation of Chest Ultrasound Integrated Teaching of Respiratory System Physiology to Medical Students

    Science.gov (United States)

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-01-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term…

  19. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  20. Hybrid animation integrating 2D and 3D assets

    CERN Document Server

    O'Hailey, Tina

    2010-01-01

    Artist imaginations continue to grow and stretch the boundaries of traditional animation. Successful animators adept and highly skilled in traditional animation mediums are branching out beyond traditional animation workflows and will often use multiple forms of animation in a single project. With the knowledge of 3D and 2D assets and the integration of multiple animation mediums into a single project, animators have a wealth of creative resources available for a project that is not limited to a specific animation medium, software package or workflow processs. Enhance a poignant scene by choos

  1. 3D Integration of MEMS and IC: Design, technology and simulations

    OpenAIRE

    Schjølberg-Henriksen, Kari

    2009-01-01

    * 3D integration: Opportunities and trends* e-CUBES: Tire pressure monitoring system (TPMS)* Package design including thermo-mechanical modeling* Technology development* Sensor packaging concept* Gold stud bump bonding* Device characterization and testing* Summary and outlook 3D Integration of MEMS and IC: Design, technology and simulations

  2. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  3. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  5. MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images

    Science.gov (United States)

    Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.

    2018-04-01

    In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.

  6. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers

    Science.gov (United States)

    Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François

    2018-01-01

    The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N  =  3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.

  7. Notes on integral identities for 3d supersymmetric dualities

    Science.gov (United States)

    Aghaei, Nezhla; Amariti, Antonio; Sekiguchi, Yuta

    2018-04-01

    Four dimensional N=2 Argyres-Douglas theories have been recently conjectured to be described by N=1 Lagrangian theories. Such models, once reduced to 3d, should be mirror dual to Lagrangian N=4 theories. This has been numerically checked through the matching of the partition functions on the three sphere. In this article, we provide an analytic derivation for this result in the A 2 n-1 case via hyperbolic hypergeometric integrals. We study the D 4 case as well, commenting on some open questions and possible resolutions. In the second part of the paper we discuss other integral identities leading to the matching of the partition functions in 3d dual pairs involving higher monopole superpotentials.

  8. Accuracy assessment of Tri-plane B-mode ultrasound for non-invasive 3D kinematic analysis of knee joints.

    Science.gov (United States)

    Masum, Md Abdullah; Pickering, Mark; Lambert, Andrew; Scarvell, Jennie; Smith, Paul

    2014-08-26

    Currently the clinical standard for measuring the motion of the bones in knee joints with sufficient precision involves implanting tantalum beads into the bones. These beads appear as high intensity features in radiographs and can be used for precise kinematic measurements. This procedure imposes a strong coupling between accuracy and invasiveness. In this paper, a tri-plane B-mode ultrasound (US) based non-invasive approach is proposed for use in kinematic analysis of knee joints in 3D space. The 3D analysis is performed using image processing procedures on the 2D US slices. The novelty of the proposed procedure and its applicability to the unconstrained 3D kinematic analysis of knee joints is outlined. An error analysis for establishing the method's feasibility is included for different artificial compositions of a knee joint phantom. Some in-vivo and in-vitro scans are presented to demonstrate that US scans reveal enough anatomical details, which further supports the experimental setup used using knee bone phantoms. The error between the displacements measured by the registration of the US image slices and the true displacements of the respective slices measured using the precision mechanical stages on the experimental apparatus is evaluated for translation and rotation in two simulated environments. The mean and standard deviation of errors are shown in tabular form. This method provides an average measurement precision of less than 0.1 mm and 0.1 degrees, respectively. In this paper, we have presented a novel non-invasive approach to measuring the motion of the bones in a knee using tri-plane B-mode ultrasound and image registration. In our study, the image registration method determines the position of bony landmarks relative to a B-mode ultrasound sensor array with sub-pixel accuracy. The advantages of our proposed system over previous techniques are that it is non-invasive, does not require the use of ionizing radiation and can be used conveniently if

  9. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Biren J; Longsine, Whitney; Han, Arum; Righetti, Raffaella [Department of Electrical and Computer Engineering, Dwight Look College of Engineering, Texas A and M University, College Station, TX (United States); Sabonghy, Eric P [OneOrtho Orthopedic Surgery Clinic, Houston, TX (United States); Tasciotti, Ennio; Ferrari, Mauro [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX (United States); Weiner, Bradley K, E-mail: righetti@ece.tamu.ed [Division of Spinal Surgery, Department of Orthopaedic Surgery, Methodist Hospital, Houston, TX 77030 (United States)

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 {mu}m to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  10. Ray-based approach to integrated 3D visual communication

    Science.gov (United States)

    Naemura, Takeshi; Harashima, Hiroshi

    2001-02-01

    For a high sense of reality in the next-generation communications, it is very important to realize three-dimensional (3D) spatial media, instead of existing 2D image media. In order to comprehensively deal with a variety of 3D visual data formats, the authors first introduce the concept of "Integrated 3D Visual Communication," which reflects the necessity of developing a neutral representation method independent of input/output systems. Then, the following discussions are concentrated on the ray-based approach to this concept, in which any visual sensation is considered to be derived from a set of light rays. This approach is a simple and straightforward to the problem of how to represent 3D space, which is an issue shared by various fields including 3D image communications, computer graphics, and virtual reality. This paper mainly presents the several developments in this approach, including some efficient methods of representing ray data, a real-time video-based rendering system, an interactive rendering system based on the integral photography, a concept of virtual object surface for the compression of tremendous amount of data, and a light ray capturing system using a telecentric lens. Experimental results demonstrate the effectiveness of the proposed techniques.

  11. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor.

    Science.gov (United States)

    Sato, Miki; Noguchi, Junko; Mashima, Masato; Tanaka, Hirokazu; Hata, Toshiyuki

    2016-09-01

    To assess placental perfusion during spontaneous or induced uterine contraction in labor at term using placental vascular sonobiopsy (PVS) by 3D power Doppler ultrasound with the VOCAL imaging analysis program. PVS was performed in 50 normal pregnancies (32 in spontaneous labor group [SLG], and 18 in induced labor group with oxytocin or prostaglandin F2α [ILG]) at 37-41 weeks of gestation to assess placental perfusion during uterine contraction in labor. Only pregnancies with an entirely visualized anterior placenta were included in the study. Data acquisition was performed before, during (at the peak of contraction), and after uterine contraction. 3D power Doppler indices such as the vascularization index (VI), flow index (FI), and vascularization flow index (VFI) were calculated in each placenta. There were no abnormal fetal heart rate tracings during contraction in either group. VI and VFI values were significantly reduced during uterine contraction in both groups (SLG, -33.4% [-97.0-15.2%], and ILG, -49.6% [-78.2--4.0%]), respectively (P power Doppler indices (VI, FI, and VFI) during uterine contraction (at the peak of contraction) showed a correlation greater than 0.7, with good intra- and inter-observer agreements. Our findings suggest that uterine contraction in both spontaneous and induced labors causes a significant reduction in placental perfusion. Reduced placental blood flow in induced uterine contraction has a tendency to be marked compared with that in spontaneous uterine contraction. To the best of our knowledge, this is the first study on the non-invasive assessment of placental perfusion during uterine contraction in labor using 3D power Doppler ultrasound. However, the data and their interpretation in the present study should be taken with some degree of caution because of the small number of subjects studied. Further studies involving a larger sample size are needed to assess placental perfusion and vascularity using PVS during normal and

  12. Designing TSVs for 3D Integrated Circuits

    CERN Document Server

    Khan, Nauman

    2013-01-01

    This book explores the challenges and presents best strategies for designing Through-Silicon Vias (TSVs) for 3D integrated circuits.  It describes a novel technique to mitigate TSV-induced noise, the GND Plug, which is superior to others adapted from 2-D planar technologies, such as a backside ground plane and traditional substrate contacts. The book also investigates, in the form of a comparative study, the impact of TSV size and granularity, spacing of C4 connectors, off-chip power delivery network, shared and dedicated TSVs, and coaxial TSVs on the quality of power delivery in 3-D ICs. The authors provide detailed best design practices for designing 3-D power delivery networks.  Since TSVs occupy silicon real-estate and impact device density, this book provides four iterative algorithms to minimize the number of TSVs in a power delivery network. Unlike other existing methods, these algorithms can be applied in early design stages when only functional block- level behaviors and a floorplan are available....

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... 3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study ... to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... 3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study ... at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  15. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    DEFF Research Database (Denmark)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-01-01

    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined ...... uterus. Uterine shifts based on US imaging contains relative uterus-bone displacement, which is not taken into consideration using CBCT bone match....

  16. 3D ultrasound-CT registration of the liver using combined landmark-intensity information

    International Nuclear Information System (INIS)

    Lange, Thomas; Schlag, Peter M.; Papenberg, Nils; Heldmann, Stefan; Modersitzki, Jan; Fischer, Bernd; Lamecker, Hans

    2009-01-01

    An important issue in computer-assisted surgery of the liver is a fast and reliable transfer of preoperative resection plans to the intraoperative situation. One problem is to match the planning data, derived from preoperative CT or MR images, with 3D ultrasound images of the liver, acquired during surgery. As the liver deforms significantly in the intraoperative situation non-rigid registration is necessary. This is a particularly challenging task because pre- and intraoperative image data stem from different modalities and ultrasound images are generally very noisy. One way to overcome these problems is to incorporate prior knowledge into the registration process. We propose a method of combining anatomical landmark information with a fast non-parametric intensity registration approach. Mathematically, this leads to a constrained optimization problem. As distance measure we use the normalized gradient field which allows for multimodal image registration. A qualitative and quantitative validation on clinical liver data sets of three different patients has been performed. We used the distance of dense corresponding points on vessel center lines for quantitative validation. The combined landmark and intensity approach improves the mean and percentage of point distances above 3 mm compared to rigid and thin-plate spline registration based only on landmarks. The proposed algorithm offers the possibility to incorporate additional a priori knowledge - in terms of few landmarks - provided by a human expert into a non-rigid registration process. (orig.)

  17. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo

    2014-01-01

    in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential......This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... Beamforming (SASB). Simulations are performed to evaluate the image quality of the presented method in comparison to Parallel beamforming utilizing 16 receive beamformers. As indicators for image quality the detail resolution and Cystic resolution are determined for a set of scatterers at a depth of 90mm...

  18. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography.

    Science.gov (United States)

    Villemain, Olivier; Kwiecinski, Wojciech; Bel, Alain; Robin, Justine; Bruneval, Patrick; Arnal, Bastien; Tanter, Mickael; Pernot, Mathieu; Messas, Emmanuel

    2016-10-01

    Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will

  19. Can mastication in children with cerebral palsy be analyzed by clinical observation, dynamic ultrasound and 3D kinematics?

    Science.gov (United States)

    Remijn, L; Groen, B E; Speyer, R; van Limbeek, J; Vermaire, J A; van den Engel-Hoek, L; Nijhuis-van der Sanden, M W G

    2017-02-01

    The aim of this study was to explore the feasibility of the Mastication Observation and Evaluation (MOE) instrument, dynamic ultrasound and 3D kinematic measurements to describe mastication in children with spastic cerebral palsy and typically developing children. Masticatory movements during five trials of eating a biscuit were assessed in 8 children with cerebral palsy, spastic type (mean age 9.08years) and 14 typically developing children (mean age 9.01years). Differences between trials were tested (t-test) and the mastication of individual children with cerebral palsy was analyzed. MOE scores ranged from 17 to 31 (median 24) for the children with cerebral palsy and from 28 to 32 (median 31) for the typically developing children. There was an increased chewing cycle duration, a smaller left-right and up-down tongue displacement and larger anterior mandible movements for the trials (n=40) of cerebral palsy children (pmastication between individual children with cerebral palsy. The MOE items 'jaw movement' and 'fluency and coordination' showed the most similarity with the objective measurements. Objective measurements of dynamic ultrasound and 3D kinematics complemented data from the MOE instrument. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dielectric Spectroscopic Detection of Early Failures in 3-D Integrated Circuits.

    Science.gov (United States)

    Obeng, Yaw; Okoro, C A; Ahn, Jung-Joon; You, Lin; Kopanski, Joseph J

    The commercial introduction of three dimensional integrated circuits (3D-ICs) has been hindered by reliability challenges, such as stress related failures, resistivity changes, and unexplained early failures. In this paper, we discuss a new RF-based metrology, based on dielectric spectroscopy, for detecting and characterizing electrically active defects in fully integrated 3D devices. These defects are traceable to the chemistry of the insolation dielectrics used in the through silicon via (TSV) construction. We show that these defects may be responsible for some of the unexplained early reliability failures observed in TSV enabled 3D devices.

  1. Status and perspectives of pixel sensors based on 3D vertical integration

    CERN Document Server

    Re, V

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors.

  2. A compact mechatronic system for 3D ultrasound guided prostate interventions

    International Nuclear Information System (INIS)

    Bax, Jeffrey; Smith, David; Bartha, Laura; Montreuil, Jacques; Sherebrin, Shi; Gardi, Lori; Edirisinghe, Chandima; Fenster, Aaron

    2011-01-01

    Purpose: Ultrasound imaging has improved the treatment of prostate cancer by producing increasingly higher quality images and influencing sophisticated targeting procedures for the insertion of radioactive seeds during brachytherapy. However, it is critical that the needles be placed accurately within the prostate to deliver the therapy to the planned location and avoid complications of damaging surrounding tissues. Methods: The authors have developed a compact mechatronic system, as well as an effective method for guiding and controlling the insertion of transperineal needles into the prostate. This system has been designed to allow guidance of a needle obliquely in 3D space into the prostate, thereby reducing pubic arch interference. The choice of needle trajectory and location in the prostate can be adjusted manually or with computer control. Results: To validate the system, a series of experiments were performed on phantoms. The 3D scan of the string phantom produced minimal geometric error, which was less than 0.4 mm. Needle guidance accuracy tests in agar prostate phantoms showed that the mean error of bead placement was less then 1.6 mm along parallel needle paths that were within 1.2 mm of the intended target and 1 deg. from the preplanned trajectory. At oblique angles of up to 15 deg. relative to the probe axis, beads were placed to within 3.0 mm along a trajectory that were within 2.0 mm of the target with an angular error less than 2 deg. Conclusions: By combining 3D TRUS imaging system to a needle tracking linkage, this system should improve the physician's ability to target and accurately guide a needle to selected targets without the need for the computer to directly manipulate and insert the needle. This would be beneficial as the physician has complete control of the system and can safely maneuver the needle guide around obstacles such as previously placed needles.

  3. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.

    Science.gov (United States)

    Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Mulder, Harriët W; Ren, Ben; Kirişli, Hortense A; Metz, Coert; van Burken, Gerard; van Stralen, Marijn; Pluim, Josien P W; van der Steen, Antonius F W; van Walsum, Theo; Bosch, Johannes G

    2015-06-01

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts. We propose to segment all cavities within the TEE view with a multi-cavity active shape model (ASM) in conjunction with a tissue/blood classification based on a gamma mixture model (GMM). 3-D TEE image data of twenty patients were acquired with a Philips X7-2t matrix TEE probe. Tissue probability maps were estimated by a two-class (blood/tissue) GMM. A statistical shape model containing the left ventricle, right ventricle, left atrium, right atrium, and aorta was derived from computed tomography angiography (CTA) segmentations by principal component analysis. ASMs of the whole heart and individual cavities were generated and consecutively fitted to tissue probability maps. First, an average whole-heart model was aligned with the 3-D TEE based on three manually indicated anatomical landmarks. Second, pose and shape of the whole-heart ASM were fitted by a weighted update scheme excluding parts outside of the image sector. Third, pose and shape of ASM for individual heart cavities were initialized by the previous whole heart ASM and updated in a regularized manner to fit the tissue probability maps. The ASM segmentations were validated against manual outlines by two observers and CTA derived segmentations. Dice coefficients and point-to-surface distances were used to determine segmentation accuracy. ASM segmentations were successful in 19 of 20 cases. The median Dice coefficient for all successful segmentations versus the average observer ranged from 90% to 71% compared with an inter-observer range of 95% to 84%. The

  4. Validity and reliability of a structured-light 3D scanner and an ultrasound imaging system for measurements of facial skin thickness.

    Science.gov (United States)

    Lee, Kang-Woo; Kim, Sang-Hwan; Gil, Young-Chun; Hu, Kyung-Seok; Kim, Hee-Jin

    2017-10-01

    Three-dimensional (3 D)-scanning-based morphological studies of the face are commonly included in various clinical procedures. This study evaluated validity and reliability of a 3 D scanning system by comparing the ultrasound (US) imaging system versus the direct measurement of facial skin. The facial skin thickness at 19 landmarks was measured using the three different methods in 10 embalmed adult Korean cadavers. Skin thickness was first measured using the ultrasound device, then 3 D scanning of the facial skin surface was performed. After the skin on the left half of face was gently dissected, deviating slightly right of the midline, to separate it from the subcutaneous layer, and the harvested facial skin's thickness was measured directly using neck calipers. The dissected specimen was then scanned again, then the scanned images of undissected and dissected faces were superimposed using Morpheus Plastic Solution (version 3.0) software. Finally, the facial skin thickness was calculated from the superimposed images. The ICC value for the correlations between the 3 D scanning system and direct measurement showed excellent reliability (0.849, 95% confidence interval = 0.799-0.887). Bland-Altman analysis showed a good level of agreement between the 3 D scanning system and direct measurement (bias = 0.49 ± 0.49 mm, mean±SD). These results demonstrate that the 3 D scanning system precisely reflects structural changes before and after skin dissection. Therefore, an in-depth morphological study using this 3 D scanning system could provide depth data about the main anatomical structures of face, thereby providing crucial anatomical knowledge for utilization in various clinical applications. Clin. Anat. 30:878-886, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    Science.gov (United States)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  6. An architecture for integrating planar and 3D cQED devices

    Energy Technology Data Exchange (ETDEWEB)

    Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-07-25

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

  7. Integrated ultrasound and gamma imaging probe for medical diagnosis

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; Vincentis, G. De

    2016-01-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures

  8. Research on fine management and visualization of ancient architectures based on integration of 2D and 3D GIS technology

    International Nuclear Information System (INIS)

    Jun, Yan; Shaohua, Wang; Jiayuan, Li; Qingwu, Hu

    2014-01-01

    Aimed at ancient architectures which own the characteristics of huge data quantity, fine-grained and high-precise, a 3D fine management and visualization method for ancient architectures based on the integration of 2D and 3D GIS is proposed. Firstly, after analysing various data types and characters of digital ancient architectures, main problems and key technologies existing in the 2D and 3D data management are discussed. Secondly, data storage and indexing model of digital ancient architecture based on 2D and 3D GIS integration were designed and the integrative storage and management of 2D and 3D data were achieved. Then, through the study of data retrieval method based on the space-time indexing and hierarchical object model of ancient architecture, 2D and 3D interaction of fine-grained ancient architectures 3D models was achieved. Finally, take the fine database of Liangyi Temple belonging to Wudang Mountain as an example, fine management and visualization prototype of 2D and 3D integrative digital ancient buildings of Liangyi Temple was built and achieved. The integrated management and visual analysis of 10GB fine-grained model of the ancient architecture was realized and a new implementation method for the store, browse, reconstruction, and architectural art research of ancient architecture model was provided

  9. 3D-vertical integration of sensors and electronics

    International Nuclear Information System (INIS)

    Lipton, R.

    2007-01-01

    Technologies are being developed which enable the vertical integration of sensors and electronics as well as multilayer electronic circuits. New thinning and wafer bonding techniques and the formation of small vias between resulting thin layers of electronics enable the design of dense integrated sensor/readout structures. We discuss candidate technologies based on SOI and bulk CMOS. A prototype 3D chip developed at Fermilab that incorporates three tiers of 0.18μm CMOS is described

  10. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment

    Directory of Open Access Journals (Sweden)

    Mariella Bleve

    2012-01-01

    Full Text Available Background. Over time, the striae rubra develop into striae alba that appear white, flat, and depressed. It is very important to determine the optimum striae management. In order to evaluate the effectiveness of these therapies, objective measurement tools are necessary. Objective. The aim of this study is to evaluate if ultrasonography and PRIMOS can be used to obtain an objective assessment of stretch marks type and stage; furthermore, we aim to apply these techniques to evaluate the efficacy of a topical treatment. Methods. 20 volunteers were enrolled with a two-month study. A marketed cosmetic product was used as the active over one body area. The controlateral area with stretch marks was treated with a “placebo” formulation without active, as a control. The instrumental evaluation was carried out at the beginning of the trial (baseline values or 0, after 1 month (1, and at the end of the study (2. Results. PRIMOS was able to measure and document striae distensae maturation; furthermore, ultrasound imaging permitted to visualize and diagnose the striae. Statistical analysis of skin roughness demonstrated a statistically significant reduction of Rp value only in a treated group. In fact, the Rp value represented a maximum peak height in the area selected. These results demonstrated that after two months of treatment only the striae rubra can be treated successfully. Conclusions. This work demonstrated that the 22MHz ultrasound can diagnose stretch marks; PRIMOS device can detect and measure striae distensae type and maturation. Furthermore, the high-frequency ultrasound and the 3D image device, described in this work, can be successfully employed in order to evaluate the efficacy of a topical treatment.

  11. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ...

  13. Femtosecond Laser Direct Write Integration of Multi-Protein Patterns and 3D Microstructures into 3D Glass Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Daniela Serien

    2018-01-01

    Full Text Available Microfluidic devices and biochips offer miniaturized laboratories for the separation, reaction, and analysis of biochemical materials with high sensitivity and low reagent consumption. The integration of functional or biomimetic elements further functionalizes microfluidic devices for more complex biological studies. The recently proposed ship-in-a-bottle integration based on laser direct writing allows the construction of microcomponents made of photosensitive polymer inside closed microfluidic structures. Here, we expand this technology to integrate proteinaceous two-dimensional (2D and three-dimensional (3D microstructures with the aid of photo-induced cross-linking into glass microchannels. The concept is demonstrated with bovine serum albumin and enhanced green fluorescent protein, each mixed with photoinitiator (Sodium 4-[2-(4-Morpholino benzoyl-2-dimethylamino] butylbenzenesulfonate. Unlike the polymer integration, fabrication over the entire channel cross-section is challenging. Two proteins are integrated into the same channel to demonstrate multi-protein patterning. Using 50% w/w glycerol solvent instead of 100% water achieves almost the same fabrication resolution for in-channel fabrication as on-surface fabrication due to the improved refractive index matching, enabling the fabrication of 3D microstructures. A glycerol-water solvent also reduces the risk of drying samples. We believe this technology can integrate diverse proteins to contribute to the versatility of microfluidics.

  14. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  15. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Stéphane, E-mail: sgcarlier@hotmail.com [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Didday, Rich [INDEC Medical Systems Inc., Santa Clara, CA (United States); Slots, Tristan [Pie Medical Imaging BV, Maastricht (Netherlands); Kayaert, Peter; Sonck, Jeroen [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); El-Mourad, Mike; Preumont, Nicolas [Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Schoors, Dany; Van Camp, Guy [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium)

    2014-06-15

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization.

  16. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    International Nuclear Information System (INIS)

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-01-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization

  17. Anterior and posterior compartment 3D endovaginal ultrasound anatomy based on direct histologic comparison.

    Science.gov (United States)

    Shobeiri, S Abbas; White, Dena; Quiroz, Lieschen H; Nihira, Mikio A

    2012-08-01

    We used direct histologic comparison to validate the use of 3D endovaginal ultrasound (EVUS) as a novel and emerging technology for evaluating the structures found in the anterior and posterior pelvic floor compartments. A young nulliparous female pelvis specimen was dissected and histologic slides were prepared by making 8-Micron-thick sagittal cuts. The slides were stained with Mallory trichrome and arranged to form large sections encompassing each anterior and posterior sagittal plane. Healthy nulliparous women underwent 3D EVUS to obtain 3D cubes of the anterior and posterior compartments. Two investigators independently evaluated the anterior and posterior midsagittal structures. The investigators mutually viewed the images and calculated urethral and anal sphincter measurements. Thirty-one nulliparous women underwent 3D EVUS; 77% of the participants were Caucasian, with mean age 31.8 [standard deviation (SD) 5.8] and mean body mass index (BMI) of 28.5 (SD 7.9). The following mean (SD) measurements were obtained: urethral length 36 mm (± 5); striated urogenital sphincter area 0.6 cm(2) (± 0.16); longitudinal and circular smooth muscle area 1.1 cm(2) (± 0.4); urethral complex width 14 mm (± 2); urethral complex area 1.3 cm(2) (± 0.4); internal anal sphincter length 26 mm (± 4); internal anal sphincter thickness 3.2 mm (± 0.8); and rectovaginal septum length 31 mm (± 5). The agreement for visualization of structures was as follows: vesical trigone 96% (κ = 0.65), trigonal ring 94% (κ = 0.8), trigonal plate 84% (κ = 0.6); longitudinal and circular smooth muscle 100%; compressor urethra 97% (κ = 0.85); striated urogenital sphincter 97% (κ = 0.85); rectovaginal septum 100%; internal anal sphincter 100%; external anal sphincter subdivisions 100%. Three-dimensional EVUS can be used to visualize structures of the anterior and posterior compartments in nullipara.

  18. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    Science.gov (United States)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  19. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device

    Science.gov (United States)

    Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.

    2018-03-01

    Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5  ×  0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within  ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a  ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.

  20. Flatbed-type 3D display systems using integral imaging method

    Science.gov (United States)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  1. Integration von 3D-Kamerasystemen am Gabelstapler

    OpenAIRE

    Kleinert, Steffen; Overmeyer, Ludger

    2013-01-01

    Dieser Beitrag beschreibt die Integration von laufzeitmessenden 3D Kamerasystemen in die Gabelzinkenspitzen eines Flurförderzeugs. Mit Hilfe der integrierten Kameras und deren ausgewerteter Aufnahmen wurde ein Assistenzsystem für die Handhabung von Ladungsträgern realisiert, das dem Fahrer des Flurförderzeugs Verfahrempfehlungen für die Optimierung der Relativposition zwischen Gabelzinken und Ladungsträger bzw. Lagerplatz ausgibt. Neben der Vorstellung der verwendeten Kamera-Hardware und der ...

  2. Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV).

    Science.gov (United States)

    Shen, Wen-Wei; Chen, Kuan-Neng

    2017-12-01

    3D integration with through-silicon via (TSV) is a promising candidate to perform system-level integration with smaller package size, higher interconnection density, and better performance. TSV fabrication is the key technology to permit communications between various strata of the 3D integration system. TSV fabrication steps, such as etching, isolation, metallization processes, and related failure modes, as well as other characterizations are discussed in this invited review paper.

  3. Development of a 3D ultrasound system to investigate post-hemorrhagic hydrocephalus in pre-term neonates

    Science.gov (United States)

    Kishimoto, J.; Lee, D.; St. Lawrence, K.; Romano, W.; Fenster, A.; de Ribaupierre, S.

    2013-03-01

    Clinical intracranial ultrasound (US) is performed as a standard of care on neonates at risk of intraventricular hemorrhaging (IVH) and is also used after a diagnosis to monitor for potential ventricular dilation. However, it is difficult to estimate the volume of ventricles with 2D US due to their irregular shape. We developed a 3D US system to be used as an adjunct to a clinical system to investigate volumetric changes in the ventricles of neonates with IVH. Our system has been found have an error of within 1% of actual distance measurements in all three directions and volume measurements of manually segmented volumes from phantoms were not statistically significantly different from the actual values (p>0.3). Interobserver volume measurements of the lateral ventricles in a patient with grade III IVH found no significant differences between measurements. There is the potential to use this system in IVH patients to monitor the progression of ventriculomegaly over time.

  4. More-than-Moore 2.5D and 3D SiP integration

    CERN Document Server

    Radojcic, Riko

    2017-01-01

    This book presents a realistic and a holistic review of the microelectronic and semiconductor technology options in the post Moore’s Law regime. Technical tradeoffs, from architecture down to manufacturing processes, associated with the 2.5D and 3D integration technologies, as well as the business and product management considerations encountered when faced by disruptive technology options, are presented. Coverage includes a discussion of Integrated Device Manufacturer (IDM) vs Fabless, vs Foundry, and Outsourced Assembly and Test (OSAT) barriers to implementation of disruptive technology options. This book is a must-read for any IC product team that is considering getting off the Moore’s Law track, and leveraging some of the More-than-Moore technology options for their next microelectronic product. .

  5. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius; Kodzius, Rimantas; Vanagas, Galius

    2013-01-01

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here

  6. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2015-01-01

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams also help identify: ... fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ...

  8. Integration of DYN3D inside the NURESIM platform

    International Nuclear Information System (INIS)

    Gomez T, A. M.; Sanchez E, V. H.; Kliem, S.; Gommlich, A.; Rohde, U.

    2010-10-01

    The NURISP project (Nuclear Reactor Integrated Simulation Project) is focused on the further development of the European Nuclear Reactor Simulation (NURESIM) platform for advanced numerical reactor design and safety analysis tools. NURESIM is based on an open source platform - called SALOME - that offers flexible and powerful capabilities for pre- and post processing as well as for coupling of multi-physics and multi-scale solutions. The developments within the NURISP project are concentrated in the areas of reactors, physics, thermal hydraulics, multi-physics, and sensitivity and uncertainty methodologies. The aim is to develop experimentally validated advanced simulation tools including capabilities for uncertainty and sensitivity quantification. A unique feature of NURESIM is the flexibility in selecting the solvers for the area of interest and the interpolation and mapping schemes according to the problem under consideration. The Sub Project 3 (S P3) of NURISP is focused on the development of multi-physics methodologies at different scales and covering different physical fields (neutronics, thermal hydraulics and pin mechanics). One of the objectives of S P3 is the development of multi-physics methodologies beyond the state-of-the-art for improved prediction of local safety margins and design at pin-by-pin scale. The Karlsruhe Institute of Technology and the Research Center Dresden-Rossendorf are involved in the integration of the reactor dynamics code DYN3D into the SALOME platform for coupling with a thermal hydraulic sub-channel code (FLICA4) at fuel assembly and pin level. In this paper, the main capabilities of the SALOME platform, the steps for the integration process of DYN3D as well as selected preliminary results obtained for the DYN3D/FLICA4 coupling are presented and discussed. Finally the next steps for the validation of the coupling scheme at fuel assembly and pin basis are given. (Author)

  9. Design for High Performance, Low Power, and Reliable 3D Integrated Circuits

    CERN Document Server

    Lim, Sung Kyu

    2013-01-01

    This book describes the design of through-silicon-via (TSV) based three-dimensional integrated circuits.  It includes details of numerous “manufacturing-ready” GDSII-level layouts of TSV-based 3D ICs, developed with tools covered in the book. Readers will benefit from the sign-off level analysis of timing, power, signal integrity, and thermo-mechanical reliability for 3D IC designs.  Coverage also includes various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the 3D IC design process. Describes design issues and solutions for high performance and low power 3D ICs, such as the pros/cons of regular and irregular placement of TSVs, Steiner routing, buffer insertion, low power 3D clock routing, power delivery network design and clock design for pre-bond testability. Discusses topics in design-for-electrical-reliability for 3D ICs, such as TSV-to-TSV coupling, current crowding at the wire-to-TSV junction and the e...

  10. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    Science.gov (United States)

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  12. Segmentation of 3-D High-Frequency Ultrasound Images of Human Lymph Nodes Using Graph Cut With Energy Functional Adapted to Local Intensity Distribution.

    Science.gov (United States)

    Kuo, Jen-Wei; Mamou, Jonathan; Wang, Yao; Saegusa-Beecroft, Emi; Machi, Junji; Feleppa, Ernest J

    2017-10-01

    Previous studies by our group have shown that 3-D high-frequency quantitative ultrasound (QUS) methods have the potential to differentiate metastatic lymph nodes (LNs) from cancer-free LNs dissected from human cancer patients. To successfully perform these methods inside the LN parenchyma (LNP), an automatic segmentation method is highly desired to exclude the surrounding thin layer of fat from QUS processing and accurately correct for ultrasound attenuation. In high-frequency ultrasound images of LNs, the intensity distribution of LNP and fat varies spatially because of acoustic attenuation and focusing effects. Thus, the intensity contrast between two object regions (e.g., LNP and fat) is also spatially varying. In our previous work, nested graph cut (GC) demonstrated its ability to simultaneously segment LNP, fat, and the outer phosphate-buffered saline bath even when some boundaries are lost because of acoustic attenuation and focusing effects. This paper describes a novel approach called GC with locally adaptive energy to further deal with spatially varying distributions of LNP and fat caused by inhomogeneous acoustic attenuation. The proposed method achieved Dice similarity coefficients of 0.937±0.035 when compared with expert manual segmentation on a representative data set consisting of 115 3-D LN images obtained from colorectal cancer patients.

  13. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, T; Harris, E; Bamber, J [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Greater London (United Kingdom); Evans, P [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom)

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  14. Segmentation of the lumen and media-adventitia boundaries of the common carotid artery from 3D ultrasound images

    Science.gov (United States)

    Ukwatta, E.; Awad, J.; Ward, A. D.; Samarabandu, J.; Krasinski, A.; Parraga, G.; Fenster, A.

    2011-03-01

    Three-dimensional ultrasound (3D US) vessel wall volume (VWV) measurements provide high measurement sensitivity and reproducibility for the monitoring and assessment of carotid atherosclerosis. In this paper, we describe a semiautomated approach based on the level set method to delineate the media-adventitia and lumen boundaries of the common carotid artery from 3D US images to support the computation of VWV. Due to the presence of plaque and US image artifacts, the carotid arteries are challenging to segment using image information alone. Our segmentation framework combines several image cues with domain knowledge and limited user interaction. Our method was evaluated with respect to manually outlined boundaries on 430 2D US images extracted from 3D US images of 30 patients who have carotid stenosis of 60% or more. The VWV given by our method differed from that given by manual segmentation by 6.7% +/- 5.0%. For the media-adventitia and lumen segmentations, respectively, our method yielded Dice coefficients of 95.2% +/- 1.6%, 94.3% +/- 2.6%, mean absolute distances of 0.3 +/- 0.1 mm, 0.2 +/- 0.1 mm, maximum absolute distances of 0.8 +/- 0.4 mm, 0.6 +/- 0.3 mm, and volume differences of 4.2% +/- 3.1%, 3.4% +/- 2.6%. The realization of a semi-automated segmentation method will accelerate the translation of 3D carotid US to clinical care for the rapid, non-invasive, and economical monitoring of atherosclerotic disease progression and regression during therapy.

  15. Robotic 4D ultrasound solution for real-time visualization and teleoperation

    Directory of Open Access Journals (Sweden)

    Al-Badri Mohammed

    2017-09-01

    Full Text Available Automation of the image acquisition process via robotic solutions offer a large leap towards resolving ultrasound’s user-dependency. This paper, as part of a larger project aimed to develop a multipurpose 4d-ultrasonic force-sensitive robot for medical applications, focuses on achieving real-time remote visualisation for 4d ultrasound image transfer. This was possible through implementing our software modification on a GE Vivid 7 Dimension workstation, which operates a matrix array probe controlled by a KUKA LBR iiwa 7 7-DOF robotic arm. With the help of robotic positioning and the matrix array probe, fast volumetric imaging of target regions was feasible. By testing ultrasound volumes, which were roughly 880 kB in size, while using gigabit Ethernet connection, a latency of ∼57 ms was achievable for volume transfer between the ultrasound station and a remote client application, which as a result allows a frame count of 17.4 fps. Our modification thus offers for the first time real-time remote visualization, recording and control of 4d ultrasound data, which can be implemented in teleoperation.

  16. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai [Department of Radiation Oncology, John Hopkins University, Baltimore, MD (United States); Ji, Tianlong [Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning (China); Iordachita, Iulian [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States); Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A. [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  17. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai; Ji, Tianlong; Iordachita, Iulian; Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2016-01-01

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  18. 3-D Vector Flow Estimation With Row–Column-Addressed Arrays

    DEFF Research Database (Denmark)

    Holbek, Simon; Christiansen, Thomas Lehrmann; Stuart, Matthias Bo

    2016-01-01

    Simulation and experimental results from 3-D vector flow estimations for a 62 + 62 2-D row–column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3-MHz RC array is developed and validated. First, a parametric...... mean bias B˜ and mean standard deviation σ˜ . Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight.......7, −0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for (vx , vy, vz). The estimated peak velocity is 48.5 ± 3 cm/s giving a −3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow rig at a 90° beam...

  19. Ultrasound-assisted lipase-catalyzed synthesis of D-isoascorbyl palmitate: process optimization and Kinetic evaluation.

    Science.gov (United States)

    Cui, Feng-Jie; Zhao, Hong-Xia; Sun, Wen-Jing; Wei, Zhuan; Yu, Si-Lian; Zhou, Qiang; Dong, Ying

    2013-12-09

    D-isoascorbic acid is a food antioxidant additive and used in accordance with Good Manufacturing Practice (GMP). High solubility in water (about 150 g/L at 25°C) reduces its effectiveness in stabilizing fats and oils. Our research group had successfully synthesized D-isoascorbyl palmitate using immobilized lipase Novozym 435 as a biocatalyst. Low production efficiency of D-isoascorbyl palmitate is still a problem for industrial production due to the long reaction time of over 24 h. In the present work, ultrasonic treatment was applied for accelerating the reaction process. The operation parameters were optimized to obtain the maximum D-isoascorbyl palmitate conversion rate by using a 5-level-4-factor Central Composite Design (CCD) and Response Surface Methdology (RSM). The reaction apparent kinetic parameters under the ultrasound treatment and mechanical shaking conditions were also determined and compared. Results showed that ultrasound treatment decreased the reaction time by over 50%. D-isoascorbyl palmitate yielded to 94.32 ± 0.17% and the productivity reached to 8.67 g L-1 h-1 under the optimized conditions as: 9% of enzyme load (w/w), 61°C of reaction temperature, 1:5 of D- isoascorbic-to-palmitic acid molar ratio, and 137 W of the ultrasound power. The immobilized lipase Novozym 435 could be reused for 7 times with 65% of the remained D-isoascorbyl palmitate conversion rate. The reaction kinetics showed that the maximum apparent reaction rate (vmax) of the ultrasound-assisted reaction was 2.85 times higher than that of the mechanical shaking, which proved that ultrasound treatment significantly enhanced the reaction efficiency. A systematic study on ultrasound-assisted enzymatic esterification for D-isoascorbyl palmitate production is reported. The results show a promising perspective of the ultrasound technique to reduce the reaction time and improve the production efficiency. The commercial D-isoascorbyl palmitate synthesis will be potentially

  20. Simulation study of a 3-D device integrating FinFET and UTBFET

    KAUST Repository

    Fahad, Hossain M.

    2015-01-01

    By integrating 3-D nonplanar fins and 2-D ultrathin bodies, wavy FinFETs merge two formerly competing technologies on a silicon-on-insulator platform to deliver enhanced transistor performance compared with conventional trigate FinFETs with unprecedented levels of chip-area efficiency. This makes it suitable for ultralarge-scale integration high-performance logic at and beyond the 10-nm technology node.

  1. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study

    Science.gov (United States)

    Wolfs, Cecile J. A.; Brás, Mariana G.; Schyns, Lotte E. J. R.; Nijsten, Sebastiaan M. J. J. G.; van Elmpt, Wouter; Scheib, Stefan G.; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-08-01

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  2. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study.

    Science.gov (United States)

    Wolfs, Cecile J A; Brás, Mariana G; Schyns, Lotte E J R; Nijsten, Sebastiaan M J J G; van Elmpt, Wouter; Scheib, Stefan G; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-07-12

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95% ) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95% , which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  3. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... are (vx, vy, vz) = (-0.03, 95, 1.0) ± (9, 6, 1) cm/s compared with the expected (0, 96, 0) cm/s. Afterwards, 3D vector flow images from a cross-sectional plane of the vessel are presented. The out of plane velocities exhibit the expected 2D circular-symmetric parabolic shape. The experimental results...... verify that the 3D TO method estimates the complete 3D velocity vectors, and that the method is suitable for 3D vector flow imaging....

  4. Simulation of ultrasound propagation in bone

    Science.gov (United States)

    Kaufman, Jonathan J.; Luo, Gangming; Siffert, Robert S.

    2004-10-01

    Ultrasound has been proposed as a means to noninvasively assess bone and, particularly, bone strength and fracture risk, as for example in osteoporosis. Because strength is a function of both mineral density and architecture, ultrasound has the potential to provide more accurate measurement of bone integrity than, for example, with x-ray absorptiometric methods. Although some of this potential has already been realized-a number of clinical devices are presently available-there is still much that is unknown regarding the interaction of ultrasound with bone. Because of the inherent complexity of the propagation medium, few analytic solutions exist with practical application. For this reason, ultrasound simulation techniques have been developed and applied to a number of different problems of interest in ultrasonic bone assessment. Both 2D and 3D simulation results will be presented, including the effects of architecture and density on the received waveform, propagation effects of both cortical and trabecular bone, and the relative contributions of scattering and absorption to attenuation in trabecular bone. The results of these simulation studies should lead to improved understanding and ultimately to more effective clinical devices for ultrasound bone assessment. [This work was supported by The Carroll and Milton Petrie Foundation and by SBIR Grant No. 1R43RR16750 from the National Center for Research Resources of the NIH.

  5. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    International Nuclear Information System (INIS)

    Rata, Mihaela; Salomir, Rares; Lafon, Cyril; Umathum, Reiner; Jenne, Juergen; Bock, Michael; Cotton, Francois

    2008-01-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 x 0.25 x 3 mm 3 ) and accurate thermometry data (the PRFS method with a voxel size of 0.5 x 0.5 x 5 mm 3 , 2.2 s/image, 0.3 deg. C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  6. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Science.gov (United States)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  7. Development of a 3-D flow analysis computer program for integral reactor

    International Nuclear Information System (INIS)

    Youn, H. Y.; Lee, K. H.; Kim, H. K.; Whang, Y. D.; Kim, H. C.

    2003-01-01

    A 3-D computational fluid dynamics program TASS-3D is being developed for the flow analysis of primary coolant system consists of complex geometries such as SMART. A pre/post processor also is being developed to reduce the pre/post processing works such as a computational grid generation, set-up the analysis conditions and analysis of the calculated results. TASS-3D solver employs a non-orthogonal coordinate system and FVM based on the non-staggered grid system. The program includes the various models to simulate the physical phenomena expected to be occurred in the integral reactor and will be coupled with core dynamics code, core T/H code and the secondary system code modules. Currently, the application of TASS-3D is limited to the single phase of liquid, but the code will be further developed including 2-phase phenomena expected for the normal operation and the various transients of the integrator reactor in the next stage

  8. Ultrasound-assisted synthesis of 1-N-{beta}-D-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles and their anti-inflammatory activities

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gilson B. da; Guimaraes, Bruna M.; Oliveira, Ronaldo N. de, E-mail: ronaldonoliveira@dcm.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Ciencias Moleculares; Assis, Shalom P.O.; Lima, Vera L.M. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Bioquimica. Laboratorio de Quimica e Metabolismo de Lipideos e Lipoproteinas

    2013-06-15

    In this work, the preparation of various glucosyl triazoles from a reaction between 2,3,4,6-tetra-O-acetyl-{beta}-D-glucopyranosyl azide and terminal alkynes was developed in moderate to excellent yields (63-99%). Ultrasound energy was applied at each step of the reaction to increase chemical reactivity. In addition, the compounds conjugated with benzoheterocycles moieties revealed potent anti-inflammatory activity. (author)

  9. Ultrasound-assisted synthesis of 1-N-β-D-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles and their anti-inflammatory activities

    International Nuclear Information System (INIS)

    Silva, Gilson B. da; Guimaraes, Bruna M.; Oliveira, Ronaldo N. de; Assis, Shalom P.O.; Lima, Vera L.M.

    2013-01-01

    In this work, the preparation of various glucosyl triazoles from a reaction between 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide and terminal alkynes was developed in moderate to excellent yields (63-99%). Ultrasound energy was applied at each step of the reaction to increase chemical reactivity. In addition, the compounds conjugated with benzoheterocycles moieties revealed potent anti-inflammatory activity. (author)

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... legs, neck and/or brain (in infants and children) or within various body organs such as the ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... color picture. It can also convert blood flow information into a distinctive sound that can be heard ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... care physician, or to the physician or other healthcare provider who requested the exam. Usually, the referring ...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... sonography is performed using the same transducer. Rarely, young children may need to be sedated in order ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... American College of Radiology (ACR) and the Radiological Society of North America (RSNA), comprising physicians with expertise ...

  16. 3-D computer graphics based on integral photography.

    Science.gov (United States)

    Naemura, T; Yoshida, T; Harashima, H

    2001-02-12

    Integral photography (IP), which is one of the ideal 3-D photographic technologies, can be regarded as a method of capturing and displaying light rays passing through a plane. The NHK Science and Technical Research Laboratories have developed a real-time IP system using an HDTV camera and an optical fiber array. In this paper, the authors propose a method of synthesizing arbitrary views from IP images captured by the HDTV camera. This is a kind of image-based rendering system, founded on the 4-D data space Representation of light rays. Experimental results show the potential to improve the quality of images rendered by computer graphics techniques.

  17. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    Science.gov (United States)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  19. 3D stereotaxis for epileptic foci through integrating MR imaging with neurological electrophysiology data

    International Nuclear Information System (INIS)

    Luo Min; Peng Chenglin; Wang Kang; Lei Wenyong; Luo Song; Wang Xiaolin; Wang Xuejian; Wu Ruoqiu; Wu Guofeng

    2005-01-01

    Objective: To improve the accuracy of the epilepsy diagnoses by integrating MR image from PACS with data from neurological electrophysiology. The integration is also very important for transmiting diagnostic information to 3D TPS of radiotherapy. Methods: The electroencephalogram was redisplayed by EEG workstation, while MR image was reconstructed by Brainvoyager software. 3D model of patient brain was built up by combining reconstructed images with electroencephalogram data in Base 2000. 30 epileptic patients (18 males and 12 females) with their age ranged from 12 to 54 years were confirmed by using the integrated MR images and the data from neurological electrophysiology and their 3D stereolocating. Results: The corresponding data in 3D model could show the real situation of patients' brain and visually locate the precise position of the focus. The suddessful rate of 3D guided operation was greatly improved, and the number of epileptic onset was markedly decreased. The epilepsy was stopped for 6 months in 8 of the 30 patients. Conclusion: The integration of MR image and information of neurological electrophysiology can improve the diagnostic level for epilepsy, and it is crucial for imp roving the successful rate of manipulations and the epilepsy analysis. (authors)

  20. The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management

    International Nuclear Information System (INIS)

    Lu, Pengyu; Gao, Qing; Wang, Yan

    2016-01-01

    Highlights: • A 1D/3D collaborative computing simulation method for vehicle thermal management. • Analyzing the influence of the thermodynamic systems and the engine compartment geometry on the vehicle performance. • Providing the basis for the matching energy consumptions of thermodynamic systems in the underhood. - Abstract: The vehicle integrated thermal management containing the engine cooling circuit, the air conditioning circuit, the turbocharged inter-cooled circuit, the engine lubrication circuit etc. is the important means of enhancing power performance, promoting economy, saving energy and reducing emission. In this study, a 1D/3D collaborative simulation method is proposed with the engine cooling circuit and air conditioning circuit being the research object. The mathematical characterizations of the multiple thermodynamic systems are achieved by 1D calculation and the underhood structure is described by 3D simulation. Through analyzing the engine compartment integrated heat transfer process, the model of the integrated thermal management system is formed after coupling the cooling circuit and air conditioning circuit. This collaborative simulation method establishes structured correlation of engine-cooling and air conditioning thermal dissipation in the engine compartment, comprehensively analyzing the engine working process and air condition operational process in order to research the interaction effect of them. In the calculation examples, to achieve the integrated optimization of multiple thermal systems design and performance prediction, by describing the influence of system thermomechanical parameters and operating duty to underhood heat transfer process, performance evaluation of the engine cooling circuit and the air conditioning circuit are realized.

  1. Simulation study of a 3-D device integrating FinFET and UTBFET

    KAUST Repository

    Fahad, Hossain M.; Hu, Chenming; Hussain, Muhammad Mustafa

    2015-01-01

    By integrating 3-D nonplanar fins and 2-D ultrathin bodies, wavy FinFETs merge two formerly competing technologies on a silicon-on-insulator platform to deliver enhanced transistor performance compared with conventional trigate Fin

  2. Embryonic staging using a 3D virtual reality system

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2008-01-01

    textabstractBACKGROUND: The aim of this study was to demonstrate that Carnegie Stages could be assigned to embryos visualized with a 3D virtual reality system. METHODS: We analysed 48 3D ultrasound scans of 19 IVF/ICSI pregnancies at 7-10 weeks' gestation. These datasets were visualized as 3D

  3. Computing Radiative Transfer in a 3D Medium

    Science.gov (United States)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  4. Technology for 3D System Integration for Flexible Wireless Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Kuo

    2018-05-01

    Full Text Available This paper presents a new 3D bottom-up packing technology for integrating a chip, an induction coil, and interconnections for flexible wireless biomedical applications. Parylene was used as a flexible substrate for the bottom-up embedding of the chip, insulation layer, interconnection, and inductors to form a flexible wireless biomedical microsystem. The system can be implanted on or inside the human body. A 50-μm gold foil deposited through laser micromachining by using a picosecond laser was used as an inductor to yield a higher quality factor than that yielded by thickness-increasing methods such as the fold-and-bond method or thick-metal electroplating method at the operation frequency of 1 MHz. For system integration, parylene was used as a flexible substrate, and the contact pads and connections between the coil and chip were generated using gold deposition. The advantage of the proposed process can integrate the chip and coil vertically to generate a single biocompatible system in order to reduce required area. The proposed system entails the use of 3D integrated circuit packaging concepts to integrate the chip and coil. The results validated the feasibility of this technology.

  5. Characterization of neonatal patients with intraventricular hemorrhage using 3D ultrasound cerebral ventricle volumes

    Science.gov (United States)

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S. C.; de Ribaupierre, Sandrine

    2015-03-01

    One of the major non-congenital cause of neurological impairment among neonates born very preterm is intraventricular hemorrhage (IVH) - bleeding within the lateral ventricles. Most IVH patients will have a transient period of ventricle dilation that resolves spontaneously. However, those patients most at risk of long-term impairment are those who have progressive ventricle dilation as this causes macrocephaly, an abnormally enlarged head, then later causes increases intracranial pressure (ICP). 2D ultrasound (US) images through the fontanelles of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up CSF might be indicated for a patient. Initial therapies usually begin during the third week of life. Such interventions have been shown to decrease morbidity and mortality in IVH patients; however, this comes with risks of further hemorrhage or infection; therefore only patients requiring it should be treated. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. This system has been validated using phantoms and a small set of patient images. The aim of this work is to determine the ability of 3D US generated VV to categorize patients into those who will require interventional therapies, and those who will have spontaneous resolution. Patients with higher risks could therefore be monitored better, by re-allocating some of the resources as the low risks infants would need less monitoring.

  6. A 1 MHz BW 34.2 fJ/step Continuous Time Delta Sigma Modulator With an Integrated Mixer for Cardiac Ultrasound.

    Science.gov (United States)

    Kaald, Rune; Eggen, Trym; Ytterdal, Trond

    2017-02-01

    Fully digitized 2D ultrasound transducer arrays require one ADC per channel with a beamforming architecture consuming low power. We give design considerations for per-channel digitization and beamforming, and present the design and measurements of a continuous time delta-sigma modulator (CTDSM) for cardiac ultrasound applications. By integrating a mixer into the modulator frontend, the phase and frequency of the input signal can be shifted, thereby enabling both improved conversion efficiency and narrowband beamforming. To minimize the power consumption, we propose an optimization methodology using a simulated annealing framework combined with a C++ simulator solving linear electrical networks. The 3rd order single-bit feedback type modulator, implemented in a 65 nm CMOS process, achieves an SNR/SNDR of 67.8/67.4 dB across 1 MHz bandwidth consuming 131 [Formula: see text] of power. The achieved figure of merit of 34.2 fJ/step is comparable with state-of-the-art feedforward type multi-bit designs. We further demonstrate the influence to the dynamic range when performing dynamic receive beamforming on recorded delta-sigma modulated bit-stream sequences.

  7. Integrality and separability of multitouch interaction techniques in 3D manipulation tasks.

    Science.gov (United States)

    Martinet, Anthony; Casiez, Géry; Grisoni, Laurent

    2012-03-01

    Multitouch displays represent a promising technology for the display and manipulation of data. While the manipulation of 2D data has been widely explored, 3D manipulation with multitouch displays remains largely unexplored. Based on an analysis of the integration and separation of degrees of freedom, we propose a taxonomy for 3D manipulation techniques with multitouch displays. Using that taxonomy, we introduce Depth-Separated Screen-Space (DS3), a new 3D manipulation technique based on the separation of translation and rotation. In a controlled experiment, we compared DS3 with Sticky Tools and Screen-Space. Results show that separating the control of translation and rotation significantly affects performance for 3D manipulation, with DS3 performing faster than the two other techniques.

  8. 3D integration for NoC-based SoC architectures

    CERN Document Server

    Sheibanyrad, Abbas; Pétrot, Frédéric

    2011-01-01

    3D-Integration for NoC-based SoC Architectures gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures.

  9. Integrated photoacoustic/ultrasound imaging: applications and new techniques

    NARCIS (Netherlands)

    van den Berg, P.J.

    2017-01-01

    Photoacoustic imaging (PAI) is a unique combination of optical sensitivity to tissue chromophores like hemoglobin, and ultrasonic resolution. Research in this PhD thesis is made possible by the development of a probe that combines PAI with regular ultrasound imaging. This probe is handheld and

  10. An integrable counterpart of the D-AKNS soliton hierarchy from so(3,R)

    International Nuclear Information System (INIS)

    Ma, Wen-Xiu

    2014-01-01

    An integrable counterpart of the D-AKNS soliton hierarchy is generated from a matrix spectral problem associated with so(3,R). Hamiltonian structures of the resulting counterpart soliton hierarchy are furnished by using the trace identity, which yields its Liouville integrability. -- Highlights: •Use the Lie algebra so(3,R) to generate a counterpart of the D-AKNS soliton hierarchy. •Generate Hamiltonian structures depending potentials by the trace identity. •Obtain hierarchies of independent commuting symmetries and conserved densities.

  11. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    International Nuclear Information System (INIS)

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-01

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  12. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    Science.gov (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI

    International Nuclear Information System (INIS)

    Meckel, Stephan; Leitner, Lorenz; Schubert, Tilman; Bonati, Leo H.; Lyrer, Philippe; Santini, Francesco; Stalder, Aurelien F.; Markl, Michael; Wetzel, Stephan G.

    2013-01-01

    4D phase contrast MR imaging (4D PC MRI) has been introduced for spatiotemporal evaluation of intracranial hemodynamics in various cerebrovascular diseases. However, it still lacks validation with standards of reference. Our goal was to compare blood flow quantification derived from 4D PC MRI with transcranial ultrasound and 2D PC MRI. Velocity measurements within large intracranial arteries [internal carotid artery (ICA), basilar artery (BA), and middle cerebral artery (MCA)] were obtained in 20 young healthy volunteers with 4D and 2D PC MRI, transcranial Doppler sonography (TCD), and transcranial color-coded duplex sonography (TCCD). Maximum velocities at peak systole (PSV) and end diastole (EDV) were compared using regression analysis and Bland-Altman plots. Correlation of 4D PC MRI measured velocities was higher in comparison with TCD (r = 0.49-0.66) than with TCCD (0.35-0.44) and 2D PC MRI (0.52-0.60). In mid-BA and ICA C7 segment, a significant correlation was found with TCD (0.68-0.81 and 0.65-0.71, respectively). No significant correlation was found in carotid siphon. On average over all volunteers, PSVs and EDVs in MCA were minimally underestimated compared with TCD/TCCD. Minimal overestimation of velocities was found compared to TCD in mid-BA and ICA C7 segment. 4D PC MRI appears as valid alternative for intracranial velocity measurement consistent with previous reference standards, foremost with TCD. Spatiotemporal averaging effects might contribute to vessel size-dependent mild underestimation of velocities in smaller (MCA), and overestimation in larger-sized (BA and ICA) arteries, respectively. Complete spatiotemporal flow analysis may be advantageous in anatomically complex regions (e.g. carotid siphon) relative to restrictions of ultrasound techniques. (orig.)

  14. Metadata and Tools for Integration and Preservation of Cultural Heritage 3D Information

    Directory of Open Access Journals (Sweden)

    Achille Felicetti

    2011-12-01

    Full Text Available In this paper we investigate many of the various storage, portability and interoperability issues arising among archaeologists and cultural heritage people when dealing with 3D technologies. On the one side, the available digital repositories look often unable to guarantee affordable features in the management of 3D models and their metadata; on the other side the nature of most of the available data format for 3D encoding seem to be not satisfactory for the necessary portability required nowadays by 3D information across different systems. We propose a set of possible solutions to show how integration can be achieved through the use of well known and wide accepted standards for data encoding and data storage. Using a set of 3D models acquired during various archaeological campaigns and a number of open source tools, we have implemented a straightforward encoding process to generate meaningful semantic data and metadata. We will also present the interoperability process carried out to integrate the encoded 3D models and the geographic features produced by the archaeologists. Finally we will report the preliminary (rather encouraging development of a semantic enabled and persistent digital repository, where 3D models (but also any kind of digital data and metadata can easily be stored, retrieved and shared with the content of other digital archives.

  15. Proof of Concept of Integrated Load Measurement in 3D Printed Structures

    Directory of Open Access Journals (Sweden)

    Michaël Hinderdael

    2017-02-01

    Full Text Available Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM technique was used to integrate a strain sensing element inside polymer (ABS tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain, but 32 times more sensitive than the same sensor based on air (compressible fluid (±101 µstrain.

  16. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    Science.gov (United States)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  17. Experiment for Integrating Dutch 3d Spatial Planning and Bim for Checking Building Permits

    Science.gov (United States)

    van Berlo, L.; Dijkmans, T.; Stoter, J.

    2013-09-01

    This paper presents a research project in The Netherlands in which several SMEs collaborated to create a 3D model of the National spatial planning information. This 2D information system described in the IMRO data standard holds implicit 3D information that can be used to generate an explicit 3D model. The project realized a proof of concept to generate a 3D spatial planning model. The team used the model to integrate it with several 3D Building Information Models (BIMs) described in the open data standard Industry Foundation Classes (IFC). Goal of the project was (1) to generate a 3D BIM model from spatial planning information to be used by the architect during the early design phase, and (2) allow 3D checking of building permits. The team used several technologies like CityGML, BIM clash detection and GeoBIM to explore the potential of this innovation. Within the project a showcase was created with a part of the spatial plan from the city of The Hague. Several BIM models were integrated in the 3D spatial plan of this area. A workflow has been described that demonstrates the benefits of collaboration between the spatial domain and the AEC industry in 3D. The research results in a showcase with conclusions and considerations for both national and international practice.

  18. CAD-based intelligent robot system integrated with 3D scanning for shoe roughing and cementing

    Directory of Open Access Journals (Sweden)

    Chiu Cheng-Chang

    2017-01-01

    Full Text Available Roughing and cementing are very essential to the process of bonding shoe uppers and the corresponding soles; however, for shoes with complicated design, such as sport shoes, roughing and cementing greatly relied on manual operation. Recently, shoe industry is progressing to 3D design, thus 3D model of the shoe upper and sole will be created before launching into mass production. Taking advantage of the 3D model, this study developed a plug-in program on Rhino 3D CAD platform, which realized the complicated roughing and cementing route planning to be performed by the plug-in program, integrated with real-time 3D scanning information to compensate the planned route, and then converted to working trajectory of robot arm to implement roughing and cementing. The proposed 3D CAD-based intelligent robot arm system integrated with 3D scanning for shoe roughing and cementing is realized and proved to be feasible.

  19. 3D reconstruction of tensors and vectors

    International Nuclear Information System (INIS)

    Defrise, Michel; Gullberg, Grant T.

    2005-01-01

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields

  20. Quantitative analysis of thyroid tumors vascularity: A comparison between 3-D contrast-enhanced ultrasound and 3-D Power Doppler on benign and malignant thyroid nodules.

    Science.gov (United States)

    Caresio, Cristina; Caballo, Marco; Deandrea, Maurilio; Garberoglio, Roberto; Mormile, Alberto; Rossetto, Ruth; Limone, Paolo; Molinari, Filippo

    2018-05-15

    To perform a comparative quantitative analysis of Power Doppler ultrasound (PDUS) and Contrast-Enhancement ultrasound (CEUS) for the quantification of thyroid nodules vascularity patterns, with the goal of identifying biomarkers correlated with the malignancy of the nodule with both imaging techniques. We propose a novel method to reconstruct the vascular architecture from 3-D PDUS and CEUS images of thyroid nodules, and to automatically extract seven quantitative features related to the morphology and distribution of vascular network. Features include three tortuosity metrics, the number of vascular trees and branches, the vascular volume density, and the main spatial vascularity pattern. Feature extraction was performed on 20 thyroid lesions (ten benign and ten malignant), of which we acquired both PDUS and CEUS. MANOVA (multivariate analysis of variance) was used to differentiate benign and malignant lesions based on the most significant features. The analysis of the extracted features showed a significant difference between the benign and malignant nodules for both PDUS and CEUS techniques for all the features. Furthermore, by using a linear classifier on the significant features identified by the MANOVA, benign nodules could be entirely separated from the malignant ones. Our early results confirm the correlation between the morphology and distribution of blood vessels and the malignancy of the lesion, and also show (at least for the dataset used in this study) a considerable similarity in terms of findings of PDUS and CEUS imaging for thyroid nodules diagnosis and classification. © 2018 American Association of Physicists in Medicine.

  1. Balanced PIN-TIA photoreceiver with integrated 3 dB fiber coupler for distributed fiber optic sensors

    Science.gov (United States)

    Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay

    2014-06-01

    We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.

  2. Integration of Jeddah Historical BIM and 3D GIS for Documentation and Restoration of Historical Monument

    Science.gov (United States)

    Baik, A.; Yaagoubi, R.; Boehm, J.

    2015-08-01

    This work outlines a new approach for the integration of 3D Building Information Modelling and the 3D Geographic Information System (GIS) to provide semantically rich models, and to get the benefits from both systems to help document and analyse cultural heritage sites. Our proposed framework is based on the Jeddah Historical Building Information Modelling process (JHBIM). This JHBIM consists of a Hijazi Architectural Objects Library (HAOL) that supports higher level of details (LoD) while decreasing the time of modelling. The Hijazi Architectural Objects Library has been modelled based on the Islamic historical manuscripts and Hijazi architectural pattern books. Moreover, the HAOL is implemented using BIM software called Autodesk Revit. However, it is known that this BIM environment still has some limitations with the non-standard architectural objects. Hence, we propose to integrate the developed 3D JHBIM with 3D GIS for more advanced analysis. To do so, the JHBIM database is exported and semantically enriched with non-architectural information that is necessary for restoration and preservation of historical monuments. After that, this database is integrated with the 3D Model in the 3D GIS solution. At the end of this paper, we'll illustrate our proposed framework by applying it to a Historical Building called Nasif Historical House in Jeddah. First of all, this building is scanned by the use of a Terrestrial Laser Scanner (TLS) and Close Range Photogrammetry. Then, the 3D JHBIM based on the HOAL is designed on Revit Platform. Finally, this model is integrated to a 3D GIS solution through Autodesk InfraWorks. The shown analysis presented in this research highlights the importance of such integration especially for operational decisions and sharing the historical knowledge about Jeddah Historical City. Furthermore, one of the historical buildings in Old Jeddah, Nasif Historical House, was chosen as a test case for the project.

  3. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  4. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    International Nuclear Information System (INIS)

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-01-01

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 × 376 × 630 voxels. Conclusions: The proposed needle segmentation

  5. Automated Visualization and Quantification of Spiral Artery Blood Flow Entering the First-Trimester Placenta, Using 3-D Power Doppler Ultrasound.

    Science.gov (United States)

    Stevenson, Gordon N; Noble, J Alison; Welsh, Alec W; Impey, Lawrence; Collins, Sally L

    2018-03-01

    The goal of our research was to quantify the placental vascularity in 3-D at 11-13 + 6 wk of pregnancy at precise distances from the utero-placental interface (UPI) using 3-D power Doppler ultrasound. With this automated image analysis technique, differences in vascularity between normal and pathologic pregnancies may be observed. The algorithm was validated using a computer-generated image phantom and applied retrospectively in 143 patients. The following features from the PD data were recorded: The number of spiral artery jets into the inter-villous space, total geometric and PD area. These were automatically measured at discrete millimeter distances from the UPI. Differences in features were compared with pregnancy outcomes: Pre-eclamptic versus normal, all small-for-gestational age (SGA) to appropriate-for-gestational age (AGA) patients and AGA versus SGA in normotensives (Mann-Whitney). The Benjamini-Hochberg procedure was used (false discovery rate 10%) for multiple comparison testing. Features decreased with increasing distance from the UPI (Kruskal-Wallis test; p  0.05). This method provides a new in-vivo imaging tool for examining spiral artery development through pregnancy. Size and number of entrances of blood flow into the UPI could potentially be used to identify high-risk pregnancies and may provide a new imaging biomarker for placental insufficiency. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  6. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost

    International Nuclear Information System (INIS)

    Ken, Soléakhéna; Cassol, Emmanuelle; Delannes, Martine; Celsis, Pierre; Cohen-Jonathan, Elizabeth Moyal; Laprie, Anne; Vieillevigne, Laure; Franceries, Xavier; Simon, Luc; Supper, Caroline; Lotterie, Jean-Albert; Filleron, Thomas; Lubrano, Vincent; Berry, Isabelle

    2013-01-01

    To integrate 3D MR spectroscopy imaging (MRSI) in the treatment planning system (TPS) for glioblastoma dose painting to guide simultaneous integrated boost (SIB) in intensity-modulated radiation therapy (IMRT). For sixteen glioblastoma patients, we have simulated three types of dosimetry plans, one conventional plan of 60-Gy in 3D conformational radiotherapy (3D-CRT), one 60-Gy plan in IMRT and one 72-Gy plan in SIB-IMRT. All sixteen MRSI metabolic maps were integrated into TPS, using normalization with color-space conversion and threshold-based segmentation. The fusion between the metabolic maps and the planning CT scans were assessed. Dosimetry comparisons were performed between the different plans of 60-Gy 3D-CRT, 60-Gy IMRT and 72-Gy SIB-IMRT, the last plan was targeted on MRSI abnormalities and contrast enhancement (CE). Fusion assessment was performed for 160 transformations. It resulted in maximum differences <1.00 mm for translation parameters and ≤1.15° for rotation. Dosimetry plans of 72-Gy SIB-IMRT and 60-Gy IMRT showed a significantly decreased maximum dose to the brainstem (44.00 and 44.30 vs. 57.01 Gy) and decreased high dose-volumes to normal brain (19 and 20 vs. 23% and 7 and 7 vs. 12%) compared to 60-Gy 3D-CRT (p < 0.05). Delivering standard doses to conventional target and higher doses to new target volumes characterized by MRSI and CE is now possible and does not increase dose to organs at risk. MRSI and CE abnormalities are now integrated for glioblastoma SIB-IMRT, concomitant with temozolomide, in an ongoing multi-institutional phase-III clinical trial. Our method of MR spectroscopy maps integration to TPS is robust and reliable; integration to neuronavigation systems with this method could also improve glioblastoma resection or guide biopsies

  7. Evaluation of the relationship between renal function and renal volume-vascular indices using 3D power Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cansu, Aysegul, E-mail: drcansu@gmail.com; Kupeli, Ali; Kul, Sibel; Eyuboglu, Ilker; Oguz, Sukru; Ozturk, Mehmet Halil; Dinc, Hasan

    2014-07-15

    Purpose: To investigate the relationship between renal function and total renal volume-vascular indices using 3D power Doppler ultrasound (3DPDUS). Materials and methods: One hundred six patients with hypertensive proteinuric nephropathy (HPN) (49 male, 57 female) and 65 healthy controls (32 male, 33 female) were evaluated prospectively using 3DPDUS. Total renal volume (RV), vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated using Virtual Organ Computer-aided Analysis (VOCAL). The estimated glomerular filtration rates (GFRs) of the patients with HPN and the control group were calculated. The patients with HPN were divided into two groups on the basis of GFR, normal (≥90) or reduced (<90). Differences between groups were compared using ANOVA. Correlations between GFR, renal volume and vascular indices were analyzed using Pearson's correlation analysis. Significance was set at p < 0.05. Results: The mean total RV, VI, FI and VFI values in the reduced GFR, normal GFR and control groups were RV (ml): 234.7, 280.7 and 294.6; VI: 17.6, 27.6 and 46.8; FI: 79.1, 88.7 and 93.9 and VFI: 7.1, 12.7 and 23.8. There were statistically significant differences between the groups (p < 0.001). Total RVs and vascular indices exhibited significant correlations with estimated GFR (r = 0.53–0.59, p < 0.001) Conclusion: Three-dimensional power Doppler ultrasound is a reliable predictive technique in renal function analysis.

  8. Biomaterials for integration with 3-D bioprinting.

    Science.gov (United States)

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  9. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction

    International Nuclear Information System (INIS)

    Marquet, F; Aubry, J F; Pernot, M; Fink, M; Tanter, M

    2011-01-01

    Recent studies have demonstrated the feasibility of transcostal high intensity focused ultrasound (HIFU) treatment in liver. However, two factors limit thermal necrosis of the liver through the ribs: the energy deposition at focus is decreased by the respiratory movement of the liver and the energy deposition on the skin is increased by the presence of highly absorbing bone structures. Ex vivo ablations were conducted to validate the feasibility of a transcostal real-time 3D movement tracking and correction mode. Experiments were conducted through a chest phantom made of three human ribs immersed in water and were placed in front of a 300 element array working at 1 MHz. A binarized apodization law introduced recently in order to spare the rib cage during treatment has been extended here with real-time electronic steering of the beam. Thermal simulations have been conducted to determine the steering limits. In vivo 3D-movement detection was performed on pigs using an ultrasonic sequence. The maximum error on the transcostal motion detection was measured to be 0.09 ± 0.097 mm on the anterior–posterior axis. Finally, a complete sequence was developed combining real-time 3D transcostal movement correction and spiral trajectory of the HIFU beam, allowing the system to treat larger areas with optimized efficiency. Lesions as large as 1 cm in diameter have been produced at focus in excised liver, whereas no necroses could be obtained with the same emitted power without correcting the movement of the tissue sample.

  10. First trimester diagnosis of sirenomelia by 2D and 3D ultrasound.

    Science.gov (United States)

    Contu, Rossana; Zoppi, Maria A; Axiana, Carolina; Ibba, Rosa M; Monni, Giovanni

    2009-01-01

    A case of sirenomelia in a 27-year-old woman detected at 11 weeks 5 days of gestation is presented. It was suspected by two-dimensional sonography and color Doppler imaging. Three-dimensional ultrasound confirmed the final diagnosis. With detailed evaluation of the acquired volumes, valuable information was obtained about the anatomical as well as pathological features of the fetus. 2009 S. Karger AG, Basel.

  11. Portable Ultrasound Imaging

    DEFF Research Database (Denmark)

    di Ianni, Tommaso

    This PhD project investigates hardware strategies and imaging methods for hand-held ultrasound systems. The overall idea is to use a wireless ultrasound probe linked to general-purpose mobile devices for the processing and visualization. The approach has the potential to reduce the upfront costs...... beamforming strategies are simulated from a system-level perspective. The quality of the B-mode image is evaluated and the minimum specifications are derived for the design of a portable probe with integrated electronics in-handle. The system is based on a synthetic aperture sequential beamforming approach...... that allows to significantly reduce the data rate between the probe and processing unit. The second part investigates the feasibility of vector flow imaging in a hand-held ultrasound system. Vector flow imaging overcomes the limitations of conventional imaging methods in terms of flow angle compensation...

  12. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  13. 3D ultrasound characterization of woven composites

    Science.gov (United States)

    Tayong, Rostand B.; Mienczakowski, Martin J.; Smith, Robert A.

    2018-04-01

    Recent studies on the Non-Destructive Testing (NDT) of composites for the aerospace industry have led to an understanding of ultrasonic propagation in these materials [1]. Techniques for enhanced ultrasonic imaging of the internal structure of composite laminates containing unidirectional fibers have been proposed and tested in a laboratory environment. For the automotive industry, textile composites are often preferred and widely used. The reason for this is that these types of composites offer good mechanical performance, with resistance to delamination and reduced manufacturing costs. In this study, two models are developed and shown to be suitable to characterize the woven specimen. The first model is a 1D analytical model that makes simplified assumptions and the second is a 3D time-domain Finite Element (FE) model developed [2] for advanced understanding of the woven composite response to an ultrasonic excitation. For each of the proposed models, three parameters are defined and used to analyze the structure behavior. They are the instantaneous amplitude, instantaneous phase and instantaneous frequency. These parameters are employed to track the in-plane fiber orientation and the ply-interface location and for the sentencing of features. Three different specimens with the following weave type: 3D orthogonal, 2D plain and Multilayer stitching were considered and scanned (using a focused ultrasonic transducer) to validate the proposed models. As a preliminary study, the work only focuses on the Orthogonal weave specimen. The results obtained from experimental, analytical and FE modeling, B-scan and C-scan are compared, discussed and presented in terms of the above defined parameters.

  14. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    Science.gov (United States)

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  15. Integration of Jeddah Historical BIM and 3D GIS for Documentation and Restoration of Historical Monument

    Directory of Open Access Journals (Sweden)

    A. Baik

    2015-08-01

    Full Text Available This work outlines a new approach for the integration of 3D Building Information Modelling and the 3D Geographic Information System (GIS to provide semantically rich models, and to get the benefits from both systems to help document and analyse cultural heritage sites. Our proposed framework is based on the Jeddah Historical Building Information Modelling process (JHBIM. This JHBIM consists of a Hijazi Architectural Objects Library (HAOL that supports higher level of details (LoD while decreasing the time of modelling. The Hijazi Architectural Objects Library has been modelled based on the Islamic historical manuscripts and Hijazi architectural pattern books. Moreover, the HAOL is implemented using BIM software called Autodesk Revit. However, it is known that this BIM environment still has some limitations with the non-standard architectural objects. Hence, we propose to integrate the developed 3D JHBIM with 3D GIS for more advanced analysis. To do so, the JHBIM database is exported and semantically enriched with non-architectural information that is necessary for restoration and preservation of historical monuments. After that, this database is integrated with the 3D Model in the 3D GIS solution. At the end of this paper, we’ll illustrate our proposed framework by applying it to a Historical Building called Nasif Historical House in Jeddah. First of all, this building is scanned by the use of a Terrestrial Laser Scanner (TLS and Close Range Photogrammetry. Then, the 3D JHBIM based on the HOAL is designed on Revit Platform. Finally, this model is integrated to a 3D GIS solution through Autodesk InfraWorks. The shown analysis presented in this research highlights the importance of such integration especially for operational decisions and sharing the historical knowledge about Jeddah Historical City. Furthermore, one of the historical buildings in Old Jeddah, Nasif Historical House, was chosen as a test case for the project.

  16. 3D Power Doppler ultrasound and computerised placental assessment in normal pregnancy

    International Nuclear Information System (INIS)

    Moran, Mary; Zombori, Gergely; Ryan, John; McAuliffe, Fionnuala M.

    2014-01-01

    Background: In recent years there have been significant developments in the use of 3D Power Doppler (3DPD) imaging and quantitative 3DPD histogram analysis to estimate both placental volume and intra-placental vasculature. This study aims to determine if placental volume, vascularisation and blood flow are correlated with gestational age in normal pregnancy. It also examines whether or not a new software method for analysis of percentage calcification (the ‘placentometer’) correlates well with gestation. Material and method: This was a prospective cohort study of 250 women with normal pregnancies (12 + 6 to 39 + 5 weeks gestation). 3DPD ultrasound was used to evaluate placental volume, vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). Placental volume (calculated at 35–40 weeks gestation), was correlated with birth weight. Following each scan the percentage of calcification was also calculated using the placentometer. Results: Placental volume correlated significantly with gestational age: 66.676 + 0.623 × GA (P < 0.001). No significant change with gestation was noted in VI, FI and VFI (VI: P = 0.199, FI: P = 0.299, VFI: P = 0.557). Software analysis of the percentage of calcification, demonstrated the expected increase in calcification as gestation increased: −4.605 + 0.032 × GA (P < 0.001). From 35 to 40 weeks gestation volume was related to birth weight (P < 0.01). Conclusion: This study shows that in normal low-risk pregnancy placental volume increases with gestational age, whereas vascularisation and blood flow are independent of gestation. Placental volume in late pregnancy is related to birth weight. Software analysis of the percentage of calcification demonstrates an increase with advancing gestation

  17. 3-D electromagnetic modeling for very early time sounding of shallow targets using integral equations

    International Nuclear Information System (INIS)

    Xiong, Z.; Tripp, A.C.

    1994-01-01

    This paper presents an integral equation algorithm for 3D EM modeling at high frequencies for applications in engineering an environmental studies. The integral equation method remains the same for low and high frequencies, but the dominant roles of the displacements currents complicate both numerical treatments and interpretations. With singularity extraction technique they successively extended the application of the Hankel filtering technique to the computation of Hankel integrals occurring in high frequency EM modeling. Time domain results are calculated from frequency domain results via Fourier transforms. While frequency domain data are not obvious for interpretations, time domain data show wave-like pictures that resemble seismograms. Both 1D and 3D numerical results show clearly the layer interfaces

  18. Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion.

    Science.gov (United States)

    Tanner, Christine; Flach, Barbara; Eggenberger, Céline; Mattausch, Oliver; Bajka, Michael; Goksel, Orcun

    2017-08-01

    4D ultrasound imaging of the fetal heart relies on reconstructions from B-mode images. In the presence of fetal motion, current approaches suffer from artifacts, which are unrecoverable for single sweeps. We propose to use many sweeps and exploit the resulting redundancy to automatically recover from motion by reconstructing a 4D image which is consistent in phase, space, and time. An interactive visualization framework to view animated ultrasound slices from 4D reconstructions on arbitrary planes was developed using a magnetically tracked mock probe. We first quantified the performance of 10 4D reconstruction formulations on simulated data. Reconstructions of 14 in vivo sequences by a baseline, the current state-of-the-art, and the proposed approach were then visually ranked with respect to temporal quality on orthogonal views. Rankings from 5 observers showed that the proposed 4D reconstruction approach significantly improves temporal image quality in comparison with the baseline. The 4D reconstructions of the baseline and the proposed methods were then inspected interactively for accessibility to clinically important views and rated for their clinical usefulness by an ultrasound specialist in obstetrics and gynecology. The reconstructions by the proposed method were rated as 'very useful' in 71% and were statistically significantly more useful than the baseline reconstructions. Multi-sweep fetal heart ultrasound acquisitions in combination with consistent 4D image reconstruction improves quality as well as clinical usefulness of the resulting 4D images in the presence of fetal motion.

  19. Correspondence optimization in 2D standardized carotid wall thickness map by description length minimization: A tool for increasing reproducibility of 3D ultrasound-based measurements.

    Science.gov (United States)

    Chen, Yimin; Chiu, Bernard

    2016-12-01

    The previously described 2D standardized vessel-wall-plus-plaque thickness (VWT) maps constructed from 3D ultrasound vessel wall measurements using an arc-length (AL) scaling approach adjusted the geometric variability of carotid arteries and has allowed for the comparisons of VWT distributions in longitudinal and cross-sectional studies. However, this mapping technique did not optimize point correspondence of the carotid arteries investigated. The potential misalignment may lead to errors in point-wise VWT comparisons. In this paper, we developed and validated an algorithm based on steepest description length (DL) descent to optimize the point correspondence implied by the 2D VWT maps. The previously described AL approach was applied to obtain initial 2D maps for a group of carotid arteries. The 2D maps were reparameterized based on an iterative steepest DL descent approach, which consists of the following two steps. First, landmarks established by resampling the 2D maps were aligned using the Procrustes algorithm. Then, the gradient of the DL with respect to horizontal and vertical reparameterizations of each landmark on the 2D maps was computed, and the 2D maps were subsequently deformed in the direction of the steepest descent of DL. These two steps were repeated until convergence. The quality of the correspondence was evaluated in a phantom study and an in vivo study involving ten carotid arteries enrolled in a 3D ultrasound interscan variability study. The correspondence quality was evaluated in terms of the compactness and generalization ability of the statistical shape model built based on the established point correspondence in both studies. In the in vivo study, the effect of the proposed algorithm on interscan variability of VWT measurements was evaluated by comparing the percentage of landmarks with statistically significant VWT-change before and after point correspondence optimization. The statistical shape model constructed with optimized

  20. A 3D airborne ultrasound scanner

    Science.gov (United States)

    Capineri, L.; Masotti, L.; Rocchi, S.

    1998-06-01

    This work investigates the feasibility of an ultrasound scanner designed to reconstruct three-dimensional profiles of objects in air. There are many industrial applications in which it is important to obtain quickly and accurately the digital reconstruction of solid objects with contactless methods. The final aim of this project was the profile reconstruction of shoe lasts in order to eliminate the mechanical tracers from the reproduction process of shoe prototypes. The feasibility of an ultrasonic scanner was investigated in laboratory conditions on wooden test objects with axial symmetry. A bistatic system based on five airborne polyvinylidenedifluoride (PVDF) transducers was mechanically moved to emulate a cylindrical array transducer that can host objects of maximum width and height 20 cm and 40 cm respectively. The object reconstruction was based on a simplified version of the synthetic aperture focusing technique (SAFT): the time of flight (TOF) of the first in time echo for each receiving transducer was taken into account, a coarse spatial sampling of the ultrasonic field reflected on the array transducer was delivered and the reconstruction algorithm was based on the ellipsoidal backprojection. Measurements on a wooden cone section provided submillimetre accuracy in a controlled environment.

  1. Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting.

    Science.gov (United States)

    Ong, Chin Siang; Fukunishi, Takuma; Nashed, Andrew; Blazeski, Adriana; Zhang, Huaitao; Hardy, Samantha; DiSilvestre, Deborah; Vricella, Luca; Conte, John; Tung, Leslie; Tomaselli, Gordon; Hibino, Narutoshi

    2017-07-02

    This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array. Three days after 3D bioprinting, the spheroids are removed as an intact patch, which is already spontaneously beating. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.

  2. How 3D immersive visualization is changing medical diagnostics

    Science.gov (United States)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  3. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-05-19

    Large area environmental monitoring can play a crucial role in dealing with crisis situations. However, it is challenging as implementing a fixed sensor network infrastructure over large remote area is economically unfeasible. This work proposes disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept, the wireless sensing of temperature, humidity, and H2S levels are shown which are important for two critical environmental conditions namely forest fires and industrial leaks. These inkjet-printed sensors and an antenna are realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing are uniquely combined in order to realize a low-cost, fully integrated wireless sensor node.

  4. An Integrated Simplification Approach for 3D Buildings with Sloped and Flat Roofs

    Directory of Open Access Journals (Sweden)

    Jinghan Xie

    2016-07-01

    Full Text Available Simplification of three-dimensional (3D buildings is critical to improve the efficiency of visualizing urban environments while ensuring realistic urban scenes. Moreover, it underpins the construction of multi-scale 3D city models (3DCMs which could be applied to study various urban issues. In this paper, we design a generic yet effective approach for simplifying 3D buildings. Instead of relying on both semantic information and geometric information, our approach is based solely on geometric information as many 3D buildings still do not include semantic information. In addition, it provides an integrated means to treat 3D buildings with either sloped or flat roofs. The two case studies, one exploring simplification of individual 3D buildings at varying levels of complexity while the other, investigating the multi-scale simplification of a cityscape, show the effectiveness of our approach.

  5. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    Science.gov (United States)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  6. Integrating Instrumental Data Provides the Full Science in 3D

    Science.gov (United States)

    Turrin, M.; Boghosian, A.; Bell, R. E.; Frearson, N.

    2017-12-01

    Looking at data sparks questions, discussion and insights. By integrating multiple data sets we deepen our understanding of how cryosphere processes operate. Field collected data provide measurements from multiple instruments supporting rapid insights. Icepod provides a platform focused on the integration of multiple instruments. Over the last three seasons, the ROSETTA-Ice project has deployed Icepod to comprehensively map the Ross Ice Shelf, Antarctica. This integrative data collection along with new methods of data visualization allows us to answer questions about ice shelf structure and evolution that arise during data processing and review. While data are vetted and archived in the field to confirm instruments are operating, upon return to the lab data are again reviewed for accuracy before full analysis. Recent review of shallow ice radar data from the Beardmore Glacier, an outlet glacier into the Ross Ice Shelf, presented an abrupt discontinuity in the ice surface. This sharp 8m surface elevation drop was originally interpreted as a processing error. Data were reexamined, integrating the simultaneously collected shallow and deep ice radar with lidar data. All the data sources showed the surface discontinuity, confirming the abrupt 8m drop in surface elevation. Examining high resolution WorldView satellite imagery revealed a persistent source for these elevation drops. The satellite imagery showed that this tear in the ice surface was only one piece of a larger pattern of "chatter marks" in ice that flows at a rate of 300 m/yr. The markings are buried over a distance of 30 km or after 100 years of travel down Beardmore Glacier towards the front of the Ross Ice Shelf. Using Icepod's lidar and cameras we map this chatter mark feature in 3D to reveal its full structure. We use digital elevation models from WorldView to map the other along flow chatter marks. In order to investigate the relationship between these surface features and basal crevasses, the deep ice

  7. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    Science.gov (United States)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  8. 4D ultrasound imaging - ethically justifiable in India?

    Science.gov (United States)

    Indiran, Venkatraman

    2017-01-01

    Four-dimensional (4D) ultrasound (real-time volume sonography), which has been used in the West since the last decade for the determination of gender as well as for bonding and entertainment of the parents, has become widely available in India in this decade. Here, I would like to discuss the ethical issues associated with 4D ultrasonography in India. These are self-referral, the use of the technology for non-medical indications, a higher possibility of the disclosure of the foetus' gender and safety concerns.

  9. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    International Nuclear Information System (INIS)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M; Marsac, L

    2009-01-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  10. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M [Laboratoire Ondes et Acoustique, ESPCI, Universite Paris VII, UMR CNRS 7587, 10 rue Vauquelin, 75005 Paris (France); Marsac, L [Supersonic Imagine, Les Jardins de la Duranne, 510 rue Rene Descartes, 13857 Aix-en-Provence (France)], E-mail: fabrice.marquet@espci.org

    2009-05-07

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  11. 3-D high-frequency endovaginal ultrasound of female urethral complex and assessment of inter-observer reliability

    International Nuclear Information System (INIS)

    Wieczorek, A.P.; Wozniak, M.M.; Stankiewicz, A.; Santoro, G.A.; Bogusiewicz, M.; Rechberger, T.

    2012-01-01

    Objectives: Assessment of the urethral complex and defining its morphological characteristics with 3-dimensional endovaginal ultrasonography with the use of high frequency rotational 360° transducer. Defining inter-observer reliability of the performed measurements. Materials and methods: Twenty-four asymptomatic, nulliparous females (aged 18–55, mean 32 years) underwent high-frequency (12 MHz) endovaginal ultrasound with rotational 360° and automated 3D data acquisition (type 2050, B-K Medical, Herlev, Denmark). Measurements of the urethral thickness, width and length, bladder neck-symphysis distance, intramural part of the urethra as well as rhabdosphincter thickness, width and length were taken by three investigators. Descriptive statistics for continuous data was performed. The results were given as mean values with standard deviation. The relationships among different variables were assessed with ANOVA for repeated measures factors, as well as T-test for dependent samples. Intraclass correlation (ICC) was calculated for each parameter. Intra- and interobserver reliability was assessed. Statistical significance was assigned to a P value of 0.8) and good reliability for rhabdosphincter measurements (ICC > 0.6) between all three investigators. Conclusions: Advanced EVUS provides detailed information on anatomy and morphology of the female urethral complex. Our results show that 360° rotational transducer with automated 3D acquisition, currently routinely used for proctological scanning is suitable for the reliable assessment of the urethral complex and can be applied in a routine diagnostics of pelvic floor disturbances in females.

  12. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)

    2013-01-01

    as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...

  13. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    Science.gov (United States)

    2013-07-01

    Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro, Ultrasound in medicine & biology 1995; 21: 841-8. 3. Dalecki D...doxorubicin, focused ultrasound , HIFU, prostate cancer I. INTRODUCTION Pulsed high-intensity focused ultrasound (pFUS) is able to create acoustic cavitation ... ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D

  14. Ultrasound assisted one pot expeditious synthesis of new pyrido[2,3-d]pyrimidine analogues using mild and inexpensive 4-dimethylaminopyridine (DMAP catalyst

    Directory of Open Access Journals (Sweden)

    Ajmal R. Bhat

    2017-09-01

    Full Text Available The one-pot three-component reaction for the synthesis of pyrido[2,3-d]pyrimidine derivatives has been reported via initial Knoevenagel, subsequent addition and final heterocyclization of substituted aromatic aldehydes, cyanoacetamide and 6-aminouracil in N,N-dimethylformamide (DMF solvent using 4-dimethylaminopyridine (DMAP as new organocatalyst under ultrasound irradiation. The results showed that a series of aromatic aldehydes were successfully used to prepare the targeted pyrido[2,3-d]pyrimidine derivatives with good to excellent yields (81–93% and there is no major effect on the yield of product by electron donating/withdrawing substituents. Short reaction time, environment friendly procedure, excellent yields, inexpensive and readily available catalyst are the advantages of this procedure. All synthesized compounds were characterized by IR, 1HNMR, 13CNMR and mass spectral data.

  15. CLASSIFICATION OF INFORMAL SETTLEMENTS THROUGH THE INTEGRATION OF 2D AND 3D FEATURES EXTRACTED FROM UAV DATA

    Directory of Open Access Journals (Sweden)

    C. M. Gevaert

    2016-06-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are capable of providing very high resolution and up-to-date information to support informal settlement upgrading projects. In order to provide accurate basemaps, urban scene understanding through the identification and classification of buildings and terrain is imperative. However, common characteristics of informal settlements such as small, irregular buildings with heterogeneous roof material and large presence of clutter challenge state-of-the-art algorithms. Especially the dense buildings and steeply sloped terrain cause difficulties in identifying elevated objects. This work investigates how 2D radiometric and textural features, 2.5D topographic features, and 3D geometric features obtained from UAV imagery can be integrated to obtain a high classification accuracy in challenging classification problems for the analysis of informal settlements. It compares the utility of pixel-based and segment-based features obtained from an orthomosaic and DSM with point-based and segment-based features extracted from the point cloud to classify an unplanned settlement in Kigali, Rwanda. Findings show that the integration of 2D and 3D features leads to higher classification accuracies.

  16. 3D high-resolution anorectal manometry in patients with perianal fistulas: comparison with 3D-anal ultrasound.

    Science.gov (United States)

    Felt-Bersma, Richelle J F; Vlietstra, Maarten S; Vollebregt, Paul F; Han-Geurts, Ingrid J M; Rempe-Sorm, Vera; Vander Mijnsbrugge, Grietje J H; Molenaar, Charlotte B H

    2018-04-04

    Perianal fistula surgery can damage the anal sphincters which may cause faecal incontinence. By measuring regional pressures, 3D-HRAM potentially provides better guidance for surgical strategy in patients with perianal fistulas. The aim was to measure regional anal pressures with 3D-HRAM and to compare these with 3D-EUS findings in patients with perianal fistulas. Consecutive patients with active perianal fistulas who underwent both 3D-EUS and 3D-HRAM at a clinic specialised in proctology were included. A group of 30 patients without fistulas served as controls. Data regarding demographics, complaints, previous perianal surgical procedures and obstetric history were collected. The mean and regional anal pressures were measured with 3D-HRAM. Fistula tract areas detected with 3D-EUS were analysed with 3D-HRAM by visual coding and the regional pressures of the corresponding and surrounding area of the fistula tract areas were measured. The study was granted by the VUmc Medical Ethical Committee. Forty patients (21 males, mean age 47) were included. Four patients had a primary fistula, 19 were previously treated with a seton/abscess drainage and 17 had a recurrence after previously performed fistula surgery. On 3D-HRAM, 24 (60%) fistula tract areas were good and 8 (20%) moderately visible. All but 7 (18%) patients had normal mean resting pressures. The mean resting pressure of the fistula tract area was significantly lower compared to the surrounding area (47 vs. 76 mmHg; p < 0.0001). Only 2 (5%) patients had a regional mean resting pressure < 10 mmHg of the fistula tract area. Using a Δ mean resting pressure ≥ 30 mmHg difference between fistula tract area and non-fistula tract area as alternative cut-off, 21 (53%) patients were identified. In 6 patients 3D-HRAM was repeated after surgery: a local pressure drop was detected in one patient after fistulotomy with increased complaints of faecal incontinence. Profound local anal pressure drops are found

  17. Three-Dimensional Integrated Characterization and Archiving System (3D-ICAS). Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    3D-ICAS is being developed to support Decontamination and Decommissioning operations for DOE addressing Research Area 6 (characterization) of the Program Research and Development Announcement. 3D-ICAS provides in-situ 3-dimensional characterization of contaminated DOE facilities. Its multisensor probe contains a GC/MS (gas chromatography/mass spectrometry using noncontact infrared heating) sensor for organics, a molecular vibrational sensor for base material identification, and a radionuclide sensor for radioactive contaminants. It will provide real-time quantitative measurements of volatile organics and radionuclides on bare materials (concrete, asbestos, transite); it will provide 3-D display of the fusion of all measurements; and it will archive the measurements for regulatory documentation. It consists of two robotic mobile platforms that operate in hazardous environments linked to an integrated workstation in a safe environment.

  18. Three-Dimensional Integrated Characterization and Archiving System (3D-ICAS). Phase 1

    International Nuclear Information System (INIS)

    1994-07-01

    3D-ICAS is being developed to support Decontamination and Decommissioning operations for DOE addressing Research Area 6 (characterization) of the Program Research and Development Announcement. 3D-ICAS provides in-situ 3-dimensional characterization of contaminated DOE facilities. Its multisensor probe contains a GC/MS (gas chromatography/mass spectrometry using noncontact infrared heating) sensor for organics, a molecular vibrational sensor for base material identification, and a radionuclide sensor for radioactive contaminants. It will provide real-time quantitative measurements of volatile organics and radionuclides on bare materials (concrete, asbestos, transite); it will provide 3-D display of the fusion of all measurements; and it will archive the measurements for regulatory documentation. It consists of two robotic mobile platforms that operate in hazardous environments linked to an integrated workstation in a safe environment

  19. GPU-based, parallel-line, omni-directional integration of measured acceleration field to obtain the 3D pressure distribution

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2016-11-01

    A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.

  20. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.

    Science.gov (United States)

    Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Payvand, M; Madhavan, A; Ghofrani, A; Theogarajan, L; Cheng, K-T; Strukov, D B

    2017-02-14

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  1. CAD-Based Modeling of Advanced Rotary Wing Structures for Integrated 3-D Aeromechanics Analysis

    Science.gov (United States)

    Staruk, William

    This dissertation describes the first comprehensive use of integrated 3-D aeromechanics modeling, defined as the coupling of 3-D solid finite element method (FEM) structural dynamics with 3-D computational fluid dynamics (CFD), for the analysis of a real helicopter rotor. The development of this new methodology (a departure from how rotor aeroelastic analysis has been performed for 40 years), its execution on a real rotor, and the fundamental understanding of aeromechanics gained from it, are the key contributions of this dissertation. This work also presents the first CFD/CSD analysis of a tiltrotor in edgewise flight, revealing many of its unique loading mechanisms. The use of 3-D FEM, integrated with a trim solver and aerodynamics modeling, has the potential to enhance the design of advanced rotors by overcoming fundamental limitations of current generation beam-based analysis tools and offering integrated internal dynamic stress and strain predictions for design. Two primary goals drove this research effort: 1) developing a methodology to create 3-D CAD-based brick finite element models of rotors including multibody joints, controls, and aerodynamic interfaces, and 2) refining X3D, the US Army's next generation rotor structural dynamics solver featuring 3-D FEM within a multibody formulation with integrated aerodynamics, to model a tiltrotor in the edgewise conversion flight regime, which drives critical proprotor structural loads. Prior tiltrotor analysis has primarily focused on hover aerodynamics with rigid blades or forward flight whirl-flutter stability with simplified aerodynamics. The first goal was met with the development of a detailed methodology for generating multibody 3-D structural models, starting from CAD geometry, continuing to higher-order hexahedral finite element meshing, to final assembly of the multibody model by creating joints, assigning material properties, and defining the aerodynamic interface. Several levels of verification and

  2. 3D detector and electronics integration technologies: Applications to ILC, SLHC, and beyond

    International Nuclear Information System (INIS)

    Lipton, Ronald

    2011-01-01

    The application of vertically integrated (3D) electronics to particle physics has been explored by the our group for the past several years. We have successfully designed the first vertically integrated demonstrator chip for ILC vertex detection in the three-tier MIT-Lincoln Labs process. We have also studied sensor integration with electronics through oxide bonding and silicon-on-insulator technology. This paper will discuss the status of these studies and prospects for future work.

  3. 3D detector and electronics integration technologies: Applications to ILC, SLHC, and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, Ronald, E-mail: lipton@fnal.gov [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    2011-04-21

    The application of vertically integrated (3D) electronics to particle physics has been explored by the our group for the past several years. We have successfully designed the first vertically integrated demonstrator chip for ILC vertex detection in the three-tier MIT-Lincoln Labs process. We have also studied sensor integration with electronics through oxide bonding and silicon-on-insulator technology. This paper will discuss the status of these studies and prospects for future work.

  4. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    International Nuclear Information System (INIS)

    Martínez, José M; Jarosz, Boguslaw J

    2015-01-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20–32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10–11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m −1 , 115  ±  4 dB m −1 and 175  ±  9 dB m −1 , respectively. The density and acoustic speed determination at room temperature (∼24 °C) gave 1040  ±  40 kg m −3 and 1545  ±  44 m s −1 , respectively. The average thermal conductivity was 0.532 W m −1  K −1 . The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies. (paper)

  5. 3D integration of planar crossbar memristive devices with CMOS substrate

    International Nuclear Information System (INIS)

    Lin, Peng; Pi, Shuang; Xia, Qiangfei

    2014-01-01

    Planar memristive devices with bottom electrodes embedded into the substrates were integrated on top of CMOS substrates using nanoimprint lithography to implement hybrid circuits with a CMOL-like architecture. The planar geometry eliminated the mechanically and electrically weak parts, such as kinks in the top electrodes in a traditional crossbar structure, and allowed the use of thicker and thus less resistive metal wires as the bottom electrodes. Planar memristive devices integrated with CMOS have demonstrated much lower programing voltages and excellent switching uniformity. With the inclusion of the Moiré pattern, the integration process has sub-20 nm alignment accuracy, opening opportunities for 3D hybrid circuits in applications in the next generation of memory and unconventional computing. (paper)

  6. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy.

    Science.gov (United States)

    De Silva, Tharindu; Fenster, Aaron; Cool, Derek W; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D

    2013-02-01

    Three-dimensional (3D) transrectal ultrasound (TRUS)-guided systems have been developed to improve targeting accuracy during prostate biopsy. However, prostate motion during the procedure is a potential source of error that can cause target misalignments. The authors present an image-based registration technique to compensate for prostate motion by registering the live two-dimensional (2D) TRUS images acquired during the biopsy procedure to a preacquired 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. The authors implemented an intensity-based 2D-3D rigid registration algorithm optimizing the normalized cross-correlation (NCC) metric using Powell's method. The 2D TRUS images acquired during the procedure prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the beginning of the procedure. The accuracy was measured by calculating the target registration error (TRE) using manually identified fiducials within the prostate; these fiducials were used for validation only and were not provided as inputs to the registration algorithm. They also evaluated the accuracy when the registrations were performed continuously throughout the biopsy by acquiring and registering live 2D TRUS images every second. This measured the improvement in accuracy resulting from performing the registration, continuously compensating for motion during the procedure. To further validate the method using a more challenging data set, registrations were performed using 3D TRUS images acquired by intentionally exerting different levels of ultrasound probe pressures in order to measure the performance of our algorithm when the prostate tissue was intentionally deformed. In this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D TRUS images and registering them to the baseline 3D image. A graphics processing unit (GPU)-based implementation was used to improve the

  7. The Interobserver Variability and Diagnostic Performance of 3-Dimensional Breast Ultrasound

    International Nuclear Information System (INIS)

    Lyou, Chae Yeon; Kim, Sun Mi; Jang, Mi Jung; Kim, Sung Won; Kang, Eun Young; Park, So Yeon; Moon, Woo Kyung

    2011-01-01

    We wanted to evaluate the interobserver variability and diagnostic performance of 3-dimensional (3D) breast ultrasound (US) as compared with that of 2- dimensional (2D) US. We included 150 patients who received US-guided core biopsy and 3D US between June 2009 and April 2010. Three breast imaging radiologists analyzed the 2D and 3D US images using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. The intra-observer agreement and inter-observer agreement were calculated. The sensitivity and specificity of 2D and 3D US were evaluated. The intra-observer agreement between 2D and 3D US was mostly slight or fair agreement. However, in terms of the final category, there was substantial agreement for all three radiologists. The inter-observer agreement of 3D US was similar to that of 2D US (moderate agreement for shape, orientation, circumscribed margin and boundary: fair agreement for indistinct margin, angular margin, microlobulated margin, echo pattern and final category). The sensitivity of 3D US for breast cancer was higher than that of 2D US for two radiologists (2D vs. 3D for reader 2: 55.8% vs. 61.5%, 2D vs. 3D for reader 3: 59.6% vs. 63.5%), and the specificity of 3D US was lower than that of 2D US for all the readers (2D vs. 3D for reader 1: 90.8% vs. 86.7%, 2D vs. 3D for reader 2: 90.8% vs. 87.8%, 2D vs. 3D for reader 3: 94.9% vs. 90.8%), but the difference was not significant (p ≥ 0.05). The interobserver variability and diagnostic performance of 3D breast US were similar to those of 2D US

  8. Immersive Learning Environment Using 3D Virtual Worlds and Integrated Remote Experimentation

    Directory of Open Access Journals (Sweden)

    Roderval Marcelino

    2013-01-01

    Full Text Available This project seeks to demonstrate the use of remote experimentation and 3D virtual environments applied to the teaching-learning in the areas of exact sciences-physics. In proposing the combination of remote experimentation and 3D virtual worlds in teaching-learning process, we intend to achieve greater geographic coverage, contributing to the construction of new methodologies of teaching support, speed of access and foremost motivation for students to continue in scientific study of the technology areas. The proposed architecture is based on a model implemented fully featured open source and open hardware. The virtual world was built in OpenSim software and integrated it a remote physics experiment called "electrical panel". Accessing the virtual world the user has total control of the experiment within the 3D virtual world.

  9. High-frequency 3D echodentographic imaging modality for early assessment of periodontal diseases: in vitro study

    Science.gov (United States)

    Mahmoud, Ahmed M.; Ngan, Peter; Crout, Richard; Mukdadi, Osama M.

    2009-02-01

    The use of ultrasound in dentistry is still an open growing area of research. Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. This study investigates the feasibility of high frequency ultrasound to reconstruct high resolution 3D surface images of human jawbone. Methods: A dentate and non-dentate mandibles were used in this study. The system employs high frequency single-element ultrasound focused transducers (15-30 MHz) for scanning. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high precision two-dimensional stage positioning system of +/-1 μm resolution for acquiring accurate and quantitative measurements of the mandible in vitro. Radio frequency (RF) signals are acquired laterally 44-45.5 μm apart for each frame. Different frames are reconstructed 500 μm apart for the 3D reconstruction. Signal processing algorithms are applied on the received ultrasound signals for filtering, focusing, and envelope detection before frame reconstruction. Furthermore, an edge detection technique is adopted to detect the bone surface in each frame. Finally, all edges are combined together in order to render a 3D surface image of the jawbone. Major anatomical landmarks on the resultant images were confirmed with the anatomical structures on the mandibles to show the efficacy of the system. Comparison were also made with conventional 2D radiographs to show the superiority of the ultrasound imaging system in diagnosing small defects in the lateral, axial and elevation planes of space. Results: The landmarks on all ultrasound images matched with those on the mandible, indicating the efficacy of the system in detecting small structures in human jaw bones. Comparison with conventional 2D radiographic images of the same mandible showed superiority of

  10. 3D visualization of integrated ground penetrating radar data and EM-61 data to determine buried objects and their characteristics

    International Nuclear Information System (INIS)

    Kadioğlu, Selma; Daniels, Jeffrey J

    2008-01-01

    This paper is based on an interactive three-dimensional (3D) visualization of two-dimensional (2D) ground penetrating radar (GPR) data and their integration with electromagnetic induction (EMI) using EM-61 data in a 3D volume. This method was used to locate and identify near-surface buried old industrial remains with shape, depth and type (metallic/non-metallic) in a brownfield site. The aim of the study is to illustrate a new approach to integrating two data sets in a 3D image for monitoring and interpretation of buried remains, and this paper methodically indicates the appropriate amplitude–colour and opacity function constructions to activate buried remains in a transparent 3D view. The results showed that the interactive interpretation of the integrated 3D visualization was done using generated transparent 3D sub-blocks of the GPR data set that highlighted individual anomalies in true locations. Colour assignments and formulating of opacity of the data sets were the keys to the integrated 3D visualization and interpretation. This new visualization provided an optimum visual comparison and an interpretation of the complex data sets to identify and differentiate the metallic and non-metallic remains and to control the true interpretation on exact locations with depth. Therefore, the integrated 3D visualization of two data sets allowed more successful identification of the buried remains

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... symptoms experienced by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams also ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterus). Sonohysterography allows for a more in-depth investigation of the uterine cavity . Three-dimensional (3-D) ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ...

  14. The clinical study of 2D and power doppler ultrasound in esophagus varix

    International Nuclear Information System (INIS)

    Li Qiang; Zhou Liang; Zhang Yucheng; Yang Minghua; Ruan Fenglian; Lu Haixia; Li Yue

    2008-01-01

    Objective: To study the application of 2D and Power Doppler Ultrasound in diagnosing the abdominal esophageal varicose veins. Methods: 65 patients under suspicion with chronic hepatitis and cirrhosis for esophageal varicose at esophagus in abdomen section were examined by 2D and Power Doppler Ultrasound.Among them, 35 patients suffered from esophageal varicose veins proved by gastroscopy and the rest did not. Results: On the power doppler imaging map, colored blood stream signals were showed in varicose veins while without signals in non-varicose veins.The diagnostic sensitivity and specificity were 91.4% and 100% respectively. On the two-dimensional image chart, non-echoes were represented in varicose veins. The anteroposterior diameter, right-left diameter, as well as the thickness of esophagus wall were larger in patients with varicose veins than those in non varicose veins cases (P<0.01). Conclusion: 2D combined with Power Doppler Ultrasound was of non-invasive, safe, sensitive and high specificity, which is a valuable and practical tool in diagnosing the esophageal varicose veins. (authors)

  15. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    Directory of Open Access Journals (Sweden)

    Johann Otto Pelz

    Full Text Available Currently, colour-coded duplex sonography (2D-CDS is clinical standard for detection and grading of internal carotid artery stenosis (ICAS. However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS for direct visualisation and quantification of ICAS.Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA reduction percentage and compared with 2D-CDS.There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%. Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90 followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81. Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51. Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}. In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57 than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51.Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard

  16. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    Science.gov (United States)

    Pelz, Johann Otto; Weinreich, Anna; Karlas, Thomas; Saur, Dorothee

    2017-01-01

    Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visualisation and quantification of ICAS. Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA) reduction percentage and compared with 2D-CDS. There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81). Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51). Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard imaging

  17. A new 3-D integral code for computation of accelerator magnets

    International Nuclear Information System (INIS)

    Turner, L.R.; Kettunen, L.

    1991-01-01

    For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed field in the bore region satisfy Maxwell's equations exactly. A new integral code employing edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon Source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible. 8 refs., 4 figs., 1 tab

  18. Preoperative 4D CT Localization of Nonlocalizing Parathyroid Adenomas by Ultrasound and SPECT-CT.

    Science.gov (United States)

    Hinson, Andrew M; Lee, David R; Hobbs, Bradley A; Fitzgerald, Ryan T; Bodenner, Donald L; Stack, Brendan C

    2015-11-01

    To evaluate 4-dimensional (4D) computed tomography (CT) for the localization of parathyroid adenomas previously considered nonlocalizing on ultrasound and single-photon emission CT with CT scanning (SPECT-CT). To measure radiation exposure associated with 4D-CT and compared it with SPECT-CT. Case series with chart review. University tertiary hospital. Nineteen adults with primary hyperparathyroidism who underwent preoperative 4D CT from November 2013 through July 2014 after nonlocalizing preoperative ultrasound and technetium-99m SPECT-CT scans. Sensitivity, specificity, predictive values, and accuracy of 4D CT were evaluated. Nineteen patients (16 women and 3 men) were included with a mean age of 66 years (range, 39-80 years). Mean preoperative parathyroid hormone level was 108.5 pg/mL (range, 59.3-220.9 pg/mL), and mean weight of the excised gland was 350 mg (range, 83-797 mg). 4D CT sensitivity and specificity for localization to the patient's correct side of the neck were 84.2% and 81.8%, respectively; accuracy was 82.9%. The sensitivity for localizing adenomas to the correct quadrant was 76.5% and 91.5%, respectively; accuracy was 88.2%. 4D CT radiation exposure was significantly less than the radiation associated with SPECT-CT (13.8 vs 18.4 mSv, P = 0.04). 4D CT localizes parathyroid adenomas with relatively high sensitivity and specificity and allows for the localization of some adenomas not observed on other sestamibi-based scans. 4D CT was also associated with less radiation exposure when compared with SPECT-CT based on our study protocol. 4D CT may be considered as first- or second-line imaging for localizing parathyroid adenomas in the setting of primary hyperparathyroidism. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  19. 2-D Ultrasound Scanning Probes for 3-D Medical Diagnostic Imaging

    National Research Council Canada - National Science Library

    Slayton, Michael

    1999-01-01

    .... It is being pursued vigorously by the industry and is technologically feasible. However, cost versus performance issues are currently extremely sensitive and holding back commercialization of a number of 3-D technical concepts...

  20. TU-H-CAMPUS-IeP3-04: Evaluation of Changes in Quantitative Ultrasound Parameters During Prostate Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, M; El Kaffas, A; Han, B [Department of Radiation Oncology, Stanford University, Palo Alto, CA (United States); Cooper, D [Elekta Inc., Montreal, QC (Canada); Hancock, S; Hristov, D

    2016-06-15

    Purpose: Clarity Autoscan ultrasound monitoring system allows acquisition of raw radiofrequency (RF) ultrasound data prior and during radiotherapy. This enables the computation of 3D Quantitative Ultrasound (QUS) tissue parametric maps from. We aim to evaluate whether QUS parameters undergo changes with radiotherapy and thus potentially be used as early predictors and/or markers of treatment response in prostate cancer patients. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. QUS spectroscopy analysis was carried out by computing a tissue power spectrum normalized to the power spectrum obtained from a quartz to remove system transfer function effects. A ROI was selected within the 3D image volume of the prostate. Because longitudinal registration was optimal, the same features could be used to select ROIs at roughly the same location in images acquired on different days. Parametric maps were generated within the rectangular ROIs with window sizes that were approximately 8 times the wavelength of the ultrasound. The mid-band fit (MBF), spectral slope (SS) and spectral intercept (SI) QUS parameters were computed for each window within the ROI and displayed as parametric maps. Quantitative parameters were obtained by averaging each of the spectral parameters over the whole ROI. Results: Data was acquired for over 21 treatment fractions. Preliminary results show changes in the parametric maps. MBF values decreased from −33.9 dB to −38.7 dB from pre-treatment to the last day of treatment. The spectral slope increased from −1.1 a.u. to −0.5 a.u., and spectral intercept decreased from −28.2 dB to −36.3 dB over the 21 treatment regimen. Conclusion: QUS parametric maps change over the course of treatment which warrants further investigation in their potential use for treatment planning and predicting treatment

  1. TU-H-CAMPUS-IeP3-04: Evaluation of Changes in Quantitative Ultrasound Parameters During Prostate Radiotherapy

    International Nuclear Information System (INIS)

    Najafi, M; El Kaffas, A; Han, B; Cooper, D; Hancock, S; Hristov, D

    2016-01-01

    Purpose: Clarity Autoscan ultrasound monitoring system allows acquisition of raw radiofrequency (RF) ultrasound data prior and during radiotherapy. This enables the computation of 3D Quantitative Ultrasound (QUS) tissue parametric maps from. We aim to evaluate whether QUS parameters undergo changes with radiotherapy and thus potentially be used as early predictors and/or markers of treatment response in prostate cancer patients. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. QUS spectroscopy analysis was carried out by computing a tissue power spectrum normalized to the power spectrum obtained from a quartz to remove system transfer function effects. A ROI was selected within the 3D image volume of the prostate. Because longitudinal registration was optimal, the same features could be used to select ROIs at roughly the same location in images acquired on different days. Parametric maps were generated within the rectangular ROIs with window sizes that were approximately 8 times the wavelength of the ultrasound. The mid-band fit (MBF), spectral slope (SS) and spectral intercept (SI) QUS parameters were computed for each window within the ROI and displayed as parametric maps. Quantitative parameters were obtained by averaging each of the spectral parameters over the whole ROI. Results: Data was acquired for over 21 treatment fractions. Preliminary results show changes in the parametric maps. MBF values decreased from −33.9 dB to −38.7 dB from pre-treatment to the last day of treatment. The spectral slope increased from −1.1 a.u. to −0.5 a.u., and spectral intercept decreased from −28.2 dB to −36.3 dB over the 21 treatment regimen. Conclusion: QUS parametric maps change over the course of treatment which warrants further investigation in their potential use for treatment planning and predicting treatment

  2. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... (REFT) and to a convex rectangular elevation focused transducer (CREFT). These models are solvable on an analog time scale and give exact smooth solutions to the Rayleigh integral. The REFT model exhibits a root mean square (RMS) error relative to Field II predictions of 0.41 % at 3400 MHz, and 1.......37 % at 100MHz. The CREFT model exhibits a RMS deviation of 0.01 % relative to the exact numerical solution on a CREFT transducer. A convex non-elevation focused, a REFT, and a linear flat transducer are shown to be covered with the CREFT model as well. Pressure pulses calculated with a one...

  3. A Standardized Method for 4D Ultrasound-Guided Peripheral Nerve Blockade and Catheter Placement

    Directory of Open Access Journals (Sweden)

    N. J. Clendenen

    2014-01-01

    Full Text Available We present a standardized method for using four-dimensional ultrasound (4D US guidance for peripheral nerve blocks. 4D US allows for needle tracking in multiple planes simultaneously and accurate measurement of the local anesthetic volume surrounding the nerve following injection. Additionally, the morphology and proximity of local anesthetic spread around the target nerve is clearly seen with the described technique. This method provides additional spatial information in real time compared to standard two-dimensional ultrasound.

  4. Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound

    International Nuclear Information System (INIS)

    Harris, Emma J; Miller, Naomi R; Bamber, Jeffrey C; Symonds-Tayler, J Richard N; Evans, Philip M

    2010-01-01

    We have evaluated a 4D ultrasound-based motion tracking system developed for tracking of abdominal organs during therapy. Tracking accuracy and precision were determined using a tissue-mimicking phantom, by comparing tracked motion with known 3D sinusoidal motion. The feasibility of tracking 3D liver motion in vivo was evaluated by acquiring 4D ultrasound data from four healthy volunteers. For two of these volunteers, data were also acquired whilst simultaneously measuring breath flow using a spirometer. Hepatic blood vessels, tracked off-line using manual tracking, were used as a reference to assess, in vivo, two types of automated tracking algorithm: incremental (from one volume to the next) and non-incremental (from the first volume to each subsequent volume). For phantom-based experiments, accuracy and precision (RMS error and SD) were found to be 0.78 mm and 0.54 mm, respectively. For in vivo measurements, mean absolute distance and standard deviation of the difference between automatically and manually tracked displacements were less than 1.7 mm and 1 mm respectively in all directions (left-right, anterior-posterior and superior-inferior). In vivo non-incremental tracking gave the best agreement. In both phantom and in vivo experiments, tracking performance was poorest for the elevational component of 3D motion. Good agreement between automatically and manually tracked displacements indicates that 4D ultrasound-based motion tracking has potential for image guidance applications in therapy.

  5. [Non-biological 3D printed simulator for training in percutaneous nephro- lithotripsy].

    Science.gov (United States)

    Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Ali, S Kh; Bukatov, M D; Letunovskiy, A V; Byadretdinov, I Sh

    2018-03-01

    To develop a non-biological 3D printed simulator for training and preoperative planning in percutaneous nephrolithotripsy (PCNL), which allows doctors to master and perform all stages of the operation under ultrasound and fluoroscopy guidance. The 3D model was constructed using multislice spiral computed tomography (MSCT) images of a patient with staghorn urolithiasis. The MSCT data were processed and used to print the model. The simulator consisted of two parts: a non-biological 3D printed soft model of a kidney with reproduced intra-renal vascular and collecting systems and a printed 3D model of a human body. Using this 3D printed simulator, PCNL was performed in the interventional radiology operating room under ultrasound and fluoroscopy guidance. The designed 3D printed model of the kidney completely reproduces the individual features of the intra-renal structures of the particular patient. During the training, all the main stages of PCNL were performed successfully: the puncture, dilation of the nephrostomy tract, endoscopic examination, intra-renal lithotripsy. Our proprietary 3D-printed simulator is a promising development in the field of endourologic training and preoperative planning in the treatment of complicated forms of urolithiasis.

  6. 3D integration technology for hybrid pixel detectors designed for particle physics and imaging experiments

    International Nuclear Information System (INIS)

    Henry, D.; Berthelot, A.; Cuchet, R.; Chantre, C.; Campbell, M.; Tick, T.

    2012-01-01

    Hybrid pixel detectors are now widely used in particle physics experiments and are becoming established at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the advantages of 3D Integration come from reduced inter chip dead area even on large surfaces and from improved detector construction yield resulting from the use of single chip 4-side buttable tiles. For many years, numerous R and centres and companies have put a lot of effort into developing 3D integration technologies and today, some mature technologies are ready for prototyping and production. The core technology of the 3D integration is the TSV (Through Silicon Via) and for many years, LETI has developed those technologies for various types of applications. In this paper we present how one of the TSV approaches developed by LETI, called TSV last, has been applied to a readout wafer containing readout chips intended for a hybrid pixel detector assembly. In the first part of this paper, the 3D design adapted to the read-out chip will be described. Then the complete process flow will be explained and, finally, the test strategy adopted and

  7. [Two- and three-dimensional power Doppler ultrasound in the follow-up of placenta accreta treated conservatively].

    Science.gov (United States)

    Roulot, A; Barranger, E; Morel, O; Soyer, P; Héquet, D

    2015-02-01

    To determinate the potential of 2D and 3D-ultrasound in the follow-up of patients with placenta accreta treated conservatively. Seven patients with placenta accreta treated conservatively during June 2007 and September 2009 were included. The follow-up consisted in clinical examination and 2D/3D-ultrasound once a month. Criteria studied included clinical outcome, echogenicity at 2D-ultrasound, vascularisation at colour Doppler, Mean Grey at 3D-ultrasound and vascularisation, flow and perfusion index. Seven women with invasive placenta (3 placentas accreta and 2 percreta) were studied. The mean follow-up was 228 days [75-369]. Mean delay for complete elimination of residual placenta was 280 days [120-365]. The two main results were: presence of an increased anechogenicpart in residual placenta before complete resorption for all patients; a systematic and concomitant stop of genital haemorrhage and vascularisation at colour Doppler. High degrees of variability in parameters measured at 3D-ultrasound were observed between patients so that correlations with clinical outcome were found. Long and regular follow-up is essential after conservative management but the role of 3D-ultrasound compared to 2D-ultrasound was not demonstrated in this study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Three-dimensional Ultrasound in the Management of Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Lowe, C B; Ghulam, Q; Bredahl, K

    2016-01-01

    Three-dimensional (3D) ultrasound is an evolving modality that may have numerous applications in the management of abdominal aortic aneurysms. Many vascular specialists will not be familiar with the different ways in which 3D vascular ultrasound data can be acquired nor how potential applications...

  9. OMEGAPIX 3D integrated circuit prototype dedicated to the ATLAS upgrade Super LHC pixel project

    CERN Document Server

    Thienpont, D; de La Taille, C; Seguin-Moreau, N; Martin-Chassard, G; Guo b, Y

    2009-01-01

    In late 2008, an international consortium for development of vertically integrated (3D) readout electronics was created to explore features available from this technology. In this paper, the OMEGAPIX circuit is presented. It is the first front-end ASIC prototype designed at LAL in 3D technology. It has been submitted on May 2009. At first, a short reminder of 3D technology is presented. Then the IC design is explained: analogue tier, digital tier and testability.

  10. Full-parallax 3D display from stereo-hybrid 3D camera system

    Science.gov (United States)

    Hong, Seokmin; Ansari, Amir; Saavedra, Genaro; Martinez-Corral, Manuel

    2018-04-01

    In this paper, we propose an innovative approach for the production of the microimages ready to display onto an integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating an integral image after projecting computationally the information through a virtual pinhole array. We illustrate this procedure with some imaging experiments that provide microimages with enhanced quality. After projection of such microimages onto the integral-imaging monitor, 3D images are produced with great parallax and viewing angle.

  11. Integrating 3D Printing into an Early Childhood Teacher Preparation Course: Reflections on Practice

    Science.gov (United States)

    Sullivan, Pamela; McCartney, Holly

    2017-01-01

    This reflection on practice describes a case study integrating 3D printing into a creativity course for preservice teachers. The theoretical rationale is discussed, and the steps for integration are outlined. Student responses and reflections on the experience provide the basis for our analysis. Examples and resources are provided, as well as a…

  12. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    International Nuclear Information System (INIS)

    Ragusa, J.C.

    2001-01-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  13. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, J.C. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)

    2001-07-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  14. Transient Thermal Analysis of 3-D Integrated Circuits Packages by the DGTD Method

    KAUST Repository

    Li, Ping; Dong, Yilin; Tang, Min; Mao, Junfa; Jiang, Li Jun; Bagci, Hakan

    2017-01-01

    Since accurate thermal analysis plays a critical role in the thermal design and management of the 3-D system-level integration, in this paper, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed to achieve this purpose

  15. Selective determination of caffeine in foods with 3D-graphene based ultrasound-assisted magnetic solid phase extraction.

    Science.gov (United States)

    Rahimi, Afshin; Zanjanchi, Mohammad Ali; Bakhtiari, Sadjad; Dehsaraei, Mohammad

    2018-10-01

    An efficient method was applied for extraction of caffeine in food samples. Three-dimensional graphene-Fe 3 O 4 (3D-G-Fe 3 O 4 ) nanoparticles was successfully synthesized and used as adsorbent in magnetic solid phase extraction (MSPE) step. The properties of synthesized adsorbent were characterized by fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The influence of main parameters of extraction procedure such as ultrasound parameter, amount of nanoparticles, pH, salt concentration and desorption condition were investigated and optimized. Under the optimized experimental conditions, the figure of merit results showed excellent linear dynamic range (LDR) of 0.5-500 µg mL -1 , with determination coefficient (R 2 ) higher than 0.996 and limit of detection (LOD) of 0.1 µg mL -1 . Intra- and inter-day relative standard deviations (RSDs) were less than 5.9 and 7.1%, respectively. The method was successfully applied for determination of caffeine in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  17. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  18. The D(D3)-anyon chain: integrable boundary conditions and excitation spectra

    International Nuclear Information System (INIS)

    Finch, Peter E; Frahm, Holger

    2013-01-01

    Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D 3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z 4 parafermion or a M (5,6) minimal model. (paper)

  19. Detectors in 3D available for assessment

    CERN Document Server

    Re, Valerio

    2014-01-01

    This deliverable reports on 3D devices resulting from the vertical integration of pixel sensors and readout electronics. After 3D integration steps such as etching of through-silicon vias and backside metallization of readout integrated circuits, ASICs and sensors are interconnected to form a 3D pixel detector. Various 3D detectors have been devised in AIDA WP3 and their status and performance is assessed here.

  20. The influence of ultrasound on ionizing radiation effects, 3

    International Nuclear Information System (INIS)

    Ishigaki, Takeo; Fujita, Katsuzo; Sakuma, Sadayuki

    1976-01-01

    The effects of simultaneous administration of ionizing radiation ( 60 Co gamma-rays) and ultrasound (1 MHz, 3 W/cm 2 ) on normal tissues of the auricules and kidneys, of rabbits were examined. Irreversible damages of the auricules were obtained with simultaneous irradiation of 690 R of 60 Co gamma-rays and exposure to ultrasound for 15 minutes, but with only irradiation of 2760 R of 60 Co gamma-rays or only administration of ultrasound for 60 minutes, damages were reversible. In 5 of 6 kidneys, interstitial nephritis was demonstrated histopathologically after simultaneous administration of 200 R of 60 Co gamma-rays and ultrasound for 5 minutes. However, with each alone (600 R of 60 Co gamma-rays and ultrasound for 60 minutes) no detectable changes were found. The results obtained from these experiments suggest that the effect of simultaneous irradiation with 60 Co gamma-rays and exposure to ultrasound on normal tissues may be synergistic and that ultrasound may potentiate the effects of 60 Co gamma-rays. (Evans, J.)

  1. A simulation technique for 3D MR-guided acoustic radiation force imaging

    International Nuclear Information System (INIS)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  2. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  3. Birth weight and neonatal adiposity prediction using fractional limb volume obtained with 3D ultrasound.

    Science.gov (United States)

    O'Connor, Clare; O'Higgins, Amy; Doolan, Anne; Segurado, Ricardo; Stuart, Bernard; Turner, Michael J; Kennelly, Máireád M

    2014-01-01

    The objective of this investigation was to study fetal thigh volume throughout gestation and explore its correlation with birth weight and neonatal body composition. This novel technique may improve birth weight prediction and lead to improved detection rates for fetal growth restriction. Fractional thigh volume (TVol) using 3D ultrasound, fetal biometry and soft tissue thickness were studied longitudinally in 42 mother-infant pairs. The percentages of neonatal body fat, fat mass and fat-free mass were determined using air displacement plethysmography. Correlation and linear regression analyses were performed. Linear regression analysis showed an association between TVol and birth weight. TVol at 33 weeks was also associated with neonatal fat-free mass. There was no correlation between TVol and neonatal fat mass. Abdominal circumference, estimated fetal weight (EFW) and EFW centile showed consistent correlations with birth weight. Thigh volume demonstrated an additional independent contribution to birth weight prediction when added to the EFW centile from the 38-week scan (p = 0.03). Fractional TVol performed at 33 weeks gestation is correlated with birth weight and neonatal lean body mass. This screening test may highlight those at risk of fetal growth restriction or macrosomia.

  4. Intermetallic compounds in 3D integrated circuits technology: a brief review.

    Science.gov (United States)

    Annuar, Syahira; Mahmoodian, Reza; Hamdi, Mohd; Tu, King-Ning

    2017-01-01

    The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.

  5. Intermetallic compounds in 3D integrated circuits technology: a brief review

    Science.gov (United States)

    Annuar, Syahira; Mahmoodian, Reza; Hamdi, Mohd; Tu, King-Ning

    2017-12-01

    The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.

  6. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  7. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    Science.gov (United States)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  8. The SuperB Silicon Vertex Tracker and 3D vertical integration

    CERN Document Server

    Re, Valerio

    2011-01-01

    The construction of the SuperB high luminosity collider was approved and funded by the Italian government in 2011. The performance specifications set by the target luminosity of this machine (> 10^36 cm^-2 s^-1) ask for the development of a Silicon Vertex Tracker with high resolution, high tolerance to radiation and excellent capability of handling high data rates. This paper reviews the R&D activity that is being carried out for the SuperB SVT. Special emphasis is given to the option of exploiting 3D vertical integration to build advanced pixel sensors and readout electronics that are able to comply with SuperB vertexing requirements.

  9. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  10. Role of 3D power Doppler ultrasound in the further characterization of suspicious breast masses.

    Science.gov (United States)

    Kupeli, Ali; Kul, Sibel; Eyuboglu, Ilker; Oguz, Sukru; Mungan, Sevdegul

    2016-01-01

    To investigate effectiveness of vascular indices obtained with 3D power Doppler ultrasound in the further characterization of breast masses and prevention of unnecessary biopsies. Between April 2013 and March 2014, 109 patients (age range, 17-85 years; mean age, 47 years) with 117 radiologically or clinically suspicious breast masses were prospectively evaluated with 3DPDUS before biopsy. Mass volume (MV), vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated using Virtual Organ Computer-aided Analysis (VOCAL) software and they were correlated with the final diagnosis. Cutoff values of vascular indices were determinated and diagnostic efficacy was calculated with receiver operating curve (ROC) analysis. All vascular indices, age of patients and tumor volume were significantly lower in benign masses compared with malignant ones (p<0.001). AUCs were 0.872, 0.867 and 0.789 for VI, VFI and FI, respectively. The diagnostic efficacy of VI (for cutoff 1.1; 83% sensitivity, 82% specificity and 82% accuracy) and VFI (for cutoff 0.4; 80% sensitivity, 83% specificity and 80% accuracy) were significantly higher than FI (for cutoff 33,9; 73% sensitivity, 69% specificity and 71% accuracy). It was found that with the use of vascular indices of 3DPDUS in the further characterization of suspicious breast masses between 24% to 37% of unnecessary biopsies could have been avoided. The vascular indices obtained with 3DPDUS seem reliable in the further characterization of suspicious breast masses and might be used to decrease unnecessary biopsies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Preliminary examples of 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2013-01-01

    This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental ult...... as opposed to magnetic resonance imaging (MRI). The results demonstrate that the 3D TO method is capable of performing 3D vector flow imaging.......This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental...... ultrasound scanner SARUS on a flow rig system with steady flow. The vessel of the flow-rig is centered at a depth of 30 mm, and the flow has an expected 2D circular-symmetric parabolic prole with a peak velocity of 1 m/s. Ten frames of 3D vector flow images are acquired in a cross-sectional plane orthogonal...

  12. Integration of Medical Imaging Including Ultrasound into a New Clinical Anatomy Curriculum

    Science.gov (United States)

    Moscova, Michelle; Bryce, Deborah A.; Sindhusake, Doungkamol; Young, Noel

    2015-01-01

    In 2008 a new clinical anatomy curriculum with integrated medical imaging component was introduced into the University of Sydney Medical Program. Medical imaging used for teaching the new curriculum included normal radiography, MRI, CT scans, and ultrasound imaging. These techniques were incorporated into teaching over the first two years of the…

  13. Perfusion-based three dimensional (3D) tissue engineering platform with integrated bioimpedance sensing

    DEFF Research Database (Denmark)

    Muhammad, Haseena Bashir; Canali, Chiara; Heiskanen, Arto

    2014-01-01

    We present an 8-channel bioreactor array with integrated bioimpedance sensors, which enables perfusion culture of cells seeded onto porous 3D scaffolds. Results show the capability of the system for monitoring cell proliferation within the scaffolds through a culture period of 19 days....

  14. WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X; Rossi, P; Jani, A; Ogunleye, T; Curran, W; Liu, T [Emory Univ, Atlanta, GA (United States)

    2015-06-15

    Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage. During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful

  15. 3DMADMAC|SPECTRAL: Hardware and Software Solution for Integrated Digitization of 3D Shape, Multispectral Color and BRDF for Cultural Heritage Documentation

    Directory of Open Access Journals (Sweden)

    Robert Sitnik

    2011-12-01

    Full Text Available In this article a new 3D measurement system along with the study on 3D printing technology is presented from the perspective of quality of reproduction. In the first part of the paper the 3DMADMAC|SPECTRAL system which integrates 3D shape with additional color and angular reflectance measurement capabilities is presented (see Figure 1. The shape measurement system is based on structured light projection with the use of a DLP projector. The 3D shape measurement method is based on sinusoidal fringes and Gray codes projection. Color is being measured using multispectral images with a set of interference filters to separate spectral channels. Additionally the set up includes an array of compact light sources for measuring angular reflectance based on image analysis and 3D data processing. All three components of the integrated system use the same greyscale camera as a detector. The purpose of the system is to obtain complete information about shape, color and reflectance characteristic of mea sured surface, especially for cultural heritage objects - in order to create high quality 3D documentation. In the second part of the paper the 3D printing technology will be tested on real measured cultural heritage objects. Tests allow to assess measurement and color accuracy of reproduction by selected 3D printing technology and shed some light on how current 3D printing technology can be applied into cultural heritage.

  16. Integrated fringe projection 3D scanning system for large-scale metrology based on laser tracker

    Science.gov (United States)

    Du, Hui; Chen, Xiaobo; Zhou, Dan; Guo, Gen; Xi, Juntong

    2017-10-01

    Large scale components exist widely in advance manufacturing industry,3D profilometry plays a pivotal role for the quality control. This paper proposes a flexible, robust large-scale 3D scanning system by integrating a robot with a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. And a mathematical model is established for the global data fusion. Subsequently, a flexible and robust method and mechanism is introduced for the establishment of the end coordination system. Based on this method, a virtual robot noumenon is constructed for hand-eye calibration. And then the transformation matrix between end coordination system and world coordination system is solved. Validation experiment is implemented for verifying the proposed algorithms. Firstly, hand-eye transformation matrix is solved. Then a car body rear is measured for 16 times for the global data fusion algorithm verification. And the 3D shape of the rear is reconstructed successfully.

  17. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2015-05-01

    Full Text Available Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedicated hardware circuits for processing vision processing and motion control functions. This research conducts a preliminary study to explore the integration of 3D vision and robot motion control system design based on a single field programmable gate array (FPGA chip. The implemented motion-vision embedded system performs the following functions: filtering, image statistics, binary morphology, binary object analysis, object 3D position calculation, robot inverse kinematics, velocity profile generation, feedback counting, and multiple-axes position feedback control.

  18. High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners

    DEFF Research Database (Denmark)

    Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2017-01-01

    This paper presents a high-voltage integrated regulator capable of sinking current for driving pulse-triggered level shifters in drivers for ultrasound applications. The regulator utilizes a new topology with a feedback loop and a current sinking circuit to satisfy the requirements of the portable....... The proposed design has been implemented in high-voltage 0.18 μm process whithin an area of 0.11 mm2 and it is suitable for system-on-chip integration due to its low component count and the fully integrated design....

  19. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    Directory of Open Access Journals (Sweden)

    Abbas F. Sadikot

    2011-09-01

    Full Text Available Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI methods. We present techniques used to create: 1 a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER; and 2 a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27 from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a nonlinear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson’s disease surgical candidates by using 3D automated nonlinear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson’s disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus and basal forebrain.

  20. Clinical value of real time 3D sonohysterography and 2D sonohysterography in comparison to hysteroscopy with subsequent histopathological examination in perimenopausal women with abnormal uterine bleeding.

    Science.gov (United States)

    Kowalczyk, Dariusz; Guzikowski, Wojciech; Więcek, Jacek; Sioma-Markowska, Urszula

    2012-01-01

    In many publications the transvaginal ultrasound is regarded as the first step to diagnose the cause of uterine bleeding in perimenopausal women. In order to improve the sensitivity and specificity of the conventional ultrasound physiological saline solution was administered to the uterine cavity and after expansion of its walls the interior uterine cavity was examined. And this procedure is called 2D sonohysterography (SIS 2D). By the ultrasound scanners which enable to get 3D real time image a spatial evaluation of the uterine cavity is possible. Clinical value of the real time 3D sonohysterography and 2D sonohysterography compared to hysteroscopy with histopathological examination in perimenopausal women. The study concerned a group of 97 perimenopausal women with abnormal uterine bleeding. In all of them after a standard transvaginal ultrasonography a catheter was inserted into the uterine cavity. After expansion of the uterine walls by administering about 10 ml of 0,9% saline solution the uterine cavity was examined by conventional sonohysterography. Then a 3D imaging mode was activated and the uterine interior was examined by real time 3D ultrasonography. The ultrasound results were verified by hysteroscopy, the endometrial lesions were removed and underwent a histopathological examination. In two cases the SIS examination was impossible because of uterine cervix atresion. In the rest of examined group the SIS 2D sensitivity and specificity came up to 72 and 96% respectively. In the group of SIS 3D the sensitivity and specificity reached 83 and 99% respectively. Adding SIS 3D, a minimally invasive method, to conventional sonohysterography improves the precision of diagnosis of endometrial pathology, allows to get three-dimensional image of the uterine cavity and enables examination of endometrial lesions. The diagnostic precision of this procedure is similar to the results achieved by hysteroscopy.

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... D images. A Doppler ultrasound study may be part of an ultrasound examination. Doppler ultrasound , also called ... terms of the distance traveled per unit of time, rather than as a color picture. It can ...

  2. Transient Thermal Analysis of 3-D Integrated Circuits Packages by the DGTD Method

    KAUST Repository

    Li, Ping

    2017-03-11

    Since accurate thermal analysis plays a critical role in the thermal design and management of the 3-D system-level integration, in this paper, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed to achieve this purpose. Such as the parabolic partial differential equation (PDE), the transient thermal equation cannot be directly solved by the DGTD method. To address this issue, the heat flux, as an auxiliary variable, is introduced to reduce the Laplace operator to a divergence operator. The resulting PDE is hyperbolic, which can be further written into a conservative form. By properly choosing the definition of the numerical flux used for the information exchange between neighboring elements, the hyperbolic thermal PDE can be solved by the DGTD together with the auxiliary differential equation. The proposed algorithm is a kind of element-level domain decomposition method, which is suitable to deal with multiscale geometries in 3-D integrated systems. To verify the accuracy and robustness of the developed DGTD algorithm, several representative examples are benchmarked.

  3. AUGMENTING 3D CITY MODEL COMPONENTS BY GEODATA JOINS TO FACILITATE AD-HOC GEOMETRIC-TOPOLOGICALLY SOUND INTEGRATION

    Directory of Open Access Journals (Sweden)

    R. Kaden

    2012-07-01

    Full Text Available Virtual 3D city models are integrated complex compositions of spatial data of different themes, origin, quality, scale, and dimensions. Within this paper, we address the problem of spatial compatibility of geodata aiming to provide support for ad-hoc integration of virtual 3D city models including geodata of different sources and themes like buildings, terrain, and city furniture. In contrast to related work which is dealing with the integration of redundant geodata structured according to different data models and ontologies, we focus on the integration of complex 3D models of the same representation (here: CityGML but regarding to the geometric-topological consistent matching of non-homologous objects, e.g. a building is connected to a road, and their geometric homogenisation. Therefore, we present an approach including a data model for a Geodata Join and the general concept of an integration procedure using the join information. The Geodata Join aims to bridge the lack of information between fragmented geodata by describing the relationship between adjacent objects from different datasets. The join information includes the geometrical representation of those parts of an object, which have a specific/known topological or geometrical relationship to another object. This part is referred to as a Connector and is either described by points, lines, or surfaces of the existing object geometry or by additional join geometry. In addition, the join information includes the specification of the connected object in the other dataset and the description of the topological and geometrical relationship between both objects, which is used to aid the matching process. Furthermore, the Geodata Join contains object-related information like accuracy values and restrictions of movement and deformation which are used to optimize the integration process. Based on these parameters, a functional model including a matching algorithm, transformation methods, and

  4. Cylindrical integrated optical microresonators: modeling by 3-D vectorial coupled mode theory

    Czech Academy of Sciences Publication Activity Database

    Stoffer, R.; Hiremath, K. R.; Hammer, M.; Prkna, Ladislav; Čtyroký, Jiří

    2005-01-01

    Roč. 256, 1/3 (2005), s. 46-67 ISSN 0030-4018 R&D Projects: GA ČR(CZ) GA102/05/0987 Grant - others:European Commission(XE) IST-2000-28018 NAIS Institutional research plan: CEZ:AV0Z20670512 Keywords : integrated optics * optical waveguide theory * modelling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.456, year: 2005

  5. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization.

    Science.gov (United States)

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-09-23

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals.

  6. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization

    Directory of Open Access Journals (Sweden)

    Guoliang Chen

    2015-09-01

    Full Text Available Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone’s acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals.

  7. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad; Karimi, Muhammad Akram; Salama, Khaled N.; Shamim, Atif

    2017-01-01

    disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept

  8. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  9. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    Science.gov (United States)

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  10. Integrating 3D CAD data for manufacturing and fabrication the core model of reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Abu Bakar Harun

    2005-01-01

    This paper describe the intrigue integration of digital 3 Dimensional Computer Aided Design (3D CAD) data manipulation for the Core Model fabrication of REAKTOR TRIGA PUSPATI and ready for mass manufacturing. 3 Dimensional CAD data from Computer Aided Design program will be used as an interpreter in the fabrication of this project. The Core Model of REAKTOR TRIGA PUSPATI will be fabricated with the aid of 3D CAD drawings and digital files. The components will be segregated and divided into 2 categories namely Conventional d Rapid Fabrication. (Author)

  11. Proses Produksi Pembuatan Tekstur Material pada Desain 3d Karakter Menggunakan Perangkat Lunak Maxon 3D Bodypaint

    Directory of Open Access Journals (Sweden)

    Ardiyan Ardiyan

    2014-10-01

    Full Text Available Digital production proses using integrated image editor software, which has own drawing tools function, makes easier producing textures material that applied in 3D model. The feature of image editor combined with 3D Editor Software makes the easier adjustment of 3D model needs when we see the visible improvement, so the software utilization will be more efficient. In the discussion, this study is done by making the production of 3D model, that is the 3D Character that has material texturing from utilizing the available image editor software features, so the alternative production by using the integrated image editor is possibly to be done. The discussion can be utilized as an insight into the manufacture of technical design in determining the design workflow of 3D models. Utilization of software take one example of software Maxon Cinema 4D version 14, which is used as a reference as software that integrates image processing therein. 

  12. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  13. Multi-view 3D human pose estimation combining single-frame recovery, temporal integration and model adaptation

    NARCIS (Netherlands)

    Hofmann, K.M.; Gavrilla, D.M.

    2009-01-01

    We present a system for the estimation of unconstrained 3D human upper body movement from multiple cameras. Its main novelty lies in the integration of three components: single frame pose recovery, temporal integration and model adaptation. Single frame pose recovery consists of a hypothesis

  14. 3D stacked chips from emerging processes to heterogeneous systems

    CERN Document Server

    Fettweis, Gerhard

    2016-01-01

    This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size.  The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.   •Provides single-source reference to the latest research in 3D optoelectronic integration: process, devices, and systems; •Explains the use of wireless 3D integration to improve 3D IC reliability and yield; •Describes techniques for monitoring and mitigating thermal behavior in 3D I...

  15. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images

    NARCIS (Netherlands)

    Haak, A.; Vegas-Sanchez-Ferrero, G.; Mulder, H.W.; Ren, B.; Kirisli, H.A.; Metz, C.; van Burken, G.; van Stralen, M.; Pluim, J.P.W.; Steen, van der A.F.W.; Walsum, van T.; Bosch, J.G.

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE

  16. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  17. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    Science.gov (United States)

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  18. Proposal for standardised ultrasound descriptors of abnormally invasive placenta (AIP)

    DEFF Research Database (Denmark)

    Collins, Sally L; Ashcroft, Anna; Braun, Thorsten

    2016-01-01

    on subjective interpretation of imaging signs. There is no accepted consensus on the definition of the commonly used ultrasound markers for AIP. The studies included in a recently published systematic review of antenatal sonographic diagnosis of AIP were analysed for the ultrasound descriptors. Different...... were examined for wording used to describe AIP signs. These were extracted and grouped by ultrasound modality, and synonymous or identical terms identified. The group agreed on six unified descriptors for 2D greyscale signs, four for 2D colour Doppler and one for 3D power Doppler. Four papers included...

  19. Initial Experience of Tomosynthesis-Guided Vacuum-Assisted Biopsies of Tomosynthesis-Detected (2D Mammography and Ultrasound Occult) Architectural Distortions.

    Science.gov (United States)

    Patel, Bhavika K; Covington, Matthew; Pizzitola, Victor J; Lorans, Roxanne; Giurescu, Marina; Eversman, William; Lewin, John

    2018-03-23

    As experience and aptitude in digital breast tomosynthesis (DBT) have increased, radiologists are seeing more areas of architectural distortion (AD) on DBT images compared with standard 2D mammograms. The purpose of this study is to report our experience using tomosynthesis-guided vacuum-assisted biopsies (VABs) for ADs that were occult at 2D mammography and ultrasound and to analyze the positive predictive value for malignancy. We performed a retrospective review of 34 DBT-detected ADs that were occult at mammography and ultrasound. We found a positive predictive value of 26% (nine malignancies in 34 lesions). Eight of the malignancies were invasive and one was ductal carcinoma in situ. The invasive cancers were grade 1 (4/8; 50%), grade 2 (2/8; 25%), or grade 3 (1/8; 13%); information about one invasive cancer was not available. The mean size of the invasive cancers at pathologic examination was 7.5 mm (range, 6-30 mm). Tomosynthesis-guided VAB is a feasible method to sample ADs that are occult at 2D mammography and ultrasound. Tomosynthesis-guided VAB is a minimally invasive method that detected a significant number of carcinomas, most of which were grade 1 cancers. Further studies are needed.

  20. Toward a 3D transrectal ultrasound system for verification of needle placement during high-dose-rate interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Rodgers, Jessica Robin; Surry, Kathleen; Leung, Eric; D'Souza, David; Fenster, Aaron

    2017-05-01

    Treatment for gynecologic cancers, such as cervical, recurrent endometrial, and vaginal malignancies, commonly includes external-beam radiation and brachytherapy. In high-dose-rate (HDR) interstitial gynecologic brachytherapy, radiation treatment is delivered via hollow needles that are typically inserted through a template on the perineum with a cylinder placed in the vagina for stability. Despite the need for precise needle placement to minimize complications and provide optimal treatment, there is no standard intra-operative image-guidance for this procedure. While some image-guidance techniques have been proposed, including magnetic resonance (MR) imaging, X-ray computed tomography (CT), and two-dimensional (2D) transrectal ultrasound (TRUS), these techniques have not been widely adopted. In order to provide intra-operative needle visualization and localization during interstitial brachytherapy, we have developed a three-dimensional (3D) TRUS system. This study describes the 3D TRUS system and reports on the system validation and results from a proof-of-concept patient study. To obtain a 3D TRUS image, the system rotates a conventional 2D endocavity transducer through 170 degrees in 12 s, reconstructing the 2D frames into a 3D image in real-time. The geometry of the reconstruction was validated using two geometric phantoms to ensure the accuracy of the linear measurements in each of the image coordinate directions and the volumetric accuracy of the system. An agar phantom including vaginal and rectal canals, as well as a model uterus and tumor, was designed and used to test the visualization and localization of the interstitial needles under idealized conditions by comparing the needles' positions between the 3D TRUS scan and a registered MR image. Five patients undergoing HDR interstitial gynecologic brachytherapy were imaged using the 3D TRUS system following the insertion of all needles. This image was manually, rigidly registered to the clinical

  1. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  2. Ultrasound-based guidance of intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  3. Treatment time reduction for large thermal lesions by using a multiple 1D ultrasound phased array system

    International Nuclear Information System (INIS)

    Liu, H.-L.; Chen, Y.-Y.; Yen, J.-Y.; Lin, W.-L.

    2003-01-01

    To generate large thermal lesions in ultrasound thermal therapy, cooling intermissions are usually introduced during the treatment to prevent near-field heating, which leads to a long treatment time. A possible strategy to shorten the total treatment time is to eliminate the cooling intermissions. In this study, the two methods, power optimization and acoustic window enlargement, for reducing power accumulation in the near field are combined to investigate the feasibility of continuously heating a large target region (maximally 3.2 x 3.2 x 3.2 cm 3 ). A multiple 1D ultrasound phased array system generates the foci to scan the target region. Simulations show that the target region can be successfully heated without cooling and no near-field heating occurs. Moreover, due to the fact that there is no cooling time during the heating sessions, the total treatment time is significantly reduced to only several minutes, compared to the existing several hours

  4. Novel fully integrated computer system for custom footwear: from 3D digitization to manufacturing

    Science.gov (United States)

    Houle, Pascal-Simon; Beaulieu, Eric; Liu, Zhaoheng

    1998-03-01

    This paper presents a recently developed custom footwear system, which integrates 3D digitization technology, range image fusion techniques, a 3D graphical environment for corrective actions, parametric curved surface representation and computer numerical control (CNC) machining. In this system, a support designed with the help of biomechanics experts can stabilize the foot in a correct and neutral position. The foot surface is then captured by a 3D camera using active ranging techniques. A software using a library of documented foot pathologies suggests corrective actions on the orthosis. Three kinds of deformations can be achieved. The first method uses previously scanned pad surfaces by our 3D scanner, which can be easily mapped onto the foot surface to locally modify the surface shape. The second kind of deformation is construction of B-Spline surfaces by manipulating control points and modifying knot vectors in a 3D graphical environment to build desired deformation. The last one is a manual electronic 3D pen, which may be of different shapes and sizes, and has an adjustable 'pressure' information. All applied deformations should respect a G1 surface continuity, which ensure that the surface can accustom a foot. Once the surface modification process is completed, the resulting data is sent to manufacturing software for CNC machining.

  5. Reinforcement of 3D Printed Nanocomposite Materials Using Ultrasound Alignment of Carbon Nanotubes

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to understand how ultrasound waves can be used to create user-defined patterns of nanoparticles in a photopolymer resin, which will...

  6. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    Science.gov (United States)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  7. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application

    Science.gov (United States)

    Kim, Hoejin; Torres, Fernando; Wu, Yanyu; Villagran, Dino; Lin, Yirong; Tseng, Tzu-Liang(Bill

    2017-08-01

    This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive

  8. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  9. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting.

    Science.gov (United States)

    Kim, Chunwoo; Chang, Doyoung; Petrisor, Doru; Chirikjian, Gregory; Han, Misop; Stoianovici, Dan

    2013-06-01

    Image-to-robot registration is a typical step for robotic image-guided interventions. If the imaging device uses a portable imaging probe that is held by a robot, this registration is constant and has been commonly named probe calibration. The same applies to probes tracked by a position measurement device. We report a calibration method for 2-D ultrasound probes using robotic manipulation and a planar calibration rig. Moreover, a needle guide that is attached to the probe is also calibrated for ultrasound-guided needle targeting. The method is applied to a transrectal ultrasound (TRUS) probe for robot-assisted prostate biopsy. Validation experiments include TRUS-guided needle targeting accuracy tests. This paper outlines the entire process from the calibration to image-guided targeting. Freehand TRUS-guided prostate biopsy is the primary method of diagnosing prostate cancer, with over 1.2 million procedures performed annually in the U.S. alone. However, freehand biopsy is a highly challenging procedure with subjective quality control. As such, biopsy devices are emerging to assist the physician. Here, we present a method that uses robotic TRUS manipulation. A 2-D TRUS probe is supported by a 4-degree-of-freedom robot. The robot performs ultrasound scanning, enabling 3-D reconstructions. Based on the images, the robot orients a needle guide on target for biopsy. The biopsy is acquired manually through the guide. In vitro tests showed that the 3-D images were geometrically accurate, and an image-based needle targeting accuracy was 1.55 mm. These validate the probe calibration presented and the overall robotic system for needle targeting. Targeting accuracy is sufficient for targeting small, clinically significant prostatic cancer lesions, but actual in vivo targeting will include additional error components that will have to be determined.

  10. Integrated Biogeomorphological Modeling Using Delft3D

    Science.gov (United States)

    Ye, Q.; Jagers, B.

    2011-12-01

    The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.

  11. Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium

    Science.gov (United States)

    Prisbrey, M.; Greenhall, J.; Guevara Vasquez, F.; Raeymaekers, B.

    2017-01-01

    We use ultrasound directed self-assembly to organize particles dispersed in a fluid medium into a three-dimensional (3D) user-specified pattern. The technique employs ultrasound transducers that line the boundary of a fluid reservoir to create a standing ultrasound wave field. The acoustic radiation force associated with the wave field drives particles dispersed in the fluid medium into organized patterns, assuming that the particles are much smaller than the wavelength and do not interact with each other. We have theoretically derived a direct solution method to calculate the ultrasound transducer operating parameters that are required to assemble a user-specified 3D pattern of particles in a fluid reservoir of arbitrary geometry. We formulate the direct solution method as a constrained optimization problem that reduces to eigendecomposition. We experimentally validate the solution method by assembling 3D patterns of carbon nanoparticles in a water reservoir and observe good quantitative agreement between theory and experiment. Additionally, we demonstrate the versatility of the solution method by simulating ultrasound directed self-assembly of complex 3D patterns of particles. The method works for any 3D simple, closed fluid reservoir geometry in combination with any arrangement of ultrasound transducers and enables employing ultrasound directed self-assembly in a myriad of engineering applications, including biomedical and materials fabrication processes.

  12. Analog Gradient Beamformer for a Wireless Ultrasound Scanner

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Hemmsen, Martin Christian; Bagge, Jan Peter

    2016-01-01

    This paper presents a novel beamformer architecture for a low-cost receiver front-end, and investigates if the image quality can be maintained. The system is oriented to the development of a hand-held wireless ultrasound probe based on Synthetic Aperture Sequential Beamforming, and has the advant......This paper presents a novel beamformer architecture for a low-cost receiver front-end, and investigates if the image quality can be maintained. The system is oriented to the development of a hand-held wireless ultrasound probe based on Synthetic Aperture Sequential Beamforming, and has...... the advantage of effectively reducing circuit complexity and power dissipation. The array of transducers is divided into sub-apertures, in which the signals from the single channels are aligned through a network of cascaded gradient delays, and summed in the analog domain before A/D conversion. The delay values...... are quantized to simplify the shifting unit, and a single A/D converter is needed for each sub-aperture yielding a compact, low-power architecture that can be integrated in a single chip. A simulation study was performed using a 3.75 MHz convex array, and the point spread function (PSF) for different...

  13. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    Science.gov (United States)

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  14. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Jacques Georgy

    2011-04-01

    Full Text Available Satellite navigation systems such as the global positioning system (GPS are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF. Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D reduced inertial sensors system (RISS with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift

  15. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    Science.gov (United States)

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames.

  16. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    Science.gov (United States)

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Quantitative Ultrasound Characterization of Cancer Radiotherapy Effects In Vitro

    International Nuclear Information System (INIS)

    Vlad, Roxana M.; Alajez, Nehad M.; Giles, Anoja B.Sc.; Kolios, Michael C.; Czarnota, Gregory J.

    2008-01-01

    Purpose: Currently, no routinely used imaging modality is available to assess tumor responses to cancer treatment within hours to days after radiotherapy. In this study, we demonstrate the preclinical application of quantitative ultrasound methods to characterize the cellular responses to cancer radiotherapy in vitro. Methods and Materials: Three different cell lines were exposed to radiation doses of 2-8 Gy. Data were collected with an ultrasound scanner using frequencies of 10-30 MHz. As indicators of response, ultrasound integrated backscatter and spectral slope were determined from the cell samples. These parameters were corrected for ultrasonic attenuation by measuring the attenuation coefficient. Results: A significant increase in the ultrasound integrated backscatter of 4-7 dB (p < 0.001) was found for radiation-treated cells compared with viable cells at all radiation doses. The spectral slopes decreased in the cell samples that predominantly underwent mitotic arrest/catastrophe after radiotherapy, consistent with an increase in cell size. In contrast, the spectral slopes did not change significantly in the cell samples that underwent a mix of cell death (apoptosis and mitotic arrest), with no significant change in average cell size. Conclusion: The changes in ultrasound integrated backscatter and spectral slope were direct consequences of cell and nuclear morphologic changes associated with cell death. The results indicate that this combination of quantitative ultrasonic parameters has the potential to assess the cell responses to radiation, differentiate between different types of cell death, and provide a preclinical framework to monitor tumor responses in vivo

  18. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    International Nuclear Information System (INIS)

    Klee, M; Boots, H; Kumar, B; Heesch, C van; Mauczok, R; Keur, W; Wild, M de; Esch, H van; Roest, A L; Reimann, K; Leuken, L van; Wunnicke, O; Zhao, J; Schmitz, G; Mienkina, M; Mleczko, M; Tiggelman, M

    2010-01-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm 2 , high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85 deg. C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  19. Integrated imaging (ultrasound, computed tomography, intravenous urography) in diagnosing renal tumors and tumor-like formations

    International Nuclear Information System (INIS)

    Drudi, F.M.; Capanna, G.; Poggi, R.; Occhiato, R.; Iannicelli, E.; Nardo, R.; di Passariello, R.

    1994-01-01

    This is an assessment of semiologic imaging criteria based on computerised tomography, ultrasound diagnosis and intravenous urography in renal tumors. The purpose is to obtain differential diagnostic data capable to modify the treatment approach. Over the last three years, a total of 570 cases of kidney tumors are observed. In 490 of them (86%) the imaging patterns obtained by either of the three techniques leads to correct diagnosis. In 62 of the remaining 80 patients, the integration of two techniques allows to unveil the neoplastic nature of the disease (27 cases), or the presence of a benign process (35 cases). In 15 of the remaining 18 cases only integration of the three techniques results in diagnosing renal tumors or tumor-like conditions (3 adeno-carcinomas, 5 abscesses, 3 cases of tuberculosis, 2 - pyeloxanthogranulomatosis, 2 dysmorphisms). In the last three cases definite diagnosis is made on the basis of needle biopsy. The radiological diagnosis is confirmed intraoperatively or during clinical follow-up study. The obtained data underscore the clinical relevance of imaging integration in evaluating renal lesions. This is particularly valid whenever the clinical data are nonspecific or misleading. 15 refs., 3 figs., 5 tabs. (orig.)

  20. Experimental investigations of an endoluminal ultrasound applicator for MR-guided thermal therapy of pancreatic cancer

    Science.gov (United States)

    Adams, Matthew; Salgaonkar, Vasant; Jones, Peter; Plata, Juan; Chen, Henry; Pauly, Kim Butts; Sommer, Graham; Diederich, Chris

    2017-03-01

    An MR-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. Minimally invasive ablation or hyperthermia treatment of pancreatic tumor tissue would be performed with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal tissue would be achieved with a water-cooled balloon surrounding the ultrasound transducers. This approach offers the capability of conformal volumetric therapy for fast treatment times, with control over the 3D spatial deposition of energy. Prototype endoluminal ultrasound applicators have been fabricated using 3D printed fixtures that seat two 3.2 or 5.6 MHz planar or curvilinear transducers and contain channels for wiring and water flow. Spiral surface coils have been integrated onto the applicator body to allow for device localization and tracking for therapies performed under MR guidance. Heating experiments with a tissue-mimicking phantom in a 3T MR scanner were performed and demonstrated capability of the prototype to perform volumetric heating through duodenal luminal tissue under real-time PRF-based MR temperature imaging (MRTI). Additional experiments were performed in ex vivo pig carcasses with the applicator inserted into the esophagus and aimed towards liver or soft tissue surrounding the spine under MR guidance. These experiments verified the capacity of heating targets up to 20-25 mm from the GI tract. Active device tracking and automated prescription of imaging and temperature monitoring planes through the applicator were made possible by using Hadamard encoded tracking sequences to obtain the coordinates of the applicator tracking coils. The prototype applicators have been integrated with an MR software suite that performs real-time device tracking and temperature monitoring.

  1. Using 3D Printing (Additive Manufacturing) to Produce Low-Cost Simulation Models for Medical Training.

    Science.gov (United States)

    Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter

    2018-03-01

    This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.

  2. Approaches to integrating indicators into 3D landscape visualisations and their benefits for participative planning situations.

    Science.gov (United States)

    Wissen, Ulrike; Schroth, Olaf; Lange, Eckart; Schmid, Willy A

    2008-11-01

    In discussing issues of landscape change, the complex relationships in the landscape have to be assessed. In participative planning processes, 3D visualisations have a high potential as an aid in understanding and communicating characteristics of landscape conditions by integrating visual and non-visual landscape information. Unclear is, which design and how much interactivity is required for an indicator visualisation that would suit stakeholders best in workshop situations. This paper describes the preparation and application of three different types of integrated 3D visualisations in workshops conducted in the Entlebuch UNESCO Biosphere Reserve (CH). The results reveal that simple representations of a complex issue created by draping thematic maps on the 3D model can make problematic developments visible at a glance; that diagrams linked to the spatial context can help draw attention to problematic relationships not considered beforehand; and that the size of species as indicators of conditions of the landscape's production and biotope function seems to provide a common language for stakeholders with different perspectives. Overall, the of the indicators the functions required to assist in information processing. Further research should focus on testing the effectiveness of the integrated visualisation tools in participative processes for the general public.

  3. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.

    Science.gov (United States)

    Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong

    2015-07-21

    Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.

  4. Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits.

    Science.gov (United States)

    Shang, Kuanping; Pathak, Shibnath; Liu, Guangyao; Feng, Shaoqi; Li, Siwei; Lai, Weicheng; Yoo, S J B

    2017-05-01

    We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.

  5. Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank.

    Science.gov (United States)

    Prlic, Andreas; Kalro, Tara; Bhattacharya, Roshni; Christie, Cole; Burley, Stephen K; Rose, Peter W

    2016-12-15

    The Protein Data Bank (PDB) now contains more than 120,000 three-dimensional (3D) structures of biological macromolecules. To allow an interpretation of how PDB data relates to other publicly available annotations, we developed a novel data integration platform that maps 3D structural information across various datasets. This integration bridges from the human genome across protein sequence to 3D structure space. We developed novel software solutions for data management and visualization, while incorporating new libraries for web-based visualization using SVG graphics. The new views are available from http://www.rcsb.org and software is available from https://github.com/rcsb/. andreas.prlic@rcsb.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  6. Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking

    Directory of Open Access Journals (Sweden)

    Shengjun Tang

    2018-05-01

    Full Text Available Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features.

  7. System-Level Design of an Integrated Receiver Front End for a Wireless Ultrasound Probe

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Hemmsen, Martin Christian; Llimos Muntal, Pere

    2016-01-01

    In this paper, a system-level design is presented for an integrated receive circuit for a wireless ultrasound probe, which includes analog front ends and beamformation modules. This paper focuses on the investigation of the effects of architectural design choices on the image quality. The point...

  8. MAP3D: a media processor approach for high-end 3D graphics

    Science.gov (United States)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  9. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Peter R., E-mail: pmarti46@uwo.ca [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Cool, Derek W. [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7, Canada and Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Romagnoli, Cesare [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Fenster, Aaron [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Ward, Aaron D. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  10. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis.

    Science.gov (United States)

    Martin, Peter R; Cool, Derek W; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D

    2014-07-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm(3) or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was consistently greater when using

  11. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    International Nuclear Information System (INIS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm 3 or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was

  12. Prenatal diagnosis of parapagus diprosopus dibrachius dipus twins with spina bifida in the first trimester using two- and three-dimensional ultrasound.

    Science.gov (United States)

    Yang, Pei-Yin; Wu, Ching-Hua; Yeh, Guang-Perng; Hsieh, Charles Tsung-Che

    2015-12-01

    Here, we report a case of parapagus diprosopus twins with spina bifida diagnosed in the first trimester of pregnancy using two-dimensional (2D) and three-dimensional (3D) ultrasound. A 28-year-old Taiwanese woman, gravid 1, para 0, visited our hospital due to an abnormal fetal head shape discovered by 2D ultrasound at 11-weeks gestation. Parapagus diprosopus twins with spina bifida were diagnosed after ultrasound examination. The characteristics of parapagus diprosopus twins are more illustrative in 3D ultrasound than in 2D ultrasound. After counseling, termination of pregnancy was chosen by the couple. Although necropsy was declined, the gross appearance and radiograph of the abortus confirmed our diagnosis. With the help of 3D ultrasound, we made an early and definitive diagnosis of conjoined twins. Copyright © 2015. Published by Elsevier B.V.

  13. Tracked "Pick-Up" Ultrasound for Robot-Assisted Minimally Invasive Surgery.

    Science.gov (United States)

    Schneider, Caitlin; Nguan, Christopher; Rohling, Robert; Salcudean, Septimiu

    2016-02-01

    We present a novel "pick-up" ultrasound transducer for intraabdominal robot-assisted minimally invasive surgery. Such a "pick-up" ultrasound transducer is inserted through an abdominal incision at the beginning of the procedure and remains in the abdominal cavity throughout, eliminating the need for a dedicated port or a patient bedside surgical assistant. The transducer has a handle that can be grasped in a repeatable manner using a da Vinci Prograsp tool, allowing the transducer to be accurately manipulated by the surgeon using the da Vinci Robot. This is one way to enable 3-D tracking of the transducer, and, thus, mapping of the vasculature. The 3-D vascular images can be used to register preoperative CT to intraoperative camera images. To demonstrate the feasibility of the approach, we use an ultrasound vessel phantom to register a CT surface model to extracted ultrasound vessel models. The 3-D vascular phantom images are generated by segmenting B-mode images and tracking the pick-up ultrasound transducer with the da Vinci kinematics, internal electromagnetic sensor, or visible fiducials suitable for camera tracking. Reconstruction results using da Vinci kinematics for tracking give a target registration error of 5.4 ± 1.7 mm.

  14. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  15. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  16. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology

    International Nuclear Information System (INIS)

    Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.; Czarnota, Gregory J.; Brock, Kristy K.

    2010-01-01

    Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell death surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17±2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11±14% and the volume overlap was 70±12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from histology and

  17. High definition ultrasound imaging for battlefield medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M. [Sandia National Labs., Albuquerque, NM (United States); Rogers, B; Walsh, N. [Texas Univ. Health Science Center, San Antonio, TX (United States)

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  18. A wearable 3D motion sensing system integrated with a Bluetooth smart phone application: A system level overview

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif

    2018-01-01

    description of a wearable 3D motion sensor. The sensing mechanism is based upon well-established magnetic and inertial measurement unit (MIMU), which integrates accelerometer, gyroscope and magnetometer data. Two sensor boards have been integrated within a

  19. Quantitative measurement of total cerebral blood flow using 2D phase-contrast MRI and doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Keum Soo; Choi, Sun Seob; Lee, Young Il [Dong-A Univ., College of Medicine, Busan (Korea, Republic of)

    2001-12-01

    To compare of quantitative measurement of the total cerebral blood flow using two-dimensional phase-contrast MR imaging and Doppler ultrasound. In 16 volunteers (mean age, 26 years; mean body weight, 66 kg) without abnormal medical histories, two-dimensional phase-contrast MR imaging was performed at the level of the C2-3 inter vertebral disc for flow measurement of the internal carotid arteries and the vertebral arteries. Volume flow measurements using Doppler ultrasound were also performed at the internal carotid arteries 2cm above the carotid bifurcation, and at the vertebral arteries at the level of the upper pole of the thyroid gland. Flows in the four vessels measured by the two methods were compared using Wilcoxon's correlation analysis and the median score. Total cerebral blood flows were calculated by summing these four vessel flows, and mean values for the 16 volunteers were calculated. Cerebral blood flows measured by 2-D phase-contrast MR imaging and Doppler ultrasounds were 233 and 239 ml/min in the right internal carotid artery, 250 and 248 ml/min in the left internal carotid artery, 62 and 56 ml/min in the right vertebral artery, and 83 and 68 ml/min in the left vertebral artery. Correlation coefficients of the blood flows determined by the two methods were 0.48, 0.54, 0.49, and 0.62 in each vessel, while total cerebral blood flows were 628{+-}68 (range, 517 to 779) ml/min and 612{+-}79 (range, 482 to 804)ml/min, respectively. Total cerebral blood flow was easily measured using 2-D phase-contrast MR imaging and Doppler ultrasound, and the two noninvasive methods can therefore be used clinically for the measurement of total cerebral blood flow.

  20. First steps towards ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging

    Directory of Open Access Journals (Sweden)

    Julia eSchwaab

    2015-11-01

    Full Text Available Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking.The goal of this project is to develop an ultrasound based motion tracking for real time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET. In this work, a workflow is established to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system – even if the ultrasound probe is moving due to respiration. It is shown that the ultrasound tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the ultrasound probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for ultrasound tracking based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an ultrasound based motion tracking in absolute room coordinates with a moving US-transducer is feasible.

  1. Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae

    International Nuclear Information System (INIS)

    Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.

    2004-01-01

    This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given. (author)

  2. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    DEFF Research Database (Denmark)

    Foged, N.; Marker, Pernille Aabye; Christiansen, A. V.

    2014-01-01

    resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set...... and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey...

  3. Ultrasound exfoliation of inorganic analogues of graphene.

    Science.gov (United States)

    Stengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra

    2014-04-05

    High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C3N4)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented.

  4. 3-D Vector Flow Estimation With Row-Column-Addressed Arrays.

    Science.gov (United States)

    Holbek, Simon; Christiansen, Thomas Lehrmann; Stuart, Matthias Bo; Beers, Christopher; Thomsen, Erik Vilain; Jensen, Jorgen Arendt

    2016-11-01

    Simulation and experimental results from 3-D vector flow estimations for a 62 + 62 2-D row-column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3-MHz RC array is developed and validated. First, a parametric simulation study is conducted, where flow direction, ensemble length, number of pulse cycles, steering angles, transmit/receive apodization, and TO apodization profiles and spacing are varied, to find the optimal parameter configuration. The performance of the estimator is evaluated with respect to relative mean bias ~B and mean standard deviation ~σ . Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight-vessel phantom with a pulsating flow are presented. Both an M-mode and a steered transmit sequence are applied. The 3-D vector flow is estimated in the flow rig for four representative flow directions. In the setup with 90° beam-to-flow angle, the relative mean bias across the entire velocity profile is (-4.7, -0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for ( v x , v y , v z ). The estimated peak velocity is 48.5 ± 3 cm/s giving a -3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow rig at a 90° beam-to-flow angle. The estimated mean flow rate in this setup is 91.2 ± 3.1 L/h corresponding to a bias of -11.1%. In a pulsating flow setup, flow rate measured during five cycles is 2.3 ± 0.1 mL/stroke giving a negative 9.7% bias. It is concluded that accurate 3-D vector flow estimation can be obtained using a 2-D RC-addressed array.

  5. Three dimensional ultrasound and hdlive technology as possible tools in teaching embryology.

    Science.gov (United States)

    Popovici, Razvan; Pristavu, Anda; Sava, Anca

    2017-10-01

    Embryology is an important subject in order to gain an understanding of medicine and surgery; however, sometimes students find the subject difficult to grasp and apply to clinical practice. Modern imaging techniques can be useful aids in teaching and understanding embryology. Imaging techniques have very rapidly evolved over the last few years, advancing from two- to three-dimensional (3D) ultrasound. HDlive is an innovative ultrasound technique that generates near-realistic images of the human fetus. In order to evince the capabilities of 3D ultrasound and HDlive technology in teaching embryology, we evaluated using this technique the normal evolution of the embryo and fetus from the fifth to eleventh week of amenorrhea. Our conclusion is that by yielding clear and impressive images, 3D ultrasound and HDlive could be useful tools in teaching embryology to medical students. Clin. Anat. 30:953-957, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  7. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  8. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters

    Science.gov (United States)

    Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele

    2015-01-01

    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments’ performance and survey accuracy. PMID:26729117

  9. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters.

    Science.gov (United States)

    Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele

    2015-12-29

    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments' performance and survey accuracy.

  10. Efficient data exchange: Integrating a vector GIS with an object-oriented, 3-D visualization system

    International Nuclear Information System (INIS)

    Kuiper, J.; Ayers, A.; Johnson, R.; Tolbert-Smith, M.

    1996-01-01

    A common problem encountered in Geographic Information System (GIS) modeling is the exchange of data between different software packages to best utilize the unique features of each package. This paper describes a project to integrate two systems through efficient data exchange. The first is a widely used GIS based on a relational data model. This system has a broad set of data input, processing, and output capabilities, but lacks three-dimensional (3-D) visualization and certain modeling functions. The second system is a specialized object-oriented package designed for 3-D visualization and modeling. Although this second system is useful for subsurface modeling and hazardous waste site characterization, it does not provide many of the, capabilities of a complete GIS. The system-integration project resulted in an easy-to-use program to transfer information between the systems, making many of the more complex conversion issues transparent to the user. The strengths of both systems are accessible, allowing the scientist more time to focus on analysis. This paper details the capabilities of the two systems, explains the technical issues associated with data exchange and how they were solved, and outlines an example analysis project that used the integrated systems

  11. INTEGRATED SFM TECHNIQUES USING DATA SET FROM GOOGLE EARTH 3D MODEL AND FROM STREET LEVEL

    Directory of Open Access Journals (Sweden)

    L. Inzerillo

    2017-08-01

    Full Text Available Structure from motion (SfM represents a widespread photogrammetric method that uses the photogrammetric rules to carry out a 3D model from a photo data set collection. Some complex ancient buildings, such as Cathedrals, or Theatres, or Castles, etc. need to implement the data set (realized from street level with the UAV one in order to have the 3D roof reconstruction. Nevertheless, the use of UAV is strong limited from the government rules. In these last years, Google Earth (GE has been enriched with the 3D models of the earth sites. For this reason, it seemed convenient to start to test the potentiality offered by GE in order to extract from it a data set that replace the UAV function, to close the aerial building data set, using screen images of high resolution 3D models. Users can take unlimited “aerial photos” of a scene while flying around in GE at any viewing angle and altitude. The challenge is to verify the metric reliability of the SfM model carried out with an integrated data set (the one from street level and the one from GE aimed at replace the UAV use in urban contest. This model is called integrated GE SfM model (i-GESfM. In this paper will be present a case study: the Cathedral of Palermo.

  12. Mobile glasses-free 3D using compact waveguide hologram

    Science.gov (United States)

    Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.

    2013-02-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  13. Mobile glasses-free 3D using compact waveguide hologram

    International Nuclear Information System (INIS)

    Pyun, K; Choi, C; Kim, S; Ahn, J; Lee, H-S; Lee, S; Morozov, A; Bovsunovskiy, I; Putilin, A

    2013-01-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  14. A novel educational tool for teaching ocular ultrasound

    Directory of Open Access Journals (Sweden)

    Mustafa MS

    2011-06-01

    Full Text Available MS Mustafa1, J Montgomery2, HR Atta11Department of Ophthalmology, Aberdeen Royal Infirmary, UK; 2Medi-CAL, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, UKAbstract: Ocular ultrasound is now in increasing demand in routine ophthalmic clinical practice not only because it is noninvasive but also because of ever-advancing technology providing higher resolution imaging. It is however a difficult branch of ophthalmic investigations to grasp, as it requires a high skill level to interface with the technology and provide accurate interpretation of images for ophthalmic diagnosis and management. It is even more labor intensive to teach ocular ultrasound to another fellow clinician. One of the fundamental skills that proved difficult to learn and teach is the need for the examiner to “mentally convert” 2-dimensional B-scan images into 3-dimensional (3D interpretations. An additional challenge is the requirement to carry out this task in real time. We have developed a novel approach to teach ocular ultrasound by using a novel 3D ocular model. A 3D virtual model is built using widely available, open source, software. The model is then used to generate movie clips simulating different movements and orientations of the scanner head. Using Blender, Quicktime motion clips are choreographed and collated into interactive quizzes and other pertinent pedagogical media. The process involves scripting motion vectors, rotation, and tracking of both the virtual stereo camera and the model. The resulting sequence is then rendered for twinned right- and left-eye views. Finally, the twinned views are synchronized and combined in a format compatible with the stereo projection apparatus. This new model will help the student with spatial awareness and allow for assimilation of this awareness into clinical practice. It will also help with grasping the nomenclature used in ocular ultrasound as well as helping with localization of

  15. Digital Reconstruction of AN Archaeological Site Based on the Integration of 3d Data and Historical Sources

    Science.gov (United States)

    Guidi, G.; Russo, M.; Angheleddu, D.

    2013-02-01

    The methodology proposed in this paper in based on an integrated approach for creating a 3D digital reconstruction of an archaeological site, using extensively the 3D documentation of the site in its current state, followed by an iterative interaction between archaeologists and digital modelers, leading to a progressive refinement of the reconstructive hypotheses. The starting point of the method is the reality-based model, which, together with ancient drawings and documents, is used for generating the first reconstructive step. Such rough approximation of a possible architectural structure can be annotated through archaeological considerations that has to be confronted with geometrical constraints, producing a reduction of the reconstructive hypotheses to a limited set, each one to be archaeologically evaluated. This refinement loop on the reconstructive choices is iterated until the result become convincing by both points of view, integrating in the best way all the available sources. The proposed method has been verified on the ruins of five temples in the My Son site, a wide archaeological area located in central Vietnam. The integration of 3D surveyed data and historical documentation has allowed to support a digital reconstruction of not existing architectures, developing their three-dimensional digital models step by step, from rough shapes to highly sophisticate virtual prototypes.

  16. The use of three-dimensional ultrasound does not improve training in fetal biometric measurements.

    Science.gov (United States)

    Chan, Lin W; Ting, Yuen H; Lao, Terence T; Chau, Macy M C; Fung, Tak Y; Leung, Tak Y; Sahota, Daljit S; Lau, Tze K

    2011-09-01

    To investigate whether three-dimensional (3D) technology offers any advantage over two-dimensional (2D) ultrasound in fetal biometric measurement training. Ten midwives with no hands-on experience in ultrasound were randomized to receive training on 2D or 3D ultrasound fetal biometry assessment. Midwives were taught how to obtain fetal biometric measurements (biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL)) by a trainer. Subsequently, each midwife measured the parameters on another 10 fetuses. The same set of measurements was repeated by the trainer. The percentage deviation between the midwives' and the trainer's measurements was determined and compared between training groups. Time required for completion was recorded. Frozen images were reviewed by another sonographer to assess the image quality using a standardized scoring system. The median time for the complete set of measurements was significantly shorter in the 2D than in 3D group (13.4 min versus 17.8 min, P = 0.03). The mean percentage deviations did not reach statistical significance between the two groups except for FL (3.83% in 2D group versus 2.23% in 3D group (P = 0.046)). There were no significant differences in the quality scores. This study showed that the only demonstrable advantage of 3D ultrasound was a slightly more accurate measurement of FL, at the expense of a significantly longer time required.

  17. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    Science.gov (United States)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  18. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  19. Aspects of defects in 3d-3d correspondence

    International Nuclear Information System (INIS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  20. Simultaneous ultrasound and photoacoustics based flow cytometry

    Science.gov (United States)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  1. 3D-Printable Antimicrobial Composite Resins

    NARCIS (Netherlands)

    Yue, Jun; Zhao, Pei; Gerasimov, Jennifer Y.; van de Lagemaat, Marieke; Grotenhuis, Arjen; Rustema-Abbing, Minie; van der Mei, Henny C.; Busscher, Henk J.; Herrmann, Andreas; Ren, Yijin

    2015-01-01

    3D printing is seen as a game-changing manufacturing process in many domains, including general medicine and dentistry, but the integration of more complex functions into 3D-printed materials remains lacking. Here, it is expanded on the repertoire of 3D-printable materials to include antimicrobial

  2. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.

    Science.gov (United States)

    Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B

    2015-08-10

    We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.

  3. Large-scale propagation of ultrasound in a 3-D breast model based on high-resolution MRI data.

    Science.gov (United States)

    Salahura, Gheorghe; Tillett, Jason C; Metlay, Leon A; Waag, Robert C

    2010-06-01

    A 40 x 35 x 25-mm(3) specimen of human breast consisting mostly of fat and connective tissue was imaged using a 3-T magnetic resonance scanner. The resolutions in the image plane and in the orthogonal direction were 130 microm and 150 microm, respectively. Initial processing to prepare the data for segmentation consisted of contrast inversion, interpolation, and noise reduction. Noise reduction used a multilevel bidirectional median filter to preserve edges. The volume of data was segmented into regions of fat and connective tissue by using a combination of local and global thresholding. Local thresholding was performed to preserve fine detail, while global thresholding was performed to minimize the interclass variance between voxels classified as background and voxels classified as object. After smoothing the data to avoid aliasing artifacts, the segmented data volume was visualized using isosurfaces. The isosurfaces were enhanced using transparency, lighting, shading, reflectance, and animation. Computations of pulse propagation through the model illustrate its utility for the study of ultrasound aberration. The results show the feasibility of using the described combination of methods to demonstrate tissue morphology in a form that provides insight about the way ultrasound beams are aberrated in three dimensions by tissue.

  4. Design, modeling and testing of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing

    International Nuclear Information System (INIS)

    Han, Yiwei; Dong, Jingyan

    2017-01-01

    This paper presents an integrated ring extractor design in electrohydrodynamic (EHD) printing, which can overcome the standoff height limitation in the EHD printing process, and improve printing capability for 3D structures. Standoff height in the EHD printing will affect printing processes and limit the height of the printed structure when the ground electrode is placed under the substrate. In this work, we designed and integrated a ring electrode with the printing nozzle to achieve a self-working printer head, which can start and maintain the printing process without the involvement of the substrate. We applied a FEA method to model the electric field potential distribution and strength to direct the ring extractor design, which provides a similar printing capability with the system using substrate as the ground electrode. We verified the ring electrode design by experiments, and those results from the experiments demonstrated a good match with results from the FEA simulation. We have characterized the printing processes using the integrated ring extractor, and successfully applied this newly designed ring extractor to print polycaprolactone (PCL) 3D structures. (paper)

  5. Microfluidics and thin-film processes: a recipe for organic integrated photonics based on 3D microresonators

    Science.gov (United States)

    Huby, N.; Pluchon, D.; Belloul, M.; Moreac, A.; Coulon, N.; Gaviot, E.; Panizza, P.; B"che, B.

    2010-02-01

    We report on the design and realization of photonic integrated devices based on 3D organic microresonators. This has been achieved by combining microfluidics techniques and thin-film processes. The microfluidic device and the control of the flow rates of the continuous and dispersed phases allow the fabrication of organic microresonators with diameter ranging from 30 to 200 μm. The resonance of the sphere in air has been first investigated by using the Raman spectroscopy set-up demonstrating the appropriate photonic properties. Then the microresonators have been integrated on an organic chip made of the photosensitive resin SU-8 and positioned at the extremity of a taper and alongside a rib waveguide. The realization of these structures by thin-film processes needs one step UV-lithography leading to 6μm width and 30μm height. Both devices have proved the efficient evanescent coupling leading to the excitation of the whispering gallery modes confined at the surface of the organic 3D microresonators. Finally, a band-stop filter has been used to detect the resonance spectra of the resonators once integrated.

  6. Electrical impedance tomography imaging using a priori ultrasound data

    Directory of Open Access Journals (Sweden)

    Soleimani Manuchehr

    2006-02-01

    Full Text Available Abstract Background Different imaging systems (e.g. electrical, magnetic, and ultrasound rely on a wide variety of physical properties, and the datasets obtained from such systems provide only partial information about the unknown true state. One approach is to choose complementary imaging systems, and to combine the information to achieve a better representation. Methods This paper discusses the combination of ultrasound and electrical impedance tomography (EIT information. Ultrasound reflection signals are good at locating sharp acoustic density changes associated with the boundaries of objects. Some boundaries, however, may be indeterminable due to masking from intermediate boundaries or because they are outside the ultrasound beam. Conversely, the EIT data contains relatively low-quality information, but it includes the whole region enclosed by the electrodes. Results Results are shown from a narrowband level-set method applied to 2D and 3D EIT incorporating limited angle ultrasound time of flight data. Conclusion The EIT reconstruction is shown to be faster and more accurate using the additional edge information from both one and four transducer ultrasound systems.

  7. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    Science.gov (United States)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  8. Guiding histological assessment of uterine lesions using 3D in vitro ultrasonography and stereotaxis

    DEFF Research Database (Denmark)

    Vandermeulen, Liselore; Cornelis, Ann; Rasmussen, Christina Kjærgaard

    2017-01-01

    , the uterus was re-evaluated by 3D in vitro ultrasonography and in vitro gel instillation sonography (iGIS). The lesion of interest was pinpointed by inserting an intramuscular injection needle using a free-hand 2D-ultrasound guided technique to focus the macroscopic and the microscopic examination...

  9. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...... arrays (FPGAs) making it very flexible and allowing implementation of other real-time ultrasound processing methods in the future. For conventional B-mode imaging, a penetration depth around 7 cm for a 7 MHz transducer is obtained (signal-tonoise ratio of 0 dB), which is comparable to commercial...... for 3D ultrasound imaging. It samples at 12 bits per sample and has a sampling rate of 70 MHz with the possibility of decimating the sampling frequency at the input. SARUS is capable of advanced real-time computations such as synthetic aperture imaging. The system is built using fieldprogrammable gate...

  10. Substrate integrated waveguide (SIW 3 dB coupler for K-Band applications

    Directory of Open Access Journals (Sweden)

    Khalid Nurehansafwanah

    2017-01-01

    Full Text Available This paper presented a designed coupler by using Rogers RO4003C with thickness (h 0.508 mm and relative permittivity (εr 3.55. The four port network coupler operates in K-band (18-27 GHz and design by using substrate integrated waveguide (SIW method. The reflection coefficient and isolation coefficient of propose Substrate Integrated Waveguide (SIW coupler is below than -10 dB. Meanwhile the coupler requirements are phase shift 90° between coupled port and output. SIW are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable for use in microwave and communication electronics, as well as increase bandwidth systems. The designs of coupler are investigated using CST Microwave Studio simulation tool. This proposed couplers are varied from parameters that cover the frequency range (21 -24 GHz and better performance of scattering (S-parameter.

  11. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Maulik, D.

    2005-01-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  12. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Maulik, D. [Winthrop Univ. Hospital, Mineola, NY (United States). Dept. of Obstetrics and Gynecology; Zalud, I. (eds.) [Kapiolani Medical Center for Women and Children, Honolulu, HI (United States)

    2005-07-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  13. A 3D Vertically Integrated Deep N-Well CMOS MAPS for the SuperB Layer0

    International Nuclear Information System (INIS)

    Traversi, G; Manghisoni, M; Re, V; Gaioni, L; Ratti, L

    2011-01-01

    Deep N-Well (DNW) Monolithic Active Pixel Sensors (MAPS) have been developed in the last few years with the aim of building monolithic sensors with similar functionalities as hybrid pixels systems. In these devices the triple well option, available in deep submicron processes, is exploited to implement analog and digital signal processing at the pixel level. Many prototypes have been fabricated in a planar (2D) 130nm CMOS technology. A new kind of DNW-MAPS, namely Apsel5 3 D, which exploits the capabilities of vertical integration (3D) processes, is presented and discussed in this paper. The impact of 3D processes on the design and performance of DNW pixel sensors could be large, with significant advantages in terms of detection efficiency, pixel cell size and immunity to cross-talk, therefore complying with the severe constraints set by future HEP experiments.

  14. Postpartum two- and three-dimensional ultrasound evaluation of anal sphincter complex in women with obstetric anal sphincter injury.

    Science.gov (United States)

    Ros, C; Martínez-Franco, E; Wozniak, M M; Cassado, J; Santoro, G A; Elías, N; López, M; Palacio, M; Wieczorek, A P; Espuña-Pons, M

    2017-04-01

    To compare the sensitivity and specificity of two- (2D) and three- (3D) dimensional transperineal ultrasound (TPUS) and 3D endovaginal ultrasound (EVUS) with the gold standard 3D endoanal ultrasound (EAUS) in detecting residual defects after primary repair of obstetric anal sphincter injuries (OASIS). External (EAS) and internal (IAS) anal sphincters were evaluated by the four ultrasound modalities in women with repaired OASIS. 2D-TPUS was evaluated in real-time, whereas 3D-TPUS, 3D-EVUS and 3D-EAUS volumes were evaluated offline by six blinded readers. The presence/absence of any tear in EAS or IAS was recorded and defects were scored according to the Starck system. Sensitivity, specificity and predictive values were calculated, using 3D-EAUS as reference standard. Inter- and intraobserver analyses were performed for all 3D imaging modalities. Association between patients' symptoms (Wexner score) and ultrasound findings (Starck score) was calculated. Images from 55 patients were analyzed. Compared with findings on 3D-EAUS, the agreement for EAS evaluation was poor for 3D-EVUS (κ = 0.01), fair for 2D-TPUS (κ = 0.30) and good for 3D-TPUS (κ = 0.73). The agreement for IAS evaluation was moderate for both 3D-EVUS (κ = 0.41) and 2D-TPUS (κ = 0.52) and good for 3D-TPUS (κ = 0.66). Good intraobserver (3D-EAUS, κ = 0.73; 3D-TPUS, κ = 0.78) and interobserver (3D-EAUS, κ = 0.68; 3D-TPUS, κ = 0.60) agreement was reported. Significant association between Starck and Wexner scores was found only for 3D-EAUS (Spearman's rho = 0.277, P = 0.04). 2D-TPUS and 3D-EVUS are not accurate modalities for the assessment of anal sphincters after repair of OASIS. 3D-TPUS shows good agreement with the gold standard 3D-EAUS and a high sensitivity in detecting residual defects. It, thus, has potential as a screening tool after primary repair of OASIS. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG

  15. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  16. Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method

    Science.gov (United States)

    Kruglyakov, Mikhail; Kuvshinov, Alexey

    2018-05-01

    3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial detail still remains challenging from the computational point of view. We present a novel, efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage of the HOP basis allows us to decrease substantially the number of unknowns (preserving the same accuracy), with corresponding speed increase and memory saving.

  17. WE-G-BRF-09: Force- and Image-Adaptive Strategies for Robotised Placement of 4D Ultrasound Probes

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck (Germany); Graduate School for Computing in Life Science, University of Luebeck, Luebeck (Germany); Bruder, R; Ernst, F; Schweikard, A [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck (Germany)

    2014-06-15

    Purpose: To allow continuous acquisition of high quality 4D ultrasound images for non-invasive live tracking of tumours for IGRT, image- and force-adaptive strategies for robotised placement of 4D ultrasound probes are developed and evaluated. Methods: The developed robotised ultrasound system is based on a 6-axes industrial robot (adept Viper s850) carrying a 4D ultrasound transducer with a mounted force-torque sensor. The force-adaptive placement strategies include probe position control using artificial potential fields and contact pressure regulation by a PD controller strategy. The basis for live target tracking is a continuous minimum contact pressure to ensure good image quality and high patient comfort. This contact pressure can be significantly disturbed by respiratory movements and has to be compensated. All measurements were performed on human subjects under realistic conditions. When performing cardiac ultrasound, rib- and lung shadows are a common source of interference and can disrupt the tracking. To ensure continuous tracking, these artefacts had to be detected to automatically realign the probe. The detection is realised by multiple algorithms based on entropy calculations as well as a determination of the image quality. Results: Through active contact pressure regulation it was possible to reduce the variance of the contact pressure by 89.79% despite respiratory motion of the chest. The results regarding the image processing clearly demonstrate the feasibility to detect image artefacts like rib shadows in real-time. Conclusion: In all cases, it was possible to stabilise the image quality by active contact pressure control and automatically detected image artefacts. This fact enables the possibility to compensate for such interferences by realigning the probe and thus continuously optimising the ultrasound images. This is a huge step towards fully automated transducer positioning and opens the possibility for stable target tracking in

  18. WE-G-BRF-09: Force- and Image-Adaptive Strategies for Robotised Placement of 4D Ultrasound Probes

    International Nuclear Information System (INIS)

    Kuhlemann, I; Bruder, R; Ernst, F; Schweikard, A

    2014-01-01

    Purpose: To allow continuous acquisition of high quality 4D ultrasound images for non-invasive live tracking of tumours for IGRT, image- and force-adaptive strategies for robotised placement of 4D ultrasound probes are developed and evaluated. Methods: The developed robotised ultrasound system is based on a 6-axes industrial robot (adept Viper s850) carrying a 4D ultrasound transducer with a mounted force-torque sensor. The force-adaptive placement strategies include probe position control using artificial potential fields and contact pressure regulation by a PD controller strategy. The basis for live target tracking is a continuous minimum contact pressure to ensure good image quality and high patient comfort. This contact pressure can be significantly disturbed by respiratory movements and has to be compensated. All measurements were performed on human subjects under realistic conditions. When performing cardiac ultrasound, rib- and lung shadows are a common source of interference and can disrupt the tracking. To ensure continuous tracking, these artefacts had to be detected to automatically realign the probe. The detection is realised by multiple algorithms based on entropy calculations as well as a determination of the image quality. Results: Through active contact pressure regulation it was possible to reduce the variance of the contact pressure by 89.79% despite respiratory motion of the chest. The results regarding the image processing clearly demonstrate the feasibility to detect image artefacts like rib shadows in real-time. Conclusion: In all cases, it was possible to stabilise the image quality by active contact pressure control and automatically detected image artefacts. This fact enables the possibility to compensate for such interferences by realigning the probe and thus continuously optimising the ultrasound images. This is a huge step towards fully automated transducer positioning and opens the possibility for stable target tracking in

  19. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT and Ultrasound.

    Science.gov (United States)

    Filippou, Valeria; Tsoumpas, Charalampos

    2018-06-22

    Printing technology, capable of producing three-dimensional (3D) objects, has evolved in recent years and provides potential for developing reproducible and sophisticated physical phantoms. 3D printing technology can help rapidly develop relatively low cost phantoms with appropriate complexities, which are useful in imaging or dosimetry measurements. The need for more realistic phantoms is emerging since imaging systems are now capable of acquiring multimodal and multiparametric data. This review addresses three main questions about the 3D printers currently in use, and their produced materials. The first question investigates whether the resolution of 3D printers is sufficient for existing imaging technologies. The second question explores if the materials of 3D-printed phantoms can produce realistic images representing various tissues and organs as taken by different imaging modalities such as computer tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound (US), and mammography. The emergence of multimodal imaging increases the need for phantoms that can be scanned using different imaging modalities. The third question probes the feasibility and easiness of "printing" radioactive and/or non-radioactive solutions during the printing process. A systematic review of medical imaging studies published after January 2013 is performed using strict inclusion criteria. The databases used were Scopus and Web of Knowledge with specific search terms. In total, 139 papers were identified, however only 50 were classified as relevant for the purpose of this paper. In this review, following an appropriate introduction and literature research strategy, all 50 articles are presented in detail. A summary of tables and example figures of the most recent advances in 3D printing for the purposes of phantoms across different imaging modalities are provided. All 50 studies printed and scanned

  20. Bedside ultrasound education in Canadian medical schools: A national survey

    Directory of Open Access Journals (Sweden)

    Peter Steinmetz

    2016-04-01

    Results:  Approximately half of the 13 responding medical schools had integrated bedside ultrasound teaching into their undergraduate curriculum. The most common trends in undergraduate ultrasound teaching related to duration (1-5 hours/year in 50% of schools, format (practical and theoretical in 67% of schools, and logistics (1:4 instructor to student ratio in 67% of schools. The majority of responding vice-deans indicated that bedside ultrasound education should be integrated into the medical school curriculum (77%, and cited a lack of ultrasound machines and infrastructure as barriers to integration. Conclusions: This study documents the current characteristics of undergraduate ultrasound education in Canada.

  1. Antenatal diagnosis of anophthalmia by three-dimensional ultrasound: a novel application of the reverse face view.

    Science.gov (United States)

    Wong, H S; Parker, S; Tait, J; Pringle, K C

    2008-07-01

    The prenatal diagnosis of anophthalmia can be made on the demonstration of absent eye globe and lens on the affected side(s) on two-dimensional ultrasound examination, but when the fetal head position is unfavorable three-dimensional (3D) ultrasound may reveal additional diagnostic sonographic features, including sunken eyelids and small or hypoplastic orbit on the affected side(s). We present two cases of isolated anophthalmia diagnosed on prenatal ultrasound examination in which 3D ultrasound provided additional diagnostic information. The reverse face view provides valuable information about the orbits and the eyeballs for prenatal diagnosis and assessment of anophthalmia.

  2. Ultrasound Vector Flow Imaging: Part II: Parallel Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.

    2016-01-01

    The paper gives a review of the current state-of-theart in ultrasound parallel acquisition systems for flow imaging using spherical and plane waves emissions. The imaging methods are explained along with the advantages of using these very fast and sensitive velocity estimators. These experimental...... ultrasound imaging for studying brain function in animals. The paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed....

  3. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses.

    Science.gov (United States)

    Ripley, Beth; Levin, Dmitry; Kelil, Tatiana; Hermsen, Joshua L; Kim, Sooah; Maki, Jeffrey H; Wilson, Gregory J

    2017-03-01

    3D printing facilitates the creation of accurate physical models of patient-specific anatomy from medical imaging datasets. While the majority of models to date are created from computed tomography (CT) data, there is increasing interest in creating models from other datasets, such as ultrasound and magnetic resonance imaging (MRI). MRI, in particular, holds great potential for 3D printing, given its excellent tissue characterization and lack of ionizing radiation. There are, however, challenges to 3D printing from MRI data as well. Here we review the basics of 3D printing, explore the current strengths and weaknesses of printing from MRI data as they pertain to model accuracy, and discuss considerations in the design of MRI sequences for 3D printing. Finally, we explore the future of 3D printing and MRI, including creative applications and new materials. 5 J. Magn. Reson. Imaging 2017;45:635-645. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Integration of 3D printing and additive manufacturing in the interventional pulmonologist's toolbox.

    Science.gov (United States)

    Guibert, Nicolas; Mhanna, Laurent; Didier, Alain; Moreno, Benjamin; Leyx, Pierre; Plat, Gavin; Mazieres, Julien; Hermant, Christophe

    2018-01-01

    New 3D technologies are rapidly entering into the surgical landscape, including in interventional pulmonology. The transition of 2D restricted data into a physical model of pathological airways by three-dimensional printing (3DP) allows rapid prototyping and fabrication of complex and patient-specific shapes and can thus help the physician to plan and guide complex procedures. Furthermore, computer-assisted designed (CAD) patient-specific devices have already helped surgeons overcome several therapeutic impasses and are likely to rapidly cover a wider range of situations. We report herein with a special focus on our clinical experience: i) how additive manufacturing is progressively integrated into the management of complex central airways diseases; ii) the appealing future directions of these new technologies, including the potential of the emerging technique of bioprinting; iii) the main pitfalls that could delay its introduction into routine care. Copyright © 2017. Published by Elsevier Ltd.

  5. Lagrangian MHD in 2D and 3D

    International Nuclear Information System (INIS)

    Oliphant, T.A.; Morel, J.E.; Gula, W.P.; Pfeufer, G.W.

    1997-01-01

    The cell-centered diffusion differencing scheme presented by Morel et al. has been applied to magnetic diffusion associated with Lagrangian hydrodynamic codes. Thus, the method applies to non-orthogonal meshes. Although the present application involves structured meshes, the method applies equally well to unstructured meshes. Morel's example of application is to 2D diffusion using Ficke's law. Thus, a volume integral approach is applied to the divergence operator. In 2D magnetic diffusion symmetry allows the use of an area integral approach involving the field components normal to the area, e.g. A-theta and B-theta. Instead of a divergence of a term proportional to the field gradient a curl of a term proportional to the curl of the field is used. An essential fact that allows this procedure is that the solenoidal property of the magnetic field is automatic. In the case of 3D it is necessary to return to the volumetric integral approach and to use rectangular components of the vector potential. Successful benchmarks have been run in comparison with the 1D code RAVEN. A typical example is that of a metal cylinder being compressed by a magnetic field applied at the outer boundary. So far, the 3D diffusion model has been tested in the orthogonal case and found to preserve the linear, homogeneous solution. Results of these and further tests are presented

  6. An integrated 3-D image of cerebral blood vessels and CT view of tumor

    International Nuclear Information System (INIS)

    Suetens, P.; Baert, A.L.; Gybels, J.; Haegemans, S.; Jansen, P.; Oosterlinck, A.; Wilms, G.

    1984-01-01

    The authors developed a method that yields an integrated three-dimensional image of cerebral blood vessels and CT view of tumor. This method allows the neurosurgeon to choose any electrode trajectory that looks convenient to him, without imminent danger of causing a hemorrhage. Besides offering more safety to stereotactic interventions, this integrated 3-D image also has other applications. First, it gives a better characterization of most focal mass lesions seen by CT. Second, it allows high dose focal irradiation to be effected in such a way as to avoid arteries and veins. Third, it provides useful information for planning the strategy of open surgery

  7. Interobserver variation in measurements of Cesarean scar defect and myometrium with 3D ultrasonography

    DEFF Research Database (Denmark)

    Madsen, Lene Duch; Glavind, Julie; Uldbjerg, Niels

    Objectives: To evaluate the Cesarean scar defect depth and the residual myometrial thickness with 3-dimensional (3D) sonography concerning interobserver variation. Methods: Ten women were randomly selected from a larger cohort of Cesarean scar ultrasound evaluations. All women were examined 6......-16 months after their first Cesarean section with 2D transvaginal sonography and had 3D volumes recorded. Two observers independently evaluated “off-line” each of the 3D volumes stored. Residual myometrial thickness (RMT) and Cesarean scar defect depth (D) was measured in the sagittal plane with an interval...... of Cesarean section scar size and residual myometrium needs further investigation....

  8. CAD and 3d-printing integration experience in the curriculum of engineers education

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2016-01-01

    Full Text Available The paper examines the results of using the 3d-printing educational methodology for training the students in the spacecraft-configuration developing area.The first purpose of the considered methodology practice is to implement the rapid-prototyping skills into the educational process, to provide perfection of the student knowledge in configuring the internal on-board equipment of the spacecraft. The second purpose – is to habituate the students to the main principles of the available CAM technologies, to fill the available educational gap in the area of information support of the spacecraft life-cycle.The proposed curriculum includes six training exercises based on a special “Engineering drawing” course unit. The training exercises require using the SolidWorks geometric-simulation software. The preliminary obtained virtual prototypes of the spacecraft configuration elements are subjected to 3d-printing and assembled into a physical configuration model. The physical configuration models are obtained using one of the most accessible rapid-prototyping technologies – 3d-printing of extrusion type. Practicing in 3d-printing provides developing the student skills in managing all other digital-program control devices.The specified first experience of integrating the computer geometricsimulation methodology and the 3d-printing practices in a single course unit has proved: developing the physical-configuration models heightens the student interest to the configuration training.A ready-made physical model does not excuse the available configuration mistakes unlike a virtual model where the component interferences may remain undetected. So, developing a physical model requires additional endeavor and responsibility. Developing a project in a team has proved to be an effective means for solving a common creative problem.The first test of the proposed methodology has shown the importance of perfect adjustment of the available 3d-printing process and

  9. Additive Manufacturing Techniques for the Reconstruction of 3D Fetal Faces

    Directory of Open Access Journals (Sweden)

    Domenico Speranza

    2017-01-01

    Full Text Available This paper deals with additive manufacturing techniques for the creation of 3D fetal face models starting from routine 3D ultrasound data. In particular, two distinct themes are addressed. First, a method for processing and building 3D models based on the use of medical image processing techniques is proposed. Second, the preliminary results of a questionnaire distributed to future parents consider the use of these reconstructions both from an emotional and an affective point of view. In particular, the study focuses on the enhancement of the perception of maternity or paternity and the improvement in the relationship between parents and physicians in case of fetal malformations, in particular facial or cleft lip diseases.

  10. A 3D Vertically Integrated Deep N-Well CMOS MAPS for the SuperB Layer0

    Energy Technology Data Exchange (ETDEWEB)

    Traversi, G; Manghisoni, M; Re, V [University of Bergamo, Via Marconi 5, 24044 Dalmine (Italy); Gaioni, L; Ratti, L, E-mail: gianluca.traversi@unibg.it [INFN Pavia, Via Bassi 6, 27100 Pavia (Italy)

    2011-01-15

    Deep N-Well (DNW) Monolithic Active Pixel Sensors (MAPS) have been developed in the last few years with the aim of building monolithic sensors with similar functionalities as hybrid pixels systems. In these devices the triple well option, available in deep submicron processes, is exploited to implement analog and digital signal processing at the pixel level. Many prototypes have been fabricated in a planar (2D) 130nm CMOS technology. A new kind of DNW-MAPS, namely Apsel5{sub 3}D, which exploits the capabilities of vertical integration (3D) processes, is presented and discussed in this paper. The impact of 3D processes on the design and performance of DNW pixel sensors could be large, with significant advantages in terms of detection efficiency, pixel cell size and immunity to cross-talk, therefore complying with the severe constraints set by future HEP experiments.

  11. Enhancing Macrophage Drug Delivery Efficiency via Co-Localization of Cells and Drug-Loaded Microcarriers in 3D Resonant Ultrasound Field.

    Science.gov (United States)

    Lee, Yu-Hsiang; Wu, Zhen-Yu

    2015-01-01

    In this study, a novel synthetic 3D molecular transfer system which involved the use of model drug calcein-AM-encapsulated poly(lactic-co-glycolic acid) microspheres (CAPMs) and resonant ultrasound field (RUF) with frequency of 1 MHz and output intensity of 0.5 W/cm2 for macrophage drug delivery was explored. We hypothesized that the efficiency of CAPMs-mediated drug delivery aided by RUF can be promoted by increasing the contact opportunities between cells and the micrometer-sized drug carriers due to effects of acoustic radiation forces generated by RUF. Through the fluoromicroscopic and flow cytometric analyses, our results showed that both DH82 macrophages and CAPMs can be quickly brought to acoustic pressure nodes within 20 sec under RUF exposure, and were consequently aggregated throughout the time course. The efficacy of cellular uptake of CAPMs was enhanced with increased RUF exposure time where a 3-fold augmentation (P CAPM delivery efficiency was mainly contributed by the co-localization of cells and CAPMs resulting from the application of the RUF, rather than from sonoporation. In summary, the developed molecular delivery approach provides a feasible means for macrophage drug delivery.

  12. 3D versus 2D Systematic Transrectal Ultrasound-Guided Prostate Biopsy: Higher Cancer Detection Rate in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Alexandre Peltier

    2013-01-01

    Full Text Available Objectives. To compare prostate cancer detection rates of extended 2D versus 3D biopsies and to further assess the clinical impact of this method in day-to-day practice. Methods. We analyzed the data of a cohort of 220 consecutive patients with no prior history of prostate cancer who underwent an initial prostate biopsy in daily practice due to an abnormal PSA and/or DRE using, respectively, the classical 2D and the new 3D systems. All the biopsies were done by a single experienced operator using the same standardized protocol. Results. There was no significant difference in terms of age, total PSA, or prostate volume between the two groups. However, cancer detection rate was significantly higher using the 3D versus the 2D system, 50% versus 34% (P<0.05. There was no statistically significant difference while comparing the 2 groups in term of nonsignificant cancer detection. Conclusion. There is reasonable evidence demonstrating the superiority of the 3D-guided biopsies in detecting prostate cancers that would have been missed using the 2D extended protocol.

  13. Matched-pair analyses of resting and dynamic morphology between Monarc and TVT-O procedures by ultrasound.

    Science.gov (United States)

    Yang, Jenn-Ming; Yang, Shwu-Huey; Huang, Wen-Chen; Tzeng, Chii-Ruey

    2013-07-01

    To determine morphologic differences between Monarc and TVT-O procedures in axial and coronal planes by three- and four-dimensional (3D and 4D) ultrasound. Retrospective chart audits and ultrasound analyses were conducted on 128 women who had undergone either Monarc or TVT-O procedures for urodynamic stress incontinence. Thirty matched pairs of the two successful procedures were randomly selected and compared. Matched variables were age, parity, body mass index, cesarean status, menopausal status, and primary surgeries. Six-month postoperative 3D and 4D ultrasound results obtained at rest, on straining, and during coughing in these 60 women were analyzed. Assessed ultrasound parameters included the axial tape urethral distance (aTUD), axial central urethral echolucent area (aUCEA), axial tape angle (aTA), and coronal tape angle (cTA), all of which were measured at three equidistant points along the tapes. Paired t-tests were used to compare differences in ultrasound parameters between women after the two procedures and a P value TVT-O procedures. There were no significant differences in other resting ultrasound parameters between these two procedures. Additionally, after both procedures women had comparable straining and coughing ultrasound manifestations as well as respective dynamic changes. Despite flatter resting tape angulations in women following Monarc procedures, both Monarc and TVT-O tapes had equivalent dynamic patterns and changes assessed by 4D ultrasound. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Integration of a 3D perspective view in the navigation display: featuring pilot's mental model

    Science.gov (United States)

    Ebrecht, L.; Schmerwitz, S.

    2015-05-01

    Synthetic vision systems (SVS) appear as spreading technology in the avionic domain. Several studies prove enhanced situational awareness when using synthetic vision. Since the introduction of synthetic vision a steady change and evolution started concerning the primary flight display (PFD) and the navigation display (ND). The main improvements of the ND comprise the representation of colored ground proximity warning systems (EGPWS), weather radar, and TCAS information. Synthetic vision seems to offer high potential to further enhance cockpit display systems. Especially, concerning the current trend having a 3D perspective view in a SVS-PFD while leaving the navigational content as well as methods of interaction unchanged the question arouses if and how the gap between both displays might evolve to a serious problem. This issue becomes important in relation to the transition and combination of strategic and tactical flight guidance. Hence, pros and cons of 2D and 3D views generally as well as the gap between the egocentric perspective 3D view of the PFD and the exocentric 2D top and side view of the ND will be discussed. Further a concept for the integration of a 3D perspective view, i.e., bird's eye view, in synthetic vision ND will be presented. The combination of 2D and 3D views in the ND enables a better correlation of the ND and the PFD. Additionally, this supports the building of pilot's mental model. The authors believe it will improve the situational and spatial awareness. It might prove to further raise the safety margin when operating in mountainous areas.

  15. 3D accelerator magnet calculations using MAGNUS-3D

    International Nuclear Information System (INIS)

    Pissanetzky, S.; Miao, Y.

    1989-01-01

    The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)

  16. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    Science.gov (United States)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  17. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  18. Craniofacial duplication (diprosopus) with trioftalmos, diagnosed by 3D obstetric ultrasound

    OpenAIRE

    Pachajoa, Harry; Vargas, Carolina; López-Morales, Marisol; Isaza, Carolina; Quintero-Mejía, Juan Carlos

    2016-01-01

    La duplicación cráneo-facial (diprosopus) es el resultado de la forma menos común de gemelos acoplados. La utilización de la ecografía 3D para el diagnóstico de esta patología ha sido reportada. Se presenta el segundo caso de esta patología en Colombia. Caso clínico de hijo de madre de 28 años a quien se le realizó diagnóstico prenatal con ecografía 3D, de duplicación craneofacial y de la columna vertebral. Cariotipo prenatal bandeo G: 46, XX. Al nacimiento se encontró feto de sexo femenino c...

  19. Efficient reconfigurable architectures for 3D medical image compression

    OpenAIRE

    Afandi, Ahmad

    2010-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In thes...

  20. Research interface on a programmable ultrasound scanner.

    Science.gov (United States)

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  1. Evaluation of high frequency ultrasound methods and contrast agents for characterising tumor response to anti-angiogenic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rix, Anne, E-mail: arix@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Lederle, Wiltrud, E-mail: wlederle@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Siepmann, Monica, E-mail: monica.siepmann@rub.de [Department of Medical Engineering, Universitätstraße 150, 44780 Bochum, Ruhr-University Bochum, Bochum (Germany); Fokong, Stanley, E-mail: sfokong@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F., E-mail: fbehrendt@ukaachen.de [Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Bzyl, Jessica, E-mail: jbzyl@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Grouls, Christoph, E-mail: cgrouls@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Kiessling, Fabian, E-mail: fkiessling@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany)

    2012-10-15

    Purpose: To compare non-enhanced and contrast-enhanced high-frequency 3D Doppler ultrasound with contrast-enhanced 2D and 3D B-mode imaging for assessing tumor vascularity during antiangiogenic treatment using soft-shell and hard-shell microbubbles. Materials and methods: Antiangiogenic therapy effects (SU11248) on vascularity of subcutaneous epidermoid-carcinoma xenografts (A431) in female CD1 nude mice were investigated longitudinally using non-enhanced and contrast-enhanced 3D Doppler at 25 MHz. Additionally, contrast-enhanced 2D and 3D B-mode scans were performed by injecting hard-shell (poly-butyl-cyanoacrylate-based) and soft-shell (phospholipid-based) microbubbles. Suitability of both contrast agents for high frequency imaging and the sensitivity of the different ultrasound methods to assess early antiangiogenic therapy effects were investigated. Ultrasound data were validated by immunohistology. Results: Hard-shell microbubbles induced higher signal intensity changes in tumors than soft-shell microbubbles in 2D B-mode measurements (424 ± 7 vs. 169 ± 8 A.U.; p < 0.01). In 3D measurements, signals of soft-shell microbubbles were hardly above the background (5.48 ± 4.57 vs. 3.86 ± 2.92 A.U.), while signals from hard-shell microbubbles were sufficiently high (30.5 ± 8.06 A.U). Using hard-shell microbubbles 2D and 3D B-mode imaging depicted a significant decrease in tumor vascularity during antiangiogenic therapy from day 1 on. Using soft-shell microbubbles significant therapy effects were observed at day 4 after therapy in 2D B-mode imaging but could not be detected in the 3D mode. With non-enhanced and contrast-enhanced Doppler imaging significant differences between treated and untreated tumors were found from day 2 on. Conclusion: Hard-shell microbubble-enhanced 2D and 3D B-mode ultrasound achieved highest sensitivity for assessing therapy effects on tumor vascularisation and were superior to B-mode ultrasound with soft-shell microbubbles and to Doppler

  2. Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    International Nuclear Information System (INIS)

    Poletti, Pierre-Alexandre; Platon, Alexandra; Perrot, Thomas de; Becker, Christoph D.; Sarasin, Francois; Rutschmann, Olivier; Andereggen, Elisabeth; Dupuis-Lozeron, Elise; Perneger, Thomas; Gervaz, Pascal

    2011-01-01

    To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30 mAs) (step 2). Standard intravenously enhanced CT (180 mAs) was performed after indeterminate LDCT (step 3). No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast media. (orig.)

  3. Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Pierre-Alexandre; Platon, Alexandra [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Perrot, Thomas de; Becker, Christoph D. [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); Sarasin, Francois; Rutschmann, Olivier [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Andereggen, Elisabeth [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); University Hospital of Geneva, Department of Surgery, Geneva (Switzerland); Dupuis-Lozeron, Elise; Perneger, Thomas [University Hospital of Geneva, Division of Clinical Epidemiology, Geneva (Switzerland); Gervaz, Pascal [University Hospital of Geneva, Department of Surgery, Geneva (Switzerland)

    2011-12-15

    To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30 mAs) (step 2). Standard intravenously enhanced CT (180 mAs) was performed after indeterminate LDCT (step 3). No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast media. (orig.)

  4. Efficient high-performance ultrasound beamforming using oversampling

    Science.gov (United States)

    Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew

    1998-05-01

    High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.

  5. Application of high efficiency and reliable 3D-designed integral shrouded blades to nuclear turbines

    International Nuclear Information System (INIS)

    Watanabe, Eiichiro; Ohyama, Hiroharu; Tashiro, Hikaru; Sugitani, Toshiro; Kurosawa, Masaru

    1998-01-01

    Mitsubishi Heavy Industries, Ltd. has recently developed new blades for nuclear turbines, in order to achieve higher efficiency and higher reliability. The 3D aerodynamic design for 41 inch and 46 inch blades, their one piece structural design (integral-shrouded blades: ISB), and the verification test results using a model steam turbine are described in this paper. The predicted efficiency and lower vibratory stress have been verified. Based on these 60Hz ISB, 50Hz ISB series are under development using 'the law of similarity' without changing their thermodynamic performance and mechanical stress levels. Our 3D-designed reaction blades which are used for the high pressure and low pressure upstream stages, are also briefly mentioned. (author)

  6. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a

  7. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

    Science.gov (United States)

    Attalla, R; Ling, C; Selvaganapathy, P

    2016-02-01

    The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.

  8. Comparison of 2D and 3D Neutron Transport Analyses on Yonggwang Unit 3 Reactor

    International Nuclear Information System (INIS)

    Maeng, Aoung Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou; Yoo, Choon Sung

    2012-01-01

    10 CFR Part 50 Appendix H requires periodical surveillance program in the reactor vessel (RV) belt line region of light water nuclear power plant to check vessel integrity resulting from the exposure to neutron irradiation and thermal environment. Exact exposure analysis of the neutron fluence based on right modeling and simulations is the most important in the evaluation. Traditional 2 dimensional (D) and 1D synthesis methodologies have been widely applied to evaluate the fast neutron (E > 1.0 MeV) fluence exposure to RV. However, 2D and 1D methodologies have not provided accurate fast neutron fluence evaluation at elevations far above or below the active core region. RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries) program for 3D geometries calculation was therefore developed both by Westinghouse Electronic Company, USA and Korea Reactor Integrity Surveillance Technology (KRIST) for the analysis of In-Vessel Surveillance Test and Ex-Vessel Neutron Dosimetry (EVND). Especially EVND which is installed at active core height between biological shielding material and concrete also evaluates axial neutron fluence by placing three dosimetries each at Top, Middle and Bottom part of the angle representing maximum neutron fluence. The EVND programs have been applied to the Korea Nuclear Plants. The objective of this study is therefore to compare the 3D and the 2D Neutron Transport Calculations and Analyses on the Yonggwang unit 3 Reactor as an example

  9. AN INTEGRATED PHOTOGRAMMETRIC AND PHOTOCLINOMETRIC APPROACH FOR PIXEL-RESOLUTION 3D MODELLING OF LUNAR SURFACE

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2018-04-01

    Full Text Available High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo. Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this

  10. Multiline 3D beamforming using micro-beamformed datasets for pediatric transesophageal echocardiography

    Science.gov (United States)

    Bera, D.; Raghunathan, S. B.; Chen, C.; Chen, Z.; Pertijs, M. A. P.; Verweij, M. D.; Daeichin, V.; Vos, H. J.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.

    2018-04-01

    Until now, no matrix transducer has been realized for 3D transesophageal echocardiography (TEE) in pediatric patients. In 3D TEE with a matrix transducer, the biggest challenges are to connect a large number of elements to a standard ultrasound system, and to achieve a high volume rate (>200 Hz). To address these issues, we have recently developed a prototype miniaturized matrix transducer for pediatric patients with micro-beamforming and a small central transmitter. In this paper we propose two multiline parallel 3D beamforming techniques (µBF25 and µBF169) using the micro-beamformed datasets from 25 and 169 transmit events to achieve volume rates of 300 Hz and 44 Hz, respectively. Both the realizations use angle-weighted combination of the neighboring overlapping sub-volumes to avoid artifacts due to sharp intensity changes introduced by parallel beamforming. In simulation, the image quality in terms of the width of the point spread function (PSF), lateral shift invariance and mean clutter level for volumes produced by µBF25 and µBF169 are similar to the idealized beamforming using a conventional single-line acquisition with a fully-sampled matrix transducer (FS4k, 4225 transmit events). For completeness, we also investigated a 9 transmit-scheme (3  ×  3) that allows even higher frame rates but found worse B-mode image quality with our probe. The simulations were experimentally verified by acquiring the µBF datasets from the prototype using a Verasonics V1 research ultrasound system. For both µBF169 and µBF25, the experimental PSFs were similar to the simulated PSFs, but in the experimental PSFs, the clutter level was ~10 dB higher. Results indicate that the proposed multiline 3D beamforming techniques with the prototype matrix transducer are promising candidates for real-time pediatric 3D TEE.

  11. In vivo analysis of physiological 3D blood flow of cerebral veins

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany)

    2015-08-15

    To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.)

  12. User-friendly freehand ultrasound calibration using Lego bricks and automatic registration.

    Science.gov (United States)

    Xiao, Yiming; Yan, Charles Xiao Bo; Drouin, Simon; De Nigris, Dante; Kochanowska, Anna; Collins, D Louis

    2016-09-01

    As an inexpensive, noninvasive, and portable clinical imaging modality, ultrasound (US) has been widely employed in many interventional procedures for monitoring potential tissue deformation, surgical tool placement, and locating surgical targets. The application requires the spatial mapping between 2D US images and 3D coordinates of the patient. Although positions of the devices (i.e., ultrasound transducer) and the patient can be easily recorded by a motion tracking system, the spatial relationship between the US image and the tracker attached to the US transducer needs to be estimated through an US calibration procedure. Previously, various calibration techniques have been proposed, where a spatial transformation is computed to match the coordinates of corresponding features in a physical phantom and those seen in the US scans. However, most of these methods are difficult to use for novel users. We proposed an ultrasound calibration method by constructing a phantom from simple Lego bricks and applying an automated multi-slice 2D-3D registration scheme without volumetric reconstruction. The method was validated for its calibration accuracy and reproducibility. Our method yields a calibration accuracy of [Formula: see text] mm and a calibration reproducibility of 1.29 mm. We have proposed a robust, inexpensive, and easy-to-use ultrasound calibration method.

  13. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience.

    Science.gov (United States)

    Cantisani, Vito; Maceroni, Piero; D'Andrea, Vito; Patrizi, Gregorio; Di Segni, Mattia; De Vito, Corrado; Grazhdani, Hektor; Isidori, Andrea M; Giannetta, Elisa; Redler, Adriano; Frattaroli, Fabrizio; Giacomelli, Laura; Di Rocco, Giorgio; Catalano, Carlo; D'Ambrosio, Ferdinando

    2016-05-01

    To assess whether ultrasound elastography (USE) with strain ratio increases diagnostic accuracy of Doppler ultrasound in further characterisation of cytologically Thy3 thyroid nodules. In two different university diagnostic centres, 315 patients with indeterminate cytology (Thy3) in thyroid nodules aspirates were prospectively evaluated with Doppler ultrasound and strain ratio USE before surgery. Ultrasonographic features were analysed separately and together as ultrasound score, to assess sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Receiver operating characteristic (ROC) curves to identify optimal cut-off value of the strain ratio were also provided. Diagnosis on a surgical specimen was considered the standard of reference. Higher strain ratio values were found in malignant nodules, with an optimum strain ratio cut-off of 2.09 at ROC analysis. USE with strain ratio showed 90.6% sensitivity, 93% specificity, 82.8% PPV, 96.4% NPV, while US score yielded a sensitivity of 52.9%, specificity of 84.3%, PPV 55.6% and NPV 82.9%. The diagnostic gain with strain ratio was statistically significant as proved by ROC areas, which was 0.9182 for strain ratio and 0.6864 for US score. USE with strain ratio should be considered a useful additional tool to colour-Doppler US, since it improves characterisation of thyroid nodules with indeterminate cytology. • Strain ratio measurements improve differentiation of thyroid nodules with indeterminate cytology • Elastography with strain ratio is more reliable than ultrasound features and ultrasound score • Strain ratio may help to better select patients with Thy 3 nodules candidate for surgery.

  14. Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography.

    Science.gov (United States)

    Yu, Zili; Blaak, Sandra; Chang, Zu-yao; Yao, Jiajian; Bosch, Johan G; Prins, Christian; Lancée, Charles T; de Jong, Nico; Pertijs, Michiel A P; Meijer, Gerard C M

    2012-07-01

    There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE.

  15. First Steps Towards AN Integrated Citygml-Based 3d Model of Vienna

    Science.gov (United States)

    Agugiaro, G.

    2016-06-01

    This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. The work described in this paper is embedded within the European Marie-Curie ITN project "Ci-nergy, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  16. Essure microinsert imaging: does abnormal shape on ultrasound predict complications on HSG?

    Science.gov (United States)

    VanBuren, Wendaline M; Suchet, Ian B; Thiel, John A; Karreman, Erwin

    2016-12-01

    We hypothesize that the shape of the Essure microinsert on ultrasound is able to predict complications evident on hysterosalpingogram (HSG), the accepted gold standard. From July 2, 2009 to July 2, 2012, 441 women at our institution received Essure microinsert placement for the purpose of permanent sterilization. 2D and 3D coronal plane transvaginal ultrasounds were performed three months after Essure microinsert placement. Those patients with complications identified on ultrasound, a non-diagnostic ultrasound, or following a difficult insertion were referred for HSG. Patients with both HSG and ultrasound performed were retrospectively selected and anonymized. The ultrasounds were reviewed by a single, blinded radiologist. A total of 122 microinserts in 65 patients were described on ultrasound using a numeric grading system and compared to HSG findings. Microinsert placement resulted in 37 complications, 31 of which were identified on ultrasound, including uterine and tubal perforations and placement in the endometrial cavity. The sensitivity of Essure microinsert shape on ultrasound in predicting complications, compared with standard HSG, was 94%, with a positive predictive value of 85%; specificity was 95%, with a negative predictive value of 98%. The Kappa coefficient was 0.85 (p Essure microinsert placement.

  17. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...

  18. In-room ultrasound fusion combined with fully compatible 3D-printed holding arm – rethinking interventional MRI

    Directory of Open Access Journals (Sweden)

    Friebe M

    2018-03-01

    Full Text Available Michael Friebe,1 Juan Sanchez,1 Sathish Balakrishnan,1 Alfredo Illanes,1 Yeshaswini Nagaraj,2 Robert Odenbach,1 Marwah Matooq,1 Gabriele Krombach,3 Michael Vogele,4 Axel Boese1 1Chair of Intelligent Catheter, Otto-von-Guericke-University, Magdeburg, Germany; 2University of Groningen, University Medical Center Groningen, Center for Medical Imaging North East Netherlands, Groningen, the Netherlands; 3Universitätsklinikum Giessen, Radiologische Klinik, Giessen, Germany; 4Interventional Systems GmbH, Kitzbühel, Austria Abstract: There is no real need to discuss the potential advantages – mainly the excellent soft tissue contrast, nonionizing radiation, flow, and molecular information – of magnetic resonance imaging (MRI as an intraoperative diagnosis and therapy system particularly for neurological applications and oncological therapies. Difficult patient access in conventional horizontal-field superconductive magnets, very high investment and operational expenses, and the need for special nonferromagnetic therapy tools have however prevented the widespread use of MRI as imaging and guidance tool for therapy purposes. The interventional use of MRI systems follows for the last 20+ years the strategy to use standard diagnostic systems and add more or less complicated and expensive components (eg, MRI-compatible robotic systems, specially shielded in-room monitors, dedicated tools and devices made from low-susceptibility materials, etc to overcome the difficulties in the therapy process. We are proposing to rethink that approach using an in-room portable ultrasound (US system that can be safely operated till 1 m away from the opening of a 3T imaging system. The live US images can be tracked using an optical inside–out approach adding a camera to the US probe in combination with optical reference markers to allow direct fusion with the MRI images inside the MRI suite. This leads to a comfortable US-guided intervention and excellent patient

  19. Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction.

    Science.gov (United States)

    Businelli, Caterina; de Wit, Charlotte; Visser, Gerard H A; Pistorius, Lourens R

    2014-09-10

    Abstract Objective: We evaluated the ultrasound appearance of brain volume and cortical development in fetuses with early growth restriction and placental insufficiency. Methods: We examined a cohort of 20 fetuses with severe intrauterine growth restriction (IUGR) and evidence of placental insufficiency by three-dimensional (3D) ultrasound between 24 and 34 weeks. We graded cortical development and measured the supratentorial intracranial volume. The cortical grading and volume were compared to data obtained from a reference population of 28 adequate for gestational age (AGA) fetuses. Results: Ultrasound examinations were performed in 20 fetuses with IUGR. The biometry and brain volume were significantly reduced in IUGR fetuses. There was evidence of accelerated cortical development in IUGR fetuses. Conclusion: This study confirms that the smaller brain volume in IUGR fetuses, with normal or accelerated cortical maturation as previously depicted with postnatal MRI examination, can be demonstrated by prenatal 3D ultrasound.

  20. Conceptual design of 3D integrated pixel sensors for the innermost layer of the ILC vertex detector

    International Nuclear Information System (INIS)

    Fu, Y; Hu-Guo, C; Dorokhov, A; Zhao, W; Hu, Y; Torheim, O

    2011-01-01

    The paper presents a design of CMOS Pixel Sensor (CPS) using the vertical integration technology (3DIT), expected to alleviate the most essential limitations of 2D-CPS. Our objective is to develop an intelligent architecture in order to meet the requirements of the innermost layer of the International Linear Collider (ILC) vertex detectors, which are particularly demanding in spatial resolution of less than 3 μm and associated frame readout time of 10 μs. The sensor, with a pixel pitch of 23 μm, will be composed of 3-tiers Integrated Circuits (IC) with different functionalities: detection with in pixel analogue processing, pixel-level 3-bit Analogue to Digital Conversion (ADC) and fast parallel sparse readout.

  1. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.T.C. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  2. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    International Nuclear Information System (INIS)

    Wong, S.T.C.

    1997-01-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a open-quotes true 3D screenclose quotes. To confine the scope, this presentation will not discuss such approaches

  3. Three-dimensional ultrasound. Early personal experience with a dedicated unit and literature review

    International Nuclear Information System (INIS)

    Cesarani, F.; Isolato, G.; Capello, S.; Bianchi, S.D.

    1999-01-01

    The authors report our preliminary clinical experience with three-dimensional ultrasound (3D US) in abdominal and small parts imaging, comparing the yield of 3D versus 2D US and the through a literature review [it

  4. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  5. Five-dimensional ultrasound system for soft tissue visualization.

    Science.gov (United States)

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  6. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics.

    Science.gov (United States)

    Kadimisetty, Karteek; Song, Jinzhao; Doto, Aoife M; Hwang, Young; Peng, Jing; Mauk, Michael G; Bushman, Frederic D; Gross, Robert; Jarvis, Joseph N; Liu, Changchun

    2018-06-30

    Molecular diagnostics that involve nucleic acid amplification tests (NAATs) are crucial for prevention and treatment of infectious diseases. In this study, we developed a simple, inexpensive, disposable, fully 3D printed microfluidic reactor array that is capable of carrying out extraction, concentration and isothermal amplification of nucleic acids in variety of body fluids. The method allows rapid molecular diagnostic tests for infectious diseases at point of care. A simple leak-proof polymerization strategy was developed to integrate flow-through nucleic acid isolation membranes into microfluidic devices, yielding a multifunctional diagnostic platform. Static coating technology was adopted to improve the biocompatibility of our 3D printed device. We demonstrated the suitability of our device for both end-point colorimetric qualitative detection and real-time fluorescence quantitative detection. We applied our diagnostic device to detection of Plasmodium falciparum in plasma samples and Neisseria meningitides in cerebrospinal fluid (CSF) samples by loop-mediated, isothermal amplification (LAMP) within 50 min. The detection limits were 100 fg for P. falciparum and 50 colony-forming unit (CFU) for N. meningitidis per reaction, which are comparable to that of benchtop instruments. This rapid and inexpensive 3D printed device has great potential for point-of-care molecular diagnosis of infectious disease in resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Ceramic membrane ultrafiltration of natural surface water with ultrasound enhanced backwashing.

    Science.gov (United States)

    Boley, A; Narasimhan, K; Kieninger, M; Müller, W-R

    2010-01-01

    Ultrafiltration membrane cleaning with ultrasound enhanced backwashing was investigated with two ceramic membrane systems in parallel. One of them was subjected to ultrasound during backwashing, the other acted as a reference system. The feed water was directly taken from a creek with a sedimentation process as only pre-treatment. The cleaning performance was improved with ultrasound but after 3 weeks of operation damages occurred on the membranes. These effects were studied with online measurements of flux, trans-membrane-pressure and temperature, but also with integrity tests, turbidity measurements and visual examination.

  8. Three-dimensional ultrasound in the diagnosis of Müllerian duct anomalies and concordance with magnetic resonance imaging.

    Science.gov (United States)

    Bermejo, C; Martínez Ten, P; Cantarero, R; Diaz, D; Pérez Pedregosa, J; Barrón, E; Labrador, E; Ruiz López, L

    2010-05-01

    To demonstrate the value of three-dimensional (3D) ultrasound in the diagnosis of uterine malformations and its concordance with magnetic resonance imaging (MRI). This study included 286 women diagnosed with uterine malformation by 3D ultrasound, having been referred to our clinics on suspicion of uterine malformation following clinical and/or conventional two-dimensional ultrasound examination. With the exception of three with intact hymen, patients underwent both bimanual examination and speculoscopy before and/or after sonography. MRI was performed in 65 cases. We analyzed the diagnostic concordance between the techniques in the study of uterine malformations. Using 3D ultrasound we diagnosed: one case with uterine agenesis; 10 with unicornuate uterus, four of which also underwent MRI; six with didelphic uterus, one of which had MRI; 45 with bicornuate uterus, 12 of which had MRI; 125 with septate uterus (18 with two cervices), 42 of which had MRI (six with two cervices); 96 with arcuate uterus, three of which had MRI; and three with diethylstilbestrol (DES) iatrogenic uterine malformations, all of which had MRI. Among the 65 which underwent MRI, the diagnosis was: four cases with unicornuate uterus, 10 with bicornuate uterus (two with two cervices), 45 with septate uterus (five with two cervices), three with arcuate uterus and three with DES-related uterine malformations. The concordance between 3D ultrasound and MRI was very good (kappa index, 0.880 (95% CI, 0.769-0.993)). Discrepancies in diagnosis between the two techniques occurred in four cases. There was very good concordance in the diagnosis of associated findings (kappa index, 0.878 (95% CI, 0.775-0.980)), this analysis identifying differences in two cases. There is a high degree of concordance between 3D ultrasound and MRI in the diagnosis of uterine malformations, the relationship between cavity and fundus being visualized equally well with both techniques. 3D ultrasound should be complemented by

  9. Reactive flow simulation in complex 3D geometries using the COM3D code

    International Nuclear Information System (INIS)

    Breitung, W.; Kotchourko, A.; Veser, A.; Scholtyssek, W.

    1999-01-01

    The COM3D code, under development at the Forschungszentrum Karlsruhe (FZK), is a 3-d CFD code to describe turbulent combustion phenomena in complex geometries. It is intended to be part of the advanced integral code system for containment analysis (INCA) which includes in addition GASFLOW for distribution calculations, V3D for slow combustion and DET3D for detonation analysis. COM3D uses a TVD-solver and optional models for turbulence, chemistry and thermodynamics. The hydrodynamic model considers mass, momentum and energy conservation. Advanced procedures were provided to facilitate grid-development for complex 3-d structures. COM3D was validated on experiments performed on different scales with generally good agreement for important physical quantities. The code was applied to combustion analysis of a large PWR. The initial conditions were obtained from a GASFLOW distribution analysis for a LOOP scenario. Results are presented concerning flame propagation and pressure evolution in the containment which clearly demonstrate the effects of internal structures, their influence on turbulence formation and consequences for local loads. (author)

  10. Pictorial essay of ultrasound-reconstructed coronal plane images of the uterus in different uterine pathologies.

    Science.gov (United States)

    Grigore, Mihaela; Grigore, Anamaria; Gafitanu, Dumitru; Furnica, Cristina

    2018-04-01

    Imaging in the major planes (horizontal, coronal, and sagittal) of the uterus is important for determining anatomy and allowing the findings to be standardized, and for evaluating and diagnosing different pathological conditions in clinical practice. Examination of the coronal plane is an important step in identifying uterine pathologies and their relationships to the endometrial canal. Three-dimensional (3D) ultrasound reveals the normal anatomy better and improves the depiction of abnormal anatomy, as the coronal plane of the uterus can easily be obtained using 3D reconstruction techniques. Our pictorial essay demonstrates that adding 3D ultrasound to a routine gynecological workup can be beneficial for clinicians, enabling a precise diagnosis to be made. In addition, the volumes obtained and stored by 3D ultrasound can allow students or residents to become more familiar with normal and abnormal pelvic structures. Clin. Anat. 31:373-379, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Validation of Navigation Ultrasound for Clavicular Length Measurement

    DEFF Research Database (Denmark)

    Høj, Anders Thorsmark; Villa, Chiara; Christensen, Ole M.

    2017-01-01

    interval): approximately ± 7.5 mm, Pearson's correlation R: 0.948-0.974). Navigation ultrasound can measure clavicular length with an intra-rater reliability matching that of 3-D rendered computed tomography scans and with high validity. Its use could spread to other fields requiring accurate...... of 52.5 (range: 21-78 y) were included. Navigation ultrasound exhibited high reliability (intra-class correlation coefficient: 0.942-0.997, standard error of the mean: 0.7-2.9 mm, minimal detectable change: 2.3-8.1 mm) and validity (measurement error: 1.3%-1.8%, limits of agreement (95% confidence...

  12. Non-invasive Estimation of Pressure Changes using 2-D Vector Velocity Ultrasound: An Experimental Study with In-Vivo Examples

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Møller, Niclas Dechau

    2018-01-01

    and at the aortic valve of two healthy volunteers. Ultrasound measurements were performed using the experimental scanner SARUS, in combination with an 8MHz linear array transducer for experimental scans and a carotid scan, whereas a 3.5MHz phased array probe was employed for a scan of an aortic valve. Measured 2-D......A non-invasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamics (CFD) data, and with catheter measurements on phantoms. Hereafter, the method was tested in-vivo at the carotid bifurcation...

  13. The rendering context for stereoscopic 3D web

    Science.gov (United States)

    Chen, Qinshui; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    3D technologies on the Web has been studied for many years, but they are basically monoscopic 3D. With the stereoscopic technology gradually maturing, we are researching to integrate the binocular 3D technology into the Web, creating a stereoscopic 3D browser that will provide users with a brand new experience of human-computer interaction. In this paper, we propose a novel approach to apply stereoscopy technologies to the CSS3 3D Transforms. Under our model, each element can create or participate in a stereoscopic 3D rendering context, in which 3D Transforms such as scaling, translation and rotation, can be applied and be perceived in a truly 3D space. We first discuss the underlying principles of stereoscopy. After that we discuss how these principles can be applied to the Web. A stereoscopic 3D browser with backward compatibility is also created for demonstration purposes. We take advantage of the open-source WebKit project, integrating the 3D display ability into the rendering engine of the web browser. For each 3D web page, our 3D browser will create two slightly different images, each representing the left-eye view and right-eye view, both to be combined on the 3D display to generate the illusion of depth. And as the result turns out, elements can be manipulated in a truly 3D space.

  14. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; /Fermilab; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  15. Investigating Integration Capabilities Between Ifc and Citygml LOD3 for 3d City Modelling

    Science.gov (United States)

    Floros, G.; Pispidikis, I.; Dimopoulou, E.

    2017-10-01

    Smart cities are applied to an increasing number of application fields. This evolution though urges data collection and integration, hence major issues arise that need to be tackled. One of the most important challenges is the heterogeneity of collected data, especially if those data derive from different standards and vary in terms of geometry, topology and semantics. Another key challenge is the efficient analysis and visualization of spatial data, which due to the complexity of the physical reality in modern world, 2D GIS struggles to cope with. So, in order to facilitate data analysis and enhance the role of smart cities, the 3rd dimension needs to be implemented. Standards such as CityGML and IFC fulfill that necessity but they present major differences in their schemas that render their integration a challenging task. This paper focuses on addressing those differences, examining the up to date research work and investigates an alternative methodology in order to bridge the gap between those Standards. Within this framework, a generic IFC model is generated and converted to a CityGML Model, which is validated and evaluated on its geometrical correctness and semantical coherence. General results as well as future research considerations are presented.

  16. A wearable 3D motion sensing system integrated with a Bluetooth smart phone application: A system level overview

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-02

    An era of ubiquitous motion sensing has just begun. All electronic gadgets ranging from game consoles to mobile phones have some sort of motion sensors in them. In contrast to rigid motion sensing systems, this paper presents a system level description of a wearable 3D motion sensor. The sensing mechanism is based upon well-established magnetic and inertial measurement unit (MIMU), which integrates accelerometer, gyroscope and magnetometer data. Two sensor boards have been integrated within a wearable arm sleeve to capture 3D orientation of the human arm. The sensors have been interfaced with a Bluetooth transceiver chip, which transmits data to a mobile phone app using standard Bluetooth protocol. An android mobile phone app has been developed to display the human arm motion in real time.

  17. A Bayesian Framework of Uncertainties Integration in 3D Geological Model

    Science.gov (United States)

    Liang, D.; Liu, X.

    2017-12-01

    3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.

  18. Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound

    International Nuclear Information System (INIS)

    Andermann, P.; Schloegl, S.; Maeder, U.; Luster, M.; Lassmann, M.; Reiners, C.

    2007-01-01

    Thyroid volume measurement by ultrasonography (US) is essential in numerous clinical diagnostic and therapeutic fields. While known to be limited, the accuracy and precision of two-dimensional (2D) US thyroid volume measurement have not been thoroughly characterized. Objective: We sought to assess the intra- and interobserver variability, accuracy and precision of thyroid volume determination by conventional 2D US in healthy adults using reference volumes determined by three-dimensional (3D) US. Design, methods: In a prospective blinded trial, thyroid volumes of ten volunteers were determined repeatedly by nine experienced sonographers using conventional 2D US (ellipsoid model). The values obtained were statistically compared to the so-called true volumes determined by 3D US (multiplanar approximation), the so-called gold standard, to estimate systematic errors and relative deviations of individual observers. Results: The standard error of measurement (SEM) for one observer and successive measurements (intraobserver variability), was 14%, and for different observers and repeated measurements (interobserver variability), 17%. The minimum relative thyroid volume change significantly different at the 95% level was 39% for the same observer and 46% for different observers. Regarding accuracy, the mean value of the differences showed a significant thyroid volume overestimation (17%, p <0.01) by 2D relative to 3D US. Conclusion: 2D US is appropriate for routine thyroid volumetry. Nevertheless, the so-called human factor (random error) should be kept in mind and correction is needed for methodical bias (systematic error). Further efforts are required to improve the accuracy and precision of 2D US thyroid volumetry by optimizing the underlying geometrical modeling or by the application of 3D US. (orig.)

  19. Summation integrals for a Green function in a 3-D inhomogeneous anisotropic medium

    Czech Academy of Sciences Publication Activity Database

    Červený, V.; Pšenčík, Ivan

    2014-01-01

    Roč. 24, č. 1 (2014), s. 131-158 ISSN 2336-3827 R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional support: RVO:67985530 Keywords : Gaussian beam summation integrals * Maslov-Chapman integrals * target surface * dynamic ray tracing Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  20. Integrating 3D Visualization and GIS in Planning Education

    Science.gov (United States)

    Yin, Li

    2010-01-01

    Most GIS-related planning practices and education are currently limited to two-dimensional mapping and analysis although 3D GIS is a powerful tool to study the complex urban environment in its full spatial extent. This paper reviews current GIS and 3D visualization uses and development in planning practice and education. Current literature…