WorldWideScience

Sample records for integrated topping cycle

  1. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  2. MHD Integrated Topping Cycle Project. Thirteenth quarterly technical progress report, August 1, 1990--October 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number_sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  3. Wave Engine Topping Cycle Assessment

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  4. MHD Integrated Topping Cycle Project

    Science.gov (United States)

    1993-04-01

    Manufacture, assembly, and checkout of combustion subsystem hardware was completed and the hardware was delivered to CDIF along with the water electrical isolators. A successful nozzle proof test was concluded; its purpose was to evaluate adequacy of the nozzle structure and sealing of sidewall-to-electrode wall joints, water tubes, and stud and wire penetrations at operating pressure. Design modifications to spare channel inlet frame were made to enable iron oxide injection. Results of tests in the CDIF 1A1 channel which compared effect of different cathode wall iron oxide injection locations indicated that injection through the side port may be more effective, particularly if one of the two ports becomes clogged. Design confirmation testing of a pneumatically driven ram to clear a plugged iron oxide injector tip was performed. Manufacture of spare and replacement parts for 1A4 channel and diffuser was begun. Construction of the cathode power cabinets and associated control system was completed. Hot-fire checkout series was completed for the combustion subsystem; 16.8 thermal hours were accumulated during seven tests. This test series demonstrated adequacy of overall cooling of combustion subsystem and provided an initial evaluation of heat losses and slagging characteristics. Several major facility activities at the CDIF were accomplished including installation and testing of new iron oxide pumps, initial on-line checkout of coal feed system modifications, modification of seed system including replacement of silo rotary feeder, installation of new filter receiver on the silo, conversion of fly ash bin to dust collector, removal of all of the electrical wiring (used for 1A1 channel) between the channel and HVR in order to install 1A4 wiring, and installation of the 1A4 channel.

  5. GEOSS Water Cycle Integrator

    Science.gov (United States)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  6. Study of a LH2-fueled topping cycle engine for aircraft propulsion

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine. Previously announced in STAR as N83-34942

  7. Study of LH2-fueled topping cycle engine for aircraft propulsion

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  8. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  9. Effects of top management involvement in integrated marketing communications

    Directory of Open Access Journals (Sweden)

    Nina Hočevar

    2007-12-01

    Full Text Available There is scarce empirical evidence in the academic literature of how top management involvement influences the degree of integrated marketing communications. At the same time, some authors believe that this relationship should be explored more extensively.In this paper we present one possible approach to investigating the relationship between top management involvement and the degree of integrated marketing communications. Our research established that a greater involvement of top management in marketing communications could be associated with a higher degree of IMC. Investigating the relationship between management and IMC is indeed at a very early stage. We suggest that this study has provided a basis for future research on the relationship between top management involvement in marketing communications and the degree of IMC.

  10. The future development of the British coal topping cycles

    International Nuclear Information System (INIS)

    Harrison, J.S.; Dawes, S.G.; Minchener, A.J.

    1992-01-01

    In the United Kingdom (UK), at present most of the electricity produced from coal is generated using large pulverized fuel boilers with a conventional steam cycle. This technology has been developed over many years and has culminated in a 6 x 660 MWe station at Drax. The design cycle efficiency of such a station is some 40%, lower heating value basis, this limit being due to the nature of the Rankin cycle appropriate for steam turbines without utilization of the lower grade heat as in a combined heat and power (CHP) system. This paper reports that there is an increasing concern regarding the potential environmental impact of fossil-fuel fired systems. In particular, emissions limits are being tightened for particulates, NO x SO 2 . There is also concern over the greenhouse gases such as CO 2 . For existing conventional plant, this has resulted in the retrofitting of low NO x burners coupled in some instances with the introduction of flue gas desulphurization (FGD) equipment. Such modifications lead to significant increases in the capital and operating costs, with loss in cycle efficiency when FGD is fitted. Thus at Drax the efficiency will fall by some 1% to below 39%. These adverse effects have increased the need for alternative coal-fired generation systems which will have higher efficiencies while at the same time improving the environmental impact of the power stations. The environmental debate over the use of fossil fuels for power generation will continue, with continuing public uncertainty especially over the extent and causes of enhanced global warming. The debate will continue against a background of rising power generation demand worldwide, particularly in developing countries. What is clear is that in the absence of long-term, cost effective and technologically proven alternatives to fossil fuels, coal will remain the prime fuel for power generation

  11. Top-Down Enterprise Application Integration with Reference Models

    Directory of Open Access Journals (Sweden)

    Willem-Jan van den Heuvel

    2000-11-01

    Full Text Available For Enterprise Resource Planning (ERP systems such as SAP R/3 or IBM SanFrancisco, the tailoring of reference models for customizing the ERP systems to specific organizational contexts is an established approach. In this paper, we present a methodology that uses such reference models as a starting point for a top-down integration of enterprise applications. The re-engineered models of legacy systems are individually linked via cross-mapping specifications to the forward-engineered reference model's specification. The actual linking of reference and legacy models is done with a methodology for connecting (new business objects with (old legacy systems.

  12. Business Cycle Synchronization and Regional Integration

    OpenAIRE

    Fiess, Norbert

    2007-01-01

    Deeper trade integration between Central America and the United States, as envisaged under the Central American Free Trade Agreement, is likely to lead to closer links between Central American and U.S. business cycles. This article assesses the degree of business cycle synchronization between Central America and the United States—relevant not only for a better understanding of the influence of important trading partners on the business cycle fluctuations in the domestic economy but for evalua...

  13. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  14. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  15. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  16. Process integration of organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2009-01-01

    An organic Rankine cycle (ORC) uses an organic fluid as a working medium within a Rankine cycle power plant. ORC offers advantages over conventional Rankine cycle with water as the working medium, as ORC generates shaft-work from low to medium temperature heat sources with higher thermodynamic efficiency. The dry and the isentropic fluids are most preferred working fluid for the ORC. The basic ORC can be modified by incorporating both regeneration and turbine bleeding to improve its thermal efficiency. In this paper, 16 different organic fluids have been analyzed as a working medium for the basic as well as modified ORCs. A methodology is also proposed for appropriate integration and optimization of an ORC as a cogeneration process with the background process to generate shaft-work. It has been illustrated that the choice of cycle configuration for appropriate integration with the background process depends on the heat rejection profile of the background process (i.e., the shape of the below pinch portion of the process grand composite curve). The benefits of integrating ORC with the background process and the applicability of the proposed methodology have been demonstrated through illustrative examples.

  17. Top Management Team Diversity and Company Performance: The moderating effect of Organization Life Cycle

    Directory of Open Access Journals (Sweden)

    Emil Velinov

    2016-12-01

    Full Text Available The research paper examines the moderating impact of Organizational Life Cycle on the relationship between Top Management Team Diversity and Company Performance. The study first elaborates and establishes the theoretical link between organization lifecycle and composition of management elites. Second, a quantitative empirical study is conducted to test the OLC stages moderating impact on the upper echelons diversity and firm performance of the top companies in the Czech Republic. A detailed procedure is developed to accurately classify organizations at different lifecycle stages, drawing extensively on existing literature and scales. Paper findings state that more mature the company becomes, more diversified the senior management is regardless the firm performance. Also, the industry dynamism impact has its own role in the relationship between the organization life cycle and senior management diversity which is expressed by the paper findings as well.

  18. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  19. Integrated corporate structure life cycle management modeling and organization

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  20. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  1. Power generation from a 7700C heat source by means of a main steam cycle, a topping closed gas cycle and a ammonia bottoming cycle

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1981-03-01

    For power generation, steam cycles make an efficient use of medium temperature heat sources. They can be adapted to dry cooling, higher power ratings and output increase in winter by addition of an ammonia bottoming cycle. Active development is carried out in this field by 'Electricite de France'. As far as heat sources at higher temperatures are concerned, particularly related to coal-fired or nuclear power plants, a more efficient way of converting energy is at first to expand a hot working fluid through a gas turbine. It is shown in this paper that a satisfactory result, for heat sources of about 770 0 C, is obtained with a topping closed gas cycle of moderate power rating, rejecting its waste heat into the main steam cycle. Attention has to be paid to this gas cycle waste heat recovery and to the coupling of the gas and steam cycles. This concept drastically reduces the importance of new technology components. The use and the significance of an ammonia bottoming cycle in this case are investigated

  2. The integrity management cycle as a business process

    Energy Technology Data Exchange (ETDEWEB)

    Ackhurst, Trent B.; Peverelli, Romina P. [PIMS - Pipeline Integrity Management Specialists of London Ltd. (United Kingdom).

    2009-07-01

    It is a best-practice Oil and Gas pipeline integrity and reliability technique to apply integrity management cycles. This is conforms to the business principles of continuous improvement. This paper examines the integrity management cycle - both goals and objectives and subsequent component steps - from a business perspective. Traits that businesses require, to glean maximum benefit from such a cycle, are highlighted. A case study focuses upon an integrity and reliability process developed to apply to pipeline operators. installations. This is compared and contrasted to the pipeline integrity management cycle to underline both cycles. consistency with the principles of continuous improvement. (author)

  3. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  4. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  5. Thermodynamic investigation of an integrated gasification plant with solid oxide fuel cell and steam cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering, Thermal Energy System

    2012-07-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas was rather clean for feeding to the SOFC stacks after a simple cleaning step. Because all the fuel cannot be burned in the SOFC stacks, a burner was used to combust the remaining fuel. The off-gases from the burner were then used to produce steam for the bottoming steam cycle in a heat recovery steam generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system integration configurations are completely novel and have not been studied elsewhere. Plant efficiencies of 56% were achieved under normal operation which was considerably higher than the IGCC (Integrated Gasification Combined Cycle) in which a gasification plant is integrated with a gas turbine and a steam turbine. Furthermore, it is shown that under certain operating conditions, plant efficiency of about 62 is also possible to achieve. (orig.)

  6. Integrated NPP life cycle management - Agency's approach

    International Nuclear Information System (INIS)

    Gueorguiev, B.

    2002-01-01

    Full text: The number of nuclear power plants (NPPs) operating in the world has been roughly constant for the past seven years. There are 438 reactors of 353,489 MW(e) capacity in the world and they generated 2448.9 TWh in 2001 giving a total world operating experience with nuclear power of 10,363 years. About 230 units have reached already over 15 years of operation and significant number of these plants are fully depreciated. Share of nuclear power in electricity production sector in Member States utilising nuclear power plants represents a meaningful amount and in 14 countries it exceeds 30%. Therefore, a loss of this share should be covered by new installed capacities either from conventional or alternative sources of electricity generation. Recent forecasts, for nuclear power use over the next two decades range from ∼350 to ∼500 GW(e) worldwide. While assessing the need for any nuclear power related programmes there are several important factors that must be considered since even 350 GW(e) is a very large programme requiring several hundred thousand highly qualified personnel and a substantial infrastructure to assure its continued safe, reliable and cost-effective operation. It is important to assure reliable, safe and economic beneficial performance of the plant, which requires in turn an appropriated management of any activity connected with any taken period of a plant life starting from design and ending by the decided mode of decommissioning. The period between the first and the last payment for the activities connected with the existence of a plant could be defined as a life cycle of the plant. Such integrated approach requires considering the life cycle of the plant in a much broader sense than just operational life and is characterized by the variety of activities and their management represents in a whole a plant life management programme (PLIM). Therefore PLIM could be defined as an aggregate (totality) of technical, financial, economical and

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  8. Top-down design and verification methodology for analog mixed-signal integrated circuits

    NARCIS (Netherlands)

    Beviz, P.

    2016-01-01

    The current report contains the introduction of a novel Top-Down Design and Verification methodology for AMS integrated circuits. With the introduction of new design and verification flow, more reliable and efficient development of AMS ICs is possible. The assignment incorporated the research on the

  9. Integrated Assessment of Energy Policies: A Decomposition of Top-Down and Bottom-Up

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph (Univ. of Oldenburg (Germany)); Rutherford, Thomas F. (ETH Zuerich (Switzerland))

    2008-01-15

    The formulation of market equilibrium problems as mixed complementarity problems (MCP) permits integration of bottom-up programming models of the energy system into top-down general equilibrium models of the overall economy. Yet, in practise the MCP approach loses analytical tractability of income effects, when the energy system includes upper and lowrbounds on many decision variables . We therefore advocate the use of complementarity methods to solve only the top-down economic equilibrium model and employ quadratic programming to solve the underlying bottom-up energy supply model. A simple iterative procedure reconciles the equilibrium prices and quantities between both models.

  10. An Integrated Framework for Life Cycle Engineering

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Herrmann, Christoph; Kara, Sami

    2017-01-01

    Life Cycle Engineering (LCE) was introduced as a concept more than 24 years ago in order to address emerging concerns about environmental sustainability in engineering. A number of methods and tools have been introduced to operationalise the LCE concept, but since then, the scope of sustainability...... has broadened, and as a result, LCE has evolved in parallel with other disciplines with similar aims. Currently, in addition to LCE, there exist a number of concepts such as Industrial Ecology, Cleaner Production, Life Cycle Management (LCM), Industrial Symbiosis, and Circular Economy. As a result......-down and bottom-up approach, the framework establishes a relationship between LCE and the other concepts and positions them relative to the planetary boundaries and the concept of absolute environmental sustainability. (C) 2017 The Authors. Published by Elsevier B.V....

  11. Historical Business Cycles and Market Integration: Evidence from Comovement

    NARCIS (Netherlands)

    Uebele, Martin

    2009-01-01

    This thesis addresses historical business cycles and market integration in Europe and America in the 19th and 20th centuries. For the analysis of historical business cycles, the widely used methodology of historical national accounting is complemented with a dynamic factor model that allows for

  12. Effective Integration of Life Cycle Engineering in Education

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeus, Marten E.; Lutters, Diederick

    2015-01-01

    In practice, applying life cycle engineering in product design and development requires an integrated approach, because of the many stakeholders and variables (e.g. cost, environmental impact, energy, safety, quality) involved in a complete product life cycle. In educating young engineers, the same

  13. Assessment of structure integrity of top-guide on Chinshan plant

    International Nuclear Information System (INIS)

    Lin, Shin-Way; Wang, Li-Hua; Wang, M.T.; Huang, S.M.

    1991-01-01

    The BWR top-guide structure is considered potentially susceptible to irradiation assisted stress corrosion cracking (IASCC). If the crack initiated and propagated, this would raise a concern for the integrity and function of the guide structure. To understand the possible impact and to establish a guideline for in-service inspection and subsequent repair, an attempt to determine the critical locations and length of cracks is made in this paper. A finite element beam model of the top-guide of Chinshan BWR-4 design is developed based on the as-built design drawing. In order to simulate the clamping effect of the peripheral ring, the model structure is further modified with frame to approach a C-like beam as opposed to the single-ring modeling used by the previous researcher. The results show that the most critical cracks propagated downward from the slot in a top-slotted beam and were mainly located at a beam intersection near the periphery of the top-guide. Although the fluence in the periphery region is lower than the central region, the IASCC can still occur since its fluence exceed the threshold IASSC level. Due to critical importance in the structure integrity of the top-guide, special attention should be paid when examining defects in these locations. Finally in this study, the tearing mode (mode III) is found to be the dominant fracture mode, instead of the normally expected tensile mode (mode I). Both the map of critical crack location and the discussion of dominant fracture mode will be presented in this paper. (author)

  14. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant.

  15. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical University of Denmark, Dept. of Mechanical Engineering, Thermal Energy System, Building 402, 2800 Kgs, Lyngby (Denmark)

    2010-12-15

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant. (author)

  16. Integral benchmarks with reference to thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2003-01-01

    This is a power point presentation about the Indian participation in the CRP 'Evaluated Data for the Thorium-Uranium fuel cycle'. The plans and scope of the Indian participation are to provide selected integral experimental benchmarks for nuclear data validation, including Indian Thorium burn up benchmarks, post-irradiation examination studies, comparison of basic evaluated data files and analysis of selected benchmarks for Th-U fuel cycle

  17. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    Science.gov (United States)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  18. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  19. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  20. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  1. Integrating the bottom-up and top-down approach to energy economy modelling. The case of Denmark

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper presents results from an integration project covering Danish models based on bottom-up and top-down approaches to energy]economy modelling. The purpose of the project was to identify theoretical and methodological problems for integrating existing models for Denmark and to implement...... an integration of the models. The integration was established through a number of links between energy bottom-up modules and a macroeconomic model. In this integrated model it is possible to analyse both top-down instruments, such as taxes along with bottom-up instruments, such as regulation of technology...

  2. Integrated fuel-cycle models for fast breeder reactors

    International Nuclear Information System (INIS)

    Ott, K.O.; Maudlin, P.J.

    1981-01-01

    Breeder-reactor fuel-cycle analysis can be divided into four different areas or categories. The first category concerns questions about the spatial variation of the fuel composition for single loading intervals. Questions of the variations in the fuel composition over several cycles represent a second category. Third, there is a need for a determination of the breeding capability of the reactor. The fourth category concerns the investigation of breeding and long-term fuel logistics. Two fuel-cycle models used to answer questions in the third and fourth area are presented. The space- and time-dependent actinide balance, coupled with criticality and fuel-management constraints, is the basis for both the Discontinuous Integrated Fuel-Cycle Model and the Continuous Integrated Fuel-Cycle Model. The results of the continuous model are compared with results obtained from detailed two-dimensional space and multigroup depletion calculations. The continuous model yields nearly the same results as the detailed calculation, and this is with a comparatively insignificant fraction of the computational effort needed for the detailed calculation. Thus, the integrated model presented is an accurate tool for answering questions concerning reactor breeding capability and long-term fuel logistics. (author)

  3. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  4. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  5. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  6. Preparations for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.

    1989-01-01

    Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration

  7. Combined cycle power plant with integrated low temperature heat (LOTHECO)

    International Nuclear Information System (INIS)

    Kakaras, E.; Doukelis, A.; Leithner, R.; Aronis, N.

    2004-01-01

    The major driver to enhance the efficiency of the simple gas turbine cycle has been the increase in process conditions through advancements in materials and cooling methods. Thermodynamic cycle developments or cycle integration are among the possible ways to further enhance performance. The current paper presents the possibilities and advantages from the LOTHECO natural gas-fired combined cycle concept. In the LOTHECO cycle, low-temperature waste heat or solar heat is used for the evaporation of injected water droplets in the compressed air entering the gas turbine's combustion chamber. Following a description of this innovative cycle, its advantages are demonstrated by comparison between different gas turbine power generation systems for small and large-scale applications, including thermodynamic and economic analysis. A commercial gas turbine (ALSTOM GT10C) has been selected and computed with the heat mass balance program ENBIPRO. The results from the energy analysis are presented and the features of each concept are discussed. In addition, the exergy analysis provides information on the irreversibilities of each process and suggested improvements. Finally, the economic analysis reveals that the combined cycle plant with a heavy-duty gas turbine is the most efficient and economic way to produce electricity at base load. However, on a smaller scale, innovative designs, such as the LOTHECO concept, are required to reach the same level of performance at feasible costs

  8. Thermodynamic analysis of an integrated solid oxide fuel cell cycle with a rankine cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of solid oxide fuel cells (SOFC) on the top of a steam turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydro-carbons. The pre-treated fuel enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a heat recovery steam generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67% are achieved which is considerably higher than the conventional combined cycles (CC). Both adiabatic steam reformer (ASR) and catalytic partial oxidation (CPO) fuel pre-reformer reactors are considered in this investigation.

  9. Pressure cycling monitoring helps ensure the integrity of energy pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peter; Lawrence, Doug; Keane, Sean; Ironside, Scott; Sutton, Aaron [Enbridge Pipelines Inc., Edmonton, AB (Canada)

    2010-07-01

    Enbridge Pipelines Inc. undertook a pressure cycling monitoring (PCM) program to see how pressure cycling severity (PCS) changes during line operations. The main purpose of this program is to make sure the integrity assessment interval is valid and to identify changes in operations that cause fatigue damage. The estimated fatigue life is obtained through fatigue analysis, which is based on Paris Law and uses certain data such as the operating pressure data from Enbridge's SCADA system. It serves as a measure of the PCS. When applied in an integrity management program, PCM helps maintain the integrity of pipelines by pinpointing segments whose operations have changed significantly. Among useful conclusions, it was found that a comparison between crack threat susceptibility indicators and PCS fluctuations help identify a change to crack threat susceptibility; also, the program helps identify notable changes to PCS that are caused by certain operational practices.

  10. Integrating the fuel cycle at IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1992-01-01

    During the past few years Argonne National Laboratory has been developing the Integral Fast Reactor (IFR), an advanced liquid metal reactor. Much of the IFR technology stems from Argonne National Laboratory's experience with the Experimental Breeder Reactors, EBR 1 and 2. The unique aspect of EBR 2 is its success with high-burnup metallic fuel. Irradiation tests of the new U-Pu-Zr fuel for the IFR have now reached a burnup level of 20%. The results to date have demonstrated excellent performance characteristics of the metallic fuel in both steady-state and off-normal operating conditions. EBR 2 is now fully loaded with the IFR fuel alloys and fuel performance data are being generated. In turn, metallic fuel becomes the key factor in achieving a high degree of passive safety in the IFR. These characteristics were demonstrated dramatically by two landmark tests conducted at EBR 2 in 1986: loss of flow without scram; and loss of heat sink without scram. They demonstrated that the combination of high heat conductivity of metallic fuel and thermal inertia of the large sodium pool can shut the reactor down during potentially severe accidents without depending on human intervention or the operation of active engineered components. The IFR metallic fuel is also the key factor in compact pyroprocessing. Pyroprocessing uses high temperatures, molten salt and metal solvents to process metal fuels. The result is suitable for fabrication into new fuel elements. Feasibility studies are to be conducted into the recycling of actinides from light water reactor spent fuel in the IFR using the pyroprocessing approach to extract the actinides (author)

  11. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    Science.gov (United States)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved

  12. Optimal integration of organic Rankine cycles with industrial processes

    International Nuclear Information System (INIS)

    Hipólito-Valencia, Brígido J.; Rubio-Castro, Eusiel; Ponce-Ortega, José M.; Serna-González, Medardo; Nápoles-Rivera, Fabricio; El-Halwagi, Mahmoud M.

    2013-01-01

    Highlights: • An optimization approach for heat integration is proposed. • A new general superstructure for heat integration is proposed. • Heat process streams are simultaneously integrated with an organic Rankine cycle. • Better results can be obtained respect to other previously reported methodologies. - Abstract: This paper presents a procedure for simultaneously handling the problem of optimal integration of regenerative organic Rankine cycles (ORCs) with overall processes. ORCs may allow the recovery of an important fraction of the low-temperature process excess heat (i.e., waste heat from industrial processes) in the form of mechanical energy. An integrated stagewise superstructure is proposed for representing the interconnections and interactions between the HEN and ORC for fixed data of process streams. Based on the integrated superstructure, the optimization problem is formulated as a mixed integer nonlinear programming problem to simultaneously account for the capital and operating costs including the revenue from the sale of the shaft power produced by the integrated system. The application of this method is illustrated with three example problems. Results show that the proposed procedure provides significantly better results than an earlier developed method for discovering optimal integrated systems using a sequential approach, due to the fact that it accounts simultaneously for the tradeoffs between the capital and operating costs as well as the sale of the produced energy. Also, the proposed method is an improvement over the previously reported methods for solving the synthesis problem of heat exchanger networks without the option of integration with an ORC (i.e., stand-alone heat exchanger networks)

  13. Understanding Coastal Carbon Cycling by Linking Top-Down and Bottom-Up Approaches

    Science.gov (United States)

    Barr, Jordan G.; Troxler, Tiffany G.; Najjar, Raymond G.

    2014-09-01

    The coastal zone, despite occupying a small fraction of the Earth's surface area, is an important component of the global carbon (C) cycle. Coastal wetlands, including mangrove forests, tidal marshes, and seagrass meadows, compose a domain of large reservoirs of biomass and soil C [Fourqurean et al., 2012; Donato et al., 2011; Pendleton et al., 2012; Regnier et al., 2013; Bauer et al., 2013]. These wetlands and their associated C reservoirs (2 to 25 petagrams C; best estimate of 7 petagrams C [Pendleton et al., 2012]) provide numerous ecosystem services and serve as key links between land and ocean.

  14. An integrated top-down and bottom-up strategy for characterization protein isoforms and modifications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Si; Tolic, Nikola; Tian, Zhixin; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2011-04-15

    Bottom-up and top-down strategies are two commonly used methods for mass spectrometry (MS) based protein identification; each method has its own advantages and disadvantages. In this chapter, we describe an integrated top-down and bottom-up approach facilitated by concurrent liquid chromatography-mass spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact protein profiling. The approach employs a high resolution reversed phase (RP) LC separation coupled with LC eluent fraction collection and concurrent on-line MS with a high field (12 Tesla) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer. Protein elusion profiles and tentative modified protein identification are made using detected intact protein mass in conjunction with bottom-up protein identifications from the enzymatic digestion and analysis of corresponding LC fractions. Specific proteins of biological interest are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an aliquot of the original collected LC fraction, an aliquot of which was also used for bottom-up analysis.

  15. Next-generation coal utilization technology development study. Environmentally-friendly coal combustion technology; topping cycles; Sekitan riyo jisedai gijutsu kaihatsu chosa. Kankyo chowagata sekitan nensho gijutsu bun`ya (topping nensho gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As a realistic measure to reduce environmental pollutants emitted from coal-fueled boilers, a developmental study was conducted of high-efficient combustion systems. In fiscal 1994, four types of topping cycles which are different in system structure and gasifier type were selected, and topping cycles assuming a 300MW-class power plant were trially designed. Further, an evaluation of adaptability of these systems was made, and an selection of the optimum system for the early development was made among the systems. As a result, the evaluation was obtained that `a system using air blown gasifier` is most suitable for conducting the next-stage research. In the element test on the topping combustion technology, collection was made of data of desulfurization activity, desulfurization oxidation mechanism and alkali metal behavior at the laboratory level, data of temperatures and gas concentration distribution in coal gasification, data of simulation of the gasifier reaction, and the other data. 262 figs., 66 tabs.

  16. The market outlook for integrated gasification combined cycle technology

    International Nuclear Information System (INIS)

    MacGregor, P.R.; Maslak, C.E.; Stoll, H.G.

    1991-01-01

    Integrated gasification combined cycle (IGCC) technology was developed in the 1970s and is now competitive with other coal fired technologies. Because it is a new technology, IGCC technology developments are continuing at a rapid pace and the trend in decreasing capital costs is similar to the same trend seen during the early decades of simple cycle gas turbines. Consequently, IGCC technology is expected to be even more economical during the mid and late 1990s than it is today. The objective of this paper is to provide an examination of the basic economic principles of IGCC technology and to illustrate the extent to which this technology is a viable least-cost generation addition technology. Moreover, key reliability and emissions issues are addressed in relation to the technology alternatives. This paper is organized to first review the IGCC technology and to contrast its reliability, emission, performance and cost data with the three key commercially proven technologies: simple cycle combustion turbines, combined cycle plants, and coal-fired steam plants. Economic screening curves are used to illustrate the need for a balanced generation expansion mix of technologies. The regional market opportunity for coal fueled technology orders in the US from 1992 through 2005 is presented

  17. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  18. Industrial integration of the fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1983-01-01

    The power-reactor construction program in Argentina for the period 1976-1985 is described on the basis of which the nuclear-fuel requirements have been determined. Activities connected with the fuel cycle commenced in 1950 in Argentina with the prospection and working of uranium deposits. On the basis of the nuclear power program described, plans have been drawn up for the establishment of the industrial plants that will be needed to ensure the domestic supply of fuel. The demand for fuel is correlated with the availability of uranium resoures and it is shown to be desirable from the technical, economic and industrial point of view to integrate the front end of the fuel cycle, keeping the irradiation aspects and the tail end at the development level. Progress made in this field and current programs covering exploration, concentrate production, nuclear purification, conversion to uranium dioxide, production of special alloys and fuel element fabrication are described

  19. Industrial integration of the fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The paper describes the power reactor construction programme in Argentina for the period 1976-1985, on the basis of which the nuclear fuel requirements have been determined. Activities connected with the fuel cycle commenced in 1950 in Argentina with the prospection and working of uranium deposits. On the basis of the nuclear power programme described, plans have been drawn up for the establishment of the industrial plants that will be needed to ensure the domestic supply of fuel. The demand for fuel is correlated with the availability of uranium resources and it is shown to be desirable from the technical, economic and industrial point of view to integrate the front end of the fuel cycle, keeping the irradiation aspects and the tail end at the development level. The authors report the progress that has been made in this field and describe current programmes covering prospection, concentrate production, nuclear purification, conversion to uranium dioxide, production of special alloys and fuel element fabrication. (author)

  20. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  1. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    International Nuclear Information System (INIS)

    Iosif, Ana-Maria; Hanrot, Francois; Ablitzer, Denis

    2008-01-01

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes

  2. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  3. Integrated design strategy for product life-cycle management

    Science.gov (United States)

    Johnson, G. Patrick

    2001-02-01

    Two major trends suggest new considerations for environmentally conscious manufacturing (ECM) -- the continuation of dematerialization and the growing trend toward goods becoming services. A diversity of existing research could be integrated around those trends in ways that can enhance ECM. Major research-based achievements in information, computation, and communications systems, sophisticated and inexpensive sensing capabilities, highly automated and precise manufacturing technologies, and new materials continue to drive the phenomenon of dematerialization - the reduction of the material and energy content of per capita GDP. Knowledge is also growing about the sociology, economics, mathematics, management and organization of complex socio-economic systems. And that has driven a trend towards goods evolving into services. But even with these significant trends, the value of material, energy, information and human resources incorporated into the manufacture, use and disposal of modern products and services often far exceeds the benefits realized. Multi-disciplinary research integrating these drivers with advances in ECM concepts could be the basis for a new strategy of production. It is argued that a strategy of integrating information resources with physical and human resources over product life cycles, together with considering products as streams of service over time, could lead to significant economic payoff. That strategy leads to an overall design concept to minimize costs of all resources over the product life cycle to more fully capture benefits of all resources incorporated into modern products. It is possible by including life cycle monitoring, periodic component replacement, re-manufacture, salvage and human factor skill enhancement into initial design.

  4. Integrated gasification combined cycle for acid rain control

    Energy Technology Data Exchange (ETDEWEB)

    Simbeck, D.R.; Dickenson, R.L.

    1986-10-01

    The role of integrated coal gasification combined-cycle power plants in the abatement of emission of SO/sub 2/ and NO/sub 2/ which lead to acid rain is discussed. The economics of this IGCC approach are assessed for a nominal 500 MW plant size. Phased construction of IGCC plants is recommended as a means of reducing SO/sub 2/ and NO/sub x/ emissions noting that high-sulfur coals could continue to be used. It is also noted that phased construction IGCC is the only acid rain control technology that greatly reduces NO/sub x/. 17 references.

  5. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  6. The FIT Model - Fuel-cycle Integration and Tradeoffs

    International Nuclear Information System (INIS)

    Piet, Steven J.; Soelberg, Nick R.; Bays, Samuel E.; Pereira, Candido; Pincock, Layne F.; Shaber, Eric L.; Teague, Melissa C.; Teske, Gregory M.; Vedros, Kurt G.

    2010-01-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria - fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the 'system losses study' team that developed it (Shropshire2009, Piet2010) are an initial step by the FCR and D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R and D needs and set longer-term goals. The question originally posed to the 'system losses study' was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for 'minimum fuel treatment' approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  7. Waste management in IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.; Battles, J.E.

    1991-01-01

    The fuel cycle of the Integral Fast Reactor (IFR) has important potential advantage for the management of high-level wastes. This sodium-cooled, fast reactor will use metal fuels that are reprocessed by pyrochemical methods to recover uranium, plutonium, and the minor actinides from spent core and blanket fuel. More than 99% of all transuranic (TRU) elements will be recovered and returned to the reactor, where they are efficiently burned. The pyrochemical processes being developed to treat the high-level process wastes are capable of producing waste forms with low TRU contents, which should be easier to dispose of. However, the IFR waste forms present new licensing issues because they will contain chloride salts and metal alloys rather than glass or ceramic. These fuel processing and waste treatment methods can also handle TRU-rich materials recovered from light-water reactors and offer the possibility of efficiently and productively consuming these fuel materials in future power reactors

  8. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  9. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  10. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  11. Integration between a thermophotovoltaic generator and an Organic Rankine Cycle

    International Nuclear Information System (INIS)

    De Pascale, Andrea; Ferrari, Claudio; Melino, Francesco; Morini, Mirko; Pinelli, Michele

    2012-01-01

    Highlights: ► A new energy system comprising a Thermo-Photo-Voltaic and Organic Rankine Cycle. ► An analytical model to calculate the performance of the system is introduced. ► The system shows promising results in terms of CHP performance. -- Abstract: The constant increase in energy need and the growing attention to the related environmental impact have given a boost to the development of new strategies in order to reduce the primary energy consumption and to improve its utilization. One of the possible strategies for achieving this aim is Combined Heat and Power (CHP) specially if coupled with the concept of on-site generation (also known as distributed generation). These approaches allow the reduction of fuel consumption and pollutant emissions and the increase of security in energy supply. This paper introduces the Thermophotovoltaic Organic Rankine Cycle Integrated System (TORCIS), an energy system integrating a ThermoPhotoVoltaic generator (TPV) and an Organic Rankine Cycle (ORC). This study represents the start-up of a research program which involves three research teams from IMEM – National Research Council, ENDIF – University of Ferrara and DIEM – University of Bologna. The aim of this research is the complete definition and the pre-prototyping characterization of this system covering all the unresolved issues in this field. More specifically, TPV is a system to convert the radiation emitted from an artificial heat source (i.e. the combustion of fuel) into electrical energy by the use of photovoltaic cells. In this system, the produced electrical power is strictly connected to the thermal one as their ratio is almost constant and cannot be changed without severe loss in performance. The coupling between TPV and ORC allows this limitation to be overcome by the realization of a CHP system which can be regulated with a large degree of freedom changing the ratio between the produced electrical and thermal power. In this study a thermodynamic

  12. Technical comparison between Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Andres Silva; Venturini, Osvaldo Jose; Lora, Electo Eduardo Silva [Federal University of Itajuba - UNIFEI, MG (Brazil). Excellence Group in Thermal Power and Distributed Generation - NEST], e-mails: osvaldo@unifei.edu.br, electo@unifei.edu.br

    2010-07-01

    Among the emerging clean coal technologies for power generation, Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) systems are receiving considerable attention as a potentially attractive option to reduce the emissions of greenhouse gases (GHG). The main reason is because these systems has high efficiency and low emissions in comparison with traditional power generation plants. Currently in IGCC and NGCC systems at demonstration stage is been considered to implement CCS technology. CO{sub 2} emissions can be avoided in a gasification-based power plant because by transferring almost all carbon compounds to CO{sub 2} through the water gas shift (WGS) reaction, then removing the CO{sub 2} before it is diluted in the combustion stage. The aim of this study is to compare the technical performance of an IGCC system that uses Brazilian coal and petroleum coke as fuel with a NGCC system, with the same fixed output power of 450 MW. The first section of this paper presents the plant configurations of IGCC systems. The following section presents an analysis of NGCC technology. (author)

  13. Integrating repositories with fuel cycles: The airport authority model

    International Nuclear Information System (INIS)

    Forsberg, C.

    2012-01-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  14. Integrating repositories with fuel cycles: The airport authority model

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  15. Thermodynamic analysis of a novel integrated solar combined cycle

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Yang, Yongping

    2014-01-01

    Highlights: • A novel ISCC scheme with two-stage DSG fields has been proposed and analyzed. • HRSG and steam turbine working parameters have been optimized to match the solar integration. • New scheme exhibits higher solar shares in the power output and solar-to-electricity efficiency. • Thermodynamic performances between new and reference systems have been investigated and compared. - Abstract: Integrated solar combined cycle (ISCC) systems have become more and more popular due to their high fuel and solar energy utilization efficiencies. Conventional ISCC systems with direct steam generation (DSG) have only one-stage solar input. A novel ISCC with DSG system has been proposed and analyzed in this paper. The new system consists two-stage solar input, which would significantly increase solar share in the total power output. Moreover, how and where solar energy is input into ISCC system would have impact on the solar and system overall efficiencies, which have been analyzed in the paper. It has been found that using solar heat to supply latent heat for vaporization of feedwater would be superior to that to be used for sensible heating purposes (e.g. Superheating steam). The study shows that: (1) producing both the high- and low-pressure saturated steam in the DSG trough collector could be an efficient way to improve process and system performance; (2) for a given live steam pressure, the optimum secondary and reheat steam conditions could be matched to reach the highest system thermal efficiency and net solar-to-electricity efficiency; (3) the net solar-to-electricity efficiency could reach up to 30% in the novel two-stage ISCC system, higher than that in the one-stage ISCC power plant; (4) compared with the conventional combined cycle gas turbine (CCGT) power system, lower stack temperature could be achieved, owing to the elimination of the approach-temperature-difference constraint, resulting in better thermal match in the heat recovery steam generator

  16. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  17. Integrating Menstrual Cycle Data into The Smart Home

    DEFF Research Database (Denmark)

    Homewood, Sarah

    2017-01-01

    Menstrual cycle data gathered through self-tracking apps are increasingly used to understand, control and monitor bodies that menstruate. This work-in-progress explores the effects of representing menstrual cycle data within the smart home through critical design and planned fieldwork. Themes...... presented in this paper include the taboo of menstrual cycles, the question of what kinds of data do we represent in the smart home and menstrual cycle tracking technologies as examples of affective computing....

  18. Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration

    Directory of Open Access Journals (Sweden)

    Antonio Rovira

    2018-04-01

    Full Text Available This paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs using different solar concentration technologies: parabolic trough collectors (PTC, linear Fresnel reflectors (LFR and central tower receiver (CT. Each solar technology (i.e. PTC, LFR and CT is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG, increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.

  19. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  20. [Integrated evaluation of circular agriculture system: a life cycle perspective].

    Science.gov (United States)

    Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng

    2010-11-01

    For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.

  1. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  2. GHGT-10 : Assessing the integrity of fault- and top seals at CO2 storage sites

    NARCIS (Netherlands)

    Orlic, B.; Heege J.H. ter; Wassing, B.

    2011-01-01

    Induced stress changes due to CO2 injection into geological reservoirs can mechanically damage bounding fault- and top seals creating preferential pathways for CO2 migration from the containment or trigger existing faults causing seismic activity at storage sites. In this paper we present

  3. Productivity of a building-integrated roof top greenhouse in a Mediterranean climate

    NARCIS (Netherlands)

    Montero, J.I.; Baeza Romero, Esteban; Heuvelink, E.; Rieradevall, J.; Muñoz, P.; Ercilla, M.; Stanghellini, C.

    2017-01-01

    Urban Agriculture (UA) is an emerging field of agricultural production aimed to improve food security and the resilience of cities and to improve the environmental, social, and economic sustainability of urban areas. One of the options of UA are roof top greenhouses (RTGs), which are greenhouses

  4. Pre-Combustion Carbondioxide Capture in Integrated Gasification Combined Cycles

    Directory of Open Access Journals (Sweden)

    M. Zeki YILMAZOĞLU

    2010-02-01

    Full Text Available Thermal power plants have a significant place big proportion in the production of electric energy. Thermal power plants are the systems which converts heat energy to mechanical energy and also mechanical energy to electrical energy. Heat energy is obtained from combustion process and as a result of this, some harmful emissions, like CO2, which are the reason for global warming, are released to atmosphere. The contribution of carbondioxide to global warming has been exposed by the previous researchs. Due to this fact, clean energy technologies are growing rapidly all around the world. Coal is generally used in power plants and when compared to other fossil energy sources unit electricity production cost is less than others. When reserve rate is taken into account, coal may be converted to energy in a more efficient and cleaner way. The aim for using the clean coal technologies are to eradicate the harmful emissions of coal and to store the carbondioxide, orginated from combustion, in different forms. In line with this aim, carbondioxide may be captured by either pre-combustion, by O2/CO2 recycling combustion systems or by post combustion. The integrated gasification combined cycles (IGCC are available in pre-combustion capture systems, whereas in O2/CO2 recycling combustion systems there are ultrasuper critical boiler technologies and finally flue gas washing systems by amines exists in post combustion systems. In this study, a pre-combustion CO2 capture process via oxygen blown gasifiers is compared with a conventional power plant in terms of CO2 emissions. Captured carbondioxide quantity has been presented as a result of the calculations made throughout the study.

  5. Economic prospects of the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    The IFR fuel cycle based on pyroprocessing involves only few operational steps and the batch-oriented process equipment systems are compact. This results in major cost reductions in all of three areas of reprocessing, fabrication, and waste treatment. This document discusses the economic aspects of this fuel cycle

  6. Integrated gasification and Cu-Cl cycle for trigeneration of hydrogen, steam and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Aghahosseini, S; Dincer, I; Naterer, G F [University of Ontario, Oshawa, ON (Canada). Institute of Technology

    2011-02-15

    This paper develops and analyzes an integrated process model of an Integrated Gasification Combined Cycle (IGCC) and a thermochemical copper-chlorine (Cu-Cl) cycle for trigeneration of hydrogen, steam and electricity. The process model is developed with Aspen HYSYS software. By using oxygen instead of air for the gasification process, where oxygen is provided by the integrated Cu-Cl cycle, it is found that the hydrogen content of produced syngas increases by about 20%, due to improvement of the gasification combustion efficiency and reduction of syngas NOx emissions. Moreover, about 60% of external heat required for the integrated Cu-Cl cycle can be provided by the IGCC plant, with minor modifications of the steam cycle, and a slight decrease of IGCC overall efficiency. Integration of gasification and thermochemical hydrogen production can provide significant improvements in the overall hydrogen, steam and electricity output, when compared against the processes each operating separately and independently of each other.

  7. Integrated thermal analysis of top-shield and reactor vault of Indian FBR-600

    International Nuclear Information System (INIS)

    Rajendrakumar, M.; Velusamy, K.; Selvaraj, P.

    2015-01-01

    The design for next generation fast breeder reactors (FBR-600) has been commenced with enhanced safety and improved economy as the main targets. The Top Shield (TS) of Prototype Fast Breeder Reactor (PFBR) is a box type structure consisting of Roof Slab (RS), Small Rotatable Plug (SRP), and Large Rotatable Plug (LRP). The large box type structure with many penetrations posed difficulties during manufacturing. Because of the required high load carrying capabilities, a dome shaped thick plate roof slab is conceived for FBR-600. Main Vessel (MV) which holds the primary sodium and associated components is welded to the RS through a triple joint. Reactor vault (RV) is a thick concrete structure which supports MV and Safety Vessel (SV). The temperature of RV concrete has to be less than 338 K (65°C) under normal operating heat loads (full and part load conditions) and less than 363 K (90°C) under Safety Grade Decay Heat Removal (SGDHR) conditions with one cooling loop in service. The temperature in the component penetrations of the RS should be greater than 120°C to avoid sodium aerosol deposition. Similarly, the temperature of the LRP and SRP has to be ∼120°C to protect the elastomeric seals provided to these structures. Further, the heat load to RV transferred by direct conduction by roof slab support has to be minimum. To meet these conflicting thermal requirements, detailed multi-physics CFD calculations have been performed to finalize, (i) the insulation requirements on the top of roof slab, (ii) number and position of reflective insulation plates below the bottom plate of roof slab/rotating plugs, (iii) air flow rate for various zones of the top shield and (iv) water flow rate and pitch of water cooling pipes for the reactor vault. (author)

  8. Integrating Top-down and Bottom-up Cybersecurity Guidance using XML.

    Science.gov (United States)

    Lubell, Joshua

    2016-08-01

    This paper describes a markup-based approach for synthesizing disparate information sources and discusses a software implementation of the approach. The implementation makes it easier for people to use two complementary, but differently structured, guidance specifications together: the (top-down) Cybersecurity Framework and the (bottom-up) National Institute of Standards and Technology Special Publication 800-53 security control catalog. An example scenario demonstrates how the software implementation can help a security professional select the appropriate safeguards for restricting unauthorized access to an Industrial Control System. The implementation and example show the benefits of this approach and suggest its potential application to disciplines other than cybersecurity.

  9. Integrating Top-down and Bottom-up Cybersecurity Guidance using XML

    Science.gov (United States)

    Lubell, Joshua

    2016-01-01

    This paper describes a markup-based approach for synthesizing disparate information sources and discusses a software implementation of the approach. The implementation makes it easier for people to use two complementary, but differently structured, guidance specifications together: the (top-down) Cybersecurity Framework and the (bottom-up) National Institute of Standards and Technology Special Publication 800-53 security control catalog. An example scenario demonstrates how the software implementation can help a security professional select the appropriate safeguards for restricting unauthorized access to an Industrial Control System. The implementation and example show the benefits of this approach and suggest its potential application to disciplines other than cybersecurity. PMID:27795810

  10. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  11. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  12. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  13. The Ideological Divide Concerning Climate Change Opinion: Integrating Top-Down and Bottom-Up Approaches

    Directory of Open Access Journals (Sweden)

    Jennifer eJacquet

    2014-12-01

    Full Text Available The United States wields disproportionate global influence in terms of carbon dioxide emissions and international climate policy. This renders it an especially important context in which to examine the interplay among social, psychological, and political factors in shaping attitudes and behaviors about climate change. In this article, we review the emerging literature addressing the liberal-conservative divide in the U.S. with respect to thought, communication, and action concerning climate change. Because of its theoretical and practical significance, we focus on the motivational basis for skepticism and inaction on the part of some, including top-down institutional forces, such as corporate strategy, and bottom-up psychological factors, such as ego, group, and system justification. Although more research is needed to elucidate fully the social, cognitive, and motivational bases of environmental attitudes and behavior, a great deal has been learned in just a few years by focusing on specific ideological factors in addition to general psychological principles.

  14. Integration of the military and civilian nuclear fuel cycles in Russia

    International Nuclear Information System (INIS)

    Bukharin, O.

    1994-01-01

    This paper describes the close integration of the civil and military nuclear fuel cycles in Russia. Individual processing facilities, as well as the flow of nuclear material, are described as they existed in the 1980s and as they exist today. The end of the Cold War and the breakup of the Soviet Union weakened the ties between the two nuclear fuel cycles, but did not separate them. Separation of the military and civilian nuclear fuel cycles would facilitate Russia's integration into the world's nuclear fuel cycle and its participation in international non-proliferation regimes

  15. Gasification integrated to combined cycles; Gasificacion integrada a ciclos combinados

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez M, Manuel F; Alcaraz C, Agustin M [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    The mineral coal is one of the most abundant fuels in the planet, but it has important amounts of sulfur and ashes that make difficult their use. On the other hand, many countries at the present time prevent to use the fuel oil as combustible with conventional technologies due to the metal and sulfur contents. Finally, in the new schemes of oil refinement it is anticipated to use the coking to take advantage of the barrel bottoms. The remainder product of this process, known as refinery coke, has a low commercial value, a high calorific power and high sulfur content and metals. The gasification has been developed in the last the two decades, in the highly industrialized countries, as an alternative for the efficient and clean generation of electricity from dirty fuels, as well as for obtaining certain fuels in places where access to petroleum is not available, but to the coal. This technology fulfills the strictest regulations of the world in what polluting emissions refers and it is the only solution, next to the fluidized beds, for the problems that present some fuels that are difficult to burn with conventional technologies, as the mineral coal, the petroleum coke and even the liquid remainders of the refinement. With base in the former, it is possible to think about the integration of this technology to a combined cycle plant for the generation of electricity or to a refinery generating steam, electrical energy, hydrogen and other consumables at a competitive cost, in such a way that the problems of handling and storage of the remainders are solved; on the other hand the use of the primary power resources in the country is maximized. [Spanish] El carbon mineral es uno de los combustibles mas abundantes en el planeta, pero posee cantidades importantes de azufre y cenizas que dificultan su utilizacion. Por otra parte, muchos paises en la actualidad impiden utilizar el combustoleo como combustible para tecnologias convencionales debido a los contenidos de azufre y

  16. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks

    Directory of Open Access Journals (Sweden)

    Gorka Zamora-López

    2010-03-01

    Full Text Available Sensory stimuli entering the nervous system follow particular paths of processing, typically separated (segregated from the paths of other modal information. However, sensory perception, awareness and cognition emerge from the combination of information (integration. The corticocortical networks of cats and macaque monkeys display three prominent characteristics: (i modular organisation (facilitating the segregation, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Here, we study in detail the organisation and potential function of the cortical hubs by graph analysis and information theoretical methods. We find that the cortical hubs form a spatially delocalised, but topologically central module with the capacity to integrate multisensory information in a collaborative manner. With this, we resolve the underlying anatomical substrate that supports the simultaneous capacity of the cortex to segregate and to integrate multisensory information.

  17. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  18. Reliability-Weighted Integration of Audiovisual Signals Can Be Modulated by Top-down Attention

    Science.gov (United States)

    Noppeney, Uta

    2018-01-01

    Abstract Behaviorally, it is well established that human observers integrate signals near-optimally weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. In a spatial ventriloquist paradigm, participants were presented with auditory, visual, and audiovisual signals and reported the location of the auditory or the visual signal. Combining psychophysics, multivariate functional MRI (fMRI) decoding, and models of maximum likelihood estimation (MLE), we characterized the computational operations underlying audiovisual integration at distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric functions to participants’ localization responses. Likewise, we estimated the neural weights by fitting neurometric functions to spatial locations decoded from regional fMRI activation patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly the spatial location of the signal component of a region’s preferred auditory (or visual) modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights and the variance of the spatial representations depended not only on the sensory reliabilities as predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., visual vs. auditory). These results suggest that audiovisual integration is not exclusively determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations to guide behavioral responses (e.g., localization and orienting). PMID:29527567

  19. Thermodynamic and economic analysis on geothermal integrated combined-cycle power plants

    International Nuclear Information System (INIS)

    Bettocchi, R.; Cantore, G.; Negri di Montenegro, G.; Gadda, E.

    1992-01-01

    This paper considers geothermal integrated power plants obtained matching a geothermal plant with, a two pressure level combined plant. The purpose of the paper is the evaluation of thermodynamic and economic aspects on geothermal integrated combined-cycle power plant and a comparison with conventional solutions. The results show that the integrated combined plant power is greater than the sum of combined cycle and geothermal plant powers considered separately and that the integrated plant can offer economic benefits reaching the 16% of the total capital required

  20. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    Science.gov (United States)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  1. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    Science.gov (United States)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  2. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.

    Science.gov (United States)

    Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun

    2017-10-25

    Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study

  3. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions

  4. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs

  5. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. (author)

  6. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs.

  7. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1993-03-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  8. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  9. IT risk management disclosure in the integrated reports of the top 40 listed companies on the JSE limited

    Directory of Open Access Journals (Sweden)

    Ben Marx

    2017-07-01

    Full Text Available Information Technology (IT has become an integral part of virtually all modern day organisations. The advent of IT has given rise to numerous benefits which increase productivity and efficiency in the workplace, however, IT also brings with it significant risks that can have an impact on an organisation’s ability to function as a going concern. Organisations, especially those listed on the Johannesburg Stock Exchange (JSE, are required to submit an Integrated Report (IR on an annual basis in which they indicate how they used the resources at their disposal to create value for the organisation and its stakeholders during the year under review. The IR is also a forward-looking document, as opposed to the traditional, backward-looking reports. The purpose of this paper is to determine to what extent IT Risk and IT Risk Management are disclosed in the IR’s of the Top 40 Listed Companies on the JSE. It further aims to determine whether IT Risks are included as material risk in the entity’s risk statements of the Integrated Report, and whether proper explanations are provided on how the materiality of the risks are determined and dealt with. This is done by means of an empirical study consisting of a content analysis of the IRs of the Top 40 listed companies on the JSE. The results of the analysis indicates that more than half of the companies included IT risk as part of their material risks and outlined appropriate and detailed processes that were followed by the company to manage those IT risks. The findings of the study accordingly support the need for communicating significant risks and the management thereof to stakeholders as part of the integrated nature of governance of entities. However, it is disconcerting that some companies are not doing this, and accordingly are not realising the need for communicating significant matters to their stakeholders and the value that informative and credible reporting will bring to an entity

  10. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches.

    Science.gov (United States)

    Petras, Daniel; Heiss, Paul; Süssmuth, Roderich D; Calvete, Juan J

    2015-06-05

    We report on the first application of top-down mass spectrometry in snake venomics. De novo sequence tags generated by, and ProSight Lite supported analysis of, combined collisional based dissotiations (CID and HCD) recorded in a hybrid LTQ Orbitrap instrument in data-dependent mode identified a number of proteins from different toxin families, namely, 11 three-finger toxins (7-7.9 kDa), a Kunitz-type inhibitor (6.3 kDa), ohanin (11.9 kDa), a novel phospholipase A2 molecule (13.8 kDa), and the cysteine-rich secretory protein (CRISP) ophanin (25 kDa) from Indonesian king cobra venom. Complementary bottom-up MS/MS analyses contributed to the completion of a locus-resolved venom phenotypic map for Ophiophagus hannah, the world's longest venomous snake and a species of medical concern across its wide distribution range in forests from India to Southeast Asia. Its venom composition, comprising 32-35 proteins/peptides from 10 protein families, is dominated by α-neurotoxins and convincingly explains the main neurotoxic effects of human envenoming caused by king cobra bite. The integration of efficient chromatographic separation of the venom's components and locus-resolved toxin identification through top-down and bottom-up MS/MS-based species-specific database searching and de novo sequencing holds promise that the future will be bright for the field of venom research.

  11. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    Science.gov (United States)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  12. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe–Strogatz integrability

    International Nuclear Information System (INIS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-01-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations. (letter)

  13. Integration of top-down and bottom-up information for audio organization and retrieval

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand

    The increasing availability of digital audio and music calls for methods and systems to analyse and organize these digital objects. This thesis investigates three elements related to such systems focusing on the ability to represent and elicit the user's view on the multimedia object and the system...... output. The aim is to provide organization and processing, which aligns with the understanding and needs of the users. Audio and music is often characterized by the large amount of heterogenous information. The rst aspect investigated is the integration of such multi-variate and multi-modal information...... (indirect scaling). Inference is performed by analytical and simulation based methods, including the Laplace approximation and expectation propagation. In order to minimize the cost of the often expensive and lengthly experimentation, sequential experiment design or active learning is supported. The setup...

  14. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  15. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.

    2014-01-01

    Highlights: • As the solar irradiation increases, the exergetic efficiency increases. • The R134a combined cycle has best exergetic performance, 26%. • The R600a combined cycle has the lowest exergetic efficiency, 20%. • The main source of exergy destruction is the solar collector. • There is an exergetic improvement potential of 75% in the systems considered. - Abstract: In this paper, detailed exergy analysis of selected thermal power systems driven by parabolic trough solar collectors (PTSCs) is presented. The power is produced using either a steam Rankine cycle (SRC) or a combined cycle, in which the SRC is the topping cycle and an organic Rankine cycle (ORC) is the bottoming cycle. Seven refrigerants for the ORC were examined: R134a, R152a, R290, R407c, R600, R600a, and ammonia. Key exergetic parameters were examined: exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential. For all the cases considered it was revealed that as the solar irradiation increases, the exergetic efficiency increases. Among the combined cycles examined, the R134a combined cycle demonstrates the best exergetic performance with a maximum exergetic efficiency of 26% followed by the R152a combined cycle with an exergetic efficiency of 25%. Alternatively, the R600a combined cycle has the lowest exergetic efficiency, 20–21%. This study reveals that the main source of exergy destruction is the solar collector where more than 50% of inlet exergy is destructed, or in other words more than 70% of the total destructed exergy. In addition, more than 13% of the inlet exergy is destructed in the evaporator which is equivalent to around 19% of the destructed exergy. Finally, this study reveals that there is an exergetic improvement potential of 75% in the systems considered

  16. The UK transport carbon model: An integrated life cycle approach to explore low carbon futures

    International Nuclear Information System (INIS)

    Brand, Christian; Tran, Martino; Anable, Jillian

    2012-01-01

    Current debate focuses on the need for the transport sector to contribute to more ambitious carbon emission reduction targets. In the UK, various macro-economic and energy system wide, top-down models are used to explore the potential for energy demand and carbon emissions reduction in the transport sector. These models can lack the bottom-up, sectoral detail needed to simulate the effects of integrated demand and supply-side policy strategies to reduce emissions. Bridging the gap between short-term forecasting and long-term scenario “models”, this paper introduces a newly developed strategic transport, energy, emissions and environmental impacts model, the UK Transport Carbon Model (UKTCM). The UKTCM covers the range of transport–energy–environment issues from socio-economic and policy influences on energy demand reduction through to life cycle carbon emissions and external costs. The model is demonstrated in this paper by presenting the results of three single policies and one policy package scenario. Limitations of the model are also discussed. Developed under the auspices of the UK Energy Research Centre (UKERC) the UKTCM can be used to develop transport policy scenarios that explore the full range of technological, fiscal, regulatory and behavioural change policy interventions to meet UK climate change and energy security goals. - Research highlights: ►New strategic transport, energy, emissions and environmental impacts model. ►Tool to develop and analyse full consequences of multiple scenarios of transport policy packages. ►Novel approach to modelling demand for new vehicles by market and technology. ►Model available for use by research community via http://www.ukerc.ac.uk/support/tiki-index.php?page=UK+Transport+Carbon+Model.

  17. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    Science.gov (United States)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have

  18. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  19. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    International Nuclear Information System (INIS)

    Yoon, S. R.; Choi, S. Y.; Koc, W. I.

    2015-01-01

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle

  20. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  1. Ekspedeerimisfirmade TOP

    Index Scriptorium Estoniae

    2008-01-01

    Ekspedeerimisfirmade TOP 57. Vt. samas: Tanel Raig. Majandus kukutab ekspedeerimisturgu. Diagramm: Väliskaubanduse statistika; Katrin Raie. Ekspedeerijad hakkavad rohkem koostööle rõhuma. Kommenteerib Jaan Lepp; Müügitulu TOP 10; Müügitulu kasvu TOP 10; Kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10; Eestis registreeritud Vene hiiglane; Ekspedeerimisturu kasumiliider kaotas 20 miljonit; Küsimustele vastab OÜ Contimer juht Dmitri Redkin

  2. Cycles of self-pulsations in a photonic integrated circuit.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  3. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a

  4. Assessing Top-Down and Bottom-Up Contributions to Auditory Stream Segregation and Integration With Polyphonic Music

    Directory of Open Access Journals (Sweden)

    Niels R. Disbergen

    2018-03-01

    Full Text Available Polyphonic music listening well exemplifies processes typically involved in daily auditory scene analysis situations, relying on an interactive interplay between bottom-up and top-down processes. Most studies investigating scene analysis have used elementary auditory scenes, however real-world scene analysis is far more complex. In particular, music, contrary to most other natural auditory scenes, can be perceived by either integrating or, under attentive control, segregating sound streams, often carried by different instruments. One of the prominent bottom-up cues contributing to multi-instrument music perception is their timbre difference. In this work, we introduce and validate a novel paradigm designed to investigate, within naturalistic musical auditory scenes, attentive modulation as well as its interaction with bottom-up processes. Two psychophysical experiments are described, employing custom-composed two-voice polyphonic music pieces within a framework implementing a behavioral performance metric to validate listener instructions requiring either integration or segregation of scene elements. In Experiment 1, the listeners' locus of attention was switched between individual instruments or the aggregate (i.e., both instruments together, via a task requiring the detection of temporal modulations (i.e., triplets incorporated within or across instruments. Subjects responded post-stimulus whether triplets were present in the to-be-attended instrument(s. Experiment 2 introduced the bottom-up manipulation by adding a three-level morphing of instrument timbre distance to the attentional framework. The task was designed to be used within neuroimaging paradigms; Experiment 2 was additionally validated behaviorally in the functional Magnetic Resonance Imaging (fMRI environment. Experiment 1 subjects (N = 29, non-musicians completed the task at high levels of accuracy, showing no group differences between any experimental conditions. Nineteen

  5. Assessing Top-Down and Bottom-Up Contributions to Auditory Stream Segregation and Integration With Polyphonic Music.

    Science.gov (United States)

    Disbergen, Niels R; Valente, Giancarlo; Formisano, Elia; Zatorre, Robert J

    2018-01-01

    Polyphonic music listening well exemplifies processes typically involved in daily auditory scene analysis situations, relying on an interactive interplay between bottom-up and top-down processes. Most studies investigating scene analysis have used elementary auditory scenes, however real-world scene analysis is far more complex. In particular, music, contrary to most other natural auditory scenes, can be perceived by either integrating or, under attentive control, segregating sound streams, often carried by different instruments. One of the prominent bottom-up cues contributing to multi-instrument music perception is their timbre difference. In this work, we introduce and validate a novel paradigm designed to investigate, within naturalistic musical auditory scenes, attentive modulation as well as its interaction with bottom-up processes. Two psychophysical experiments are described, employing custom-composed two-voice polyphonic music pieces within a framework implementing a behavioral performance metric to validate listener instructions requiring either integration or segregation of scene elements. In Experiment 1, the listeners' locus of attention was switched between individual instruments or the aggregate (i.e., both instruments together), via a task requiring the detection of temporal modulations (i.e., triplets) incorporated within or across instruments. Subjects responded post-stimulus whether triplets were present in the to-be-attended instrument(s). Experiment 2 introduced the bottom-up manipulation by adding a three-level morphing of instrument timbre distance to the attentional framework. The task was designed to be used within neuroimaging paradigms; Experiment 2 was additionally validated behaviorally in the functional Magnetic Resonance Imaging (fMRI) environment. Experiment 1 subjects ( N = 29, non-musicians) completed the task at high levels of accuracy, showing no group differences between any experimental conditions. Nineteen listeners also

  6. Integration of bottom-up and top-down models for the energy system. A practical case for Denmark

    International Nuclear Information System (INIS)

    Jacobsen, H.; Morthorst, P.E.; Nielsen, L.; Stephensen, P.

    1996-07-01

    The main objective of the project was to integrate the Danish macro economic model ADAM with elements from the energy simulation model BRUS, developed at Risoe. The project has been carried out by Risoe National Laboratory with assistance from the Ministry of Finance. A theoretical part focuses on the differences between top-down and bottom-up modelling of the energy-economy interaction. A combined hybrid model seems a relevant alternative to the two traditional approaches. The hybrid model developed is called Hybris and includes models for: supply of electricity and heat, household demand for electricity, and household demand for heat. These three models interact in a iterative procedure with the macro economic model ADAM through a number of links. A reference case as well as a number of scenarios illustrating the capabilities of the model has been set up.Hybris is a simulation model which is capable of analyzing combined CO 2 reduction initiatives as regulation of the energy supply system and a CO 2 tax in an integrated and consistent way. (au) 32 tabs., 98 ills., 55 refs

  7. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  8. Fuel cycle integration issues associated with P/T technology

    International Nuclear Information System (INIS)

    Michaels, G.E.; Ludwig, S.B.

    1992-01-01

    The three primary interfaces between a generic partitioning and transmutation (P/T) technology and the existing United States fuel cycle are the light-water reactor (LWR) spent fuel inventory, the reprocessed uranium (RU) stream, and the high-level waste stream. The features and implications of these three interfaces are reviewed and their implications for P/T system design and for waste management are assessed. The variability of transuranic nuclide composition in the LWR spent fuel is calculated and its potential implications for transmutation system core design are discussed. The radiological characteristics of the RU stream are presented, and options for disposition of the stream are reviewed. Most P/T scenarios assume that RU will be recycled to LWRs. This study demonstrates, however, that LWR recycle cannot totally consume the reprocessed stream, and disposal of a waste uranium steam with high levels of radiologically-significant isotopes will still be necessary. The radioactivity of the tails stream for enrichment plants resulting from a dedicated RU campaign is calculated. The tendency of gaseous diffusion plant enrichment technology to deplete the tails stream of minor uranium isotopes is seen as a benefit and an advantage over Atomic Vapor Laser Isotope Separation-type technology. Finally, the implications of P/T on LWR-origin wastes reporting to the repository is discussed, and several significant differences between LWR-origin waste originating from transmutation systems are assessed

  9. Management of transuranics using Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Wade, D.C.

    1994-01-01

    The 50 years of activities following the discovery of self-sustained fission chains have given rise to a buildup of roughly 900 tonnes of manmade transuranics. The formation of the transuranics is initiated by the parasitic neutron capture on the abundant isotope (U 238 ) of uranium ore to produce Pu 239 and the minor actinides are formed via the unavoidable parasitic neutron capture on the transuranic isotopes themselves. of the total, 260 tonnes of Pu 239 were generated for use in weapons while the remainder were generated as a byproduct of electrical power produced worldwide by the commercial thermal nuclear power industry. What to be done with these actinides? The options for disposition include interminable storage, burial, or recycle for use. The pros and cons of each option are being vigorously debated regarding the impact upon the issues of human and ecological risk both current and future; weapon proliferation potential both current and future; and total life cycle benefits and costs. (authors). 1 fig

  10. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  11. Life cycle assessment of roof integrated solar cell systems

    International Nuclear Information System (INIS)

    Van Brummelen, M.; Nieuwlaar, E.

    1994-01-01

    The research protocol, applied in this report, is designed for use within the energy R and D-context: it provides a framework for finding bottlenecks and opportunities for (new) energy technologies in the context of (energy) resource scarcity and environmental issues. Finding and analyzing these bottlenecks and opportunities is a major objective of this study. A derived objective of this study is to gain experience in using the LCA-framework and the research protocol described earlier, and to evaluate the usefulness of these instruments in helping to find and analyze bottlenecks and opportunities in energy technologies. Photovoltaic solar cell systems (PV systems) are comprised of solar cell modules and a Balance-of-System (BOS): a support structure and power conditioning equipment. In this LCA amorphous silicon cells (a-Si) are considered. For the Netherlands roof-integrated, grid-connected systems are assumed to be the major application of PV in the future. Two cases will be studied. In case 1 a system of 30 m 2 of modules which are connected to the grid via a single inverter are studied. The modules are comprised of a-Si cells and have a conversion efficiency of 10%. Integration into the roof is done with aluminium profiles. In case 2 a system of 30 m 2 a-Si cell modules integrated in the roof with plastic 'tiles' is studied. The modules have an efficiency of 15% and connection to the grid is more or less centralized: 25 systems share an inverter which is connected to the grid. The goal and scope of the LCA and the functional unit are described in chapter 2. In chapter 3 the process tree and descriptions of the distinguished processes are given and the inventory table is drawn up. In chapter 4 the impact assessment is dealt with, followed by a discussion of improvement options in chapter 5. Conclusions and recommendations are given in the chapters 6 and 7 only regarding the environmental aspects. 9 figs., 13 tabs., 4 appendices, 13 refs

  12. Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant

    International Nuclear Information System (INIS)

    Oko, C.O.C.; Njoku, I.H.

    2017-01-01

    This paper presents the performance analysis of an existing combined cycle power plant augmented with a waste heat fired organic Rankine cycle power plant for extra power generation. This was achieved by performing energy and exergy analysis of the integrated gas-, steam- and organic fluid-cycle thermal power plant (IPP). Heat source for the subcritical organic Rankine cycle (ORC) was the exhaust flue gases from the heat recovery steam generators of a 650 MW natural gas fired combined cycle power plant. The results showed that extra 12.4 MW of electricity was generated from the attached ORC unit using HFE7100 as working fluid. To select ORC working fluid, ten isentropic fluids were screened and HFE7100 produced the highest net power output and cycle efficiency. Exergy and energy efficiencies of the IPP improved by 1.95% and 1.93%, respectively. The rate of exergy destruction in the existing combined cycle plant was highest in the combustion chamber, 59%, whereas in the ORC, the highest rate of exergy destruction occurred in the evaporator, 62%. Simulations showed exergy efficiency of the IPP decreased with increasing ambient temperature. Exit stack flue gas temperature reduced from 126 °C in the combined cycle power plant to 100 °C in the integrated power plant. - Highlights: • Combined cycle plant retrofitted with ORC produced extra 12.4 MW electric power. • ORC is powered with low temperature flue gas from an existing combined cycle plant. • Exergy destruction rate in integrated plant(IPP) is less than in combined plant. • Exit stack temperature of the IPP has less environmental thermal pollution. • Exergy and energy efficiencies of the IPP improved by 1.95% and 1.93%, respectively.

  13. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  14. Integrated Process Modeling-A Process Validation Life Cycle Companion.

    Science.gov (United States)

    Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-17

    During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.

  15. Behavior of actinides in the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Courtney, J.C.; Lineberry, M.J.

    1994-01-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ( 237 Np, 240 Pu, 241 Am, and 243 Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors' confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs

  16. The Top Chron C27n Event in the Western Atlantic: Evidence for a transient perturbation of the carbon cycle in the Late Danian?

    Science.gov (United States)

    Schulte, Peter; Bornemann, André; Speijer, Robert P.

    2010-05-01

    The Paleocene to early Eocene is punctuated by several transient, ˜20-200 ky lasting hyperthermal events of which the Paleocene-Eocene Thermal Maximum (PETM) was the most prominent one. Abrupt shallowing of the lysocline/CCD, negative carbon isotope excursions, and benthic faunal turnover all imply a major perturbation of the ocean system during these events. Our recent research at the Southern Tethyan shelf suggests the presence of an additional hyperthermal event associated with sea-level fluctuations, the Latest Danian Event (LDE; Speijer, 2003; Bornemann et al., 2009). At Zumaia, Northern Spain, a negative ~0.5 per mil carbon isotope excursion is present in the uppermost Danian that may correlate to the LDE (Arenillas et al. 2008). Moreover, cyclostratigraphic studies have shown that several deep-sea sites are characterized by a prominent peak in both Fe and MS data at cycle Pc100-38 in the uppermost Danian: this applies to all Walvis Ridge (Atlantic) and Shatsky Rise (Pacific) sites as well as Site 1001 in the Caribbean Sea (Top Chron C27n Event; Westerhold et al., 2007). These results suggest that the LDE in the Tethys and the Top Chron C27n Event in the Atlantic may be correlative. We have conducted mineralogical, geochemical, and micropaleontological investigations to characterize this event in the Western Atlantic. Our first results from ODP Leg 165 Site 1001 show that the Top Chron 27n Event shown by Westerhold el al. (2008) corresponds to a ~12 cm thick clay layer. Mineralogical analyses reveal a sharp ~50% drop of the carbonate content in the clay layer and a disproportionally high increase of the phyllosilicate content in the insoluble residue compared to the quartz and illite content. Bulk rock isotope analyses show an abrupt negative ~0.6 per mil carbon isotope excursion at the onset of the clay layer, followed by a 1-m thick interval where carbon isotopes shows a tailing back to pre-event values. The magnitude and pattern of the carbon isotope

  17. Thermo-economic assessment of the integration of steam cycles on offshore platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    thermodynamic and economic performance indicators. The results illustrate the benefits of converting the gas turbines into a combined cycle. Using seawater results in smaller power generation and greater CO2-emissions than using process water, as the additional power generation in the combined cycle......The integration of steam bottoming cycles on oil platforms is often seen as a possible route to mitigate the CO2-emissions offshore. In this paper, a North Sea platform and its energy requirements are systematically analysed. The site-scale integration of steam networks is assessed by using...... is compensated by the significant pumping demand. This work emphasises that energy improvement efforts should be analysed at the scale of the overall site and not solely at the level of the combined cycle....

  18. Acceleration of Blender Cycles Path-Tracing Engine Using Intel Many Integrated Core Architecture

    OpenAIRE

    Jaroš , Milan; Říha , Lubomír; Strakoš , Petr; Karásek , Tomáš; Vašatová , Alena; Jarošová , Marta; Kozubek , Tomáš

    2015-01-01

    Part 2: Algorithms; International audience; This paper describes the acceleration of the most computationally intensive kernels of the Blender rendering engine, Blender Cycles, using Intel Many Integrated Core architecture (MIC). The proposed parallelization, which uses OpenMP technology, also improves the performance of the rendering engine when running on multi-core CPUs and multi-socket servers. Although the GPU acceleration is already implemented in Cycles, its functionality is limited. O...

  19. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  20. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  1. Business cycle synchronization among member countries of Eurozone during the process of European integration

    Directory of Open Access Journals (Sweden)

    Svatopluk Kapounek

    2007-01-01

    Full Text Available The paper deals with the correlation of the business cycles between the Eurozone member states in the period 1957–2003. The analysed period is divided into the four parts (1959–1972, 1973–1985, 1986–1994, 1995–2003, which correspond to integration waves and relate approximately to the European integration process. The empirical analysis is based on the time series correlation. The authors discuss the impact of the EC enlargements on the business cycles correlation as well as on qualitative changes in the interaction between the states.

  2. Integrating RAMS engineering and management with the safety life cycle of IEC 61508

    International Nuclear Information System (INIS)

    Lundteigen, Mary Ann; Rausand, Marvin; Utne, Ingrid Bouwer

    2009-01-01

    This article outlines a new approach to reliability, availability, maintainability, and safety (RAMS) engineering and management. The new approach covers all phases of the new product development process and is aimed at producers of complex products like safety instrumented systems (SIS). The article discusses main RAMS requirements to a SIS and presents these requirements in a holistic perspective. The approach is based on a new life cycle model for product development and integrates this model into the safety life cycle of IEC 61508. A high integrity pressure protection system (HIPPS) for an offshore oil and gas application is used to illustrate the approach.

  3. An integrated top-down and bottom-up proteomic approach to characterize the antigen-binding fragment of antibodies.

    Science.gov (United States)

    Dekker, Lennard; Wu, Si; Vanduijn, Martijn; Tolić, Nikolai; Stingl, Christoph; Zhao, Rui; Luider, Theo; Paša-Tolić, Ljiljana

    2014-05-01

    We have previously shown that different individuals exposed to the same antigen produce antibodies with identical mutations in their complementarity determining regions (CDR), suggesting that CDR tryptic peptides can serve as biomarkers for disease diagnosis and prognosis. Complete Fabs derived from disease specific antibodies have even higher potential; they could potentially be used for disease treatment and are required to identify the antigens toward which the antibodies are directed. However, complete Fab sequence characterization via LC-MS analysis of tryptic peptides (i.e. bottom-up) has proven to be impractical for mixtures of antibodies. To tackle this challenge, we have developed an integrated bottom-up and top-down MS approach, employing 2D chromatography coupled with Fourier transform mass spectrometry (FTMS), and applied this approach for full characterization of the variable parts of two pharmaceutical monoclonal antibodies with sensitivity comparable to the bottom-up standard. These efforts represent an essential step toward the identification of disease specific antibodies in patient samples with potentially significant clinical impact. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position.

    Science.gov (United States)

    Benke, Arthur C

    2018-03-31

    The majority of food web studies are based on connectivity, top-down impacts, bottom-up flows, or trophic position (TP), and ecologists have argued for decades which is best. Rarely have any two been considered simultaneously. The present study uses a procedure that integrates the last three approaches based on taxon-specific secondary production and gut analyses. Ingestion flows are quantified to create a flow web and the same data are used to quantify TP for all taxa. An individual predator's impacts also are estimated using the ratio of its ingestion (I) of each prey to prey production (P) to create an I/P web. This procedure was applied to 41 invertebrate taxa inhabiting submerged woody habitat in a southeastern U.S. river. A complex flow web starting with five basal food resources had 462 flows >1 mg·m -2 ·yr -1 , providing far more information than a connectivity web. Total flows from basal resources to primary consumers/omnivores were dominated by allochthonous amorphous detritus and ranged from 1 to >50,000 mg·m -2 ·yr -1 . Most predator-prey flows were much lower (1,000  mg·m -2 ·yr -1 . The I/P web showed that 83% of individual predator impacts were weak (90%). Quantitative estimates of TP ranged from 2 to 3.7, contrasting sharply with seven integer-based trophic levels based on longest feeding chain. Traditional omnivores (TP = 2.4-2.9) played an important role by consuming more prey and exerting higher impacts on primary consumers than strict predators (TP ≥ 3). This study illustrates how simultaneous quantification of flow pathways, predator impacts, and TP together provide an integrated characterization of natural food webs. © 2018 by the Ecological Society of America.

  5. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    Science.gov (United States)

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  6. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the

  7. Analysis of top-down and bottom-up North American CO2 and CH4 emissions estimates in the second State of the Carbon Cycle Report

    Science.gov (United States)

    Miller, J. B.; Jacobson, A. R.; Bruhwiler, L.; Michalak, A.; Hayes, D. J.; Vargas, R.

    2017-12-01

    In just ten years since publication of the original State of the Carbon Cycle Report in 2007, global CO2 concentrations have risen by more than 22 ppm to 405 ppm. This represents 18% of the increase over preindustrial levels of 280 ppm. This increase is being driven unequivocally by fossil fuel combustion with North American emissions comprising roughly 20% of the global total over the past decade. At the global scale, we know by comparing well-known fossil fuel inventories and rates of atmospheric CO2 increase that about half of all emissions are absorbed at Earth's surface. For North America, however, we can not apply a simple mass balance to determine sources and sinks. Instead, contributions from ecosystems must be estimated using top-down and bottom-up methods. SOCCR-2 estimates North American net CO2 uptake from ecosystems using bottom-up (inventory) methods as 577 +/- 433 TgC/yr and 634 +/- 288 TgC/yr from top-down atmospheric inversions. Although the global terrestrial carbon sink is not precisely known, these values represent possibly 30% of the global values. As with net sink estimates reported in SOCCR, these new top-down and bottom-up estimates are statistically consistent with one another. However, the uncertainties on each of these estimates are now substantially smaller, giving us more confidence about where the truth lies. Atmospheric inversions also yield estimates of interannual variations (IAV) in CO2 and CH4 fluxes. Our syntheses suggest that IAV of ecosystem CO2 fluxes is of order 100 TgC/yr, mainly originating in the conterminous US, with lower variability in boreal and arctic regions. Moreover, this variability is much larger than for inventory-based fluxes reported by the US to the UNFCCC. Unlike CO2, bottom-up CH4 emissions are larger than those derived from large-scale atmospheric data, with the continental discrepancy resulting primarily from differences in arctic and boreal regions. In addition to the current state of the science, we

  8. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  9. Predicting cycle time distributions for integrated processing workstations : an aggregate modeling approach

    NARCIS (Netherlands)

    Veeger, C.P.L.; Etman, L.F.P.; Lefeber, A.A.J.; Adan, I.J.B.F.; Herk, van J.; Rooda, J.E.

    2011-01-01

    To predict cycle time distributions of integrated processing workstations, detailed simulation models are almost exclusively used; these models require considerable development and maintenance effort. As an alternative, we propose an aggregate model that is a lumped-parameter representation of the

  10. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  11. Organisational Learning and the Organisational Life Cycle: The Differential Aspects of an Integrated Relationship in SMEs

    Science.gov (United States)

    Tam, Steven; Gray, David E.

    2016-01-01

    Purpose: The purpose of this study is to relate the practice of organisational learning in small- and medium-sized enterprises (SMEs) to the organisational life cycle (OLC), contextualising the differential aspects of an integrated relationship between them. Design/methodology/approach: It is a mixed-method study with two consecutive phases. In…

  12. Evaluation of material integrity on electricity power steam generator cycles (turbine casing) component

    International Nuclear Information System (INIS)

    Histori; Benedicta; Farokhi; S A, Soedardjo; Triyadi, Ari; Natsir, M

    1999-01-01

    The evaluation of material integrity on power steam generator cycles component was done. The test was carried out on casing turbine which is made from Inconel 617. The tested material was taken from t anjung Priok plant . The evaluation was done by metallography analysis using microscope with magnification of 400. From the result, it is shown that the material grains are equiaxed

  13. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  14. Modeling and simulation of syngas purification and power generation in integrated gasification combined cycle (IGCS)

    Energy Technology Data Exchange (ETDEWEB)

    Mehmood, N; Zaman, Z U; Mehran, M T [National Development, Islamabad (Pakistan)

    2011-07-01

    Integrated Gasification Combined Cycle (IGCC) is one of the most promising technologies for power generation; The environmental benefits and the higher energy conversion efficiency distinguish it from traditional coal generation technologies. This work presents a structured and validated conceptual model of purification of coal gas produced during the Underground Coal Gasification (UCG) of coal containing high sulfur contents. Gas cleaning operations for CO/sub 2/, H/sub 2/S and moisture removal have been modeled in steady and dynamic state. The power generation from combined cycle is also modeled. The model has been developed using Aspen HYSYS and Aspen Plus simulation software. Predicted results of clean gas composition and generated power present a good agreement with industrial data and efficiency parameters. This study is aimed at obtaining optimal assessment of an integrated gasification combined cycle (IGCC) power plant configurations. (author)

  15. Modeling and simulation of syngas purification and power generation in integrated gasification combined cycle (IGCS)

    International Nuclear Information System (INIS)

    Mehmood, N.; Zaman, Z.U.; Mehran, M.T.

    2011-01-01

    Integrated Gasification Combined Cycle (IGCC) is one of the most promising technologies for power generation; The environmental benefits and the higher energy conversion efficiency distinguish it from traditional coal generation technologies. This work presents a structured and validated conceptual model of purification of coal gas produced during the Underground Coal Gasification (UCG) of coal containing high sulfur contents. Gas cleaning operations for CO/sub 2/, H/sub 2/S and moisture removal have been modeled in steady and dynamic state. The power generation from combined cycle is also modeled. The model has been developed using Aspen HYSYS and Aspen Plus simulation software. Predicted results of clean gas composition and generated power present a good agreement with industrial data and efficiency parameters. This study is aimed at obtaining optimal assessment of an integrated gasification combined cycle (IGCC) power plant configurations. (author)

  16. Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process

    Science.gov (United States)

    Qu, Zilian; Meng, Yonggang; Zhao, Qian

    2015-03-01

    This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.

  17. An update technology for integrated biomass gasification combined cycle power plant

    International Nuclear Information System (INIS)

    Bhattacharya, P.; Dey, S.

    2014-01-01

    A discussion is presented on the technical analysis of a 6.4 M W_e integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers of downdraft biomass gasifier systems with suitable gas clean-up trains, three numbers of internal combustion (IC) producer gas engines for producing 5.85 MW electrical power in open cycle and 550 kW power in a bottoming cycle using waste heat. Comparing with IC gas engine single cycle systems, this technology route increases overall system efficiency of the power plant, which in turn improves plant economics. Estimated generation cost of electricity indicates that mega-watt scale IBGCC power plants can contribute to good economies of scale in India. This paper also highlight's the possibility of activated carbon generation from the char, a byproduct of gasification process, and use of engine's jacket water heat to generate chilled water through VAM for gas conditioning. (author)

  18. [Woman's participation in the decision process of the pregnancy and puerperal cycle: nursing care integrative review].

    Science.gov (United States)

    Busanello, Josefine; Lunardi Filho, Wilson Danilo; Kerber, Nalú Pereira da Costa; Lunardi, Valéria Lerch; dos Santos, Silvana Sidnei

    2011-12-01

    This is an integrative review that aims to identify the contribution of nursing care for woman's participation in the decision process of the pregnancy and puerperal cycle, as described in Brazilian scientific publications. The scientific productions were retrieved in May, 2010, from the Virtual Library of Health (Biblioteca Virtual em Saúde) database. From the eight articles reviewed, two themes stood out: Contributions of nursing care to the woman's participation in the decision process of the pregnancy and puerperal cycle; and Limitations of nursing care to the woman's participation in the decision process of the pregnancy and puerperal cycle. The following review supports the production of knowledge in nursing, by identifying a gap in what nurses know and do about this issue, as shown by the lack of nursing researches that concern, specifically, the participation of the woman in the decision process during the pregnancy and puerperal cycle and the possible contributions of nursing care to ensure women of this right.

  19. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  20. Integration of Social Aspects in Decision Support, Based on Life Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Pere Fullana-i-Palmer

    2011-03-01

    Full Text Available Recently increasing attention has been paid to complementing environmental Life Cycle Assessment (LCA with social aspects. The paper discusses the selection of social impacts and indicators from existing frameworks like Social Life Cycle Assessment (SLCA and Social Impact Assessment (SIA. Two ongoing case studies, addressing sustainability assessment within decision support, were considered: (1 Integrated Water Resources Management (IWRM in Indonesia; and (2 Integrated Packaging Waste Management in Spain and Portugal (FENIX. The focus was put on social impacts occurring due to decisions within these systems, such as choice of technologies, practices or suppliers. Thus, decision makers—here understood as intended users of the studies’ results—are not consumers that buy (or do not buy a product, such as in recent SLCA case-studies, but mainly institutions that decide about the design of the water or packaging waste management system. Therefore, in the FENIX project, a list of social impacts identified from literature was sent to the intended users to be ranked according to their priorities. Finally, the paper discusses to what extent the entire life cycle is reflected in SLCA impact categories and indicators, and explains how both life-cycle and on-site-related social impacts were chosen to be assessed. However, not all indicators in the two projects will assess all stages of the life cycle, because of their varying relevance in the different stages, data availability and practical interest of decision makers.

  1. Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Yaping; Guo, Zhanwei; Wu, Jiafeng; Zhang, Zhi; Hua, Junye

    2015-01-01

    The integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is a novel cycle operated on KC (Kalina cycle) for power generation in non-heating seasons and on AWRC (ammonia–water Rankine cycle) for cogeneration of power and heating water in winter. The influences of inlet temperatures of both heat resource and cooling water on system efficiencies were analyzed based on the first law and the second law of thermodynamics. The calculation is based on following conditions that the heat resource temperature keeps 300 °C, the cooling water temperature for the KC or AWRC is respectively 25 °C or 15 °C; and the temperatures of heating water and backwater are respectively 90 °C and 40 °C. The results show that the evaluation indexes of the power recovery efficiency and the exergy efficiency of KC were respectively 18.2% and 41.9%, while the composite power recovery efficiency and the composite exergy efficiency of AWRC are respectively 21.1% and 43.0% accounting both power and equivalent power of cogenerated heating capacity, including 54.5% heating recovery ratio or 12.4% heating water exergy efficiency. The inventory flow diagrams of both energy and exergy gains and losses of the components operating on KC or AWRC are also demonstrated. - Highlights: • An integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is investigated. • NH_3–H_2O Rankine cycle is operated for cogenerating power and heating-water in winter. • Heating water with 90 °C and capacity of 54% total reclaimed heat load is cogenerated. • Kalina cycle is operated for power generation in other seasons with high efficiency. • Energy and exergy analysis draw similar results in optimizing the system parameters.

  2. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    Directory of Open Access Journals (Sweden)

    Wesley Ingwersen

    2014-03-01

    Full Text Available Life cycle approaches are critical for identifying and reducing environmental burdens of products. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA methods fail to integrate the multiple impacts of a system into unified measures of social, economic or environmental performance related to sustainability. Integrated metrics that combine multiple aspects of system performance based on a common scientific or economic principle have proven to be valuable for sustainability evaluation. In this work, we propose methods of adapting four integrated metrics for use with LCAs of product systems: ecological footprint, emergy, green net value added, and Fisher information. These metrics provide information on the full product system in land, energy, monetary equivalents, and as a unitless information index; each bundled with one or more indicators for reporting. When used together and for relative comparison, integrated metrics provide a broader coverage of sustainability aspects from multiple theoretical perspectives that is more likely to illuminate potential issues than individual impact indicators. These integrated metrics are recommended for use in combination with traditional indicators used in LCA. Future work will test and demonstrate the value of using these integrated metrics and combinations to assess product system sustainability.

  3. Development of spatial integration depends on top-down and interhemispheric connections that can be perturbed in migraine: a DCM analysis.

    Science.gov (United States)

    Fornari, Eleonora; Rytsar, Romana; Knyazeva, Maria G

    2014-05-01

    In humans, spatial integration develops slowly, continuing through childhood into adolescence. On the assumption that this protracted course depends on the formation of networks with slowly developing top-down connections, we compared effective connectivity in the visual cortex between 13 children (age 7-13) and 14 adults (age 21-42) using a passive perceptual task. The subjects were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules [colinear gratings (CG)] or violated them [non-colinear gratings (NG)]. The regions of interest for dynamic causal modeling were determined from activations in functional MRI contrasts stimuli > background and CG > NG. They were symmetrically located in V1 and V3v areas of both hemispheres. We studied a common model, which contained reciprocal intrinsic and modulatory connections between these regions. An analysis of effective connectivity showed that top-down modulatory effects generated at an extrastriate level and interhemispheric modulatory effects between primary visual areas (all inhibitory) are significantly weaker in children than in adults, suggesting that the formation of feedback and interhemispheric effective connections continues into adolescence. These results are consistent with a model in which spatial integration at an extrastriate level results in top-down messages to the primary visual areas, where they are supplemented by lateral (interhemispheric) messages, making perceptual encoding more efficient and less redundant. Abnormal formation of top-down inhibitory connections can lead to the reduction of habituation observed in migraine patients.

  4. Simulation of an integrated gasification combined cycle with chemical-looping combustion and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Jiménez Álvaro, Ángel; López Paniagua, Ignacio; González Fernández, Celina; Rodríguez Martín, Javier; Nieto Carlier, Rafael

    2015-01-01

    Highlights: • A chemical-looping combustion based integrated gasification combined cycle is simulated. • The energetic performance of the plant is analyzed. • Different hydrogen-content synthesis gases are under study. • Energy savings accounting carbon dioxide sequestration and storage are quantified. • A notable increase on thermal efficiency up to 7% is found. - Abstract: Chemical-looping combustion is an interesting technique that makes it possible to integrate power generation from fuels combustion and sequestration of carbon dioxide without energy penalty. In addition, the combustion chemical reaction occurs with a lower irreversibility compared to a conventional combustion, leading to attain a somewhat higher overall thermal efficiency in gas turbine systems. This paper provides results about the energetic performance of an integrated gasification combined cycle power plant based on chemical-looping combustion of synthesis gas. A real understanding of the behavior of this concept of power plant implies a complete thermodynamic analysis, involving several interrelated aspects as the integration of energy flows between the gasifier and the combined cycle, the restrictions in relation with heat balances and chemical equilibrium in reactors and the performance of the gas turbines and the downstream steam cycle. An accurate thermodynamic modeling is required for the optimization of several design parameters. Simulations to evaluate the energetic efficiency of this chemical-looping-combustion based power plant under diverse working conditions have been carried out, and a comparison with a conventional integrated gasification power plant with precombustion capture of carbon dioxide has been made. Two different synthesis gas compositions have been tried to check its influence on the results. The energy saved in carbon capture and storage is found to be significant and even notable, inducing an improvement of the overall power plant thermal efficiency of

  5. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    Science.gov (United States)

    Houser, P. R.

    2013-05-01

    Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation

  6. Status of the Integral Fast Reactor fuel cycle demonstration and waste management practices

    International Nuclear Information System (INIS)

    Benedict, R.W.; Goff, K.M.; McFarlane, H.F.

    1994-01-01

    Over the past few years, Argonne National Laboratory has been preparing for the demonstration of the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety and operations, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle, which will be demonstrated at Argonne-West in Idaho, employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The required facility modifications and process equipment for the demonstration are nearing completion. Their status and the results from initial fuel fabrication work, including the waste management aspects, are presented. Additionally, estimated compositions of the various process waste streams have been made, and characterization and treatment methods are being developed. The status of advanced waste processing equipment being designed and fabricated is described

  7. Transuranic material recovery in the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Benedict, R.W.; Goff, K.M.

    1993-01-01

    The Integral Fast Reactor is an innovative liquid metal reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel cycle economics, environmental protection, and safeguards. The plans for demonstrating the IFR fuel cycle, including its waste processing options, by processing irradiated fuel from the Experimental Breeder Reactor-II fuel in its associated Fuel Cycle Facility have been developed for the first refining series. This series has been designed to provide the data needed for the further development of the IFR program. An important piece of the data needed is the recovery of TRU material during the reprocessing and waste operations

  8. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea.

    Science.gov (United States)

    Tolar, Bradley B; Herrmann, Jonathan; Bargar, John R; van den Bedem, Henry; Wakatsuki, Soichi; Francis, Christopher A

    2017-10-01

    Knowledge of the molecular ecology and environmental determinants of ammonia-oxidizing organisms is critical to understanding and predicting the global nitrogen (N) and carbon cycles, but an incomplete biochemical picture hinders in vitro studies of N-cycling enzymes. Although an integrative structural and dynamic characterization at the atomic scale would advance our understanding of function tremendously, structural knowledge of key N-cycling enzymes from ecologically relevant ammonia oxidizers is unfortunately extremely limited. Here, we discuss the challenges and opportunities for examining the ecology of ammonia-oxidizing organisms, particularly uncultivated Thaumarchaeota, through (meta)genome-driven structural biology of the enzymes ammonia monooxygenase (AMO) and nitrite reductase (NirK). © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Physics studies of weapons plutonium disposition in the Integral Fast Reactor closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1995-01-01

    The core performance impact of weapons plutonium introduction into the Integral Fast Reactor (IFR) closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode, all at a constant heat rating of 840 MW(thermal). For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode and recycle cores using weapons material only as required for a makeup feed. In addition, the impact of alternative feeds (recycled light water reactor or liquid-metal reactor transuranics) on burner core performance is assessed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium does not have an adverse effect on IFR core performance characteristics; also, favorable performance can be maintained for a wide variety of feed materials and fuel cycle strategies

  10. An integrated life cycle sustainability assessment of electricity generation in Turkey

    International Nuclear Information System (INIS)

    Atilgan, Burcin; Azapagic, Adisa

    2016-01-01

    This paper presents for the first time an integrated life cycle sustainability assessment of the electricity sector in Turkey, considering environmental, economic and social aspects. Twenty life cycle sustainability indicators (11 environmental, three economic and six social) are used to evaluate the current electricity options. Geothermal power is the best option for six environmental impacts but it has the highest capital costs. Small reservoir and run-of-river power has the lowest global warming potential while large reservoir is best for the depletion of elements and fossil resources, and acidification. It also has the lowest levelised costs, worker injuries and fatalities but provides the lowest life cycle employment opportunities. Gas power has the lowest capital costs but it provides the lowest direct employment and has the highest levelised costs and ozone layer depletion. Given these trade-offs, a multi-criteria decision analysis has been carried out to identify the most sustainable options assuming different stakeholder preferences. For all the preferences considered, hydropower is the most sustainable option for Turkey, followed by geothermal and wind electricity. This work demonstrates the importance for energy policy of an integrated life cycle sustainability assessment and how tensions between different aspects can be reconciled to identify win-win solutions. - Highlights: •First integrated life cycle sustainability assessment of the electricity sector in Turkey. •11 environmental, three economic and six social sustainability indicators estimated. •Multi-criteria decision analysis carried out to identify most sustainable options. •Hydro is the most sustainable option for Turkey, followed by geothermal and wind. •This work demonstrates how tensions among sustainability aspects can be reconciled.

  11. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date

    International Nuclear Information System (INIS)

    Walker, William C.; Bosso, Christopher J.; Eckelman, Matthew; Isaacs, Jacqueline A.; Pourzahedi, Leila

    2015-01-01

    The 2011 National Nanotechnology Initiative’s Environmental Health and Safety Research Strategy stressed the need for research to integrate life cycle considerations into risk management and, then, to better integrate risk assessment into decisionmaking on environmental, health, and safety (EHS) dimensions of nanomanufacturing. This paper reviews scholarly articles published 2010–2015 that in some way apply life cycle analysis to nanotechnology to assess the extent to which current research reflects the priorities lain out in the NNI report. As the NNI’s focus was primarily on the “responsible development of nanotechnology” we also focus our examination on the ways in which LCA, in concert with other methodologies, can provide utility to decision makers facing the challenge of implementing that broad goal. We explore some of the challenges and opportunities inherent in using LCA, a tool built to optimize manufacturing decisions, as a guide for policy formulation or tool for policy implementation

  12. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Walker, William C.; Bosso, Christopher J., E-mail: c.bosso@neu.edu [Northeastern University, School of Public Policy and Urban Affairs (United States); Eckelman, Matthew [Northeastern University, Department of Civil and Environmental Engineering (United States); Isaacs, Jacqueline A. [Northeastern University, Department of Mechanical and Industrial Engineering (United States); Pourzahedi, Leila [Northeastern University, Department of Civil and Environmental Engineering (United States)

    2015-08-15

    The 2011 National Nanotechnology Initiative’s Environmental Health and Safety Research Strategy stressed the need for research to integrate life cycle considerations into risk management and, then, to better integrate risk assessment into decisionmaking on environmental, health, and safety (EHS) dimensions of nanomanufacturing. This paper reviews scholarly articles published 2010–2015 that in some way apply life cycle analysis to nanotechnology to assess the extent to which current research reflects the priorities lain out in the NNI report. As the NNI’s focus was primarily on the “responsible development of nanotechnology” we also focus our examination on the ways in which LCA, in concert with other methodologies, can provide utility to decision makers facing the challenge of implementing that broad goal. We explore some of the challenges and opportunities inherent in using LCA, a tool built to optimize manufacturing decisions, as a guide for policy formulation or tool for policy implementation.

  13. The application of life cycle assessment to integrated solid waste management. Pt. 1: Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Clift, R.; Doig, A.; Finnveden, G.

    2000-07-01

    Integrated Waste Management is one of the holistic approaches to environmental and resource management which are emerging from applying the concept of sustainable development. Assessment of waste management options requires application of Life Cycle Assessment (LCA). This paper summarizes the methodology for applying LCA to Integrated Waste Management of Municipal Solid Wastes (MSW) developed for and now used by the UK Environment Agency, including recent developments in international fora. Particular attention is devoted to system definition leading to rational and clear compilation of the Life Cycle Inventory, with appropriate 'credit' for recovering materials and/or energy from the waste. LCA of waste management is best seen as a way of structuring information to help decision processes. (Author)

  14. Integrated waste management and the tool of life cycle inventory : a route to sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F.R.; White, P.R. [Procter and Gamble Newcastle Technical Centre, Newcastle (United Kingdom). Corporate Sustainable Development

    2000-07-01

    An overall approach to municipal waste management which integrates sustainable development principles was discussed. The three elements of sustainability which have to be balanced are environmental effectiveness, economic affordability and social acceptability. An integrated waste management (IWM) system considers different treatment options and deals with the entire waste stream. A life cycle inventory (LCI) and life cycle assessment (LCA) is used to determine the environmental burdens associated with IWM systems. LCIs for waste management are currently available for use in Europe, the United States, Canada and elsewhere. LCI is being used by waste management companies to assess the environmental attributes of future contract tenders. The models are used as benchmarking tools to assess the current environmental profile of a waste management system. They are also a comparative planning and communication tool. The authors are currently looking into publishing, at a future date, the experience of users of this LCI environmental management tool. 12 refs., 3 figs.

  15. Actinide recycle potential in the integral fast reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The use of metallic fuel in the IFR allows a radically improved fuel cycle technology. Based on the recent IFR process development, a preliminary assessment has been made to investigate the feasibility of further adapting pyrochemical processes to directly extract actinides from LWR spent fuel. The results of this assessment indicate very promising potential and two most promising flowsheet options have been identified for further research and development. This paper also summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs

  16. An integrative process model of leadership: examining loci, mechanisms, and event cycles.

    Science.gov (United States)

    Eberly, Marion B; Johnson, Michael D; Hernandez, Morela; Avolio, Bruce J

    2013-09-01

    Utilizing the locus (source) and mechanism (transmission) of leadership framework (Hernandez, Eberly, Avolio, & Johnson, 2011), we propose and examine the application of an integrative process model of leadership to help determine the psychological interactive processes that constitute leadership. In particular, we identify the various dynamics involved in generating leadership processes by modeling how the loci and mechanisms interact through a series of leadership event cycles. We discuss the major implications of this model for advancing an integrative understanding of what constitutes leadership and its current and future impact on the field of psychological theory, research, and practice. © 2013 APA, all rights reserved.

  17. Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity

    OpenAIRE

    Bavik, Claes; Henry, Susan Hayes; Zhang, Yan; Mitts, Kyoko; McGinn, Tim; Budzynski, Ewa; Pashko, Andriy; Lieu, Kuo Lee; Zhong, Sheng; Blumberg, Bruce; Kuksa, Vladimir; Orme, Mark; Scott, Ian; Fawzi, Ahmad; Kubota, Ryo

    2015-01-01

    © 2015 Bavik et al. Increased exposure to blue or visible light, fluctuations in oxygen tension, and the excessive accumulation of toxic retinoid byproducts places a tremendous amount of stress on the retina. Reduction of visual chromophore biosynthesis may be an effective method to reduce the impact of these stressors and preserve retinal integrity. A class of non-retinoid, small molecule compounds that target key proteins of the visual cycle have been developed. The first candidate in this ...

  18. Integrated gasification combined-cycle research development and demonstration activities in the US

    Energy Technology Data Exchange (ETDEWEB)

    Ness, H.M.; Brdar, R.D.

    1996-09-01

    The United States Department of Energy (DOE)`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the commercialization of integrated gasification combined-cycle (IGCC) advanced power systems. This overview briefly describes the supporting RD&D activities and the IGCC projects selected for demonstration in the Clean Coal Technology (CCT) Program.

  19. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    Science.gov (United States)

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste.

  20. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-01-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core

  1. The integration of studio cycling into a worksite stress management programme.

    Science.gov (United States)

    Clark, Matthew M; Soyring, Jason E; Jenkins, Sarah M; Daniels, Denise C; Berkland, Bridget E; Werneburg, Brooke L; Hagen, Philip T; Lopez-Jimenez, Francisco; Warren, Beth A; Olsen, Kerry D

    2014-04-01

    High stress is a prevalent problem in the worksite. To reduce stress, improve productivity, reduce absenteeism, and lower healthcare costs, many companies offer exercise classes or stress management programmes. Although physical activity is an important component of stress management, few worksites have integrated physical activity into their comprehensive stress reduction programmes. The purpose of this single-arm pilot project was to examine the potential effectiveness of an integrated exercise (studio cycling) and cognitive-behavioural stress management programme. Eighty-four adults, 75% female, mostly aged 40+ years, participated in an integrated 12-week cycling studio and cognitive-behavioural stress management programme. Participants experienced a significant and clinically meaningful reduction on the Perceived Stress Scale (p manage stress at the programme's end and at a 1-month follow-up. Participants also reported having significantly improved overall health, improved nutritional habits, higher physical activity level, greater confidence in their ability to follow a healthy diet, higher spiritual well-being, improved sleep, receiving more support for maintaining healthy living and improved quality of life at the completion of the 12-week programme and 1-month follow-up. These findings provide further support for an integrated exercise and stress management programme. © 2013 John Wiley & Sons, Ltd.

  2. Kinnisvarafirmade TOP 90

    Index Scriptorium Estoniae

    2002-01-01

    TOP 90. Kinnisvara valdkondade TOP 5. Käibe TOP 30. Käibe kasvu TOP 30. Rentaabluse TOP 30. Kasumi TOP 30. Kasumi kasvu TOP 30. Varade tootlikkuse TOP 30. Kinnisvarafirmade üldandmed. Kinnisvarafirmade finantsandmed

  3. Supercritical carbon dioxide Brayton power conversion cycle for battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Kim, T. W.; Kim, N. H.; Suh, K. Y.

    2007-01-01

    Supercritical carbon dioxide (SCO 2 ) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. The SCO 2 Brayton cycle efficiency as high as 45% furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth lead-cooled Battery Optimized Reactor Integral System (BORIS) is being developed as an ultra-long-life, versatile-purpose, fast-spectrum reactor. BORIS is coupled to the SCO 2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO 2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO 2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45% was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO 2 going out from the low temperature recuperator. Development of Modular Optimized Brayton Integral System (MOBIS) is being devised as the SCO 2 Brayton cycle energy conversion cycle for BORIS. MOBIS consists of Loop Operating Brayton Optimization Study (LOBOS) for experimental Brayton cycle loop and Gas Advanced Turbine Operation Study (GATOS) for the SCO 2 turbine. Liquid-metal Energy Exchanger Integral System (LEXIS) serves to couple BORIS and MOBIS. LEXIS comprises Physical Aspect Thermal Operation System (PATOS) for SCO 2 thermal hydraulic characteristics, Shell-and-tube Overall Layout Optimization Study (SOLOS) for shell-and-tube heat exchanger, Printed

  4. Integration of the AVLIS [atomic vapor laser isotopic separation] process into the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF 6 -in UF 6 -out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs

  5. Integrating life-cycle environmental and economic assessment with transportation and land use planning.

    Science.gov (United States)

    Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

    2013-01-01

    The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.

  6. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    Science.gov (United States)

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  7. Integrated operation and management system for a 700MW combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shiroumaru, I. (Yanai Power Plant Construction Office, Chugoku Electric Power Co., Inc., 1575-5 Yanai-Miyamoto-Shiohama, Yanai-shi, Yamaguchi-ken (JP)); Iwamiya, T. (Omika Works, Hitachi, Ltd., 5-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken (JP)); Fukai, M. (Hitachi Works, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken (JP))

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  8. Integral blow moulding for cycle time reduction of CFR-TP aluminium contour joint processing

    Science.gov (United States)

    Barfuss, Daniel; Würfel, Veit; Grützner, Raik; Gude, Maik; Müller, Roland

    2018-05-01

    Integral blow moulding (IBM) as a joining technology of carbon fibre reinforced thermoplastic (CFR-TP) hollow profiles with metallic load introduction elements enables significant cycle time reduction by shortening of the process chain. As the composite part is joined to the metallic part during its consolidation process subsequent joining steps are omitted. In combination with a multi-scale structured load introduction element its form closure function enables to pass very high loads and is capable to achieve high degrees of material utilization. This paper first shows the process set-up utilizing thermoplastic tape braided preforms and two-staged press and internal hydro formed load introduction elements. Second focuses on heating technologies and process optimization. Aiming at cycle time reduction convection and induction heating in regard to the resulting product quality is inspected by photo micrographs and computer tomographic scans. Concluding remarks give final recommendations for the process design in regard to the structural design.

  9. The reliability of integrated gasification combined cycle (IGCC) power generation units

    Energy Technology Data Exchange (ETDEWEB)

    Higman, C.; DellaVilla, S.; Steele, B. [Syngas Consultants Ltd. (United Kingdom)

    2006-07-01

    This paper presents two interlinked projects aimed at supporting the improvement of integrated gasification combined cycle (IGCC) reliability. The one project comprises the extension of SPS's existing ORAP (Operational Reliability Analysis Program) reliability, availability and maintainability (RAM) tracking technology from its existing base in natural gas open and combined cycle operations into IGCC. The other project is using the extended ORAP database to evaluate performance data from existing plants. The initial work has concentrated on evaluating public domain data on the performance of gasification based power and chemical plants. This is being followed up by plant interviews in some 20 plants to verify and expand the database on current performance. 23 refs., 8 figs., 2 tabs.

  10. Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant with a Kalina Cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud

    2015-01-01

    % is achieved; plant size and nominal power are selected based on the required cultivation area. SOFC heat recovery with SKC is compared to a Steam Cycle (SC). Although ammonia-water more accurately fits the temperature profile of the off-gases, the presence of a Hybrid Recuperator enhances the available work......-treated fuel then enters the anode side of the SOFC. Complete fuel oxidation is ensured in a burner by off-gases exiting the SOFC stacks. Off-gases are utilized as heat source for a SKC where a mixture of ammonia and water is expanded in a turbine to produce additional electric power. Thus, a triple novel......A hybrid plant that consists of a gasification system, Solid Oxide Fuel Cells (SOFC) and a Simple Kalina Cycle (SKC) is investigated. Woodchips are introduced into a fixed bed gasification plant to produce syngas, which is then fed into an integrated SOFC-SKC plant to produce electricity. The pre...

  11. Proliferation resistance of the fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.

    1993-01-01

    Argonne National Laboratory has developed an electrorefining pyrochemical process for recovery and recycle of metal fuel discharged from the Integral Fast Reactor (FR). This inherently low decontamination process has an overall decontamination factor of only about 100 for the plutonium metal product. As a result, all of the fuel cycle operations must be conducted in heavily shielded cells containing a high-purity argon atmosphere. The FR fuel cycle possesses high resistance to clandestine diversion or overt, state- supported removal of plutonium for nuclear weapons production because of two main factors: the highly radioactive product, which is also contaminated with heat- and neutron-producing isotopes of plutonium and other actinide elements, and the difficulty of removing material from the FR facility through the limited number of cell transfer locks without detection

  12. Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    The integration of steam bottoming cycles on oil and gas platforms is currently regarded as the most promising option for improving the performance of these energy-intensive systems. In this paper, a North Sea platform is taken as case study, and a systematic analysis of its energy requirements...... cooling utility, and (iv) the weight limitations on the platform are quantitatively assessed. The results illustrate the benefits of converting the gas turbine process into a combined cycle, since the fuel gas consumption and the total CO2-emissions can be reduced by more than 15 %. Using the cooling...... water from the processing plant reveals to be more profitable than using seawater, as the additional pumping power outweighs the benefit of using a cooling medium at a temperature of about 8 °C lower. This study highlights thereby the importance of analysing energy savings and recovery options...

  13. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture

    International Nuclear Information System (INIS)

    Rieger, Mathias

    2014-01-01

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  14. Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping

    Directory of Open Access Journals (Sweden)

    Erans María

    2016-01-01

    Full Text Available Calcium looping (CaL is promising for large-scale CO2 capture in the power generation and industrial sectors due to the cheap sorbent used and the relatively low energy penalties achieved with this process. Because of the high operating temperatures the heat utilisation is a major advantage of the process, since a significant amount of power can be generated from it. However, this increases its complexity and capital costs. Therefore, not only the energy efficiency performance is important for these cycles, but also the capital costs must be taken into account, i.e. techno-economic analyses are required in order to determine which parameters and configurations are optimal to enhance technology viability in different integration scenarios. In this study the integration scenarios of CaL cycles and natural gas combined cycles (NGCC are explored. The process models of the NGCC and CaL capture plant are developed to explore the most promising scenarios for NGCC-CaL integration with regards to efficiency penalties. Two scenarios are analysed in detail, and show that the system with heat recovery steam generator (HRSG before and after the capture plant exhibited better performance of 49.1% efficiency compared with that of 45.7% when only one HRSG is located after the capture plant. However, the techno-economic analyses showed that the more energy efficient case, with two HRSGs, implies relatively higher cost of electricity (COE, 44.1€/MWh, when compared to that of the reference plant system (33.1€/MWh. The predicted cost of CO2 avoided for the case with two HRSGS is 29.3 €/ton CO2.

  15. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis

    International Nuclear Information System (INIS)

    Amelio, Mario; Morrone, Pietropaolo; Gallucci, Fausto; Basile, Angelo

    2007-01-01

    In the present work, the capture and storage of carbon dioxide from the fossil fuel power plant have been considered. The main objective was to analyze the thermodynamic performances and the technological aspects of two integrated gasification gas combined cycle plants (IGCC), as well as to give a forecast of the investment costs for the plants and the resulting energy consumptions. The first plant considered is an IGCC* plant (integrated gasification gas combined cycle plant with traditional shift reactors) characterized by the traditional water gas shift reactors and a CO 2 physical adsorption system followed by the power section. The second one is an IGCC M plant (integrated gasification gas combined cycle plant with membrane reactor) where the coal thermal input is the same as the first one, but the traditional shift reactors and the physical adsorption unit are replaced by catalytic palladium membrane reactors (CMR). In the present work, a mono-dimensional computational model of the membrane reactor was proposed to simulate and evaluate the capability of the IGCC M plant to capture carbon dioxide. The energetic performances, efficiency and net power of the IGCC* and IGCC M plants were, thus, compared, assuming as standard a traditional IGCC plant without carbon dioxide capture. The economical aspects of the three plants were compared through an economical analysis. Since the IGCC* and IGCC M plants have additional costs related to the capture and disposal of the carbon dioxide, a Carbon Tax (adopted in some countries like Sweden) proportional to the number of kilograms of carbon dioxide released in the environment was assumed. According to the economical analysis, the IGCC M plant proved to be more convenient than the IGCC* one

  16. Progress and status of the integral fast reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. The Integral Fast Reactor (IFR) fuel cycle, is based on the use of a metallic fuel alloy (U-Pu-Zr) that permits use of an innovative method for processing of spent fuel. This method, a combination of pyrometallurgical and electrochemical processes, has been termed pyroprocessing. It offers the advantages of a simple, compact processing system and limited volumes of stabilized high-level wastes. This translates to an economically viable system that is likely to receive favorable public response, particularly when combined with the other attributes of the Integral Fast Reactor. Substantial progress has been made in the development of the IFR pyroprocessing method. A comprehensive demonstration of the process will soon begin at the Argonne National Laboratory Idaho site, using spent fuel from the EBR-II reactor. An important advantage of the IFR is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material

  17. Assessment of Material Solutions of Multi-level Garage Structure Within Integrated Life Cycle Design Process

    Science.gov (United States)

    Wałach, Daniel; Sagan, Joanna; Gicala, Magdalena

    2017-10-01

    The paper presents an environmental and economic analysis of the material solutions of multi-level garage. The construction project approach considered reinforced concrete structure under conditions of use of ordinary concrete and high-performance concrete (HPC). Using of HPC allowed to significant reduction of reinforcement steel, mainly in compression elements (columns) in the construction of the object. The analysis includes elements of the methodology of integrated lice cycle design (ILCD). By making multi-criteria analysis based on established weight of the economic and environmental parameters, three solutions have been evaluated and compared within phase of material production (information modules A1-A3).

  18. Carbon exergy tax applied to biomass integrated gasification combined cycle in sugarcane industry

    International Nuclear Information System (INIS)

    Fonseca Filho, Valdi Freire da; Matelli, José Alexandre; Perrella Balestieri, José Antonio

    2016-01-01

    The development of technologies based on energy renewable sources is increasing worldwide in order to diversify the energy mix and satisfy the rigorous environmental legislation and international agreements to reduce pollutant emission. Considering specific characteristics of biofuels available in Brazil, studies regarding such technologies should be carried out aiming energy mix diversification. Several technologies for power generation from biomass have been presented in the technical literature, and plants with BIGCC (biomass integrated gasification combined cycle) emerge as a major technological innovation. By obtaining a fuel rich in hydrogen from solid biomass gasification, BIGCC presents higher overall process efficiency than direct burning of the solid fuel in conventional boilers. The objective of this paper is to develop a thermodynamic and chemical equilibrium model of a BIGCC configuration for sugarcane bagasse. The model embodies exergetic cost and CO_2 emission analyses through the method of CET (carbon exergy tax). An exergetic penalty comparison between the BIGCC technology (with and without CO_2 capture and sequestration), a natural gas combined cycle and the traditional steam cycle of sugarcane sector is then presented. It is verified that the BIGCC configuration with CO_2 capture and sequestration presents technical and environmental advantages when compared to traditional technology. - Highlights: • We compared thermal cycles with the exergetic carbon exergy tax. • Thermal cycles with and without carbon capture and sequestration were considered. • Burned and gasified sugarcane bagasse was assumed as renewable fuel. • Exergetic carbon penalty tax was imposed to all studied configurations. • BIGCC with carbon sequestration revealed to be advantageous.

  19. Thermodynamic analysis of engineering solutions aimed at raising the efficiency of integrated gasification combined cycle

    Science.gov (United States)

    Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.

    2017-11-01

    Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.

  20. New integrable model of propagation of the few-cycle pulses in an anisotropic microdispersed medium

    Science.gov (United States)

    Sazonov, S. V.; Ustinov, N. V.

    2018-03-01

    We investigate the propagation of the few-cycle electromagnetic pulses in the anisotropic microdispersed medium. The effects of the anisotropy and spatial dispersion of the medium are created by the two sorts of the two-level atoms. The system of the material equations describing an evolution of the states of the atoms and the wave equations for the ordinary and extraordinary components of the pulses is derived. By applying the approximation of the sudden excitation to exclude the material variables, we reduce this system to the single nonlinear wave equation that generalizes the modified sine-Gordon equation and the Rabelo-Fokas equation. It is shown that this equation is integrable by means of the inverse scattering transformation method if an additional restriction on the parameters is imposed. The multisoliton solutions of this integrable generalization are constructed and investigated.

  1. Kinnisvarafirmade TOP 90

    Index Scriptorium Estoniae

    2003-01-01

    Kinnisvarafirmade TOP 90. Rentaabluse TOP 30. Käibe TOP 30. Käibe kasvu TOP 30. Kasumi TOP 30. Kasumi kasvu TOP 30. Varade tootlikkuse TOP 30. Kinnisvarafirmade üldandmed. Kinnisvarafirmade finantsandmed

  2. Teedeehitusfirmade TOP 24

    Index Scriptorium Estoniae

    2006-01-01

    Teedeehitusfirmade TOP. Vt. samas: Käibe TOP 10; Käibe kasvu TOP 10; Kasumi TOP 10; Kasumi Kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10; Teedeehitusfirmade üld- ja finantsandmed

  3. Koolitusfirmade TOP 50

    Index Scriptorium Estoniae

    2006-01-01

    Koolitusfirmade TOP. Vt. samas: Käibe TOP 10; Käibe kasvu TOP 10; Majandustegevuse kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10; Koolitusfirmade üld- ja finantsandmed

  4. Telekommunikatsiooni TOP aastal 2003

    Index Scriptorium Estoniae

    2004-01-01

    Telekommunikatsiooni TOP aastal 2003. Käibe TOP 10. Käibe kasvu TOP 10. Rentaabluse TOP 10. Kasumi TOP 10. Kasumi kasvu TOP 10. Omakapitali tootlikkuse TOP 10. Telekommunikatsioonifirmade üldandmed. Telekommunikatsioonifirmade finantsandmed

  5. Põllumajandustootjate TOP 50

    Index Scriptorium Estoniae

    2006-01-01

    Põllumajandustootjate TOP. Vt. samas: Käibe TOP 10; Käibe kasvu TOP 10; Majandustegevuse kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10; Põllumajandustootjate üld- ja finantsandmed

  6. Ehitusmaterjalitootjate TOP 95

    Index Scriptorium Estoniae

    2006-01-01

    Ehitusmaterjalitootjate TOP. Vt. samas: Käibe TOP 10; Käibe kasvu TOP 10; Kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10; Ehitusmaterjalitootjate üld- ja finantsandmed

  7. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  8. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  9. Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity.

    Directory of Open Access Journals (Sweden)

    Claes Bavik

    Full Text Available Increased exposure to blue or visible light, fluctuations in oxygen tension, and the excessive accumulation of toxic retinoid byproducts places a tremendous amount of stress on the retina. Reduction of visual chromophore biosynthesis may be an effective method to reduce the impact of these stressors and preserve retinal integrity. A class of non-retinoid, small molecule compounds that target key proteins of the visual cycle have been developed. The first candidate in this class of compounds, referred to as visual cycle modulators, is emixustat hydrochloride (emixustat. Here, we describe the effects of emixustat, an inhibitor of the visual cycle isomerase (RPE65, on visual cycle function and preservation of retinal integrity in animal models. Emixustat potently inhibited isomerase activity in vitro (IC50 = 4.4 nM and was found to reduce the production of visual chromophore (11-cis retinal in wild-type mice following a single oral dose (ED50 = 0.18 mg/kg. Measure of drug effect on the retina by electroretinography revealed a dose-dependent slowing of rod photoreceptor recovery (ED50 = 0.21 mg/kg that was consistent with the pattern of visual chromophore reduction. In albino mice, emixustat was shown to be effective in preventing photoreceptor cell death caused by intense light exposure. Pre-treatment with a single dose of emixustat (0.3 mg/kg provided a ~50% protective effect against light-induced photoreceptor cell loss, while higher doses (1-3 mg/kg were nearly 100% effective. In Abca4-/- mice, an animal model of excessive lipofuscin and retinoid toxin (A2E accumulation, chronic (3 month emixustat treatment markedly reduced lipofuscin autofluorescence and reduced A2E levels by ~60% (ED50 = 0.47 mg/kg. Finally, in the retinopathy of prematurity rodent model, treatment with emixustat during the period of ischemia and reperfusion injury produced a ~30% reduction in retinal neovascularization (ED50 = 0.46mg/kg. These data demonstrate the ability of

  10. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Templeton, K.J.

    1996-01-01

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company's Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division's treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  11. An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics

    International Nuclear Information System (INIS)

    Li, Tailu; Fu, Wencheng; Zhu, Jialing

    2014-01-01

    The organic Rankine cycle has been one of the essential heat-work conversion technologies nowadays. Lots of effectual optimization methods are focused on the promotion of the system efficiency, which are mainly relied on engineering experience and numerical simulations rather than theoretical analysis. A theoretical integrated optimization method was established based on the entransy theory and thermodynamics, with the ratio of the net power output to the ratio of the total thermal conductance to the thermal conductance in the condenser as the objective function. The system parameters besides the optimal pinch point temperature difference were obtained. The results show that the mass flow rate of the working fluid is inversely proportional to the evaporating temperature. An optimal evaporating temperature maximizes the net power output, and the maximal net power output corresponds to the maximal entransy loss and the change points of the heat source outlet temperature and the change rates for the entropy generation and the entransy dissipation. Moreover, the net power output and the total thermal conductance are inversely proportional to the pinch point temperature difference, contradicting with each other. Under the specified condition, the optimal operating parameters are ascertained, with the optimal pinch point temperature difference of 5 K. - Highlights: • We establish an integrated optimization model for organic Rankine cycle. • The model combines the entransy theory with thermodynamics. • The maximal net power output corresponds to the maximal entransy loss. • The pinch point temperature difference is optimized to be 5 K

  12. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes

    Science.gov (United States)

    Li, Huilin; Nguyen, Hong Hanh; Ogorzalek Loo, Rachel R.; Campuzano, Iain D. G.; Loo, Joseph A.

    2018-02-01

    Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation.

  13. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants

    International Nuclear Information System (INIS)

    Zheng, Huixiao; Kaliyan, Nalladurai; Morey, R. Vance

    2013-01-01

    Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm 3 y −1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects. -- Highlights: •BIGCC and natural gas combined cycle systems at corn ethanol plants are simulated. •The best performance results in 25–30 MW power to grid. •The best performance results in 74–78% system thermal efficiencies. •GHG reduction for corn ethanol with BIGCC systems compared to gasoline is over 100%

  14. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  15. Integrative Application of Life Cycle Assessment and Risk Assessment to Environmental Impacts of Anthropogenic Pollutants at a Watershed Scale.

    Science.gov (United States)

    Lin, Xiaodan; Yu, Shen; Ma, Hwongwen

    2018-01-01

    Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.

  16. Report on GeoData 2011 Workshop - Data Life Cycle, Integration and Citation

    Science.gov (United States)

    Signell, R.; Fox, P.

    2012-04-01

    The U.S. GeoData 2011 was inspired by a joint NSF-USGS identification of the need to hear from the broader 'geo' community on a variety of data related matters. While increasing attention needed to be paid to full life cycle of data, in the process of preparing and scoping the workshop two other hot issues were identified: integration and citation, giving the workshop three subject areas to delve into as well as to explore connections among them. Invited participants were drawn from all 'Geo' disciplines, and beyond, from information, computer and library science, from academia, agency and commercial organizations, and from student to senior faculty/ administrators. The workshop diversity provided a rich exchange of ideas, experiences and challenges for GeoData. Many key findings and recommendations have been extracted from the detail breakout discussions and syntheses during and after the workshop. Topical categories included: metadata, standards, standards-based tools, culture, collaboration and workforce. Key points that cut across all three-subject areas were: - A shift is needed within agencies to provide longer-term funding support, for communities to come together, remain coherent and to enable data stewardship, integration and citation within their communities and across to other communities (to the extent possible). - Agencies like USGS, NASA and NOAA must also play a key role in sustaining geoscience cyberinfrastructure by moving research advances into operations. - Community-wide standards and practices should build from demonstrated successes, be widely disseminated, and tools need to be developed to support them. - Education is critical to broader adoption. Marketing studies need to be conducted to provide the business case for full stewardship, integration and citation, and incentives are needed to encourage everyone to participate in making data integratable, citable, etc. While technology gaps are still evident across the three topic areas, there is

  17. Success factors in top career : Towards a life-cycle model on careers of women and men, inside and outside the hospitality

    NARCIS (Netherlands)

    Sok, J.; Blomme, R.J.; Tromp, D.M.; Muijen, van J.J.

    2011-01-01

    The purpose of this research project was to identify success factors in the careers of top women in the hospitality industry. We started out by interviewing five women who are currently working in a high management position in the hospitality industry, about their experiences on their way to the

  18. Integrate life-cycle assessment and risk analysis results, not methods.

    Science.gov (United States)

    Linkov, Igor; Trump, Benjamin D; Wender, Ben A; Seager, Thomas P; Kennedy, Alan J; Keisler, Jeffrey M

    2017-08-04

    Two analytic perspectives on environmental assessment dominate environmental policy and decision-making: risk analysis (RA) and life-cycle assessment (LCA). RA focuses on management of a toxicological hazard in a specific exposure scenario, while LCA seeks a holistic estimation of impacts of thousands of substances across multiple media, including non-toxicological and non-chemically deleterious effects. While recommendations to integrate the two approaches have remained a consistent feature of environmental scholarship for at least 15 years, the current perception is that progress is slow largely because of practical obstacles, such as a lack of data, rather than insurmountable theoretical difficulties. Nonetheless, the emergence of nanotechnology presents a serious challenge to both perspectives. Because the pace of nanomaterial innovation far outstrips acquisition of environmentally relevant data, it is now clear that a further integration of RA and LCA based on dataset completion will remain futile. In fact, the two approaches are suited for different purposes and answer different questions. A more pragmatic approach to providing better guidance to decision-makers is to apply the two methods in parallel, integrating only after obtaining separate results.

  19. SRGULL - AN ADVANCED ENGINEERING MODEL FOR THE PREDICTION OF AIRFRAME INTEGRATED SCRAMJET CYCLE PERFORMANCE

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    The development of a single-stage-to-orbit aerospace vehicle intended to be launched horizontally into low Earth orbit, such as the National Aero-Space Plane (NASP), has concentrated on the use of the supersonic combustion ramjet (scramjet) propulsion cycle. SRGULL, a scramjet cycle analysis code, is an engineer's tool capable of nose-to-tail, hydrogen-fueled, airframe-integrated scramjet simulation in a real gas flow with equilibrium thermodynamic properties. This program facilitates initial estimates of scramjet cycle performance by linking a two-dimensional forebody, inlet and nozzle code with a one-dimensional combustor code. Five computer codes (SCRAM, SEAGUL, INLET, Progam HUD, and GASH) originally developed at NASA Langley Research Center in support of hypersonic technology are integrated in this program to analyze changing flow conditions. The one-dimensional combustor code is based on the combustor subroutine from SCRAM and the two-dimensional coding is based on an inviscid Euler program (SEAGUL). Kinetic energy efficiency input for sidewall area variation modeling can be calculated by the INLET program code. At the completion of inviscid component analysis, Program HUD, an integral boundary layer code based on the Spaulding-Chi method, is applied to determine the friction coefficient which is then used in a modified Reynolds Analogy to calculate heat transfer. Real gas flow properties such as flow composition, enthalpy, entropy, and density are calculated by the subroutine GASH. Combustor input conditions are taken from one-dimensionalizing the two-dimensional inlet exit flow. The SEAGUL portions of this program are limited to supersonic flows, but the combustor (SCRAM) section can handle supersonic and dual-mode operation. SRGULL has been compared to scramjet engine tests with excellent results. SRGULL was written in FORTRAN 77 on an IBM PC compatible using IBM's FORTRAN/2 or Microway's NDP386 F77 compiler. The program is fully user interactive, but can

  20. 'It's happening at Rush' wins top PRSA award. Integrated marketing effort boosts Rush-Presbyterian-St. Luke's.

    Science.gov (United States)

    Rees, Tom

    2002-01-01

    An award-winning integrated marketing campaign for Rush-Presbyterian-St. Luke's Medical Center, Chicago, showcases the institution's research and developments. Each edition of its 50-part series of print ads features a different case study. These are being promoted through internal communications and also with highly visible collateral materials.

  1. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables......Today, some established working fluids are being phased out due to new international regulations on theuse of environmentally harmful substances. With an ever-increasing cost to resources, industry wants toconverge on improved sustainability through resource recovery, and in particular waste heat...

  2. Top Earners

    DEFF Research Database (Denmark)

    Badel, Alejandro; Daly, Moira; Huggett, Mark

    of the earnings distribution becomes thicker with age, and (3) the growth rate of earnings over the working lifetime is larger for groups with higher lifetime earnings. Models of top earners should account for these qualitative patterns and, importantly, for how they quantitatively differ across countries....

  3. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  4. Environmental management throughout the mining cycle: a proactive and integrated approach - 5288

    International Nuclear Information System (INIS)

    Lacroix, E.; Rayot, V.; Descostes, M.; Luquet de Saint Germain, V.; Recoche, G.

    2015-01-01

    Industrial activities such as mining generate environmental impacts. The purpose of AREVA Mines is to avoid and/or to minimize them as much as possible in order to improve its integration into its environment. In this article AREVA environmental strategy is illustrated by 3 case studies: -) project and exploration works in Mongolia, -) the post-mining remediation in Mongolia and Kazakhstan, and -) the closing of the Bellezane (France) site. In conclusion, AREVA environmental strategy for its mining activities is: -) assuming a proactive approach to prevent potential risks and impacts on environment, -) developing a scientific and detailed knowledge of the impacts on environment and implementing appropriate mitigation measures, -) monitoring the environment at the earliest stages of the mining cycle, -) investing in research and development to improve our practices, and -) taking into account the concerns and the knowledge of our stakeholders, and the social and cultural aspects directly linked to the site environment

  5. Model predictive control system and method for integrated gasification combined cycle power generation

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  6. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  8. Measurement control design and performance assessment in the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Orechwa, Y.; Bucher, R.G.

    1994-01-01

    The Integral Fast Reactor (IFR)--consisting of a metal fueled and liquid metal cooled reactor together with an attendant fuel cycle facility (FCF)--is currently undergoing a phased demonstration of the closed fuel cycle at Argonne National Laboratory. The recycle technology is pyrometalurgical based with incomplete fission product separation and all transuranics following plutonium for recycle. The equipment operates in batch mode at 500 to 1,300 C. The materials are highly radioactive and pyrophoric, thus the FCF requires remote operation. Central to the material control and accounting system for the FCF are the balances for mass measurements. The remote operation of the balances limits direct adjustment. The radiation environment requires that removal and replacement of the balances be minimized. The uniqueness of the facility precludes historical data for design and performance assessment. To assure efficient operation of the facility, the design of the measurement control system has called for procedures which assess the performance of the balances in great detail and will support capabilities for the correction of systematic changes in the performance of the balances through software

  9. Management of transuranics using the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Wade, D.C.

    1994-01-01

    The 50 years of activities following the discovery of self-sustaining fission chains have given rise to a buildup of roughly 900 tons of manmade transuranics. Of the total, about 260 tons of Pu 239 were generated for use in weapons while the remainder were generated as a byproduct of electrical power produced worldwide by the commercial thermal nuclear power industry. What is to be done with these actinides? The options for disposition include interminable storage, burial, or recycle for use. The pros and cons of each option are being vigorously debated regarding the impact upon the issues of human and ecological risk -- both current and future; weapons proliferation potential -- both current and future; and total life cycle benefits and costs. As to the options for utilization, commercial uses for actinides (uranium and transuranics) are of limited diversity. The actinides have in the past and will in the future find application in large scale mostly by virtue of their ability to release energy through fission, and here their utility is unmatched -- whether the application be in commercial electricity generation or in armaments. The integral Fast Reactor (IFR) fuel cycle offers a number of features for management of the current and future burden of manmade transuranic materials and for capturing the energy content of the U 238 . These features are discussed here

  10. Actinide recycle potential in the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1990-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The use of metallic fuel in the IFR allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. In the electrorefining operation, uranium and plutonium are selectively transported from an anode to a cathode, leaving impurity elements, mainly fission products, either in the anode compartment or in a molten salt electrolyte. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management, because these actinides are automatically recycled back into the reactor for in-situ burning. Based on the recent IFR process development, a preliminary assessment has also been made to investigate the feasibility of further adapting the pyrochemical processes to directly extract actinides from LWR spent fuel. The results of this assessment indicate very promising potential and two most promising flowsheet options have been identified for further research and development. This paper also summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 5 refs., 4 figs., 4 tabs

  11. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  12. Behavior of a cycle-integrated system. Heat recovery in RTL plants; Verhalten von Kreislauf-Verbund-Systemen. Waermerueckgewinnung in RLT-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Rauser, Hanns Christoph [HCR Consulting, Ingenieurbuero fuer Kaelte- und Klimatechnik, Bietigheim-Bissingen (Germany)

    2010-09-15

    The contribution under consideration reports on the behaviour of a cycle-integrated system and derives criteria for the attaining high degrees of temperature changes. Since cycle-integrated system also realizes a reheating and a re-cooling apart from a heat recovery, also the behaviour of such a system is presented according to feeding coldness and warmth into the cycle.

  13. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    Science.gov (United States)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  14. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    Science.gov (United States)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  15. Numerical Simulation of Fluidized Bed Gasifier for Integrated Gasification Combined Cycle

    Directory of Open Access Journals (Sweden)

    CHEN Ju-hui

    2017-06-01

    Full Text Available The overall thermal efficiency of the integrated gasification combined cycle ( IGCC has not been sufficiently improved. In order to achieve higher power generation efficiency,the advanced technology of IGCC has been developed which is on the basis of the concept of exergy recovery. IGCC systems and devices from the overall structure of opinion,this technology will generate electricity for the integration of advanced technology together,the current utilization of power generation technology and by endothermic reaction of steam in the gasifier,a gas turbine exhaust heat recovery or the solid oxide fuel cell. It is estimated that such the use of exergy recycling has the advantage of being easy to use,separating,collecting fixed CO2,making it very attractive,and can increase the overall efficiency by 10% or more. The characteristics of fluidized bed gasifier,one of the core equipment of the IGCC system,and its effect on the whole system were studied.

  16. Integrated model-experimental framework to assess carbon cycle components in disturbed mountainous terrain

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.; Berardi, D.; McNellis, B.; Walsh, E.

    2017-12-01

    In forests vulnerable to drought and fire, there is critical need for in situ carbon and water balance measurements that can be integrated with earth system modeling to predict climate feedbacks. Model development can be improved by measurements that inform a mechanistic understanding of the component fluxes of net carbon uptake (i.e., NPP, autotrophic and heterotrophic respiration) and water use, with specific focus on responses to climate and disturbance. By integrating novel field-based instrumental technology, existing datasets, and state-of-the-art earth system modeling, we are attempting to 1) quantify the spatial and temporal impacts of forest thinning on regional biogeochemical cycling and climate 2) evaluate the impact of forest thinning on forest resilience to drought and disturbance in the Northern Rockies ecoregion. The combined model-experimental framework enables hypothesis testing that would otherwise be impossible because the use of new in situ high temporal resolution field technology allows for research in remote and mountainous terrains that have been excluded from eddy-covariance techniques. Our preliminary work has revealed some underlying difficulties with the new instrumentation that has led to new ideas and modified methods to correctly measure the component fluxes. Our observations of C balance following the thinning operations indicate that the recovery period (source to sink) is longer than hypothesized. Finally, we have incorporated a new plant functional type parameterization for Northern Rocky mixed-conifer into our simulation modeling using regional and site observations.

  17. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    Science.gov (United States)

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. THE ROLE OF INTEGRATED ISLAMIC COMMERCIAL AND SOCIAL FINANCE FOR CURBING CREDIT CYCLES AND ACHIEVING MACROPRUDENTIAL OBJECTIVE

    Directory of Open Access Journals (Sweden)

    Arif Widodo

    2018-03-01

    Full Text Available It is widely believed that Islamic finance is inherently stable since the principle of risk-sharing and linking the financial to real counterpart in particular through its social finance are applied, hence the financial stability may successfully be attained. If mimicking the conventional finance, Islamic model will probably be facing instability, following the financial cycle. There has been a growing literature discussing credit cycle in mainstream perspective since 2008 global financial crash. However, it is quite rare to find study, in macro context, on credit cycles and the effectiveness of integrated Islamic commercial and social finance in achieving macroprudential objective: curtailing excessive credit. This study is designed to empirically examine the characteristics of cycles stemming from conventional and Islamic credit whether both have similar trend and also to investigate how the integrated Islamic commercial and social finance may be effective to hamper such cycles. By employing Hodrick-Presscot Filter, Markov Switching and Vector Error Correction Model, this study demonstrates that, in terms of cycle, Islamic model cycle has certain similarities with conventional counterpart since it functions under similar financial environment despite the fact that Islamic has less amplitude compared with conventional credit. Both credit and financing cycles tend to grow rapidly (excessive several months before global financial crisis happened in 2008. This means that, in a dual banking system, credit and financing boom may precede financial crisis. Moreover, it is apparent also that the integrated Islamic finance is proven to be effective in curbing credit growth due to the effectiveness of both macroprudential instrument applied in banking sector and social finance in safeguarding financial stability. Keywords:  Credit cycle, Macroprudential policy, Markov Switching, HP filter JEL Classification: E32, E51, G29

  19. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  20. Leading Teams of Higher Education Administrators: Integrating Goal Setting, Team Role, and Team Life Cycle Theories

    Science.gov (United States)

    Posthuma, Richard; Al-Riyami, Said

    2012-01-01

    Leaders of higher education institutions can create top management teams of academic administrators to guide and improve their organizations. This study illustrates how the leadership of top management teams can be accomplished successfully through a combination of goal setting (Doran, 1981; Locke & Latham, 1990), understanding of team roles…

  1. IIASA's climate-vegetation-biogeochemical cycle module as a part of an integrated model for climate change

    International Nuclear Information System (INIS)

    Ganopolski, A.V.; Jonas, M.; Krabec, J.; Olendrzynski, K.; Petoukhov, V.K.; Venevsky, S.V.

    1994-01-01

    The main objective of this study is the development of a hierarchy of coupled climate biosphere models with a full description of the global biogeochemical cycles. These models are planned for use as the core of a set of integrated models of climate change and they will incorporate the main elements of the Earth system (atmosphere, hydrosphere, pedosphere and biosphere) linked with each other (and eventually with the antroposphere) through the fluxes of heat, momentum, water and through the global biogeochemical cycles of carbon and nitrogen. This set of integrated models can be considered to fill the gap between highly simplified integrated models of climate change and very sophisticated and computationally expensive coupled models, developed on the basis of general circulation models (GCMs). It is anticipated that this range of integrated models will be an effective tool for investigating the broad spectrum of problems connected with the coexistence of human society and biosphere

  2. Treatment of wastes in the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Chow, L.S.H.; Carls, E.L.; Hannum, W.H.; Laidler, J.J.

    1997-01-01

    In both the reactor portion and the fuel-cycle portion of the Integral Fast Reactor (IFR), handling, treatment and disposal of wastes are simpler than in current fuel cycles. The vast majority (> 99.9%) of the very-long-lived radioactive TRU elements are not sent to the repository; rather, they are recycled. High-level waste volume from the IFR process (called ''the pyroprocess'') is lower than that from either the direct disposal of spent fuel or from conventional PUREX-type reprocessing. The quantity of low-level waste is very low. In the pyroprocess, the actinides are recovered and separated from the bulk of the fission products by an electrorefining step wherein the actinides are electrotransported from chopped fuel elements and deposited at cathodes. The volatile fission products xenon, krypton, and tritium are collected for long-term storage and decay. Zirconium and the ''noble metal'' fission products (those that are less easily oxidized than zirconium) remain in the anode compartment, to be removed with the fuel cladding fragments and made into a metal waste form. The remaining fission products collect in the salt as chlorides. A process has been developed to periodically remove the contaminated salt from the electrorefiner, separate most of the fission products, and return the purified salt in a form that is ready for continuing use. To clean up the electrorefiner salt, the fission products are removed by ion exchange onto a column of Zeolite A. After the purification step, the column material and the contained fission products are converted to a mineral waste form for disposal. The processes and equipment for waste isolation and conversion to suitable disposal forms are described in this paper. (author)

  3. Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2008-01-01

    In this paper we analyze the choice between two technologies for producing electricity. In particular, the firm has to decide whether and when to invest either in a Natural Gas Combined Cycle (NGCC) power plant or in an Integrated Gasification Combined Cycle (IGCC) power plant, which may burn either coal or natural gas. Instead of assuming that fuel prices follow standard geometric Brownian motions, here they are assumed to show mean reversion, specifically to follow an inhomogeneous geometric Brownian motion. First we consider the opportunity to invest in a NGCC power plant. We derive the optimal investment rule as a function of natural gas price and the remaining life of the right to invest. In addition, the analytical solution for a perpetual option to invest is obtained. Then we turn to the IGCC power plant. We analyse the valuation of an operating plant when there are switching costs between modes of operation, and the choice of the best operation mode. This serves as an input to evaluate the option to invest in this plant. Finally we derive the value of an opportunity to invest either in a NGCC or IGCC power plant, i.e. to choose between an inflexible and a flexible technology, respectively. Depending on the opportunity's time to maturity, we derive the pairs of coal and gas prices for which it is optimal to invest in NGCC, in IGCC, or simply not to invest. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for coal and gas prices. Basic parameter values are taken from an actual IGCC power plant currently in operation. Sensitivity of some results with respect to the underlying stochastic process for fuel price is also checked

  4. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    Energy Technology Data Exchange (ETDEWEB)

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  5. Measurement of the integrated and differential $\\mathrm{t \\bar{t}}$ production cross sections for high-$p_{\\mathrm{T}}$ top quarks in pp collisions at $ \\sqrt{s} = $ 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Schöfbeck, Robert; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Leggat, Duncan; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Assran, Yasser; Ellithi Kamel, Ali; Mahrous, Ayman; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Ruiz Alvarez, José David; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulte, Jan-Frederik; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Trippkewitz, Karim Damun; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Jain, Sandhya; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Fantinel, Sergio; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; La Licata, Chiara; Schizzi, Andrea; Zanetti, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunchul; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Traczyk, Piotr; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Korenkov, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Tikhonenko, Elena; Voytishin, Nikolay; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Chadeeva, Marina; Chistov, Ruslan; Danilov, Mikhail; Rusinov, Vladimir; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Korneeva, Natalia; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Benhabib, Lamia; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Knünz, Valentin; Kortelainen, Matti J; Kousouris, Konstantinos; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Alimena, Juliette; Benelli, Gabriele; Berry, Edmund; Cutts, David; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Paneva, Mirena Ivova; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lewis, Jonathan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Bruner, Christopher; Castle, James; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Malek, Magdalena; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Benedetti, Daniele; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Woods, Nathaniel

    2016-10-12

    The cross section for pair production of top quarks ($\\mathrm{ t \\bar{t} }$) with high transverse momenta is measured in $\\mathrm{ p } \\mathrm{ p }$ collisions, collected with the CMS detector at the LHC with $ \\sqrt{s} = $ 8 TeV in data corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The measurement is performed using lepton+jets events, where one top quark decays semileptonically, while the second top quark decays to a hadronic final state. The hadronic decay is reconstructed as a single, large-radius jet, and identified as a top quark candidate using jet substructure techniques. The integrated cross section and the differential cross sections as a function of top quark $p_{\\mathrm{T}}$ and rapidity are measured at particle level within a fiducial region related to the detector-level requirements and at parton level. The particle-level integrated cross section is found to be $\\sigma_{\\mathrm{ t \\bar{t} }} =$ 0.499 $\\pm$ 0.035 (stat+syst) $\\pm$ 0.095 (theory) $\\pm$ 0.013 (lumi) pb for top quark...

  6. Autotranspordifirmade TOP 100

    Index Scriptorium Estoniae

    2006-01-01

    Ilmunud ka: Delovõje Vedomosti : Transport i Logistika 29. nov. lk. 10-11. Autofirmade TOP 100. Vt. samas: Käibe TOP 10; Käibe kasvu TOP 10; Majandustegevuse kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10; Autotranspordifirmade üld- ja finantsandmed. Delovõje Vedomosti : Transport i Logistika sisaldab tabelit Autofirmade TOP 100

  7. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    International Nuclear Information System (INIS)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  8. An integrated approach to calculate life cycle costs of arms and military equipment

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2013-12-01

    , costs are one of the most dominant parameters in decision-making. Modern trends in this area comprehensively perceive all costs during the life cycle of assets.In general, in the analysis of costs in the life cycle of AME there are two sets of costs: visible and invisible (hidden costs. The visible part of the costs is mainly present in decision-making and usually includes the cost of equipping units or purchase of assets. The invisible part of the costs is far more significant. Although it is larger than the visible part and covers more groups of costs, decision-makers often do not take it into account. The hidden costs include: distribution costs, operating costs, maintenance costs, training costs, inventory costs, information systems costs, the cost of disposal and write-offs, etc. The decision making problem about investment in the AME purchase and equipping is obviously of  multicriteria nature, whether an optimum combination of costs for one  technical system (AME is in question, or whether it is a choice of a system of AME among many offered. COST ANALYSIS OF A PARTICULAR  ASSET For the illustration of an integrated approach to the analysis of the cost of assets in their life-cycle, a model from the US Naval Postgraduate School, was adjusted and applied on an example of a real asset. The model is applied to the case of two  squadrons of identical aircraft based at different airports. With regard to the availability, confidentiality, and the variability of costs and reliability of the elements of AME, the calculations in the model are implemented on the basis of the estimated or orientation parameters. Essentially, the goal is to demonstrate the interdependence, mutual relations and influences of parameters and their ultimate impact on the overall cost of military assets. Applying the model to a particular example points to the fact that, in the first years of asset life, the dominant cost is that of asset procurement (cost of acquisition, cost of assets

  9. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  10. Thermo-economic comparative analysis of gas turbine GT10 integrated with air and steam bottoming cycle

    Science.gov (United States)

    Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian

    2014-12-01

    A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10

  11. Integration of the AVLIS (atomic vapor laser isotopic separation) process into the nuclear fuel cycle. [Effect of AVLIS feed requirements on overall fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF/sub 6/-in UF/sub 6/-out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs.

  12. Towards integrated modelling of soil organic carbon cycling at landscape scale

    Science.gov (United States)

    Viaud, V.

    2009-04-01

    Soil organic carbon (SOC) is recognized as a key factor of the chemical, biological and physical quality of soil. Numerous models of soil organic matter turnover have been developed since the 1930ies, most of them dedicated to plot scale applications. More recently, they have been applied to national scales to establish the inventories of carbon stocks directed by the Kyoto protocol. However, only few studies consider the intermediate landscape scale, where the spatio-temporal pattern of land management practices, its interactions with the physical environment and its impacts on SOC dynamics can be investigated to provide guidelines for sustainable management of soils in agricultural areas. Modelling SOC cycling at this scale requires accessing accurate spatially explicit input data on soils (SOC content, bulk density, depth, texture) and land use (land cover, farm practices), and combining both data in a relevant integrated landscape representation. The purpose of this paper is to present a first approach to modelling SOC evolution in a small catchment. The impact of the way landscape is represented on SOC stocks in the catchment was more specifically addressed. This study was based on the field map, the soil survey, the crop rotations and land management practices of an actual 10-km² agricultural catchment located in Brittany (France). RothC model was used to drive soil organic matter dynamics. Landscape representation in the form of a systematic regular grid, where driving properties vary continuously in space, was compared to a representation where landscape is subdivided into a set of homogeneous geographical units. This preliminary work enabled to identify future needs to improve integrated soil-landscape modelling in agricultural areas.

  13. Control structure design of a solid oxide fuel cell and a molten carbonate fuel cell integrated system: Top-down analysis

    International Nuclear Information System (INIS)

    Jienkulsawad, Prathak; Skogestad, Sigurd; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • Control structure of the combined fuel cell system is designed. • The design target is trade-off between power generation and carbon dioxide emission. • Constraints are considered according to fuel cell safe operation. • Eight variables have to be controlled to maximize profit. • Two control structures are purposed for three active constraint regions. - Abstract: The integrated system of a solid oxide fuel cell and molten carbonate fuel cell theoretically has very good potential for power generation with carbon dioxide utilization. However, the control strategy of such a system needs to be considered for efficient operation. In this paper, a control structure design for an integrated fuel cell system is performed based on economic optimization to select manipulated variables, controlled variables and control configurations. The objective (cost) function includes a carbon tax to get an optimal trade-off between power generation and carbon dioxide emission, and constraints include safe operation. This study focuses on the top-down economic analysis which is the first part of the design procedure. Three actively constrained regions as a function of the main disturbances, namely, the fuel and steam feed rates, are identified; each region represents different sets of active constraints. Under nominal operating conditions, the system operates in region I. However, operating the fuel cell system in region I and II can use the same structure, but in region III, a different control structure is required.

  14. Top Earners

    DEFF Research Database (Denmark)

    Badel, Alejandro; Daly, Moira; Huggett, Mark

    We document a common set of life-cycle earnings facts using data from the US, Canada, Denmark and Sweden. In each country, we find that (1) the earnings distribution fans out with age, (2) the right tail of the earnings distribution becomes thicker with age, (3) the wage-rate distribution fans out...

  15. Status of the top quark: Top production cross section and top properties

    Energy Technology Data Exchange (ETDEWEB)

    Boisvert, V.; /Rochester U.

    2006-08-01

    This report describes the latest cross section and property measurements associated with the top quark at the Tevatron Run II. The largest data sample used is 760 pb{sup -1} of integrated luminosity. Due to its large mass, the top quark might be involved in the process of electroweak symmetry breaking, making it a useful probe for signs of new physics.

  16. Recovery of flue gas energy in heat-integrated gasification combined cycle (IGCC) power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, VA

    2011-03-01

    Full Text Available (flue gas) stream of a heat-integrated gasification combined cycle (IGCC) design of the Elcogas plant adopted from previous studies. The underlying support for this idea was the direct relationship between efficiency of the IGCC and the boiler feedwater...

  17. Design and process integration of organic Rankine cycle utilizing biomass for power generation

    Science.gov (United States)

    Ependi, S.; Nur, T. B.

    2018-02-01

    Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.

  18. Integrated evaluation framework. Based on the logical framework approach for project cycle management

    International Nuclear Information System (INIS)

    1996-11-01

    This Integrated Evaluation Framework (IEF) was developed by TC Evaluation with the aim of presenting in a comprehensive manner the logic of thinking used when evaluating projects and programmes. Thus, in the first place, the intended audience for this report are evaluation officers, so that when applying the evaluation procedures and check lists, data can be organized following a systematic and logical scheme and conclusions can be derived ''objectively''. The value of such a framework for reporting on performance and in providing a quality reference for disbursements represents one of its major advantages. However, when developing and applying the IEF, it was realized that a Logical Framework Approach (LFA), like the one upon which the IEF is based, needs to be followed throughout the project life cycle, from the Country Programme Framework planning stage, through project design and implementation. Then, the helpful consequences flow into project design quality and smooth implementation. It is only in such an environment that meaningful and consistent evaluation can take place. Therefore the main audience for this report are Agency staff involved in planning, designing and implementing TC projects as well as their counterparts in Member States. In this understanding, the IEF was subjected to review by a consultants meeting, which included both external consultants and Agency staff. This Consultants Review Meeting encouraged the Secretariat to further adopt the LFA into the TC management process

  19. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  20. Life cycle assessment for optimising the level of separated collection in integrated MSW management systems.

    Science.gov (United States)

    Rigamonti, L; Grosso, M; Giugliano, M

    2009-02-01

    This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.

  1. Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies.

    Science.gov (United States)

    Sharp, Benjamin E; Miller, Shelie A

    2016-03-15

    Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts. Diffusion of innovation is an established field of research that analyzes the adoption of new innovations, and its principles can be used to construct scenario models that enhance LCA of emerging technologies. Integrating diffusion modeling techniques with an LCA of emerging technology can provide estimates for the extent of market penetration, the displacement of existing systems, and the rate of adoption. Two general perspectives of application are macro-level diffusion models that use a function of time to represent adoption, and microlevel diffusion models that simulate adoption through interactions of individuals. Incorporating diffusion of innovation concepts complement existing methods within LCA to inform proactive environmental management of emerging technologies.

  2. The Mass Tracking System for the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Adams, C.H.; Beitel, J.C.; Birgersson, G.; Bucher, R.G.; Carrico, C.B.; Daly, T.A.; Keyes, R.W.

    1994-01-01

    As part of the Fuel Cycle Facility (FCF) of Argonne National Laboratory's Integral Fast Reactor (IFR) demonstration, a computer-based Mass-Tracking (MTG) System has been developed. The MTG System collects, stores, retrieves and processes data on all operations which directly affect the flow of process material through FCF and supports such activities as process modeling, compliance with operating limits (e.g., criticality safety), material control and accountability and operational information services. Its architecture is client/server, with input and output connections to operator's equipment-control stations on the floor of FCF as well as to terminal sessions. Its heterogeneous database includes a relational-database manager as well as both binary and ASCII data files. The design of the database, and the software that supports it, is based on a model of discrete accountable items distributed in space and time and constitutes a complete historical record of the material processed in FCF. Although still under development, much of the MTG System has been qualified and is in production use

  3. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Ratha Z. Mathkor

    2015-08-01

    Full Text Available This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC, an organic Rankine cycle (ORC, single-effect desalination (SED, and single effect LiBr-H2O absorption chiller (ACH was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water.

  4. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Zacarias, A.; Venegas, M.

    2010-01-01

    Single-effect absorption refrigeration hybridized with mechanical vapor compression in a vapor circuit is known as the absorption cycle with an integrated booster compressor. In this study, the compressor is located between the evaporator and the absorber. This paper presents a numerical model of this cycle with ammonia-lithium nitrate solution as the working pair. It is based on UA-ΔT lm models for separate regions of plate-type heat exchangers. The results are offered as a function of external circuit flow parameters. Different pressure ratios of the compressor were tested for a wide range of hot water driving temperatures (55-95 deg. C), showing that low values are more beneficial. This cycle allows for working at lower driving temperatures than the single-effect cycle, with low electricity consumption. At the same driving temperature, the capacity is augmented with an increased compressor pressure ratio, thus allowing for demand matching of the cooling. This cycle, operating with hot water at 67 deg. C with a pressure ratio of 2.0, has the capacity of a single-effect absorption cycle at 94 deg. C. The electrical COP was found to be higher than that in an ammonia vapor compression cycle for comprehensive working conditions.

  5. Multi-objective optimization integrated with life cycle assessment for rainwater harvesting systems

    Science.gov (United States)

    Li, Yi; Huang, Youyi; Ye, Quanliang; Zhang, Wenlong; Meng, Fangang; Zhang, Shanxue

    2018-03-01

    The major limitation of optimization models applied previously for rainwater harvesting (RWH) systems is the systematic evaluation of environmental and human health impacts across all the lifecycle stages. This study integrated life cycle assessment (LCA) into a multi-objective optimization model to optimize the construction areas of green rooftops, porous pavements and green lands in Beijing of China, considering the trade-offs among 24 h-interval RWH volume (QR), stormwater runoff volume control ratio (R), economic cost (EC), and environmental impacts (EI). Eleven life cycle impact indicators were assessed with a functional unit of 10,000 m2 of RWH construction areas. The LCA results showed that green lands performed the smallest lifecycle impacts of all assessment indicators, in contrast, porous pavements showed the largest impact values except Abiotic Depletion Potential (ADP) elements. Based on the standardization results, ADP fossil was chosen as the representative indicator for the calculation of EI objective in multi-objective optimization model due to its largest value in all RWH systems lifecycle. The optimization results for QR, R, EC and EI were 238.80 million m3, 78.5%, 66.68 billion RMB Yuan, and 1.05E + 16 MJ, respectively. After the construction of optimal RWH system, 14.7% of annual domestic water consumption and 78.5% of maximum daily rainfall would be supplied and controlled in Beijing, respectively, which would make a great contribution to reduce the stress of water scarcity and water logging problems. Green lands have been the first choice for RWH in Beijing according to the capacity of rainwater harvesting and less environmental and human impacts. Porous pavements played a good role in water logging alleviation (R for 67.5%), however, did not show a large construction result in this study due to the huge ADP fossil across the lifecycle. Sensitivity analysis revealed the daily maximum precipitation to be key factor for the robustness of the

  6. Autotranspordi TOP aastal 2007

    Index Scriptorium Estoniae

    2008-01-01

    TOP 50. Vt. samas: Käibe TOP 10; Käibe kasvu TOP 10; Kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10; Marika Roomere. Täisteenuse pakkumine kergitas tulemusi; Jupiter Plus otsib järjest uusi kasvuvõimalusi; EST-Trans Kaubaveod teenib kasumit toiduvedamisega

  7. Koolitusfirmade TOP aastal 2007

    Index Scriptorium Estoniae

    2008-01-01

    Koolitusfirmade TOP. Vt. samas: Käibe TOP 10; Käibekasvu TOP 10; Kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10; Signe Sillasoo. Invicta tahab lähiaastail laieneda Eestis ja mujalgi; Ketlin Priilinn. Addenda kasutas ära majanduse soodsa seisu. Kommenteerib Heli Sõmer. Juhtide hoiakute muutmisega tõus esikolmikusse

  8. Audiitorfirmade TOP aastal 2007

    Index Scriptorium Estoniae

    2008-01-01

    Audiitorfirmade TOP 51. Vt. samas: Urve Vilk. Audiitoriteni pole majanduslangus jõudnud; Intervjuu I.S. Audiitorteenuste OÜ omaniku Irina Somovaga; Käibe TOP 10; Käibe kasvu TOP 10; Kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP 10

  9. Koolitusfirmade TOP aastal 2006

    Index Scriptorium Estoniae

    2007-01-01

    Koolitusfirmade TOP. Vt. samas: Käibe TOP10; Käibe kasvu TOP 10; Kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Varade tootlikkuse TOP 10; Pille Rõivas. Võtmetegur meeskond; Vain & Partnerid: uudsus peitub sisus; Kristo Kiviorg. Teel Baltimaade koolitajate tippu

  10. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  11. Top reconstruction and boosted top experimental overview

    CERN Document Server

    Skinnari, Louise

    2015-01-01

    An overview of techniques used to reconstruct resolved and boosted top quarks is presented. Techniques for resolved top quark reconstruction include kinematic likelihood fitters and pseudo- top reconstruction. Many tools and methods are available for the reconstruction of boosted top quarks, such as jet grooming techniques, jet substructure variables, and dedicated top taggers. Different techniques as used by ATLAS and CMS analyses are described and the performance of different variables and top taggers are shown.

  12. Fuel-Stimulated Insulin Secretion Depends upon Mitochondria Activation and the Integration of Mitochondrial and Cytosolic Substrate Cycles

    Directory of Open Access Journals (Sweden)

    Gary W. Cline

    2011-10-01

    Full Text Available The pancreatic islet β-cell is uniquely specialized to couple its metabolism and rates of insulin secretion with the levels of circulating nutrient fuels, with the mitochondrial playing a central regulatory role in this process. In the β-cell, mitochondrial activation generates an integrated signal reflecting rates of oxidativephosphorylation, Kreb's cycle flux, and anaplerosis that ultimately determines the rate of insulin exocytosis. Mitochondrial activation can be regulated by proton leak and mediated by UCP2, and by alkalinization to utilize the pH gradient to drive substrate and ion transport. Converging lines of evidence support the hypothesis that substrate cycles driven by rates of Kreb's cycle flux and by anaplerosis play an integral role in coupling responsive changes in mitochondrial metabolism with insulin secretion. The components and mechanisms that account for the integrated signal of ATP production, substrate cycling, the regulation of cellular redox state, and the production of other secondary signaling intermediates are operative in both rodent and human islet β-cells.

  13. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  14. Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern

    2005-07-01

    This thesis focuses on three main areas within the field of SOFC/GT-technology: 1) Development of a dynamic SOFC/GT model. 2) Model calibration and sensitivity study. 3) Assessment of the dynamic properties of a SOFC/GT power plant. The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients. The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell. Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies; 1) Load change at constant mean fuel cell temperature. 2) Load change at constant turbine inlet temperature. 3) Load change at constant shaft speed. Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and

  15. Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process

    International Nuclear Information System (INIS)

    Lee, Hyeon-Hui; Lee, Jae-Chul; Joo, Yong-Jin; Oh, Min; Lee, Chang-Ha

    2014-01-01

    Highlights: • Detailed dynamic model for the Shell entrained flow gasifier was developed. • The model included sub-models of reactor, membrane wall, gas quench and slag flow. • The dynamics of each zone including membrane wall in the gasifier were analyzed. • Cold gas efficiency (81.82%), gas fraction and temperature agreed with Shell data. • The model could be used as part of the overall IGCC simulation. - Abstract: The Shell coal gasification system is a single-stage, up-flow, oxygen-blown gasifier which utilizes dry pulverized coal with an entrained flow mechanism. Moreover, it has a membrane wall structure and operates in the slagging mode. This work provides a detailed dynamic model of the 300 MW Shell gasifier developed for use as part of an overall IGCC (integrated gasification combined cycle) process simulation. The model consists of several sub-models, such as a volatilization zone, reaction zone, quench zone, slag zone, and membrane wall zone, including heat transfers between the wall layers and steam generation. The dynamic results were illustrated and the validation of the gasifier model was confirmed by comparing the results in the steady state with the reference data. The product gases (H 2 and CO) began to come out from the exit of the reaction zone within 0.5 s, and nucleate boiling heat transfer was dominant in the water zone of the membrane wall due to high heat fluxes. The steady state of the process was reached at nearly t = 500 s, and our simulation data for the steady state, such as the temperature and composition of the syngas, the cold gas efficiency (81.82%), and carbon conversion (near 1.0) were in good agreement with the reference data

  16. Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander

    International Nuclear Information System (INIS)

    Dai, Baomin; Liu, Shengchun; Zhu, Kai; Sun, Zhili; Ma, Yitai

    2017-01-01

    New configurations of transcritical CO_2 refrigeration cycle combined with a thermoelectric (TE) subcooler and an expander (TES+EXP_H_M and TES+EXP_M_L) are proposed. The expander can operate between the high-pressure to the vessel pressure, or from vessel pressure to evaporation pressure. A power system is utilized to balance and supply power to thermoelectric subcooler and compressor. Thermodynamic performance optimizations and analyses are presented. Comparisons are carried out with the BASE, EXP_H_M, EXP_M_L, and TES cycles. The results show that the coefficient of performance (COP) improvement is more notable when the expander is installed between the liquid receiver and the evaporator. Maximum COP is obtained for the new cycles with a simultaneous optimization of discharge pressure and subcooling temperature. The new proposed TES+EXP_M_L cycle shows an excellent and steady performance than other cycles. It operates not only with the highest COP, but also the lowest discharge pressure. Under the working conditions of high gas cooler outlet temperature or low evaporation temperature, the merits of COP improvement and discharge pressure reduction are more prominent. The new cycle is more suitable for the hot regions where the CO_2 can not be sufficiently subcooled or the refrigerated space operates at low evaporation temperature. - Highlights: • New configurations of transcritical CO_2 refrigeration cycle are proposed. • New cycles are optimized and compared with other cycles. • The position of expander has an evident influence on the performance of CO_2 cycle. • TES+EXP_M_L cycle shows the highest COP and lowest discharge pressure. • The range of application for the TES+EXP_M_L cycle is recommended.

  17. Life Cycle Thinking and Integrated Product Deliveries in renovation projects: Extending the concept of Integrated Product Deliveries with Product Service Systems

    DEFF Research Database (Denmark)

    Schipull Kauschen, Jan

    2012-01-01

    on renovation projects from Denmark, using different forms of IPDs for façade renovation and discusses the different stakeholder’s perspectives on life cycle thinking and their interests and values regarding sustainable building. Furthermore is the concept of Product Service Systems (PSS) as a valuable...... IPDs with regard to longevity and adaptability. CONCLUSION The new type of service-focused IPD and the related life-cycle responsibility (development, building phase, maintenance and dismantling/adaption/recycling) creates incentive to integrate life cycle thinking into the development process of IPDs......, resulting in more sustainable building solutions with a greater extend of positive environmental, economical and social impacts. The research presented will also show the importance of adaption and configuration of these complex building components by architects and planners, as they will have a great...

  18. Using the Engineering Design Cycle to Develop Integrated Project Based Learning in Aerospace Engineering

    NARCIS (Netherlands)

    Saunders-Smits, G.N.; Roling, P.; Brügemann, V.; Timmer, N.; Melkert, J.

    2012-01-01

    Over the past four years the Faculty of Aerospace Engineering at Delft University of Technology in the Netherlands has redeveloped its BSc curriculum to mimic an engineering design cycle. Each semester represents a step in the design cycle: exploration; system design; sub-system design; test,

  19. Integrating Curriculum through the Learning Cycle: Content-Based Reading and Vocabulary Instruction

    Science.gov (United States)

    Spencer, Brenda H.; Guillaume, Andrea M.

    2006-01-01

    The content areas provide rich contexts for developing vocabulary. This article presents some principles and a lesson model--the learning cycle--that can be used to develop vocabulary while building understanding in science. Because science instruction and the learning cycle model promote learning in real-world contexts, they provide students with…

  20. Human and ecological life cycle tools for the integrated assessment of systems (HELIAS)

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Kleijn, René; Van Der Voet, Ester; De Koning, Arjan; Van Oers, Lauran; Elshkaki, Ayman; Huele, Ruben; Huppes, Gjalt; Suh, Sangwon; Sleeswijk, Anneke Wegener

    Goal, Scope and Background. CML has contributed to the development of life cycle decision support tools, particularly Substance/Material Flow Analysis (SFA respectively MFA) and Life Cycle Assessment (LCA). Ever since these tools emerged there have been discussions on how these tools relate to each

  1. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    Science.gov (United States)

    Boeser, C.; Chwalek, T.; Giffels, M.; Kuznetsov, V.; Wildish, T.

    2014-06-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future. The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services. It allows cross-system integration tests of all three components to be performed in controlled environments, without interfering with production services. In this paper we discuss the design and implementation of the LifeCycle agent. We describe how it is used for small-scale debugging and validation tests, and how we extend that to large-scale tests of whole groups of sub-systems. We show how the LifeCycle agent can emulate the action of operators, physicists, or software agents external to the system under test, and how it can be scaled to large and complex systems.

  2. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    International Nuclear Information System (INIS)

    Boeser, C; Chwalek, T; Giffels, M; Kuznetsov, V; Wildish, T

    2014-01-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future. The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services. It allows cross-system integration tests of all three components to be performed in controlled environments, without interfering with production services. In this paper we discuss the design and implementation of the LifeCycle agent. We describe how it is used for small-scale debugging and validation tests, and how we extend that to large-scale tests of whole groups of sub-systems. We show how the LifeCycle agent can emulate the action of operators, physicists, or software agents external to the system under test, and how it can be scaled to large and complex systems.

  3. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  4. A study of a high temperature nuclear power plant incorporating a non-integrated indirect cycle gas turbine

    International Nuclear Information System (INIS)

    Sarlos, G.; Helbling, W.; Zollinger, E.; Gregory, N.; Luchsinger, H.

    1982-04-01

    In connection with the HHT-project, the Swiss Federal Institute for Reactor Research has performed a study of a 1640-MWth HTR-plant incorporating a non-integrated indirect cycle gas turbine with two-stage intercooling, as a possibility of simplifying and reducing the cost of the HHT-demonstration plant. In this paper, the plant design is described and compared with the HHT-demonstration plant (a CCGT integrated plant with single stage intercooling). Also included is an evaluation of the various advantages and disadvantages of this design together with the presentation of some of the sensitivity results. (Auth.)

  5. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    International Nuclear Information System (INIS)

    Ji, Changyoon; Hong, Taehoon

    2016-01-01

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  6. Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    2016-02-15

    Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weighting factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.

  7. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of WWER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual WWER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the WWER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in WWER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from WWER-440 in the fission products. The next step is multi recycling of Pu in the fission products to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (Authors)

  8. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of VVER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual VVER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the VVER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in VVER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from VVER-440 in the FR. The next step is multirecycling of Pu in the FR to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (authors)

  9. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  10. Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates

    OpenAIRE

    CZYRNEK-DELETRE MAGDALENA; ROCCA STEFANIA; AGOSTINI ALESSANDRO; GIUNTOLI JACOPO; MURPHY JERRY

    2017-01-01

    Biomethane produced from seaweed is a third generation renewable gaseous fuel. The advantage of seaweed for biofuel is that it does not compete directly or indirectly for land with food, feed or fibre production. Furthermore, the integration of seaweed and salmon farming can increase the yield of seaweed per hectare, while reducing the eutrophication from fish farming. So far, full comprehensive life cycle assessment (LCA) studies of seaweed biofuel are scarce in the literature; current studi...

  11. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  12. Emerging Technologies for Integrating Multi-Scale Observations of the Hydrologic Cycle

    Science.gov (United States)

    Logan, W. S.; Potter, K. W.; Wood, E. F.

    2007-12-01

    The results are presented of a recent National Research Council study on examining the potential for integrating spaceborne observations with complementary airborne and ground-based observations to gain holistic understanding of hydrologic and related biogeochemical and ecological processes and to help support water and related land-resource management. The study was motivated by the interrelated challenges of population growth, global climate change, and regional changes in land use and land management that will increasingly stress water resources around the world. Meeting these challenges will require significant improvement in our management of water resources, which in turn will require improvements in our capacity to understand and quantify the hydrologic cycle and its interactions with the natural and built environment. Recent and potential future technological innovations in sensors (in-situ, airborne, and space-borne) and sensor networks, cyber-infrastructure, data assimilation, modeling, and decision-support tools offer unprecedented opportunities to improve our capacity to observe, understand, and manage hydrologic systems. The committee investigated a number of aspects to turning this potential into a reality. These included development and field deployment of land-based chemical and biological sensors; the role of airborne remote sensing; interagency gaps between the steps of sensor development, demonstration, and operational deployment; the coordination of federal responsibilities for measurement, monitoring and modeling; and getting the new information to those who can use it. A variety of case studies were used to illustrate the needs and opportunities for new measurement capacity, including hydrologic monitoring in the Everglades, water quantity and quality in the Southern High Plains, malaria in Sub-Saharan Africa, hydroclimatic research in the Arctic, hydrologic extremes and water quality in the Neuse River watershed, and mountain hydrology in the

  13. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    CERN Document Server

    Wildish, Anthony

    2013-01-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future.The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services (PhEDEx, DBS, DAS). It allows cross-system integration tests of all three components to be performed in contr...

  14. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  15. Top quark physics at the LHC

    Directory of Open Access Journals (Sweden)

    Jeong Kim Tae

    2014-04-01

    Full Text Available In 2011, an integrated luminosity of more than 5 fb−1 at 7 TeV has been delivered by the LHC. The measurement of the cross section in top quark pair production and in single top quark production, top quark mass, top quark properties and new physics searches in top quark decays have been performed at the CMS experiment with various integrated luminosities. An overview of the latest results of these measurements and searches by the time of ICFP 2012 conference will be presented.

  16. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  17. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR - Part 2 -

    International Nuclear Information System (INIS)

    Lee, Sang Il; Yoo, Yeon Jae; Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan

    2015-01-01

    In the paper, reverse engineering was performed on SCMHR proposed by NGNP to reconstruct it into PEPSE. This model was used to analyze sensitivity of key variables. The paper also presented a concept design of thermal cycle, where heat of nuclear reactor is partially used for hydrogen production and remaining heat is used to generate power through IHX. This study introduces the results of concept designs on thermal cycle constructed using methods that are somewhat different from the previous results. As for the first method, efficiency under main steam condition proposed by NGNP was analyzed using ultra supercritical steam cycle, which exhibits highest efficiency among commercial technologies available. Another method was to prepare heat balance using supercritical CO 2 cycle, which has recently been commercialized in small scale and is undergoing R and D efforts for scale-up. As a part of concept design for high temperature gas reactor, this paper attempts different types of electricity generation cycle design and compares their advantages and disadvantages. A reference model was developed to change original design of NGNP. Sensitivity analysis can be performed according to changing performance of facility and external conditions. A Rankine cycle model operated under SC or USC condition was created by adding to a previous study to carry out key sensitivity analysis. Data for future design will be prepared through supplementary study, and the ultimate objective is to make contribution to optimal design of high temperature gas reactor

  18. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR - Part 2 -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Company Ltd., Seouul (Korea, Republic of); Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In the paper, reverse engineering was performed on SCMHR proposed by NGNP to reconstruct it into PEPSE. This model was used to analyze sensitivity of key variables. The paper also presented a concept design of thermal cycle, where heat of nuclear reactor is partially used for hydrogen production and remaining heat is used to generate power through IHX. This study introduces the results of concept designs on thermal cycle constructed using methods that are somewhat different from the previous results. As for the first method, efficiency under main steam condition proposed by NGNP was analyzed using ultra supercritical steam cycle, which exhibits highest efficiency among commercial technologies available. Another method was to prepare heat balance using supercritical CO{sub 2} cycle, which has recently been commercialized in small scale and is undergoing R and D efforts for scale-up. As a part of concept design for high temperature gas reactor, this paper attempts different types of electricity generation cycle design and compares their advantages and disadvantages. A reference model was developed to change original design of NGNP. Sensitivity analysis can be performed according to changing performance of facility and external conditions. A Rankine cycle model operated under SC or USC condition was created by adding to a previous study to carry out key sensitivity analysis. Data for future design will be prepared through supplementary study, and the ultimate objective is to make contribution to optimal design of high temperature gas reactor.

  19. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    Kaliyan, Nalladurai; Morey, R. Vance; Tiffany, Douglas G.

    2011-01-01

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm 3 y -1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO 2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  20. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Baniasadi, Ehsan; Afshari, Ebrahim

    2016-01-01

    Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.

  1. Search for direct top squark pair production in the fully hadronic final state in proton-proton collisions at sqrt(s) = 13 TeV corresponding to an integrated luminosity of 12.9/fb

    CERN Document Server

    CMS Collaboration

    2016-01-01

    A search for direct production of top squark pairs in events with jets and large transverse momentum imbalance is presented. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 12.9/fb. Two analyses are performed, a ``low $\\Delta m$" analysis that targets scenarios with a very small difference in mass between the top squark and the neutralino, and a ``high $\\Delta m$" analysis that targets topologies typical for larger mass splittings. No significant excess of events above the expected background from standard model processes is observed. Exclusion limits are set in the context of simplified models of top squark pair production under various decay hypotheses, ranging up to 860 GeV in the case of the high $\\Delta m$ analysis and up to 450 GeV in the case of the low $\\Delta m$ analysis.

  2. Arvutifirmade TOP 101 aastal 2004

    Index Scriptorium Estoniae

    2005-01-01

    Arvutifirmade TOP 101; Käibe TOP 20; Käibe kasvu TOP 15; Kasumi TOP 15; Rentaabluse TOP 20; Kasumi kasvu TOP 15; Omakapiali tootlikkuse TOP 15; Eesti arvutifirmade finantsandmed; Arvutifirmade üldandmed

  3. Jaekaubanduse TOP 100 aastal 2001

    Index Scriptorium Estoniae

    2002-01-01

    TOP 100. Käibe TOP 30. Käibe kasvu TOP 30. Kasumi TOP 30. Kasumi kasvu TOP 30. Rentaabluse TOP 30. Varade tootlikkuse TOP 30. Jaekaubandusettevõtete finantsseadmed. Jaekaubandusettevõtete üldandmed

  4. Jaekaubandusettevõtete TOP 70

    Index Scriptorium Estoniae

    2005-01-01

    Jaekaubandusettevõtete TOP 70; Käibe TOP 25; Kasumi TOP 25; Käibe kasvu TOP 20; Kasumi kasvu TOP 20; Rentaabluse TOP 20; Omakapitali tootlikkuse TOP 20; Jaekaubandusettevõtete üld- ja finantsandmed

  5. Majutusasutuste TOP 40 aastal 2002

    Index Scriptorium Estoniae

    2003-01-01

    Majutusasutuste TOP 40 aastal 2002. Käibe TOP 40. Kasumi TOP 40. Käibe kasvu TOP 20. Kasumi kasvu TOP 20. Rentaabluse TOP 20. Omakapitali tootlikkuse TOP 20. Majutusasutuste üldandmed. Majutusasutuste finantsandmed

  6. Entity information life cycle for big data master data management and information integration

    CERN Document Server

    Talburt, John R

    2015-01-01

    Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data's impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to hand

  7. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells

    DEFF Research Database (Denmark)

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob

    2015-01-01

    mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise...... temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin...

  8. Evaluating Consumer Product Life Cycle Sustainability with Integrated Metrics: A Paper Towel Case Study

    Science.gov (United States)

    Integrated sustainability metrics provide an enriched set of information to inform decision-making. However, such approaches are rarely used to assess product supply chains. In this work, four integrated metrics—presented in terms of land, resources, value added, and stability—ar...

  9. Computer Aided Product Service Systems Design : Service CAD and Its integration with Life Cycle Simulation

    NARCIS (Netherlands)

    Komoto, H.

    2009-01-01

    Integration of product design into service design, or vice versa, is considered to bring more efficient and effective value addition. Besides EcoDesign tools and methods, a methodology to design such an integration of products and services from a systemic perspective, or product-service systems

  10. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.; Heijmen, Ben J. M.

    2012-01-01

    Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a

  11. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  12. Economic optimization of the combined cycle integrated with multi-product gasification system

    International Nuclear Information System (INIS)

    Liszka, M.; Ziebik, A.

    2009-01-01

    The system taken into consideration consists of the Corex unit, combined cycle power plant and air separation unit (ASU). The Corex process (trademark of Siemens-VAI) is one of technologies for cokeless hot metal production. Coal is gasified by oxygen in the hot metal environment. The excess gas can be used out of installation. It has been assumed that the Corex export gas is fired in combined cycle. The gas turbine (GT) structure was assumed as a fixed simple cycle while the heat recovery steam generator (HRSG) and steam turbine arrangements are free for optimization. The examples of independent variables selected for optimization are number of HRSG pressure levels, GT pressure ratio, minimal temperature differences in HRSG, flow rate of compressed air form GT compressor to ASU. Finally, 16 independent variables have been qualified for optimization. The synthesis optimization is based on the superstructure method. The economic net present value (NPV) has been chosen as the objective function. All power plant facilities have been modeled on the GateCycle software. The off-design models include, among others, the GT blade cooling and HRSG heat transfer coefficient analyses. Two optimization methods - genetic algorithm and Powells conjugate directions have been coupled in one hybrid procedure. The whole optimization analysis has been repeated several times for different price scenarios on the coal, iron and electricity markets

  13. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    NARCIS (Netherlands)

    Cole, J.; Prairie, Y.T.; Caraco, N.; McDowell, W.H.; Tranvil, L.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking

  14. Towards a Sustainable Approach to Nanotechnology by Integrating Life Cycle Assessment into the Undergraduate Engineering Curriculum

    Science.gov (United States)

    Kopelevich, Dmitry I.; Ziegler, Kirk J.; Lindner, Angela S.; Bonzongo, Jean-Claude J.

    2012-01-01

    Because rapid growth of nanotechnology is expected to lead to intentional and non-intentional releases, future engineers will need to minimize negative environmental and health impacts of nanomaterials. We developed two upper-level undergraduate courses centered on life-cycle assessment of nanomaterials. The first part of the course sequence…

  15. Using molt cycles to categorize the age of tropical birds: an integrative new system

    Science.gov (United States)

    Jared D. Wolfe; Thomas B. Ryder; Peter Pyle

    2010-01-01

    Accurately differentiating age classes is essential for the long-term monitoring of resident New World tropical bird species. Molt and plumage criteria have long been used to accurately age temperate birds, but application of temperate age-classification models to the Neotropics has been hindered because annual life-cycle events of tropical birds do not always...

  16. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO{sub 2}-capture

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Mathias

    2014-04-17

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  17. Thermal cycling in LWR components in OECD-NEA member countries - CSNI integrity and ageing working group

    International Nuclear Information System (INIS)

    Faidy, Claude; Chapuliot, Stephane; Mathet, Eric

    2005-01-01

    Thermal cycling is a widespread and recurring problem in nuclear power plants worldwide. Several incidents with leakage of primary water inside the containment challenged the integrity of NPPs although no release outside of containment occurred. Thermal cycling was not taken into account at the design stage. Regulatory bodies, utilities and researchers have to address it for their operating plants. It is a complex phenomenon that involves and links thermal hydraulic, fracture mechanic, materials and plant operation. Thermal cycling is connected either to operating transients (low cycle fatigue) or to complex phenomenon like stratification, vortex and mixing (low and high cycle fatigue). The former is covered by existing rules and codes. The latter is partially addressed by national rules and constitutes the subject of this report. In 2002, the Committee on the Safety of Nuclear Installations (CSNI) requested the working group on the integrity of reactor components and structures (IAGE WG) to prepare a program of work on thermal cycling to provide information to NEA member countries on operational experience, regulatory policies, countermeasures in place, current status of research and development, and to identify areas where research is needed both at national and international levels. The working group proposed a 3 fold program that covered: - Review of operating experience, regulatory framework, countermeasures and current research; - Benchmark to assess calculation capabilities in NEA member countries for crack initiation and propagation under a cyclic thermal loading, and ultimately to develop screening criteria to identify susceptible components; results of the benchmark were published in 2005; - Organisation of an international conference in cooperation with the EPRI and the USNRC on fatigue of reactor components. This conference reviews progress in the areas and provides a forum for discussion and exchange of information between high level experts. The

  18. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Cakici, Duygu Melek; Erdogan, Anil; Colpan, Can Ozgur

    2017-01-01

    In this study, the thermodynamic performance of an integrated geothermal powered supercritical regenerative organic Rankine cycle (ORC) and parabolic trough solar collectors (PTSC) is assessed. A thermal model based on the principles of thermodynamics (mass, energy, and exergy balances) and heat transfer is first developed for the components of this integrated system. This model gives the performance assessment parameters of the system such as the electrical and exergetic efficiencies, total exergy destruction and loss, productivity lack, fuel depletion ratio, and improvement potential rate. To validate this model, the data of an existing geothermal power plant based on a supercritical ORC and literature data for the PTSC are used. After validation, parametric studies are conducted to assess the effect of some of the important design and operating parameters on the performance of the system. As a result of these studies, it is found that the integration of ORC and PTSC systems increases the net power output but decreases the electrical and exergetic efficiencies of the integrated system. It is also shown that R134a is the most suitable working fluid type for this system; and the PTSCs and air cooled condenser are the main sources of the exergy destructions. - Highlights: • A geothermal power plant integrated with PTSC is investigated. • Different approaches for defining the exergetic efficiency are used. • The PTSCs and ACC are the main sources of the exergy destructions. • R134a gives the highest performance for any number of collectors studied.

  19. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  20. The path-integral analysis of an associative memory model storing an infinite number of finite limit cycles

    International Nuclear Information System (INIS)

    Mimura, Kazushi; Kawamura, Masaki; Okada, Masato

    2004-01-01

    An exact solution of the transient dynamics of an associative memory model storing an infinite number of limit cycles with l finite steps is shown by means of the path-integral analysis. Assuming the Maxwell construction ansatz, we have succeeded in deriving the stationary state equations of the order parameters from the macroscopic recursive equations with respect to the finite-step sequence processing model which has retarded self-interactions. We have also derived the stationary state equations by means of the signal-to-noise analysis (SCSNA). The signal-to-noise analysis must assume that crosstalk noise of an input to spins obeys a Gaussian distribution. On the other hand, the path-integral method does not require such a Gaussian approximation of crosstalk noise. We have found that both the signal-to-noise analysis and the path-integral analysis give completely the same result with respect to the stationary state in the case where the dynamics is deterministic, when we assume the Maxwell construction ansatz. We have shown the dependence of the storage capacity (α c ) on the number of patterns per one limit cycle (l). At l = 1, the storage capacity is α c = 0.138 as in the Hopfield model. The storage capacity monotonically increases with the number of steps, and converges to α c = 0.269 at l ≅ 10. The original properties of the finite-step sequence processing model appear as long as the number of steps of the limit cycle has order l = O(1)

  1. Software Integration of Life Cycle Assessment and Economic Analysis for Process Evaluation

    DEFF Research Database (Denmark)

    Kalakula, Sawitree; Malakula, Pomthong; Siemanonda, Kitipat

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design...... of the bioethanol conversion process using cassava rhizome as a feedstock. The sustainability analysis is performed to analyze the relevant indicators in sustainability metrics, to definedesign/retrofit targets for process improvements. Economic analysis is performed to evaluate the profitability of the process........ Also, simultaneously with sustainability analysis, the life cycle impact on environment associated with bioethanol production is performed. Finally, candidate alternative designs are generated and compared with the base case design in terms of LCA, economics, waste, energy usage and enviromental impact...

  2. Integrating Life-cycle Assessment into Transport Cost-benefit Analysis

    DEFF Research Database (Denmark)

    Manzo, Stefano; Salling, Kim Bang

    2016-01-01

    Traditional transport Cost-Benefit Analysis (CBA) commonly ignores the indirect environmental impacts of an infrastructure project deriving from the overall life-cycle of the different project components. Such indirect impacts are instead of key importance in order to assess the long......-term sustainability of a transport infrastructure project. In the present study we suggest to overcome this limit by combining a conventional life-cycle assessment approach with standard transport cost-benefit analysis. The suggested methodology is tested upon a case study project related to the construction of a new...... fixed link across the Roskilde fjord in Frederikssund (Denmark). The results are then compared with those from a standard CBA framework. The analysis shows that indirect environmental impacts represent a relevant share of the estimated costs of the project, clearly affecting the final project evaluation...

  3. Integrated approach for characterizing and comparing exposure-based impacts with life cycle impacts

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier

    2016-01-01

    ions that involve burden shifting or that result in only incremental improvement. Focusing in the life cycle impacts on widely accepted and applied impact categories like global warming potential or cumulative energy demand aggregating several impact categories will lead to underestimations of life...... to the environment from product-related processes along the product life cycle. We build on a flexible mass balance-based modeling system yielding cumulative multimedia transfer fractions and exposure pathway-specific Product Intake Fractions defined as chemical mass taken in by humans per unit mass of chemical...... in a product. When combined chemical masses in products and further with toxicity information, this approach is a resourceful way to inform CAA and minimize human exposure to toxic chemicals in consumer products through both product use and environmental emissions. We use an example of chemicals in consumer...

  4. The Conceptual Design of an Integrated Nuclearhydrogen Production Plant Using the Sulfur Cycle Water Decomposition System

    Science.gov (United States)

    Farbman, G. H.

    1976-01-01

    A hydrogen production plant was designed based on a hybrid electrolytic-thermochemical process for decomposing water. The sulfur cycle water decomposition system is driven by a very high temperature nuclear reactor that provides 1,283 K helium working gas. The plant is sized to approximately ten million standard cubic meters per day of electrolytically pure hydrogen and has an overall thermal efficiently of 45.2 percent. The economics of the plant were evaluated using ground rules which include a 1974 cost basis without escalation, financing structure and other economic factors. Taking into account capital, operation, maintenance and nuclear fuel cycle costs, the cost of product hydrogen was calculated at $5.96/std cu m for utility financing. These values are significantly lower than hydrogen costs from conventional water electrolysis plants and competitive with hydrogen from coal gasification plants.

  5. An integrated factor analysis model for product eco-design based on full life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Xiao, T.; Li, D.

    2016-07-01

    Among the methods of comprehensive analysis for a product or an enterprise, there exist defects and deficiencies in traditional standard cost analyses and life cycle assessment methods. For example, some methods only emphasize one dimension (such as economic or environmental factors) while neglecting other relevant dimensions. This paper builds a factor analysis model of resource value flow, based on full life cycle assessment and eco-design theory, in order to expose the relevant internal logic between these two factors. The model considers the efficient multiplication of resources, economic efficiency, and environmental efficiency as its core objectives. The model studies the status of resource value flow during the entire life cycle of a product, and gives an in-depth analysis on the mutual logical relationship of product performance, value, resource consumption, and environmental load to reveal the symptoms and potentials in different dimensions. This provides comprehensive, accurate and timely decision-making information for enterprise managers regarding product eco-design, as well as production and management activities. To conclude, it verifies the availability of this evaluation and analysis model using a Chinese SUV manufacturer as an example. (Author)

  6. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light.

    Science.gov (United States)

    Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing

    2018-07-01

    Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights

  7. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

    Science.gov (United States)

    Ren, Jie

    2017-12-01

    The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

  8. An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Yu-Che Tseng

    2017-10-01

    Full Text Available This paper reviews offshore wind power project finance and provides an integrated assessment that employs Equator Principles, life cycle assessment, risk assessment, materiality analysis, credit assessment, and ISAE 3000 assurance. We have not seen any comprehensive review papers or book chapters that covers the entire offshore wind power project finance process. We also conducted an SWancor Formosa Phase 1 case study to illustrate the application of integrated assessment to better assist policymakers, wind farm developers, practitioners, potential investors and observers, and stakeholders in their decisions. We believe that this paper can form part of the effort to reduce information asymmetry and the transaction costs of wind power project finance, as well as mobilize green finance investments from the financial sector to renewable energy projects to achieve a national renewable energy policy.

  9. A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Smith, Robin

    2016-01-01

    Highlights: • MILP model developed for integration of waste heat recovery technologies in process sites. • Five thermodynamic cycles considered for exploitation of industrial waste heat. • Temperature and quantity of multiple waste heat sources considered. • Interactions with the site utility system considered. • Industrial case study presented to illustrate application of the proposed methodology. - Abstract: Thermodynamic cycles such as organic Rankine cycles, absorption chillers, absorption heat pumps, absorption heat transformers, and mechanical heat pumps are able to utilize wasted thermal energy in process sites for the generation of electrical power, chilling and heat at a higher temperature. In this work, a novel systematic framework is presented for optimal integration of these technologies in process sites. The framework is also used to assess the best design approach for integrating waste heat recovery technologies in process sites, i.e. stand-alone integration or a systems-oriented integration. The developed framework allows for: (1) selection of one or more waste heat sources (taking into account the temperatures and thermal energy content), (2) selection of one or more technology options and working fluids, (3) selection of end-uses of recovered energy, (4) exploitation of interactions with the existing site utility system and (5) the potential for heat recovery via heat exchange is also explored. The methodology is applied to an industrial case study. Results indicate a systems-oriented design approach reduces waste heat by 24%; fuel consumption by 54% and CO_2 emissions by 53% with a 2 year payback, and stand-alone design approach reduces waste heat by 12%; fuel consumption by 29% and CO_2 emissions by 20.5% with a 4 year payback. Therefore, benefits from waste heat utilization increase when interactions between the existing site utility system and the waste heat recovery technologies are explored simultaneously. The case study also shows

  10. Search for Single Top Production at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2002-01-01

    Single top production in e^+e^- annihilations is searched for in data collected by the L3 detector at centre-of-mass energies from 189 to 209 GeV, corresponding to a total integrated luminosity of 634 pb-1. Investigating hadronic and semileptonic top decays, no evidence of single top production at LEP is obtained and upper limits on the single top cross section as a function of the centre-of-mass energy are derived. Limits on possible anomalous couplings, as well as on the scale of contact interactions responsible for single top production are determined.

  11. Integration of the steam cycle and CO2 capture process in a decarbonization power plant

    International Nuclear Information System (INIS)

    Xu, Gang; Hu, Yue; Tang, Baoqiang; Yang, Yongping; Zhang, Kai; Liu, Wenyi

    2014-01-01

    A new integrated system with power generation and CO 2 capture to achieve higher techno-economic performance is proposed in this study. In the new system, three measures are adopted to recover the surplus energy from the CO 2 capture process. The three measures are as follows: (1) using a portion of low-pressure steam instead of high-pressure extracted steam by installing the steam ejector, (2) mixing a portion of flash-off water with the extracted steam to utilize the superheat degree of the extracted steam, and (3) recycling the low-temperature waste heat from the CO 2 capture process to heat the condensed water. As a result, the power output of the new integrated system is 107.61 MW higher than that of a decarbonization power plant without integration. The efficiency penalty of CO 2 capture is expected to decrease by 4.91%-points. The increase in investment produced by the new system is 3.25 M$, which is only 0.88% more than the total investment of a decarbonization power plant without integration. Lastly, the cost of electricity and CO 2 avoided is 15.14% and 33.1% lower than that of a decarbonization power generation without integration, respectively. The promising results obtained in this study provide a new approach for large-scale CO 2 removal with low energy penalty and economic cost. - Highlights: • Energy equilibrium in CO 2 capture process is deeply analyzed in this paper. • System integration is conducted in a coal-fired power plant with CO 2 capture. • The steam ejector is introduced to utilize the waste energy from CO 2 capture process. • Thermodynamic, exergy and techno-economic analyses are quantitatively conducted. • Energy-saving effects are found in the new system with minimal investment

  12. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.

    Science.gov (United States)

    Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens

    2007-01-01

    In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.

  13. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2011-01-01

    The paper theoretically investigates the performance of a distributed generation plant made up of gasifier, Internal Combustion Engine (ICE) and Organic Rankine Cycle (ORC) machine as a bottoming unit. The system can be used for maximization of electricity production from biomass in the case where there is no heat demand for cogeneration plant. To analyze the performance of the gasifier a model based on the thermodynamic equilibrium approach is used. Performance of the gas engine is estimated on the basis of the analysis of its theoretical thermodynamic cycle. Three different setups of the plant are being examined. In the first one the ORC module is driven only by the heat recovered from engine exhaust gas and cooling water. Waste heat from a gasifier is used for gasification air preheating. In the second configuration a thermal oil circuit is applied. The oil transfers heat from engine and raw gas cooler into the ORC. In the third configuration it is proposed to apply a double cascade arrangement of the ORC unit with a two-stage low temperature evaporation of working fluid. This novel approach allows utilization of the total waste heat from the low temperature engine cooling circuit. Two gas engines of different characteristics are taken into account. The results obtained were compared in terms of electric energy generation efficiency of the system. The lowest obtained value of the efficiency was 23.6% while the highest one was 28.3%. These are very favorable values in comparison with other existing small and medium scale biomass-fuelled power generation plants. - Highlights: →The study presents performance analysis of a biomass-fuelled local power plant. →Downdraft wood gasifier, gas engine and ORC module are modelled theoretically. →Method for estimation of the producer gas fired engine performance is proposed. →Two gas engines of different characteristics are taken into account. →Different arrangements of the bottoming ORC cycle ere examined.

  14. METHODOLOGY OF ORGANIZATION OF INTEGRATED LESSONS OF NATURAL-SCIENCE CYCLE (ON THE EXAMPLE OF TEACHING SPE STUDENTS

    Directory of Open Access Journals (Sweden)

    Alsou Raufovna Kamaleeva

    2015-09-01

    Full Text Available In the process of transition of Russian organizations of secondary professional education to educational standards of the third generation educational process is reduced to formation of students’ competences. This article presents methodology of creating integrated lessons of natural-science cycle (for example, in physics and informatics. These lessons are constructed on the basis of interdisciplinary integration and focused on task solution. The main purpose is to teach students how to solve particular tasks in physics with the use of informatics, in particular on the basis of algorithmization and programming (Pascal language. Didactic conditions, which are the basis of the algorithm of designing corresponding tasks, are described in this article. Structural components of the integrated lessons created on the traditional principle are marked out. During the research we observed that realization of all stages of the corresponding lessons in practice allows the teacher to create educational process over the borders of disciplinary basis. This approach helps to form generalization of knowledge. Being one of the most optimal forms of education, an integrated lesson allows students to solve various educational and professional problems in non-standard situations and stimulates their cognitive activity and their involvement in the process of education and their responsibility for the result which promotes an intensification of educational process.

  15. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis

    OpenAIRE

    Gardino, Alexandra K.; Yaffe, Michael B.

    2011-01-01

    14-3-3 proteins play critical roles in the regulation of cell fate through phospho-dependent binding to a large number of intracellular proteins that are targeted by various classes of protein kinases. 14-3-3 proteins play particularly important roles in coordinating progression of cells through the cell cycle, regulating their response to DNA damage, and influencing life-death decisions following internal injury or external cytokine-mediated cues. This review focuses on 14-3-3-dependent path...

  16. Influence of the resonance integral value on the fuel cycle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Graziani, G; Trauwaert, E

    1972-04-24

    The problem that is considered here is to determine what can be done about a variation in resonance integral when the complete geometry of the reactor and of the fuel elements are fixed, leaving as only free parameters the amount of heavy metal and the enrichment to put in the fuel pins.

  17. Application of Life Cycle Assessment for Corporate Sustainability : Integrating environmental sustainability in business for value creation

    NARCIS (Netherlands)

    Manda, B.M.K.

    2014-01-01

    The main objective of this research is to make a contribution to bridge the gap between sustainability science and business management by improving the integration of sustainability in core business of corporations. The core business of corporations is to provide products and services to meet

  18. Biogeochemical cycling of carbon, nitrogen, and sulfur at the Howland Integrated Forest Study site, Howland, Maine

    Science.gov (United States)

    James W. McLaughlin; Ivan J. Fernandez; Stewart M. Goltz; Lindsey E. Rustad; Larry Zibilske

    1996-01-01

    The biogeochemistry of C, N, and S was studied for six years at the Howland Integrated Forest Study (HIFS) site by measuring those constituents in major above- and below-ground pools and fluxes. Leaching losses of C from the solum were much less than CO2 efflux, with a mean annual leaching rate of 31.2 kg ha-1 yr

  19. Integrated Life Cycle Management: A Strategy for Plants to Extend Operating Lifetimes Safely with High Operational Reliability

    International Nuclear Information System (INIS)

    Esselman, Thomas; Bruck, Paul; Mengers, Charles

    2012-01-01

    Nuclear plant operators are studying the possibility of extending their existing generating facilities operating lifetime to 60 years and beyond. Many nuclear plants have been granted licenses to operate their facilities beyond the original 40 year term; however, in order to optimize the long term operating strategies, plant decision-makers need a consistent approach to support their options. This paper proposes a standard methodology to support effective decision-making for the long-term management of selected station assets. Methods detailed are intended to be used by nuclear plant site management, equipment reliability personnel, long term planners, capital asset planners, license renewal staff, and others that intend to look at operation between the current time and the end of operation. This methodology, named Integrated Life Cycle Management (ILCM), will provide a technical basis to assist decision makers regarding the timing of large capital investments required to get to the end of operation safely and with high plant reliability. ILCM seeks to identify end of life cycle failure probabilities for individual plant large capital assets and attendant costs associated with their refurbishment or replacement. It will provide a standard basis for evaluation of replacement and refurbishment options for these components. ILCM will also develop methods to integrate the individual assets over the entire plant thus assisting nuclear plant decision-makers in their facility long term operating strategies. (author)

  20. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems.

    Science.gov (United States)

    Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S

    2018-06-01

    The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Integrating water flow, locomotor performance and respiration of Chinese sturgeon during multiple fatigue-recovery cycles.

    Directory of Open Access Journals (Sweden)

    Lu Cai

    Full Text Available The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1 critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2 active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3 excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4 with repeated step tests, white muscle (anaerobic metabolism began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species.

  2. Integrated laboratory scale demonstration experiment of the hybrid sulphur cycle and preliminary scale-up

    International Nuclear Information System (INIS)

    Leybros, J.; Rivalier, P.; Saturnin, A.; Charton, S.

    2010-01-01

    The hybrid sulphur cycle is today one of the most promising processes to produce hydrogen on a massive scale within the scope of high temperature nuclear reactors development. Thus, the Fuel Cycle Technology Department at CEA Marcoule is involved in studying the hybrid sulphur process from a technical and economical performance standpoint. Based on mass and energy balance calculations, a ProsimPlus TM flow sheet and a commercial plant design were prepared. This work includes a study on sizing of the main equipment. The capital cost has been estimated using the major characteristics of main equipment based upon formulae and charts published in literature. A specific approach has been developed for electrolysers. Operational costs are also proposed for a plant producing 1000 mol/s H 2 . Bench scale and pilot experiments must focus on the electrochemical step due to limited experimental data. Thus, a pilot plant with a hydrogen capacity of 100 NL/h was built with the aim of acquiring technical and technological data for electrolysis. This pilot plant was designed to cover a wide range of operating conditions: sulphuric acid concentrations up to 60 wt.%, temperatures up to 100 deg. C and pressures up to 10 bar. New materials and structures recently developed for fuel cells, which are expected to yield significant performance improvements when applied to classical electrochemical processes, will be tested. All experiments will be coupled with phenomenological simulation tools developed jointly with the experimental programme. (authors)

  3. Energy storage technologies and hybrid architectures for specific diesel-driven rail duty cycles: Design and system integration aspects

    International Nuclear Information System (INIS)

    Meinert, M.; Prenleloup, P.; Schmid, S.; Palacin, R.

    2015-01-01

    Highlights: • We assessed integration of energy storage systems into hybrid system architectures. • We considered mechanical and electrical energy storage systems. • Potential of different combinations has been analyzed by standardized duty cycles. • Most promising are diesel-driven suburban, regional and shunting operations. • Double-layer capacitors and Lithium-ion batteries have the highest potential. - Abstract: The use of diesel-driven traction is an intrinsic part of the functioning of railway systems and it is expected to continue being so for the foreseeable future. The recent introduction of more restrictive greenhouse gas emission levels and other legislation aiming at the improvement of the environmental performance of railway systems has led to the need of exploring alternatives for cleaner diesel rolling stock. This paper focuses on assessing energy storage systems and the design of hybrid system architectures to determine their potential use in specific diesel-driven rail duty cycles. Hydrostatic accumulators, flywheels, Lithium-ion batteries and double-layer capacitors have been assessed and used to design hybrid system architectures. The potential of the different technology combinations has been analyzed using standardized duty cycles enhanced with gradient profiles related to suburban, regional and shunting operations. The results show that double-layer capacitors and Lithium-ion batteries have the highest potential to be successfully integrated into the system architecture of diesel-driven rail vehicles. Furthermore, the results also suggest that combining these two energy storage technologies into a single hybridisation package is a highly promising design that draws on their strengthens without any significant drawbacks.

  4. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment.

    Science.gov (United States)

    Li, Yangyang; Manandhar, Ashish; Li, Guoxue; Shah, Ajay

    2018-03-20

    Driven by the gradual changes in the structure of energy consumption and improvements of living standards in China, the volume of on-farm organic solid waste is increasing. If untreated, these unutilized on-farm organic solid wastes can cause environmental problems. This paper presents the results of a life cycle assessment to compare the environmental impacts of different on-farm organic waste (which includes dairy manure, corn stover and tomato residue) treatment strategies, including anaerobic digestion (AD), composting, and AD followed by composting. The input life cycle inventory data are specific to China. The potential environmental impacts of different waste management strategies were assessed based on their acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ecotoxicity potential (ETP), and resource depletion (RD). The results show that the preferred treatment strategy for dairy manure is the one that integrated corn stover and tomato residue utilization and solid state AD technologies into the system. The GWP of integrated solid state AD and composting was the least, which is -2900 kg CO 2 eq/ t of dairy manure and approximately 14.8 times less than that of current status (i.e., liquid AD of dairy manure). Solid state AD of dairy manure, corn stover and tomato residues is the most favorable option in terms of AP, EP and ETP, which are more than 40% lower than that of the current status (i.e., AP: 3.11 kg SO 2 , EP: -0.94 kg N, and ETP: -881 CTUe (Comparative Toxic Units ecotoxicity)). The results also show that there is a significant potential for AP, EP, ETP, and GWP reduction, if AD is used prior to composting. The scenario analysis for transportation distance showed that locating the AD plant and composting facility on the farm was advantageous in terms of all the life cycle impact categories. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Reisifirmade TOP 40 aastal 2002

    Index Scriptorium Estoniae

    2003-01-01

    Reisifirmade TOP 40 aastal 2002. Reisifirmade TOP-i esikümme. Käibe TOP 40. Kasumi TOP 40. Käibe kasvu TOP 20. Kasumi kasvu TOP 20. Rentaabluse TOP 20. Omakapitali tootlikkuse TOP 20. Reisifirmade üldandmed. Reisifirmade finantsandmed. Tehnilise käibe alusel arvutatud edetabelid: Reisifirmade TOP 25; Käibe TOP 40; Rentaabluse TOP 10; Käibe kasvu TOP 10

  6. Top quark production at the LHC (single top and tt-bar cross sections)

    International Nuclear Information System (INIS)

    Lange, J.

    2014-01-01

    With the large number of top quarks produced at the LHC, top quark physics enters an era of precision and properties measurements. This article reviews the recent advances in top quark cross section measurements performed by ATLAS and CMS using data recorded in 2011 with integrated luminosities up to 5 fb -1 . They include precision inclusive cross sections, the establishment of challenging channels, first differential cross section measurements and single top production. An overall good agreement with Standard Model predictions is observed

  7. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    International Nuclear Information System (INIS)

    Auclair, K. D.

    2002-01-01

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  8. Analysis of changes in water cycle across Northern Eurasia with Rapid Integrated Mapping and Analysis System (RIMS)

    Science.gov (United States)

    Shiklomanov, A.; Prusevich, A.

    2012-04-01

    Historical and contemporary changes in various components of the hydrological cycle across the Northern Eurasia have been investigated using multiple observational and modeled data compiled in Rapid Integrated Mapping and Analysis System (RIMS) for North Eurasian Earth Science Partnership Initiative (NEESPI). To evaluate potential future patterns of change in the Northern Eurasian water cycle we have used climate change projections simulated by several coupled Atmosphere-Ocean General Circulation Models (AO GCMs). Future changes in hydrological regime were assessed using the UNH Water Balance and Water Transport Models (WBM/WTM) which take into account water management including irrigation and reservoir regulation. We found significant shifts in the regional hydrology and quantified potential natural and anthropogenic causes of these changes. The results of our historical and future analysis have demonstrated an intensification of hydrological cycle in many regions of the Northern Eurasia observed over 50-60 year period with accelerated rate during the last decade. Based on climate projections we can expect that the current rate of changes to continue over the course of XXI century. A significant part of the analysis and quantitative estimates of water cycle trends in Northern Eurasia has been done using RIMS online and offline data analysis tools. RIMS has been developed by the Water Systems Analysis Group at the University of New Hampshire, USA for the NEESPI program. Presently, the RIMS data pool is composed of a variety of themes including climate, hydrology, land cover, human dimension, and others. It comprises over five thousand single layer (e.g. soil type) and time series (e.g. daily runoff) raster GIS coverages, and a number of climate and hydrology station/point network datasets. The system streamlines data mining, management and model feeds in the computational environment of large and diverse data holdings. In this presentation we want to demonstrate

  9. Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation

    International Nuclear Information System (INIS)

    Sterzinger, G.J.

    1994-05-01

    This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility

  10. Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery

    International Nuclear Information System (INIS)

    Yu, Haoshui; Eason, John; Biegler, Lorenz T.; Feng, Xiao

    2017-01-01

    In the past decades, the Organic Rankine Cycle (ORC) has become a promising technology for low and medium temperature energy utilization. In refineries, there are usually multiple waste heat streams to be recovered. From a safety and controllability perspective, using an intermedium (hot water) to recover waste heat before releasing heat to the ORC system is more favorable than direct integration. The mass flowrate of the intermediate hot water stream determines the amount of waste heat recovered and the final hot water temperature affects the thermal efficiency of ORC. Both, in turn, exert great influence on the power output. Therefore, the hot water mass flowrate is a critical decision variable for the optimal design of the system. This study develops a model for techno-economic optimization of an ORC with simultaneous heat recovery and capital cost optimization. The ORC is modeled using rigorous thermodynamics with the concept of state points. The task of waste heat recovery using the hot water intermedium is modeled using the Duran-Grossmann model for simultaneous heat integration and process optimization. The combined model determines the optimal design of an ORC that recovers multiple waste heat streams in a large scale background process using an intermediate heat transfer stream. In particular, the model determines the optimal heat recovery approach temperature (HRAT), the utility load of the background process, and the optimal operating conditions of the ORC simultaneously. The effectiveness of this method is demonstrated with a case study that uses a refinery as the background process. Sensitivity of the optimal solution to the parameters (electricity price, utility cost) is quantified in this paper. - Highlights: • A new model for Organic Rankine cycle design optimization is presented. • Process heat integration and ORC are considered simultaneously. • Rigorous equation oriented models of the ORC are used for accurate results. • Impact of working

  11. Intergenerational Top Income Persistence

    DEFF Research Database (Denmark)

    Munk, Martin D.; Bonke, Jens; Hussain, M. Azhar

    2016-01-01

    In this paper, we investigate intergenerational top earnings and top income mobility in Denmark. Access to administrative registers allowed us to look at very small fractions of the population. We find that intergenerational mobility is lower in the top when including capital income in the income...... measure— for the rich top 0.1% fathers and sons the elasticity is 0.466. Compared with Sweden, however, the intergenerational top income persistence is about half the size in Denmark....

  12. Life-Cycle Assessment of Solar Charger with Integrated Organic Photovoltaics

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Espinosa Martinez, Nieves; Krebs, Frederik C

    2017-01-01

    OPV panel, enabling the possibility to be charged from the sun, and not only from the grid. In this paper, two well-established power bank products using amorphous silicon solar panels (a-Si PV) and a regular power bank without any portable solar panel is compared to HeLi-on. The environmental impact...... of the products is quantified with the aim of indicate where eco-design improvements would make a difference and to point out performance of a portable solar panel depending on the context of use (Denmark and China), realistic disposal scenarios and the recycling relevance particularly concerning metals content.......Organic photovoltaics (OPV) applied in a commercial product comprising a solar charged power bank is subjected to a life cycle assessment (LCA) study. Regular power banks harvest electricity from the grid only. The solar power bank (called HeLi-on) is however, a power bank that includes a portable...

  13. Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment

    International Nuclear Information System (INIS)

    Bernier, Etienne; Maréchal, François; Samson, Réjean

    2012-01-01

    The optimal design of an energy-intensive process involves a compromise between costs and greenhouse gas emissions, complicated by the interaction between optimal process emissions and supply chain emissions. We propose a method that combines generic abatement cost estimates and the results of existing (LCA) life cycle assessment studies, so that supply chain emissions are properly handled during optimization. This method is illustrated for a (NGCC) natural gas combined cycle power plant model with the following design and procurement options: procurement of natural gas from low-emissions producers, fuel substitution with (SNG) synthetic natural gas from wood, and variable-rate CO 2 capture and sequestration from both the NGCC and SNG plants. Using multi-objective optimization, we show two Pareto-optimal sets with and without the proposed LCA method. The latter can then be shown to misestimate CO 2 abatement costs by a few percent, penalizing alternate fuels and energy-efficient process configurations and leading to sub-optimal design decisions with potential net losses of the order of $1/MWh. Thus, the proposed LCA method can enhance the economic analysis of emissions abatement technologies and emissions legislation in general. -- Highlights: ► Multi-objective optimization and LCA used for process design considering supply chain. ► Off-site emissions in LCA reveal potential future indirect taxes for energy consumers. ► Generic abatement cost curves provide a mitigation model for off-site emissions. ► Off-site mitigation precedes CO 2 capture or biogas substitution in NGCC plant. ► Profitability estimation of capture or substitution depends on off-site mitigation.

  14. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    International Nuclear Information System (INIS)

    Santi, Peter A.; Demuth, Scott F.; Klasky, Kristen L.; Lee, Haeok; Miller, Michael C.; Sprinkle, James K.; Tobin, Stephen J.; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  15. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  16. The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model

    International Nuclear Information System (INIS)

    Djokic, D.; Piet, S.; Pincock, L.; Soelberg, N.

    2013-01-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

  17. Top quark property measurements in single top

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2016-01-01

    A review of the recent results on measurements of top quark properties in single top quark processes, performed at the LHC by ATLAS and CMS is presented. The measurements are in good agreement with predictions and no deviations from Standard Model expectations have been observed.

  18. Effects of syngas type on the operation and performance of a gas turbine in integrated gasification combined cycle

    International Nuclear Information System (INIS)

    Kim, Young Sik; Lee, Jong Jun; Kim, Tong Seop; Sohn, Jeong L.

    2011-01-01

    Research highlights: → The effect of firing syngas in a gas turbine designed for natural gas was investigated. → A full off-design analysis was performed for a wide syngas heating value range. → Restrictions on compressor surge margin and turbine metal temperature were considered. -- Abstract: We investigated the effects of firing syngas in a gas turbine designed for natural gas. Four different syngases were evaluated as fuels for a gas turbine in the integrated gasification combined cycle (IGCC). A full off-design analysis of the gas turbine was performed. Without any restrictions on gas turbine operation, as the heating value of the syngas decreases, a greater net system power output and efficiency is possible due to the increased turbine mass flow. However, the gas turbine is more vulnerable to compressor surge and the blade metal becomes more overheated. These two problems can be mitigated by reductions in two parameters: the firing temperature and the nitrogen flow to the combustor. With the restrictions on surge margin and metal temperature, the net system performance decreases compared to the cases without restrictions, especially in the surge margin control range. The net power outputs of all syngas cases converge to a similar level as the degree of integration approaches zero. The difference in net power output between unrestricted and restricted operation increases as the fuel heating value decreases. The optimal integration degree, which shows the greatest net system power output and efficiency, increases with decreasing syngas heating value.

  19. Effects of syngas type on the operation and performance of a gas turbine in integrated gasification combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Sik; Lee, Jong Jun [Graduate School, Inha University, Incheon 402-751 (Korea, Republic of); Kim, Tong Seop, E-mail: kts@inha.ac.k [Dept. of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Sohn, Jeong L. [Center for Next Generation Heat Exchangers, Busan 618-230 (Korea, Republic of)

    2011-05-15

    Research highlights: {yields} The effect of firing syngas in a gas turbine designed for natural gas was investigated. {yields} A full off-design analysis was performed for a wide syngas heating value range. {yields} Restrictions on compressor surge margin and turbine metal temperature were considered. -- Abstract: We investigated the effects of firing syngas in a gas turbine designed for natural gas. Four different syngases were evaluated as fuels for a gas turbine in the integrated gasification combined cycle (IGCC). A full off-design analysis of the gas turbine was performed. Without any restrictions on gas turbine operation, as the heating value of the syngas decreases, a greater net system power output and efficiency is possible due to the increased turbine mass flow. However, the gas turbine is more vulnerable to compressor surge and the blade metal becomes more overheated. These two problems can be mitigated by reductions in two parameters: the firing temperature and the nitrogen flow to the combustor. With the restrictions on surge margin and metal temperature, the net system performance decreases compared to the cases without restrictions, especially in the surge margin control range. The net power outputs of all syngas cases converge to a similar level as the degree of integration approaches zero. The difference in net power output between unrestricted and restricted operation increases as the fuel heating value decreases. The optimal integration degree, which shows the greatest net system power output and efficiency, increases with decreasing syngas heating value.

  20. Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F.; Cosmi, C. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cinthia, I-80126 Naples (Italy); National Research Council, National Institute for the Physics of Matter, C.N.R.-I.N.F.M. Via Cinthia, I-80126 Naples (Italy); Salvia, M.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis C.N.R.-I.M.A.A. C.da S.Loja, I-85050 Tito Scalo (PZ) (Italy)

    2009-06-15

    The implementation of resource management strategies aimed at reducing the impacts of the anthropogenic activities system requires a comprehensive approach to evaluate on the whole the environmental burdens of productive processes and to identify the best recovery strategies from both an environmental and an economic point of view. In this framework, an analytical methodology based on the integration of Life Cycle Assessment (LCA), ExternE and Comprehensive Analysis was developed to perform an in-depth investigation of energy systems. The LCA methodology, largely utilised by the international scientific community for the assessment of the environmental performances of technologies, combined with Comprehensive Analysis allows modelling the overall system of anthropogenic activities, as well as sub-systems, the economic consequences of the whole set of environmental damages. Moreover, internalising external costs into partial equilibrium models, as those utilised by Comprehensive Analysis, can be useful to identify the best paths for implementing technology innovation and strategies aimed to a more sustainable energy supply and use. This paper presents an integrated application of these three methodologies to a local scale case study (the Val D'Agri area in Basilicata, Southern Italy), aimed to better characterise the environmental impacts of the energy system, with particular reference to extraction activities. The innovative methodological approach utilised takes advantage from the strength points of each methodology with an added value coming from their integration as emphasised by the main results obtained by the scenario analysis. (author)

  1. Evaluation of material integrity on electricity generator water steam cycles component (Main Steam Pipe)

    International Nuclear Information System (INIS)

    Sudardjo; Histori; Triyadi, Ari

    1998-01-01

    The evaluation of material integrity on electricity generator component has been done. That component was main steam pipe of Unit II Suralaya Coal Fired Power Plant. evaluation was done by replication technique. The damage was found are two porosity's, from two point samples of six points sample population. Based on cavity evaluation in steels, which proposed by Neubauer and Wedel that porosity's still at class A damage. For class A damage, its means no remedial action would be required until next major scheduled maintenance outage. That porosity's was grouped on isolated cavities and not need ti repair that main steam pipe component less than three year after replication test

  2. Top quark physics

    International Nuclear Information System (INIS)

    Menzione, A.

    1995-10-01

    Most of the material presented in this report, comes from contributions to the parallel session PL20 of this conference. We summarise the experimental results of direct production of Top quarks, coming from the CDF and C0 Collaborations at Fermilab, and compare these results to what one expects within current theoretical understanding. Particular attention is given to new results such as all hadronic modes of t bar t decay. As far as the mass is concerned, a comparison is made with precision measurements of related quantities, coming from LEP and other experiments. An attempt is made to look at the medium-term future and understand which variables and with what accuracy one can measure them with increased integrated luminosity

  3. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  4. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    International Nuclear Information System (INIS)

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-01-01

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  5. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Evangelisti, Sara [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Tagliaferri, Carla [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom); Clift, Roland [Centre for Environmental Strategy, The University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Taylor, Richard; Chapman, Chris [Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom)

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  6. An integrated approach to the back-end of the fusion materials cycle

    International Nuclear Information System (INIS)

    Zucchetti, M.; Di Pace, L.; El-Guebaly, L.; Wilson, P.; Kolbasov, B.; Massaut, V.; Pampin, R.

    2007-01-01

    Within the frame of the International Energy Agency (IEA) Co-operative Program on the Environmental, Safety and Economic Aspects of Fusion Power, an international collaborative study on fusion radioactive waste has been initiated to examine the back-end of the fusion materials cycle as an important stage in maximising the environmental benefits of fusion. The study addresses the management procedures for active materials following the change out of replaceable components and decommissioning of fusion facilities. Numerous differences exist between fission and fusion in terms of activated material type, quantity, activity levels, half-life, radiotoxicity, etc. For fusion, it is important to clearly define the parameters that govern the back-end of the materials cycle. A fusion-specific, unique approach is necessary and needs to be developed. Recycling of materials and clearance (i.e. declassification to non-radioactive material) are the two recommended options for reducing the amount of fusion waste, while disposal as low-level waste (LLW) could be an alternative route for specific materials and components. Both recycling and clearance criteria have been recently revised by national and international institutions. These revisions and their consequences are examined here with applications to selected studies: - Recycling: the important radioactive quantities to be limited are contact dose rate, decay heat, and radioactivity concentration. Handling (hands-on, simple shielded, and remote handling approaches), routing related questions (recycling outside the nuclear industry, recycling in nuclear-specific foundries, other possible recycling scenarios without melting), and other issues (C-14, material impurities) are examined. - Clearance: a definition of a list of nuclides relevant to fusion is made with a proposal of a scenario and a simplified procedure for calculation of a set of fusion-specific clearance limits. - Disposal: a proposal of a generalized definition of

  7. Drosophila Sld5 is essential for normal cell cycle progression and maintenance of genomic integrity

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Catherine A. [Department of Biology, East Carolina University East Carolina University, Greenville, NC 27858 (United States); Christensen, Tim W., E-mail: christensent@ecu.edu [Department of Biology, East Carolina University East Carolina University, Greenville, NC 27858 (United States)

    2010-09-10

    Research highlights: {yields} Drosophila Sld5 interacts with Psf1, PPsf2, and Mcm10. {yields} Haploinsufficiency of Sld5 leads to M-phase delay and genomic instability. {yields} Sld5 is also required for normal S phase progression. -- Abstract: Essential for the normal functioning of a cell is the maintenance of genomic integrity. Failure in this process is often catastrophic for the organism, leading to cell death or mis-proliferation. Central to genomic integrity is the faithful replication of DNA during S phase. The GINS complex has recently come to light as a critical player in DNA replication through stabilization of MCM2-7 and Cdc45 as a member of the CMG complex which is likely responsible for the processivity of helicase activity during S phase. The GINS complex is made up of 4 members in a 1:1:1:1 ratio: Psf1, Psf2, Psf3, And Sld5. Here we present the first analysis of the function of the Sld5 subunit in a multicellular organism. We show that Drosophila Sld5 interacts with Psf1, Psf2, and Mcm10 and that mutations in Sld5 lead to M and S phase delays with chromosomes exhibiting hallmarks of genomic instability.

  8. Environment managing all along the mining cycle: implementing an integrated and pro-active approach

    International Nuclear Information System (INIS)

    2017-01-01

    Uranium mining is a niche business because of its production volume and the size of its market that have nothing to do with coal market or iron ore business. It is a very concentrated business with only a few players. New AREVA is one of them with an output of 11.186 tons of uranium representing 15% of the world production in 2016. New AREVA has committed oneself to preserve the environment during the exploitation phase of a mine. Environment samples (soil, water, plants...) are collected to draw an initial picture of a site before mining activities begin in order to minimize the environmental impact. In some sites, for instance in Mongolia, water is scarce and has to be spared, a recycling technology for the sludge recovered from drilling operations, has been tested with success. Another challenge is the adaptation to the climate warming as both a player and a victim because most sites are in zones that are very sensitive to climate change and because mining can release greenhouse effect gases. The final challenge that faces New AREVA at the end of a mining cycle is to succeed the remediation of the site, it does not mean a come back to the initial situation which is impossible to reach but to get an environmental state that is safe and durable. In 2011 AREVA joined the International Counsel for mines and metals (ICMM) in order to share a code of practice for a sustainable development. (A.C.)

  9. Network Theory Integrated Life Cycle Assessment for an Electric Power System

    Directory of Open Access Journals (Sweden)

    Heetae Kim

    2015-08-01

    Full Text Available In this study, we allocate Greenhouse gas (GHG emissions of electricity transmission to the consumers. As an allocation basis, we introduce energy distance. Energy distance takes the transmission load on the electricity energy system into account in addition to the amount of electricity consumption. As a case study, we estimate regional GHG emissions of electricity transmission loss in Chile. Life cycle assessment (LCA is used to estimate the total GHG emissions of the Chilean electric power system. The regional GHG emission of transmission loss is calculated from the total GHG emissions. We construct the network model of Chilean electric power grid as an undirected network with 466 nodes and 543 edges holding the topology of the power grid based on the statistical record. We analyze the total annual GHG emissions of the Chilean electricity energy system as 23.07 Mt CO2-eq. and 1.61 Mt CO2-eq. for the transmission loss, respectively. The total energy distance for the electricity transmission accounts for 12,842.10 TWh km based on network analysis. We argue that when the GHG emission of electricity transmission loss is estimated, the electricity transmission load should be separately considered. We propose network theory as a useful complement to LCA analysis for the complex allocation. Energy distance is especially useful on a very large-scale electric power grid such as an intercontinental transmission network.

  10. Novel integrated gasification combined cycles with a carbon dioxide recovery option

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J.

    1997-08-01

    Two novel combined cycle configurations offering potential to reduce the cost of electricity from coal-fired IGCCs were investigated - one based on the use of flue gas recycling with heat recovery to the recycled stream, the other, aimed at removing carbon dioxide, using flue gas recycle and heat recovery but with oxygen as the oxidant in the gas turbine. The investigation included the use of fuels other than coal. It was found that gasification efficiency was increased by use of a coal/Orimulsion slurry. Flue gas recycling at 1 bar for the industrial gas turbine offered a gain of about 0.4 percentage points. In a standard IGCC the industrial gas turbine showed an advantage of 1.5 percentage points over the aero-derived machine. The least cost electricity with CO{sub 2} removal was achieved using an oxygen-fed industrial gas turbine with flue gas recycling and recovery. Several recommendations are made for further studies to reduce costs of electricity production. 11 refs., 3 figs., 5 tabs., 1 app.

  11. Integrating health economics modeling in the product development cycle of medical devices: a Bayesian approach.

    Science.gov (United States)

    Vallejo-Torres, Laura; Steuten, Lotte M G; Buxton, Martin J; Girling, Alan J; Lilford, Richard J; Young, Terry

    2008-01-01

    Medical device companies are under growing pressure to provide health-economic evaluations of their products. Cost-effectiveness analyses are commonly undertaken as a one-off exercise at the late stage of development of new technologies; however, the benefits of an iterative use of economic evaluation during the development process of new products have been acknowledged in the literature. Furthermore, the use of Bayesian methods within health technology assessment has been shown to be of particular value in the dynamic framework of technology appraisal when new information becomes available in the life cycle of technologies. In this study, we set out a methodology to adapt these methods for their application to directly support investment decisions in a commercial setting from early stages of the development of new medical devices. Starting with relatively simple analysis from the very early development phase and proceeding to greater depth of analysis at later stages, a Bayesian approach facilitates the incorporation of all available evidence and would help companies to make better informed choices at each decision point.

  12. A description of the demonstration Integral Fast Reactor fuel cycle facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Carnes, M.D.; Dwight, C.C.; Forrester, R.J.

    1991-01-01

    A fuel examination facility at the Idaho National Engineering Laboratory is being converted into a facility that will electrochemically process spent fuel. This is an important step in the demonstration of the Integral Fast Reactor concept being developed by Argonne National Laboratory. Renovations are designed to bring the facility up to current health and safety and environmental standards and to support its new mission. Improvements include the addition of high-reliability earthquake hardened off-gas and electrical power systems, the upgrading of radiological instrumentation, and the incorporation of advances in contamination control. A major task is the construction of a new equipment repair and decontamination facility in the basement of the building to support operations

  13. Fuel cycle facility control system for the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Benedict, R.W.; Tate, D.A.

    1993-01-01

    As part of the Integral Fast Reactor (IFR) Fuel Demonstration, a new distributed control system designed, implemented and installed. The Fuel processes are a combination of chemical and machining processes operated remotely. To meet this special requirement, the new control system provides complete sequential logic control motion and positioning control and continuous PID loop control. Also, a centralized computer system provides near-real time nuclear material tracking, product quality control data archiving and a centralized reporting function. The control system was configured to use programmable logic controllers, small logic controllers, personal computers with touch screens, engineering work stations and interconnecting networks. By following a structured software development method the operator interface was standardized. The system has been installed and is presently being tested for operations

  14. Plans for the development of the IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.

    1986-01-01

    The Integral Fast Reactor (IFR) is a concept for a self-contained facility in which several sodium-cooled fast reactors of moderate size are located at the same site along with complete fuel-recycle and waste-treatment facilities. After the initial core loading with enriched uranium or plutonium, only natural or depleted uranium is shipped to the plant, and only wastes in final disposal forms are shipped out. The reactors have driver and blanket fuels of uranium-plutonium-zirconium alloys in stainless steel cladding. The use of metal alloy fuels is central to the IFR concept, contributing to the inherent safety of the reactor, the ease of reprocessing, and the relatively low capital and operating costs. Discharged fuels are recovered in a pyrochemical process that consists of two basic steps: an electrolytic process to separate fission products from actinides, and halide slagging to separate plutonium from uranium

  15. Conceptual Frameworks for the Workplace Change Adoption Process: Elements Integration from Decision Making and Learning Cycle Process.

    Science.gov (United States)

    Radin Umar, Radin Zaid; Sommerich, Carolyn M; Lavender, Steve A; Sanders, Elizabeth; Evans, Kevin D

    2018-05-14

    Sound workplace ergonomics and safety-related interventions may be resisted by employees, and this may be detrimental to multiple stakeholders. Understanding fundamental aspects of decision making, behavioral change, and learning cycles may provide insights into pathways influencing employees' acceptance of interventions. This manuscript reviews published literature on thinking processes and other topics relevant to decision making and incorporates the findings into two new conceptual frameworks of the workplace change adoption process. Such frameworks are useful for thinking about adoption in different ways and testing changes to traditional intervention implementation processes. Moving forward, it is recommended that future research focuses on systematic exploration of implementation process activities that integrate principles from the research literature on sensemaking, decision making, and learning processes. Such exploration may provide the groundwork for development of specific implementation strategies that are theoretically grounded and provide a revised understanding of how successful intervention adoption processes work.

  16. Silicon tracker end cap of the CMS experiment at LHC and study of the discovery potential for resonances decaying in top quark pairs; Integration d'un bouchon du trajectographe au silicium de l'experience CMS au LHC et etude du potentiel de decouverte de resonances se desintegrant en paires de quarks top

    Energy Technology Data Exchange (ETDEWEB)

    Chabert, E

    2008-10-15

    The first part of this thesis is dedicated to the integration of one silicon tracker end cap of the CMS experiment. The procedures implemented and the tests that led to the qualification of the detection system are presented in this document. The first chapter is an introduction to the LHC and to the CMS experiment. The second chapter is dedicated to the CMS tracker, that is a detector made up of silicon micro-stripe whose purpose is to reconstruct the tracks of charged-particles, to measure their momentum, to reconstruct vertex and to contribute to the tagging of heavy flavour quarks. The third chapter presents the integration of one of the tracker end caps. The second part of this thesis is dedicated to the search for new physics in the top quark sector. One of the most promising channel is to look for a resonance in the invariant mass distribution of top quark pairs. The fourth chapter is a theoretical introduction to this work, the standard model is introduced and the top quarks physics as well as tt-bar resonances are highlighted. The fifth chapter describes the tools used to analyse data, all the data come from simulations. The search for tt-bar resonances is presented in the last chapter. This search involves a method to select right events, a strategy to reduce background noise and a method for the reconstruction of the events. A kinematical adjustment is made to identify the right combinations of jets and to improve the experimental resolution on the invariant mass. The full simulation analysis in the 'lepton + jets' channel shows that at the TeV scale, processes from a few hundred fb to one pb could be observed in the early years of data taking.

  17. Technical feasibility of an Integral Fast Reactor (IFR) as a future option for fast reactor cycles. Integrate a small metal-fueled fast reactor and pyroprocessing facilities

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2017-01-01

    Integral Fast Reactor that integrated fast reactor and pyrorocessing facilities developed by Argonne National Laboratory in the U.S. is an excellent nuclear fuel cycle system for passive safety, nuclear non-proliferation, and reduction in radioactive waste. In addition, this system can be considered as a technology applicable to the treatment of the fuel debris caused by the Fukushima Daiichi Nuclear Power Station accident. This study assessed the time required for debris processing, safety of the facilities, and construction cost when using this technology, and examined technological possibility including future technological issues. In a small metal-fueled reactor, it is important to design the core that achieves both of reduction in combustion reactivity and reduction in coolant reactivity. In system design, calorimetric analysis, structure soundness assessment, seismic feasibility establishment study, etc. are important. Regarding safety, research and testing are necessary on the capabilities of passive reactor shutdown and reactor core cooling as well as measures for avoiding re-criticality, even when emergency stop has failed. In dry reprocessing system, studies on electrolytic reduction and electrolytic refining process for treating the debris with compositions different from those of normal fuel are necessary. (A.O.)

  18. Audiitorfirmade TOP 50 aastal 2000

    Index Scriptorium Estoniae

    2001-01-01

    Audiitorfirmade käibe TOP 50, käibe kasvu TOP 25, käibe languse TOP 15, kasumi TOP 50, kasumi kasvu TOP 10, kasumi languse TOP 10, audiitorfirmade finantsnäitajad. Rentaabluse TOP 50, varade tootlikkuse TOP 50

  19. Integrated Bottom-Up and Top-Down Liquid Chromatography-Mass Spectrometry for Characterization of Recombinant Human Growth Hormone Degradation Products.

    Science.gov (United States)

    Wang, Yu Annie; Wu, Di; Auclair, Jared R; Salisbury, Joseph P; Sarin, Richa; Tang, Yang; Mozdzierz, Nicholas J; Shah, Kartik; Zhang, Anna Fan; Wu, Shiaw-Lin; Agar, Jeffery N; Love, J Christopher; Love, Kerry R; Hancock, William S

    2017-12-05

    With the advent of biosimilars to the U.S. market, it is important to have better analytical tools to ensure product quality from batch to batch. In addition, the recent popularity of using a continuous process for production of biopharmaceuticals, the traditional bottom-up method, alone for product characterization and quality analysis is no longer sufficient. Bottom-up method requires large amounts of material for analysis and is labor-intensive and time-consuming. Additionally, in this analysis, digestion of the protein with enzymes such as trypsin could induce artifacts and modifications which would increase the complexity of the analysis. On the other hand, a top-down method requires a minimum amount of sample and allows for analysis of the intact protein mass and sequence generated from fragmentation within the instrument. However, fragmentation usually occurs at the N-terminal and C-terminal ends of the protein with less internal fragmentation. Herein, we combine the use of the complementary techniques, a top-down and bottom-up method, for the characterization of human growth hormone degradation products. Notably, our approach required small amounts of sample, which is a requirement due to the sample constraints of small scale manufacturing. Using this approach, we were able to characterize various protein variants, including post-translational modifications such as oxidation and deamidation, residual leader sequence, and proteolytic cleavage. Thus, we were able to highlight the complementarity of top-down and bottom-up approaches, which achieved the characterization of a wide range of product variants in samples of human growth hormone secreted from Pichia pastoris.

  20. Integrating invasive grasses into carbon cycle projections: Cogongrass spread in southern pine forests

    Science.gov (United States)

    McCabe, T. D.; Flory, S. L.; Wiesner, S.; Dietze, M.

    2017-12-01

    work quantifying the carbon cycle, particularly belowground processes and respiration, could help constrain parameter uncertainty.

  1. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  2. Top Production at LHCb

    CERN Multimedia

    Santana Rangel, Murilo

    2015-01-01

    Single and pair top production in the forward direction at the LHC allows for precision tests of the Standard Model. The observation of top quarks in 7 and 8 TeV data and prospects for precision measurements are shown.

  3. From Cycling Between Coupled Reactions to the Cross-Bridge Cycle: Mechanical Power Output as an Integral Part of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Frank Diederichs

    2012-10-01

    Full Text Available ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided.

  4. AN INTEGRATED, ANIMATED MODEL OF THE (NA, K-ATPase HYDROLYTIC CYCLE

    Directory of Open Access Journals (Sweden)

    F.A. Leone

    2006-07-01

    Full Text Available The  (Na,  K-ATPase,  or  sodium  pump,  is  the  principal,  active  transport  system  that  establishes  sodium  and potassium  gradients  across  the  plasma  membranes  of  all  animal  cells.  Such  gradients  are  critical  to  sustaining important cellular functions like osmotic equilibrium, cell volume and pH homeostasis, among many others (Ann Rev Physiol 65: 817, 2003; Physiol 19: 377, 2004. This transport protein is a heterodimer that consists of a 110-kDa  -subunit  and  a  55-kDa,  glycosylated  -subunit.  A  group  of  seven  small  proteins,  known  as  FXYD  proteins  from  the sequence  of  a  conserved  motif  has  been  identified  recently,  and  one  of  these,  FXYD2,  constitutes  the  (Na,  K-ATPase  -subunit.  Our  model  is  based  on  conformational  changes  occurring  between  the  E1  and  E2  forms  of  the enzyme, which initiates its hydrolytic cycle at a high ATP/ADP ratio. While all steps are reversible, the model does not include  the reverse  reactions that can  take  place under appropriate conditions. The  E1 state  corresponds to that of the SERCA, recently crystallized (Science 304; 1672, 2004; Nature 430: 529, 2004. The animation was developed in Macromedia  Flash  8.0® and  illustrates  the  principle  of  an  alternating-access  model  of  an  ion  pump.  The  protein  is embedded  in  the  membrane  with  the  extracellular  face  uppermost  and  the  cytoplasmic  face  at  the  bottom.  Access from  the  cytoplasmic  or  extracellular  faces  to  the  cation-binding  sites,  located  in  the  transmembrane  moiety,  are controlled  by  two  gates  (moving  horizontal  bars,  and  conformations  showing  the  two  gates  closed  correspond  to states with occluded Na+ and K+ sites. Changes in cation-binding site structure entail

  5. Top Physics at Atlas

    CERN Document Server

    Romano, M; The ATLAS collaboration

    2013-01-01

    This talk is an overview of recent results on top-quark physics obtained by the ATLAS collaboration from the analysis of p-p collisions at 7 and 8 TeV at the Large Hadron Collider. Total and differential top pair cross section, single top cross section and mass measurements are presented.

  6. Performance study of a combined cycle power plant with integral gasification; Estudio del desempeno de una planta de potencia de ciclo combinado con gasificacion integral

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rocha, Jose Clemente

    2007-04-15

    At world-wide level, in the last decade the interest has been increased in the use of petroleum coke as fuel in the clean generation of energy applying the gasification technology. This interest is mainly due to the increment the production of petroleum coke as a result of processing larger volumes of crude processed in the refineries and to the increment in the yield of products with high added value, such as turbo-fuel or diesel, among others. With the new reconfiguration of the Mexican refinery of Cd. Madero and Cadereyta and soon with the completion of the reconfiguration of the Minatitlan, Veracruz refinery, larger amounts of coke will be produced, with the possibility of using it, by means of the appropriate gasification technology, to produce a clean synthetic gas (gasl) with the appropriate energy characteristic to be used as fuel in a combined cycle existing in Mexico. In Mexico the possibilities of generation of electrical energy from the utilization of petroleum coke have been considered departing from the use of petroleum coke using the gasification technology or using fluidized bed steam generators as is the case of the power plant TEG in Taquin, San Luis Potosi. Such is the fact, that at the moment PEMEX Refinacion, has completed the project of constructing in Tuxpan, Veracruz a crude processing refinery of Mayan crude with a high sulfur content and next to the Tuxpan Power Plant, being contemplated the possibility of applying the concept of combined cycle with integrated gasification (CCGI); with this infrastructure it will be possible to consume the coke generated by the Mexican refineries. The expected electrical generation is of 500 MW, of which 100 MW will be for own consumption of the refinery and 400 MW free to cover the electrical energy demand within the North East and Center Zone of the country. The petroleum coke derived from the refineries of the country can be used for the clean generation of electricity by means of its gasification and

  7. CDF Top Physics

    Science.gov (United States)

    Tartarelli, G. F.; CDF Collaboration

    1996-05-01

    The authors present the latest results about top physics obtained by the CDF experiment at the Fermilab Tevatron collider. The data sample used for these analysis (about 110 pb{sup{minus}1}) represents almost the entire statistics collected by CDF during four years (1992--95) of data taking. This large data size has allowed detailed studies of top production and decay properties. The results discussed here include the determination of the top quark mass, the measurement of the production cross section, the study of the kinematics of the top events and a look at top decays.

  8. Identifying the computational requirements of an integrated top-down-bottom-up model for overt visual attention within an active vision system.

    Directory of Open Access Journals (Sweden)

    Sebastian McBride

    Full Text Available Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as 'active vision', to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1 conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2 implementation and validation of the model into robotic hardware (as a representative of an active vision system. Seven computational requirements were identified: 1 transformation of retinotopic to egocentric mappings, 2 spatial memory for the purposes of medium-term inhibition of return, 3 synchronization of 'where' and 'what' information from the two visual streams, 4 convergence of top-down and bottom-up information to a centralized point of information processing, 5 a threshold function to elicit saccade action, 6 a function to represent task relevance as a ratio of excitation and inhibition, and 7 derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate 'active' visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a 'priority map'.

  9. Identifying the computational requirements of an integrated top-down-bottom-up model for overt visual attention within an active vision system.

    Science.gov (United States)

    McBride, Sebastian; Huelse, Martin; Lee, Mark

    2013-01-01

    Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as 'active vision', to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of 'where' and 'what' information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate 'active' visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a 'priority map'.

  10. Considerations on the Assessment and Use of Cycling Performance Metrics and their Integration in the Athlete's Biological Passport

    Directory of Open Access Journals (Sweden)

    Paolo Menaspà

    2017-11-01

    Full Text Available Over the past few decades the possibility to capture real-time data from road cyclists has drastically improved. Given the increasing pressure for improved transparency and openness, there has been an increase in publication of cyclists' physiological and performance data. Recently, it has been suggested that the use of such performance biometrics may be used to strengthen the sensitivity and applicability of the Athlete Biological Passport (ABP and aid in the fight against doping. This is an interesting concept which has merit, although there are several important factors that need to be considered. These factors include accuracy of the data collected and validity (and reliability of the subsequent performance modeling. In order to guarantee high quality standards, the implementation of well-structured Quality-Systems within sporting organizations should be considered, and external certifications may be required. Various modeling techniques have been developed, many of which are based on fundamental intensity/time relationships. These models have increased our understanding of performance but are currently limited in their application, for example due to the largely unaccounted effects of environmental factors such as, heat and altitude. In conclusion, in order to use power data as a performance biometric to be integrated in the biological passport, a number of actions must be taken to ensure accuracy of the data and better understand road cycling performance in the field. This article aims to outline considerations in the quantification of cycling performance, also presenting an alternative method (i.e., monitoring race results to allow for determination of unusual performance improvements.

  11. Energetic analysis of a syngas-fueled chemical-looping combustion combined cycle with integration of carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Jiménez Álvaro, Ángel; Paniagua, Ignacio López; Fernández, Celina González; Carlier, Rafael Nieto; Martín, Javier Rodríguez

    2014-01-01

    Chemical-looping combustion for power generation has significant advantages over conventional combustion. Mainly, it allows an integration of CO 2 capture in the power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. Most efforts have been devoted to systems based on methane as a fuel, although other systems for alternative fuels have can be proposed. This paper focus on the study of the energetic performance of this concept of combustion in a gas turbine combined cycle when synthesis gas is used as fuel. After optimization of some thermodynamic parameters of the cycle, the power plant performance is evaluated under diverse working conditions and compared to a conventional gas turbine system. Energy savings related with CO 2 capture and storage have been quantified. The overall efficiency increase is found to be significant, reaching values of around 5% (even more in some cases). In order to analyze the influence of syngas composition on the results, different H 2 -content fuels are considered. In a context of real urgency to reduce green house gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative power generation systems. - Highlights: • Analysis of the energetic performance of a CLC (chemical-looping combustion) gas turbine system is done. • Syngas as fuel and iron oxides as oxygen carrier are considered. • Different H 2 -content syngas are under study. • Energy savings accounting CO 2 sequestration and storage are quantified. • A significant increase on thermal efficiency of about 5–6% is found

  12. Turismifirmade 2000. a. TOP 30

    Index Scriptorium Estoniae

    2001-01-01

    Turismiettevõtete üldandmed: turismiettevõtete finantsnäitajad; käibe TOP 30; käibe kasvu TOP 10; kasumi TOP 20; kasumi kasvu TOP 10; kasumi languse TOP; rentaabluse TOP 10; varade tootlikkuse TOP 10

  13. Ehitusmaterjalitootjate TOP 70 aastal 2003

    Index Scriptorium Estoniae

    2004-01-01

    Ilmunud ka: Delovõje Vedomosti : Stroitelstvo, 29. sept. 2004, lk. 2,4. Ehitusmaterjalitootjate TOP 70; Käibe TOP 10; Käibe kasvu TOP 10; Kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; Omakapitali tootlikkuse TOP. Ehitusmaterjalitootjate üldandmed

  14. Comparative evaluation of a natural gas expansion plant integrated with an IC engine and an organic Rankine cycle

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Usón, Sergio

    2013-01-01

    Highlights: • Comparison of natural gas expansion systems integrated with gas boiler, ICE and ORC. • Expansion systems replace the throttling process in pressure regulating stations. • 5 System performance indicators based on the 1st and 2nd law are defined. • Exergy efficiency was calculated from the fuel-product approach. • ORC system yields highest exergy efficiency 52.6% and performance ratio of 0.771. - Abstract: The aim of the paper is to propose and evaluate an innovative exergy recovery system for natural gas expansion, based on the integration of an internal combustion engine (ICE) and an organic Rankine cycle (ORC), and to compare it with other alternatives. Natural gas expansion plants are a substantial improvement to the conventional gas pressure reduction stations, based on the throttling process, since the available physical exergy of pressurized gas is converted into mechanical energy by means of an expansion machine (turbine or piston expander) instead of being lost in the throttling process. However, due to the hydrate formation problem the gas has to be pre-heated prior to the expansion, which diminishes the system performance. An efficient method for performing this pre-heating is by the proposed system that comprises an ICE and an ORC: Pre-heating of natural gas is carried out partially directly by the co-generation module, via the engine cooling cycle, and partially indirectly, by means of the engine exhaust gases, which supply heat for the ORC, while the ORC condenser is connected with the lowest stage of natural gas pre-heating. Other alternatives are the use of an ICE without ORC, the use of a boiler, and even expansion in a throttling valve. The paper evaluates the performance of the aforementioned four configurations by means of both energy and exergy analysis. Several alternative performance indicators have been defined, calculated and discussed. Sources of irreversibilities have been identified by means of exergy analysis

  15. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, Olga, E-mail: o.parkes@ucl.ac.uk; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk; Bogle, I. David L.

    2015-06-15

    Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for

  16. An application of oscillation-damped motion for suspended payloads to the advanced integrated maintenance system in fuel cycle facilities

    International Nuclear Information System (INIS)

    Noakes, M.W.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    The transportation of objects using overhead cranes can induce pendular motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories has shown that oscillation-damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. Initial studies have been completed using a CIMCORP XR6100 gantry robot. The Advanced Integrated Maintenance System (AIMS) is an engineering and operations test bed developed for remote maintenance and handling studies within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory. The goal of CFRP has been to advanced the technology of in-cell systems planned for future nuclear fuel cycle facilities. The AIMS provides the capabilities to examine the needs and constraints necessary for hot-cell remote maintenance and includes a force-reflecting master/slave teleoperator and overhead transporter system. The associated control system provides a flexible programming environment conducive to controls experimentation. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific implementation of the oscillation damping methods for the AIMS transporter. Hardware and software requirements and constraints for proper operation are discussed

  17. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    Science.gov (United States)

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG

  19. TOP LINAC design; Progetto del TOP LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita`, ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given.

  20. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells

    Science.gov (United States)

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob

    2015-01-01

    Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis. PMID:26283799

  1. Ekspedeerimisettevõtete TOP 50

    Index Scriptorium Estoniae

    2006-01-01

    Ilmunud ka: Delovõje Vedomosti : Transport i Logistika nr. 11, 29. nov. lk. 32-35. Ekspedeerimisettevõtete TOP. Vt. samas: Käibe TOP 10; Käibekasvu TOP 10; Kasumi TOP 10; Kasumikasvu TOP 10; Rentaabluse TOP 10; ROE TOP 10; Ekspedeerimisettevõtete üld- ja finantsandmed. Ajal. Delovõje Vedomosti : Transport i Logistika toodud ainult Ekspedeerimisettevõtete TOP 50

  2. Top Quark Physics

    International Nuclear Information System (INIS)

    Larios, F.

    2006-01-01

    We give an overview of the physics of the Top quark, from the experimental discovery to the studies of its properties. We review some of the work done on the Electroweak and Flavor Changing couplings associated with the Top quark in the Standard Model and beyond. We will focus on the specific contribution of phycisits working in Mexico and Mexican physicists working abroad

  3. Top quark theory

    NARCIS (Netherlands)

    Laenen, E.

    2012-01-01

    The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.

  4. Top physics at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.E. [Univ. of Rochester, NY (United States)

    1997-01-01

    We report on top physics results using a 100 pb{sup -1} data sample of p{bar p} collisions at {radical}s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). We have identified top signals in a variety of decay channels, and used these channels to extract a measurement of the top mass and production cross section. A subset of the data (67 pb{sup -1}) is used to determine M{sub top} = 176 {+-} 8(stat) {+-} 10(syst) and {sigma}(tt) = 7.6 {sub -2.0}{sup +2.4} pb. We present studies of the kinematics of t{bar t} events and extract the first direct measurement of V{sub tb}. Finally, we indicate prospects for future study of top physics at the Tevatron.

  5. Top Quark Mass

    CERN Document Server

    Mulders, Martijn

    2016-01-01

    Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I wil...

  6. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    Science.gov (United States)

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  7. The Dimethylsulfide Cycle in the Eutrophied Southern North Sea: A Model Study Integrating Phytoplankton and Bacterial Processes

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Speeckaert, Gaelle; Lancelot, Christiane

    2014-01-01

    We developed a module describing the dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) dynamics, including biological transformations by phytoplankton and bacteria, and physico-chemical processes (including DMS air-sea exchange). This module was integrated in the MIRO ecological model and applied in a 0D frame in the Southern North Sea (SNS). The DMS(P) module is built on parameterizations derived from available knowledge on DMS(P) sources, transformations and sinks, and provides an explicit representation of bacterial activity in contrast to most of existing models that only include phytoplankton process (and abiotic transformations). The model is tested in a highly productive coastal ecosystem (the Belgian coastal zone, BCZ) dominated by diatoms and the Haptophyceae Phaeocystis, respectively low and high DMSP producers. On an annual basis, the particulate DMSP (DMSPp) production simulated in 1989 is mainly related to Phaeocystis colonies (78%) rather than diatoms (13%) and nanoflagellates (9%). Accordingly, sensitivity analysis shows that the model responds more to changes in the sulfur:carbon (S:C) quota and lyase yield of Phaeocystis. DMS originates equally from phytoplankton and bacterial DMSP-lyase activity and only 3% of the DMS is emitted to the atmosphere. Model analysis demonstrates the sensitivity of DMS emission towards the atmosphere to the description and parameterization of biological processes emphasizing the need of adequately representing in models both phytoplankton and bacterial processes affecting DMS(P) dynamics. This is particularly important in eutrophied coastal environments such as the SNS dominated by high non-diatom blooms and where empirical models developed from data-sets biased towards open ocean conditions do not satisfactorily predict the timing and amplitude of the DMS seasonal cycle. In order to predict future feedbacks of DMS emissions on climate, it is needed to account for hotspots of DMS emissions from coastal

  8. Carbon behavior in the cyclic operation of dry desulfurization process for oxy-fuel integrated gasification combined cycle power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2016-01-01

    Highlights: • Power plant with semi-closed gas turbine and O_2–CO_2 coal gasifier was studied. • Dry gas sulfur removal sorbent was improved for durability to carbon deposition. • The improved sorbent showed very low amount of deposited carbon during operation. • The sorbent is regenerable to be used repeatedly in the cyclic operation. • The sorbent exhibited high sulfur-removal performance in the cyclic operation. - Abstract: The dry sulfur-removal process is essential to provide suitable syngas treatment for the oxy-fuel integrated gasification combined cycle power generation plant. It is required that the dry sulfur-removal process to be durable to the carbon deposition due to syngas containing high concentration of carbon monoxide in addition to achieve sufficient performance for sulfur removal. Zinc ferrite sorbent is the most promising candidate for the dry sulfur-removal process. The sorbent was improved to enhance durability to the carbon deposition by modifying preparation. The improved sorbent was prepared from sulfates as the raw materials of zinc ferrite, while the former sorbent was using nitrates as the raw materials. The improved sorbent as well as the former sorbent were evaluated on the performance and carbon deposition tendency in oxy-fuel syngas condition in a fixed bed reactor at elevated pressure and temperature. The results expressed that the improved sorbent has higher desulfurization performance and durability to carbon deposition in the condition expected for cyclic operation of the sulfur-removal process in comparison with the former sorbent. The improved sorbent possessed the superior desulfurization performance as well as the capability for inhibit carbon deposition in the oxy-fuel syngas conditions. The results confirmed the enhanced feasibility of the dry sulfur-removal process by utilizing the improved sorbent.

  9. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case

    International Nuclear Information System (INIS)

    Morandin, Matteo; Maréchal, François; Mercangöz, Mehmet; Buchter, Florian

    2012-01-01

    The interest in large scale electricity storage (ES) with discharging time longer than 1 h and nominal power greater than 1 MW, is increasing worldwide as the increasing share of renewable energy, typically solar and wind energy, imposes severe load management issues. Thermo-electrical energy storage (TEES) based on thermodynamic cycles is currently under investigation at ABB corporate research as an alternative solution to pump hydro and compressed air energy storage. TEES is based on the conversion of electricity into thermal energy during charge by means of a heat pump and on the conversion of thermal energy into electricity during discharge by means of a thermal engine. The synthesis and the thermodynamic optimization of a TEES system based on hot water, ice storage and transcritical CO 2 cycles, is discussed in two papers. In this first paper a methodology for the conceptual design of a TEES system based on the analysis of the thermal integration between charging and discharging cycles through Pinch Analysis tools is introduced. According to such methodology, the heat exchanger network and temperatures and volumes of storage tanks are not defined a priori but are determined after the cycle parameters are optimized. For this purpose a heuristic procedure based on the interpretation of the composite curves obtained by optimizing the thermal integration between the cycles was developed. Such heuristic rules were implemented in a code that allows finding automatically the complete system design for given values of the intensive parameters of the charging and discharging cycles only. A base case system configuration is introduced and the results of its thermodynamic optimization are discussed here. A maximum roundtrip efficiency of 60% was obtained for the base case configuration assuming turbomachinery and heat exchanger performances in line with indications from manufacturers. -- Highlights: ► Energy storage based on water, ice, and transcritical CO 2 cycles is

  10. Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Gassner, Martin; D’Amelio, Matilde; Marechal, François; Favrat, Daniel

    2012-01-01

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673–773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion. This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis. The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration. -- Highlights: ► Hydrothermal gasification is a promising process for the valorization of waste wet biomass. ► Solid Oxide Fuel Cell – Gas Turbine hybrid cycle emerges as the best candidates for conversion of biofuels. ► A systematic process integration and optimization of a SOFC-GT hybrid cycle fuelled with hydrothermally gasified biomass is presented. ► The system may convert wet waste biomass to electricity at a First Law efficiency of 63% while separating the biogenic carbon dioxide. ► The process integration enables to improve the First Law efficiency of around 4% with respect to a non-integrated system.

  11. Search for the top quark with CDF

    International Nuclear Information System (INIS)

    Barbaro-Galtieri, A.

    1991-01-01

    During the 1988--89 Tevatron Collider run the CDF detector has collected data for an integrated luminosity of 4.4 pb -1 . The sample has been used to search for the top quark in several topologies. Preliminary results show that a top mass below 89 GeV is excluded at the 95% confidence level, thus extending the limit of 77 GeV previously published by CDF. 14 refs., 8 figs

  12. Top quark mass measurement

    International Nuclear Information System (INIS)

    Maki, Tuula; Helsinki Inst. of Phys.; Helsinki U. of Tech.

    2008-01-01

    The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parameterized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector

  13. Search for top in UA2

    International Nuclear Information System (INIS)

    Repellin, J.P.

    1989-01-01

    A search for the top quark in the data collected during 1988 by the UA2 collaboration at the CERN proton-antiproton collider is presented. In UA2 the selected decay mode is t → eν-barb. The present report is limited to the study of topologies with an electron, a neutrino, and two or more jets. With an integrated luminosity of 2.5 pb -1 the data do not show any contribution from top and at this preliminary stage of the analysis a top mass between 30 and 60 GeV seems excluded. (K.A.) 9 refs.; 9 figs.; 2 tabs

  14. A study of electricity planning in Thailand: An integrated top-down and bottom-up Computable General Equilibrium (CGE) modeling analysis

    Science.gov (United States)

    Srisamran, Supree

    This dissertation examines the potential impacts of three electricity policies on the economy of Thailand in terms of macroeconomic performance, income distribution, and unemployment rate. The three considered policies feature responses to potential disruption of imported natural gas used in electricity generation, alternative combinations (portfolios) of fuel feedstock for electricity generation, and increases in investment and local electricity consumption. The evaluation employs Computable General Equilibrium (CGE) approach with the extension of electricity generation and transmission module to simulate the counterfactual scenario for each policy. The dissertation consists of five chapters. Chapter one begins with a discussion of Thailand's economic condition and is followed by a discussion of the current state of electricity generation and consumption and current issues in power generation. The security of imported natural gas in power generation is then briefly discussed. The persistence of imported natural gas disruption has always caused trouble to the country, however, the economic consequences of this disruption have not yet been evaluated. The current portfolio of power generation and the concerns it raises are then presented. The current portfolio of power generation is heavily reliant upon natural gas and so needs to be diversified. Lastly, the anticipated increase in investment and electricity consumption as a consequence of regional integration is discussed. Chapter two introduces the CGE model, its background and limitations. Chapter three reviews relevant literature of the CGE method and its application in electricity policies. In addition, the submodule characterizing the network of electricity generation and distribution and the method of its integration with the CGE model are explained. Chapter four presents the findings of the policy simulations. The first simulation illustrates the consequences of responses to disruptions in natural gas imports

  15. Top physics in WHIZARD

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen; Chokoufe Nejad, Bijan [DESY, Hamburg (Germany). Theory Group; Bach, Fabian [European Commission, Eurostat, Luxembourg (Luxembourg); Hoang, Andre [Vienna Univ. (Austria). Faculty of Physics; Vienna Univ. (Austria). Erwin Schroedinger International Inst. for Mathematical Physics; Kilian, Wolfgang [Siegen Univ. (Germany); Stahlhofen, Maximilian [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Teubner, Thomas [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Weiss, Christian [DESY, Hamburg (Germany). Theory Group; Siegen Univ. (Germany)

    2016-03-15

    In this talk we summarize the top physics setup in the event generator WHIZARD with a main focus on lepton colliders. This includes full six-, eight- and ten-fermion processes, factorized processes and spin correlations. For lepton colliders, QCD NLO processes for top quark physics are available and discussed. A special focus is on the top-quark pair threshold, where a special implementation combines a non-relativistic effective field theory calculation augmented by a next-to-leading threshold logarithm resummation with a continuum relativistic fixed-order QCD NLO simulation.

  16. Top physics in WHIZARD

    International Nuclear Information System (INIS)

    Reuter, Juergen; Chokoufe Nejad, Bijan; Hoang, Andre; Stahlhofen, Maximilian

    2016-03-01

    In this talk we summarize the top physics setup in the event generator WHIZARD with a main focus on lepton colliders. This includes full six-, eight- and ten-fermion processes, factorized processes and spin correlations. For lepton colliders, QCD NLO processes for top quark physics are available and discussed. A special focus is on the top-quark pair threshold, where a special implementation combines a non-relativistic effective field theory calculation augmented by a next-to-leading threshold logarithm resummation with a continuum relativistic fixed-order QCD NLO simulation.

  17. Top quark discovered

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Nine months after a careful announcement of tentative evidence for the long-awaited sixth 'top' quark, physicists from the CDF and DO experiments at Fermilab's Tevatron proton-antiproton collider declared on 2 March that they had finally discovered the top quark. Last year (June 1994, page 1), the CDF experiment at the Tevatron reported a dozen candidate top events. These, said CDF, had all the characteristics expected of top, but the difficulties of extracting the tiny signal from a trillion proton-antiproton collisions made them shy of claiming a discovery. For its part, the companion DO Tevatron experiment reported a few similar events but were even more guarded about their interpretation as top quarks. Just after these hesitant announcements, performance at the Tevatron improved dramatically last summer. After the commissioning of a new linear accelerator and a magnet realignment, the machine reached a new world record proton-antiproton collision luminosity of 1.28 x 10 31 per sq cm per s, ten times that originally planned. Data began to pour in at an unprecedented rate and the data sample grew to six trillion collisions. Luminosity has subsequently climbed to 1.7 x 10 31 . The top quark is the final letter in the alphabet of Standard Model particles. According to this picture, all matter is composed of six stronglyinteracting subnuclear particles, the quarks, and six weakly interacting particles, the leptons. Both sextets are neatly arranged as three pairs in order of increasing mass. The fifth quark, the 'beauty' or 'b' quark, was also discovered at Fermilab, back in 1977. Since then physicists have been eagerly waiting for the top to turn up, but have been frustrated by its heaviness - the top is some 40 times the mass of its 'beautiful' partner. Not only is the top quark the heaviest by far, but it is the only quark which has been actively hunted. After the quarry was glimpsed last year, the net has now been

  18. Audiitorite TOP 50 aastal 2005

    Index Scriptorium Estoniae

    2006-01-01

    Audiitorite TOP. Vt. samas: Käibe TOP 10; Käibe kasvu TOP 10; Kasumi TOP 10; Kasumi kasvu TOP 10; Rentaabluse TOP 10; ROE TOP 10; Ketlin Priilinn. Kasvu tagavad lojaalsed kliendid; Klient on audiitori parim müügimees; Teeli Remmelg. Kliendid vaatavad pigem kvaliteeti kui madalat hinda. Kommenteerivad Signe Keernik ja Kalle Lahe. Tabel: Audiitoriettevõtete üld- ja finantsandmed

  19. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  20. Jõgevamaa ettevõtete TOP 55

    Index Scriptorium Estoniae

    2004-01-01

    Jõgevamaa ettevõtete TOP 55 aastal 2003. Käibe TOP 40. Kasumi TOP 40. Käibe kasvu TOP 20. Kasumi kasvu TOP 20. Rentaabluse TOP 20. Omakapitali tootlikkuse TOP 20. Jõgevamaa firmade üld- ja finantsandmed

  1. Põlvamaa ettevõtete TOP 50

    Index Scriptorium Estoniae

    2004-01-01

    Ettevõtete TOP 50. Käibe TOP 40. Kasumi TOP 40. Käibe kasvu TOP 20. Kasumi kasvu TOP 20. Rentaabluse TOP 20. Omakapitali tootlikkuse TOP 20. Põlvamaa firmade üldandmed. Põlvamaa firmade finantsandmed

  2. Viljandimaa ettevõtete TOP 50

    Index Scriptorium Estoniae

    2005-01-01

    Viljandimaa ettevõtete TOP 50; Käibe TOP 35; Kasumi TOP 35; Käibe kasvu TOP 20; Kasumi kasvu TOP 20; Rentaabluse TOP 20; Omakapitali tootlikkuse TOP 20; Viljandimaa ettevõtete üld- ja finantsandmed

  3. Jõgevamaa ettevõtete TOP 50

    Index Scriptorium Estoniae

    2005-01-01

    Jõgevamaa ettevõtete TOP 50; Käibe TOP 35; Kasumi TOP 35; Käibe kasvu TOP 20; Kasumi kasvu TOP 20; Rentaabluse TOP 20; Omakapitali tootlikkuse TOP 20; Jõgevamaa ettevõtete üld- ja finantsandmed

  4. Boosted tops at ATLAS

    CERN Document Server

    Villaplana, M; The ATLAS collaboration

    2011-01-01

    A sample of candidate events for highly boosted top quarks is selected following the standard ATLAS selection for semi-leptonic ttbar events plus a requirement that the invariant mass of the reconstructed ttbar pair is greater than 700 GeV. Event displays are presented for the most promising candidates, as well as quantitative results for observables designed to isolate a boosted top quark signal.

  5. Telekommunikatsiooni & arvutitootjate TOP

    Index Scriptorium Estoniae

    2006-01-01

    Telekommunikatsiooni TOP 30. Tabelid. Vt. samas: Indrek Kald. Elisa ka tänavu esikohal; Väike Tele2 võidab paindlikkusest; Kernel läks üle piiri. Diagrammid. Arvutifirmade TOP 100. Tabelid. Vt. samas: Enn Heinsoo. Esikoha tõi kontori müük; Proeksperdil suund välisturgudele;¡ Ida-Eesti turg arenevale firmale kitsas. Diagrammid. Nimekiri: Omanikud

  6. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.

    Science.gov (United States)

    Mazzoleni, S; Battini, E; Rustici, A; Stampacchia, G

    2017-07-01

    The aim of this study is to investigate the effects of an integrated gait rehabilitation training based on Functional Electrical Stimulation (FES)-cycling and overground robotic exoskeleton in a group of seven complete spinal cord injury patients on spasticity and patient-robot interaction. They underwent a robot-assisted rehabilitation training based on two phases: n=20 sessions of FES-cycling followed by n= 20 sessions of robot-assisted gait training based on an overground robotic exoskeleton. The following clinical outcome measures were used: Modified Ashworth Scale (MAS), Numerical Rating Scale (NRS) on spasticity, Penn Spasm Frequency Scale (PSFS), Spinal Cord Independence Measure Scale (SCIM), NRS on pain and International Spinal Cord Injury Pain Data Set (ISCI). Clinical outcome measures were assessed before (T0) after (T1) the FES-cycling training and after (T2) the powered overground gait training. The ability to walk when using exoskeleton was assessed by means of 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Timed Up and Go test (TUG), standing time, walking time and number of steps. Statistically significant changes were found on the MAS score, NRS-spasticity, 6MWT, TUG, standing time and number of steps. The preliminary results of this study show that an integrated gait rehabilitation training based on FES-cycling and overground robotic exoskeleton in complete SCI patients can provide a significant reduction of spasticity and improvements in terms of patient-robot interaction.

  7. CASE technology and the Systems Development Life Cycle: a proposed integration of CASE tools with DoD STD-2167A

    OpenAIRE

    Batt, Gary Thomas

    1989-01-01

    Approved for public release; distribution unlimited The use of Computer Aided Software Engineering (CASE) t ools has been marketed as a remedy for the software development crisis by automating analysis, design, and coding. The Systems Development Life Cycle (SDLC) has been employed in an attempt to ease the development backlog by applying structured methods to the development of software systems. This study reviews CASE tool components and the future of CASE integrated toolkits, compares a...

  8. Corrosion behavior of Haynes {sup registered} 230 {sup registered} nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung [Institute for Advanced Engineering (IAE), Gyeonggi-do (Korea, Republic of). Plant Engineering Center; Kim, Min Jung [Sungkyunkwan Univ, Gyeonggi-do (Korea, Republic of). Advanced Materials Technology Research Center

    2015-07-01

    The corrosion behavior of commercially available Haynes {sup registered} 230 {sup registered} nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes {sup registered} 230 {sup registered} nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes {sup registered} 556 {sup registered}.

  9. Corrosion behavior of Haynes registered 230 registered nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung; Kim, Min Jung

    2015-01-01

    The corrosion behavior of commercially available Haynes registered 230 registered nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes registered 230 registered nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes registered 556 registered .

  10. Integrating the augmented SCOR model and the ISO 15288 life cycle model into a single logistic model

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2010-07-01

    Full Text Available using the Supply Chain Operations Reference (SCOR) model. The SANDF indicated that the augmented SCOR model (Bean, Schmitz and Engelbrecht, 2009) should be extended into a single logistics process which should include a life-cycle perspective...

  11. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations......A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced...... achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant. © 2013 Elsevier Ltd. All rights reserved....

  12. Life-cycle energy optimisation : A proposed methodology for integrating environmental considerations early in the vehicle engineering design process

    OpenAIRE

    O'Reilly, Ciarán J.; Göransson, Peter; Funazaki, Atsushi; Suzuki, Tetsuya; Edlund, Stefan; Gunnarsson, Cecilia; Lundow, Jan-Olov; Cerin, Pontus; Cameron, Christopher J.; Wennhage, Per; Potting, José

    2016-01-01

    To enable the consideration of life cycle environmental impacts in the early stages of vehicle design, a methodology using the proxy of life cycle energy is proposed in this paper. The trade-offs in energy between vehicle production, operational performance and end-of-life are formulated as a mathematical problem, and simultaneously balanced with other transport-related functionalities, and may be optimised. The methodology is illustrated through an example design study, which is deliberately...

  13. Move me, astonish me… delight my eyes and brain: The Vienna Integrated Model of top-down and bottom-up processes in Art Perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates.

    Science.gov (United States)

    Pelowski, Matthew; Markey, Patrick S; Forster, Michael; Gerger, Gernot; Leder, Helmut

    2017-07-01

    This paper has a rather audacious purpose: to present a comprehensive theory explaining, and further providing hypotheses for the empirical study of, the multiple ways by which people respond to art. Despite common agreement that interaction with art can be based on a compelling, and occasionally profound, psychological experience, the nature of these interactions is still under debate. We propose a model, The Vienna Integrated Model of Art Perception (VIMAP), with the goal of resolving the multifarious processes that can occur when we perceive and interact with visual art. Specifically, we focus on the need to integrate bottom-up, artwork-derived processes, which have formed the bulk of previous theoretical and empirical assessments, with top-down mechanisms which can describe how individuals adapt or change within their processing experience, and thus how individuals may come to particularly moving, disturbing, transformative, as well as mundane, results. This is achieved by combining several recent lines of theoretical research into a new integrated approach built around three processing checks, which we argue can be used to systematically delineate the possible outcomes in art experience. We also connect our model's processing stages to specific hypotheses for emotional, evaluative, and physiological factors, and address main topics in psychological aesthetics including provocative reactions-chills, awe, thrills, sublime-and difference between "aesthetic" and "everyday" emotional response. Finally, we take the needed step of connecting stages to functional regions in the brain, as well as broader core networks that may coincide with the proposed cognitive checks, and which taken together can serve as a basis for future empirical and theoretical art research. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Move me, astonish me… delight my eyes and brain: The Vienna Integrated Model of top-down and bottom-up processes in Art Perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates

    Science.gov (United States)

    Pelowski, Matthew; Markey, Patrick S.; Forster, Michael; Gerger, Gernot; Leder, Helmut

    2017-07-01

    This paper has a rather audacious purpose: to present a comprehensive theory explaining, and further providing hypotheses for the empirical study of, the multiple ways by which people respond to art. Despite common agreement that interaction with art can be based on a compelling, and occasionally profound, psychological experience, the nature of these interactions is still under debate. We propose a model, The Vienna Integrated Model of Art Perception (VIMAP), with the goal of resolving the multifarious processes that can occur when we perceive and interact with visual art. Specifically, we focus on the need to integrate bottom-up, artwork-derived processes, which have formed the bulk of previous theoretical and empirical assessments, with top-down mechanisms which can describe how individuals adapt or change within their processing experience, and thus how individuals may come to particularly moving, disturbing, transformative, as well as mundane, results. This is achieved by combining several recent lines of theoretical research into a new integrated approach built around three processing checks, which we argue can be used to systematically delineate the possible outcomes in art experience. We also connect our model's processing stages to specific hypotheses for emotional, evaluative, and physiological factors, and address main topics in psychological aesthetics including provocative reactions-chills, awe, thrills, sublime-and difference between ;aesthetic; and ;everyday; emotional response. Finally, we take the needed step of connecting stages to functional regions in the brain, as well as broader core networks that may coincide with the proposed cognitive checks, and which taken together can serve as a basis for future empirical and theoretical art research.

  15. Life Cycle Thinking and Integrated Product Deliveries in renovation projects: Extending the concept of Integrated Product Deliveries with Product Service Systems

    DEFF Research Database (Denmark)

    Schipull Kauschen, Jan

    2012-01-01

    extension to the concept of IPDs discussed. Due to extended product responsibility, the concept of PSSs will offer new possibilities of planning and pre-defining life cycles of IPDs more precisely than for regular building components. Reducing or eliminating point-of-sales will induce producers to optimize...... on renovation projects from Denmark, using different forms of IPDs for façade renovation and discusses the different stakeholder’s perspectives on life cycle thinking and their interests and values regarding sustainable building. Furthermore is the concept of Product Service Systems (PSS) as a valuable...

  16. TOP2017 Experimental summary

    CERN Document Server

    Giammanco, Andrea

    2017-01-01

    Thanks to the unprecedentedly fast accumulation of high-energy data at the LHC during the ongoing Run~2, most of the traditional top-quark analyses are experiencing the luxury of having to worry about how to punch through the ``Systematics Wall'', and think about new ways to maximize the utility of their data. New processes involving top quarks are being studied for the first time, and the good old pair-production processes are being explored in unusual settings, such as collisions involving heavy ions, or ``reference data'' collected by the LHC at relatively low centre-of-mass energy. The TOP2017 conference featured 37 talks delivered by experimental physicists, including seven in the ``Young Scientists Forum'' where young colleagues were given the opportunity to elaborate more deeply than usual on their own work. As it is impossible to do justice to all the experimental resu...

  17. Top-ophilia

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab

    2008-01-01

    Almost from the moment in June 1977 when the discovery of the Upsilon resonance revealed the existence of what we now call the bottom quark, physicists began searching for its partner. Through the years, as we established the electric charge and weak isospin of the b-quark, and detected the virtual influence of its mate, it became clear that the top quark must exist. Exactly at what mass, we couldn't say, but we knew just how top events would look. We also knew that top events would be rare--if the Tevatron could make them at all--and that picking out the events would pose a real challenge for the experimenters and their detectors.

  18. Life Cycle Thinking and Integrated Product Deliveries in renovation projects: Extending the concept of Integrated Product Deliveries with Product Service Systems

    DEFF Research Database (Denmark)

    Schipull Kauschen, Jan

    2012-01-01

    extension to the concept of IPDs discussed. Due to extended product responsibility, the concept of PSSs will offer new possibilities of planning and pre-defining life cycles of IPDs more precisely than for regular building components. Reducing or eliminating point-of-sales will induce producers to optimize...

  19. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    Science.gov (United States)

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  20. Integrated inertial sensors and mobile computing for real-time cycling performance guidance via pedaling profile classification.

    Science.gov (United States)

    Xu, James Y; Nan, Xiaomeng; Ebken, Victor; Wang, Yan; Pottie, Greg J; Kaiser, William J

    2015-03-01

    Today, the bicycle is utilized as a daily commute tool, a physical rehabilitation asset, and sporting equipment, prompting studies into the biomechanics of cycling. Of the number of important parameters that affect cycling efficiency, the foot angle profile is one of the most important as it correlates directly with the effective force applied to the bike. However, there has been no compact and portable solution for measuring the foot angle and for providing the cyclist with real-time feedback due to a number of difficulties of the current tracking and sensing technologies and the myriad types of bikes available. This paper presents a novel sensing and mobile computing system for classifying the foot angle profiles during cycling and for providing real-time guidance to the user to achieve the correct profile. Continuous foot angle tracking is firstly converted into a discrete problem requiring only recognition of acceleration profiles of the foot using a single shoe mounted tri-axial accelerometer during each pedaling cycle. A classification method is then applied to identify the pedaling profile. Finally, a mobile solution is presented to provide real-time signal processing and guidance.

  1. Integration of Life Cycle Assessment Into Agent-Based Modeling : Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikoli?, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  2. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Science.gov (United States)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.

  3. TOP LINAC design

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita', ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given

  4. Top emitting white OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Luessem, Bjoern; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, George-Baehr-Strasse 1, 01069 Dresden (Germany)

    2009-07-01

    Top emitting organic light emitting diodes (TOLEDs) provide a number of interesting opportunities for new applications, such as the opportunity to fabricate ITO-free devices by using opaque substrates. This makes it possible to manufacture low cost OLEDs for signage and lighting applications. A general top emitting device consists of highly reflecting metal contacts as anode and semitransparent cathode, the latter one for better outcouling reasons. In between several organic materials are deposited as charge transporting, blocking, and emission layers. Here, we show a top emitting white organic light emitting diode with silver electrodes arranged in a p-i-n structure with p- and n-doped charge transport layers. The centrical emission layer consists of two phosphorescent (red and green) and one fluorescent (blue) emitter systems separated by an ambipolar interlayer to avoid mutual exciton quenching. By adding an additional dielectric capping layer on top of the device stack, we achieve a reduction of the strong microcavity effects which appear due to the high reflection of both metal electrodes. Therefore, the outcoupled light shows broad and nearly angle-independent emission spectra, which is essential for white light emitting diodes.

  5. Top quark theory

    Indian Academy of Sciences (India)

    2012-10-04

    Oct 4, 2012 ... The theoretical aspects of a number of top quark properties such as ... to the quadratic divergences of the Higgs self-energy, while yet, ..... given in the literature, each with the aim of recovering a well-behaved expansion in αs.

  6. Top quark properties

    Indian Academy of Sciences (India)

    eter for the tests of the electroweak theory, since radiative corrections to many ... The uncertainty due to jet energy scale (JES) is the dominating systematic .... In the Standard Model, the charge of the top quark is predicted to be that of a normal up- ..... non-negative and f+ + f0 < 1, and the star marks the expectation from the ...

  7. Anomalous top magnetic couplings

    Indian Academy of Sciences (India)

    2012-11-09

    Nov 9, 2012 ... Corresponding author. E-mail: remartinezm@unal.edu.co. Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbW vertex in the Standard Model (SM) are computed. Keywords. Top; anomalous. PACS Nos 14.65.Ha; 12.15 ...

  8. The development of an integrated nuclear fuel-cycle industry to meet the needs of the Italian nuclear power programme

    International Nuclear Information System (INIS)

    Angelini, A.M.; Badolato, G.; Clementel, E.

    1977-01-01

    The paper summarizes the Italian nuclear power station programme, recently approved by the Government, and illustrates the main reasons for the programme, which are in line with those presented at the Geneva Conference in 1971, and which lead to the consideration that nuclear energy is the main source for meeting practically all new electric power requirements in Italy. The implementation of this programme involves considerable nuclear fuel-cycle services, ranging from uranium supply to waste disposal. The industrial strategy to meet these needs is discussed. Technical and economic factors affecting such strategy, both for the fuel cycle as a whole and for its individual phases, are considered. Attention is focused on problems typical of the Italian situation and on various ways of solving them. A prominent feature of the Italian situation is the lack of sizeable domestic uranium resources, which makes it even more important to try, by local industrial efforts, to cover the phases of the cycle subsequent to uranium supply, so as to increase as much as possible the fraction of added value produced inside the country. The present status of the Italian nuclear fuel-cycle industry is reviewed in detail, and its capability of supporting the nuclear programme is analysed. Future development plans are discussed, taking into account the possibility of European co-operation. While the focus is on short- and medium-term programmes, the long-term nuclear programmes are discussed, such as those based on fast breeders, and stress is laid on the need to build up as quickly as possible a strong nuclear fuel-cycle industry. (author)

  9. Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

    2008-12-01

    One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

  10. Model uncertainties in top-quark physics

    CERN Document Server

    Seidel, Markus

    2014-01-01

    The ATLAS and CMS collaborations at the Large Hadron Collider (LHC) are studying the top quark in pp collisions at 7 and 8 TeV. Due to the large integrated luminosity, precision measurements of production cross-sections and properties are often limited by systematic uncertainties. An overview of the modeling uncertainties for simulated events is given in this report.

  11. CPT analysis with top physics

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, Jose A. R., E-mail: cembra@fis.ucm.es [Universidad Complutense de Madrid, Departamento de Fisica Teorica I (Spain)

    2013-03-15

    We discuss the possibility of observing CPT violation from top anti-top production in hadronic colliders. We study a general approach by analyzing constraints on the mass difference between the top and anti-top quarks. We present current bounds from Tevatron data, and comment on the prospects for improving these bounds at the LHC and the ILC.

  12. Top Quark Properties at Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Lysák, Roman [Prague, Inst. Phys.

    2017-11-27

    The latest CDF and D0 experiment measurements of the top quark properties except the top quark mass are presented. The final combination of the CDF and D0 forward-backward asymmetry measurements is shown together with the D0 measurements of the inclusive top quark pair cross-section as well as the top quark polarization.

  13. Top-quark mass and top-quark pole mass measurements with the ATLAS detector

    CERN Document Server

    Barillari, Teresa; The ATLAS collaboration

    2017-01-01

    Results of top-quark mass measurements in the di-lepton and in the all-jets top-antitop decay channels with the ATLAS detector are presented. The measurements are obtained using proton--proton collisions at a centre-of-mass energy \\sqrt{s} = 8 TeV at the CERN Large Hadron Collider. The data set used corresponds to an integrated luminosity of 20.2 fb-1. The top-quark mass in the di-lepton channel is measured to be 172.99 +/-0.41 (stat.) +/- 0.74 (syst.) GeV. In the all-jets analysis the top-quark mass is measured to be 173.72 +/- 0.55 (stat.)+/- 1.01 (syst.) GeV. In addition, the top-quark pole mass is determined from inclusive cross-section measurements in the top-antitop di-lepton decay channel with the ATLAS detector. The measurements are obtained using data at \\sqrt{s} = 7 TeV and \\sqrt{s} =8 TeV corresponding to an integrated luminosity of 4.6 fb-1 and 20.2 fb-1 respectively. The top-quark pole mass is measured to be 172.9^{+2.5}_{-2.6} GeV.

  14. Integrated Life-Cycle Hazardous Material Management: A Logistics Imperative for USAREUR and the 7th Army

    National Research Council Canada - National Science Library

    Werle, Christopher

    2000-01-01

    This report examines the benefit to be gained by integrating traditional "pharmacy" business practices in the existing supply system rather than building a parallel system for hazardous material/hazardous waste (HM/HW) management...

  15. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  16. Integrating nutritional benefits and impacts in a life cycle assessment framework: A US dairy consumption case study

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Fulgoni III, Victor; Heller, Martin

    2014-01-01

    Although essential to understand the overall health impact of a food or diet, nutrition is not usually considered in food-related life cycle assessments (LCAs). As a case study to demonstrate comparing environmental and nutritional health impacts we investigate United States dairy consumption....... Nutritional impacts, interpreted from disease burden epidemiology, are compared to health impacts from more tradi-tional impacts (e.g. due to exposure to particulate matter emissions across the life cycle) considered in LCAs. After accounting for the present consumption, data relating dairy intake to public...... to environmental impacts suggesting the need for investigat-ing the balance between dietary public health advantages and disadvantages in comparison to environmental impacts....

  17. Cogenerative Performance of a Wind − Gas Turbine − Organic Rankine Cycle Integrated System for Offshore Applications

    DEFF Research Database (Denmark)

    Bianchi, Michele; Branchini, Lisa; De Pascale, Andrea

    2016-01-01

    Gas Turbines (GT) are widely used for power generationin offshore oil and gas facilities, due to their high reliability,compactness and dynamic response capabilities. Small heavyduty and aeroderivative units in multiple arrangements aretypically used to offer larger load flexibility......, but limitedefficiency of such machines is the main drawback. A solutionto enhance the system performance, also in Combined Heat andPower (CHP) arrangement, is the implementation of OrganicRankine Cycle (ORC) systems at the bottom of the gas turbines.Moreover, the resulting GT-ORC combined cycle could befurther...... a 10MW offshorewind farm and three gas turbines rated for 16:5MW, eachone coupled with an 4:5MW ORC module. The ORC mainparameters are observed under different wind power fluctuations.Due to the non-programmable availability of wind and powerdemand, the part-load and dynamic characteristics...

  18. Integration of life cycle assessment software with tools for economic and sustainability analyses and process simulation for sustainable process design

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2014-01-01

    The sustainable future of the world challenges engineers to develop chemical process designs that are not only technically and economically feasible but also environmental friendly. Life cycle assessment (LCA) is a tool for identifying and quantifying environmental impacts of the chemical product...... with other process design tools such as sustainable design (SustainPro), economic analysis (ECON) and process simulation. The software framework contains four main tools: Tool-I is for life cycle inventory (LCI) knowledge management that enables easy maintenance and future expansion of the LCI database; Tool...... and/or the process that makes it. It can be used in conjunction with process simulation and economic analysis tools to evaluate the design of any existing and/or new chemical-biochemical process and to propose improvement options in order to arrive at the best design among various alternatives...

  19. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    Directory of Open Access Journals (Sweden)

    Vysokomorny Vladimir S.

    2016-01-01

    Full Text Available The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analyzing of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  20. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    Directory of Open Access Journals (Sweden)

    Olga V. Vysokomornaya

    2015-01-01

    Full Text Available The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analysis of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  1. Sustainable Industrial Product Systems. Integration of Life Cycle Assessment in Product development and Optimization of Product Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Ole Joergen

    1997-12-31

    This thesis contributes to the development and testing of environmental life cycle assessment (LCA) in product development and management in industry. It is based on systems theory and systems engineering. It develops a method for sustainable product development that has been successfully tested in the Nordic project called NEP. The LCA method is also a basis for an optimization model, where life cycle economy and environmental impacts from product systems are optimized with a non-linear model. A more complete mathematical model for LCA, based on the functional requirements on a product system, is also developed. The statistical properties of emission factors are studied using a data set from the Swedish Kraft Mill industry. It is shown that emission factors may be assumed constants in the LCA model, but with rather large variations within a population of Kraft mills. It is shown that there are a few environmental impacts which are important for most types of products under Scandinavian conditions, especially global warming potential, acidification, human toxicity and fossil energy depletion. There are significant differences between the contribution to these impacts from different life cycle stages, where raw material processing and use of products are generally more important than the other stages. Test cases indicate that there are no large conflicts between improvements in environmental impacts and customer requirements. Environmental improvements seem to increase purchase cost of products in some cases, but the life cycle cost of the products seem in most cases to be reduced. It is concluded that there are opportunities for 30-50% improvements in product system, based on relatively simple modifications of the systems. 246 refs., 63 figs., 19 tabs.

  2. “SHE” and the poet in B.Pasternak’s cycle “Winter Morning”: integrity and opposition

    Directory of Open Access Journals (Sweden)

    Maltseva Oksana Anatolievna

    2016-03-01

    Full Text Available The article analyzes the poetic cycle by B. Pasternak «Winter Morning» (from the book «Themes and Variations. 1916-1922». The emphasis is on the peculiarities of figurative works of the system in the context of the unfolding conflict of love. Attention is drawn to the primary role of the spiritual component of the image of the poet and his beloved. The author observes that the image of the heroine is identified with the image of reality and contains some elements of sacralization, and demonizes the image of the lyrical hero that is close to the specified identity. The author examines the image of the lyrical poet as a man who, in spite of the uniformity of the external environment to life, calls for her to resist. The article emphasizes the problem of internal transformation of the poet, having more than the gift of speech, but absorbed by the «concerns» about the rich lover. It is alleged that the leading idea here is the idea of the devastating impact on the artist in his soulless environment. It is said about the symbolism of «Pushkin>s» title cycle, indicating the author>s opinion article on the true purpose of the poet - to strive for spiritual awakening of society. The conclusion is made of the contradictory genre under the definition cycle «love».

  3. Development of top nozzle for Korean standard LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.; Kim, I. K.; Choi, K. S.; Kim, Y. H.; Lee, J. N.; Kim, H. K. [KNFC, Taejon (Korea, Republic of)

    2001-10-01

    Performance evaluation was executed for each component and its assembly for the deduced Top Nozzles to develop the new Top Nozzle for LWR. This new Top Nozzle is composed of the optimum components among the derived Top Nozzles that have been evaluated in the viewpoint of structural integrity, simpleness of dismantle and assembly, manufacturability etc. In this study, the developed Top Nozzle satisfied all the related design criteria. In special, it makes fuel repair time reduced by assembling and disassembling itself as one body, and improves Fuel Assembly holddown ability by revising the design parameters of its spring and the structural integrity through the betterment of its geometrical shpae of Flange and Holddown Plate as compared with the existing LWR Top Nozzles.

  4. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... into the landfill in order to minimize leachate generation. In addition the cover also has to control the release of gases produced in the landfill so the gas can be ventilated, collected and utilized, or oxidized in situ. The landfill cover should also minimize erosion and support vegetation. Finally the cover...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...

  5. Computing Z-top

    International Nuclear Information System (INIS)

    Kashani-Poor, A.K.

    2014-01-01

    The topological string presents an arena in which many features of string theory proper, such as the interplay between world-sheet and target space descriptions or open-closed duality, can be distilled into computational techniques which yield results beyond perturbation theory. In this thesis, I will summarize my research activity in this area. The presentation is organized around computations of the topological string partition function Z-top based on various perspectives on the topological string. (author)

  6. Top of the list

    International Nuclear Information System (INIS)

    Cameron, A.; Vries, E. de

    2006-01-01

    In this article the authors look at how the major turbine suppliers fared in the year 2005, and look forward to 2006 which could be the best ever for the wind industry. The world wind turbine market continues to be dominated by ten major companies, who together account for almost 100% of the total global market. Although there are some new companies on the horizon it is the ten major companies that the authors concentrate on, in particular the top three, Vestas, Gamesa and Enercon who between them control 66% of the market. They give their overall report on business in 2005 and give their predictions for 2006. By far the leading wind turbine supplier is the Danish Company Vestas, accounting for over 30% of the global market. However all of the top ten companies report a successful year and all are expecting an even better 2006. This paper also reports on potential newcomers to the industry, one of these is California-based Clipper Windpower which commenced manufacturing the 2.5 MW Liberty turbine in Iowa. Chinese manufacturer Goldwind is also looking to enter the market having acquired a licence to produce the Vensys 1.2 MW turbine. It may well be that changes are on the way, there will be jockeying for position at the top and newcomers will want to make an impression on the market

  7. Measurement of Top Mass and Properties with the ATLAS Detector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The extraordinary success of the LHC in delivering proton-proton collisions with large integrated luminosity allows the study of top-quark-enriched data samples with unprecedented statistics. This opens new possibilities for the assessment and further refinements of detector performance, and of data analysis tools. At the same time, different aspects of top-quark event modeling, as implemented in Monte Carlo simulations, can be tested and confronted with data with impressive precision. As an example, the description of the extra QCD radiation accompanying the top-anti-top system can be refined based on measurements. In this context, the experimental challenges and recent results on precision top-quark physics measurements within the ATLAS experiment are summarized and reviewed. In particular, the recent ATLAS top-quark mass result, obtained using a three dimensional template method, which allows the simultaneous determination of the top-quark mass together with a global jet energy scale factor (JSF), and a ...

  8. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    Science.gov (United States)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of

  9. Top quark measurements at ATLAS

    CERN Document Server

    Grancagnolo, Sergio; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  10. Top quark measurements at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00041686; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, it allows us to probe the properties of bare quarks at the Large Hadron Collider. Highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data will be presented: top-quark pair and single top production cross sections including differential distributions will be presented alongside measurements of top-quark properties, including results using boosted top quarks, probe our understanding of top-quark production in the TeV regime. Measurements of the top-quark mass and searches for rare top quark decays are also presented.

  11. Single top quark production at LEP200?

    International Nuclear Information System (INIS)

    Boos, E.; Ishikawa, T.; Kaneko, T.; Kawabata, S.; Kurihara, Y.; Shimizu, Y.; Tanaka, H.

    1994-01-01

    A complete tree-level calculation of the reaction e + e - → e + ν e anti tb (e - anti ν e t anti b) in the electroweak standard theory in the LEP200 energy range is presented. For top quark masses in the range 130 to 190 GeV the cross sections are found to be in the order of 10 -5 to 10 -6 pb. Therefore, the number of single top quark events is expected to be negligible even with an integrated luminosity of L = 500 pb -1 . It is further demonstrated that the Weizsaecker-Williams approximation is approaching the accurate cross section calculations resonably well. (orig.)

  12. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  13. Naisjuhtidega ettevõtete TOP 100

    Index Scriptorium Estoniae

    2004-01-01

    Naisjuhtidega ettevõtete TOP 100. Käibe TOP 20. Käibe kasvu TOP 20. Kasumi TOP 20. Kasumi kasvu TOP 20. Rentaabluse TOP 20. Omakapitali tootlikkuse TOP 20. Riigi- ja kohaliku omavalitsuse asutuste naisjuhtide TOP 25. Riigi- ja kohaliku omavalitsuse asutuste eelarve TOP 25. Riigi- ja kohaliku omavalitsuse asutuste töötajate arvu TOP 25. Riigi- ja kohaliku omavalitsuse asutuste naisjuhtide palga TOP 25

  14. Integrating top-down and bottom-up approaches to design a cost-effective and equitable programme of measures for adaptation of a river basin to global change

    Science.gov (United States)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velazquez, Manuel

    2016-04-01

    Adaptation to the multiple facets of global change challenges the conventional means of sustainably planning and managing water resources at the river basin scale. Numerous demand or supply management options are available, from which adaptation measures need to be selected in a context of high uncertainty of future conditions. Given the interdependency of water users, agreements need to be found at the local level to implement the most effective adaptation measures. Therefore, this work develops an approach combining economics and water resources engineering to select a cost-effective programme of adaptation measures in the context of climate change uncertainty, and to define an equitable allocation of the cost of the adaptation plan between the stakeholders involved. A framework is developed to integrate inputs from the two main approaches commonly used to plan for adaptation. The first, referred to as "top-down", consists of a modelling chain going from global greenhouse gases emission scenarios to local hydrological models used to assess the impact of climate change on water resources. Conversely, the second approach, called "bottom-up", starts from assessing vulnerability at the local level to then identify adaptation measures used to face an uncertain future. The methodological framework presented in this contribution relies on a combination of these two approaches to support the selection of adaptation measures at the local level. Outcomes from these two approaches are integrated to select a cost-effective combination of adaptation measures through a least-cost optimization model developed at the river basin scale. The performances of a programme of measures are assessed under different climate projections to identify cost-effective and least-regret adaptation measures. The issue of allocating the cost of the adaptation plan is considered through two complementary perspectives. The outcome of a negotiation process between the stakeholders is modelled through

  15. Performance Enhancement of One and Two-Shaft Industrial Turboshaft Engines Topped With Wave Rotors

    Science.gov (United States)

    Fatsis, Antonios

    2018-05-01

    Wave rotors are rotating equipment designed to exchange energy between high and low enthalpy fluids by means of unsteady pressure waves. In turbomachinery, they can be used as topping devices to gas turbines aiming to improve performance. The integration of a wave rotor into a ground power unit is far more attractive than into an aeronautical application, since it is not accompanied by any inconvenience concerning the over-weight and extra dimensioning. Two are the most common types of ground industrial gas turbines: The one-shaft and the two-shaft engines. Cycle analysis for both types of gas turbine engines topped with a four-port wave rotor is calculated and their performance is compared to the performance of the baseline engine accordingly. It is concluded that important benefits are obtained in terms of specific work and specific fuel consumption, especially compared to baseline engines with low compressor pressure ratio and low turbine inlet temperature.

  16. Conceptual engineering design study of thermionic topping of fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-15

    Primary objectives of this study are to investigate alternative design concepts of thermal coupling of thermionic energy converters (TECs) to the steam cycle and the mechanical and electrical aspects of integrating TEC design into the steam power station. The specific tasks include: (1) evaluate design concepts of TEC topping of solvent refined liquified coal-fired steam power plants, with main emphasis devoted to thermal, mechanical, and electrical design aspects. (2) Develop preliminary conceptual design of a modular TEC assembly. (3) Develop preliminary cost estimates of the design modification to a liquified coal-fired steam power plant with TEC topping. (4) Provide support to Thermo Electron Corporation in planning TEC hardware testing. Results are presented in detail.

  17. Integration of Fiber-Reinforced Polymers in a Life Cycle Assessment of Injection Molding Process Chains with Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    Additive manufacturing technologies applied to injection molding process chain have acquired an increasingly important role in the context of tool inserts production, especially by vat polymerization. Despite the decreased lifetime during their use in the injection molding process, the inserts come...... with improvements in terms of production time, costs, exibility, as well as potentially improved environmental performance as compared to conventional materials in a life cycle perspective.This contribution supports the development of additively manufactured injection molding inserts with the use of fiber...

  18. The concept of fuel cycle integrated molten salt reactor for transmuting Pu+MA from spent LWR fuels

    International Nuclear Information System (INIS)

    Hirose, Y.; Takashima, Y.

    2001-01-01

    Japan should need a new fuel cycle, not to save spent fuels indefinitely as the reusable resources but to consume plutonium and miner actinides orderly without conventional reprocessing. The key component is a molten salt reactor fueled with the Pu+MA (PMA) separated from LWR spent fuels using fluoride volatility method. A double-tiered once-through reactor system can burn PMA down to 5% remnant ratio, and can make PMA virtually free from the HAW to be disposed geometrically. A key issue to be demonstrated is the first of all solubility behavior of trifluoride species in the molten fuel salt of 7 LiF-BeF 2 mixture. (author)

  19. Thermodynamics of the CO2–Absorption/Desorption Section in the Integrated Gasifying Combined cycle — II. Analysis

    Directory of Open Access Journals (Sweden)

    Jaroslav KOZACZKA

    2