WorldWideScience

Sample records for integrated physical science

  1. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  2. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  3. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    Science.gov (United States)

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  4. A natural user interface to integrate citizen science and physical exercise

    OpenAIRE

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed envir...

  5. Physical Sciences 2007 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  6. Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers

    Science.gov (United States)

    Ganaras, Kostas; Dumon, Alain; Larcher, Claudine

    2008-01-01

    This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…

  7. A natural user interface to integrate citizen science and physical exercise.

    Science.gov (United States)

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  8. A natural user interface to integrate citizen science and physical exercise.

    Directory of Open Access Journals (Sweden)

    Eduardo Palermo

    Full Text Available Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  9. Physical Sciences 2007 Science and Technology Highlights

    International Nuclear Information System (INIS)

    Hazi, A.U.

    2008-01-01

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007

  10. Conceptual Integration of Hybridization by Algerian Students Intending to Teach Physical Sciences

    Science.gov (United States)

    Salah, Hazzi; Dumon, Alain

    2011-01-01

    This work aims to assess the difficulties encountered by students of the Ecole Normale Superieure of Kouba (Algeria) intending to teach physical science in the integration of the hybridization of atomic orbitals. It is a concept that they should use in describing the formation of molecular orbitals ([sigma] and [pi]) in organic chemistry and gaps…

  11. The Effect of Physical Activity on Science Competence and Attitude towards Science Content

    Science.gov (United States)

    Klinkenborg, Ann Maria

    This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one instructional method to consider. Researchers have typically focused on integration with English/language arts (ELA) and mathematics. The purpose of this study was to determine the effect of physical activity on science competence and attitude towards science. Fifty-three third grade children participated in this investigation; one group received science instruction with a physical activity intervention while the other group received traditional science instruction. Participants in both groups completed a modified version of What I Really Think of Science attitude scale (Pell & Jarvis, 2001) and a physical science test of competence prior to and following the intervention. Children were videotaped during science instruction and their movement coded to measure the proportion of time spent in MVPA. Results revealed that children in the intervention group demonstrated greater MVPA during the instructional period. A moderate to large effect size (partial eta squared = .091) was seen in the intervention group science competence post-test indicating greater understanding of force, motion, work, and simple machines concepts than that of the control group who were less physically active. There was no statistically significant attitude difference between the intervention and control groups post-test, (F(1,51) = .375, p = .543). These results provide evidence that integration can effectively present physical science content and have a positive impact on the number of minutes of health-enhancing physical activity in a school day.

  12. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    Science.gov (United States)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between

  13. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  14. Physics of the Life Sciences

    CERN Document Server

    Newman, Jay

    2008-01-01

    Originally developed for the author's course at Union College, this text is designed for life science students who need to understand the connections of fundamental physics to modern biology and medicine. Almost all areas of modern life sciences integrally involve physics in both experimental techniques and in basic understanding of structure and function. Physics of the Life Sciences is not a watered-down, algebra-based engineering physics book with sections on relevant biomedical topics added as an afterthought. This authoritative and engaging text, which is designed to be covered in a two-semester course, was written with a thoroughgoing commitment to the needs and interests of life science students. Although covering most of the standard topics in introductory physics in a more or less traditional sequence, the author gives added weight and space to concepts and applications of greater relevance to the life sciences. Students benefit from occasional sidebars using calculus to derive fundamental relations,...

  15. Experimental Physical Sciences Vistas Performance through Science Winter 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cruz, James Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hockaday, Mary Yvonne P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lacerda, Alex Hugo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilburn, Wesley Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carnes, Jay Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Mauro, Diana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeYoung, Anemarie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freibert, Franz Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fronzak, Hannah Kristina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gray, III, George Thompson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hooks, Daniel Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martineau, Rick Lorne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Joseph Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Migliori, Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poling, Charles C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prestridge, Katherine Philomena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schraad, Mark William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-23

    This issue of Experimental Physical Sciences Vistas focuses on the integrated science that plays a critical role in Los Alamos National Laboratory’s support of the nation’s nuclear deterrent. I hope you will enjoy reading about these accomplishments, opportunities, and challenges.

  16. Integration of Millennium Development Goals into Physical ...

    African Journals Online (AJOL)

    Integration of Millennium Development Goals into Physical Education programme: ... African Journal for Physical Activity and Health Sciences ... the UN in terms of sustainable human development and how graduates of physical education and ...

  17. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  18. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  19. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  20. Integration of gastronomy and physics for innovation

    Directory of Open Access Journals (Sweden)

    van der Linden Erik

    2013-01-01

    Full Text Available Abstract Integration of physics with gastronomy can yield innovations in an efficient manner. An important element of this integration is the structure of food. The creation of food recipes often deals with designing new structures and a clear understanding of how food structure influences food properties is necessary. The physics that is required for this understanding can be demonstrated by considering the case of gelatin. A Master of Science (MSc specialization is described, which addresses the integration of physics with gastronomy in an educational setting at Wageningen University, The Netherlands.

  1. Influence of culture and language sensitive physics on science attitude enhancement

    Science.gov (United States)

    Morales, Marie Paz E.

    2015-12-01

    The study critically explored how culture and language sensitive curriculum materials in physics improve Pangasinan learners' attitude towards science. Their cultural dimensions, epistemological beliefs, and views on integration of culture and language in the teaching and learning process determined their cultural preference or profile. Design and development of culture and language sensitive curriculum materials in physics were heavily influenced by these learners' cultural preference or profile. Pilot-study using interviews and focus group discussions with natives of Pangasinan and document analysis were conducted to identify the culture, practices, and traditions integrated in the lesson development. Comparison of experimental participants' pretest and posttest results on science attitude measure showed significant statistical difference. Appraisal of science attitude enhancement favored the experimental group over the control group. Qualitative data deduced from post implementation interviews, focus group discussions, and journal log entries showed the same trend in favor of the experimental participants. The study revealed that culture and language integration in the teaching and learning process of physics concepts enabled students to develop positive attitude to science, their culture, and native language.

  2. When physics is not "just physics": complexity science invites new measurement frames for exploring the physics of cognitive and biological development.

    Science.gov (United States)

    Kelty-Stephen, Damian; Dixon, James A

    2012-01-01

    The neurobiological sciences have struggled to resolve the physical foundations for biological and cognitive phenomena with a suspicion that biological and cognitive systems, capable of exhibiting and contributing to structure within themselves and through their contexts, are fundamentally distinct or autonomous from purely physical systems. Complexity science offers new physics-based approaches to explaining biological and cognitive phenomena. In response to controversy over whether complexity science might seek to "explain away" biology and cognition as "just physics," we propose that complexity science serves as an application of recent advances in physics to phenomena in biology and cognition without reducing or undermining the integrity of the phenomena to be explained. We highlight that physics is, like the neurobiological sciences, an evolving field and that the threat of reduction is overstated. We propose that distinctions between biological and cognitive systems from physical systems are pretheoretical and thus optional. We review our own work applying insights from post-classical physics regarding turbulence and fractal fluctuations to the problems of developing cognitive structure. Far from hoping to reduce biology and cognition to "nothing but" physics, we present our view that complexity science offers new explanatory frameworks for considering physical foundations of biological and cognitive phenomena.

  3. The Utility of a Physics Education in Science Policy

    Science.gov (United States)

    Roberts, Drew

    2016-03-01

    In order for regulators to create successful policies on technical issues, ranging from environmental protection to distribution of national Grant money, the scientific community must play an integral role in the legislative process. Through a summer-long internship with the Science, Space, and Technology Committee of the U.S. House of Representatives, I have learned that skills developed while pursuing an undergraduate degree in physics are very valuable in the policy realm. My physics education provided me the necessary tools to bridge the goals of the scientific and political communities. The need for effective comprehension and communication of technical subjects provides an important opportunity for individuals with physics degrees to make substantial contributions to government policy. Science policy should be encouraged as one of the many career pathways for physics students. Society of Physics Students, John and Jane Mather Foundation for Science and the Arts.

  4. The methodological foundations of mutual integration of scientific knowledge in the field of physical education and sports and related sciences.

    Directory of Open Access Journals (Sweden)

    Kozina Zh.L.

    2012-02-01

    Full Text Available Possibilities of application of scientific knowledge in physical education and sport in contiguous scientific directions are considered. The advanced studies of leading specialists in area of physical education and sport are analysed. It is rotined that on the modern stage scientific developments in area of physical education and sport attained a level, when can be utillized in fundamental and applied sciences. Scientific researches in area of physical education and sport to the application scientific areas, such as pedagogics, psychology, design, programming et al are related. One of examples of mutual integration of scientific knowledge in area of physical education and sport there is theoretical conception of individualization of preparation of sportsmen.

  5. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  6. Engineering and physical sciences in oncology: challenges and opportunities.

    Science.gov (United States)

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  7. Convergence facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond

    CERN Document Server

    2014-01-01

    Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and imple...

  8. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  9. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Directory of Open Access Journals (Sweden)

    Fred Goldberg1

    2012-05-01

    Full Text Available We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET, for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  10. Integrated ICT System for Teaching Physical Sciences in a Robotic Laboratory

    Directory of Open Access Journals (Sweden)

    Spyros Kopsidas

    2009-11-01

    Full Text Available The Information and Communication Technologies provide economically feasible and effective means to assist individuals with kinetic disabilities in numerous activities concerning educational purposes. As the technology is increasingly used in everyday environments, an early response of the existing methods to teach the Physical Sciences to individuals with kinetic disabilities is our innovative system. The work presented in this article is part of the “Smart and Adaptable Information System for Supporting Physics Experiments in a Robotic Laboratory” (SAIS-PEaRL research project.

  11. Teaching the history of science in physics classrooms—the story of the neutrino

    Science.gov (United States)

    Demirci, Neset

    2016-07-01

    Because there is little connection between physics concepts and real life, most students find physics very difficult. In this frontline I have provided a timely link of the historical development using the basic story of neutrino physics and integrated this into introductory modern physics courses in high schools or in higher education. In this way an instructor may be able to build on students’ curiosity in order to enhance the curriculum with some remarkable new physics. Using the history of science in the classroom shapes and improves students’ views and knowledge of the nature of science and increase students’ interest in physics.

  12. The Psychology of Physical Science

    Science.gov (United States)

    Feist, Gregory J.

    2006-12-01

    Who becomes a physical scientist is not completely a coincidence. People with spatial talent and who are thing-oriented are most likely to be attracted to physical science, including astronomy. Additional lessons from the psychology of science suggest that compared with non-scientists and social scientists, physical scientists are most likely to be introverted, independent, self-confident, and yet somewhat arrogant. Understanding the physical and inanimate world is part of what physical scientists do, and understanding those who understand the physical world is part of what psychologists of science do.

  13. Analysis of Science Process Skills in West African Senior Secondary School Certificate Physics Practical Examinations in Nigeria

    Directory of Open Access Journals (Sweden)

    A.O. Akinbobola

    2010-06-01

    Full Text Available This study analyzes the science process skills in West African senior secondary school certificate physics practical examinations in Nigeria for a period of 10 years (1998-2007. Ex-post facto design was adopted for the study. The 5 prominent science process skills identified out of the 15 used in the study are: manipulating (17%, calculating (14%, recording (14%, observing (12% and communicating (11%. The results also show high percentage rate of basic (lower order science process skills (63% as compared to the integrated (higher order science process skills (37%. The results also indicate that the number of basic process skills is significantly higher than the integrated process skills in the West African senior secondary school certificate physics practical examinations in Nigeria. It is recommended that the examination bodies in Nigeria should include more integrated science process skills into the senior secondary school physics practical examinations so as to enable the students to be prone to creativity, problem solving, reflective thinking, originality and invention which are vital ingredients for science and technological development of any nation.

  14. Physics The First Science

    CERN Document Server

    LINDENFELD, Peter

    2011-01-01

    Today's physics textbooks have become encyclopedic, offering students dry discussions, rote formulas, and exercises with little relation to the real world. Physics: The First Science offers uniquely accessible, student-friendly explanations, historical and philosophical perspectives and mathematics in easy-to-comprehend dialogue. It emphasizes the unity of physics and its place as the basis for all science. With their experience instructing both students and teachers of physics for decades, Peter Lindenfeld and Suzanne White Brahmia have developed an algebra-based physics book with fea

  15. Exploring the Impact of Culture- and Language-Influenced Physics on Science Attitude Enhancement

    Science.gov (United States)

    Morales, Marie Paz E.

    2016-02-01

    "Culture," a set of principles that trace and familiarize human beings within their existential realities, may provide an invisible lens through which reality could be discerned. Critically explored in this study is how culture- and language-sensitive curriculum materials in physics improve Pangasinan learners' attitude toward science. Their cultural preference or profile defined their cultural dimensions, epistemological beliefs, and views on integration of culture and language in the teaching and learning processes. The culture- and language-influenced curriculum materials in physics were heavily influenced by Pangasinan learners' cultural preference or profile. Results of the experimental participants' pretest and posttest on science attitude measure, when compared, showed significant statistical difference. Assessment of science attitude enhancement favored the experimental group over the control group. Qualitative data gathered from postimplementation interviews, focus group discussions, and journal log entries indicated the same trend in favor of the experimental participants. The study yielded that culture and language integration in the teaching and learning processes of physics concepts allowed students to develop positive attitude to science, their culture, and native language.

  16. Physics Guided Data Science in the Earth Sciences

    Science.gov (United States)

    Ganguly, A. R.

    2017-12-01

    Even as the geosciences are becoming relatively data-rich owing to remote sensing and archived model simulations, established physical understanding and process knowledge cannot be ignored. The ability to leverage both physics and data-intensive sciences may lead to new discoveries and predictive insights. A principled approach to physics guided data science, where physics informs feature selection, output constraints, and even the architecture of the learning models, is motivated. The possibility of hybrid physics and data science models at the level of component processes is discussed. The challenges and opportunities, as well as the relations to other approaches such as data assimilation - which also bring physics and data together - are discussed. Case studies are presented in climate, hydrology and meteorology.

  17. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  18. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  19. 13th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Kirsch, Andreas

    2015-01-01

    This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering.  Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany.   A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.   This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

  20. Using New-Antiquarian Photographic Processes to Integrate Art and Science

    Science.gov (United States)

    Beaver, J.

    2017-12-01

    In this session we describe an interdisciplinary course, The Art and Science of Photography (ASP), and its accompanying textbook and associated project-based activities, offered at the University of Wisconsin - Fox Valley in Menasha, Wisconsin. ASP uses photography as a point of departure to inspire students to ask fundamental questions about the nature of art, and to consider physics and astronomy as part of the study of nature. In turn, aspects of art and physics/astronomy are chosen in part for their direct relevance to the fundamentals of photography. For example, the subtle nature of shadows on a sunny day is related to the geometry of eclipses.ASP is offered as a 4-credit lecture/lab/studio course, and the students have a choice of registration for either art or natural-science credit. A large majority of students register for natural-science credit, and we suggest that ASP may be particularly useful as an entry point for students who view themselves as lacking ability in the sciences.Combining art with science in an introductory course is a particularly fruitful way to increase student engagement, as there is a perception that to be "artistic" precludes success in science. But it is of equal importance that students sometimes perceive that being "science-minded" precludes success in art.Part of the aim of ASP is to integrate art and science to such a degree that a student is always doing both, while still maintaining the integrity and rigor of each discipline. Towards this end, we have developed several unique hands-on practices that often use antiquarian photographic processes in a new way.Some of these hybrid techniques are little known or not previously described. Yet they allow for unique artistic expression, while also highlighting - in a way that ordinary digital photography does not - prinicpals of the interaction between light, atmosphere, weather, and the physical photographic substrate. These newly-described processes are accessible and inexpensive

  1. Useful and Usable Climate Science: Frameworks for Bridging the Social and Physical domains.

    Science.gov (United States)

    Buja, L.

    2016-12-01

    Society is transforming the Earth's system in unprecedented ways, often with significant variations across space and time. In turn, the impacts of climate change on the human system vary dramatically due to differences in cultural, socioeconomic, institutional, and physical processes at the local level. The Climate Science and Applications Program (CSAP) at the National Center for Atmospheric Research in Boulder Colorado addresses societal vulnerability, impacts and adaptation to climate change through the development of frameworks and methods for analyzing current and future vulnerability, and integrated analyses of climate impacts and adaptation at local, regional and global scales. CSAP relies heavily on GIS-based scientific data and knowledge systems to bridge social and physical science approaches in its five focus areas: Governance of inter-linked natural and managed resource systems. The role of urban areas in driving emissions of climate change Weather, climate and global human health, GIS-based science data & knowledge systems. Regional Climate Science and Services for Adaptation Advanced methodologies and frameworks for assessing current and future risks to environmental hazards through the integration of physical and social science models, research results, and remote sensing data are presented in the context of recent national and international projects on climate change and food/water security, urban carbon emissions, metropolitan extreme heat and global health. In addition, innovative CSAP international capacity building programs teaching interdisciplinary approaches for using geospatial technologies to integrate multi-scale spatial information of weather, climate change into important sectors such as disaster reduction, agriculture, tourism and society for decision-making are discussed.

  2. The creation of science projects in the physics teachers preparation

    Science.gov (United States)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Terms - project, projecting and the method of projecting - are nowadays frequently used in different relations. Those terms, especially as methods (of a cognitive process), are also transferred to the educational process. Before a new educational method comes to practice, the teacher should be familiar with it and preferably when it is done so during his university studies. An optional subject called Physics in a system of science subjects has been included into physics curricula for students of the fourth year of their studies at the Faculty of Science of Constantine the Philosopher University in Nitra. Its task is to make students aware of ways how to coordinate knowledge and instructions presented in these subjects through analysis of curricula and textbooks. As a part of their seminars students are asked to create integrated tasks and experiments which can be assessed from the point of view of either physics or chemistry or biology and which can motivate pupils and form their complex view on various phenomena in the nature. Therefore the article discusses theoretical and also practical questions related to experience that originates from placing the mentioned method and the subject Physics in a system of science subjects into the preparation of a natural sciences teacher in our workplace.

  3. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  4. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  5. Fermilab | Science | Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  6. Solar Fireworks - Integrating an Exhibit on Solar Physics and Space Science into the Science and Astronomy Curriculum of High-School and College Students

    Science.gov (United States)

    Denker, C.; Wang, H.; Conod, K. D.; Wintemberg, T.; Calderon, I.

    2005-05-01

    Astronomers at The Newark Museum's Alice and Leonard Dreyfuss Planetarium teamed up with the New Jersey Institute of Technology's (NJIT) Center for Solar-Terrestrial Research (CSTR) and the Big Bear Solar Observatory in presenting Solar Fireworks. The exhibit opened on May 15, 2004 and features two exhibition kiosks with interactive touch screen displays, where students and other visitors can take "virtual tours" in the fields of solar physics, solar activity, Sun-Earth connection, and geo-sciences. Planetarium and museum visits are an integral part of the introductory physics and astronomy classes at NJIT and the exhibition has been integrated in the astronomy curriculum. For example, NJIT students of the Astronomy Club and regular astronomy courses were closely involved in the design and development of the exhibit. The exhibit is the latest addition to the long-running natural science exhibit "Dynamic Earth: Revealing Nature's Secrets" at the museum. More than 30,000 people per year attend various programs offered by the planetarium including public shows, more than a dozen programs for school groups, after school activities, portable planetarium outreach, outdoor sky watches, solar observing and other family events. More than 1,000 high school students visited the planetarium in 2004. The exhibit is accompanied by a yearly teacher workshop (the first one was held on October 18-20, 2004) to enhance the learning experience of classes visiting the Newark Museum. The planetarium and museum staff has been working with teachers of Newark high schools and has presented many workshops for educators on a wide range of topics from astronomy to zoology. At the conclusion of the exhibit in December 2005, the exhibit will go "on the road" and will be made available to schools or other museums. Finally, the exhibit will find its permanent home at the new office complex of CSTR at NJIT. Acknowledgements: Solar Fireworks was organized by The Newark Museum and the New Jersey

  7. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  8. Connecting Symbolic Integrals to Physical Meaning in Introductory Physics

    Science.gov (United States)

    Amos, Nathaniel R.

    This dissertation presents a series of studies pertaining to introductory physics students' abilities to derive physical meaning from symbolic integrals (e.g., the integral of vdt) and their components, namely differentials and differential products (e.g., dt and vdt, respectively). Our studies focus on physical meaning in the form of interpretations (e.g., "the total displacement of an object") and units (e.g., "meters"). Our first pair of studies independently attempted to identify introductory-level mechanics students' common conceptual difficulties with and unproductive interpretations of physics integrals and their components, as well as to estimate the frequencies of these difficulties. Our results confirmed some previously-observed incorrect interpretations, such as the notion that differentials are physically meaningless; however, we also uncovered two new conceptualizations of differentials, the "rate" (differentials are "rates" or "derivatives") and "instantaneous value" (differentials are values of physical variables "at an instant") interpretations, which were exhibited by more than half of our participants at least once. Our next study used linear regression analysis to estimate the strengths of the inter-connections between the abilities to derive physical meaning from each of differentials, differential products, and integrals in both first- and second-semester, calculus-based introductory physics. As part of this study, we also developed a highly reliable, multiple choice assessment designed to measure students' abilities to connect symbolic differentials, differential products, and integrals with their physical interpretations and units. Findings from this study were consistent with statistical mediation via differential products. In particular, students' abilities to extract physical meaning from differentials were seen to be strongly related to their abilities to derive physical meaning from differential products, and similarly differential

  9. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures

  10. Influence of Culture and Language Sensitive Physics on Science Attitude Enhancement

    Science.gov (United States)

    Morales, Marie Paz E.

    2015-01-01

    The study critically explored how culture and language sensitive curriculum materials in physics improve Pangasinan learners' attitude towards science. Their cultural dimensions, epistemological beliefs, and views on integration of culture and language in the teaching and learning process determined their cultural preference or profile. Design and…

  11. Science for common entrance physics : answers

    CERN Document Server

    Pickering, W R

    2015-01-01

    This book contains answers to all exercises featured in the accompanying textbook Science for Common Entrance: Physics , which covers every Level 1 and 2 topic in the ISEB 13+ Physics Common Entrance exam syllabus. - Clean, clear layout for easy marking. - Includes examples of high-scoring answers with diagrams and workings. - Suitable for ISEB 13+ Mathematics Common Entrance exams taken from Autumn 2017 onwards. Also available to purchase from the Galore Park website www.galorepark.co.uk :. - Science for Common Entrance: Physics. - Science for Common Entrance: Biology. - Science for Common En

  12. Fermilab | Science | Particle Physics | Benefits of Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  13. Physics of Health Sciences

    Science.gov (United States)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  14. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  15. Influence of Physical Activities to Science Performance

    Directory of Open Access Journals (Sweden)

    RS Wilson DR. Constantino

    2017-11-01

    Full Text Available This study explored the physical activities of fifth and sixth graders that projected correlations to science performance and how these physical activities may be utilized for classroom purposes in the context of science-related play activities. Descriptive survey correlational design directed the data collection and analysis of the physical activities of purposively selected 133 fifth and sixth graders. Primarily, the study used a researcher-developed and validated instrument (Physical Activity Questionnaire [PAQ], and standard instruments: Philippine National Physical Activity Guide (PNPAG and General Physical Activity Questionnaire (GPAQ. The latter classified the physical activities into five domains which directed the interpretation of the participants‟ responses. The Pearson-r Moment of Correlation described the level of correlation of the frequency of engagement to physical activities (limited to local and localized activities and the science grade of the respondents. Results show that each of the physical activity domains showed specific correlations to science performance of the respondents. For further research, enrichment of the relationship of the physical activities and the science performance may focus on possible moderating variables like economic status, and time allotment for physical activities.

  16. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  17. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e + e - colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given

  18. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  19. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  20. Physical Sciences Complex

    Data.gov (United States)

    Federal Laboratory Consortium — This 88,000 square foot complex is used to investigate basic physical science in support of missile technology development. It incorporates office space, dedicated...

  1. The National Cancer Institute's Physical Sciences - Oncology Network

    Science.gov (United States)

    Espey, Michael Graham

    In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.

  2. A Physics Course for Non-Physical Science Teachers

    Science.gov (United States)

    Cottle, Paul D.

    1997-11-01

    A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.

  3. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  4. Parenting Practices and Children's Physical Activity: An Integrative Review

    Science.gov (United States)

    Hutchens, Amy; Lee, Rebecca E.

    2018-01-01

    The purpose of this integrative review was to analyze the state of science concerning the influence of parenting practices on children's physical activity (PA) levels. A total of 38 studies met the inclusion criteria after full-text review. The body of research is limited in experimental designs with only three studies measuring the influence of…

  5. "Physics and Life" for Europe's Science Teachers

    Science.gov (United States)

    2003-04-01

    The EIROforum Contribution to the European Science and Technology Week 2003 [Physics on Stage 3 Logo] What do you know about modern science? Was your school science teacher inspiring and enthusiastic? Or was physics class a good time to take a nap? Unfortunately, many young Europeans don't have the fondest memories of science in school, and the result is a widespread disinterest and lack of understanding of science among adults. This has become a real problem - especially at a time when science is having a growing impact on our daily lives, and when society needs more scientists than ever! What can be done? Some of Europe's leading research organisations, scientists and teachers have put their heads together and come up with a unique approach called "Physics on Stage" . This will be the third year that these institutes, with substantial support from the European Commission, are running this project - attacking the problem at its roots. EIROforum and "Physics on Stage 3" [EIROforum Logo] "Physics On Stage 3" is based on the very successful "Physics On Stage" concept that was introduced in 2000. It is directed towards science teachers and students in Europe's secondary schools. It is a part of the year-long build-up to the European Science and Technology Week 2003 (3-9 November), an initiative by the European Commission, and is run by seven of Europe's leading Intergovernmental Research Organizations (the EIROforum) [1]. The project addresses the content and format of science teaching in European schools , seeking to improve the quality of teaching and to find new ways to stimulate pupils to take an interest in science. Innovative and inspirational science teaching is seen as a key component to attract young people to deal with scientific issues, whether or not they finally choose a career in science. Hence, "Physics On Stage 3" aims to stimulate the interest of young people through the school teachers, who can play a key role in reversing the trend of falling

  6. Experimental Physical Sciences Vistas: MaRIE (draft)

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack [Los Alamos National Laboratory

    2010-09-08

    To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materials science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national

  7. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    Science.gov (United States)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  8. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

  9. Global Social Challenges: insights from the physical sciences and their relevance to the evolution of social science

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The complex challenges confronting humanity today point to the need for new thinking and new theory in the social sciences which overcomes the limitations of compartmentalized, sectoral concepts, strategies and policies and mechanistic approaches to living social systems. The World Academy of Art & Science is convening a consortium of leading institutions and thinkers from different sectors to contribute ideas for formulation of a cohesive framework capable of addressing global social challenges in their totality and complex interrelationships. The objective of my presentation will be to explore the potential for collaboration between the physical and social sciences to arrive at a more cohesive and effective framework by exploring a series of questions, including - - Is an integrated science of society possible that transcends disciplinary boundaries based on common underlying principles as we find in the natural sciences? - To what extent can principles of natural science serve as valid models and a...

  10. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  11. Sport science integration: An evolutionary synthesis.

    Science.gov (United States)

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  12. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  13. Plasma Physics at the National Science Foundation

    Science.gov (United States)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  14. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  15. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  16. Integrating Mathematics and Science: Ecology and Venn Diagrams

    Science.gov (United States)

    Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca

    2014-01-01

    Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…

  17. Physical foundations of materials science

    CERN Document Server

    Gottstein, Günter

    2004-01-01

    In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them Transmission Electron Microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

  18. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  19. Avatars of Hollywood in Physical Science

    Science.gov (United States)

    Efthimiou, Costas J.; Llewellyn, Ralph A.

    2006-01-01

    This paper reports the results of the initial phase of an ambitious project known as Physics in Films, designed to help improve public understanding of the basic principles of physical science that the authors have embarked upon. The project began with several large groups of nonscience majors enrolled in the general education physical science course at the University of Central Florida (UCF), a course with a counterpart in nearly every college and university (and many high schools) in the nation.

  20. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  1. 14th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Riva, Matteo; Lamberti, Pier; Musolino, Paolo

    2017-01-01

    This contributed volume contains a collection of articles on the most recent advances in integral methods.  The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as: • Integral equations • Homogenization • Duality methods • Optimal design • Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.

  2. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  3. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  4. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  5. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  6. Integrating physical and mental health promotion strategies

    OpenAIRE

    Palma, Jessica Anne

    2010-01-01

    While health is defined as ‘a state of complete physical, mental and social well-being’, physical and mental health have traditionally been separated. This paper explores the question: How can physical and mental health promotion strategies be integrated and addressed simultaneously? A literature review on why physical and mental health are separated and why these two areas need to be integrated was conducted. A conceptual framework for how to integrate physical and mental health promotion st...

  7. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  8. Integration and Implementation Sciences: Building a New Specialization

    Directory of Open Access Journals (Sweden)

    Gabriele Bammer

    2005-12-01

    Full Text Available Developing a new specialization - Integration and Implementation Sciences - may be an effective way to draw together and significantly strengthen the theory and methods necessary to tackle complex societal issues and problems. This paper presents an argument for such a specialization, beginning with a brief review of calls for new research approaches that combine disciplines and interact more closely with policy and practice. It posits that the core elements of Integration and Implementation Sciences already exist, but that the field is currently characterized by fragmentation and marginalization. The paper then outlines three sets of characteristics that will delineate Integration and Implementation Sciences. First is that the specialization will aim to find better ways to deal with the defining elements of many current societal issues and problems: namely complexity, uncertainty, change, and imperfection. Second is that there will be three theoretical and methodological pillars for doing this: 1 systems thinking and complexity science, 2 participatory methods, and 3 knowledge management, exchange, and implementation. Third, operationally, Integration and Implementation Sciences will be grounded in practical application, and generally involve large-scale collaboration. The paper concludes by examining where Integration and Implementation Sciences would sit in universities, and outlines a program for further development of the field. An appendix provides examples of Integration and Implementation Sciences in action.

  9. Summer Institute for Physical Science Teachers

    Science.gov (United States)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  10. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    Science.gov (United States)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  11. Physics and information technology an interplay between science and engineering

    CERN Multimedia

    Hagstrom, S B

    1999-01-01

    In the last decade of this century and millennium, the computer and communication revolution has shown its power to transform the society. In this talk I will reflect on my personal experience of witnessing this revolution from an observation post in Silicon Valley. In particular, I will emphasize the role of physics and the interplay between science and engineering in this development. Information technology is often viewed as based on some physics discoveries and inventions such as the transistor and the semiconductor laser. Much of the subsequent development, the integrated circuit being a good example, has been an engineering feat. With shrinking dimensions of the circuits we are approaching the quantum limitations, requiring new types of computer architectures based on fundamental physics concepts. In this context we may ask if we should include the basic concepts of information and information handling as part of physics. Finally I will include some remarks on the views of physics as seen in the eyes of...

  12. Design and implementation of space physics multi-model application integration based on web

    Science.gov (United States)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into

  13. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Journal of Chemical Sciences · Journal of Earth System Science · Journal of Genetics · Pramana ... Pramana – Journal of Physics was launched in July 1973. ... with the Indian National Science Academy and Indian Physics Association. ... special issues devoted to advances in specific areas of physics and proceedings of ...

  14. The Science of Physics

    CERN Document Server

    Field, Andrea

    2012-01-01

    As the foundation for other natural sciences, physics helps us interpret both our most basic and complex observations of the natural world. Physics encompasses such topics as mechanics, relativity, thermodynamics, and electricity, among others, all of which elucidate the nature of matter, its motion, and its relationship to force and energy. This engaging volume surveys some of the major branches of physics, the laws, and theories significant to each. Also chronicled are some of the historical milestones in the field by such great minds as Galileo and Isaac Newton.

  15. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  16. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  17. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  18. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  19. Axiology on the Integration of Knowledge, Islam and Science

    Directory of Open Access Journals (Sweden)

    Mas’ud Zein

    2014-07-01

    Full Text Available The integration of Islamic and science was done through integration-interconnected, referring to ontological, epistemological dan axiological perspectives. This paper will focus on the integration of Islam and science from axiological perspective.  In the view of axiology, science is seen as neutral and value-free; the value of science is given by its users. This condition motivates Muslim scholars to reintegrate science and religion. The first attempt made is my giving ideas on the Islamization of science. The attempt to Islamize the science in the Islamic world is dilemmatic, whether to wrap western science with the label of Islam or Islamic, or transforming religious norms based the Qur’an and the Hadith to fit empirical data. Both strategies are difficult if the effort is not based on the critic of epistemology.

  20. Physics Laws of Social Science

    OpenAIRE

    Wayne, James J.

    2013-01-01

    Economics, and other fields of social science are often criticized as unscientific for their apparent failures to formulate universal laws governing human societies. Whether economics is truly a science is one of the oldest questions. This paper attempts to create such universal laws, and asserts that economics is a branch of quantum physics just like chemistry. Choice is a central concept in economics and other fields of social science, yet there is no corresponding concept of choice in mode...

  1. e-Science Paradigm for Astroparticle Physics at KISTI

    Directory of Open Access Journals (Sweden)

    Kihyeon Cho

    2016-03-01

    Full Text Available The Korea Institute of Science and Technology Information (KISTI has been studying the e-Science paradigm. With its successful application to particle physics, we consider the application of the paradigm to astroparticle physics. The Standard Model of particle physics is still not considered perfect even though the Higgs boson has recently been discovered. Astrophysical evidence shows that dark matter exists in the universe, hinting at new physics beyond the Standard Model. Therefore, there are efforts to search for dark matter candidates using direct detection, indirect detection, and collider detection. There are also efforts to build theoretical models for dark matter. Current astroparticle physics involves big investments in theories and computing along with experiments. The complexity of such an area of research is explained within the framework of the e-Science paradigm. The idea of the e-Science paradigm is to unify experiment, theory, and computing. The purpose is to study astroparticle physics anytime and anywhere. In this paper, an example of the application of the paradigm to astrophysics is presented.

  2. Progress report - physics and health sciences - physics section 1990 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1990-10-01

    This is the ninth semi-annual report on the Physics section of Physics and Health Sciences. Major areas of discussion include: nuclear physics, accelerator physics, general physics, neutron's solid state physics, theoretical physics and fusion

  3. The effect of immigration status on physics identity and physical science career intentions

    Science.gov (United States)

    Lung, Florin; Potvin, Geoff; Sonnert, Gerhard; Sadler, Philip M.

    2012-02-01

    Using data collected from a nationally-representative sample of first-year college students, we examine how students' identity development as physics persons and their likelihood to pursue a career in physical science is predicted by differing immigrant experiences. We consider broad factors having a social, economic, or cultural nature as covariates in a propensity score model that assesses differences due to immigrant generation. Our results show that, when controlling for such factors as race/ethnicity, socio-economic status, and gender, students' physics identities and the likelihood of choosing a career in physical science are significantly higher amongst first generation students than second generation (or later) students. We conclude that physical science as a career option can be influenced by the experiences of being an immigrant and through the relationship between origin and host culture.

  4. Analysis of expert validation on developing integrated science worksheet to improve problem solving skills of natural science prospective teachers

    Science.gov (United States)

    Widodo, W.; Sudibyo, E.; Sari, D. A. P.

    2018-04-01

    This study aims to develop student worksheets for higher education that apply integrated science learning in discussing issues about motion in humans. These worksheets will guide students to solve the problem about human movement. They must integrate their knowledge about biology, physics, and chemistry to solve the problem. The worksheet was validated by three experts in Natural Science Integrated Science, especially in Human Movement topic. The aspects of the validation were feasibility of the content, the construction, and the language. This research used the Likert scale to measure the validity of each aspect, which is 4.00 for very good validity criteria, 3.00 for good validity criteria, 2.00 for more or less validity criteria, and 1.00 for not good validity criteria. Data showed that the validity for each aspect were in the range of good validity and very good validity criteria (3.33 to 3.67 for the content aspect, 2.33 to 4.00 for the construction aspect, and 3.33 to 4.00 for language aspect). However, there was a part of construction aspect that needed to improve. Overall, this students’ worksheet can be applied in classroom after some revisions based on suggestions from the validators.

  5. From ancient Greece to the cognitive revolution: A comprehensive view of physical rehabilitation sciences.

    Science.gov (United States)

    Martínez-Pernía, David; González-Castán, Óscar; Huepe, David

    2017-02-01

    The development of rehabilitation has traditionally focused on measurements of motor disorders and measurements of the improvements produced during the therapeutic process; however, physical rehabilitation sciences have not focused on understanding the philosophical and scientific principles in clinical intervention and how they are interrelated. The main aim of this paper is to explain the foundation stones of the disciplines of physical therapy, occupational therapy, and speech/language therapy in recovery from motor disorder. To reach our goals, the mechanistic view and how it is integrated into physical rehabilitation will first be explained. Next, a classification into mechanistic therapy based on an old version (automaton model) and a technological version (cyborg model) will be shown. Then, it will be shown how physical rehabilitation sciences found a new perspective in motor recovery, which is based on functionalism, during the cognitive revolution in the 1960s. Through this cognitive theory, physical rehabilitation incorporated into motor recovery of those therapeutic strategies that solicit the activation of the brain and/or symbolic processing; aspects that were not taken into account in mechanistic therapy. In addition, a classification into functionalist rehabilitation based on a computational therapy and a brain therapy will be shown. At the end of the article, the methodological principles in physical rehabilitation sciences will be explained. It will allow us to go deeper into the differences and similarities between therapeutic mechanism and therapeutic functionalism.

  6. How Integration Can Benefit Physical Education

    Science.gov (United States)

    Wilson-Parish, Nichelle; Parish, Anthony

    2016-01-01

    One method for physical educators to increase their contact hours with their students is curricular integration, which consists of combining two or more subject areas with the goal of fostering enhanced learning in each subject area. This article provides an example of a possible integrated lesson plan involving physical education and art.

  7. Physical Science-Supplement: Project Oriented.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: No mention; appears to be for secondary grades. SUBJECT MATTER: Physical sciences for slow learners. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 units, each of which is further subdivided into several chapters. Each chapter is laid out in three columns; column headings are concepts, content, and activities.…

  8. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  9. Life science students’ attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Directory of Open Access Journals (Sweden)

    Catherine H. Crouch

    2018-03-01

    Full Text Available In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students’ attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students’ skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students’ attitudes toward and their interest in physics. Whereas the same students’ attitudes declined during the standard first semester course, we found that students’ attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students’ interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  10. The material co-construction of hard science fiction and physics

    Science.gov (United States)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  11. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  12. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  13. 78 FR 38318 - Integrated Science Assessment for Lead

    Science.gov (United States)

    2013-06-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9827-4] Integrated Science Assessment for Lead AGENCY... availability of a final document titled, ``Integrated Science Assessment for Lead'' (EPA/600/R-10/075F). The... lead (Pb). DATES: The document will be available on or around June 26, 2013. ADDRESSES: The...

  14. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  15. Fermilab | Science | Inquiring Minds | Questions About Physics

    Science.gov (United States)

    Benefits Milestones Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  16. Factors influencing students' physical science enrolment decision at ...

    African Journals Online (AJOL)

    The study used a modified 'multiple worlds' model to investigate how the various worlds of the students influenced their science subject choice. ... Students also reported building enough self-confidence to enrol in physical science by the encouragement they received through informal contact with physics lecturers.

  17. High School Physical Sciences Teachers' Competence in Some ...

    African Journals Online (AJOL)

    Teachers' lack of competence in cognitive skills and strategies would be an important limiting factor in the successful implementation of the Physical Sciences curriculum. An urgent need ... Keywords: Cognitive skills, thinking skills, questions testing skills, problem solving, teacher training, high school physical science ...

  18. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  19. Physical and Life Sciences 2008 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Correll, D L; Hazi, A U

    2009-05-06

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  20. Department of Physical Sciences

    African Journals Online (AJOL)

    USER

    2017-05-05

    May 5, 2017 ... ... of Physical Sciences, The Open University of Tanzania, P. O. Box ... bioaccumulation and biomagnification in the food chain. This research deals with human health risk assessment of metal contamination through the .... poisoning is untreatable (Faller, 2009). ... probability of adverse health effects in.

  1. Collaborative Yet Independent: Information Practices in the Physical Sciences

    CERN Document Server

    Meyer, Eric T; Kyriakidou-Zacharoudiou, Avgousta; Power, Lucy; Williams, Peter; Venters, Will; Terras, Melissa; Wyatt, Sally

    2011-12-31

    In many ways, the physical sciences are at the forefront of using digital tools and methods to work with information and data. However, the fields and disciplines that make up the physical sciences are by no means uniform, and physical scientists find, use, and disseminate information in a variety of ways. This report examines information practices in the physical sciences across seven cases, and demonstrates the richly varied ways in which physical scientists work, collaborate, and share information and data. This report details seven case studies in the physical sciences. For each case, qualitative interviews and focus groups were used to understand the domain. Quantitative data gathered from a survey of participants highlights different information strategies employed across the cases, and identifies important software used for research. Finally, conclusions from across the cases are drawn, and recommendations are made. This report is the third in a series commissioned by the Research Information Network...

  2. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  3. Challenges and Opportunities for Integrating Social Science Perspectives into Climate and Global Change Assessments

    Science.gov (United States)

    Larson, E. K.; Li, J.; Zycherman, A.

    2017-12-01

    Integration of social science into climate and global change assessments is fundamental for improving understanding of the drivers, impacts and vulnerability of climate change, and the social, cultural and behavioral challenges related to climate change responses. This requires disciplinary and interdisciplinary knowledge as well as integrational and translational tools for linking this knowledge with the natural and physical sciences. The USGCRP's Social Science Coordinating Committee (SSCC) is tasked with this challenge and is working to integrate relevant social, economic and behavioral knowledge into processes like sustained assessments. This presentation will discuss outcomes from a recent SSCC workshop, "Social Science Perspectives on Climate Change" and their applications to sustained assessments. The workshop brought academic social scientists from four disciplines - anthropology, sociology, geography and archaeology - together with federal scientists and program managers to discuss three major research areas relevant to the USGCRP and climate assessments: (1) innovative tools, methods, and analyses to clarify the interactions of human and natural systems under climate change, (2) understanding of factors contributing to differences in social vulnerability between and within communities under climate change, and (3) social science perspectives on drivers of global climate change. These disciplines, collectively, emphasize the need to consider socio-cultural, political, economic, geographic, and historic factors, and their dynamic interactions, to understand climate change drivers, social vulnerability, and mitigation and adaptation responses. They also highlight the importance of mixed quantitative and qualitative methods to explain impacts, vulnerability, and responses at different time and spatial scales. This presentation will focus on major contributions of the social sciences to climate and global change research. We will discuss future directions for

  4. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  5. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  6. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. R T Tagiyeva1. Institute of Physics, Azerbaijan National Academy of Sciences, Baku-AZ 1143, Azerbaijan Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara, Turkey ...

  7. elements of contemporary integrated science curriculum

    African Journals Online (AJOL)

    both science and technology (Hurd, 1975). Discoveries in nature are made easier through integration of ideas, thoughts and concepts. To this end, science teaching in the modern world ought to be interdisciplinary, unified, society based and aspire above all to achieve scientific literacy (Arokoyu and Dike, 2009). These are.

  8. Progress report: Physical Sciences - Physics Division, 1992 July 01 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Ungrin, J; Kim, S M; Sears, V F [eds.

    1993-03-01

    This report summarizes operations and research activities in the Accelerator Physics, Neutron and Condensed Matter Science and Theoretical Physics branches at Chalk River Laboratories during the last half of 1992. 21 figs., 3 tabs.

  9. Progress report: Physical Sciences - Physics Division, 1992 July 01 -December 31

    International Nuclear Information System (INIS)

    Ungrin, J.; Kim, S.M.; Sears, V.F.

    1993-03-01

    This report summarizes operations and research activities in the Accelerator Physics, Neutron and Condensed Matter Science and Theoretical Physics branches at Chalk River Laboratories during the last half of 1992. 21 figs., 3 tabs

  10. INQUIRY-BASED SCIENCE COMIC PHYSICS SERIES INTEGRATED WITH CHARACTER EDUCATION

    Directory of Open Access Journals (Sweden)

    D Yulianti

    2016-04-01

    Full Text Available This study aimed to test the level of readability and feasibility of science comic, to knowcharacter development through a small test in some schools. The research design was Research & Development, trials were using quasi-experimental pre-test-post-test experimental design. The instruments to measure attitudes were: a questionnaire and observation sheet, a test used to measure comprehension of the material. The results showed that learning science by inquiry-based science comic can improvecharacters and cognitive achievement of primary school students. Results in the form of inquiry-based science comic can be utilized in learning science as a companion teaching materials.

  11. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    Science.gov (United States)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  12. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    International Nuclear Information System (INIS)

    Rusli, Aloysius

    2016-01-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  13. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  14. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  15. Science Understanding through Playground Physics: Organized Recess Teaching (SUPPORT)

    Science.gov (United States)

    Kincaid, Russell

    2010-03-01

    From 1995-2007, U.S. science students in grade four scored higher than the scaled TIMSS average, but their scores did not improve over this time. Moreover, in the area of physical science, the U.S. scored significantly lower than several Asian countries, as well as Russia, England, and Latvia (TIMSS). Methods to enhance student achievement in science are still being sought. An approach to utilizing playground equipment as a teaching tool for a variety of physics concepts was developed as a physical science teaching method. This program established an appropriate set of experiments, coordinated the effort with local school districts, and implemented a brief pilot study to test the teaching methodology. The program assigned undergraduate middle school science education majors to teach small groups of fourth grade students. The experimental group used the newly developed ``Playground Physics'' methodology while the control group used traditional approaches. Follow up activities will include an expansion of the duration and the scope of the program.

  16. Statistics for Physical Sciences An Introduction

    CERN Document Server

    Martin, Brian

    2012-01-01

    Statistical Methods for the Physical Sciences is an informal, relatively short, but systematic, guide to the more commonly used ideas and techniques in statistical analysis, as used in physical sciences, together with explanations of their origins. It steers a path between the extremes of a recipe of methods with a collection of useful formulas, and a full mathematical account of statistics, while at the same time developing the subject in a logical way. The book can be read in its entirety by anyone with a basic exposure to mathematics at the level of a first-year undergraduate student

  17. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  18. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. I N Askerzade1 2. Department of Physics, Faculty of Sciences, Ankara University, 06100-Tandoğan-Ankara, Turkey; Institute of Physics, Azerbaijan National Academy of Sciences, H-Cavid 33, Baku-370143, Azerbaijan ...

  19. Jorge Luis Borges and the New Physics: the Literature of Modern Science and the Science of Modern Literature

    Science.gov (United States)

    Mosher, Mark Robert

    1992-01-01

    By examining the works of the Argentine writer, Jorge Luis Borges, and the parallels it has with modern physics, literature and science converge in their quest for truth regarding the structure and meaning of the universe. The classical perception of physics as a "hard" science--that of quantitative, rational thought which was established during the Newtonian era--has been replaced by the "new physics," which integrates the so-called "soft" elements into its paradigm. It presents us with a universe based not exclusively on a series of particle-like interactions, or a "billiard-ball" hypothesis where discrete objects have a measurable position and velocity in absolute space and time, but rather on a combination of these mechanistic properties and those that make up the non-physical side of nature such as intuition, consciousness, and emotion. According to physicists like James Jeans science has been "humanized" to the extent that the universe as a "great machine" has been converted into a "great thought.". In nearly all his collections of essays and short stories, Borges complements the new physics by producing a literature that can be described as "scientized." The abstract, metaphysical implications and concerns of the new world-view, such as space, time, language, consciousness, free will, determinism, etc., appear repeatedly throughout Borges' texts, and are treated in terms that are remarkably similar to those expressed in the scientific texts whose authors include Albert Einstein, Niels Bohr, Werner Heisenberg, and Erwin Schrodinger. As a final comparison, Borges and post-modern physicists address the question of the individual's ability to ever comprehend the universe. They share an attitude of incredulity toward all models and theories of reality simply because they are based on partial information, and therefore seen only as conjectures.

  20. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al 3 Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs

  1. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al{sub 3} Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs.

  2. USGS integrated drought science

    Science.gov (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  3. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    Science.gov (United States)

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  4. Putting the spark into physical science and algebra

    Science.gov (United States)

    Pill, Bruce; Dagenais, Andre

    2007-06-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.

  5. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  6. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  7. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  8. Physics teacher use of the history of science

    Science.gov (United States)

    Winrich, Charles

    The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics (CHOP). ITOP participants self-report changes to their teaching practices as a result of their participation in ITOP. The purpose of this study was to verify and characterize those changes in the specific area of the participants' use of history after their study of CHOP. Ten recent ITOP participants were observed, interviewed, and asked to provide lesson plans and samples of student work from their classes. Case studies of each participant's teaching were constructed from the data. The individual cases were synthesized to characterize the impact of CHOP on the ITOP participants. The results show that the participants integrate CHOP into their pedagogical content knowledge (PCK) to inform their understanding of: (1) the relationship between physics and other disciplines, (2) the relationship between specific physics concepts, (3) student understanding of physics concepts, (4) student difficulties in learning physics concepts, and (5) methods for teaching physics concepts. The participants use history to teach a variety of topics, although the most common were mechanics and electromagnetism. All of the participants used history to teach aspects of the nature of science (NOS) and to increase student interest in physics, while eight participants taught physics concepts through history. The predominant mode of incorporating history was through adding anecdotes about the scientists who worked on the concepts, but seven participants had their students study the historical development of physical concepts. All the participants discussed a lack of time as a factor that inhibits a greater use of history in their courses. Eight

  9. Variational integrators in plasma physics

    International Nuclear Information System (INIS)

    Kraus, Michael

    2013-01-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  10. Linking Physical Activity with Academics: Strategies for Integration

    Science.gov (United States)

    Koch, Jennifer L.

    2013-01-01

    The purpose of this article is to highlight the need for physical activity-integrated lessons for classroom teachers, provide strategies for effective integration, and encourage physical education teachers to be an additional

  11. 78 FR 27387 - Notice of Workshop and Call for Information on Integrated Science Assessment for Oxides of Sulfur

    Science.gov (United States)

    2013-05-10

    ... periodically, and, if appropriate, to revise existing air quality criteria to reflect advances in scientific... such as chemistry and physics, sources and emissions, analytical methodology, transport and... will update the scientific assessment presented in the Integrated Science Assessment for Sulfur Oxides...

  12. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  13. Attracting young women to the physical sciences: The Newton Summer Science Academy and other extra curricular programs

    Science.gov (United States)

    Chandrasekhar, Meera

    2000-03-01

    Early familiarity is regarded as one of the keys to attracting female students to traditionally male professions. I will describe four different extra curricular programs that my collaborators in the local school district and I have developed for students in grades 5-12. These programs are part of a project entitled ``Promoting Young Women in the Physical sciences", which also includes teacher training and programs in which parents participate with the child. Through these sustained and broad based interventions, we provide early experiences that we expect will prove positive to students. In particular, I will describe the Newton Summer Academy, a program for female high school students which integrates Physics, Chemistry, Math, Engineering and Economics. I will also address the successes and difficulties in starting and sustaining these programs.

  14. Students' network integration as a predictor of persistence in introductory physics courses

    Science.gov (United States)

    Zwolak, Justyna P.; Dou, Remy; Williams, Eric A.; Brewe, Eric

    2017-06-01

    Increasing student retention (successfully finishing a particular course) and persistence (continuing through a sequence of courses or the major area of study) is currently a major challenge for universities. While students' academic and social integration into an institution seems to be vital for student retention, research into the effect of interpersonal interactions is rare. We use network analysis as an approach to investigate academic and social experiences of students in the classroom. In particular, centrality measures identify patterns of interaction that contribute to integration into the university. Using these measures, we analyze how position within a social network in a Modeling Instruction (MI) course—an introductory physics course that strongly emphasizes interactive learning—predicts their persistence in taking a subsequent physics course. Students with higher centrality at the end of the first semester of MI are more likely to enroll in a second semester of MI. Moreover, we found that chances of successfully predicting individual student's persistence based on centrality measures are fairly high—up to 75%, making the centrality a good predictor of persistence. These findings suggest that increasing student social integration may help in improving persistence in science, technology, engineering, and mathematics fields.

  15. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  16. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Johns Hopkins University, Baltimore, MD, USA; Institute of Physics, 751 005, Bhubaneswar, India; Indian Institute of Science, 560 012, Bangalore, India; Brookhaven National Laboratory, Upton, NY, USA; Institute for Theoretical Physics, University of Vienna, Vienna, Austria; Indian Association for the Cultivation of Science ...

  17. A little something from physics for medicine (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2014)

    International Nuclear Information System (INIS)

    2014-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'A little something from physics for medicine', was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) 'Translational medicine as a basis of progress in hematology/oncology'; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) 'Promising nuclear medicine research at the INR, RAS'; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) 'Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics'; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) 'New approaches in laser mass-spectrometry of organic objects'. The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239–1243 (conferences and symposia)

  18. The Material Co-Construction of Hard Science Fiction and Physics

    Science.gov (United States)

    Hasse, Cathrine

    2015-01-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of…

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... and Photonic Technology Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Science, Nanjing University of Science & Technology, ...

  20. Map of the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, Kevin W.

    1999-07-02

    Various efforts to map the structure of science have been undertaken over the years. Using a new tool, VxInsight{trademark}, we have mapped and displayed 3000 journals in the physical sciences. This map is navigable and interactively reveals the structure of science at many different levels. Science mapping studies are typically focused at either the macro-or micro-level. At a macro-level such studies seek to determine the basic structural units of science and their interrelationships. The majority of studies are performed at the discipline or specialty level, and seek to inform science policy and technical decision makers. Studies at both levels probe the dynamic nature of science, and the implications of the changes. A variety of databases and methods have been used for these studies. Primary among databases are the citation indices (SCI and SSCI) from the Institute for Scientific Information, which have gained widespread acceptance for bibliometric studies. Maps are most often based on computed similarities between journal articles (co-citation), keywords or topics (co-occurrence or co-classification), or journals (journal-journal citation counts). Once the similarity matrix is defined, algorithms are used to cluster the data.

  1. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  2. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  3. Mathematics, Physics and Computer Sciences The computation of ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.

  4. Strategical integration and prior evaluation of science and innovation projects in Ecuadorians sports organizations.

    Directory of Open Access Journals (Sweden)

    Gloria Barroso Rodríguez

    2015-09-01

    Full Text Available This work shows the design of a procedure for evaluating the strategical integration of science and innovation projects level in the physical and sport sphere, and its validation through expert criteria for application to Ecuadorian sports organizations. As a result, it was possible to demonstrate the validity of the procedure designed, so it will be possible to be used to facilitate decision-making in relation to the execution of such projects considering, as a value judgment, the level of their essential components integration for the achievement of objectives aligned to the strategic priorities of the Ecuadorians sports organizations.  

  5. Variational integrators in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michael

    2013-07-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  6. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  7. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    DEBMALYA DAS1 RITABRATA SENGUPTA2 ARVIND 1. Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Manauli 140 306, India; Department of Mathematical Sciences, Indian Institute of Science Education and Research, Berhampur, Govt. ITI, Berhampur (Transit Campus), ...

  8. More than "Cool Science": Science Fiction and Fact in the Classroom

    Science.gov (United States)

    Singh, Vandana

    2014-01-01

    The unfortunate negative attitude toward physics among many students, including science majors, warrants creative approaches to teaching required physics courses. One such approach is to integrate science fiction into the curriculum, either in the form of movies or the written word. Historically this has been done since at least the 1970s, and by…

  9. The concepts of nanotechnology as a part of physics education in high school and in interactive science museum

    Science.gov (United States)

    Kolářová, Lucie; Rálišová, Ema

    2017-01-01

    The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.

  10. Assessing students' learning outcomes, self-efficacy and attitudes toward the integration of virtual science laboratory in general physics

    Science.gov (United States)

    Ghatty, Sundara L.

    Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking

  11. Integrating data to acquire new knowledge: Three modes of integration in plant science.

    Science.gov (United States)

    Leonelli, Sabina

    2013-12-01

    This paper discusses what it means and what it takes to integrate data in order to acquire new knowledge about biological entities and processes. Maureen O'Malley and Orkun Soyer have pointed to the scientific work involved in data integration as important and distinct from the work required by other forms of integration, such as methodological and explanatory integration, which have been more successful in captivating the attention of philosophers of science. Here I explore what data integration involves in more detail and with a focus on the role of data-sharing tools, like online databases, in facilitating this process; and I point to the philosophical implications of focusing on data as a unit of analysis. I then analyse three cases of data integration in the field of plant science, each of which highlights a different mode of integration: (1) inter-level integration, which involves data documenting different features of the same species, aims to acquire an interdisciplinary understanding of organisms as complex wholes and is exemplified by research on Arabidopsis thaliana; (2) cross-species integration, which involves data acquired on different species, aims to understand plant biology in all its different manifestations and is exemplified by research on Miscanthus giganteus; and (3) translational integration, which involves data acquired from sources within as well as outside academia, aims at the provision of interventions to improve human health (e.g. by sustaining the environment in which humans thrive) and is exemplified by research on Phytophtora ramorum. Recognising the differences between these efforts sheds light on the dynamics and diverse outcomes of data dissemination and integrative research; and the relations between the social and institutional roles of science, the development of data-sharing infrastructures and the production of scientific knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A teaching strategy for solving tasks integrating physics and artistic components in senior high school teacher’s training

    Directory of Open Access Journals (Sweden)

    Brito, Raúl Pedro

    2012-01-01

    Full Text Available This article is aimed at describing the results of a study intended to find a solution to shortcomings in the training of teacher of Physics, particularly in relation to the acquisition of an artistic cultural insight as a result of the process of learning Physics, which naturally hinders the fulfillment of junior high school general goal. A teaching strategy, centered in solving tasks of physics and artistic integrating nature, is suggested to contribute to enlarge cultural understanding and illustrating science and art relationship.

  13. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  14. Statistical methods for physical science

    CERN Document Server

    Stanford, John L

    1994-01-01

    This volume of Methods of Experimental Physics provides an extensive introduction to probability and statistics in many areas of the physical sciences, with an emphasis on the emerging area of spatial statistics. The scope of topics covered is wide-ranging-the text discusses a variety of the most commonly used classical methods and addresses newer methods that are applicable or potentially important. The chapter authors motivate readers with their insightful discussions, augmenting their material withKey Features* Examines basic probability, including coverage of standard distributions, time s

  15. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  16. Progress report, physics and health sciences, physics section, 1986 January 01 - June 30

    International Nuclear Information System (INIS)

    1986-08-01

    The two progress reports PR-PHS-P-1 (AECL-9262) and PR-PHS-HS-1 (AECL-9263) are continuations of the former series in Physics, PR-P-142, (AECL-9103) and in Health Sciences, PH-HS-20 (AECL-9102). The new series have been initiated to take into account the reorganization of the Research Company effective 1986 February 1. It is intended to issue the reports semi-annually on June 30 and December 31 covering the previous six months. The new series cover the same areas as before except that the Accelerator Physics Branch and the Mathematics and Computation Branch activities are no longer included in Physics, and the activities of the Medical Biophysics Branch at Whiteshell are now included in Health Sciences. The latest progress report on the Medical Biophysics work appeared in the WNRE report PR-WHS-73. This report (AECL-9262) covers the research, business and commercial activities of Nuclear Physics, TASCC Operations, Neutron and Solid State Physics, Theoretical Physics and the Fusion Office

  17. Proposal for inclusion of topics of particle physics integrated electric charge through a potentially meaningful teaching units

    Directory of Open Access Journals (Sweden)

    Lisiane Barcellos Calheiro

    2014-03-01

    Full Text Available In this article the results of the analysis of free and concept maps produced are presented from the application and evaluation of a Potentially Meaningful Teaching Units – PMTU, which is a teaching sequence based on various learning theories and seeks to promote meaningful student learning. Presents, in this work, part of a research Masters in Science Education which deals with the inclusion of topics of particle physics integrated with traditional content of the third year of high school. It was implemented in a third grade high school class of a State School in Santa Maria, Rio Grande do Sul, and Brazil. The PMTU aimed to address in an integrated manner threads for Particle Physics and Electronics. A didactic sequence that integrated the topics of electric charge, atomic models, elementary particles, quantization and process electrification was applied. Such integration aimed at stimulating the interest on topics related to Modern and Contemporary Physics. It was developed using PMTU activities that aimed at promoting meaningful learning and knowledge construction in the classroom, Since the topics involved were quite complex, this made their integration a real challenge to the high school teachers, and resulted in changes in their teaching practices. Research showed that the inclusion of topics on physics of elementary particles the and electricity, through Potentially Meaningful Teaching Units, show satisfactory results in the students’ learning.

  18. Life Science Students' Attitudes, Interest, and Performance in Introductory Physics for Life Sciences: An Exploratory Study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-01-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…

  19. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  20. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  1. Physics in Films: A New Approach to Teaching Science

    OpenAIRE

    Efthimiou, Costas J.; Llewellyn, Ralph

    2004-01-01

    Over the past year and a half we have developed an innovative approach to the teaching of `Physical Science', a general education course typically found in the curricula of nearly every college and university. The new approach uses popular movies to illustrate the principles of physical science, analyzing individual scenes against the background of the fundamental physical laws. The impact of being able to understand why, in reality, the scene could or could not have occurred as depicted in t...

  2. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  3. Integrating Earth System Science Data Into Tribal College and University Curricula

    Science.gov (United States)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    , surface energy budgets, climate and climate change, impacts, etc. GIS and remote sensing training has focused on importing, converting and displaying data sets related to drought and fires. The Integrated Science courses at SGU, designed primarily for pre-service elementary teachers, have incorporated physical science concepts and teaching approaches presented at the TRESTE annual workshops. The content of the courses follows the PBL teaching approach and is organized around a relevant, local problem such as prairie dog control and prairie management. Concepts from Earth, life and physical sciences are included in the course design. The fall course is introduced using recent news articles on legislation to control prairie dogs. After expressing their ideas based solely on experience and emotion, students determine what knowledge they will need to write an informed opinion on the issue. One of the instructional units for the course includes instruction and practice in interpreting satellite images of the local reservation to determine impact of prairie dog towns on vegetation. Students also conduct soil studies in the disturbed areas and nearby undisturbed areas. Data is gathered on soil chemistry, soil temperatures, and surface temperatures, measured with an infrared sensor provided by the TRESTE grant. Additional topics covered in the course that contain information from the annual workshops, include prairie fires, climate and climate change, and effects of the drought on local bodies of water.

  4. High school Physical Sciences teachers' competence in some basic cognitive skills

    OpenAIRE

    Selvaratnam, Mailoo

    2011-01-01

    The successful implementation of the national high school Physical Sciences curriculum in South Africa, which places strong emphasis on critical thinking and reasoning abilities of students, would need teachers who are competent in cognitive skills and strategies. The main objectives of this study were to test South African high school Physical Sciences teachers' competence in the cognitive skills and strategies needed for studying Physical Sciences effectively and also to identify possible r...

  5. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    Science.gov (United States)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  6. Rocking Your Writing Program: Integration of Visual Art, Language Arts, & Science

    Science.gov (United States)

    Poldberg, Monique M.,; Trainin, Guy; Andrzejczak, Nancy

    2013-01-01

    This paper explores the integration of art, literacy and science in a second grade classroom, showing how an integrative approach has a positive and lasting influence on student achievement in art, literacy, and science. Ways in which art, science, language arts, and cognition intersect are reviewed. Sample artifacts are presented along with their…

  7. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  8. Progress report - physical sciences TASCC division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1991-09-01

    This is the second in a new series of reports of the work of the TASCC Division since the creation of the Physical Sciences Unit in 1990. Physical Sciences comprises four main sectors, namely the TASCC, Physics and Chemistry Divisions, and the National Fusion Program Management Office. Physics Division is responsible for research and development in the areas of condensed matter physics, neutron and neutrino physics, and accelerator physics, while TASCC Division deals with research performed with the Tandem and Superconducting Cyclotron accelerators, primarily in the field of Heavy Ion Nuclear Physics

  9. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    Science.gov (United States)

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  10. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31

  11. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M. (ed.)

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31.

  12. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  13. Recent trends in physics of material science and technology

    CERN Document Server

    Shrivastava, Keshav; Akhtar, Jamil

    2015-01-01

    This book discusses in detail the recent trends in Computational Physics, Nano-physics and Devices Technology. Numerous modern devices with very high accuracy, are explored In conditions such as longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc. This edited volume presents 32 selected papers  of the 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics . The book is divided into three  scientific Sections: (i) Computational Physics, (ii) Nanophysics and Technology, (iii) Devices and Systems and is addressed to Professors, post-graduate students, scientists and engineers taking part in R&D of nano-materials, ferro-piezoelectrics, computational Physics and devices system, and also different devices based on broad applications in different areas of modern science and technology.

  14. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    Science.gov (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  15. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. P Udomsamuthirun1 C Kumvongsa2 A Burakorn1 P Changkanarth1. Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; Department of Basic Science, School of Science, The University of the Thai Chamber of Commerce, Dindaeng, Bangkok 10400, Thailand ...

  16. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  17. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  18. Integrated Science Assessment (ISA) of Ozone and Related ...

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding the adequacy of the current national ambient air quality standards for ozone to protect human health, public welfare, and the environment. Critical evaluation and integration of the evidence on health and environmental effects of ozone to provide scientific support for the review of the NAAQS for ozone.

  19. Development of Integrated Natural Science Teaching Materials Webbed Type with Applying Discourse Analysis on Students Grade VIII in Physics Class

    Science.gov (United States)

    Sukariasih, Luh

    2017-05-01

    This study aims to produce teaching materials integrated natural science (IPA) webbed type of handout types are eligible for use in integrated science teaching. This type of research IS a kind of research and development / Research and Development (R & D) with reference to the 4D development model that is (define, design, develop, and disseminate). Data analysis techniques used to process data from the results of the assessment by the validator expert, and the results of the assessment by teachers and learners while testing is limited (12 students of class VIII SMPN 10 Kendari) using quantitative descriptive data analysis techniques disclosed in the distribution of scores on the scale of five categories grading scale that has been determined. The results of due diligence material gain votes validator material in the category of “very good” and “good”, of the data generated in the feasibility test presentation obtained the category of “good” and “excellent”, from the data generated in the feasibility of graphic test obtained the category of “very good “and” good “, as well as of the data generated in the test the feasibility of using words and language obtained the category of“very good “and” good “, so with qualifications gained the teaching materials IPA integrated type webbed by applying discourse analysis on the theme of energy and food for Junior High School (SMP) grade VIII suitable as teaching materials. In limited testing, data generated in response to a science teacher at SMPN 10 Kendari to product instructional materials as “excellent”, and from the data generated while testing is limited by the 12 students of class VIII SMPN 10 Kendari are more students who score indicates category “very good”, so that the qualification obtained by the natural science (IPA) teaching material integrated type webbed by applying discourse analysis on the theme of energy and food for SMP / class VIII fit for use as teaching material.

  20. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes towards Integration

    Science.gov (United States)

    McHugh, Luisa

    2016-01-01

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to…

  1. Research Misconduct and the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    HM Kerch; JJ Dooley

    1999-10-11

    Research misconduct includes the fabrication, falsification, and plagiarism (FFP) of concepts or ideas; some institutions have expanded this concept to include ''other serious deviations (OSD) from accepted research practice.'' An action can be evaluated as research misconduct if it involves activities unique to the practice of science and could negatively affect the scientific record. Although the number of cases of research misconduct is uncertain (formal records are kept only by the NIH and the NSF), the costs are high in integrity of the scientific record, diversions from research to investigate allegations, ruined careers of those eventually exonerated, and erosion of public confidence in science. Currently, research misconduct policies vary from institution to institution and from government agency to government agency; some have highly developed guidelines that include OSD, others have no guidelines at ail. One result has been that the federal False Claims Act has been used to pursue allegations of research misconduct and have them adjudicated in the federal court, rather than being judged by scientific peers. The federal government will soon establish a first-ever research misconduct policy that would apply to all research funded by the federal government regardless of what agency funded the research or whether the research was carried out in a government, industrial or university laboratory. Physical scientists, who up to now have only infrequently been the subject or research misconduct allegations, must none-the-less become active in the debate over research misconduct policies and how they are implemented since they will now be explicitly covered by this new federal wide policy.

  2. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  3. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science Education · Sadhana · Current Science ... Proceedings of the MESODIS 2006: International Workshop on the Physics of ... pp 3-26 Research Articles ... The effect of instanton-induced interaction on -wave meson spectra in constituent quark model.

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Rangan Lahiri1 Arvind2 3 Anirban Sain4 5. Department of Physics, Indian Institute of Science, Bangalore 560 012, India; Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Physics, Guru Nanak Dev University, Amritsar 143 005, India; Department of Physics, University of ...

  5. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  6. Biographical Sources in the Sciences--Life, Earth and Physical Sciences (1989-2006). LC Science Tracer Bullet. TB 06-4

    Science.gov (United States)

    Freitag, Ruth, Comp.; Bradley, Michelle Cadoree, Comp.

    2006-01-01

    This guide offers a systematic approach to the wide variety of published biographical information on men and women of science in the life, earth and physical sciences, primarily from 1989 to 2006, and complements Library of Congress Science Tracer Bullet "TB88-3" ("Biographical Sources in the Sciences," compiled 1988 [ED306074]) and "TB06-7"…

  7. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  8. Experimental Physical Sciences Vitae 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Mauro, Diana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patterson, Eileen Frances [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fronzak, Hannah Kristina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cruz, James Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kramer, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, Genevieve [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Richard Cecil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Carlos Genaro [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valdez, Sandra M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-18

    Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.

  9. Progress report - physical sciences - physics division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the Physics Division. Of special note within the period covered by this report was the successful acceleration of over 75 mA of protons to 600 keV in RFQ1 making it the highest current RFQ in the world. Our electron accelerator expertise has been recognized by the award of one of the R and D 100 awards for the IMPELA (10 MeV 50 kW) machine. Considerable activity was associated with bringing the new dual beam neutron spectrometer DUALSPEC to completion. This instrument has been jointly funded by AECL and NSERC through McMaster University and will be a central component of the national neutron scattering facility at NRU in the 1990's. A major effort was made with the writing of a Project Definition Document for installation of a cold neutron source at the most opportune time

  10. Physical integrity: the missing link in biological monitoring and TMDLs.

    Science.gov (United States)

    Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim

    2009-12-01

    The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.

  11. Science and society the history of modern physical science in the twentieth century

    CERN Document Server

    Gordin, Michael; Kaiser, David

    2001-01-01

    Modern science has changed every aspect of life in ways that cannot be compared to developments of previous eras. This four volume set presents key developments within modern physical science and the effects of these discoveries on modern global life. The first two volumes explore the history of the concept of relativity, the cultural roots of science, the concept of time and gravity before, during, and after Einstein's theory, and the cultural reception of relativity. Volume three explores the impact of modern science upon global politics and the creation of a new kind of war, and Volume four details the old and new efforts surrounding the elucidation of the quantum world, as well as the cultural impact of particle physics. The collection also presents the historical and cultural context that made these scientific innovations possible. The transformation of everyday concepts of time and space for the individual and for society, the conduct of warfare, and the modern sense of mastering nature are all issues d...

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Proceedings of PHENO1: The First Workshop on Beyond Standard Model Physics at IISER Mohali ... on Computational Condensed Matter Physics and Materials Science ... Proceedings of the National Mathematics Initiative Workshop on Nonlinear ... Proceedings of the International Symposium on Nuclear Physics.

  13. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  14. Investigations in the Science of Sports.

    Science.gov (United States)

    Hammrich, Penny L.; Fadigan, Kathleen

    2003-01-01

    Describes the Sisters in Sport Science (SISS) program which provides equitable access for girls to science and mathematics through sports. Includes a sample SISS activity that integrates track and physical sciences. (YDS)

  15. Physics Problems Based on Up-to-Date Science and Technology.

    Science.gov (United States)

    Folan, Lorcan M.; Tsifrinovich, Vladimir I.

    2007-03-01

    We observe a huge chasm between up-to-date science and undergraduate education. The result of this chasm is that current student interest in undergraduate science is low. Consequently, students who are graduating from college are often unable to take advantage of the many opportunities offered by science and technology. Cutting edge science and technology frequently use the methods learned in undergraduate courses, but up-to-date applications are not normally used as examples or for problems in undergraduate courses. There are many physics problems which contain information about the latest achievements in science and technology. But typically, the level of these problems is too advanced for undergraduates. We created physics problems for undergraduate science and engineering students, which are based on the latest achievements in science and technology. These problems have been successfully used in our courses at the Polytechnic University in New York. We believe that university faculty may suggest such problems in order to provide information about the frontiers of science and technological, demonstrate the importance of undergraduate physics in solving contemporary problems and raise the interest of talented students in science. From the other side, our approach may be considered an indirect way for advertising advanced technologies, which undergraduate students and, even more important, future college graduates could use in their working lives.

  16. Physics Research Integrated Development Environment (PRIDE)

    International Nuclear Information System (INIS)

    Burton, J.; Cormell, L.

    1993-12-01

    Past efforts to implement a Software Engineering approach to High Energy Physics computing have been met with significant resistance and have been, in many cases, only marginally successful. At least a portion of the problem has been the Lick of an integrated development environment, tailored to High Energy Physics and incorporating a suite of Computer Aided Software Engineering tools. The Superconducting Super Collider Physics Research Division Computing Department is implementing pilot projects to develop just such an environment

  17. FUNdamental Integrative Training (FIT) for Physical Education

    Science.gov (United States)

    Bukowsky, Michael; Faigenbaum, Avery D.; Myer, Gregory D.

    2014-01-01

    There is a growing need for physical education teachers to integrate different types of fitness activities into their lessons in order to provide opportunities for all students to learn and practice a variety of movement skills that will enhance their physical fitness and support free-time physical activity. An increased focus on age-appropriate…

  18. Science Academies' 83rd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Science Academies' Refresher Course in “Experimental Physics” will be held in the Department of Physics,. College of Arts, Science and Humanities, Mody University of Science and Technology, Lakshmangarh, District. Sikar (Rajasthan), from 29 December 2016 to 13 January 2017 for the benefit of faculty involved in ...

  19. Progress report. Physics and Health sciences, Physics Section (1988 January 01-June 30)

    International Nuclear Information System (INIS)

    1988-08-01

    A report on the progress made in the Physics and Health Sciences Physics Section between January 01 and June 30 1988 was compiled. This document contains an overview of operations and research carried out by the nuclear physics branch, the TASCC operations branch, and the cyclotron group. In addition, a general discussion of the tandem and cyclotron operations for this period was presented

  20. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  1. Microfluidics and nanofluidics handbook chemistry, physics, and life science principles

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fun...

  2. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. I N Askerzade1 2. Department of Physics, Ankara University, Tandogan 06100, Ankara, Turkey; Institute of Physics, Azerbaijan National Academy of Sciences, Baku 370143, Azerbaijan ...

  3. Integration of Environmental Issues in a Physics Course: 'Physics by Inquiry' High School Teachers' Integration Models and Challenges

    Science.gov (United States)

    Kimori, David Abiya

    As we approach the second quarter of the twenty-first century, one may predict that the environment will be among the dominant themes in the political and educational discourse. Over the past three decades, particular perspectives regarding the environment have begun to emerge: (i) realization by human beings that we not only live on earth and use its resources at an increasingly high rate but we also actually belong to the earth and the total ecology of all living systems, (ii) there are strong interactions among different components of the large and complex systems that make up our environment, and (iii) the rising human population and its impact on the environment is a great concern (Hughes & Mason, 2014). Studies have revealed that although the students do not have a deep understanding of environmental issues and lack environmental awareness and attitudes necessary for protecting the environment, they have great concern for the environment (Chapman & Sharma, 2001; Fien, Yencken, & Sykes, 2002). However, addressing environmental issues in the classroom and other disciplines has never been an easy job for teachers (Pennock & Bardwell, 1994; Edelson, 2007). Using multiple case studies, this study investigated how three purposefully selected physics teachers teaching a 'Physics by Inquiry' course integrated environmental topics and issues in their classroom. Particularly this study looked at what integration models and practices the three physics teachers employed in integrating environmental topics and issues in their classroom and what challenges the teachers faced while integrating environmental topics in their classrooms. Data collection methods including field notes taken from observations, teachers' interviews and a collection of artifacts and documents were used. The data were coded analyzed and organized into codes and categories guided by Fogarty (1991) models of curriculum integration and Ham and Sewing (1988) four categories of barriers to environmental

  4. Pre-Service Physics Teachers' Conceptions of Nature of Science

    Science.gov (United States)

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  5. My views on physics and atomic physics, on science and human life

    International Nuclear Information System (INIS)

    Berenyi, Denes

    1999-01-01

    The modern physics research was started in the 16th century. From that time any knowledge on the natural processes is based on careful, systematic observation, experiment and measurement. The scope of atomic physics is very broad energetically from nano eV to GeV. From these experiments fundamental information can be obtained and the collision mechanism as well as details of atomic and ionic structure can be clarified. Science is a really special field of the human activity and culture. It is developing mainly with the help of the critique of its own results. Science produced in fact miraculous results but even then it is only one of the approaches to Reality in a broad meaning

  6. Psychology as an Evolving, Interdisciplinary Science: Integrating Science in Sensation and Perception from Fourier to Fluid Dynamics

    Science.gov (United States)

    Ebersole, Tela M.; Kelty-Stephen, Damian G.

    2017-01-01

    This article outlines the theoretical rationale and process for an integrated-science approach to teaching sensation and perception (S&P) to undergraduate psychology students that may also serve as an integrated-science curriculum. The course aimed to introduce the interdisciplinary evolution of this psychological field irrespective of any…

  7. Waves and Particles, The Orbital Atom, Parts One and Two of an Integrated Science Sequence, Teacher's Guide, 1973 Edition.

    Science.gov (United States)

    Portland Project Committee, OR.

    This teacher's guide includes parts one and two of the four-part third year Portland Project, a three-year integrated secondary science curriculum sequence. The Harvard Project Physics textbook is used for reading assignments for part one. Assignments relate to waves, light, electricity, magnetic fields, Faraday and the electrical age,…

  8. A content analysis of physical science textbooks with regard to the nature of science and ethnic diversity

    Science.gov (United States)

    Brooks, Kristine M.

    nature of science and what is the balance of ethnic diversity in the participants in science (students and scientists) in physical science textbooks? To establish an answer to these questions, this investigation used content analysis. For the balance of the four aspects of the nature of science, the analysis was conducted on random page samples of five physical science textbooks. A random sampling of the pages within the physical science textbooks should be sufficient to represent the content of the textbooks (Garcia, 1985). For the balance of ethnic diversity of the participants in science, the analysis was conducted on all pictures or drawings of students and scientists within the content of the five textbooks. One of these IPC books is under current use in a large, local school district and the other four were published during the same, or similar, year. Coding procedures for the sample used two sets of coders. One set of coders have previously analyzed for the nature of science in a study on middle school science textbooks (Phillips, 2006) and the coders for ethnic diversity are public school teachers who have worked with ethnically diverse students for over ten years. Both sets of coders were trained and the reliability of their coding checked before coding the five textbooks. To check for inter-coder reliability, percent agreement, Cohen's kappa and Krippendorff's alpha were calculated. The results from this study indicate that science as a body of knowledge and science as a way of investigating are the prevalent themes of the nature of science in the five physical science textbooks. This investigation also found that there is an imbalance in the ethnic diversity of students and scientists portrayed within the chapters of the physical science textbooks studied. This imbalance reflects ratios that are neither equally balanced nor in align with the U.S. Census. Given that textbooks are the main sources of information in most classrooms, the imbalance of the nature of

  9. Lessons learned: A case study of an integrated way of teaching introductory physics to at-risk students at Rutgers University

    Science.gov (United States)

    Etkina, E.; Gibbons, K.; Holton, B. L.; Horton, G. K.

    1999-09-01

    In order to provide a physics instructional environment in which at-risk students (particularly women and minorities) can successfully learn and enjoy introductory physics, we have introduced Extended General Physics as an option for science, science teaching, and pre-health professions majors at Rutgers University. We have taught the course for the last five years. In this new course, we have used many elements that have been proven to be successful in physics instruction. We have added a new component, the minilab, stressing qualitative experiments performed by the students. By integrating all the elements, and structuring the time the students invest in the course, we have created a successful program for students-at-risk, indeed for all students. Our aim was not only to foster successful mastery of the traditional physics syllabus by the students, but to create a sense of community through the cooperation of students with each other and their instructors. We present a template for implementation of our program elsewhere.

  10. Sound. Physical Science in Action. Teacher's Manual and Workbook.

    Science.gov (United States)

    Chan, Janis Fisher; Friedland, Mary

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of physical science. Six separate units…

  11. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  12. Putting the “Spark” into Physical Science and Algebra

    Science.gov (United States)

    Dagenais, Andre; Pill, B.

    2006-12-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering

  13. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  14. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    International Nuclear Information System (INIS)

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO 2 laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs

  15. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO{sub 2} laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs.

  16. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  17. Learning the Rules of the Game: The Nature of Game and Classroom Supports When Using a Concept-Integrated Digital Physics Game in the Middle School Science Classroom

    Science.gov (United States)

    Stewart, Phillip Michael, Jr.

    Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled Learning Science Through Computer Games and Simulations (2011). The report recommends moving beyond typical proof-of-concept studies into more exploratory and theoretically-based work to determine how best to integrate games into K-12 classrooms for learning , as well as how scaffolds from within the game and from outside the game (from peers and teachers) support the learning of applicable science. This study uses a mixed-methods, quasi-experimental design with an 8th grade class at an independent school in southern Connecticut to answer the following questions: 1. What is the nature of the supports for science content learning provided by the game, the peer, and the teacher, when the game is used in a classroom setting? 2. How do the learning gains in the peer support condition compare to the solo play condition, both qualitatively and quantitatively? The concept-integrated physics game SURGE (Scaffolding Understanding through Redesigning Games for Education) was selected for this study, as it was developed with an ear towards specific learning theories and prior work on student understandings of impulse, force, and vectors. Stimulated recall interviews and video observations served as the primary sources and major patterns emerged through the triangulation of data sources and qualitative analysis in the software QSR NVivo 9. The first pattern which emerged indicated that scaffolding from within the game and outside the game requires a pause in game action to be effective, unless that scaffolding is directly useful to the player in the moment of action. The second major pattern indicated that both amount and type of prior gaming experience has somewhat complex effects on both the uses of supports and learning outcomes. In general, a high correlation was found

  18. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators

    Science.gov (United States)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.

    2015-12-01

    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  19. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  20. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department

  1. Integration of gastronomy and physics for innovation

    NARCIS (Netherlands)

    Linden, van der E.

    2013-01-01

    Integration of physics with gastronomy can yield innovations in an efficient manner. An important element of this integration is the structure of food. The creation of food recipes often deals with designing new structures and a clear understanding of how food structure influences food properties is

  2. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    Science.gov (United States)

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  3. The INTEGRAL science data centre (ISDC)

    DEFF Research Database (Denmark)

    Courvoisier, T.J.L.; Walter, Rasmus; Beckmann, V.

    2003-01-01

    The INTEGRAL Science Data Centre (ISDC) provides the INTEGRAL data and means to analyse them to the scientific community. The ISDC runs a gamma ray burst alert system that provides the position of gamma ray bursts on the sky within seconds to the community. It operates a quick-look analysis...... of the data within few hours that detects new and unexpected sources as well as it monitors the instruments. The ISDC processes the data through a standard analysis the results of which are provided to the observers together with their data....

  4. An integrated system for physical protection

    International Nuclear Information System (INIS)

    Kumar, Ranajit

    2001-01-01

    An Integrated Physical Protection System (IPPS) was developed for the consolidation of all sub systems, sensors and elements related to physical protection for an efficient and effective security environment of a facility. An effective physical protection system discharges the functions of detection, delay, communication, response, access control etc. IPPS performs, controls and monitors all the above functionality and helps in taking quick action on occurrence of unusual incidents by instantly reporting the incident in easily understandable audio, video, graphical and textual format and also by initiating automatic interactions among sub-systems

  5. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  6. The roots of physics students' motivations: Fear and integrity

    Science.gov (United States)

    Van Dusen, Ben

    Too often, physics students are beset by feelings of failure and isolation rather than experiencing the creative joys of discovery that physics has to offer. This dissertation research was founded on the desire of a teacher to make physics class exciting and motivating to his students. This work explores how various aspects of learning environments interact with student motivation. This work uses qualitative and quantitative methods to explore how students are motivated to engage in physics and how they feel about themselves while engaging in physics. The collection of four studies in this dissertation culminates in a sociocultural perspective on motivation and identity. This perspective uses two extremes of how students experience physics as a lens for understanding motivation: fear and self-preservation versus integrity and self-expression. Rather than viewing motivation as a property of the student, or viewing students as inherently interested or disinterested in physics, the theoretical perspective on motivation and identity helps examine features of the learning environments that determine how students' experience themselves through physics class. This perspective highlights the importance of feeling a sense of belonging in the context of physics and the power that teachers have in shaping students' motivation through the construction of their classroom learning environments. Findings demonstrate how different ways that students experience themselves in physics class impact their performance and interest in physics. This dissertation concludes with a set of design principles that can foster integration and integrity among students in physics learning environments.

  7. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    Science.gov (United States)

    Bruce E. Rieman; Jason B. Dunham; James L. Clayton

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions....

  8. Integrating indigenous games and knowledge into Physical Education

    African Journals Online (AJOL)

    Integrating indigenous games and knowledge into Physical Education: Implications for ... The aim of this study was to analyse indigenous Zulu games towards integrating indigenous game skill and knowledge ... AJOL African Journals Online.

  9. A Cooperative Learning Group Procedure for Improving CTE and Science Integration

    Science.gov (United States)

    Spindler, Matt

    2016-01-01

    The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives utilized in secondary CTE courses. The objectives of the study were to determine if CLGs were an effective means for increasing the number of: a) science integrating learning…

  10. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    Science.gov (United States)

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about

  11. Physics vs. computer science

    International Nuclear Information System (INIS)

    Pike, R.

    1982-01-01

    With computers becoming more frequently used in theoretical and experimental physics, physicists can no longer afford to be ignorant of the basic techniques and results of computer science. Computing principles belong in a physicist's tool box, along with experimental methods and applied mathematics, and the easiest way to educate physicists in computing is to provide, as part of the undergraduate curriculum, a computing course designed specifically for physicists. As well, the working physicist should interact with computer scientists, giving them challenging problems in return for their expertise. (orig.)

  12. Progress report Physics and Health Sciences. Health Sciences section. 1987 July 01-December 31

    International Nuclear Information System (INIS)

    1988-03-01

    This report covers the fourth semi-annual period since the Research Company was reorganized. We now have eight research fellows on staff, six fully funded by Physics and Health Sciences (P and HS). The first section of this report contains an excellent topical review of the program in Health Sciences on tritium toxicity which involves scientists from all three of the Chalk River branches of Health Sciences. Their work on cancer proneness is expanding data on apparently normal people and has been extended to include cancer patients. All tests are now blind. The work was the subject of two very fine TV presentations, one each shown on the French and English networks of the CBC. Investigation also continues on the complex influence of hyperthermia on cancer induction and promotion. The potency of natural killer cells in human blood which have the ability to recognize and destroy cancerous cells have been shown to be very sensitive to temperature. A method may have been found for extending the life of T-lymphocytes grown in culture beyond the present 30 to 60-day limit. Activities in environmental research are moving in the direction of studies of a more fundamental nature so that the results will have a certain portability. Model studies form a large part of this new emphasis and notable among those is the Twin Lakes tracer study. Work is in progress to follow the plume the full 240 metres to the discharge zone with considerable success in the mathematical modelling. Members of the Health Sciences unit at CRNL were active as resource people for the Hare Commission on Ontario Nuclear Safety Review during the late fall. At Partnerships for Profit, which brought 85 senior executives of Canadian business in contact with the Research Company's capabilities, Physics and Health Sciences manned four booths on cancer screening, environmental protection, ANDI and nuclear physics instrumentation. Discussions with MOSST and other government departments were initiated on the

  13. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  14. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e + e - annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of πN scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies

  15. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  16. Physics for computer science students with emphasis on atomic and semiconductor physics

    CERN Document Server

    Garcia, Narciso

    1991-01-01

    This text is the product of several years' effort to develop a course to fill a specific educational gap. It is our belief that computer science students should know how a computer works, particularly in light of rapidly changing tech­ nologies. The text was designed for computer science students who have a calculus background but have not necessarily taken prior physics courses. However, it is clearly not limited to these students. Anyone who has had first-year physics can start with Chapter 17. This includes all science and engineering students who would like a survey course of the ideas, theories, and experiments that made our modern electronics age possible. This textbook is meant to be used in a two-semester sequence. Chapters 1 through 16 can be covered during the first semester, and Chapters 17 through 28 in the second semester. At Queens College, where preliminary drafts have been used, the material is presented in three lecture periods (50 minutes each) and one recitation period per week, 15 weeks p...

  17. Application of a Sensemaking Approach to Ethics Training in the Physical Sciences and Engineering

    Science.gov (United States)

    Kligyte, Vykinta; Marcy, Richard T.; Waples, Ethan P.; Sevier, Sydney T.; Godfrey, Elaine S.; Mumford, Michael D.; Hougen, Dean F.

    2008-06-01

    Integrity is a critical determinant of the effectiveness of research organizations in terms of producing high quality research and educating the new generation of scientists. A number of responsible conduct of research (RCR) training programs have been developed to address this growing organizational concern. However, in spite of a significant body of research in ethics training, it is still unknown which approach has the highest potential to enhance researchers' integrity. One of the approaches showing some promise in improving researchers' integrity has focused on the development of ethical decision-making skills. The current effort proposes a novel curriculum that focuses on broad metacognitive reasoning strategies researchers use when making sense of day-to-day social and professional practices that have ethical implications for the physical sciences and engineering. This sensemaking training has been implemented in a professional sample of scientists conducting research in electrical engineering, atmospheric and computer sciences at a large multi-cultural, multi-disciplinary, and multi-university research center. A pre-post design was used to assess training effectiveness using scenario-based ethical decision-making measures. The training resulted in enhanced ethical decision-making of researchers in relation to four ethical conduct areas, namely data management, study conduct, professional practices, and business practices. In addition, sensemaking training led to researchers' preference for decisions involving the application of the broad metacognitive reasoning strategies. Individual trainee and training characteristics were used to explain the study findings. Broad implications of the findings for ethics training development, implementation, and evaluation in the sciences are discussed.

  18. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author)

  19. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M [ed.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author).

  20. Analysing the problems of science teachers that they encounter while teaching physics education

    Directory of Open Access Journals (Sweden)

    Cihat Demir

    2015-12-01

    Full Text Available Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters encountered by science teachers during the teaching of physics and to provide them with solutions. The study group consisted of 50 science teachers who worked in Diyarbakır and Batman over the period of 2014 - 2015. This research is a descriptive study carried out by content analysis. In this study, semi-structured interview have been used along with qualitative research methods. According to the research findings, the top problems that the physics teachers encountered in physics lesson while processing the topics were laboratory problems. Some solutions have been introduced for science teachers in order to help them provide a better physics education.

  1. From the history of physics (Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 17 December 2012. The following reports were put on the session's agenda posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Dianov E M (Fiber Optics Research Center, RAS, Moscow) O n the threshold of a peta era ; (2) Zabrodskii A G (Ioffe Physical Technical Institute, RAS, St. Petersburg) S cientists' contribution to the great victory in WWII using the example of the Leningrad (now A F Ioffe) Physical Technical Institute ; (3) Ilkaev R I (Russian Federal Nuclear Center --- All-Russian Research Institute of Experimental Physics, Sarov) M ajor stages of the Soviet Atomic Project ; (4) Cherepashchuk A M (Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow) H istory of the Astronomy history . Papers written on the basis of the reports are published below. . On the Threshold of Peta-era, E M Dianov Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 486–492 . Scientists' contribution to the Great Victory in WWII on the example of the Leningrad (now A F Ioffe) Physical Technical Institute, A G Zabrodskii Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 493–502 . Major stages of the Atomic Project, R I Ilkaev Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 502–509. History of the Universe History, A M Cherepashchuk Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 509–530 (conferences and symposia)

  2. Causal modeling of secondary science students' intentions to enroll in physics

    Science.gov (United States)

    Crawley, Frank E.; Black, Carolyn B.

    The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students

  3. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  4. A Physics-Inspired Introduction to Political Science

    Science.gov (United States)

    Taagepera, Rein

    1976-01-01

    This paper analyzes what is involved in patterning part of an introduction to politics along the lines of physical sciences, and it presents contents and results of a course in which the author did this. (Author/ND)

  5. Against integration - Why evolution cannot unify the social sciences

    NARCIS (Netherlands)

    Derksen, M

    A lack of integration is often identified as a fundamental problem in psychology and the social sciences. It is thought that only through increased cooperation among the various disciplines and subdisciplines, and integration of their different theoretical approaches, can psychology and the social

  6. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    Science.gov (United States)

    Rieman, Bruce; Dunham, Jason B.; Clayton, James

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions. Two solutions have been proposed to guide management in the face of that uncertainty: the use of “natural variability” in key environmental patterns, processes, or disturbance as a reference; and the retention of some areas as essentially unmanaged reserves to conserve and represent as much biological diversity as possible. Both concepts are scale dependent because dominant processes or patterns that might be referenced will change with scale. Context and linkages across scales may be as important in structuring biological systems as conditions within habitats used by individual organisms. Both ideas view the physical environment as a template for expression, maintenance, and evolution of ecological diversity. To conserve or restore a diverse physical template it will be important to recognize the ecologically important differences in physical characteristics and processes among streams or watersheds that we might attempt to mimic in management or represent in conservation or restoration reserves.

  7. International Conference-Session of the Section of Nuclear Physics of the Physical Sciences Division of RAS

    CERN Document Server

    2014-01-01

    From November 17 to 21, 2014 the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences and the National Research Nuclear University MEPhI will hold in MEPhI, Moscow, the International Conference-Session of SNP PSD RAS "Physics of Fundamental Interactions". The program of the session covers basic theoretical and experimental aspects of particle physics and related problems of nuclear physics and cosmology, and will consist of 30-minute highlight and review talks as well as 10-15-minute contributed reports. All highlight talks and part of contributed reports will be presented at plenary sessions of the conference. The remaining reports will be presented at the sections which will be formed after receiving of abstracts. On the recommendation of the Organizing Committee reports and talks containing new unpublished results will be published in special issues of journals "Nuclear Physics" and "Nuclear Physics and Engineering". For the institutions belonging to the Rosatom s...

  8. Science Academies' 82nd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at Department of Physics, ... the participants to gain hands on experience with set of new experiments developed as a low cost kit by the Indian Academy of Sciences, Bangalore, Indian ...

  9. Factors that affect the physical science career interest of female students: Testing five common hypotheses

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-12-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.

  10. Does Everyone's Motivational Beliefs about Physical Science Decline in Secondary School?: Heterogeneity of Adolescents' Achievement Motivation Trajectories in Physics and Chemistry.

    Science.gov (United States)

    Wang, Ming-Te; Chow, Angela; Degol, Jessica Lauren; Eccles, Jacquelynne Sue

    2017-08-01

    Students' motivational beliefs about learning physical science are critical for achieving positive educational outcomes. In this study, we incorporated expectancy-value theory to capture the heterogeneity of adolescents' motivational trajectories in physics and chemistry from seventh to twelfth grade and linked these trajectories to science-related outcomes. We used a cross-sequential design based on three different cohorts of adolescents (N = 699; 51.5 % female; 95 % European American; M ages for youngest, middle, and oldest cohorts at the first wave = 13.2, 14.1, and 15.3 years) coming from ten public secondary schools. Although many studies claim that physical science motivation declines on average over time, we identified seven differential motivational trajectories of ability self-concept and task values, and found associations of these trajectories with science achievement, advanced science course taking, and science career aspirations. Adolescents' ability self-concept and task values in physics and chemistry were also positively related and interlinked over time. Examining how students' motivational beliefs about physical science develop in secondary school offers insight into the capacity of different groups of students to successfully adapt to their changing educational environments.

  11. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    Science.gov (United States)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  12. Weerts to lead Physical Sciences and Engineering directorate | Argonne

    Science.gov (United States)

    Physical Sciences and Engineering directorate By Lynn Tefft Hoff * August 10, 2015 Tweet EmailPrint Hendrik Engineering (PSE) directorate at the U.S. Department of Energy's Argonne National Laboratory. Weerts has , chemistry, materials science and nanotechnology. Weerts joined Argonne in 2005 as director of Argonne's High

  13. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... India; Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan; Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-11, Japan; Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Robert-Mayer-Str. 10, 60325 Frankfurt ...

  14. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods

    NARCIS (Netherlands)

    Waltman, L.R.; Van, Raan A.F.J.; Smart, S.

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach

  15. Understanding Middle School Students' Perceptions of Physics Using Girl-Friendly and Integrated STEM Strategies: A Gender Study

    Science.gov (United States)

    Dare, Emily Anna

    According to the American Physical Society, women accounted for only 20% of bachelor's degrees in the fields of physics and engineering in 2010. This low percentage is likely related to young girls' K-12 education experiences, particularly their experiences prior to high school, during which time young women's perceptions of Science, Technology, Engineering, and Math (STEM) and STEM careers are formed (Catsambis, 1995; Maltese & Tai, 2011; National Research Council, 2012; Sadler, Sonnert, Hazari, & Tai, 2012; Tai, Liu, Maltese, & Fan, 2006; Scantlebury, 2014; Sikora & Pokropek, 2012). There are no significant gender differences in academic achievement in middle school, yet young women have less positive attitudes towards careers in science than their male peers (Catsambis, 1995; Scantlebury, 2014). This suggests that the low female representation in certain STEM fields is a result of not their abilities, but their perceptions; for fields like physics where negative perceptions persist (Haussler & Hoffman, 2002; Labudde, Herzog, Neuenschander, Violi, & Gerber, 2000), it is clear that middle school is a critical time to intervene. This study examines the perceptions of 6th grade middle school students regarding physics and physics-related careers. A theoretical framework based on the literature of girl-friendly and integrated STEM strategies (Baker & Leary, 1995; Halpern et al., 2007; Haussler & Hoffman, 2000, 2002; Labudde et al., 2000; Moore et al., 2014b; Newbill & Cennamo, 2008; Rosser, 2000; Yanowitz, 2004) guided this work to understand how these instructional strategies may influence student's perceptions of physics for both girls and boys. The overarching goal of this work was to understand similarities and differences between girls' and boys' perceptions about physics and physics-related careers. This convergent parallel mixed-methods study uses a series of student surveys and focus group interviews to identify and understand these similarities and

  16. Application of Model Project Based Learning on Integrated Science in Water Pollution

    Science.gov (United States)

    Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.

    2017-09-01

    The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.

  17. More than "Cool Science": Science Fiction and Fact in the Classroom

    Science.gov (United States)

    Singh, Vandana

    2014-02-01

    The unfortunate negative attitude toward physics among many students, including science majors, warrants creative approaches to teaching required physics courses. One such approach is to integrate science fiction into the curriculum, either in the form of movies or the written word. Historically this has been done since at least the 1970s, and by now many universities and colleges have courses that incorporate science fiction stories or film. The intent appears to be to a) increase student interest in physics, b) increase the imaginative grasp of the student, and c) enable a clearer understanding of physics concepts. Reports on these experiments, from Freedman and Little's classic 1980 paper to more recent work like that of Dubeck et al.,2 Dark,3 and Smith,4 indicate that such innovative approaches do work. I was curious as to whether a combination of science fiction and science fact (in the form of a science news article) might enhance the benefits of including science fiction. Below I describe how I used a science fiction story along with a science article on a related theme to pique the interest of students in a new and exciting area of research that was nevertheless connected to the course material.

  18. Academic integrity in the online learning environment for health sciences students.

    Science.gov (United States)

    Azulay Chertok, Ilana R; Barnes, Emily R; Gilleland, Diana

    2014-10-01

    The online learning environment not only affords accessibility to education for health sciences students, but also poses challenges to academic integrity. Technological advances contribute to new modes of academic dishonesty, although there may be a lack of clarity regarding behaviors that constitute academic dishonesty in the online learning environment. To evaluate an educational intervention aimed at increasing knowledge and improving attitudes about academic integrity in the online learning environment among health sciences students. A quasi-experimental study was conducted using a survey of online learning knowledge and attitudes with strong reliability that was developed based on a modified version of a previously developed information technology attitudes rating tool with an added knowledge section based on the academic integrity statement. Blended-learning courses in a university health sciences center. 355 health sciences students from various disciplines, including nursing, pre-medical, and exercise physiology students, 161 in the control group and 194 in the intervention group. The survey of online learning knowledge and attitudes (SOLKA) was used in a pre-post test study to evaluate the differences in scores between the control group who received the standard course introduction and the intervention group who received an enhanced educational intervention about academic integrity during the course introduction. Post-intervention attitude scores were significantly improved compared to baseline scores for the control and intervention groups, indicating a positive relationship with exposure to the information, with a greater improvement among intervention group participants (pacademic integrity in the online environment. Emphasis should be made about the importance of academic integrity in the online learning environment in preparation for professional behavior in the technologically advancing health sciences arena. Copyright © 2013 Elsevier Ltd. All

  19. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    Science.gov (United States)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  20. Mediating relationship of differential products in understanding integration in introductory physics

    Science.gov (United States)

    Amos, Nathaniel; Heckler, Andrew F.

    2018-01-01

    In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and administered the instrument to over 1000 students in first and second semester introductory physics courses. Using a regression-based mediation analysis with conceptual understanding of integration as the dependent variable, we found evidence consistent with a simple mediation model: the relationship between differentials scores and integral scores may be mediated by the understanding of differential products. The indirect effect (a quantifiable metric of mediation) was estimated as a b =0.29 , 95% CI [0.25, 0.33] for N =1102 Physics 1 students, and a b =0.27 , 95% CI [0.14, 0.48] for N =65 Physics 2 students. We also find evidence that the physical context of the questions can be an important factor. These results imply that for introductory physics courses, instructional emphasis first on differentials then on differential products in a variety of contexts may in turn promote better integral understanding.

  1. Factors that encourage females to pursue physical science careers: Testing five common hypotheses

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sadler, Philip M.; Sonnert, Gerhard

    2012-03-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using Propensity Score Matching (PSM) on national data (n=7505) drawn from the Persistence Research in Science and Engineering (PRiSE) project, we test five commonly held beliefs including having a single-sex physics class, having a female physics teacher, having female scientist guest speakers in physics class, discussing the work of women scientists in physics class, and discussing the under-representation of women in physics class. The effect of these experiences is compared for female students who are matched on several factors, including parental education, prior science/math interests, and academic background, thereby controlling for the effect of many confounding variables.

  2. The Science Shop for Physics: an interface between practical problems in society and physical knowledge

    Science.gov (United States)

    van den Berg, G. P.

    1998-03-01

    Since some 20 years most Dutch universities have one or more science shops. Central shops handle research questions for all disciplines. Specialized shops are part of a department of chemistry or medicine, history, social science, etc. The shops have evolved rather differently, but their main mission still is to help social groups that lack money and have no easy access to scientific knowledge, e.g. neighbourhood, environmental, third world or patient groups. Most also help non-commercial organizations such as schools, trade unions or local authorities. Low-cost help can be provided because students do the work as part of their training, mainly in student projects (literature search, practical work, graduation, etc.). A total staff of 80, helped by 600 students, 250 voluntary and 50 paid researchers, handle 1500 questions resulting in 300 reports (estimated figures 1995). Science shops for physics (`Physics Shop', PS) have to deal with practical problems, generally involving classical physics. Major topics are noise, vibration, radiation, indoor climate and energy: most of the work lies in estimating/measuring relevant parameters, assessing impact, seeking solutions. The 3 Dutch PS's have developed in different directions. One is run entirely by students and deals with small, concrete problems. The second PS is managed by a co-ordinator who mediates between client groups and physics staff members who assist students in small and larger projects. The third has a lot of in-house expertise, and the shop staff is in direct contact with client groups as well as students who work in the PS itself. In questions submitted to the PS it is not always immediately clear what to do or how to do it because of the non-scientific phrasing of the problems and problems include non-physical (e.g. technical, health or legal) aspects. Also, difficulties in solving the problems are typically not in the underlying physics, but in the lack of accurate data and of control of the complex

  3. Integral equations and their applications

    CERN Document Server

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  4. PHYSICAL SCIENCE TEACHERS’ PERCEPTIONS OF AN ADVANCED CERTIFICATE IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Sarah Bansilal

    2016-04-01

    Full Text Available Advanced Certificate in Education programmes was offered by many South African universities to provide opportunities for teachers to upgrade their positions. The purpose of the study was to explore Physical Science teachers’ perceptions of their professional development. In this study we considered three domains of professional development which are content knowledge, pedagogic content knowledge and teacher beliefs and attitudes. This study used a mixed method approach using the form of an embedded design. The study was conducted with 156 students enrolled in an ACE Physical Science programme. The teachers stated that their content knowledge and pedagogic content knowledge had not only improved, but also their engagement with actual laboratories, and conducting experiments contributed to their teaching experiences. Hence, their self-confidence of physical science teaching evolved. The authors recommend that the ACE programme should also include a mentoring system with teaching practicum via school leadership and subject advisers.

  5. The wisdom of nature in integrating science, ethics and the arts.

    Science.gov (United States)

    Moser, A

    2000-07-01

    This paper deals with an approach to the integration of science (with technology and economics), ethics (with religion and mysticism), the arts (aesthetics) and Nature, in order to establish a world-view based on holistic, evolutionary ethics that could help with problem solving. The author suggests that this integration is possible with the aid of "Nature's wisdom" which is mirrored in the macroscopic pattern of the ecosphere. The corresponding eco-principles represent the basis for unifying soft and hard sciences resulting in "deep sciences". Deduction and induction will remain the methodology for deep sciences and will include conventional experiments and aesthetic and sentient experiences. Perception becomes the decisive factor with the senses as operators for the building of consciousness through the subconscious. In this paper, an attempt at integrating the concepts of the "true", the "right" and the "beautiful" with the aid of Nature's wisdom is explained in more detail along with consequences.

  6. [Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].

    Science.gov (United States)

    Gómez, Amparo

    2014-01-01

    This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.

  7. Barriers to undergraduate peer-physical examination of the lower limb in the health sciences and strategies to improve inclusion: a review.

    Science.gov (United States)

    Hendry, Gordon James

    2013-10-01

    Peer-physical examination is a widely adopted and an integral component of the undergraduate curriculum for many health science programs. Unwillingness or perceived inability to participate in peer-physical examination classes may have a negative impact upon students' abilities to competently conduct physical examinations of patients in future as registered health professionals. A literature review on the perceptions and attitudes of peer-physical examination of the lower limb amongst medical and health science students was conducted to identify potential barriers to participation, and to review strategies to improve participation in classes designed to develop clinical examination skills. A pragmatic search strategy of the literature from PubMed and Google Scholar published prior to June 2012 yielded 23 relevant articles. All articles were concerned with the views of medical students' education and there were no articles explicitly addressing the role of peer-physical examination in health science disciplines. Several ethical issues were identified including feelings of coercion, embarrassment, and perceptions of a lack of consideration for cultural and religious beliefs. The available evidence suggests that barriers to participation may be overcome by implementing standard protocols concerned with obtaining informed written consent, adequate choice of peer-examiner, changing facilities and garment advice, and possible alternative learning methods.

  8. Exploring what contributes to the knowledge development of secondary physics and physical science teachers in a continuous professional development context

    Science.gov (United States)

    Nelms, April Wagnon

    This dissertation used qualitative methodologies, specifically phenomenological research, to investigate what contributes to the development of pedagogical content knowledge (PCK) of physics and physical science teachers who participate in a content-specific continuous professional development program. There were five participants in this study. The researcher conducted participant observations and interviews, rated participants degree of reformed teaching practices using the Reformed Teaching Observation Protocol, surveyed participants' self-efficacy beliefs using the Science Teacher Efficacy Belief Instrument "A," and rated participants'' level of PCK using the PCK Rubrics.. All data were analyzed, and a composite description of what contributes to physics and physical science teachers' PCK development through a continuous professional development program emerged. A theory also emerged from the participants' experiences pertaining to how teachers' assimilate new conditions into their existing teaching schema, how conditions change teachers' perceptions of their practice, and outcomes of teachers' new ideas towards their practice. This study contributed to the literature by suggesting emergent themes and a theory on the development of physics and physical science teachers' PCK. PCK development is theorized to be a spiral process incorporating new conditions into the spiral as teachers employ new science content knowledge and pedagogical practices in their individual classroom contexts.

  9. Partial differential equations of mathematical physics and integral equations

    CERN Document Server

    Guenther, Ronald B

    1996-01-01

    This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 68; Issue 4. Issue front cover thumbnail. Volume 68, Issue 4. April 2007, pages 535-706. pp 535-545 Research Articles ..... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  11. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ramazan Koç1 M Yakup Haciibrahimoğlu1 Mehmet Koca2. Department of Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey; Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Oman ...

  12. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  13. Progress report - physical sciences - physics division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    1991-09-01

    This is the second in the new series of reports for the Physics Division since the creation of the Physical Sciences Unit in 1990. This report has been subdivided into three self-contained sections covering the activities in the branches for Accelerator Physics, Neutron and Solid State Physics and Theoretical Physics. It is noteworthy that the RFQ1 program with the original vanes has come to a successful conclusion having accelerated 79 mA of protons to 600 keV. The new vanes to achieve a high energy of 1.2 MeV have now been installed and will form the basis for the low energy end of high current proton accelerator development. The progress in the neutron scattering program has been hampered by the NRU reactor being down for repairs since January 1991. Nevertheless a very successful opening ceremony was held to mark the completion of the new DUALSPEC spectrometers and several workshops have been held to promote the understanding of neutron scattering

  14. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  15. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 1 ..... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and Current Science, has ... Please take note of this change.

  16. A survey of computational physics introductory computational science

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2008-01-01

    Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 1. The origin of the solar magnetic cycle. Arnab Rai Choudhuri. Volume 77 ... Keywords. Sun: activity; Sun: magnetic fields; sunspots. ... Author Affiliations. Arnab Rai Choudhuri1. Department of Physics, Indian Institute of Science, Bangalore 560 012, India ...

  18. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 1. Issue front cover thumbnail. Volume 89, Issue 1. July 2017. Proceedings of the 3rd E-Workshop/Conference on Computational Condensed Matter Physics and Materials Science. Article ID 1 Special Issue.

  19. Multi-Objective Optimization in Physical Synthesis of Integrated Circuits

    CERN Document Server

    A Papa, David

    2013-01-01

    This book introduces techniques that advance the capabilities and strength of modern software tools for physical synthesis, with the ultimate goal to improve the quality of leading-edge semiconductor products.  It provides a comprehensive introduction to physical synthesis and takes the reader methodically from first principles through state-of-the-art optimizations used in cutting edge industrial tools. It explains how to integrate chip optimizations in novel ways to create powerful circuit transformations that help satisfy performance requirements. Broadens the scope of physical synthesis optimization to include accurate transformations operating between the global and local scales; Integrates groups of related transformations to break circular dependencies and increase the number of circuit elements that can be jointly optimized to escape local minima;  Derives several multi-objective optimizations from first observations through complete algorithms and experiments; Describes integrated optimization te...

  20. An Integrated Science Glovebox for the Gateway Habitat

    Science.gov (United States)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  1. Excel 2013 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching physical sciences statistics effectively. Similar to the previously published Excel 2010 for Physical Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their ...

  2. Performance Determinants in Physical Sciences for ODL ...

    African Journals Online (AJOL)

    Identifying performance determinants in physical science subjects for students studying through open and distance learning modes in higher learning institutions requires wider range of intuition than it is for conventional institutions. Using data from The Open University of Tanzania, this paper has unearthed some of the ...

  3. Differences within: A comparative analysis of women in the physical sciences --- Motivation and background factors

    Science.gov (United States)

    Dabney, Katherine Patricia Traudel

    Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among underrepresented groups such as females in the physical sciences (Hill et al., 2010; National Academy of Sciences, 2007). The majority of existing STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following questions: 1. On average, do females who select chemistry or physics doctoral programs differ in their reported personal motivations and background factors prior to entering the field? 2. Do such variables as racial and ethnic background, age, highest level of education completed by guardians/parents, citizenship status, family interest in science, first interest in general science, first interest in the physical sciences, average grades in high school and undergraduate studies in the physical sciences, and experiences in undergraduate physical science courses explain a significant amount of variance in female physical scientists' years to Ph.D. completion? These questions are analyzed using variables from the Project Crossover Survey dataset through a subset of female physical science doctoral students and scientists. Logistic regression analyses are performed to uncover what differentiates women in the physical sciences based on their background, interest, academic achievement, and experiences ranging prior to elementary school through postsecondary education. Significant variables that positively predict a career choice in chemistry or physics include content specific high school and undergraduate academic achievement and positive

  4. Trends in integrated circuit design for particle physics experiments

    International Nuclear Information System (INIS)

    Atkin, E V

    2017-01-01

    Integrated circuits are one of the key complex units available to designers of multichannel detector setups. A whole number of factors makes Application Specific Integrated Circuits (ASICs) valuable for Particle Physics and Astrophysics experiments. Among them the most important ones are: integration scale, low power dissipation, radiation tolerance. In order to make possible future experiments in the intensity, cosmic, and energy frontiers today ASICs should provide new level of functionality at a new set of constraints and trade-offs, like low-noise high-dynamic range amplification and pulse shaping, high-speed waveform sampling, low power digitization, fast digital data processing, serialization and data transmission. All integrated circuits, necessary for physical instrumentation, should be radiation tolerant at an earlier not reached level (hundreds of Mrad) of total ionizing dose and allow minute almost 3D assemblies. The paper is based on literary source analysis and presents an overview of the state of the art and trends in nowadays chip design, using partially own ASIC lab experience. That shows a next stage of ising micro- and nanoelectronics in physical instrumentation. (paper)

  5. Science and Cooking: Motivating the Study of Freshman Physics

    Science.gov (United States)

    Weitz, David

    2011-03-01

    This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.

  6. [Problems of world outlook and methodology of science integration in biological studies].

    Science.gov (United States)

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  7. Can We Integrate Qualitative and Quantitative Research in Science Education?

    Science.gov (United States)

    Niaz, Mansoor

    The main objective of this paper is to emphasize the importance of integrating qualitative and quantitative research methodologies in science education. It is argued that the Kuhnian in commensurability thesis (a major source of inspiration for qualitative researchers) represents an obstacle for this integration. A major thesis of the paper is that qualitative researchers have interpreted the increased popularity of their paradigm (research programme) as a revolutionary break through in the Kuhnian sense. A review of the literature in areas relevant to science education shows that researchers are far from advocating qualitative research as the only methodology. It is concluded that competition between divergent approaches to research in science education (cf. Lakatos, 1970) would provide a better forum for a productive sharing of research experiences.

  8. Measurement in Physical Education and Exercise Science: A Brief Report on 2017

    Science.gov (United States)

    Myers, Nicholas D.; Lee, Seungmin; Kostelis, Kimberly T.

    2018-01-01

    The purpose of this annual report is to provide a summary of measurement in physical education and exercise science-related activities in 2017. A recent trend for an annual increase in manuscript submissions to measurement in physical education and exercise science continued in 2017. Twenty-nine countries were represented (i.e., corresponding…

  9. For the Love of Science: Learning Orientation and Physical Science Success

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Tai, Robert; Almarode, John

    2010-02-01

    An individual's motivational orientation serves as a drive to action and can influence their productivity. This study examines how the goal orientation of students towards the pursuit of their graduate degree in physics and chemistry influences their future success outcomes as practicing scientists. Two main orientations are focused on: performance (or ego/ability) orientation and learning (or task/mastery) orientation. The data was obtained as part of Project Crossover, which applied a mixed methodological approach to studying the transition from graduate student to scientist in the physical sciences. Using regression analysis on survey data from 2353 PhD holders in physics and chemistry, we found that individuals exhibiting a learning orientation were more productive than those exhibiting a performance orientation in terms of first-author publications and grant funding. Furthermore, given equal salary, learning-oriented physical scientists produced more first-author publications than average. )

  10. History of Science in Physics Teaching: A Study About the Teaching of Gravitational Attraction Developed Among Prospective Teachers

    Directory of Open Access Journals (Sweden)

    Sandra Regina Teodoro Gatti

    2010-03-01

    Full Text Available We report here some outcomes of a research related to a didactical experience aiming to integrate the History of Science to the Physics Teaching, taking as background the historical development of the gravitational attraction. The research, of qualitative approach, is a case study and it was carried out in a sample of eleven students belonging to an undergraduate physics program (called licenciatura in Brazil designed to from High School physics teachers in a São Paulo State Public University. We tried initially to reveal prospective teachers’ conceptions in order to provide a prepare that was used to guide the activities from the reality’s diagnosis. The aim was to promote discussions on the existence and persistence of alternative conceptions, on the historical evolution of the subject gravitational attraction, through readings and debates of texts contemplating recent subjects on the Science Education research, in order to generate dissatisfaction with traditional teaching models. The future High School physics teachers were asked to construct their own teaching proposal, through the development, in real situations, in a High School, of a mini-course based on: debates and synthesis developed in University classroom, the History of the Science and the student’s alternative conceptions. In this paper we will analyze future teachers’ alternative conceptions, the development of the course proposed, and details of the mini-courses taught by the prospective teachers in real situations, among High School students, its coherence and the posture changes observed in them.

  11. Integrating Social Science and Ecosystem Management: A National Challenge

    Science.gov (United States)

    Cordell; H. Ken; Linda Caldwell

    1995-01-01

    These proceedings contain the contributed papers and panel presentations, as well as a paper presented at the National Workshop, of the Conference on Integrating Social Sciences and Ecosystem Management, which was held at Unicoi Lodge and Conference Center, Helen, GA, December 12-14, 1995. The overall purpose of this Conference was to improve understanding, integration...

  12. Integration and Physical Education: A Review of Research

    Science.gov (United States)

    Marttinen, Risto Harri Juhani; McLoughlin, Gabriella; Fredrick, Ray, III; Novak, Dario

    2017-01-01

    The Common Core State Standards Initiative has placed an increased focus on mathematics and English language arts. A relationship between physical activity and academic achievement is evident, but research on integration of academic subjects with physical education is still unclear. This literature review examined databases for the years…

  13. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  14. Towards an integrated management of health physics and medical physics

    International Nuclear Information System (INIS)

    Mommaert, Chantal; Rogge, Frank; Cortenbosch, Geert; Schmitz, Frederic

    2007-01-01

    AVN is a licensed body that performs health physics control in different types of installations, from large nuclear facilities to small dentist cabinets. AVN can also provide medical physics services for the quality control of, for instance, medical devices used in a radiology or nuclear medicine department. Radiation protection for personnel and environment (health physics) and radiation protection for the patient (medical physics) are usually treated separately, using different referential documents, such as the European Directives 96/29/Euratom for health physics and 97/43/Euratom for medical physics. This difference is also clearly reflected in the Belgium legislation (two types of accreditation/licence for inspectors, different chapters in the law,..) From a practical point of view it is sometimes rather difficult to split the task 'on site' during an inspection. An RX system not complying with radiation protection criteria can definitively affect the patient as well as the workers. On the other hand, the hospitals, cannot easily differentiate these two tasks because they are not fully aware of the legislation and they are mixing both. Taking into account the health physics guidelines as well as medical physics guidelines, we have decided to move to an integrated approach of these two concepts. (orig.)

  15. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-01-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…

  16. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Science.gov (United States)

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  17. Introduction to Integral Calculus Systematic Studies with Engineering Applications for Beginners

    CERN Document Server

    Rohde, Ulrich L; Poddar, Ajay K; Ghosh, A K

    2011-01-01

    An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with cle

  18. Using hierarchical linear models to test differences in Swedish results from OECD’s PISA 2003: Integrated and subject-specific science education

    Directory of Open Access Journals (Sweden)

    Maria Åström

    2012-06-01

    Full Text Available The possible effects of different organisations of the science curriculum in schools participating in PISA 2003 are tested with a hierarchical linear model (HLM of two levels. The analysis is based on science results. Swedish schools are free to choose how they organise the science curriculum. They may choose to work subject-specifically (with Biology, Chemistry and Physics, integrated (with Science or to mix these two. In this study, all three ways of organising science classes in compulsory school are present to some degree. None of the different ways of organising science education displayed statistically significant better student results in scientific literacy as measured in PISA 2003. The HLM model used variables of gender, country of birth, home language, preschool attendance, an economic, social and cultural index as well as the teaching organisation.

  19. METHODOLOGY OF ORGANIZATION OF INTEGRATED LESSONS OF NATURAL-SCIENCE CYCLE (ON THE EXAMPLE OF TEACHING SPE STUDENTS

    Directory of Open Access Journals (Sweden)

    Alsou Raufovna Kamaleeva

    2015-09-01

    Full Text Available In the process of transition of Russian organizations of secondary professional education to educational standards of the third generation educational process is reduced to formation of students’ competences. This article presents methodology of creating integrated lessons of natural-science cycle (for example, in physics and informatics. These lessons are constructed on the basis of interdisciplinary integration and focused on task solution. The main purpose is to teach students how to solve particular tasks in physics with the use of informatics, in particular on the basis of algorithmization and programming (Pascal language. Didactic conditions, which are the basis of the algorithm of designing corresponding tasks, are described in this article. Structural components of the integrated lessons created on the traditional principle are marked out. During the research we observed that realization of all stages of the corresponding lessons in practice allows the teacher to create educational process over the borders of disciplinary basis. This approach helps to form generalization of knowledge. Being one of the most optimal forms of education, an integrated lesson allows students to solve various educational and professional problems in non-standard situations and stimulates their cognitive activity and their involvement in the process of education and their responsibility for the result which promotes an intensification of educational process.

  20. Professional preferences of students in physical education and sport sciences

    Directory of Open Access Journals (Sweden)

    Jerónimo García Fernández

    2013-01-01

    Full Text Available The actual context has enhanced job opportunities in the field of sport in order to respond to the current market demand. Thus, Physical Education and Sport Science graduates who begin to do differents jobs to the traditional ones but relate to their study field. The aim of this study was to guess which are the job preferences of the students of Physical Education and Sport Science of Seville University by gender and age doing the second cycle of their college degree and determine if there are significant differences. A descriptive analysis was carried out, using a questionnaire based on several researches, it was related to professional opportunities in sport sciences. The sample was of 118 students which represented 40.7% of the overall registered students. Results shown that sport management is the most preferable professional opportunity for women and men of the total sample, following in second place by teaching in secondary school for people older than 25 years of both sexes and teaching in primary school for the younger than 25 years. These findings announce changes in occupational trends in sports, to be taken into account in the framework of the European higher education (Degree of Science in Sport and Physical Activity, own US Masters and Official, lifelong learning programs....

  1. Popular Science: Introductory Physics Textbooks for Home Economics Students

    Science.gov (United States)

    Behrman, Joanna

    2014-03-01

    For many decades now there has been an ongoing debate about the way and extent to which physics ought to be popularized by appealing to a student's every day experience. Part of this debate has focused on how textbooks, a major factor shaping students' education, ought to be written and presented. I examine the background, passages, and problems of two examples drawn from the special genre of ``Household Physics'' textbooks which were published largely between 1910 and 1940. The pedagogy of applying or relating physics to the everyday experience engenders values defining how and by whom science is to be applied. These books are particularly evocative, as well, of the extent to which gender can be tied to differing everyday experiences and the consequences therefore of using experiential examples. Using popular science textbooks can alienate students by drawing an implicit division between the reader and the practicing scientist.

  2. Career-Oriented Performance Tasks in Chemistry: Effects on Students Integrated Science Process Skills

    OpenAIRE

    Allen A. Espinosa; Sheryl Lyn C. Monterola; Amelia E. Punzalan

    2013-01-01

    The study was conducted to assess the effectiveness of Career-Oriented Performance Task (COPT) approach against the traditional teaching approach (TTA) in enhancing students’ integrated science process skills. Specifically, it sought to find out if students exposed to COPT have higher integrated science process skills than those students exposed to the traditional teaching approach (TTA). Career-Oriented Performance Task (COPT) approach aims to integrate career-oriented examples and inquiry-b...

  3. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  4. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    Science.gov (United States)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design

  5. 75 FR 6651 - Office of Science; High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-02-10

    ... DEPARTMENT OF ENERGY Office of Science; High Energy Physics Advisory Panel AGENCY: Department of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Public Law 92- 463, 86 Stat. 770) requires...; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  6. Interactive Whiteboard Use in High-Tech Science Classrooms: Patterns of Integration

    Directory of Open Access Journals (Sweden)

    Rena Stroud

    2014-10-01

    Full Text Available Interactive whiteboard (IWB use has been associated with increased student motivation, engagement, and achievement, though many studies ignore the role of the teacher in effecting those positive changes. The current study followed the practice of 28 high school science teachers as they integrated the IWB into their regular classroom activities. The extent of teachers’ adoption and integration fell along a continuum, from the technologically confident “early adopter” to the low-use “resistant adopter.” Patterns of use are explored by extracting data from representative teachers’ practice. Science-specific benefits of IWB use, barriers to integration, and lessons learned for professional development are discussed.

  7. The Nobel Prize in the Physics Class: Science, History, and Glamour

    Science.gov (United States)

    Eshach, Haim

    2009-01-01

    This paper introduces a novel strategy for teaching physics: using the Nobel Physics Prize as an organizational theme for high school or even first year university physics, bringing together history, social contexts of science, and central themes in modern physics. The idea underlying the strategy is that the glamour and glitter of the Nobel Prize…

  8. A Study of Common Beliefs and Misconceptions in Physical Science

    Science.gov (United States)

    Stein, Mary; Larrabee, Timothy G.; Barman, Charles R.

    2008-01-01

    The Science Belief Test is an online instrument comprised of 47 statements that require true or false responses and request written explanations to accompany these responses. It targets topics in chemistry, physics, biology, earth science, and astronomy and was initially designed to assess preservice elementary teachers' beliefs about general…

  9. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    Science.gov (United States)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  10. 5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016)

    International Nuclear Information System (INIS)

    Vagenas, Elias C.; Vlachos, Dimitrios S.

    2016-01-01

    The 5th International Conference on Mathematical Modeling in Physical Sciences (IC- MSQUARE) took place at Athens, Greece, from Monday, 23"t"h of May, to Thursday, 26"t"h of May 2016. The Conference was attended by more than 130 participants and hosted about 170 oral, poster, and virtual presentations while counted more than 500 pre-registered authors. The 5"t"h IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with high level talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. (paper)

  11. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1980-09-01

    This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department

  12. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  13. Progress report. Physics and Health Sciences, Physics Section (1987 January 01-June 30)

    International Nuclear Information System (INIS)

    1987-12-01

    This report covers the third semi-annual period since the Research Company was reorganized. A highlight of the period was the first peer review of all the activities in Physics and Health Sciences by external examiners. The review was conducted in April by three separate Technical Review Committees (TRC) one for each of the three main areas: health sciences, nuclear physics and condensed matter physics. In all cases the TRCs gave strong support to our programs under the following mandate. To assess research programs with respect to (a) their quality, and (b) their relevance to Canada. The programs by the Nuclear Physics TRC reviewed were: heavy ion reaction studies; gamma-ray studies of high spin states; exotic nuclei and weak interactions; neutron and neutrino physics; TASCC operation and development; and theoretical physics. The programs reviewed by the Condensed Matter TRC were: liquid helium; amorphous ice; orientationally disordered solids; structural phase transitions; low dimensional systems; actinide magnetism and heavy fermion superconductors; molecular biophysics; applied neutron diffraction (ANDI); and theoretical solid state physics. A mechanism for the evaluation of the strategy for the National Fusion Program has been developed and the process is under way. The successful completion of the 8-pi spectrometer by Chalk River and the Universities of Montreal and McMaster, plus the vigorous and highly successful experimental program in progress on it were the outstanding achievement of the period. Good progress is being made in the detailing of a program in heavy ion nuclear reactions, and the specification of equipment for that program have been made. Some difficulties with the new Vivirad resistors for the MP tandem were encountered, however the manufacturer now seems to have solved the problem

  14. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  15. Leveraging Citizen Science and Information Technology for Population Physical Activity Promotion

    Science.gov (United States)

    King, Abby C.; Winter, Sandra J.; Sheats, Jylana L.; Rosas, Lisa G.; Buman, Matthew P.; Salvo, Deborah; Rodriguez, Nicole M.; Seguin, Rebecca A.; Moran, Mika; Garber, Randi; Broderick, Bonnie; Zieff, Susan G.; Sarmiento, Olga Lucia; Gonzalez, Silvia A.; Banchoff, Ann; Dommarco, Juan Rivera

    2016-01-01

    PURPOSE While technology is a major driver of many of society’s comforts, conveniences, and advances, it has been responsible, in a significant way, for engineering regular physical activity and a number of other positive health behaviors out of people’s daily lives. A key question concerns how to harness information and communication technologies (ICT) to bring about positive changes in the health promotion field. One such approach involves community-engaged “citizen science,” in which local residents leverage the potential of ICT to foster data-driven consensus-building and mobilization efforts that advance physical activity at the individual, social, built environment, and policy levels. METHOD The history of citizen science in the research arena is briefly described and an evidence-based method that embeds citizen science in a multi-level, multi-sectoral community-based participatory research framework for physical activity promotion is presented. RESULTS Several examples of this citizen science-driven community engagement framework for promoting active lifestyles, called “Our Voice”, are discussed, including pilot projects from diverse communities in the U.S. as well as internationally. CONCLUSIONS The opportunities and challenges involved in leveraging citizen science activities as part of a broader population approach to promoting regular physical activity are explored. The strategic engagement of citizen scientists from socio-demographically diverse communities across the globe as both assessment as well as change agents provides a promising, potentially low-cost and scalable strategy for creating more active, healthful, and equitable neighborhoods and communities worldwide. PMID:27525309

  16. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  17. Integration of Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, M.; Eggermont, G

    2002-04-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised.

  18. Integration of Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Bovy, M.; Eggermont, G.

    2002-01-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised

  19. Integrating Leadership Development throughout the Undergraduate Science Curriculum

    Science.gov (United States)

    Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.

    2016-01-01

    This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…

  20. Excel 2016 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical physical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand physical science problems. Practice problems are provided at the end of each chapter with their s...

  1. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. V P Patel. Articles written in Pramana – Journal of Physics. Volume 59 Issue 5 November 2002 pp 753-759. New modifications in 15 UD pelletron at Nuclear Science Centre · S Chopra N S Pawar M P Singh Rakesh Kumar J Prasad V P Patel Raj Pal B Kumar S Ojha K ...

  2. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    Science.gov (United States)

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  3. Integrating numerical computation into the undergraduate education physics curriculum using spreadsheet excel

    Science.gov (United States)

    Fauzi, Ahmad

    2017-11-01

    Numerical computation has many pedagogical advantages: it develops analytical skills and problem-solving skills, helps to learn through visualization, and enhances physics education. Unfortunately, numerical computation is not taught to undergraduate education physics students in Indonesia. Incorporate numerical computation into the undergraduate education physics curriculum presents many challenges. The main challenges are the dense curriculum that makes difficult to put new numerical computation course and most students have no programming experience. In this research, we used case study to review how to integrate numerical computation into undergraduate education physics curriculum. The participants of this research were 54 students of the fourth semester of physics education department. As a result, we concluded that numerical computation could be integrated into undergraduate education physics curriculum using spreadsheet excel combined with another course. The results of this research become complements of the study on how to integrate numerical computation in learning physics using spreadsheet excel.

  4. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  5. Effectiveness of Adaptive Contextual Learning Model of Integrated Science by Integrating Digital Age Literacy on Grade VIII Students

    Science.gov (United States)

    Asrizal, A.; Amran, A.; Ananda, A.; Festiyed, F.

    2018-04-01

    Educational graduates should have good competencies to compete in the 21st century. Integrated learning is a good way to develop competence of students in this century. Besides that, literacy skills are very important for students to get success in their learning and daily life. For this reason, integrated science learning and literacy skills are important in 2013 curriculum. However, integrated science learning and integration of literacy in learning can’t be implemented well. Solution of this problem is to develop adaptive contextual learning model by integrating digital age literacy. The purpose of the research is to determine the effectiveness of adaptive contextual learning model to improve competence of grade VIII students in junior high school. This research is a part of the research and development or R&D. Research design which used in limited field testing was before and after treatment. The research instruments consist of three parts namely test sheet of learning outcome for assessing knowledge competence, observation sheet for assessing attitudes, and performance sheet for assessing skills of students. Data of student’s competence were analyzed by three kinds of analysis, namely descriptive statistics, normality test and homogeneity test, and paired comparison test. From the data analysis result, it can be stated that the implementation of adaptive contextual learning model of integrated science by integrating digital age literacy is effective to improve the knowledge, attitude, and literacy skills competences of grade VIII students in junior high school at 95% confidence level.

  6. Dogs, Cats, and Kids: Integrating Yoga into Elementary Physical Education

    Science.gov (United States)

    Toscano, Lisa; Clemente, Fran

    2008-01-01

    This article describes the benefits of integrating yoga into elementary physical education classes. Taught as warm-up exercises or as an entire class, yoga offers children of any age and physical ability the opportunity to experience success in physical activity. Children need to experience joy while participating in physical activity in order to…

  7. Some Critical Points in the Methods and Philosphy of Physical Sciences

    OpenAIRE

    Bozdemir, Süleyman

    2018-01-01

    Nowadays, it seems that there are not enough studies on the philosophy and methods of physical sciences that would be attractive to the researchers in the field. However, many revolutionary inventions have come from the mechanism of the philosophical thought of the physical sciences. This is, of course, a vast and very interesting topic that must be investigated in detail by philosophers, scientists or philosopher-scientists such as physicists. In order to do justice to it one has to write a ...

  8. Noted astrophysicist Michael S. Turner to Head NSF'S mathematical and physical sciences directorate

    CERN Multimedia

    2003-01-01

    "The National Science Foundation has named celebrated astrophysicist Michael S. Turner of the University of Chicago as Assistant Director for Mathematical and Physical Sciences. He will head a $1 billion directorate that supports research in mathematics, physics, chemistry, materials and astronomy, as well as multidisciplinary programs and education" (1/2 page).

  9. Overview of research in physics and health sciences at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Milton, J.C.D.

    1988-01-01

    Toxicology research was a logical extension of existing program at Chalk River. Research in radiotoxicology has been going on there since the early forties. An overview of the existing physics and health sciences research programs operating at the Research Company of Atomic Energy of Canada Limited was presented. Programs in nuclear physics, heavy ion nuclear physics, astrophysical neutrino physics, condensed matter physics, fusion, biology, dosimetry, and environmental sciences were briefly described. In addition, a description of the research company organization was provided

  10. Towson University's Professional Science Master's Program in Applied Physics: The first 5 years

    Science.gov (United States)

    Kolagani, Rajeswari

    It is a well-established fact that the scientific knowledge and skills acquired in the process of obtaining a degree in physics meet the needs of a variety of positions in multiple science and technology sectors. However, in addition to scientific competence, challenging careers often call for skills in advanced communication, leadership and team functions. The professional science master's degree, which has been nick-named as the `Science MBA', aims at providing science graduates an edge both in terms of employability and earning levels by imparting such skills. Our Professional Science Master's Program in Applied Physics is designed to develop these `plus' skills through multiple avenues. In addition to advanced courses in Applied Physics, the curriculum includes graduate courses in project management, business and technical writing, together with research and internship components. I will discuss our experience and lessons learned over the 5 years since the inception of the program in 2010. The author acknowledges support from the Elkins Professorship of the University System of Maryland.

  11. THE INTEGRATION OF EDUCATION AND SCIENCE AS A GLOBAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Rakitov

    2016-09-01

    Full Text Available Introduction: mankind is on the edge of a new techno-technological and socio-economical revolution generated by robotization and automation in all spheres of individual and socio-economical activity. Among numerous conceptions of global development only the conception of the knowledge-based society is the most adequate to contemporary terms. As the higher education and science are the main source of knowledge adequate to contemporary terms then their integration should be investigated. Materials and Methods: the material for this investigation was gathered as from individual experience in science and pedagogical activity of the author which were earlier published in hundreds of articles and fifteen monograph translated in eleven languages, as the materials of Moscow city seminar, the results of which were published in annual “Science of science investigations”. This annual has been editing since 2004 and the author is the editor-in-chief of this edition. Also has been used other sources from different editions. The method of comparative analysis was used. Results: the author put forward the conception of inevitable integration of higher school and research institutions and forming a new structure – science-education consortium. Only such united structure can significantly rise both scientific researchers and higher education. And as a result, it will rise publishing activity and application of scientific researchers in real econ omy, social sphere, technological leadership. Discussion and Conclusions: conception put forward in this article fragmentary has been published by author earlier and initiated discussion in scientific press, which was reflected in home RISC and abroad citation indexes. The author proclaims the inevitability of realization of the suggested by him conception of the utmost integration of science and higher education.

  12. Physics of Surfaces and Interfaces

    CERN Document Server

    Ibach, Harald

    2006-01-01

    This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. The Physics of Surfaces and Interfaces is designed as a handbook for the researcher as well as a study-text for graduate students in physics or chemistry with special interest in the surface sciences, material science, or the nanosciences. The experienced researcher, professional or academic teacher will appreciate the opportunity to share many insights and ideas that have grown out of the author's long experience. Readers will likewise appreciate the wide range of topics treated, each supported by extensive references. Graduate students will benefit f...

  13. ICT Integration in Science and Mathematics Lessons: Teachers ...

    African Journals Online (AJOL)

    The study reported in this paper used Guskey's model (Guskey, 2000) to systematically investigate teachers' experiences about the professional development programme on ICT integration in teaching and learning of Science and Mathematics in secondary schools. The study employed survey research design and an ...

  14. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    Science.gov (United States)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  15. PREFACE: International & Interdisciplinary Workshop on Novel Phenomena in Integrated Complex Sciences: from Non-living to Living Systems

    Science.gov (United States)

    Yoshimura, Kazuyoshi; Ohta, Hiroto; Murase, Masatoshi; Nishimura, Kazuo

    2012-03-01

    In this workshop recent advancements in experiments and theories were discussed on magnetism and superconductivity, emergent phenomena in biological material, chemical properties and economic problems of non-living and living systems. The aim of the workshop was to discuss old, but also new problems from a multidisciplinary perspective, and to understand the general features behind diversity in condensed matter physics, experimental chemistry and physics in biology and economic science. The workshop was broadly based, and was titled 'International & Interdisciplinary Workshop on Novel Phenomena in Integrated Complex Sciences from Non-living to Living Systems'. However, the primary focus was on magnetism and superconductivity, and NMR research into strongly correlated electrons. The meeting was held as an ICAM workshop, upon official approval in January 2010. Both young scientists and graduate students were invited. We hope that these young scientists had the chance to talk with invited speakers and organizers on their own interests. We thank the participants who contributed through their presentations, discussions and these papers to the advancement of the subject and our understanding. The proceedings are published here in the Journal of Physics: Conference Series (UK). We thank the International Advisory Committee for their advice and guidance: Evgeny Antipov Moscow State University, Russia Nicholas Curro University of California, Davis, USA Minghu Fang Zhejiang University, China Jurgen Haase University of Leipzig, Germany Takashi Imai McMaster University, Canada Peter Lemmens TU Braunschweig, Germany Herwig Michor Vienna TU, Austria Takamasa Momose University of British Columbia, Canada Raivo Stern NICPB, Estonia Louis Taillefer University of Sherbrooke, Canada Masashi Takigawa University of Tokyo, Japan This workshop was mainly organized by the International Research Unit of Integrated Complex System Science, Kyoto University, and was supported by ICAM

  16. The integration of the contents of the subject Physics-Chemistry (I in Biology-Chemistry specialty

    Directory of Open Access Journals (Sweden)

    M. Sc. Luis AZCUY LORENZ

    2017-12-01

    Full Text Available This work is the result of a research task developed in the Natural Sciences Education Department during 2013-2014 academic year, and it emerged from the necessity of solving some insufficiencies in the use of the real potentialities offered by the content of the subject Physics-Chemistry (I, that is part of the curriculum of the Biology-Chemistry career. Its main objective is to offer a set of exercises to contribute to achieve the integration of contents from the subject Physics-chemistry (I in the mentioned career at «Ignacio Agramonte Loynaz» University of Camaguey. The exercises proposed are characterized for being related to the real practice and to other subjects of the career. Their implementation through review lessons, partial tests and final evaluations during the formative experiment made possible a better academic result in the learners overall performance.

  17. Integrating Mathematics, Science, and Language Arts Instruction Using the World Wide Web.

    Science.gov (United States)

    Clark, Kenneth; Hosticka, Alice; Kent, Judi; Browne, Ron

    1998-01-01

    Addresses issues of access to World Wide Web sites, mathematics and science content-resources available on the Web, and methods for integrating mathematics, science, and language arts instruction. (Author/ASK)

  18. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    Science.gov (United States)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    DRECAM, Ecole Polytechnique, 91128 Palaiseau, France; Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, ...

  20. 100th anniversary of the discovery of cosmic rays (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 24 October 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled ''100th anniversary of the discovery of cosmic rays'', was held on 24 October 2012 in the conference hall of the Lebedev Physical Institute, RAS. The agenda of the session announced on the RAS Physical Sciences Division website www.gpad.ac.ru included the following reports: (1) Panasyuk M I (Skobeltsyn Institute of Nuclear Physics of the Lomonosov State University, Moscow) T he contribution of Russian scientists to the centennial history of the development of the physics of cosmic rays ; (2) Ryazhskaya O G (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) O n experiments in underground physics ; (3) Krymskii G F, Berezhko E G (Shafer Institute of Cosmophysical Research and Aeronomy, Siberian Branch of the Russian Academy of Sciences, Yakutsk) T he origin of cosmic rays ; (4) Stozhkov Yu I (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) C osmic rays in the heliosphere ; (5) Troitsky S V (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) ''Cosmic particles of energies >10 19 eV: a short review of results''. Papers based on reports 2 and 5 are presented below. . On experiments in Underground Physics, O G Ryazhskaya Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 296–304 . Cosmic particles with energies above 10 19 eV: a brief summary of results, S V Troitsky Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 304–310 (conferences and symposia)

  1. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  2. Teaching Physics to Environmental Science Majors Using a Flipped Course Approach

    Science.gov (United States)

    Hill, N. B.; Riha, S. J.; Wysocki, M. W.

    2014-12-01

    Coursework in physics provides a framework for quantitative reasoning and problem solving skill development in budding geoscientists. To make physical concepts more accessible and relevant to students majoring in environmental science, an environmental physics course was developed at Cornell University and offered for the first time during spring 2014. Principles of radiation, thermodynamics, and mechanics were introduced and applied to the atmosphere, hydrosphere, and lithosphere to describe energy and mass transfers in natural and built environments. Environmental physics was designed as a flipped course where students viewed online material outside of class and worked in groups in class to solve sustainability problems. Experiential learning, just-in-time teaching, and peer collaboration strategies were also utilized. In-class problems were drawn from both local and global environmental sustainability concerns. Problems included an investigation of Cornell's lake source cooling system, calculations on the energy consumed in irrigation with groundwater in the southwestern United States, and power generated by wind turbines at various locations around the world. Class attendance was high, with at least 84% of students present at each meeting. Survey results suggest that students enjoyed working in groups and found the in-class problems helpful for assimilating the assigned material. However, some students reported that the workload was too heavy and they preferred traditional lectures to the flipped classroom. The instructors were able to actively engage with students and quickly identify knowledge and skill gaps that needed to be addressed. Overall, the integration of current environmental problems and group work into an introductory physics course could help to inspire and motivate students as they advance their ability to analyze problems quantitatively.

  3. Physics and Mathematics as Interwoven Disciplines in Science Education

    Science.gov (United States)

    Galili, Igal

    2018-03-01

    The relationship between physics and mathematics is reviewed upgrading the common in physics classes' perspective of mathematics as a toolkit for physics. The nature of the physics-mathematics relationship is considered along a certain historical path. The triadic hierarchical structure of discipline-culture helps to identify different ways in which mathematics is used in physics and to appreciate its contribution, to recognize the difference between mathematics and physics as disciplines in approaches, values, methods, and forms. We mentioned certain forms of mathematical knowledge important for physics but often missing in school curricula. The geometrical mode of codification of mathematical knowledge is compared with the analytical one in context of teaching school physics and mathematics; their complementarity is exemplified. Teaching may adopt the examples facilitating the claims of the study to reach science literacy and meaningful learning.

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ashraful Islam, Mohammed1 2 Jamal Nazrul Islam1. Research Centre for Mathematical and Physical Sciences, University of Chittagong, Chittagong, Bangladesh; Department of Mathematics, University of Chittagong, Chittagong, Bangladesh ...

  5. Promoting Science and Technology in Primary Education: A Review of Integrated Curricula

    NARCIS (Netherlands)

    Drs Rens Gresnigt; Koeno Gravemeijer; Hanno Keulen, van; Liesbeth Baartman; Ruurd Taconis

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  6. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Gresnigt, H.L.L.; Taconis, R.; Keulen, van Hanno; Gravemeijer, K.P.E.; Baartman, L.K.J.

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focused on integrated curricula in primary education from

  7. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Hanno van Keulen; Rens Gresnigt; Liesbeth Baartman; Ruurd Taconis; Koeno Gravemeijer

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  8. The Sciences: An Integrated Approach, 2nd Edition (by James Trefil and Robert M. Hazen)

    Science.gov (United States)

    Hoffman, Reviewed By Megan M.

    2000-01-01

    "You're going to teach the organic chemistry section of the Natural Science class?" - one of my biology colleagues asked me last semester - "Better you than me!" "You are?" added a chemistry professor, with interest. Yet these same people ardently believe that all our students should have a basic understanding of carbon's remarkable bonding capabilities and how they relate to life on Earth. If our art or economics majors can learn about organic chemistry and genetics and astronomy, our faculty should be able to teach those same topics, regardless of their acknowledged specialties. The basis of a scientifically literate society is not expertise in specific arcane subfields of science. Scientific literacy is a general understanding of what science is, what science can and cannot do, and what scientific accomplishments have occurred over the centuries. If you subscribe to this definition of scientific literacy, James Trefil and Robert M. Hazen's The Sciences: An Integrated Approach can help you and your general science students. The self-avowed purpose of this text is to address science illiteracy in America. Trefil and Hazen propose that the best way to combat scientific illiteracy is to provide integrated science courses that focus on a broad understanding of science, rather than the specialized knowledge available to a science major. The new edition of The Sciences has been influenced by the 1996 publication of the National Research Council's National Science Education Standards. While the first edition of Trefil and Hazen's book admirably addressed the integration of the natural and physical sciences, in this second edition, the authors have increased the connections between science and real-world situations and have made a more conscious effort to emphasize the process of science and the overlapping nature of scientific disciplines. The text is based on 25 "scientific concepts", one per chapter. These concepts are clearly explained in relatively jargon

  9. Uncovering student ideas in physical science

    CERN Document Server

    Keeley, Page

    2014-01-01

    If you and your students can't get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. The book offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

  10. Integrating systems Approaches into Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Westerhoff, H.V.; Mosekilde, Erik; Noe, C. R.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose...... of the conference was to promote the ‘Integration of Systems Approaches into Pharmaceutical Sciences’ in view of optimising the development of new effective drugs. And a challenge this is, considering both the high attrition rates in the pharmaceutical industry and the failure of finding definitive drug solutions...... for many of the diseases that plague mankind today. The conference was co-sponsored by the American College of Clinical Pharmacology, the European Center for Pharmaceutical Medicine, and the Swiss Society of Pharmaceutical Sciences and, besides representatives from the European Regulatory Agencies and FDA...

  11. African Journal for Physical Activity and Health Sciences: Editorial ...

    African Journals Online (AJOL)

    African Journal for Physical, Health Education, Recreation and Dance. ... in conjunction with appointed reviewers throughout Africa and overseas for special topics. ... Professor A.L. Toriola (Exercise and Sports Science) Tshwane University of ...

  12. Modeling for Integrated Science Management and Resilient Systems Development

    Science.gov (United States)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  13. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  14. Comparative analysis of female physicists in the physical sciences: Motivation and background variables

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.

    2014-06-01

    The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n =1137). A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.

  15. Comparative analysis of female physicists in the physical sciences: Motivation and background variables

    Directory of Open Access Journals (Sweden)

    Katherine P. Dabney

    2014-02-01

    Full Text Available The majority of existing science, technology, engineering, and mathematics (STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n=1137. A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.

  16. Science and Society: Integrity and honesty in research

    CERN Multimedia

    2003-01-01

    Results that contradict known physics, data manipulated, lack of vigilance by co-authors, failures in the system for scientific publication... Last September a US Committee of Enquiry unveiled one of the most serious frauds in the history of physics. Over a two year period, a young researcher at Bell Laboratories had published a large number of articles with exciting results for solid state physics, but which, alas, were fraudulent! Obviously a fraud of this magnitude is exceptional. However, it did serve to focus attention on the problem of integrity and honesty in research practices. This subject, crucial to the well-being and credibility of scientific research, will be the central theme of the lecture given by Nicholas Steneck, Professor of History at the University of Michigan. A leading expert on this issue, on which he has published extensively, he is a consultant to the Office of Research Integrity in the US, and has been closely involved in public policy-making in relation to questions of research int...

  17. Analysis on the science literacy ability of vocational school physics teacher using NOSLiT indicators

    Science.gov (United States)

    Rahayu, P. P.; Masykuri, M.; Soeparmi

    2018-04-01

    Professional Physics teacher must be able to manage science learning process by associating science itself with the daily life. At first the teacher must have competency in the ability of science literacy. The target of this research is vocational school Physics teachers for the purpose to describe their ability on science literacy. This research is a survey research using test method. The test instrument is The NOSLiT by Wenning.Research results are: 1) Scientific Nomenclature : 38.46 %, 2) Basic experimental and observational abilities : 38.46 %, 3) Rules of scientific evidence : 0%, 4) Postulate science: 15.38%, 5) scientific disposition: 7. 69%.Conclusion: The result of each indicator shows that the ability of science literacy of vocational school Physics teachers has not met the expectations yet. It’s can be used as the reflection for education experts to improve their science literacy ability so that can be applied to the learning process that directly or indirectly will have an impact on improving the students’ science literacy.

  18. NST and NST integration: nuclear science and technique and nano science and technique

    International Nuclear Information System (INIS)

    Zhao Yuliang; Chai Zhifang; Liu Yuanfang

    2008-01-01

    Nuclear science is considered as a big science and also the frontier in the 20 th century, it developed many big scientific facilities and many technique platforms (e.g., nuclear reactor, synchrotron radiation, accelerator, etc.) Nuclear Science and Technology (NST) provide us with many unique tools such as neutron beams, electron beams, gamma rays, alpha rays, beta rays, energetic particles, etc. These are efficient and essential probes for studying many technique and scientific issues in the fields of new materials, biological sciences, environmental sciences, life sciences, medical science, etc. Nano Science and Technology (NST) is a newly emerging multidisciplinary science and the frontier in the 21 st century, it is expected to dominate the technological revolution in diverse aspects of our life. It involves diverse fields such as nanomaterials, nanobiological sciences, environmental nanotechnology, nanomedicine, etc. nanotechnology was once considered as a futuristic science with applications several decades in the future and beyond. But, the rapid development of nanotechnology has broken this prediction. For example, diverse types of manufactured nanomaterials or nanostructures have been currently utilized in industrial products, semiconductors, electronics, stain-resistant clothing, ski wax, catalysts, other commodity products such as food, sunscreens, cosmetics, automobile parts, etc., to improve their performance of previous functions, or completely create novel functions. They will also be increasingly utilized in medicines for purposes of clinic therapy, diagnosis, and drug delivery. In the talk, we will discuss the possibility of NST-NST integration: how to apply the unique probes of advanced radiochemical and nuclear techniques in nanoscience and nanotechnology. (authors)

  19. Predictors of gender achievement in physical science at the secondary level

    Science.gov (United States)

    Kozlenko, Brittany Hunter

    This study used the 2009 National Assessment of Educational Progress (NAEP) science restricted data-set for twelfth graders. The NAEP data used in this research study is derived from a sample group of 11,100 twelfth grade students that represented a national population of over 3,000,000 twelfth grade students enrolled in science in the United States in 2009. The researcher chose the NAEP data set because it provided a national sample using uniform questions. This study investigated how the factors of socioeconomic status (SES), parental education level, mode of instruction, and affective disposition affect twelfth grade students' physical science achievement levels in school for the sample population and subgroups for gender. The factors mode of instruction and affective disposition were built through factor analysis based on available questions from the student surveys. All four factors were found to be significant predictors of physical science achievement for the sample population. NAEP exams are administered to a national sample that represents the population of American students enrolled in public and private schools. This was a non-experimental study that adds to the literature on factors that impact physical science for both genders. A gender gap is essentially nonexistent at the fourth grade level but appears at the eighth grade level in science based on information from NAEP (NCES, 1997). The results of the study can be used to make recommendation for policy change to diminish this gender gap in the future. Educators need to be using research to make instructional decisions; research-based instruction helps all students.

  20. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    Science.gov (United States)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  1. The emergence of time's arrows and special science laws from physics.

    Science.gov (United States)

    Loewer, Barry

    2012-02-06

    In this paper, I will argue that there is an important connection between two questions concerning how certain features of the macro world emerge from the laws and processes of fundamental microphysics and suggest an approach to answering these questions. The approach involves a kind of emergence but quite different from 'top-down' emergence discussed at the conference, for which an earlier version of this paper was written. The two questions are (i) How do 'the arrows of time' emerge from microphysics? (ii) How do macroscopic special science laws and causation emerge from microphysics? Answering these questions is especially urgent for those, who like myself, think that a certain version of physicalism, which I call 'micro-physical completeness' (MC), is true. According to MC, there are fundamental dynamical laws that completely govern (deterministically or probabilistically), the evolution of all micro-physical events and there are no additional ontologically independent dynamical or causal special science laws. In other words, there is no ontologically independent 'top-down' causation. Of course, MC does not imply that physicists now or ever will know or propose the complete laws of physics. Or even if the complete laws were known we would know how special science properties and laws reduce to laws and properties of fundamental physics. Rather, MC is a contingent metaphysical claim about the laws of our world. After a discussion of the two questions, I will argue the key to showing how it is possible for the arrows of time and the special science laws to emerge from microphysics and a certain account of how thermodynamics is related to fundamental dynamical laws.

  2. The Brave New Researcher of Doctoral Integrity Training in the Heath Sciences

    DEFF Research Database (Denmark)

    Sarauw, Laura Louise

    2018-01-01

    as points of reference for an overall discussion of the implied ideas about the ideal researcher in a comparative cross-faculty perspective: 1) Translations between international/national/institutional and local/faculty ideas about what problems the integrity training is expected to solve, 2) Translations......The presented material is a part of a wider, comparative ethnography in which we study the emerging integrity training for PhD fellows provided by four different faculties: Science, Humanities, Social Science and Business, and Health. The comparison comprises the following themes that will serve...... between standardisations of curriculum and content, local development and ideas about what problems integrity training is expected to solve. 3) Translations between ideas about adequate pedagogies and ideas about what problems integrity training is expected to solve...

  3. On Solid Ground: Science, Technology, and Integrated Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Commission's Panel on Integrated Land Management was convened to explore how science and technology could contribute to the overall discussion of land management as part of the review by the Commission on Sustainable Development of the follow-up to the 1992 United Nations Conference on Environment and ...

  4. Integrating Climate and Ecosystem-Response Sciences in Temperate Western North American Mountains: The CIRMOUNT Initiative

    Science.gov (United States)

    Millar, C. I.; Fagre, D. B.

    2004-12-01

    Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate

  5. Formation of a science of physical culture in Ukraine.

    Directory of Open Access Journals (Sweden)

    Timoshenko Ju.O.

    2011-07-01

    Full Text Available The process of Ukrainian physical culture science institutional development is researched, its historical particularities and trends are shown. The author used only the archive data. They helped to define the structure and quality stuff of scientific institution, social and sports problems which influenced the research. It is established that the appearance of the Ukrainian Research Institute of Physical Education has identified a new trend of Soviet life.

  6. Water. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 3.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of water in students' daily lives; (2) the need to purify drinking…

  7. THE DEVELOPMENT OF AIR-THEME INTEGRATED SCIENCE TEACHING MATERIAL USING FOUR STEPS TEACHING MATERIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Arifin

    2016-01-01

    Full Text Available The purposes of this study are to develop, to test the feasibility, to describe the characteristic, and to test the students understanding about integrated science teaching material about air using Four Steps Teaching Material Development (4S TMD. The Research and Development method was use to develop integrated science teaching materials which is involving  all science perspectives that are not presented in junior high school science book. The air theme was chosen in this study since it can be explained using biology, chemistry, physics, and earth and space science  perspectives. Development the teaching materials was consists of selection, structuring, characterization, and reduction didactic steps. Based on the of feasibility test results, the teaching material is qualified in content, presentation, language, and graphic feasibility aspects. The characteristic of this teaching material expose the closeness theme with student daily lifes and its compatibility with National Books Standard. Based on the understanding test results, the teaching material is qualified in understanding aspect with high category. It can be concluded that the teaching material qualified to be used as supplement teaching material of science learning.Penelitian ini bertujuan untuk mengembangkan, menguji kelayakan, memaparkan karakteristik, dan menguji keterpahaman bahan ajar IPA terpadu pada tema udara untuk siswa SMP kelas VII melalui Four Steps Teaching Material Development (4S TMD. Penelitian dengan metode Research and Development (R&D ini dilatar belakangi oleh tidak tersedianya bahan ajar IPA SMP yang disajikan secara terpadu melalui tema udara. Pengembangan bahan ajar IPA terpadu tema udara terdiri dari tahap seleksi, strukturisasi, karakterisasi dan reduksi didaktik. Berdasarkan uji kelayakan, bahan ajar telah memenuhi aspek kelayakan isi, kelayakan penyajian, kelayakan bahasa dan kelayakan kegrafikan. Karakteristik bahan ajar meliputi kedekatan tema bahan ajar

  8. Data Stewardship in the Ocean Sciences Needs to Include Physical Samples

    Science.gov (United States)

    Carter, M.; Lehnert, K.

    2016-02-01

    Across the Ocean Sciences, research involves the collection and study of samples collected above, at, and below the seafloor, including but not limited to rocks, sediments, fluids, gases, and living organisms. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). iSamples (Internet of Samples in the Earth Sciences) is a Research Coordination Network within the EarthCube program that aims to advance the use of innovative cyberinfrastructure to support and advance the utility of physical samples and sample collections for science and ensure reproducibility of sample-based data and research results. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture for a shared cyberinfrastructure to manage collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical samples. Repositories that curate

  9. Improvement of Students’ Environmental Literacy by Using Integrated Science Teaching Materials

    Science.gov (United States)

    Suryanti, D.; Sinaga, P.; Surakusumah, W.

    2018-02-01

    This study aims to determine the improvement of student environmental literacy through the use of integrated science teaching materials on pollution topics. The research is used weak experiment method with the one group pre-test post-test design. The sample of the study were junior high school students in Bandung amounted to 32 people of 7th grade. Data collection in the form of environmental literacy test instrument consist of four components of environmental literacy that is (1) Knowledge, (2) Competencies (Cognitive Skill), (3) Affective and (4) Environmentally Responsible Behavior. The results show that the student’s environmental literacy ability is improved after using integrated science teaching materials. An increase in the medium category is occurring in the knowledge (N-gain=46%) and cognitive skill (N-gain=31%), while the increase in the low category occurs in the affective component (N-gain=25%) and behaviour (N-gain=24%). The conclusions of this study as a whole the improvement of students’ environmental literacy by using integrated science teaching material is in the medium category (N-gain=34%).

  10. ASP2012: Fundamental Physics and Accelerator Sciences in Africa

    Science.gov (United States)

    Darve, Christine

    2012-02-01

    Much remains to be done to improve education and scientific research in Africa. Supported by the international scientific community, our initiative has been to contribute to fostering science in sub-Saharan Africa by establishing a biennial school on fundamental subatomic physics and its applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The lectures are addressed to students or young researchers with at least a background of 4 years of university formation. The aim of the school is to develop capacity, interpret, and capitalize on the results of current and future physics experiments with particle accelerators; thereby spreading education for innovation in related applications and technologies, such as medicine and information science. Following the worldwide success of the first school edition, which gathered 65 students for 3-week in Stellenbosch (South Africa) in August 2010, the second edition will be hosted in Ghana from July 15 to August 4, 2012. The school is a non-profit organization, which provides partial or full financial support to 50 of the selected students, with priority to Sub-Saharan African students.

  11. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    Science.gov (United States)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  12. Silicon integrated circuits part A : supplement 2

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Applied Solid State Science, Supplement 2: Silicon Integrated Circuits, Part A focuses on MOS device physics. This book is divided into three chapters-physics of the MOS transistor; nonvolatile memories; and properties of silicon-on-sapphire substrates devices, and integrated circuits. The topics covered include the short channel effects, MOSFET structures, floating gate devices, technology for nonvolatile semiconductor memories, sapphire substrates, and SOS integrated circuits and systems. The MOS capacitor, MIOS devices, and SOS process and device technology are also deliberated. This public

  13. EVALUACIÓN DE LA INTEGRACIÓN ESTRATÉGICA DE PROYECTOS DE I+D+i EN LA ACTIVIDAD FÍSICA Y EL DEPORTE / EVALUATION OF THE STRATEGICAL INTEGRATION OF SCIENCE AND INNOVATION PROJECTS IN PHYSICAL ACTIVITY AND SPORT

    Directory of Open Access Journals (Sweden)

    Gloria Barroso-Rodríguez

    2011-09-01

    Full Text Available

    El artículo muestra el diseño de un procedimiento para la evaluación del nivel de integración estratégica de los proyectos de ciencia e innovación que se desarrollan en organizaciones de actividad física y deporte cubanas, así como su aplicación en la Universidad de Ciencias de la Cultura Física y el Deporte “Manuel Fajardo”. Como resultado de la aplicación del procedimiento, fue posible seleccionar los proyectos a ejecutar en esta organización, a partir del nivel en que integran sus componentes esenciales para el logro de objetivos alineados a las prioridades estratégicas, lo que contribuirá al incremento de los resultados alcanzados en el deporte, la educación física y la recreación en el país.

    Abstract

    This paper shows the design of a procedure for the evaluation of the level of strategical integration of science and innovation projects that are developed at physical activity and sport organizations in Cuba, as well as its application at the Science University for Physical Culture and Sport "Manuel Fajardo”. As a result of the application of this procedure, it was possible to select the projects to execute in this organization, starting from the level at which they integrate their essential components for the achievement of objectives that are aligned to the strategic priorities. This will contribute to the increasing of the results achieved in the fields of physical education, sport and recreation in our country.

  14. PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)

    Science.gov (United States)

    Vlachos, Dimitrios; Vagenas, Elias C.

    2015-09-01

    The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  15. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  16. Undergraduate Research in Physics as an Educational Tool

    Science.gov (United States)

    Hakim, Toufic M.; Garg, Shila

    2001-03-01

    The National Science Foundation's 1996 report "Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering and Technology" urged that in order to improve SME&T education, decisive action must be taken so that "all students have access to excellent undergraduate education in science .... and all students learn these subjects by direct experience with the methods and processes of inquiry." Research-related educational activities that integrate education and research have been shown to be valuable in improving the quality of education and enhancing the number of majors in physics departments. Student researchers develop a motivation to continue in science and engineering through an appreciation of how science is done and the excitement of doing frontier research. We will address some of the challenges of integrating research into the physics undergraduate curriculum effectively. The departmental and institutional policies and infrastructure required to help prepare students for this endeavor will be discussed as well as sources of support and the establishment of appropriate evaluation procedures.

  17. Integrating Simulated Physics and Device Virtualization in Control System Testbeds

    OpenAIRE

    Redwood , Owen; Reynolds , Jason; Burmester , Mike

    2016-01-01

    Part 3: INFRASTRUCTURE MODELING AND SIMULATION; International audience; Malware and forensic analyses of embedded cyber-physical systems are tedious, manual processes that testbeds are commonly not designed to support. Additionally, attesting the physics impact of embedded cyber-physical system malware has no formal methodologies and is currently an art. This chapter describes a novel testbed design methodology that integrates virtualized embedded industrial control systems and physics simula...

  18. 78 FR 37590 - Advisory Committee for Mathematical and Physical Sciences #66; Notice of Meeting

    Science.gov (United States)

    2013-06-21

    ... Science Foundation and to provide advice and recommendations concerning research in mathematics and... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences 66; Notice... National Science Foundation announces the following meeting. Name: Advisory Committee for Mathematical and...

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    decays; CP violation. Abstract. This report summarises the work done during WHEPP-6 (Institute of Mathematical Sciences, Chennai, India, Jan 3–15, 2000) in Working group on ' and collider physics'. Author Affiliations. Debajyoti Choudhury1 ...

  20. INTEGRATION OF BUSINESS, EDUCATION AND SCIENCE AT THE REGIONAL LEVEL FOR IMPLEMENTING THE NATIONAL TECHNOLOGICAL INITIATIVE

    Directory of Open Access Journals (Sweden)

    Innara Lyapina

    2018-01-01

    Full Text Available Current world affairs show that the post-industrial stage of development of all mature world powers’ economies is followed by creation of a new development paradigm, which is based on the economy of knowledge, science achievements, innovations, global information and communication systems, and which leads to innovative economy formation. In the context of the national innovation economy formation in the Russian Federation, prerequisites are created for integrating the efforts of business, science and education representatives to develop, produce and market high-tech products which have significant economic or social potential. And this is not only the task announced by the Russian government, but also a natural process in the country’s economy, which contributes to the increase in the integration participants’ efficiency. The result of such integrated interaction of education, science and business consists in a synergistic effect through formation of an interactive cooperation model that involves the active use of combined knowledge, ideas, technologies and other resources during innovative projects implementation. At the same time, integration processes are diverse, complex and occur in each case taking into account the integrating parties’ activity specifics. Within this framework, the goal of the research is to characterize the impact of the education, science and business integration process, on the national technological initiative implementation in the country on the whole and to study the integrating experience of these entities at the regional level. In the course of the research, the stages of the Russian national innovation economy formation process have been studied; the role of education, science and business in the National Technological Initiative implementation has been characterized; it’s been proved that educational institutions are the key link in the integration process in the chain “education – science

  1. South African physical sciences teachers' perceptions of new ...

    African Journals Online (AJOL)

    This paper reports on South African teachers' perceptions of the educational value of new topics in a revised physical sciences high school curriculum, their content .... identify the core issues surrounding teachers' views on the new topics, and ... A were generated, enabling us to construct a profile of schools and teachers.

  2. South African physical sciences teachers' perceptions of new ...

    African Journals Online (AJOL)

    This paper reports on South African teachers' perceptions of the educational value of new topics in a revised physical sciences high school curriculum, their content knowledge compe- tency of these ..... version 18.0 for Windows software. Firstly, frequency ... Data were then coded and classified, a process largely guided by ...

  3. Dr Skateboard's Action Science: Teaching Physics in Context

    Science.gov (United States)

    Robertson, William H.

    2009-01-01

    In order to create student interest and promote new connections to the understanding of fundamental physics concepts, there is a need for new approaches and methods that are both contemporary and relevant. Dr Skateboard's Action Science, a curriculum supplement comprising video instruction and classroom activities, is an example that focuses on…

  4. Before big science the pursuit of modern chemistry and physics, 1800-1940

    CERN Document Server

    Nye, Mary Jo

    1999-01-01

    Today's vast multinational scientific monoliths bear little resemblance to the modest laboratories of the early nineteenth century. Yet early in the nineteenth century--when heat and electricity were still counted among the elements--changes were already under way that would revolutionize chemistry and physics into the "big science" of the late twentieth century, expanding tiny, makeshift laboratories into bustling research institutes and replacing the scientific amateurs and generalist savants of the early Victorian era with the professional specialists of contemporary physical science. Mary Jo Nye traces the social and intellectual history of the physical sciences from the early 1800s to the beginning of the Second World War, examining the sweeping transformation of scientific institutions and professions during the period and the groundbreaking experiments that fueled that change, from the earliest investigations of molecular chemistry and field dynamics to the revolutionary breakthroughs of quantum mecha...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Integrated Ph. D. Programme in Biological, Chemical and Physical Sciences at Indian Institute of Sciences Introductory Summer School on Astronomy and Astrophysics. Information and Announcements Volume 1 Issue 2 February 1996 pp 121- ...

  6. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    Science.gov (United States)

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  7. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  8. History of science, physics, and art: a complex approach in Brazilian syllabuses

    Science.gov (United States)

    Braga, Marco; Guerra, Andreia; Reis, José Claudio

    2013-09-01

    This paper is about new contents that can be introduced into science education. It is a description of an experience aimed at introducing a complex approach into the final grade of a Brazilian elementary school. The aim is to show the transformation of the conception of space and time from the Middle Ages with the physics of Aristotle to the 20th century, when a new conception arose with the physics of Einstein. These changes were accompanied by new visions of space and time in both physics and arts. Comparison between these two expressions of human culture is used to introduce science as a human construct inserted into history.

  9. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 90; Issue 4 ... in a quintic oscillator driven by a low-frequency force and a high-frequency force. ... School of Mathematics and Information Science, Shaanxi Normal University, Xi'an ...

  10. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    Science.gov (United States)

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  11. Convergence Science in a Nano World

    OpenAIRE

    Cady, Nathaniel

    2013-01-01

    Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innova...

  12. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    Science.gov (United States)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  13. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  14. Life Science-Related Physics Laboratory on Geometrical Optics

    Science.gov (United States)

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  15. Earth science information: Planning for the integration and use of global change information

    Science.gov (United States)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  16. Physical interpretation of the J2 integral by identifying the associated crack translation

    International Nuclear Information System (INIS)

    Liu, Cong Hao; Chu, Seok Jae

    2016-01-01

    The physical interpretation of the J integral (i.e., J 1 integral) is clear. J 1 integral is the energy release rate associated with crack extension(i.e., translation of the crack in the x 1 direction). However, the physical interpretation of the J 2 integral remains unclear. In this study, different crack translations in the x 2 direction were selected and tested by calculating the energy release rates associated with the crack translations and comparing them with the theoretical value of the J 2 integral.

  17. Integrating research evidence and physical activity policy making-REPOPA project

    NARCIS (Netherlands)

    Aro, A.R.; Bertram, M.; Hamalainen, R.-M.; van de Goor, L.A.M.; Skovgaard, T.; Valente, A.; Castellani, T.; Chereches, R.; Edwards, N.

    2016-01-01

    Evidence shows that regular physical activity is enhanced by supporting environment. Studies are needed to integrate research evidence into health enhancing, cross-sector physical activity (HEPA) policy making. This article presents the rationale, study design, measurement procedures and the initial

  18. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Amitabha Nandi1 Ram Ramaswamy1 2. School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India; Center for Computational Biology and Bioinformatics, School of Information Technology, Jawaharlal Nehru University, New Delhi 110 067, India ...

  19. An Integrated Simulation Module for Cyber-Physical Automation Systems

    Directory of Open Access Journals (Sweden)

    Francesco Ferracuti

    2016-05-01

    Full Text Available The integration of Wireless Sensors Networks (WSNs into Cyber Physical Systems (CPSs is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA, a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called “GILOO” (Graphical Integration of Labview and cOOja. It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA, etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new “Advanced Sky GUI” have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been

  20. An Integrated Simulation Module for Cyber-Physical Automation Systems.

    Science.gov (United States)

    Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea; Prist, Mariorosario

    2016-05-05

    The integration of Wireless Sensors Networks (WSNs) into Cyber Physical Systems (CPSs) is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA), a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called "GILOO" (Graphical Integration of Labview and cOOja). It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA), etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new "Advanced Sky GUI" have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been applied to a smart home

  1. Acceleration of Feynman loop integrals in high-energy physics on many core GPUs

    International Nuclear Information System (INIS)

    Yuasa, F; Ishikawa, T; Hamaguchi, N; Koike, T; Nakasato, N

    2013-01-01

    The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards

  2. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  3. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  4. Linking Science and Language Arts: A Review of the Literature Which Compares Integrated versus Non-Integrated Approaches

    Science.gov (United States)

    Bradbury, Leslie U.

    2014-01-01

    The purpose of this paper is to review the literature published during the last 20 years that investigates the impact of approaches that describe themselves as integrating science and language arts on student learning and/or attitude at the elementary level. The majority of papers report that integrated approaches led to greater student…

  5. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 76; Issue 4. Issue front cover thumbnail. Volume 76, Issue 4. April 2011, pages 533-690. pp 533-542. Travelling wave solutions to nonlinear physical models by means of the first integral method · İsmail Aslan Aslan · More Details Abstract Fulltext PDF. This paper ...

  6. PREFACE: 1st International Conference in Applied Physics and Materials Science

    Science.gov (United States)

    2015-06-01

    We are delighted to come up with thirty two (32) contributed research papers in these proceedings, focusing on Materials Science and Applied Physics as an output of the 2013 International Conference in Applied Physics and Materials Science (ICAMS2013) held on October 22-24, 2013 at the Ateneo de Davao University, Davao City, Philippines. The conference was set to provide a high level of international forum and had brought together leading academic scientists, industry professionals, researchers and scholars from universities, industries and government agencies who have shared their experiences, research results and discussed the practical challenges encountered and the solutions adopted as well as the advances in the fields of Applied Physics and Materials Science. This conference has provided a wide opportunity to establish multidisciplinary collaborations with local and foreign experts. ICAMS2013, held concurrently with 15th Samahang Pisika ng Visayas at Mindanao (SPVM) National Physics Conference and 2013 International Meeting for Complex Systems, was organized by the Samahang Pisika ng Visayas at Mindanao (Physics Society of Visayas and Mindanao) based in MSU-Iligan Institute of Technology, Iligan City, Philippines. The international flavor of converging budding researchers and experts on Materials Science and Applied Physics was the first to be organized in the 19 years of SPVM operation in the Philippines. We highlighted ICAMS2013 gathering by the motivating presence of Dr. Stuart Parkin, a British Physicist, as one of our conference's plenary speakers. Equal measures of gratitude were also due to all other plenary speakers, Dr. Elizabeth Taylor of Institute of Physics (IOP) in London, Dr. Surya Raghu of Advanced Fluidics in Maryland, USA and Prof. Hitoshi Miyata of Niigata University, Japan, Prof. Djulia Onggo of Institut Teknologi Bandung, Indonesia, and Dr. Hironori Katagiri of Nagaoka National College of Technology, Japan. The warm hospitality of the host

  7. Vertical integration of basic science in final year of medical education.

    Science.gov (United States)

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students.

  8. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  9. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    International Nuclear Information System (INIS)

    2011-01-01

    The scientific session 'Econophysics and evolutionary economics' of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) 'The transition from simple reproduction to economic growth'; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) 'Experimental data on the development of fast-growing innovative companies in Russia'; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) 'Why is it sometimes possible to successfully model an economy?' (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) 'Theoretical economics'; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) 'Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market'; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) 'Fractal analysis of financial time series and the prediction problem'; Papers written on the basis of these reports are published below. The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733. High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737. Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742. On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume 54, Number

  10. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Science.gov (United States)

    2011-07-01

    The scientific session "Econophysics and evolutionary economics" of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) "The transition from simple reproduction to economic growth"; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) "Experimental data on the development of fast-growing innovative companies in Russia"; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) "Why is it sometimes possible to successfully model an economy? (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) "Theoretical economics"; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) "Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market"; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) "Fractal analysis of financial time series and the prediction problem"; Papers written on the basis of these reports are published below. • The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733 • High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737 • Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742 • On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume

  11. The Information Book Genre: Its Role in Integrated Science Literacy Research and Practice

    Science.gov (United States)

    Pappas, Christine C.

    2006-01-01

    There has been a call for approaches that connect science learning with literacy, yet the use of, and research on, children's literature information books in science instruction has been quite limited. Because the discipline of science involves distinctive generic linguistic registers, what information books should be integrated in science…

  12. Integration of the primary health care approach into a community nursing science curriculum.

    Science.gov (United States)

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  13. Integration of the primary health care approach into a community nursing science curriculum

    Directory of Open Access Journals (Sweden)

    SS Vilakazi

    2000-09-01

    Full Text Available The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994:155. Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/ goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  14. Mediating Relationship of Differential Products in Understanding Integration in Introductory Physics

    Science.gov (United States)

    Amos, Nathaniel; Heckler, Andrew F.

    2018-01-01

    In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and…

  15. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  16. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K Murali1 Sudeshna Sinha2 William L Ditto3. Department of Physics, Anna University, Chennai 600 025, India; The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India; Department of Biomedical Engineering, University of Florida, Gainesville, FL 326611-6131, USA ...

  18. Recent progress of an integrated implosion code and modeling of element physics

    International Nuclear Information System (INIS)

    Nagatomo, H.; Takabe, H.; Mima, K.; Ohnishi, N.; Sunahara, A.; Takeda, T.; Nishihara, K.; Nishiguchu, A.; Sawada, K.

    2001-01-01

    Physics of the inertial fusion is based on a variety of elements such as compressible hydrodynamics, radiation transport, non-ideal equation of state, non-LTE atomic process, and relativistic laser plasma interaction. In addition, implosion process is not in stationary state and fluid dynamics, energy transport and instabilities should be solved simultaneously. In order to study such complex physics, an integrated implosion code including all physics important in the implosion process should be developed. The details of physics elements should be studied and the resultant numerical modeling should be installed in the integrated code so that the implosion can be simulated with available computer within realistic CPU time. Therefore, this task can be basically separated into two parts. One is to integrate all physics elements into a code, which is strongly related to the development of hydrodynamic equation solver. We have developed 2-D integrated implosion code which solves mass, momentum, electron energy, ion energy, equation of states, laser ray-trace, laser absorption radiation, surface tracing and so on. The reasonable results in simulating Rayleigh-Taylor instability and cylindrical implosion are obtained using this code. The other is code development on each element physics and verification of these codes. We had progress in developing a nonlocal electron transport code and 2 and 3 dimension radiation hydrodynamic code. (author)

  19. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  20. The association between family and friend integration and physical activity: results from the NHIS.

    Science.gov (United States)

    Larsen, Britta A; Strong, David; Linke, Sarah E

    2014-06-01

    Social integration predicts morbidity and mortality, but its relationships with specific health behaviors that could explain this relationship, such as physical activity, have not been established. Additionally, studies associating social integration with health have not distinguished between sources of social contact (family vs. friends), which could be differentially related to health. The purpose of this study was to examine the association between social integration and physical activity and to explore differences in family and friend social integration. Data came from the 2001 wave of the National Health Interview Survey. Adult participants (N = 33,326) indicated levels of social integration by reporting whether they had seen and/or called friends and/or family in the past 2 weeks and also reported their weekly minutes of physical activity. Logistic regression was used to determine odds of meeting physical activity (PA) guidelines (≥ 150 min/week) and odds of inactivity (0 min/week) based on levels of social integration. Greater integration predicted higher odds of meeting PA guidelines and lower odds of inactivity after controlling for sociodemographic variables. This association was stronger and dose-dependent for integration with friends, whereas moderate family contact predicted greater activity than high levels of family contact. Those who are more socially integrated, particularly with friends rather than family, are also more physically active, which could partially explain the link between social integration and morbidity and mortality. Future studies examining this association should distinguish between sources of integration and explore why and how contact with friends vs. family is differentially associated with health behaviors.

  1. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  2. The effectiveness of CPI model to improve positive attitude toward science (PATS) for pre-service physics teacher

    Science.gov (United States)

    Sunarti, T.; Wasis; Madlazim; Suyidno; Prahani, B. K.

    2018-03-01

    In the previous research, learning material based Construction, Production, and Implementation (CPI) model has been developed to improve scientific literacy and positive attitude toward science for pre-service physics teacher. CPI model has 4 phases, included: 1) Motivation; 2) Construction (Cycle I); 3) Production (Cycle II); and 4) Evaluation. This research is aimed to analyze the effectiveness of CPI model towards the improvement Positive Attitude toward Science (PATS) for pre-service physics teacher. This research used one group pre-test and post-test design on 160 pre-service physics teacher divided into 4 groups at Lambung Mangkurat University and Surabaya State University (Indonesia), academic year 2016/2017. Data collection was conducted through questioner, observation, and interview. Positive attitude toward science for pre-service physics teacher measurement were conducted through Positive Attitude toward Science Evaluation Sheet (PATSES). The data analysis technique was done by using Wilcoxon test and n-gain. The results showed that there was a significant increase in positive attitude toward science for pre-service physics teacher at α = 5%, with n-gain average of high category. Thus, the CPI model is effective for improving positive attitude toward science for pre-service physics teacher.

  3. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  4. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  5. PHYSICAL EDUCATION BETWEEN ART AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Goran Šekeljić

    2011-08-01

    Full Text Available Physical Education has its own definition inside the system of anthropomorphological sciences. But, there is a question whether it is possible to explain the phenomenon of physical education only inside of the system of abstrct atitudes based on an objective observation of reality or it is (at least some of its parts are an activity which has for an object the stimulation of human senses, mind or spirit. In this essey we discuss, in a very subjective way, the matter which concerns the culture in order to define the position of physical education inside the art system. The word "art" can relate to the variety of subjects, feelings or activities. Because of it, the fragments of art can be defined as creative interpretations of indefinite concepts or ideas. Having in mind the fact that in a world of art it is not possible to define standards that determine the art itself, according to the criteria which are generally accepted, it is still possible to make connection between sport and art by some rational observation. This work can enter the history thanks to the initiative to accept the sport as an aspect of art

  6. Integrating social science knowledge into natural resource management public involvement practice

    DEFF Research Database (Denmark)

    Stummann, Cathy Brown

    This PhD study explores the long-recognized challenge of integrating social science knowledge into NRM public involvement practice theoretically and empirically. Theoretically, the study draws on research from adult learning, continuing rofessional education and professional knowledge development...... to better understand how social science knowledge can benefit NRM public involvement practice. Empirically, the study explores the potential of NRM continuing professional education as a means for introducing social science knowledge to public NRM professionals. The study finds social science knowledge can...... be of value to NRM public involvement prospectively and retrospectively; and that continuing professional education can be an effective means to introducing social science knowledge to public NRM professionals. In the design of NRM continuing professional education focused on social science knowledge...

  7. Rockets: Physical science teacher's guide with activities

    Science.gov (United States)

    Vogt, Gregory L.; Rosenberg, Carla R. (Editor)

    1993-01-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  8. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  9. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. K N Joshipura. Articles written in Pramana – Journal of Physics. Volume 61 Issue 4 October 2003 pp 685-692 Research Articles. Differential and integral cross-sections of e-O2, O3, NO, CO scattering at energies 100–1000 eV · P M Patel K N Joshipura · More Details Abstract ...

  11. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... M Senthilvelan1 V K Chandrasekar2 R Mohanasubha1. Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, ...

  12. Outline of scientific and research activities of the Faculty of Nuclear Science and Physical Engineering

    International Nuclear Information System (INIS)

    Loncar, G.

    1982-01-01

    A survey is presented of scientific and research activities carried out in the departments of the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. The first section lists the principal results achieved in the course of the 6th Five-Year Plan in Physical Electronics, Solid State Engineering, Materials Structure and Properties, Nuclear Physics, Theory and Technology of Nuclear Reactors, Dosimetry and Application of Ionizing Radiation and Nuclear Chemistry. The second part gives a summary of scientific and research work carried out in the Faculty of Nuclear Science and Physical Engineering in the 7th Five-Year Plan in all branches of science represented. The Faculty's achievements in international scientific cooperation are assessed. (author)

  13. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  14. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  15. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  16. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    Science.gov (United States)

    Marks, Jamar Terry

    2017-01-01

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction…

  17. PREFACE: 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013)

    Science.gov (United States)

    2014-03-01

    The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013. The Conference was attended by more than 280 participants and hosted about 400 oral, poster, and virtual presentations while counted more than 600 pre-registered authors. The second IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel sessions were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. Further information on the editors, speakers and committees is available in the attached pdf.

  18. A Systemic Functional Linguistic Analysis of the Utterances of Three South African Physical Sciences Teachers

    Science.gov (United States)

    Jawahar, Kavish; Dempster, Edith R.

    2013-06-01

    In this study, the sociocultural view of science as a language and some quantitative language features of the complementary theoretical framework of systemic functional linguistics are employed to analyse the utterances of three South African Physical Sciences teachers. Using a multi-case study methodology, this study provides a sophisticated description of the utterances of Pietermaritzburg Physical Sciences teachers in language contexts characterised by varying proportions of English Second Language (ESL) students in each class. The results reveal that, as expected, lexical cohesion as measured by the cohesive harmony index and proportion of repeated content words relative to total words, increased with an increasing proportion of ESL students. However, the use of nominalisation by the teachers and the lexical density of their utterances did not decrease with an increasing proportion of ESL students. Furthermore, the results reveal that each individual Physical Sciences teacher had a 'signature' talk, unrelated to the language context in which they taught. This study signals the urgent and critical need for South African science teacher training programmes to place a greater emphasis on the functional use of language for different language contexts in order to empower South African Physical Sciences teachers to adequately apprentice their students into the use of the register of scientific English.

  19. Integrated marketing sphere of physical culture and sports in terms of European integration Regional Center Research

    Directory of Open Access Journals (Sweden)

    Oleksandr Popov

    2015-06-01

    Full Text Available Purpose: exposure of conceptual and strategic positions of the complex marketing of sphere of physical culture and sport in the conditions of European integration of regional center. Material and Methods: analysis of literary sources, analysis of documents of legislative, normatively-legal and programmatic maintenance, analysis of the systems, questioning as a questionnaire. Results: the analysis of the systems of terms of development of sphere of physical culture and sport is carried out by the study of modern tendencies, interests of young people and habitants of regional center; complex description of conceptual and strategic positions of the relatively complex marketing of sphere of physical culture and sport is presented in the conditions of European integration of regional center. Conclusions: it is set that the decision of tasks in relation to conditioning for development of sphere of physical culture and sport must come true with the observance of certain principles; got founding in relation to development of marketing plan of forming of sporting image Kharkiv.

  20. Cyber/Physical Security Vulnerability Assessment Integration

    International Nuclear Information System (INIS)

    MacDonald, Douglas G.; Key, Brad; Clements, Samuel L.; Hutton, William J.; Craig, Philip A.; Patrick, Scott W.; Crawford, Cary E.

    2011-01-01

    This internally funded Laboratory-Directed R and D project by the Pacific Northwest National Laboratory, in conjunction with QinetiQ North America, is intended to identify and properly assess areas of overlap (and interaction) in the vulnerability assessment process between cyber security and physical protection. Existing vulnerability analysis (VA) processes and software tools exist, and these are heavily utilized in the determination of predicted vulnerability within the physical and cyber security domains. These determinations are normally performed independently of one another, and only interact on a superficial level. Both physical and cyber security subject matter experts have come to realize that though the various interactive elements exist, they are not currently quantified in most periodic security assessments. This endeavor aims to evaluate both physical and cyber VA techniques and provide a strategic approach to integrate the interdependent relationships of each into a single VA capability. This effort will also transform the existing suite of software currently utilized in the physical protection world to more accurately quantify the risk associated with a blended attack scenario. Performance databases will be created to support the characterization of the cyber security elements, and roll them into prototype software tools. This new methodology and software capability will enable analysts to better identify and assess the overall risk during a vulnerability analysis.

  1. A dialogue regarding "The material co-construction of hard science fiction and physics"

    Science.gov (United States)

    Geelan, David; Prain, Vaughan; Hasse, Cathrine

    2015-12-01

    Science fiction and the `technofantasies' of the future that it provides may attract some students to study physics. The details and assumptions informing these `imaginaries' may, on the other hand, be unattractive to other students, or imply that there is not a place for them. This forum discussion complements Cathrine Hasse's paper discussing the ways in which gender and other interests interact in the `entanglement' of physics and science fiction. The conversation interrogates some of the issues in Cathrine's paper, and brings in complementary literatures and perspectives. It discusses the possibility of a `successor science' and new, more inclusive ways of imagining and constructing our possible futures.

  2. Impact of Interdisciplinary Undergraduate Research in mathematics and biology on the development of a new course integrating five STEM disciplines.

    Science.gov (United States)

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a course for first-year students that integrates the material in the first course of the major in each of biology, chemistry, mathematics, computer science, and physics.

  3. Exploring Relationships: Teacher Characteristics and Student Learning in Physical Science

    Science.gov (United States)

    Close, Eleanor; Vokos, S.; Seeley, L.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC grant, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to identify and characterize widespread productive and unproductive modes of reasoning employed by both pre-college students and teachers on foundational topics in physical science. In the first year of the grant, base-line preand post-test data were collected from a large number (N 2300) of middle and high school students. We will discuss relationships between preand post-test results, student learning gains, and student and teacher characteristics. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 5 .... A perturbed angular correlation spectrometer for material science studies ... Scattering of light by a periodic structure in the presence of randomness VII: Application .... Dissociation of deuteron,He andBe from Coulomb dissociation reaction cross-section.

  5. 4. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2008-09-01

    This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems

  6. Operational Health Physics-Science or Philosophy?

    International Nuclear Information System (INIS)

    Carter, M. W.

    2004-01-01

    Operational health physics is concerned with protecting workers and the public from harm due to ionizing radiation. This requires the application of philosophy (ethics) as well as science. Operational health physics philosophy has been dominated by the ICRP. A particular aspect of ICRP's philosophy that is often misunderstood is (As low as reasonably achievable, economic and social factors being taken into account). (ALARA) Although the ALARA philosophy has been interpreted as a cost-benefit approach it is in fact a risk-benefit approach including social considerations as the ICRP has emphasised from time to time. A recent report has accused the ICRP of using a discarded philosophical approach, namely Utilitarianism, as a result of which its recommendations are unethical. The report suggests that a (rights) based philosophy such as Rawls' Theory of Justice would be a more appropriate basis. This paper discusses this accusation, considers some relevant philosophies and concludes that the accusation is not valid and that ICRP's recommendations are ethical but are frequently misinterpreted. (Author)

  7. Progress report - physical sciences TASCC division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the TASCC Division. During the period covered by this report, the operation of the superconducting cyclotron has matured considerably, with over 30 accelerated ion beams more-or-less routinely available for a wide variety of nuclear physics experiments. The TASCC team, together with all the engineers, trades-people and other staff members who contributed to the design, constructed and commissioning of the Tandem Accelerator Superconducting Cyclotron facility, are to be heartily congratulated on bringing it to its present highly successful state in an unusually short period of time. In conjunction with our many outside collaborators, we are now engaged on exciting experiments in several areas of nuclear physics research, as reported in the following pages. We are well on the way to the establishment of a truly National Centre for Nuclear Physics research in Canada

  8. Crocodile years: the traditional image of science and physical scientists' participation in weapons research

    Energy Technology Data Exchange (ETDEWEB)

    Crews, R.J.

    1985-01-01

    This thesis examines one dimension of the relationship between science and the arms race. More specifically, it develops and empirically examines a theoretical model of the relationship between the social demand for defense-related and weapons research, traditional scientific values related to the worldview of classical physics, and differential participation by physical scientists in such research. The theoretical model suggests that an antiquated traditional image of science exists, and that it may explain, in part, participation by physical scientists in defense-related or weapons research. Two major hypotheses are suggested by the model: first, that a constellation of values representing a traditional image of science obtains today among young physical scientists; and second, that those who currently engage (or are willing to engage) in defense-related or weapons research are more likely to agree with the values implicit in the traditional image of science than those who do not (or would not) engage in such research. The theoretical model is located within the sociologies of knowledge and science. This study includes chapters that provide an overview of the literature of these subdisciplines. This investigation concludes with an empirical examination of the model and hypotheses.

  9. Nuclear Science Outreach in the World Year of Physics

    Science.gov (United States)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  10. Radioisotopes in the Physical Sciences and Industry. Proceedings of the Conference on the Use of Radioisotopes in the Physical Sciences and Industry. V. III

    International Nuclear Information System (INIS)

    1962-01-01

    The Conference on the Use of Radioisotopes in the Physical Sciences and Industry, which took place in Copenhagen in September 1960, was the latest of a series of isotope conferences which began in 1951 at Oxford and continued with those held in 1954, again at Oxford, and in 1957 in Paris. The development of the uses of radioisotopes had been so rapid and many-sided that this Copenhagen Conference, organized by the IAEA with the co-operation of UNESCO, had to be restricted to applications in the physical sciences and industry. Applications of radioisotopes in animal biology and the medical sciences were discussed at the Conference held in Mexico City in November 1961. Even so, more than 500 scientists attended the Conference in Copenhagen and over 140 contributions were presented and discussed by this international gathering. Many more papers of great interest were submitted but could not be fitted into the programme. The proceedings of this Conference demonstrate the advances which had taken place since the earlier meetings in Oxford and Paris. It is hoped that this publication will contribute towards the stimulation of further research in the application of radioactive techniques.

  11. Using XML technology for the ontology-based semantic integration of life science databases.

    Science.gov (United States)

    Philippi, Stephan; Köhler, Jacob

    2004-06-01

    Several hundred internet accessible life science databases with constantly growing contents and varying areas of specialization are publicly available via the internet. Database integration, consequently, is a fundamental prerequisite to be able to answer complex biological questions. Due to the presence of syntactic, schematic, and semantic heterogeneities, large scale database integration at present takes considerable efforts. As there is a growing apprehension of extensible markup language (XML) as a means for data exchange in the life sciences, this article focuses on the impact of XML technology on database integration in this area. In detail, a general architecture for ontology-driven data integration based on XML technology is introduced, which overcomes some of the traditional problems in this area. As a proof of concept, a prototypical implementation of this architecture based on a native XML database and an expert system shell is described for the realization of a real world integration scenario.

  12. Towards Analysis of the Status of Science Technology Engineering ...

    African Journals Online (AJOL)

    This has been the case at both 'O' and 'A' levels. There is also a noticeable decline in enrolment statistics in STEM related subjects as the level of education increases. Within the sciences, at 'O' level, integrated science has high number of entries whilst pure science subjects such as biology, chemistry, physics and ...

  13. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-31

    The scientific session 'Econophysics and evolutionary economics' of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) 'The transition from simple reproduction to economic growth'; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) 'Experimental data on the development of fast-growing innovative companies in Russia'; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) 'Why is it sometimes possible to successfully model an economy?' (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) 'Theoretical economics'; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) 'Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market'; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) 'Fractal analysis of financial time series and the prediction problem'; Papers written on the basis of these reports are published below. The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733. High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737. Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742. On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov

  14. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?

    Science.gov (United States)

    Solomon, Gregg E A; Carley, Stephen; Porter, Alan L

    2016-01-01

    Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples).

  15. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  16. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    Science.gov (United States)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  17. Effects of an Integrated Science and Societal Implication Intervention on Promoting Adolescents' Positive Thinking and Emotional Perceptions in Learning Science

    Science.gov (United States)

    Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.

    2012-02-01

    The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group. Fifty-seven eighth-grade Taiwanese adolescents (30 boys and 27 girls) volunteered to participate in the assessments and were used as the comparison group. Additionally, 15 experimental students were recruited to be observed and interviewed. Paired t-tests, correlations, and analyses of covariance assessed the similarity and differences between groups. The findings were that the experimental group significantly outperformed its counterpart on positive thinking and emotional perceptions, and all participants' positive thinking scores were significantly related to their emotional perceptions about learning science. Recommendations for integrating science and societal implication for adolescents are provided.

  18. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    Science.gov (United States)

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  19. Life sciences payload definition and integration study, task C and D. Volume 2: Payload definition, integration, and planning studies

    Science.gov (United States)

    1973-01-01

    The Life Sciences Payload Definition and Integration Study was composed of four major tasks. Tasks A and B, the laboratory definition phase, were the subject of prior NASA study. The laboratory definition phase included the establishment of research functions, equipment definitions, and conceptual baseline laboratory designs. These baseline laboratories were designated as Maxi-Nom, Mini-30, and Mini-7. The outputs of Tasks A and B were used by the NASA Life Sciences Payload Integration Team to establish guidelines for Tasks C and D, the laboratory integration phase of the study. A brief review of Tasks A and B is presented provide background continuity. The tasks C and D effort is the subject of this report. The Task C effort stressed the integration of the NASA selected laboratory designs with the shuttle sortie module. The Task D effort updated and developed costs that could be used by NASA for preliminary program planning.

  20. Developpement et evaluation d'un environnement informatise d'apprentissage pour faciliter l'integration des sciences et de la technologie

    Science.gov (United States)

    Saliba, Marie-Therese

    2011-12-01

    Through this research we will fully assess the benefits brought by the ExAO (Computer Assisted Experimentation) in school laboratories of science and technology in Lebanon. We would also like to mention its contribution in a tangible way in laboratory research of Pedagogic Robotic from Montreal University, particularly in the development of ExAO mulaboratory. We wanted to test the capabilities of the ExAO, its use in the classroom such as: 1. A replacement of a traditional laboratory in the use of the experimental method. 2. A scientific investigation tool. 3. An integration tool of experimental sciences and mathematics. 4. An integration tool of experimental sciences, mathematics and technology in the technoscientific learning. To do so, we have mobilized 13 group classes, designated teachers to experiment themselves along with their students in order to assess, in a more realistic way, the benefits of implementing this micro computer laboratory at school. Different testing, evaluated using the results of learning activities undertaken by students, their responses to a questionnaire and feedback from teachers, show that: 1. The replacement of a traditional laboratory with an ExAO mulaboratory does not seem to pose problem, expected that students have adapted to it in only ten minutes, indicating that the speed with which data were graphed was more productive. 2. In order to investigate a physical phenomenon, the usability of the tutorial associated with the ability to amplify the phenomenon before its graph representation, has allowed students to design and implement quickly and independently an experiment to verify their prediction. 3. The integration of mathematics into an experimental approach can quickly grasp the phenomenon. In addition, it gives more autonomy and a meaning to the graphs and algebraic representations allowing to use them as a cognitive tool to interpret this phenomenon. 4. The approach made by the students to design and construct a

  1. The XMM-Newton Science Archive and its integration into ESASky

    Science.gov (United States)

    Loiseau, N.; Baines, D.; Colomo, E.; Giordano, F.; Merín, B.; Racero, E.; Rodríguez, P.; Salgado, J.; Sarmiento, M.

    2017-07-01

    We describe the variety of functionalities of the XSA (XMM-Newton Science Archive) that allow to search and access the XMM-Newton data and catalogues. The web interface http://nxsa.esac.esa.int/ is very flexible allowing different kinds of searches by a single position or target name, or by a list of targets, with several selecting options (target type, text in the abstract, etc.), and with several display options. The resulting data can be easily broadcast to Virtual Observatory (VO) facilities for a first look analysis, or for cross-matching the results with info from other observatories. Direct access via URL or command line are also possible for scripts usage, or to link XMM-Newton data from other interfaces like Vizier, ADS, etc. The full metadata content of the XSA can be queried through the TAP (Table access Protocol) via ADQL (Astronomical Data Query Language). We present also the roadmap for future improvements of the XSA including the integration of the Upper Limit server, the on-the-fly data analysis, and the interactive visualization of EPIC sources spectra and light curves and RGS spectra, among other advanced features. Within this modern visualization philosophy XSA is also being integrated into ESASky (http://sky.esa.int). ESASky is the science-driven multi-wavelength discovery portal for all the ESA Astronomy Missions (Integral, HST, Herschel, Suzaku, Planck, etc.), and other space and ground telescope data. The system offers progressive multi-resolution all-sky projections of full mission datasets using HiPS, a new generation of HEALPix projections developed by CDS, precise footprints to connect to individual observations, and direct access to science-ready data from the underlying mission specific science archives. XMM-Newton EPIC and OM all-sky HiPS maps, catalogues and links to the observations are available through ESASky.

  2. The new AP Physics exams: Integrating qualitative and quantitative reasoning

    Science.gov (United States)

    Elby, Andrew

    2015-04-01

    When physics instructors and education researchers emphasize the importance of integrating qualitative and quantitative reasoning in problem solving, they usually mean using those types of reasoning serially and separately: first students should analyze the physical situation qualitatively/conceptually to figure out the relevant equations, then they should process those equations quantitatively to generate a solution, and finally they should use qualitative reasoning to check that answer for plausibility (Heller, Keith, & Anderson, 1992). The new AP Physics 1 and 2 exams will, of course, reward this approach to problem solving. But one kind of free response question will demand and reward a further integration of qualitative and quantitative reasoning, namely mathematical modeling and sense-making--inventing new equations to capture a physical situation and focusing on proportionalities, inverse proportionalities, and other functional relations to infer what the equation ``says'' about the physical world. In this talk, I discuss examples of these qualitative-quantitative translation questions, highlighting how they differ from both standard quantitative and standard qualitative questions. I then discuss the kinds of modeling activities that can help AP and college students develop these skills and habits of mind.

  3. Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences

    Science.gov (United States)

    Talens, Joy

    2016-01-01

    Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…

  4. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975

    International Nuclear Information System (INIS)

    Lepore, J.L.

    1975-01-01

    This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures

  5. Tensors for physics

    CERN Document Server

    Hess, Siegfried

    2015-01-01

    This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics,  at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to  tensors of any rank, at graduate level.  Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...

  6. Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts

    Science.gov (United States)

    Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan

    2016-01-01

    This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…

  7. African Journal for Physical Activity and Health Sciences - Vol 21 ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences - Vol 21, No 3 (2015) ... Factors Influencing the Health of Men in Polygynous Relationship · EMAIL FULL ... Views of HIV Positive Pregnant Women on Accessibility of the Prevention of ...

  8. Progress report - Physics and Health Sciences - Health Sciences Section 1987 January 1 - June 30

    International Nuclear Information System (INIS)

    1987-08-01

    This report covers the third semi-annual period since the Reserach Company was reorganized. A highlight of the period was the first peer review of all the activities in Physics and Health Sciences by external examiners. The review was conducted in April by three separate Technical Review Committees (TRC) one for each of the three main areas: health sciences, nuclear physics and condensed matter physics. In all cases the TRCs gave strong support to our programs having a mandate to assess research programs with respect to (a) their quality and (b) their relevance to Canada. The principal programs reviewed were: DNA damage and repair mechanisms; synergistic effects of chemicals and radiation; the tritium RBE study; radiosensitivity of human bone marrow cells; radioprotective enzymes; radiation biochemistry; chemistry of oxazolinones, benzofuroxanes and cyclodextrins; myeloid leukemia in mice; tritium monitoring, and quality factors; metabolic modeling; neutron dosimetry; groundwater/contaminant modeling; sediment exchange and speciation; and atmospheric dispersion. Very considerable effort was spent on preparing a proposal for a centre of excellence in toxicology for presentation in March to the Premier's Council in the Province of Ontario. Although the proposal was not one of the 7 (out of 28) successful proposals, much useful preparatory work was done towards the establishing of a centre for health and environmental research on toxic agents

  9. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2015-01-28

    Jan 28, 2015 ... Author Affiliations. Neeraj Kumar Kamal1 2 Pooja Rani Sharma3 2 Manish Dev Shrimali2. The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, India; Department of Physics, Central University of Rajasthan, Ajmer 305 801, India; The LNM Institute of Information Technology, Jaipur 302 ...

  11. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The dispersion of the relaxation time due to the emission of confined LO-phonons depends strongly on the total energy. Author Affiliations. D Abouelaoualim1. L.P.S.C.M., Physics Department, Faculty of Sciences-Semlalia, BP:2390, 40000, Marrakech, Morocco. Dates. Manuscript received: 6 July 2004; Manuscript revised ...

  12. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-03-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.

  13. Perspectives on the Contribution of Social Science to Adapted Physical Activity: Looking Forward, Looking Back

    Science.gov (United States)

    Causgrove Dunn, Janice; Cairney, John; Zimmer, Chantelle

    2016-01-01

    In this article, we reflect on the contributions of the social sciences to the field of adapted physical activity by examining the theories and methods that have been adopted from the social science disciplines. To broaden our perspective on adapted physical activity and provide new avenues for theoretical and empirical exploration, we discuss and…

  14. Fostering Eroticism in Science Education to Promote Erotic Generosities for the Ocean-Other

    Science.gov (United States)

    Luther, Rachel

    2013-01-01

    Despite the increase in marine science curriculum in secondary schools, marine science is not generally required curricula and has been largely deemphasized or ignored in relation to earth science, biology, chemistry, and physics. I call for the integration and implementation of marine science more fully in secondary science education through…

  15. Use of a virtual human performance laboratory to improve integration of mathematics and biology in sports science curricula in Sweden and the United States.

    Science.gov (United States)

    Garza, D; Besier, T; Johnston, T; Rolston, B; Schorsch, A; Matheson, G; Annerstedt, C; Lindh, J; Rydmark, M

    2007-01-01

    New fields such as bioengineering are exploring the role of the physical sciences in traditional biological approaches to problems, with exciting results in device innovation, medicine, and research biology. The integration of mathematics, biomechanics, and material sciences into the undergraduate biology curriculum will better prepare students for these opportunities and enhance cooperation among faculty and students at the university level. We propose the study of sports science as the basis for introduction of this interdisciplinary program. This novel integrated approach will require a virtual human performance laboratory dual-hosted in Sweden and the United States. We have designed a course model that involves cooperative learning between students at Göteborg University and Stanford University, utilizes new technologies, encourages development of original research and will rely on frequent self-assessment and reflective learning. We will compare outcomes between this course and a more traditional didactic format as well as assess the effectiveness of multiple web-hosted virtual environments. We anticipate the grant will result in a network of original faculty and student research in exercise science and pedagogy as well as provide the opportunity for implementation of the model in more advance training levels and K-12 programs.

  16. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada)

    2016-06-15

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  17. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    International Nuclear Information System (INIS)

    Buckley, L

    2016-01-01

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  18. Towards a physics-integrated view on divertor pumping

    International Nuclear Information System (INIS)

    Day, Chr.; Gleason-González, C.; Hauer, V.; Igitkhanov, Y.; Kalupin, D.; Varoutis, S.

    2014-01-01

    Highlights: • Physics-integrated design approaches are to be preferred over approaches based on simple requirement lists. • A physics-integrated assessment is presented for the divertor vacuum pumping system based on detachment onset conditions for the divertor. • This approach considers density dependent pump albedo to reflect the effects of gas recycling at the divertor and the changes in flow regime with density. • A comparison with DEMO indicates that the divertor pumping system for a pulsed DEMO scales less than linearly with fusion power. - Abstract: One key requirement to design the inner fuel cycle of a divertor tokamak is defined by the torus vessel gas throughput and composition, and the sub-divertor neutral pressure at which the exhaust gas has to be pumped. This paper illustrates how divertor physics aspects can be translated to requirements on the divertor vacuum pumping system. An example workflow is presented that links the realization of detachment conditions with the sub-divertor neutral gas flow patterns in order to determine the appropriate number of torus vacuum pumps. For the example case of a fusion DEMO size machine, it was found that 7 actively pumping cryopumps (ITER-type) are necessary to handle the gas throughput that is needed to manage the heat flux and densities related to detachment onset

  19. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  20. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    Science.gov (United States)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is