WorldWideScience

Sample records for integrated heterodyned laser

  1. Laser Heterodyning

    CERN Document Server

    Protopopov, Vladimir V

    2009-01-01

    Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature – preserving phase information about optical wave in the electrical signal of the photo-detector – finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and Lidars, microscopy and other areas. The reader may be surprised by a variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.

  2. Integrated heterodyne terahertz transceiver

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  3. Integrated heterodyne terahertz transceiver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  4. Laser heterodyne spectrometer for helioseismology

    Science.gov (United States)

    Glenar, D. A.; Deming, D.; Espenak, F.; Kostiuk, T.; Mumma, M. J.

    1986-01-01

    The technique of laser heterodyne spectroscopy has been applied to the measurement of solar oscillations. Coherent mixing of solar radiation with the output of a frequency-stabilized CO2 laser permits the measurement of fully resolved profiles of solar absorption lines with high spectral purity and excellent frequency stability. This technique has been used to measure OH pure rotation lines in the infrared solar spectrum. Power spectra of these line frequency measurements show the well-known 5-min oscillations as well as significant velocity power at shorter periods.

  5. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    Science.gov (United States)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  6. Dual-signal heterodyne lock-in amplification with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2006-01-01

    High-sensitivity heterodyne detection with lasers applied to radar and satellite communication is seriously hampered by the large electronic bandwidth due to Doppler shift and frequency instability. These drawbacks can be circumvented by dual-signal heterodyne detection. The system consists of

  7. Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser

    Science.gov (United States)

    Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.

    2017-12-01

    We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.

  8. FIR laser scattering and heterodyne receiver measurements on Alcator C

    International Nuclear Information System (INIS)

    Woskoboinikow, P.; Praddaude, H.C.; Mulligan, W.J.; Cohn, D.R.; Lax, B.

    1982-01-01

    The MIT program to develop high power collective Thomson scattering diagnostics is presented. The D 2 O laser Thomson scattering system is operational on Alcator C tokamak. The major components include a 0.5 MW, 150 ns D 2 O laser, a heterodyne receiver mixer, a 25 MW, 381 μ DCOOD laser local oscillator and X-band I.F. electronics including a 32 channel multiplexer filter centered at 9.4 GHz with 80 MHz wide channels. Initial scattering measurement showed high level of stray D 2 O laser power. The spectrum was obtained by operating the Thomson scattering diagnostics with no plasma in the tokamak. An X-band notch filter was placed after the Schottky diode mixer to reject a 240 MHz band centered at 9.4 GHz. The stray light level was reduced by 16 to 20 db. Other sources of background noise such as strong non-thermal scattering and ECE did not appear to be a problem. A gas filled cell was placed on the Alcator C scattering system to reduce the level of stray light. Work is underway to improve the transverse mode quality of the laser and receiver to improve matching to the beam and viewing dumps. (Kato, T.)

  9. Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.

  10. Heterodyne interferometer laser source with a pair of two phase locked loop coupled He–Ne lasers by 632.8 nm

    International Nuclear Information System (INIS)

    Sternkopf, C; Diethold, C; Gerhardt, U; Manske, E; Wurmus, J

    2012-01-01

    Two He–Ne lasers are frequency and phase coupled by phase locking loop technique for a heterodyne laser interferometer. The heterodyne He–Ne laser is built of stabilized commercially used laser tubes. The two lasers create a high frequency stable heterodyne laser source with an output power of 2 mW. The laser source is coupled by two fibers (one fiber per laser) to the heterodyne laser head. This paper describes the configuration and the control theory basics of the laser system. The experimental setup and the equipment used are also described. First, experimental results with different parameters are represented. Then we discuss a novel heterodyne laser source which has achieved a master laser frequency stability of Δf 1 /f 1 = 1 · 10 −8 and a beat frequency stability of approximately Δf beat /f beat ≈ 4.5 · 10 −5 . (paper)

  11. Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Mavalvala, Nergis

    2003-01-01

    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers

  12. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    Science.gov (United States)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  13. Light scattering from thermal density fluctuations using a CW-CO2-laser and heterodyne detection

    International Nuclear Information System (INIS)

    Massig, J.H.

    1978-01-01

    The ion feature in the scattered light spectrum of an arc plasma was measured using heterodyne detection. A low-power CW-CO 2 -laser was employed. The weak signals were discriminated against noise by lock-in technique. (orig.) [de

  14. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.

    2012-01-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  15. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Ott, L.; McLinden, M. L.; Holben, B. N.; Wilson, E. L.

    2012-12-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal in the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations in pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  16. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    Science.gov (United States)

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  17. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited

  18. Multi-beam laser heterodyne measurement with ultra-precision for Young modulus based on oscillating mirror modulation

    Science.gov (United States)

    Li, Y. Chao; Ding, Q.; Gao, Y.; Ran, L. Ling; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng

    2014-07-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for Young modulus. Based on Doppler effect and heterodyne technology, loaded the information of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by mass variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain value of Young modulus of the sample by the calculation. This novel method is used to simulate measurement for Young modulus of wire under different mass by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.3%.

  19. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  20. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    Directory of Open Access Journals (Sweden)

    Yongqian Li

    2017-03-01

    Full Text Available A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively.

  1. Spatially-Heterodyned Holography

    Science.gov (United States)

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  2. A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer.

    Energy Technology Data Exchange (ETDEWEB)

    Klaassen, T. O. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Hajenius, M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Adam, A. J. L. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Klapwijk, T. M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Baryshev, A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Kumar, Sushil (Massachusetts Institute of Technology, Cambridge, MA); Baselmans, J. J. A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hu, Qing (Massachusetts Institute of Technology, Cambridge, MA); Yang, Z. Q. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hovenier, J. N. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Williams, Benjamin S. (Massachusetts Institute of Technology, Cambridge, MA); Gao, J. R. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Reno, John Louis

    2005-03-01

    We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.

  3. Development of a heterodyne laser interferometer for very small high frequency displacements detection

    International Nuclear Information System (INIS)

    Baarmann, P.

    1992-10-01

    A heterodyne laser interferometer with detection electronics has been developed for measuring very small amplitude high frequency vibrations. A laser beam from HeNe-laser is focused and reflected in the vibrating surface and the generated phase shifts are after interference with a reference beam detected with a photo detector and evaluated in a demodulation system. The set-up is a prototype and techniques to improve the accuracy and sensitivity of the system are presented. The present system can detect vibration amplitude from around 1 Angstrom and is linear up to 250 Angstrom (±4%). Frequencies from a few tens of kHz up to tens of MHz are covered. The low frequency region can be greatly improved. The minimum detectable displacement may be improved by narrowing the bandwidth of the detection system to the region of interest

  4. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    Science.gov (United States)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  5. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui

    2012-02-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%.

  6. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui

    2012-01-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%. (general)

  7. A laser interferometer for measuring straightness and its position based on heterodyne interferometry

    International Nuclear Information System (INIS)

    Chen Benyong; Zhang Enzheng; Yan Liping; Li Chaorong; Tang Wuhua; Feng Qibo

    2009-01-01

    Not only the magnitude but also the position of straightness errors are of concern to users. However, current laser interferometers used for measuring straightness seldom give the relative position of the straightness error. To solve this problem, a laser interferometer for measuring straightness and its position based on heterodyne interferometry is proposed. The optical configuration of the interferometer is designed and the measurement principle is analyzed theoretically. Two experiments were carried out. The first experiment verifies the validity and repeatability of the interferometer by measuring a linear stage. Also, the second one for measuring a flexure-hinge stage demonstrates that the interferometer is capable of nanometer measurement accuracy. These results show that this interferometer has advantages of simultaneously measuring straightness error and the relative position with high precision, and a compact structure.

  8. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

    NARCIS (Netherlands)

    Kloosterman, J.L.; Hayton, D.J.; Ren, Y.; Kao, T.Y.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Hu, Q.; Walker, C.K.; Reno, J.L.

    2013-01-01

    We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448?THz. The local oscillator is a third-order distributed feedback quantum cascade laser operating in continuous wave mode at 4.741?THz. A quasi-optical, superconducting NbN

  9. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

    DEFF Research Database (Denmark)

    Gobron, Olivier; Jung, K.; Galland, N.

    2017-01-01

    Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011......)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from...

  10. Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models

    Science.gov (United States)

    Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).

  11. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    Science.gov (United States)

    Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent

    2012-01-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  12. Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.

    2013-12-01

    In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory

  13. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui; Qu Yang; Gao Long; Cong Hai-Fang; Yang Yan-Ling; Gao Jie; Wang Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui; Qu, Yang; Gao, Long; Cong, Hai-Fang; Yang, Yan-Ling; Gao, Jie; Wang, Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.

  15. Effect of Nonlinearity by the Amplitude Variation in coherent transmission in Laser Heterodyne Interferometric

    International Nuclear Information System (INIS)

    Chen, H F; Ding, X M; Zhong, Z; Xie, Z L; Yue, H

    2006-01-01

    To reduce the nonlinearity of nanometer measurement in laser heterodyne interferometric, the influence mechanics of the amplitude variation in coherent transmission upon nonlinearity must be confirmed. Based on the mechanics of nonlinearity, the models about how first-harmonic and second-harmonic nonlinearity caused by the amplitude variation in coherent transmission are proposed. The emulation result shows that different amplitude between measurement arm and reference arm increases the first-harmonic nonlinearity when laser beams nonorthogonality errors exist, but it doesn't change the relationship between nonlinearity and half wavelength. When the rotation angle error β of polarizing beam splitter (PBS) exists, amplitude variation only affects the first-harmonic nonlinearity. With a constant rotation angle of PBS β = 4 0 , when the amplitude factor of measurement arm reduces from 1 to 0.6, the nonlinearity increases from 0.25 nm to 3.81 nm, and the nonlinearity is simple superposition of first-harmonic and second-harmonic. Theoretic analysis and emulation show that the reduction of amplitude variation in coherent transmission can reduce influence on nonlinearity

  16. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Peng, X., E-mail: xiangpeng@pku.edu.cn; Li, W.; Guo, H., E-mail: hongguo@pku.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Center for Quantum Information Technology, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  17. A Low-Cost Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Near-ir Measurements of CO2 and CH4 in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2016-01-01

    The miniaturized laser heterodyne radiometer (mini-LHR) is a ground-based passive variation of a laser heterodyne radiometer that uses sunlight to measure absorption of CO2 andCH4 in the infrared. Sunlight is collected using collimation optics mounted to an AERONET sun tracker, modulated with a fiber switch and mixed with infrared laser light in a fast photoreciever.The amplitude of the resultant RF (radio frequency) beat signal correlates with the concentration of the gas in the atmospheric column.

  18. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements

    Science.gov (United States)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien

    2016-12-01

    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  19. Note: Comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect

    Science.gov (United States)

    Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping

    2018-04-01

    A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.

  20. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...

  1. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    International Nuclear Information System (INIS)

    Pfister, T; Günther, P; Nöthen, M; Czarske, J

    2010-01-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained

  2. Low-Cost Miniaturized Laser Heterodyne Radiometer for Highly Sensitive Detection of CO2 and CH4 in the Atmospheric Column

    Science.gov (United States)

    Wilson, Emily L.; McLinden, Matthew L.; Miller, J. Houston

    2011-01-01

    We present a new passive ground-network instrument capable of measuring carbon dioxide (CO2) at 1.57 microns and methane (CH4) at 1.62 microns -- key for validation of OCO-2, ASCENDS, OCO-3, and GOSAT. Designed to piggy-back on an AERONET sun tracker (AERONET is a global network of more than 450 aerosol sensing instruments), this instrument could be rapidly deployed into the established AERONET network of ground sensors. Because aerosols induce a radiative effect that influences terrestrial carbon exchange, this simultaneous measure of aerosols and carbon cycle gases offers a uniquely comprehensive approach. This instrument is a variation of a laser heterodyne radiometer (LHR) that leverages recent advances in telecommunications lasers to miniaturize the instrument (the current version fits in a carry-on suitcase). In this technique, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. By dividing this RF signal into a filter bank, concentrations at different altitudes can be resolved. For a one second integration, we estimate column sensitivities of 0.1 ppmv for CO2, and <1 ppbv for CH4.

  3. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.

    Science.gov (United States)

    Canagasabey, Albert; Michie, Andrew; Canning, John; Holdsworth, John; Fleming, Simon; Wang, Hsiao-Chuan; Aslund, Mattias L

    2011-01-01

    Linewidth measurements of a distributed feedback (DFB) fibre laser are made using delayed self heterodyne interferometry (DHSI) with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are w(L) (MZI) = (1.6 ± 0.2) kHz and w(L) (MI) = (1.4 ± 0.1) kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  4. A Comparison of Delayed Self-Heterodyne Interference Measurement of Laser Linewidth Using Mach-Zehnder and Michelson Interferometers

    Directory of Open Access Journals (Sweden)

    Simon Fleming

    2011-09-01

    Full Text Available Linewidth measurements of a distributed feedback (DFB fibre laser are made using delayed self heterodyne interferometry (DHSI with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are wL (MZI = (1.6 ± 0.2 kHz and wL (MI = (1.4 ± 0.1 kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  5. CO2 laser imaging heterodyne and phase contrast interferometer for density profile and fluctuation measurements in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Akiyama, T.; Kawahata, K.; Ito, Y.; Vyacheslavov, L.N.; Sanin, A.L.; Okajima, S.

    2007-01-01

    A CO 2 laser heterodyne imaging interferometer (CO 2 HI) and a CO 2 laser phase contrast imaging interferometer (CO 2 PCI) were installed in LHD. The purpose of CO 2 HI is to measure electron density profile at high density (>1x10 20 m -3 ), where the existing far infrared laser (wavelength 118.9 μm) interferometer suffers from fringe jump due to the reduction of signal intensity caused by refraction. In the beginning of 10th LHD experimental campaign (2006-2007), sixty three three of CO 2 HI with 10 channels of YAG HI for vibration compensation, and in the later of 10th LHD experimental campaign. Eighty one channels CO 2 HI and 15 channels YAG HI became available. The purpose of CO 2 PCI is to measure turbulent fluctuation, which can contribute to the energy and particle transport. In order to get local fluctuation information, magnetic shear technique was applied with use of 48 (6 by 8) channel two dimensional detector. (author)

  6. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.

    Science.gov (United States)

    Barnett, Patrick D; Lamsal, Nirmal; Angel, S Michael

    2017-04-01

    A spatial heterodyne spectrometer (SHS) is described for standoff laser-induced breakdown spectroscopy (LIBS) measurements. The spatial heterodyne LIBS spectrometer (SHLS) is a diffraction grating based interferometer with no moving parts that offers a very large field of view, high light throughput, and high spectral resolution in a small package. The field of view of the SHLS spectrometer is shown to be ∼1° in standoff LIBS measurements. In the SHLS system described here, the collection aperture was defined by the 10 mm diffraction gratings in the SHS and standoff LIBS measurements were made up to 20 m with no additional collection optics, corresponding to a collection solid angle of 0.2 μsr, or f/2000, and also using a small telescope to increase the collection efficiency. The use of a microphone was demonstrated to rapidly optimize laser focus for 20 m standoff LIBS measurements.

  7. Infrared 7.6-microm lead-salt diode laser heterodyne radiometry of water vapor in a CH4-air premixed flat flame.

    Science.gov (United States)

    Weidmann, Damien; Courtois, Daniel

    2003-02-20

    We deal with the design of a diode laser heterodyne radiometer and its application in a combustion process. We present some experimental results obtained with a CH4-air premised flat flame as the optical source. The goal is to prove that heterodyne detection techniques are relevant in remote detection and diagnostics of combustion and can have important applications in both civil and military fields. To the best of our knowledge, it is the first time that this demonstration is made. The radiometer, in spite of the low-power lead-salt diode laser used as a local oscillator, enables us to record high-temperature water-vapor emission spectra in the region of 1315 cm(-1).

  8. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-01-01

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  9. Utility of optical heterodyne displacement sensing and laser ultrasonics as in situ process control diagnostic for additive manufacturing

    Science.gov (United States)

    Manzo, Anthony J.; Helvajian, Henry

    2018-04-01

    An in situ process control monitor is presented by way of experimental results and simulations, which utilizes a pulsed laser ultrasonic source as a probe and an optical heterodyne displacement meter as a sensor. The intent is for a process control system that operates in near real time, is nonintrusive, and in situ: A necessary requirement for a serial manufacturing technology such as additive manufacturing (AM). We show that the diagnostic approach has utility in characterizing the local temperature, the area of the heat-affected zone, and the surface roughness (Ra ˜ 0.4 μm). We further demonstrate that it can be used to identify solitary defects (i.e., holes) on the order of 10 to 20 μm in diameter. Moreover, the technique shows promise in measuring properties of materials with features that have a small radius of curvature. We present results for a thin wire of ˜650 μm in diameter. By applying multiple pairs of probe-sensor systems, the diagnostic could also measure the local cooling rate on the scale of 1 μs. Finally, while an obvious application is used in AM technology, then all optical diagnostics could be applied to other manufacturing technologies.

  10. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    Science.gov (United States)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  11. A low-cost, portable, laser heterodyne radiometer for validating passive satellite observations of column carbon dioxide and methane

    Science.gov (United States)

    Wilson, E. L.; DiGregorio, A.; Villanueva, G. L.; Miletti, K.; Grunberg, C.; Grunberg, M.; Floyd, M.; Menendez, A. R.

    2017-12-01

    We present a low-cost, portable, miniaturized, laser heterodyne radiometer (mini-LHR) capable of measuring column carbon dioxide (CO2) and methane (CH4) in remote locations to validate passive satellite observations. A benefit of the portability is that mini-LHR instruments can be calibrated and compared site-by-side to quantify any internal biases, or any biases in stationary column instruments such as those in the total carbon column observing network (TCCON). This is the latest iteration of an instrument that has been under development by our team since 2009. During our recent Interdisciplinary Science (IDS) effort that involved measuring carbon emissions over thawing permafrost, it became clear that our mini-LHR needed to be redesigned to be significantly smaller, lighter, and to operate from a small solar panel so that it could be easily carried to the field sites located within the Bonanza Creek Research Forest near Fairbanks, AK. The boreal peatland sites at Bonanza Creek have forests that are underlain by cold soils, permafrost, collapse scar thermokarst bogs resulting from permafrost thaw, and rich fens with various underlying sediments and gravels that are not frozen. While these sites are extremely interesting for their role in carbon storage, the practical issue with these sites is that they are very wet (the fen site for example is periodically under several inches of water) and the trails to reach these sites are extremely muddy, narrow, and populated with swarms of biting insects. The soils at these sites are delicate and easily damaged by excessive foot traffic. They are also prone to periodic wild fires - making permanent column instrument installations impractical. Here, we compare data from the permafrost field work as well as data collected as part of the Hawai'i Space Exploration Analog and Simulation (Hi-SEAS) project where crewmembers are currently testing the mini-LHR on an isolated Mars-like site on the Mauna Loa side of the saddle area on

  12. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    Science.gov (United States)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, William W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; Hoffman, Christine; Garner, Richard M.

    2017-03-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor (H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  13. A 4 U Laser Heterodyne Radiometer for Methane (CH4) and Carbon Dioxide (CO2) Measurements from an Occultation-Viewing CubSat

    Science.gov (United States)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, WIlliam W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; hide

    2017-01-01

    We present a design for a 4 U (20 cm 20 cm 10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor(H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  14. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    International Nuclear Information System (INIS)

    Wilson, Emily L; Oman, Luke D; DiGregorio, A J; Garner, Richard M; Riot, Vincent J; Ammons, Mark S; Bruner, William W; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E; Hoffman, Christine

    2017-01-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH 4 ), carbon dioxide (CO 2 ) and water vapor (H 2 O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO 2 , CH 4 , and H 2 O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone. (paper)

  15. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  16. Developments in Miniaturized Laser Heterodyne Radiometer (mini-LHR) construction for groundtruth measurements of CH4 and CO2 in harsh terrain

    Science.gov (United States)

    DiGregorio, A.; Wilson, E. L.; Hoffman, C.; Grunberg, C.; Mao, J.; Ramanathan, A. K.

    2016-12-01

    We present an updated, ruggedized design of NASA Goddard Space Flight Center's Miniaturized Laser Heterodyne Radiometer (mini-LHR), and the results of testing in the Bonanza Creek Research Forest. The mini-LHR is a passive variation of typical heterodyne radiometry instruments, designed to work in tandem with the AERONET sun photometer for collection of column methane (CH4) and carbon dioxide (CO2) in harsh environments. Advancements in the development of the Cube-Sat version of the mini-LHR have allowed a more than 50% reduction in size, weight, and power usage of the mini-LHR. Now small enough to fit in a medium handbag, the mini-LHR can be run off of a small 35 Watt solar panel and backup battery for continuous measurement. Using a touch-screen control interface built off of a Raspberry Pi, the updated mini-LHR is capable of data collection and preliminary data processing, even without internet, cellular, or satellite connectivity. The improvements made to the mini-LHR were tested in a field campaign in May 2016 funded under NASA's IDS program to track CH4 and CO2 emissions above thawing permafrost. In addition to being a comprehensive study of methane release from thawing permafrost, this pilot study tested the ruggedization and functionality of the instrument in three different environments- a black spruce forest, collapsed scar bog, and fen.

  17. Very Low NF, High DR Heterodyne RF Lightwave Links Using a Simple, Versatile Photonic Integration Technology

    National Research Council Canada - National Science Library

    Forrest, Stephen R

    2006-01-01

    ...: Demonstration of a versatile integration technology based on the asymmetric twin waveguide platform that allowed for the realization of a broad range of components useful in RF photonic components...

  18. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  19. Heterodyne lidar for chemical sensing

    International Nuclear Information System (INIS)

    Oldenborg, Richard C.; Tiee, Joe J.; Shimada, Tsutomu; Wilson, Carl W.; Remelius, Dennis K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO 2 transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics

  20. Phase locking of a 1.5 Terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver.

    Science.gov (United States)

    Rabanus, D; Graf, U U; Philipp, M; Ricken, O; Stutzki, J; Vowinkel, B; Wiedner, M C; Walther, C; Fischer, M; Faist, J

    2009-02-02

    We demonstrate for the first time the closure of an electronic phase lock loop for a continuous-wave quantum cascade laser (QCL) at 1.5 THz. The QCL is operated in a closed cycle cryo cooler. We achieved a frequency stability of better than 100 Hz, limited by the resolution bandwidth of the spectrum analyser. The PLL electronics make use of the intermediate frequency (IF) obtained from a hot electron bolometer (HEB) which is downconverted to a PLL IF of 125 MHz. The coarse selection of the longitudinal mode and the fine tuning is achieved via the bias voltage of the QCL. Within a QCL cavity mode, the free-running QCL shows frequency fluctuations of about 5 MHz, which the PLL circuit is able to control via the Stark-shift of the QCL gain material. Temperature dependent tuning is shown to be nonlinear, and of the order of -16 MHz/K. Additionally we have used the QCL as local oscillator (LO) to pump an HEB and perform, again for the first time at 1.5 THz, a heterodyne experiment, and obtain a receiver noise temperature of 1741 K.

  1. CCAT Heterodyne Instrument Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will extend and proof-out the design concept for a high pixel count (128 pixels in 2 bands) submillimeter-wave heterodyne receiver array instrument for the...

  2. Continuous-Integration Laser Energy Lidar Monitor

    Science.gov (United States)

    Karsh, Jeremy

    2011-01-01

    This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.

  3. The laser integration line (LIL)

    International Nuclear Information System (INIS)

    Roussel, A.

    2006-01-01

    The laser integration line (LIL) was originally built to validate the technological choices made for the Megajoule laser that is being built nearby. The LIL is made up of a single line composed of 8 laser beams. Each laser beam consists of 4 main modules: 1) the impulse generator that delivers a 40 mm * 40 mm square cross section infrared laser beam (λ = 1053 nm); 2) the amplification module that involves 2 steps in power amplifying, the output signal is a laser impulse of 5 ns of time duration carrying an energy of 20.10 3 Joule at a wavelength of 1053 nm; 3) the transport line that leads 4 elementary laser beams through a system of 6 mirrors; and 4) the optical block of the focusing and frequency conversion system (SCF). The purpose of SCF is twofold, first to turn the 4 infrared elementary beams into 4 ultraviolet (λ = 351 nm) beams thanks to 2 KDP (potassium di-hydrogeno-phosphate) crystals, and secondly to merge and focus the 4 elementary beams on a unique spot of the target thanks to diffraction gratings with curved slits. (A.C.)

  4. Demonstration of a fully integrated superconducting receiver with a 2.7 THz quantum cascade laser.

    Science.gov (United States)

    Miao, Wei; Lou, Zheng; Xu, Gang-Yi; Hu, Jie; Li, Shao-Liang; Zhang, Wen; Zhou, Kang-Min; Yao, Qi-Jun; Zhang, Kun; Duan, Wen-Ying; Shi, Sheng-Cai; Colombelli, Raffaele; Beere, Harvey E; Ritchie, David A

    2015-02-23

    We demonstrate for the first time the integration of a superconducting hot electron bolometer (HEB) mixer and a quantum cascade laser (QCL) on the same 4-K stage of a single cryostat, which is of particular interest for terahertz (THz) HEB/QCL integrated heterodyne receivers for practical applications. Two key issues are addressed. Firstly, a low power consumption QCL is adopted for preventing its heat dissipation from destroying the HEB's superconductivity. Secondly, a simple spherical lens located on the same 4-K stage is introduced to optimize the coupling between the HEB and the QCL, which has relatively limited output power owing to low input direct current (DC) power. Note that simulation techniques are used to design the HEB/QCL integrated heterodyne receiver to avoid the need for mechanical tuning. The integrated HEB/QCL receiver shows an uncorrected noise temperature of 1500 K at 2.7 THz, which is better than the performance of the same receiver with all the components not integrated.

  5. Influence of non-ideal performance of lasers on displacement precision in single-grating heterodyne interferometry

    Science.gov (United States)

    Wang, Guochao; Xie, Xuedong; Yan, Shuhua

    2010-10-01

    Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .

  6. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  7. Modeling and verifying non-linearities in heterodyne displacement interferometry

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.

    2002-01-01

    The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

  8. Laser and photonic systems design and integration

    CERN Document Server

    Nof, Shimon Y; Cheng, Gary J

    2014-01-01

    New, significant scientific discoveries in laser and photonic technologies, systems perspectives, and integrated design approaches can improve even further the impact in critical areas of challenge. Yet this knowledge is dispersed across several disciplines and research arenas. Laser and Photonic Systems: Design and Integration brings together a multidisciplinary group of experts to increase understanding of the ways in which systems perspectives may influence laser and photonic innovations and application integration.By bringing together chapters from leading scientists and technologists, ind

  9. Single beam write and/or replay of spatial heterodyne holograms

    Science.gov (United States)

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  10. Submillimeter heterodyne arrays for APEX

    NARCIS (Netherlands)

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.

    2008-01-01

    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  11. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...

  12. Wireless Data Transmission at Terahertz Carrier Waves Generated from a Hybrid InP-Polymer Dual Tunable DBR Laser Photonic Integrated Circuit.

    Science.gov (United States)

    Carpintero, Guillermo; Hisatake, Shintaro; de Felipe, David; Guzman, Robinson; Nagatsuma, Tadao; Keil, Norbert

    2018-02-14

    We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.5 THz) on a single photonic integrated circuit. We demonstrate the application of this source to generate a carrier wave at 330 GHz to establish a wireless data transmission link at a data rate up to 18 Gbit/s. Using a coherent detection scheme we increase the sensitivity by more than 10 dB over direct detection.

  13. Integrated two-section discrete mode laser

    NARCIS (Netherlands)

    Anandarajah, P.M.; Latkowski, S.; Browning, C.; Zhou, R.; O'Carroll, J.; Phelan, R.; Kelly, B.; O'Gorman, J.; Barry, L.P.

    2012-01-01

    The authors present the design and characterization of a novel integrated two-section discrete mode index patterned diode laser source. The two slotted regions etched into the laser ridge waveguide are formed in the same fabrication step as the ridge, thus avoiding the requirement for complex

  14. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  15. A SIMPLE HETERODYNE TEMPORAL SPECKLE-PATTERN INTERFEROMETER

    International Nuclear Information System (INIS)

    Wong, W. O.; Gao, Z.; Lu, J.

    2010-01-01

    A common light path design of heterodyne speckle pattern interferometer based on temporal speckle pattern interferometry is proposed for non-contact, full-field and real-time continuous displacement measurement. Double frequency laser is produced by rotating a half wave plate. An experiment was carried out to measure the dynamic displacement of a cantilever plate for testing the proposed common path heterodyne speckle pattern interferometer. The accuracy of displacement measurement was checked by measuring the motion at the mid-point of the plate with a point displacement sensor.

  16. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  17. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technolog......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...... technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic...

  18. Integrated power conditioning for laser diode arrays

    International Nuclear Information System (INIS)

    Hanks, R.L.; Kirbie, H.C.; Newton, M.A.; Farhoud, M.S.

    1995-01-01

    This compact modulator has demonstated its ability to efficiently and accurately drive a laser diode array. The addition of the crowbar protection circuit is an invaluable addition to the integrated system and is capable of protecting the laser diode array against severe damage. We showed that the correlation between measured data and simulation indicates that our modulator model is valid and can be used as a tool in the design of future systems. The spectrometer measurements that we conducted underline the imprtance of current regulation to stable laser operation

  19. Surface Fluctuation Scattering using Grating Heterodyne Spectroscopy

    DEFF Research Database (Denmark)

    Edwards, R. V.; Sirohi, R. S.; Mann, J. A.

    1982-01-01

    Heterodyne photon spectroscopy is used for the study of the viscoelastic properties of the liquid interface by studying light scattered from thermally generated surface fluctuations. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms...

  20. Development of our laser fusion integration simulation

    International Nuclear Information System (INIS)

    Li, J.; Zhai, C.; Li, S.; Li, X.; Zheng, W.; Yong, H.; Zeng, Q.; Hang, X.; Qi, J.; Yang, R.; Cheng, J.; Song, P.; Gu, P.; Zhang, A.; An, H.; Xu, X.; Guo, H.; Cao, X.; Mo, Z.; Pei, W.; Jiang, S.; Zhu, S. P.

    2013-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happening in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (authors)

  1. Integrated Applications with Laser Technology

    Directory of Open Access Journals (Sweden)

    Octavian DOSPINESCU

    2013-01-01

    Full Text Available The introduction of new materials as Power Point presentations are the most convenient way of teaching a course or to display a scientific paper. In order to support this function, most schools, universities, institutions, are equipped with projectors and computers. For controlling the presentation of the materials, the persons that are in charge with the presentation use, in most cases, both the keyboard of the computer as well as the mouse for the slides, thing that burdens, in a way, the direct communication (face to face with the audience. Of course, the invention of the wireless mouse allowed a sort of freedom in controlling from the distance the digital materials. Although there seems to appear a certain impediment: in order to be used, the mouse requires to be placed on a flat surface. This article aims at creating a new application prototype that will manipulate, only through the means of a light-beam instrument (laser fascicle, both the actions of the mouse as well as some of the elements offered by the keyboard on a certain application or presentation. The light fascicle will be „connected” to a calculus system only through the images that were captured by a simple webcam.

  2. Stability of heterodyne terahertz receivers

    NARCIS (Netherlands)

    Kooi, J.W.; Baselmans, J.J.A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T.M.; Voronov, B.; Gol'tsman, G.

    2006-01-01

    In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO)

  3. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation

    Science.gov (United States)

    Matvienko, G. G.; Sukhanov, A. Y.

    2015-11-01

    Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.

  4. Vertical integration of dual wavelength index guided lasers

    NARCIS (Netherlands)

    Karouta, F.; Tan, H.H.; Jagadish, C.; Roy, van B.H.

    1999-01-01

    The vertical integration of two GaAs-based lasers operating at different wavelengths has been achieved with the use of re-growth technology. A V-channel substrate inner stripe structure was used for the bottom laser and a ridge waveguide for the top laser. Both lasers shared a common electrode and

  5. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  6. Heterodyne polarimetry technology for inspection of critical dimensions

    Directory of Open Access Journals (Sweden)

    Protopopov V.

    2010-06-01

    Full Text Available Heterodyne polarimetry is based on the analysis of phases and polarization states of two frequency shifted cross-polarized waves, generated by Zeeman lasers and their analogs [1]. In semiconductor industry, manufacturing of memory chips depends on the width and aspect ratio of a great number of identical parallel vertical and horizontal word and bit address lines. Such a structure may be considered as a wire grid polarizer for visible optics, and it is reasonable to expect that polarimetry techniques may be efficient for detecting tiny variations in this type of structures on masks and wafers. Currently, both imaging and non-imaging modalities are considered as complementary inspection technologies. The talk will focus on instrumentation, theory, and experimental results of two different inspection tools: scanning polarimeters for mapping variations of critical dimensions over lithography masks and semiconductor wafers, and polarization-controlled dual-channel heterodyne microscope with super-resolution capabilities.

  7. An empirical correction for moderate multiple scattering in super-heterodyne light scattering.

    Science.gov (United States)

    Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas

    2017-05-28

    Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.

  8. Two-wavelength spatial-heterodyne holography

    Science.gov (United States)

    Hanson, Gregory R.; Bingham, Philip R.; Simpson, John T.; Karnowski, Thomas P.; Voelkl, Edgar

    2007-12-25

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  9. Stability of heterodyne terahertz receivers

    OpenAIRE

    Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.

    2006-01-01

    In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1/f spectral distribution. In a 60 MHz noise bandwidth this results in an Allan varian...

  10. Foundry fabricated photonic integrated circuit optical phase lock loop.

    Science.gov (United States)

    Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C

    2017-07-24

    This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.

  11. Pulsed laser-induced SEU in integrated circuits

    International Nuclear Information System (INIS)

    Buchner, S.; Kang, K.; Stapor, W.J.; Campbell, A.B.; Knudson, A.R.; McDonald, P.; Rivet, S.

    1990-01-01

    The authors have used a pulsed picosecond laser to measure the threshold for single event upset (SEU) and single event latchup (SEL) for two different kinds of integrated circuits. The relative thresholds show good agreement with published ion upset data. The consistency of the results together with the advantages of using a laser system suggest that the pulsed laser can be used for SEU/SEL hardness assurance of integrated circuits

  12. Experiments on Josephson mixers for heterodyne reception at 0.3 mm wavelength

    International Nuclear Information System (INIS)

    Blaney, T.G.; Knight, D.J.E.

    1974-01-01

    A point contact Josephson junction was investigated as a heterodyne mixer at 337 μm. The conversion efficiency reached about -32 dB using a laser local oscillator and about -42 dB using 9th or 12th harmonic mixing with a klystron

  13. Molecular astronomy using heterodyne detection at 691 GHz

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Buhl, D.

    1984-01-01

    Observations of the CO J 6 - 5 transition at 691 GHz in new interstellar and planetary sources have been made. The heterodyne receiver uses an optically pumped laser local oscillator and a quasi-optical Schottky diode mixer, with measured noise temperatures consistently under 4000 K (double sideband). Continued improvements in system performance and antenna coupling have made possible the mapping of 691 GHz emission from W3, and the detection of CO J 5 - 6 absorption in the atmosphere of Venus. A detailed description of the instrumentation and recent observational data are provided. 14 references

  14. On-chip photonic integrated circuit structures for millimeter and terahertz wave signal generation

    NARCIS (Netherlands)

    Gordón, C.; Guzmán, R. C.; Corral, V.; Carpintero, G.; Leijtens, X.

    2015-01-01

    We present two different on-chip photonic integrated circuit (PIC) structures for continuous-wave generation of millimeter and terahertz waves, each one using a different approach. One approach is the optical heterodyne method, using an on-chip arrayed waveguide grating laser (OC-AWGL) which is

  15. Developments of integrated laser crystals by a direct bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Fukuyama, Hiroyasu; Katsumata, Masaki; Tanaka, Mitsuhiro; Okada, Yukikatu

    2003-01-01

    Laser crystal integration using a neodymium-doped yttrium vanadate (or orthovanadate) laser crystal, and non-doped yttrium vanadate crystals that function as cold fingers has been demonstrated. A newly developed dry etching process was adopted in the preparation for contact of mechanically polished surfaces. In the heat treatment process, temperature optimization was essential to get rid of precipitation of vanadic acid caused by the thermo-chemical reaction in a vacuum furnace. The bonded crystal was studied via optical characteristics, magnified inspections, laser output performances pumped by a CW laser diode. From these experiments, it was clear that the integrated Nd:YVO 4 laser crystal, securing the well-improved thermal conductivity, can increase laser output power nearly twice that of the conventional single crystal which was cracked in high power laser pumping of 10 W due to its intrinsic poor thermal conductivity. (author)

  16. Ground based mid-IR heterodyne spectrometer concept for planetary atmospheres observations

    Science.gov (United States)

    Garamov, V.; Benderov, O.; Semenov, V.; Spiridonov, M.; Rodin, A.; Stepanov, B.

    2017-09-01

    We present a heterodyne spectrometer concept based on distributed feedback (DFB) quantum cascade lasers (QCL) operated in midle infrared region (MIR). The instrument is assumed to be mount on the Russian infrared observatories. The core features of the concept are compact design, utilizing a novel mid-IR fiber optical components and dynamic local oscillator frequency locking using reference molecule absorption line. The instrument characteristics are similar to modern heterodyne devices THIS (Cologne University, Germany) and MILAHI (Tohoku University, Japan) in terms of fundamental parameters, including spectral resolution, spectral coverage in a single observation. At present moment we created laboratory setup including all necessary elements of MIR heterodyne spectrometer. We have studied different components of noises of our system and found optimal value of LO power. The measured signal to noise ratio (SNR) with MCT PD was about 10 times greater than LO's shot noise (theoretical limit of heterodyne technique SNR) and limited by QCL relative intensity noise (RIN). However, applying additional filtering it is possible to reduce this value better than 5 shot noise level, which is typical to TEC cooled MCT PD. Also we demonstrate heterodyne signal measurements using laboratory black body with temperature of 400 oC.

  17. Multi-Axis Heterodyne Interferometry (MAHI)

    Science.gov (United States)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft

  18. Cost-Efficient DWDM-PON / Mm-Wave Wireless Integration using Coherent Radio-over-Fiber (CRoF)

    DEFF Research Database (Denmark)

    Thakur, Manoj P.; Mikroulis, S.; Renaud, C. C.

    2015-01-01

    This work aims to investigate the performance of millimetre wave (mm-wave) broadband wireless access for seamless integration with the (ultra-dense) WDM infrastructure. By using two uncorrelated lasers, this system concept allows simple implementation that can additionally be improved, if thermally...... for transmission. In this work, we analyze the performance of heterodyne based optical receivers, using OOK and multilevel modulation formats....

  19. VCSEL Scaling, Laser Integration on Silicon, and Bit Energy

    Science.gov (United States)

    2017-03-01

    especially the laser. Highly compact directly modulated lasers ( DMLs ) have been researched to meet this goal. The most favored technology will likely be...question of which achieves lower bit energy, a DML or a continuous-wave (CW) laser coupled to an integrated modulator. Transceiver suppliers are also...development that can utilize high efficiency DMLs that reach very high modulation speed. Oxide-VCSELs [1] do not yet take full advantage of the

  20. Photonic integrated circuits : a new approach to laser technology

    NARCIS (Netherlands)

    Piramidowicz, R.; Stopinski, S.T.; Lawniczuk, K.; Welikow, K.; Szczepanski, P.; Leijtens, X.J.M.; Smit, M.K.

    2012-01-01

    In this work a brief review on photonic integrated circuits (PICs) is presented with a specific focus on integrated lasers and amplifiers. The work presents the history of development of the integration technology in photonics and its comparison to microelectronics. The major part of the review is

  1. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  2. On-chip integrated lasers for biophotonic applications

    DEFF Research Database (Denmark)

    Mappes, Timo; Wienhold, Tobias; Bog, Uwe

    Meeting the need of biomedical users, we develop disposable Lab-on-a-Chip systems based on commercially available polymers. We are combining passive microfluidics with active optical elements on-chip by integrating multiple solid-state and liquid-core lasers. While covering a wide range of laser ...

  3. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  4. Development of a phase counter with real-time fringe jump corrector for heterodyne interferometer on LHD

    International Nuclear Information System (INIS)

    Ito, Y.; Tanaka, K.; Tokuzawa, T.; Akiyama, T.; Okajima, S.; Kawahata, K.

    2005-01-01

    Phase counters, which are used with heterodyne interferometers for plasma density measurements, frequently suffer from phase jumping and cause difficulties for data interpretation. An automatic fringe jump corrector (AFJC) circuit has been developed to compensate for fringe jumps. The AFJC can correct phase jumps automatically in real-time. The AFJC, which is integrated on one chip, is installed on the presently working phase counter circuit. As for the specification of this phase counter the intermediate beat signal is 1 MHz, the phase detection range is 31 fringes with phase resolution of 1/80 of a fringe and the response time of 10 μs. The circuit has been tested on the far infrared (FIR) laser interferometer on LHD. The AFJC works fine to correct fringe jumps, when fringe jumps occurred due to the strong density gradient produced by the hydrogen pellet injection

  5. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  6. Mixed error compensation in a heterodyne interferometer using the iterated dual-EKF algorithm

    International Nuclear Information System (INIS)

    Lee, Woo Ram; Kim, Chang Rai; You, Kwan Ho

    2010-01-01

    The heterodyne laser interferometer has been widely used in the field of precise measurements. The limited measurement accuracy of a heterodyne laser interferometer arises from the periodic nonlinearity caused by non-ideal laser sources and imperfect optical components. In this paper, the iterated dual-EKF algorithm is used to compensate for the error caused by nonlinearity and external noise. With the iterated dual-EKF algorithm, the weight filter estimates the parameter uncertainties in the state equation caused by nonlinearity errors and has a high convergence rate of weight values due to the iteration process. To verify the performance of the proposed compensation algorithm, we present experimental results obtained by using the iterated dual-EKF algorithm and compare them with the results obtained by using a capacitance displacement sensor.

  7. Mixed error compensation in a heterodyne interferometer using the iterated dual-EKF algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo Ram; Kim, Chang Rai; You, Kwan Ho [Sungkyunkwan University, Suwon (Korea, Republic of)

    2010-10-15

    The heterodyne laser interferometer has been widely used in the field of precise measurements. The limited measurement accuracy of a heterodyne laser interferometer arises from the periodic nonlinearity caused by non-ideal laser sources and imperfect optical components. In this paper, the iterated dual-EKF algorithm is used to compensate for the error caused by nonlinearity and external noise. With the iterated dual-EKF algorithm, the weight filter estimates the parameter uncertainties in the state equation caused by nonlinearity errors and has a high convergence rate of weight values due to the iteration process. To verify the performance of the proposed compensation algorithm, we present experimental results obtained by using the iterated dual-EKF algorithm and compare them with the results obtained by using a capacitance displacement sensor.

  8. Molecular Spectroscopy With a Compact 557-GHz Heterodyne Receiver

    DEFF Research Database (Denmark)

    Neumaier, Philipp F.-X.; Richter, Heiko; Stake, Jan

    2014-01-01

    We report on a heterodyne terahertz spectrometer based on a fully integrated 557-GHz receiver and a digital fast Fourier transform spectrometer. The receiver consists of a chain of multipliers and power amplifiers, followed by a heterostructure barrier varactor tripler that subharmonically pumps...... a membrane GaAs Schottky diode mixer. All sub-components are newly developed and optimized with regard to the overall receiver performance such as noise temperature, power consumption, weight and physical size. The receiver works at room temperature, has a double sideband noise temperature as low as 2000 K...

  9. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    Science.gov (United States)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  10. Integration of multiwavelength lasers with fast electro-optical modulators

    NARCIS (Netherlands)

    Besten, den J.H.

    2004-01-01

    Photonic Integrated Circuits (PICs) are of key importance in Wavelength-Division Multiplexing (WDM) networks because of their reduced volume and packaging costs compared to discrete components. The research described in this thesis was focussed on the integration of WDM-lasers and Radio-Frequency

  11. Power Measurements for Microvision, Inc., Aircrew Integrated Helmet System Scanning Laser Helmet-Mounted Display

    National Research Council Canada - National Science Library

    Rash, Clarence

    2002-01-01

    ...) technology based on scanning lasers. Under this program, Microvision, Inc., Bothell, Washington, has developed a scanning laser HMD prototype for use with the Aircrew Integrated Helmet System (AIHS...

  12. Camera-Based Lock-in and Heterodyne Carrierographic Photoluminescence Imaging of Crystalline Silicon Wafers

    Science.gov (United States)

    Sun, Q. M.; Melnikov, A.; Mandelis, A.

    2015-06-01

    Carrierographic (spectrally gated photoluminescence) imaging of a crystalline silicon wafer using an InGaAs camera and two spread super-bandgap illumination laser beams is introduced in both low-frequency lock-in and high-frequency heterodyne modes. Lock-in carrierographic images of the wafer up to 400 Hz modulation frequency are presented. To overcome the frame rate and exposure time limitations of the camera, a heterodyne method is employed for high-frequency carrierographic imaging which results in high-resolution near-subsurface information. The feasibility of the method is guaranteed by the typical superlinearity behavior of photoluminescence, which allows one to construct a slow enough beat frequency component from nonlinear mixing of two high frequencies. Intensity-scan measurements were carried out with a conventional single-element InGaAs detector photocarrier radiometry system, and the nonlinearity exponent of the wafer was found to be around 1.7. Heterodyne images of the wafer up to 4 kHz have been obtained and qualitatively analyzed. With the help of the complementary lock-in and heterodyne modes, camera-based carrierographic imaging in a wide frequency range has been realized for fundamental research and industrial applications toward in-line nondestructive testing of semiconductor materials and devices.

  13. Heterodyne displacement interferometer, insensitive for input polarization

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error

  14. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  15. Sensitivity analysis of periodic errors in heterodyne interferometry

    International Nuclear Information System (INIS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-01-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors

  16. Sensitivity analysis of periodic errors in heterodyne interferometry

    Science.gov (United States)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  17. Integrated semiconductor twin-microdisk laser under mutually optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  18. Integrated code development for studying laser driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Hideaki; Nagatomo, Hideo; Sunahara, Atsusi; Ohnishi, Naofumi; Naruo, Syuji; Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Present status and plan for developing an integrated implosion code are briefly explained by focusing on motivation, numerical scheme and issues to be developed more. Highly nonlinear stage of Rayleigh-Taylor instability of ablation front by laser irradiation has been simulated so as to be compared with model experiments. Improvement in transport and rezoning/remapping algorithms in ILESTA code is described. (author)

  19. Monolithic integration of microfluidic channels and semiconductor lasers

    Science.gov (United States)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  20. Some n-p (Hg,Cd)Te photodiodes for 8-14 micrometer heterodyne applications

    Science.gov (United States)

    Shanley, J. F.; Flanagan, C. T.

    1980-01-01

    The results describing the dc and CO2 laser heterodyne characteristics of a three element photodiode array and single element and four element photodiode arrays are presented. The measured data shows that the n(+)-p configuration is capable of achieving bandwidths of 475 to 725 MHz and noise equivalent powers of 3.2 x 10 to the minus 20th power W/Hz at 77 K and 1.0 x 10 to the minus 19th power W/Hz at 145 K. The n(+)-n(-)-p photodiodes exhibited wide bandwidths (approximately 2.0 GHz) and fairly good effective heterodyne quantum efficiencies (approximately 13-30 percent at 2.0 GHz). Noise equivalent powers ranging from 1.44 x 10 to the minus 19th power W/Hz to 6.23 x 10 to the minus 20th power W/Hz were measured at 2.0 GHz.

  1. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming

    2016-09-01

    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.

  2. Integrated numerical modeling of a laser gun injector

    International Nuclear Information System (INIS)

    Liu, H.; Benson, S.; Bisognano, J.; Liger, P.; Neil, G.; Neuffer, D.; Sinclair, C.; Yunn, B.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ''conditioning for final bunching'' is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittance and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source

  3. Development of an integrated automated retinal surgical laser system.

    Science.gov (United States)

    Barrett, S F; Wright, C H; Oberg, E D; Rockwell, B A; Cain, C; Rylander, H G; Welch, A J

    1996-01-01

    Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Preliminary testing on rhesus primate subjects have been accomplished with the CW argon laser and also the ultrashort pulse laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Several interesting areas of study have developed in integrating the two subsystems: 1) "doughnut" shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, 2) the optimal retinal field of view (FOV) to achieve both tracking and lesion parameter control, and 3) development of a hybrid analog/digital tracker using confocal reflectometry to achieve retinal tracking speeds of up to 100 dgs. This presentation will discuss these design issues of this clinically significant prototype system. Details of the hybrid prototype system are provided in "Hybrid Eye Tracking for Computer-Aided Retinal Surgery" at this conference. The paper will close with remaining technical hurdles to clear prior to testing the full-up clinical prototype system.

  4. Space communication and radar with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2005-01-01

    Sensitive heterodyne detection with lasers applied .to radar and satellite communication is seriously hampered by the large electronic bandwidth due to random Doppler shift and frequency instability. These drawbacks can be circumvented by dual signal heterodyne detection. The system consists of

  5. Dielectrophoretic focusing integrated pulsed laser activated cell sorting

    Science.gov (United States)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu

    2017-08-01

    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  6. Integration of quantum cascade lasers and passive waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William [MIT Lincoln Laboratory, 244 Wood St, Lexington, Massachusetts 02420 (United States)

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  7. Integration of quantum cascade lasers and passive waveguides

    International Nuclear Information System (INIS)

    Montoya, Juan; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William

    2015-01-01

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm −1 in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  8. Thermal crosstalk investigation in an integrated InP multiwavelength laser

    NARCIS (Netherlands)

    Gilardi, G.; Wale, M.J.; Smit, M.K.

    2012-01-01

    We numerically investigate the thermal crosstalk effects in an integrated InP multiwavelength laser. The multiwavelength laser under investigation consists of a number of Distributed Bragg Reflector lasers and an Arrayed Waveguide Grating. Each laser generates a fixed wavelength and the Arrayed

  9. Terahertz heterodyne technology for astronomy and planetary science

    NARCIS (Netherlands)

    Wild, Wolfgang

    2007-01-01

    Heterodyne detection techniques play an important role in high-resolution spectroscopy in astronomy and planetary science. In particular, heterodyne technology in the Terahertz range has rapidly evolved in recent years. Cryogenically cooled receivers approaching quantum-limited sensitivity have been

  10. Background free CARS imaging by phase sensitive heterodyne CARS

    NARCIS (Netherlands)

    Jurna, M.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2008-01-01

    In this article we show that heterodyne CARS, based on a controlled and stable phase-preserving chain, can be used to measure amplitude and phase information of molecular vibration modes. The technique is validated by a comparison of the imaginary part of the heterodyne CARS spectrum to the

  11. Compact Integrated DBR Laser Source for Absorption Lidar Instruments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate a compact integrated laser module that addresses the requirements of the laser source in a water vapor differential absorption lidar (DIAL)...

  12. 16 Gb/s QPSK Wireless-over-Fibre Link in 75-110GHz Band Employing Optical Heterodyne Generation and Coherent Detection

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2010-01-01

    We report on the first demonstration of QPSK based Wireless-over-Fibre link in 75-110GHz band with a record capacity of up to 16Gb/s. Photonic wireless signal generation by heterodyne beating of free-running lasers and baud-rate digital coherent detection are employed....

  13. Multifunctional fiber-optic microwave links based on remote heterodyne detection

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Nielsen, Søren Nørskov

    1998-01-01

    The multifunctionality of microwave links based on remote heterodyne detection (RHD) of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection (DD) in conjunction with optical intensity modulation is used to implement...... fiber-optic microwave links. The resulting links are inherently transparent. As opposed to DD links, RHD links can perform radio-system functionalities such as modulation and frequency conversion in addition to transparency. All of these three functionalities are presented and experimentally...

  14. Picometre and nanoradian heterodyne interferometry and its application in dilatometry and surface metrology

    International Nuclear Information System (INIS)

    Schuldt, T; Kögel, H; Spannagel, R; Braxmaier, C; Gohlke, M; Peters, A; Johann, U; Weise, D

    2012-01-01

    A high-sensitivity heterodyne interferometer implementing differential wavefront sensing for tilt measurement was developed over the last few years. With this setup, using an aluminium breadboard and compact optical mounts with a beam height of 2 cm, noise levels less than 5 pm Hz −1/2 in translation and less than 10 nrad Hz −1/2 in tilt measurement, both for frequencies above 10 −2 Hz, have been demonstrated. Here, a new, compact and ruggedized interferometer setup utilizing a baseplate made of Zerodur, a thermally and mechanically highly stable glass ceramic with a coefficient of thermal expansion (CTE) of 2 × 10 −8 K −1 , is presented. The optical components are fixed to the baseplate using a specifically developed, easy-to-handle, assembly-integration technology based on a space-qualified two-component epoxy. While developed as a prototype for future applications aboard satellite space missions (such as Laser Interferometer Space Antenna), the interferometer is used in laboratory experiments for dilatometry and surface metrology. A first dilatometer setup with a demonstrated accuracy of 10 −7 K −1 in CTE measurement was realized. As it was seen that the accuracy is limited by the dimensional stability of the sample tube support, a new setup was developed utilizing Zerodur as structural material for the sample tube support. In another activity, the interferometer is used for characterization of high-quality mirror surfaces at the picometre level and for high-accuracy two-dimensional surface characterization in a prototype for industrial applications. In this paper, the corresponding designs, their realizations and first measurements of both applications in dilatometry and surface metrology are presented

  15. Low-Power-Consumption Integrated PPM Laser Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional PPM laser transmitters, a CW laser followed by a modulator, are inherently inefficient since the data must be carved from the laser's steady output. 95%...

  16. Low-Power-Consumption Integrated PPM Laser Transmitter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional PPM laser transmitters, a CW laser followed by a modulator, are inherently inefficient since the data must be carved from the laser's steady output. 95%...

  17. Noise sources in the LTP heterodyne interferometer

    International Nuclear Information System (INIS)

    Wand, V; Bogenstahl, J; Braxmaier, C; Danzmann, K; GarcIa, A; Guzman, F; Heinzel, G; Hough, J; Jennrich, O; Killow, C; Robertson, D; Sodnik, Z; Steier, F; Ward, H

    2006-01-01

    The LISA Technology Package uses a heterodyne Mach-Zehnder interferometer to monitor the relative motion of the test masses with picometer accuracy. This paper discusses two classes of noise sources that were identified and investigated during the prototype experiments. Most troublesome are electrically induced sidebands on the light, which give rise to nonlinearities in the interferometer output. Even worse, if the differential pathlength between two optical fibres fluctuates, a noise term of milliradian amplitude appears and completely spoils the performance. We discuss the origin and mitigation of this process. Dissimilar beam shapes of the interfering beams produce another type of noise in conjunction with beam jitter and spatially inhomogeneous photodetectors. To study and minimize this effect, we have built a real-time high-resolution phasefront imaging system that will be used for the production of the flight model

  18. Herriott Cell Augmentation of a Quadrature Heterodyne Interferometer

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2002-01-01

    A quadrature heterodyne interferometer is augmented with a Herriott Cell multi-pass reflector to increase instrument resolution and enable a separation of the phase shift due to neutral density from room vibrations...

  19. On the sensitivity of heterodyne detectors in far infrared astronomy

    International Nuclear Information System (INIS)

    Bueren, H.G. van

    1976-01-01

    The signal-to-noise ratio of astronomical heterodyne detection infrared spectrographs is considered, taking into account background, linewidth and seeing effects. A comparison with incoherent detector systems is presented. (author)

  20. Four-state discrimination scheme beyond the heterodyne limit

    DEFF Research Database (Denmark)

    Muller, C. R.; Castaneda, Mario A. Usuga; Wittmann, C.

    2012-01-01

    We propose and experimentally demonstrate a hybrid discrimination scheme for the quadrature phase shift keying protocol, which outperforms heterodyne detection for any signal power. The discrimination is composed of a quadrature measurement, feed forward and photon detection.......We propose and experimentally demonstrate a hybrid discrimination scheme for the quadrature phase shift keying protocol, which outperforms heterodyne detection for any signal power. The discrimination is composed of a quadrature measurement, feed forward and photon detection....

  1. Faster processing of multiple spatially-heterodyned direct to digital holograms

    Science.gov (United States)

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  2. A method of noise reduction in heterodyne interferometric vibration metrology by combining auto-correlation analysis and spectral filtering

    Science.gov (United States)

    Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng

    2018-01-01

    Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).

  3. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.

    Science.gov (United States)

    Vannahme, Christoph; Klinkhammer, Sönke; Lemmer, Uli; Mappes, Timo

    2011-04-25

    Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in the field or at the point-of-care, a plastic lab-on-a-chip with integrated organic semiconductor lasers is presented here. First order distributed feedback lasers based on the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM), deep ultraviolet induced waveguides, and a nanostructured microfluidic channel are integrated into a poly(methyl methacrylate) (PMMA) substrate. A simple and parallel fabrication process is used comprising thermal imprint, DUV exposure, evaporation of the laser material, and sealing by thermal bonding. The excitation of two fluorescent marker model systems including labeled antibodies with light emitted by integrated lasers is demonstrated.

  4. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, D.

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  5. Michelson interferometer vibrometer using self-correcting synthetic-heterodyne demodulation.

    Science.gov (United States)

    Connelly, Michael J; Galeti, José Henrique; Kitano, Cláudio

    2015-06-20

    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is a Michelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.

  6. Validation of separated source frequency delivery for a fiber-coupled heterodyne displacement interferometer

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    The use of optical fibers presents several advantages with respect to free-space optical transport regarding sourcefrequency delivery to individual heterodyne interferometers. Unfortunately, fiber delivery to individual coaxial heterodyne interferometers leads to an increase of (periodic)

  7. Tracking frequency laser distance gauge

    International Nuclear Information System (INIS)

    Phillips, J.D.; Reasenberg, R.D.

    2005-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components

  8. Quantum dash based single section mode locked lasers for photonic integrated circuits.

    Science.gov (United States)

    Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois

    2014-05-05

    We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

  9. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    International Nuclear Information System (INIS)

    Fu, C.H.; Liu, J.F.; Guo, Andrew

    2015-01-01

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  10. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C.H., E-mail: cfu5@crimson.ua.edu [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Liu, J.F. [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Guo, Andrew [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); College of Arts and Science, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-10-30

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  11. Multi-channel normal speed gated integrator in the measurement of the laser scattering light energy

    International Nuclear Information System (INIS)

    Yang Dong; Yu Xiaoqi; Hu Yuanfeng

    2005-01-01

    With the method of integration in a limited time, a Multi-channel normal speed gated integrator based on VXI system has been developed for measuring the signals with changeable pulse width in laser scattering light experiment. It has been tested with signal sources in ICF experiment. In tests, the integral nonlinearity between the integral results of the gated integrator and that of an oscilloscope is less than 1%. In the ICF experiments the maximum error between the integral results of the gated integrator and that of oscilloscope is less than 3% of the full scale range of the gated integrator. (authors)

  12. The Evaluation of Surface Integrity During Machining of Inconel 718 with Various Laser Assistance Strategies

    Directory of Open Access Journals (Sweden)

    Wojciechowski Szymon

    2017-01-01

    Full Text Available The paper is focused on the evaluation of surface integrity formed during turning of Inconel 718 with the application of various laser assistance strategies. The primary objective of the work was to determine the relations between the applied machining strategy and the obtained surface integrity, in order to select the effective cutting conditions allowing the obtainment of high surface quality. The carried out experiment included the machining of Inconel 718 in the conventional turning conditions, as well as during the continuous laser assisted machining and sequential laser assistance. The surface integrity was evaluated by the measurements of machined surface topographies, microstructures and the microhardness. Results revealed that surface integrity of Inconel 718 is strongly affected by the selected machining strategy. The significant improvement of the surface roughness formed during machining of Inconel 718, can be reached by the application of simultaneous laser heating and cutting (LAM.

  13. An optoelectronic integrated device including a laser and its driving circuit

    Energy Technology Data Exchange (ETDEWEB)

    Matsueda, H.; Nakano, H.; Tanaka, T.P.

    1984-10-01

    A monolithic optoelectronic integrated circuit (OEIC) including a laser diode, photomonitor and driving and detecting circuits has been fabricated on a semi-insulating GaAs substrate. The OEIC has a horizontal integrating structure which is suitable for realising high-density multifunctional devices. The fabricating process and the static and dynamic characteristics of the optical and electronic elements are described. The preliminary results of the co-operative operation of the laser and its driving circuit are also presented.

  14. Monitoring of laser material processing using machine integrated low-coherence interferometry

    Science.gov (United States)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  15. Ghost image in enhanced self-heterodyne synthetic aperture imaging ladar

    Science.gov (United States)

    Zhang, Guo; Sun, Jianfeng; Zhou, Yu; Lu, Zhiyong; Li, Guangyuan; Xu, Mengmeng; Zhang, Bo; Lao, Chenzhe; He, Hongyu

    2018-03-01

    The enhanced self-heterodyne synthetic aperture imaging ladar (SAIL) self-heterodynes two polarization-orthogonal echo signals to eliminate the phase disturbance caused by atmospheric turbulence and mechanical trembling, uses heterodyne receiver instead of self-heterodyne receiver to improve signal-to-noise ratio. The principle and structure of the enhanced self-heterodyne SAIL are presented. The imaging process of enhanced self-heterodyne SAIL for distributed target is also analyzed. In enhanced self-heterodyne SAIL, the phases of two orthogonal-polarization beams are modulated by four cylindrical lenses in transmitter to improve resolutions in orthogonal direction and travel direction, which will generate ghost image. The generation process of ghost image in enhanced self-heterodyne SAIL is mathematically detailed, and a method of eliminating ghost image is also presented, which is significant for far-distance imaging. A number of experiments of enhanced self-heterodyne SAIL for distributed target are presented, these experimental results verify the theoretical analysis of enhanced self-heterodyne SAIL. The enhanced self-heterodyne SAIL has the capability to eliminate the influence from the atmospheric turbulence and mechanical trembling, has high advantage in detecting weak signals, and has promising application for far-distance ladar imaging.

  16. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing

    Science.gov (United States)

    Pontin, A.; Lang, J. E.; Chowdhury, A.; Vezio, P.; Marino, F.; Morana, B.; Serra, E.; Marin, F.; Monteiro, T. S.

    2018-01-01

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  17. The JET ECE heterodyne radiometer and investigations of fast phenomena

    International Nuclear Information System (INIS)

    Bartlett, D.V.; Porte, L.

    1993-01-01

    In this paper, the design and performance characteristics of the JET heterodyne radiometer are reviewed, and some novel aspects of the instrument are described. Areas where the radiometer could benefit from further improvement are highlighted, and those improvements currently in progress are discussed. Some measurements which demonstrate the radiometer's power as a diagnostic of fast phenomena are presented. (orig.)

  18. Integrated laser-target interaction experiments on the RAL petawatt laser

    International Nuclear Information System (INIS)

    Patel, P K; Key, M H; Mackinnon, A J

    2005-01-01

    We review a recent experimental campaign to study the interaction physics of petawatt laser pulses incident at relativistic intensities on solid targets. The campaign was performed on the 500 J sub-picosecond petawatt laser at the Rutherford Appleton Laboratory. An extensive suite of optical, x-ray, and particle diagnostics was employed to characterise the processes of laser absorption, electron generation and transport, thermal and K-alpha x-ray generation, and proton acceleration

  19. Tunable Heterodyne Receiver from 100 Micron to 1,000 Micron for Airborne Observations

    Science.gov (United States)

    Roeser, H. P.; Wattenbach, R.; Vanderwal, P.

    1984-01-01

    Interest in high resolution spectrometers for the submillimeter wavelength range from 100 micron to 1,000 micron is mostly stimulated by molecular spectroscopy in radioastronomy and atmospheric physics, and by plasma diagnostic experiments. Schottky diodes in waveguide mixer technology and InSb-hot electron bolometers are successfully used in the 0.5 to a few millimeter range whereas tandem Fabry-Perot spectrometers combined with photoconductive detectors (Ge:Sb and Ge:Ga) are used for the 100 micron range. Recent research on heterodyne spectrometers, with Schottky diodes in an open structure mixer and a molecular laser as local oscillators, which can be used over the whole wavelength range is summarized.

  20. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  1. Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes

    KAUST Repository

    Shen, Chao

    2017-11-30

    The challenges to realizing III-nitride photonic integrated circuit (PIC) are discussed. Utilizing InGaN-based multi-section laser diode (LD) on semipolar GaN substrate, the seamless on-chip integration of III-nitride waveguide photodetector (WPD) in the visible regime has been demonstrated.

  2. Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.; Ooi, Boon S.

    2017-01-01

    The challenges to realizing III-nitride photonic integrated circuit (PIC) are discussed. Utilizing InGaN-based multi-section laser diode (LD) on semipolar GaN substrate, the seamless on-chip integration of III-nitride waveguide photodetector (WPD) in the visible regime has been demonstrated.

  3. Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser

    International Nuclear Information System (INIS)

    Patel, P. K.; Key, M. H.; Mackinnon, A. J.; Akli, K.; Berry, R.; Borghesi, M.; Brummit, P. A.; Chambers, D.; Clarke, R. J.; Damian, C.; Chen, H.; Eagleton, R.; Freeman, R.; Glenzer, S.; Gregori, G.; Heathcote, R.; Izumi, N.; Kar, S.; King, J. A.; Kock, J.; Kuba, J.; May, M.; Moon, S.; Neely, D.; Neville, D. R.; Nikroo, A.; Niles, A.; Pasley, J.; Patel, N.; Park, H. S.; Romagnani, L.; Shepherd, R.; Snavely, R. A.; Stephens, R.; Stoeckl, C.; Storm, M.; Theobald, W.; Van Maren, R.; Wilks, S. C.; Zhang, B.

    2005-01-01

    We report on two recent experimental campaigns performed on the new Petawatt laser at the Rutherford Appleton Laboratory in the UK.The laser has recently demonstrated performance characteristics of 400 J of laser energy being delivered on target in a sub 400 fs pulse, reaching a peak focal intensity on the order of 10''21 W/cm''2. The experiments covered multiplic areas of investigation including hot electron transport in planar foil and cone focus geometries, relativistic laser-solid interactions proton beam focusing and heating, and high energy K-alpha production and radiography. A somewhat novel approach was taken to the experiments in that all of the diagnostics required for the different areas of study were fielded simultaneously and operated on all shots. Thus, we were able to obtain extensive sets of measurements on a single-shot basis which provides significant benefit to our understanding of the laser-target interaction conditions and plasma properties. (Author)

  4. Heterodyne Detection in MM & Sub-mm Waves Developed at Paris Observatory

    Science.gov (United States)

    Beaudin, G.; Encrenaz, P.

    Millimeter and submillimeter-wave observations provide important informations for the studies of atmospheric chemistry and of astrochemistry (molecular clouds, stars formation, galactic study, comets and cosmology). But, these observations depend strongly on instrumentation techniques and on the site quality. New techniques or higher detector performances result in unprecedented observations and sometimes, the observational needs drive developments of new detector technologies, for example, superconducting junctions (SIS mixers) because of its high sensitivity in heterodyne detection in the millimeter and submillimeter wave range (100 GHz - 700 GHz), HEB (Hot Electron Bolometer) mixers which are being developed by several groups for application in THz observations. For the submillimetre wavelengths heterodyne receivers, the local oscillator (LO) is still a critical element. So far, solid state sources are often not powerful enough for most of the applications at millimetre or sub-millimetre wavelengths: large efforts using new planar components and integrated circuits on membrane substrate or new techniques (photomixing, QCL) are now in progress in few groups. The new large projects as SOFIA, Herschel, ALMA and the post-Herschel missions for astronomy, the other projects for aeronomy, meteorology (Megha-tropiques-Saphir) and for planetary science (ROSETTA, Mars exploration, ...), will benefit from the new developments to hunt more molecules.

  5. Optoelectronic integrated circuits utilising vertical-cavity surface-emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Zakharov, S D; Fyodorov, V B; Tsvetkov, V V

    1999-01-01

    Optoelectronic integrated circuits with additional optical inputs/outputs, in which vertical-cavity surface-emitting (VCSE) lasers perform the data transfer functions, are considered. The mutual relationship and the 'affinity' between optical means for data transfer and processing, on the one hand, and the traditional electronic component base, on the other, are demonstrated in the case of implementation of three-dimensional interconnects with a high transmission capacity. Attention is drawn to the problems encountered when semiconductor injection lasers are used in communication lines. It is shown what role can be played by VCSE lasers in solving these problems. A detailed analysis is made of the topics relating to possible structural and technological solutions in the fabrication of single lasers and of their arrays, and also of the problems hindering integrating of lasers into emitter arrays. Considerable attention is given to integrated circuits with optoelectronic smart pixels. Various technological methods for vertical integration of GaAs VCSE lasers with the silicon substrate of a microcircuit (chip) are discussed. (review)

  6. Guidance and control of MIR TDL radiation via flexible hollow metallic rectangular pipes and fibers for possible LHS and other optical system compaction and integration

    Science.gov (United States)

    Yu, C.

    1983-01-01

    Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.

  7. Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation.

    Science.gov (United States)

    Kervella, Gaël; Van Dijk, Frederic; Pillet, Grégoire; Lamponi, Marco; Chtioui, Mourad; Morvan, Loïc; Alouini, Mehdi

    2015-08-01

    We report on the stabilization of a 90-GHz millimeter-wave signal generated from a fully integrated photonic circuit. The chip consists of two DFB single-mode lasers whose optical signals are combined on a fast photodiode to generate a largely tunable heterodyne beat note. We generate an optical comb from each laser with a microwave synthesizer, and by self-injecting the resulting signal, we mutually correlate the phase noise of each DFB and stabilize the beatnote on a multiple of the frequency delivered by the synthesizer. The performances achieved beat note linewidth below 30 Hz.

  8. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent

  9. An integrated analog O/E/O link for multi-channel laser neurons

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, Mitchell A., E-mail: mnahmias@princeton.edu; Tait, Alexander N.; Tolias, Leonidas; Chang, Matthew P.; Ferreira de Lima, Thomas; Shastri, Bhavin J.; Prucnal, Paul R. [Electrical Engineering Department, Princeton University, 41 Olden St, Princeton, New Jersey 08540 (United States)

    2016-04-11

    We demonstrate an analog O/E/O electronic link to allow integrated laser neurons to accept many distinguishable, high bandwidth input signals simultaneously. This device utilizes wavelength division multiplexing to achieve multi-channel fan-in, a photodetector to sum signals together, and a laser cavity to perform a nonlinear operation. Its speed outpaces accelerated-time neuromorphic electronics, and it represents a viable direction towards scalable networking approaches.

  10. Integrated IoT technology in industrial lasers for the improved user experience

    Science.gov (United States)

    Ding, Jianwu; Liu, Jinhui

    2018-02-01

    The end users' biggest concern for any industrial equipment is the reliability and the service down-time. This is especially true for industrial lasers as they are typically used in fully or semi- automated processes. Here we demonstrate how to use the integrated Internet of Things (IoT) technology in industrial lasers to address the reliability and the service down-time so to improve end users' experience.

  11. Study of the interaction between heavy ions and integrated circuits using a pulsed laser beam

    International Nuclear Information System (INIS)

    Lewis, D.; Fouillat, P.; Pouget, V.; Lapuyade, H.

    2002-01-01

    A new pulsed laser beam equipment dedicated to the characterization of integrated circuit is presented. Using ultra-short laser pulses is a convenient way to simulate experimentally the spatial environment of integrated circuits when interactions with heavy ions occur. This experimental set-up can be considered as a complementary tool for particle accelerators to evaluate the hardness assurance of integrated circuits for space applications. These particles generate temporally electrical disturbance called Single Event Effect (SEE). The theoretical approach of an equivalence between heavy ions and a laser pulses is discussed. The experimental set-up and some relevant operational methodologies are presented. Experimental results demonstrate that the induced electrical responses due to an heavy ion or a laser pulse are quite similar. Some sensitivity mappings of integrated circuits provided by this test bench illustrate the capabilities and the limitations of this laser-based technique. Contrary to the particle accelerators, it provides useful information concerning the spatial and temporal dependences of SEE mechanisms. (authors)

  12. Active polarization imaging system based on optical heterodyne balanced receiver

    Science.gov (United States)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  13. Chalcogenide Glass Lasers on Silicon Substrate Integrated Photonics

    Science.gov (United States)

    2016-07-08

    driven optoacoustic devices that permit stable GHz mode-locking of fiber ring lasers; bright deep and vacuum UV sources based on gas-filled hollow core ...topological insulators with ultracold atoms. Bio: Wolfgang Ketterle has been the John D. MacArthur professor of physics at MIT since 1998. He leads...remarkable enhancements (and in some cases reductions) in many kinds of light-matter interaction. Recent examples include the solid core PCFs widely

  14. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    OpenAIRE

    Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang

    2016-01-01

    We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...

  15. Laboratory Heterodyne Spectrometers Operating at 100 and 300 GHZ

    Science.gov (United States)

    Maßen, Jakob; Wehres, Nadine; Hermanns, Marius; Lewen, Frank; Heyne, Bettina; Endres, Christian; Graf, Urs; Honingh, Netty; Schlemmer, Stephan

    2017-06-01

    Two new laboratory heterodyne emission spectrometers are presented that are currently used for high-resolution rotational spectroscopy of complex organic molecules. The room temperature heterodyne receiver operating between 80-110 GHz, as well as the SIS heterodyne receiver operating between 270-370 GHz allow access to two very important frequency regimes, coinciding with Bands 3 and 7 of the ALMA (Atacama Large Millimeter Array) telescope. Taking advantage of recent progresses in the field of mm/submm technology, we build these two spectrometers using an XFFFTS (eXtended Fast Fourier Transform Spectrometer) for spectral acquisition. The instantaneous bandwidth is 2.5 GHz in a single sideband, spread over 32768 channels. Thus, the spectral resolution is about 76 kHz per channel and thus comparable to high resolution spectra from telescopes. Both receivers are operated in double sideband mode resulting in a total instantaneous bandwidth of 5 GHz. The system performances, in particular the noise temperatures and stabilities are presented. Proof-of-concept is demonstrated by showing spectra of methyl cyanide obtained with both spectrometers. While the transition frequencies for this molecule are very well known, intensities of those transitions can also be determined with high accuracy using our new instruments. This additional information shall be exploited in future measurements to improve spectral predictions for astronomical observations. Other future prospects concern the study of more complex organic species, such as ethyl cyanide. These aspects of the new instruments as well as limitations of the two distinct receivers will be discussed.

  16. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    Science.gov (United States)

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  17. Piezoelectric strained layer semiconductor lasers and integrated modulators

    International Nuclear Information System (INIS)

    Fleischmann, Thomas

    2002-01-01

    The properties, benefits and limitations of strained InGaAs/GaAs quantum well lasers and modulators grown on (111)B GaAs have been studied. Particular interest in this material system arose from the predicted increase in critical layer thickness, which would facilitate semiconductor lasers emitting beyond 1 μm. However, the recent discovery of a new type of misfit dislocation indicates that the critical layer thickness in this system is closer to that of (001) orientated structures. Photoluminescence and transmission electron microscopy presented in this study support this predicted reduction of the critical layer thickness and the resulting limitations on the emission wavelength. The absence of 3D growth in this system may however be advantageous when high reproducibility and reliable lasing operation beyond 1 μm are required. The piezoelectric field originating from strained growth on substrate orientations other than (001) was studied and its influence on transition energies and absorptive behaviour were investigated. The piezoelectric constant was found to show significant temperature dependence and, as also indicated in earlier studies, its value is smaller then the linearly interpolated value. When the effects of indium segregation on the transition energies is considered, the reduction is significantly smaller. Good agreement between theory and experiment was obtained using 86% of the value linearly interpolated between the binaries at room temperature and 82% at low temperature. Broad area lasers were fabricated emitting at lasing wavelengths of up to 1.08 μm with threshold current densities as low as 80 A/cm 2 at room temperature under continuous wave operation. Increasing the indium composition and strain within the limit of strain relaxation was demonstrated to improve device performance significantly. Furthermore, ridge waveguide lasers were fabricated exhibiting monomode emission at wavelengths up to 1.07 μm with a threshold current of 19 mA at

  18. Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    International Nuclear Information System (INIS)

    Borisov, V M; Vinokhodov, A Yu; Ivanov, A S; Kiryukhin, Yu B; Mishchenko, V A; Prokof'ev, A V; Khristoforov, O B

    2009-01-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz. (laser applications and other topics in quantum electronics)

  19. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  20. Multi-wavelength laser based on an arrayed waveguide grating and Sagnac loop reflectors monolithically integrated on InP

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Doménech, J.D.; Rius, M.; Capmany, J.; Chen, L.R.; Habib, C.; Leijtens, X.J.M.; Vries, de T.; Heck, M.J.R.; Augustin, L.M.; Nötzel, R.; Robbins, D.J.

    2010-01-01

    In this paper, a multi-wavelength laser monolithically integrated on InP is presented. A linear laser cavity is built between two integrated Sagnac loop reflectors, with an Arrayed Waveguide Grating (AWG) as frequency selective device, and Semiconductor Optical Amplifiers (SOA) as gain sections. The

  1. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  2. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  3. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    Science.gov (United States)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  4. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  5. Heterogeneously Integrated Microwave Signal Generators with Narrow Linewidth Lasers

    Science.gov (United States)

    2017-03-20

    have shown that heterogeneous integration not only allows for a reduced cost due to economy of scale, but also allows for same or even better...advantage of introducing SOAs for microwave generator is the control and boosting of optical power before the detector providing higher RF powers. A

  6. Organic printed photonics: From microring lasers to integrated circuits.

    Science.gov (United States)

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-09-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

  7. Raman laser spectrometer optical head: qualification model assembly and integration verification

    Science.gov (United States)

    Ramos, G.; Sanz-Palomino, M.; Moral, A. G.; Canora, C. P.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; Lopez-Reyes, G.; Rull, F.

    2017-08-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.

  8. High power CO2 laser development with AOM integration for ultra high-speed pulses

    Science.gov (United States)

    Bohrer, Markus; Vaupel, Matthias; Nirnberger, Robert; Weinberger, Bernhard; Jamalieh, Murad

    2017-01-01

    There is a 500 billion USD world market for packaging expected to grow to a trillion in 2030. Austria plays an important role world wide for high speed laser engraving applications — especially when it comes to high end solutions. Such high end solutions are fundamental for the production of print forms for the packaging and decorating industry (e. g. cans). They are additionally used for security applications (e. g. for printing banknotes), for the textile printing industry and for creating embossing forms (e. g. for the production of dashboards in the automotive industry). High speed, high precision laser engraving needs laser resonators with very stable laser beams (400 - 800W) especially in combination with AOMs. Based upon a unique carbon fiber structure - stable within the sub-micrometer range - a new resonator has been developed, accompanied by most recent thermo-mechanical FEM calculations. The resulting beam is evaluated on an automated optical bench using hexapods, allowing to optimize the complete beam path with collimators and AOM. The major steps related to laser engraving of dry offset printing plates during the full workflow from the artists design to the printed result on an aluminum can is presented in this paper as well as laser characteristics, AOM integration and correlative CLSM and SEM investigation of the results.

  9. A numerical study of the integral equations for the laser fields in free-electron lasers

    International Nuclear Information System (INIS)

    Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

  10. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    Science.gov (United States)

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  11. Laser microtexturing of implant surfaces for enhanced tissue integration

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, J.L. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Alexander, H. [Orthogen Corp., Springfield, NJ (United States)

    2001-07-01

    The success or failure of bone and soft tissue-fixed medical devices, such as dental and orthopaedic implants, depends on a complex combination of biological and mechanical factors. These factors are intimately associated with the interface between the implant surface and the surrounding tissue, and are largely determined by the composition, surface chemistry, and surface microgeometry of the implant. The relative contributions of these factors are difficult to assess. This study addresses the contribution of surface microtexture, on a controlled level, to tissue integration. (orig.)

  12. Integration of the Aurora KrF ICF laser system at Los Alamos

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Blair, L.S.

    1988-01-01

    The Aurora laser system, under construction at the Los Alamos National Laboratory for the past few years, is now being integrated into a working system for examining the applicability of high-power KrF lasers to inertial confinement fusion (ICF). The design principles of the system have been described in detail in earlier publications and conferences. Multikilojoule 248-nm 5-ns duration laser pulses, which have been derived from angular-multiplexed electron-beam-driven KrF amplifiers, are to be delivered to ICF targets when the system is fully integrated. The authors describe the progress of the Aurora system toward the goal of delivering energy (MkJ/48 pulses stacked into one 5-ns pulse/200-μm spot) to ICF targets. Integrated performance to date of the front end optical multiplexer/demultiplexer e-beam-driven amplifiers and alignment hardware are discussed in particular. They have concentrated on the demonstration of system integration at a modest (--100-J) level of energy on-target (without the final amplifier stage). They discuss the amplifier gain measurements, the extraction of energy from a chain of three e-beam-driven machines, and progress toward the delivery of on-target energy

  13. The European answer to the integration issues of excimer laser annealing in MOS technology

    International Nuclear Information System (INIS)

    Privitera, V.; La Magna, A.; Fortunato, G.; Camalleri, M.; Magri, A.; Simon, F.; Svensson, B.G.

    2004-01-01

    Excimer laser annealing (ELA) of MOSFET devices is currently studied and evaluated within the frame of the IST project 'Fundamentals and applications of laser processing for highly innovative MOS technology' (FLASH), funded by the European Commission. This European consortium aim to demonstrate that ELA can be industrialized in the context of semiconductor device fabrication. The technical achievement of homogeneous irradiation of entire wafers by industrial line beam system set up has been combined with device design solutions, in order to avoid the detrimental effects of the laser beam on device structures and tackle the integration issues, main obstacles for the use of ELA in the semiconductor industry. The launch of ELA, to open a new market segment in the semiconductor industry, implies also the availability of reliable process simulation tools. Therefore, a simulation program based on the phase-field method was produced, fully working and available

  14. Laser-assisted patterning of double-sided adhesive tapes for optofluidic chip integration

    Science.gov (United States)

    Zamora, Vanessa; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Havlik, George; Queisser, Marco; Schröder, Henning

    2018-02-01

    Portable high-sensitivity biosensors exhibit a growing demand in healthcare, food industry and environmental monitoring sectors. Optical biosensors based on photonic integration platforms are attractive candidates due to their high sensitivity, compactness and multiplexing capabilities. However, they need a low-cost and reliable integration with the microfluidic system. Laser-micropatterned double-sided biocompatible adhesive tapes are promising bonding layers for hybrid integration of an optofluidic biochip. As a part of the EU-PHOCNOSIS project, double-sided adhesive tapes have been proposed to integrate the polymer microfluidic system with the optical integrated waveguide sensor chip. Here the adhesive tape should be patterned in a micrometer scale in order to create an interaction between the sample that flows through the polymer microchannel and the photonic sensing microstructure. Three laser-assisted structuring methods are investigated to transfer microchannel patterns to the adhesive tape. The test structure design consists of a single channel with 400 μm wide, 30 mm length and two circular receivers with 3 mm radius. The best structuring results are found by using the picosecond UV laser where smooth and straight channel cross-sections are obtained. Such patterned tapes are used to bond blank polymer substrates to blank silicon substrates. As a proof of concept, the hybrid integration is tested using colored DI-water. Structuring tests related to the reduction of channel widths are also considered in this work. The use of this technique enables a simple and rapid manufacturing of narrow channels (50-60 μm in width) in adhesive tapes, achieving a cheap and stable integration of the optofluidic biochip.

  15. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  16. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  17. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers

    Science.gov (United States)

    Chen, Hao; Li, Irene Ling; Ruan, Shuangchen; Guo, Tuan; Yan, Peiguang

    2016-08-01

    We propose two schemes for achieving tungsten disulfide (WS2)-based saturable absorber (SA) and saturable absorber mirror (SAM). By utilizing the pulsed laser deposition method, we grow the WS2 film on microfiber to form an evanescent field interaction SA device. Incorporating this SA device into a common ring-cavity erbium-doped fiber (EDF) laser, stably passive mode-locking can be achieved with pulse duration of 395 fs and signal-to-noise ratio of 64 dB. We also produce a fiber tip integrated WS2-SAM by utilizing the magnetron sputtering technique (MST). This new type of SAM combines the WS2 layer as SA and gold mirror as high reflective mirror. By employing the WS2-SAM, we construct the linear-cavity EDF lasers, and achieve passive mode-locking operation with pulse duration of ˜1 ns and SNR of ˜61 dB. We further achieve stably passive Q-switching operation with pulse duration of ˜160 ns and pulse energy of 54.4 nJ. These fiber-integrated SAs and SAMs have merits of compactness and reliability, paving the way for the development of new photonic devices such as SAs for pulsed laser technology.

  18. Heterodyne Receiver for Laboratory Spectrosocpy of Molecules of Astrophysical Importance

    Science.gov (United States)

    Wehres, Nadine; Lewen, Frank; Endres, Christian; Hermanns, Marius; Schlemmer, Stephan

    2016-06-01

    We present first results of a heterodyne receiver built for high-resolution emission laboratory spectroscopy of molecules of astrophysical interest. The room-temperature receiver operates at frequencies between 80 and 110 GHz, consistent with ALMA band 3. Many molecules have been identified in the interstellar and circumstellar medium at exactly these frequencies by comparing emission spectra obtained from telescopes to high-resolution laboratory absorption spectra. Taking advantage of the recent progresses in the field of mm/submm technology in the astronomy community, we have built a room-temperature emission spectrometer making use of heterodyne receiver technology at an instantaneous bandwidth of currently 2.5 GHz. The system performance, in particular the noise temperature and systematic errors, is presented. The proof-of-concept is demonstrated by comparing the emission spectrum of methyl cyanide to respective absorption spectra and to the literature. Future prospects as well as limitations of the new laboratory receiver for the spectroscopy of complex organic molecules or transient species in discharges will be discussed.

  19. Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system

    Science.gov (United States)

    Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin

    2010-09-01

    Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.

  20. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    Science.gov (United States)

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  1. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  2. Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities

    International Nuclear Information System (INIS)

    Ay, F; Iñurrategui, I; Geskus, D; Aravazhi, S; Pollnau, M

    2011-01-01

    Deeply etched Bragg gratings were fabricated by focused ion beam (FIB) milling in KGd x Lu 1-x (WO 4 ) 2 :Yb 3+ to obtain photonic cavity structures. By optimizing parameters such as dose per area, dwell time and pixel resolution the redeposition effects were minimized and grating structures more than 4 μm in depth with an improved sidewall angle of ∼ 5° were achieved. Fabry-Perot microcavities were defined and used to assess the optical performance of the grating structures at ∼ 1530 nm. An on-chip integrated laser cavity at ∼ 980 nm was achieved by defining a FIB reflective grating and FIB polished waveguide end-facet. With this cavity, an on-chip integrated waveguide laser in crystalline potassium double tungstate was demonstrated

  3. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  4. Power System and Energy Storage Models for Laser Integration on Naval Platforms

    Science.gov (United States)

    2015-09-30

    Power System and Energy Storage Models for Laser Integration on Naval Platforms A.L. Gattozzi, J.D. Herbst, R.E. Hebner Center for... Electromechanics , University of Texas Austin, Texas a.gattozzi@cem.utexas.edu J.A. Blau, K.R. Cohn, W.B. Colson, J.E. Sylvester, M.A. Woehrman Physics...emerging technologies present significant challenges to the electric power distribution and thermal management systems, particularly for

  5. Monolithic integration of collimating Fresnel lens for beam quality enhancement in tapered high-power laser diode

    NARCIS (Netherlands)

    Lau, F.K.; Tee, C.W.; Zhao, Xin; Williams, K.A.; Penty, R.V.; White, I.H.; Calligaro, M.; Lecomte, M.; Parillaud, O.; Michel, N.; Krakowski, M.

    2006-01-01

    We demonstrate, for the first time, a monolithic integrated lens for wide aperture gain-guided tapered laser beam quality enhancement by compensating the quadratic phase curvature. The 3mm long tapered laser with an output aperture of 170µm adopted in this design consists of a gain-guided tapered

  6. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  7. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B., E-mail: bjtobias@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y. [University of California at Davis, Davis, California 95616 (United States)

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  8. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library

    Science.gov (United States)

    d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan

    2017-07-01

    A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library FexSiyGe100-x-y (20 deposited by wedge-type multi-layer method on a 100 mm diameter sapphire wafer offering more than 300 analysis areas of different ternary alloy compositions.

  9. Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    We demonstrate a new detection scheme for pump-probe and four-wave mixing heterodyne experiments, using balanced detection and a dual-phase lock-in for spectral filtering. The technique allows the use of low repetition-rate laser systems, as is demonstrated on an InGaAsP/InP bulk optical amplifier...... at 1.53 mym. Ultrafast pump-induced changes in the amplitude and phase of the transmitted probe signal are simultaneously measured, going from small to large signal changes and with no need of an absolute phase calibration, showing the versatility and the sensitivity of this detection scheme....... The results for small perturbations are consistent with previous pump-probe experiments reported in literature. Time-resolved four-wave mixing in the absorption regime of the device is measured, and compared with numerical simulations, indicating a 100 fs dephasing time....

  10. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  11. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    Science.gov (United States)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  12. Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration

    International Nuclear Information System (INIS)

    Liu, Jifeng; Kimerling, Lionel C; Michel, Jurgen

    2012-01-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic–photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500–1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  13. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.

    Science.gov (United States)

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.

  14. Heterodyne Interferometry in InfraRed at OCA-Calern Observatory in the seventies

    Science.gov (United States)

    Gay, J.; Rabbia, Y.

    2014-04-01

    We report on various works carried four decades ago, so as to develop Heterodyne Interferometry in InfraRed (10 μm) at Calern Observatory (OCA, France), by building an experiment, whose the acronym "SOIRDETE" means "Synthese d'Ouverture en InfraRouge par Detection hETErodyne". Scientific and technical contexts by this time are recalled, as well as basic principles of heterodyne interferometry. The preliminary works and the SOIRDETE experiment are briefly described. Short comments are given in conclusion regarding the difficulties which have prevented the full success of the SOIRDETE experiment.

  15. Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer.

    Science.gov (United States)

    Hu, Juju; Hu, Haijiang; Ji, Yinghua

    2010-03-15

    Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

  16. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  17. Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis

    International Nuclear Information System (INIS)

    Halbwax, M.; Sarnet, T.; Hermann, J.; Delaporte, Ph.; Sentis, M.; Fares, L.; Haller, G.

    2007-01-01

    The latest International Technology Roadmap for Semiconductors (ITRS) has highlighted the detection and analysis of defects in Integrated Circuits (IC) as a major challenge faced by the semiconductor industry. Advanced tools used today for defect cross sectioning include dual beams (focused ion- and electron-beam technologies) with resolution down to the sub-Angstrom level. However ion milling an IC with a FIB is time consuming because of the need to open wide cavities in front of the cross-sections that need to be analyzed. Therefore the use of a femtosecond laser as a tool for direct material removal is discussed in this paper. Experiments were performed on IC structures to reveal the different layers of fabrication: selective or total ablation can occur depending on the laser energy density, without delamination of the layers. Different laser irradiation conditions like pressure (air, vacuum), polarization, beam shaping, and scanning parameters have been used to produce different types of cavities. The femtosecond laser engraving of silicon-based structures could be useful for cross-sectioning devices but also for other applications like direct-write lithography, photomask repair, maskless implantation or reverse engineering/restructuring

  18. Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halbwax, M. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France); Sarnet, T. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France)], E-mail: sarnet@lp3.univ-mrs.fr; Hermann, J.; Delaporte, Ph.; Sentis, M. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France); Fares, L.; Haller, G. [STMicroelectronics, 190 Avenue Celestin Coq, ZI, 13106 Rousset Cedex (France)

    2007-12-15

    The latest International Technology Roadmap for Semiconductors (ITRS) has highlighted the detection and analysis of defects in Integrated Circuits (IC) as a major challenge faced by the semiconductor industry. Advanced tools used today for defect cross sectioning include dual beams (focused ion- and electron-beam technologies) with resolution down to the sub-Angstrom level. However ion milling an IC with a FIB is time consuming because of the need to open wide cavities in front of the cross-sections that need to be analyzed. Therefore the use of a femtosecond laser as a tool for direct material removal is discussed in this paper. Experiments were performed on IC structures to reveal the different layers of fabrication: selective or total ablation can occur depending on the laser energy density, without delamination of the layers. Different laser irradiation conditions like pressure (air, vacuum), polarization, beam shaping, and scanning parameters have been used to produce different types of cavities. The femtosecond laser engraving of silicon-based structures could be useful for cross-sectioning devices but also for other applications like direct-write lithography, photomask repair, maskless implantation or reverse engineering/restructuring.

  19. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  20. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  1. Integrative Laser Medicine and High-Tech Acupuncture at the Medical University of Graz, Austria, Europe

    Directory of Open Access Journals (Sweden)

    Gerhard Litscher

    2012-01-01

    Full Text Available At the moment, modernization of acupuncture has a high priority. On the traditional side, acupuncture has only recently been awarded the status of Intangible Cultural Heritage by the UNESCO. On the innovative side, high-tech acupuncture is a registered trademark in Austria. Acupuncture has been used for medical treatment for thousands of years. A large number of empirical data are available but the technical quantification of effects was not possible up to now. Using electroacupuncture, needle, or laser stimulation and modern biomedical techniques, it was possible for the first time to quantify changes in biological activities caused by acupuncture. This paper which serves as introduction for the special issue “High-Tech Acupuncture and Integrative Laser Medicine” of the present journal, focuses on the latest innovative aspects that underline the further enhancement and development of acupuncture. Special emphasis is given to new methodological and technical investigations, for example, results obtained from all kinds of acupuncture innovations (e.g., teleacupuncture and integrative laser medicine.

  2. Integrative Laser Medicine and High-Tech Acupuncture at the Medical University of Graz, Austria, Europe

    Science.gov (United States)

    Litscher, Gerhard

    2012-01-01

    At the moment, modernization of acupuncture has a high priority. On the traditional side, acupuncture has only recently been awarded the status of Intangible Cultural Heritage by the UNESCO. On the innovative side, high-tech acupuncture is a registered trademark in Austria. Acupuncture has been used for medical treatment for thousands of years. A large number of empirical data are available but the technical quantification of effects was not possible up to now. Using electroacupuncture, needle, or laser stimulation and modern biomedical techniques, it was possible for the first time to quantify changes in biological activities caused by acupuncture. This paper which serves as introduction for the special issue “High-Tech Acupuncture and Integrative Laser Medicine” of the present journal, focuses on the latest innovative aspects that underline the further enhancement and development of acupuncture. Special emphasis is given to new methodological and technical investigations, for example, results obtained from all kinds of acupuncture innovations (e.g., teleacupuncture) and integrative laser medicine. PMID:22570669

  3. Heterodyne interferometric technique for displacement control at the nanometric scale

    Science.gov (United States)

    Topcu, Suat; Chassagne, Luc; Haddad, Darine; Alayli, Yasser; Juncar, Patrick

    2003-11-01

    We propose a method of displacement control that addresses the measurement requirements of the nanotechnology community and provide a traceability to the definition of the mèter at the nanometric scale. The method is based on the use of both a heterodyne Michelson's interferometer and a homemade high frequency electronic circuit. The system so established allows us to control the displacement of a translation stage with a known step of 4.945 nm. Intrinsic relative uncertainty on the step value is 1.6×10-9. Controls of the period of repetition of these steps with a high-stability quartz oscillator permits to impose an uniform speed to the translation stage with the same accuracy. This property will be used for the watt balance project of the Bureau National de Métrologie of France.

  4. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  5. An integrated fiber and stone basket device for use in Thulium fiber laser lithotripsy

    Science.gov (United States)

    Wilson, Christopher R.; Hutchens, Thomas C.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the Holmium:YAG laser. The TFL's superior near-single mode beam profile enables higher power transmission through smaller fibers with reduced proximal fiber tip damage. Recent studies have also reported that attaching hollow steel tubing to the distal fiber tip decreases fiber degradation and burn-back without compromising stone ablation rates. However, significant stone retropulsion was observed, which increased with pulse rate. In this study, the hollow steel tip fiber design was integrated with a stone basket to minimize stone retropulsion during ablation. A device was constructed consisting of a 100-μm-core, 140-μm-OD silica fiber outfitted with 5-mm-long stainless steel tubing at the distal tip, and integrated with a 1.3-Fr (0.433-mm-OD) disposable nitinol wire basket, to form an overall 1.9-Fr (0.633-mm- OD) integrated device. This compact design may provide several potential advantages including increased flexibility, higher saline irrigation rates through the ureteroscope working channel, and reduced fiber tip degradation compared to separate fiber and stone basket manipulation. TFL pulse energy of 31.5 mJ with 500 μs pulse duration and pulse rate of 500 Hz was delivered through the integrated fiber/basket device in contact with human uric acid stones, ex vivo. TFL stone ablation rates measured 1.5 +/- 0.2 mg/s, comparable to 1.7 +/- 0.3 mg/s (P > 0.05) using standard bare fiber tips separately with a stone basket. With further development, this device may be useful for minimizing stone retropulsion, thus enabling more efficient TFL lithotripsy at higher pulse rates.

  6. High-contrast gratings for long-wavelength laser integration on silicon

    Science.gov (United States)

    Sciancalepore, Corrado; Descos, Antoine; Bordel, Damien; Duprez, Hélène; Letartre, Xavier; Menezo, Sylvie; Ben Bakir, Badhise

    2014-02-01

    Silicon photonics is increasingly considered as the most promising way-out to the relentless growth of data traffic in today's telecommunications infrastructures, driving an increase in transmission rates and computing capabilities. This is in fact challenging the intrinsic limit of copper-based, short-reach interconnects and microelectronic circuits in data centers and server architectures to offer enough modulation bandwidth at reasonable power dissipation. In the context of the heterogeneous integration of III-V direct-bandgap materials on silicon, optics with high-contrast metastructures enables the efficient implementation of optical functions such as laser feedback, input/output (I/O) to active/passive components, and optical filtering, while heterogeneous integration of III-V layers provides sufficient optical gain, resulting in silicon-integrated laser sources. The latest ensure reduced packaging costs and reduced footprint for the optical transceivers, a key point for the short reach communications. The invited talk will introduce the audience to the latest breakthroughs concerning the use of high-contrast gratings (HCGs) for the integration of III-V-on-Si verticalcavity surface-emitting lasers (VCSELs) as well as Fabry-Perot edge-emitters (EELs) in the main telecom band around 1.55 μm. The strong near-field mode overlap within HCG mirrors can be exploited to implement unique optical functions such as dense wavelength division multiplexing (DWDM): a 16-λ100-GHz-spaced channels VCSEL array is demonstrated. On the other hand, high fabrication yields obtained via molecular wafer bonding of III-V alloys on silicon-on-insulator (SOI) conjugate excellent device performances with cost-effective high-throughput production, supporting industrial needs for a rapid research-to-market transfer.

  7. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    Science.gov (United States)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data

  8. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  9. Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters

    Energy Technology Data Exchange (ETDEWEB)

    Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland); Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch; Tardy, Camille; Terazzi, Romain; Gresch, Tobias; Blaser, Stéphane; Muller, Antoine [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Faist, Jerome [Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland)

    2015-11-30

    In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolution molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.

  10. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay.

    Science.gov (United States)

    Liu, Dong; Sun, Changzheng; Xiong, Bing; Luo, Yi

    2014-03-10

    We report rich nonlinear dynamics in integrated coupled lasers with ultra-short coupling delay. Mutually stable locking, period-1 oscillation, frequency locking, quasi-periodicity and chaos are observed experimentally. The dynamic behaviors are reproduced numerically by solving coupled delay differential equations that take the variation of both frequency detuning and coupling phase into account. Moreover, it is pointed out that the round-trip frequency is not involved in the above nonlinear dynamical behaviors. Instead, the relationship between the frequency detuning Δν and the relaxation oscillation frequency νr under mutual injection are found to be critical for the various observed dynamics in mutually coupled lasers with very short delay.

  11. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination....

  12. Coherent Detection in Laser Doppler Velocimeters

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner

    1974-01-01

    , but intelligible particle picture of electromagnetic waves. The analysis is carried out with special emphasis on the heterodyning process in the laser Doppler velocimeter (LDV) because the main purpose of this article is to provide a better understanding of this instrument. An aid for this purpose......The possibility of heterodyning between electromagnetic waves scattered by particles separated in space is explained from a classical point of view and from a quantum mechanical point of view. The last description being carried out using only the Heisenberg uncertainty principle and a rather coarse...

  13. Coherent Frequency Shifter, Optical Isolator, Lasers on an Integrated Platform for Cold Atom Microsystems

    Science.gov (United States)

    2017-10-11

    frequency shifting with < 10 % leakage ; (5) experimental demonstration achieving frequency shifting with < 3 dB forward optical loss; (6) 29.3 dBm RF...using heterodyne detection . (b) 100 MHz up-conversion, 20 dB side lobe suppression. (c) 100 MHz down-conversion, 14 dB side lobe suppression...shifting with < 10 % leakage ; (5) experimental demonstration achieving frequency shifting with < 3 dB forward optical loss; (6) 29.3 dBm RF power

  14. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  15. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states

  16. Wafer-scale laser pantography: Fabrication of n-metal-oxide-semiconductor transistors and small-scale integrated circuits by direct-write laser-induced pyrolytic reactions

    International Nuclear Information System (INIS)

    McWilliams, B.M.; Herman, I.P.; Mitlitsky, F.; Hyde, R.A.; Wood, L.L.

    1983-01-01

    A complete set of processes sufficient for manufacture of n-metal-oxide-semiconductor (n-MOS) transistors by a laser-induced direct-write process has been demonstrated separately, and integrated to yield functional transistors. Gates and interconnects were fabricated of various combinations of n-doped and intrinsic polysilicon, tungsten, and tungsten silicide compounds. Both 0.1-μm and 1-μm-thick gate oxides were micromachined with and without etchant gas, and the exposed p-Si [100] substrate was cleaned and, at times, etched. Diffusion regions were doped by laser-induced pyrolytic decomposition of phosphine followed by laser annealing. Along with the successful manufacture of working n-MOS transistors and a set of elementary digital logic gates, this letter reports the successful use of several laser-induced surface reactions that have not been reported previously

  17. Infrared laser diagnostics for ITER

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Richards, R.K.; Ma, C.H.

    1995-01-01

    Two infrared laser-based diagnostics are under development at ORNL for measurements on burning plasmas such as ITER. The primary effort is the development of a CO 2 laser Thomson scattering diagnostic for the measurement of the velocity distribution of confined fusion-product alpha particles. Key components of the system include a high-power, single-mode CO 2 pulsed laser, an efficient optics system for beam transport and a multichannel low-noise infrared heterodyne receiver. A successful proof-of-principle experiment has been performed on the Advanced Toroidal Facility (ATF) stellerator at ORNL utilizing scattering from electron plasma frequency satellites. The diagnostic system is currently being installed on Alcator C-Mod at MIT for measurements of the fast ion tail produced by ICRH heating. A second diagnostic under development at ORNL is an infrared polarimeter for Faraday rotation measurements in future fusion experiments. A preliminary feasibility study of a CO 2 laser tangential viewing polarimeter for measuring electron density profiles in ITER has been completed. For ITER plasma parameters and a polarimeter wavelength of 10.6 microm, a Faraday rotation of up to 26 degree is predicted. An electro-optic polarization modulation technique has been developed at ORNL. Laboratory tests of this polarimeter demonstrated a sensitivity of ≤ 0.01 degree. Because of the similarity in the expected Faraday rotation in ITER and Alcator C-Mod, a collaboration between ORNL and the MIT Plasma Fusion Center has been undertaken to test this polarimeter system on Alcator C-Mod. A 10.6 microm polarimeter for this measurement has been constructed and integrated into the existing C-Mod multichannel two-color interferometer. With present experimental parameters for C-Mod, the predicted Faraday rotation was on the order of 0.1 degree. Significant output signals were observed during preliminary tests. Further experiment and detailed analyses are under way

  18. Integration of image exposure time into a modified laser speckle imaging method

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J [Optics Department, INAOE, Puebla (Mexico); Huang, Y C [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA (United States); Choi, B, E-mail: jcram@inaoep.m [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA (United States)

    2010-11-21

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  19. Integration of image exposure time into a modified laser speckle imaging method

    International Nuclear Information System (INIS)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J; Huang, Y C; Choi, B

    2010-01-01

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  20. Integration of a terahertz quantum cascade laser with a hollow waveguide

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM

    2012-07-03

    The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.

  1. Integration of laser trapping for continuous and selective monitoring of photothermal response of a single microparticle.

    Science.gov (United States)

    Vasudevan, Srivathsan; Chen, George C K; Ahluwalia, Balpreet Singh

    2008-12-01

    Photothermal response (PTR) is an established pump and probe technique for real-time sensing of biological assays. Continuous and selective PTR monitoring is difficult owing to the Brownian motion changing the relative position of the target with respect to the beams. Integration of laser trapping with PTR is proposed as a solution. The proposed method is verified on red polystyrene microparticles. PTR is continuously monitored for 30 min. Results show that the mean relaxation time variation of the acquired signals is less than 5%. The proposed method is then applied to human red blood cells for continuous and selective PTR.

  2. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Science.gov (United States)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  3. Integrated fringe projection 3D scanning system for large-scale metrology based on laser tracker

    Science.gov (United States)

    Du, Hui; Chen, Xiaobo; Zhou, Dan; Guo, Gen; Xi, Juntong

    2017-10-01

    Large scale components exist widely in advance manufacturing industry,3D profilometry plays a pivotal role for the quality control. This paper proposes a flexible, robust large-scale 3D scanning system by integrating a robot with a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. And a mathematical model is established for the global data fusion. Subsequently, a flexible and robust method and mechanism is introduced for the establishment of the end coordination system. Based on this method, a virtual robot noumenon is constructed for hand-eye calibration. And then the transformation matrix between end coordination system and world coordination system is solved. Validation experiment is implemented for verifying the proposed algorithms. Firstly, hand-eye transformation matrix is solved. Then a car body rear is measured for 16 times for the global data fusion algorithm verification. And the 3D shape of the rear is reconstructed successfully.

  4. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  5. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  6. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    Science.gov (United States)

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application. PMID:22164040

  7. Integrating Laser Scanner and Bim for Conservation and Reuse: "the Lyric Theatre of Milan"

    Science.gov (United States)

    Utica, G.; Pinti, L.; Guzzoni, L.; Bonelli, S.; Brizzolari, A.

    2017-12-01

    The paper underlines the importance to apply a methodology that integrates the Building Information Modeling (BIM), Work Breakdown Structure (WBS) and the Laser Scanner tool in conservation and reuse projects. As it is known, the laser scanner technology provides a survey of the building object which is more accurate rather than that carried out using traditional methodologies. Today most existing buildings present their attributes in a dispersed way, stored and collected in paper documents, in sheets of equipment information, in file folders of maintenance records. In some cases, it is difficult to find updated technical documentation and the research of reliable data can be a cost and time-consuming process. Therefore, this new survey technology, embedded with BIM systems represents a valid tool to obtain a coherent picture of the building state. The following case consists in the conservation and reuse project of Milan Lyric Theatre, started in 2013 from the collaboration between the Milan Polytechnic and the Municipality. This project first attempts to integrate these new techniques which are already professional standards in many other countries such as the US, Norway, Finland, England and so on. Concerning the methodology, the choice has been to use BIM software for the structured analysis of the project, with the aim to define a single code of communication to develop a coherent documentation according to rules in a consistent manner and in tight schedules. This process provides the definition of an effective and efficient operating method that can be applied to other projects.

  8. High speed gain coupled DFB laser diode integrated with MQW electroabsorption modulator

    International Nuclear Information System (INIS)

    Kim, Myung Gyoo; Lee, Seung Won; Park, Seong Su; Oh, Dae Kon; Lee, Hee Tae; Kim, Hong man; Pyun, Kwang Eui

    1998-01-01

    We have demonstrated stable modulation characteristics of the gain coupled distributed feedback(GC-DFB) laser diode integrated with butt-coupled InGaAsP/InGaAsP strain compensated MQW(multiple-Quantum-well) modulator for high speed optical transmission. For this purpose, we have adopted the InGaAsP/InGaAsP strain compensated MQW structure for the EA modulator and n-doped InGaAs absorptive grating for DFB laser. The typical threshold current and slope efficiency were about 15 mA and 0.1 mW/mA, respectively. The extinction ratio of fabricated integrated device was about 15 dB at -2 V, and the small signal bandwidth was shown to be around 17GHz. We also found that the α parameter becomes negative at below a -0.6 V bias voltage. We transmitted 10 Gbps NRZ electrical signal over 90 km of standard single mode optical fiber (SMF). A clearly opened eye diagram was observed in the modulated output

  9. High speed gain coupled DFB laser diode integrated with MQW electroabsorption modulator

    CERN Document Server

    Kim, M G; Park, S S; Oh, D K; Lee, H T; Kim, H M; Pyun, K E

    1998-01-01

    We have demonstrated stable modulation characteristics of the gain coupled distributed feedback(GC-DFB) laser diode integrated with butt-coupled InGaAsP/InGaAsP strain compensated MQW(multiple-Quantum-well) modulator for high speed optical transmission. For this purpose, we have adopted the InGaAsP/InGaAsP strain compensated MQW structure for the EA modulator and n-doped InGaAs absorptive grating for DFB laser. The typical threshold current and slope efficiency were about 15 mA and 0.1 mW/mA, respectively. The extinction ratio of fabricated integrated device was about 15 dB at -2 V, and the small signal bandwidth was shown to be around 17GHz. We also found that the alpha parameter becomes negative at below a -0.6 V bias voltage. We transmitted 10 Gbps NRZ electrical signal over 90 km of standard single mode optical fiber (SMF). A clearly opened eye diagram was observed in the modulated output.

  10. Integration of optical fibers in mega-joule class laser environments: advantages and limitations

    International Nuclear Information System (INIS)

    Girard, S.; Marcandella, C.; Bisutti, J.; Ouerdane, Y.; Boukenter, A.; Meunier, J.P.; Baggio, J.

    2012-01-01

    We review the advantages and limitations for the integration of optical fibers in the radiative environment associated with Megajoule class lasers as Laser Megajoule (LMJ) in France or National Ignition Facility (NIF) in the USA. Optical fibers present numerous advantages, like their electromagnetic immunity, for integration in these facilities devoted to the fusion by inertial confinement studies. Despite these advantages, it is also well-known that optical fibers suffer from a degradation of their macroscopic properties under irradiation, limiting their transmission capability. We studied the major mechanisms governing the amplitude of this degradation, focusing our discussion on the transient radiation-induced attenuation (RIA) phenomena that is often the limiting factor for LMJ applications. The amplitude and growth and decay kinetics of RIA are affected by different parameters related to the fibers themselves but also depend on the application and irradiation characteristics. We particularly investigated the fiber transient radiation responses when the optical links have to operate during the pulsed and mixed environment associated with ignition shots. Our study shows that, if the same parameters affect the fiber sensitivity for steady state and transient irradiations, the radiation tolerances of the different classes of waveguides strongly differ, implying dedicated experiments for LMJ facility needs. (authors)

  11. Progress on CD-DVD laser microfabrication method to develop cell culture scaffolds integrating biomimetic characteristics

    Science.gov (United States)

    Hautefeuille, Mathieu; Vázquez-Victorio, Genaro; Cruz-Ramírez, Aaron; Cabriales, Lucia; Jiménez-Diaz, Edgar; Escutia-Guadarrama, Lidia; López-Aparicio, Jehú; Pérez-Calixto, Daniel; Cano-Jorge, Mariel; Nieto-Rivera, Brenda; Sánchez-Olvera, Raúl

    2018-02-01

    The development of organ-on-chip and biological scaffolds is currently requiring simpler methods to microstructure biocompatible materials in three dimensions, fabricate structural and functional elements in biomaterials or modify the physicochemical properties of desired substrates. With the aim of creating simple, cost-effective alternatives to conventional existing techniques to produce such platforms with very specific properties, a low-power CD-DVD laser pickup head was recycled and mounted on a programmable three-axis micro-displacement system in order to modify the surface of polymeric materials in a local fashion. Thanks to a specially-designed method using a strongly absorbing additive coating the materials of interest, it has been possible to establish and precisely control processes useful in microtechnology for biomedical applications and normally restricted to much less affordable high-power lasers. In this work, we present our latest progress regarding the application of our fabrication technique to the development of organ-on-chip platforms thanks to the simple integration of several biomimetic characteristics typically achieved with traditional, less cost-effective microtechnology methods in one step or through replica-molding. Our straightforward approach indeed enables great control of local laser microablation for true on-demand biomimetic micropatterned designs in several transparent polymers and hydrogels of tunable stiffness and is allowing integration of microfluidics, microelectronics, optical waveguides, surface microstructuring and even transfer of superficial protein micropatterns on a variety of biocompatible materials. The results presented here were validated using hepatic and fibroblasts cell lines to demonstrate the viability of our procedure for organ-on-chip development and show the impact of such features in cell culture.

  12. High-Throughput Multiple Dies-to-Wafer Bonding Technology and III/V-on-Si Hybrid Lasers for Heterogeneous Integration of Optoelectronic Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Xianshu eLuo

    2015-04-01

    Full Text Available Integrated optical light source on silicon is one of the key building blocks for optical interconnect technology. Great research efforts have been devoting worldwide to explore various approaches to integrate optical light source onto the silicon substrate. The achievements so far include the successful demonstration of III/V-on-Si hybrid lasers through III/V-gain material to silicon wafer bonding technology. However, for potential large-scale integration, leveraging on mature silicon complementary metal oxide semiconductor (CMOS fabrication technology and infrastructure, more effective bonding scheme with high bonding yield is in great demand considering manufacturing needs. In this paper, we propose and demonstrate a high-throughput multiple dies-to-wafer (D2W bonding technology which is then applied for the demonstration of hybrid silicon lasers. By temporarily bonding III/V dies to a handle silicon wafer for simultaneous batch processing, it is expected to bond unlimited III/V dies to silicon device wafer with high yield. As proof-of-concept, more than 100 III/V dies bonding to 200 mm silicon wafer is demonstrated. The high performance of the bonding interface is examined with various characterization techniques. Repeatable demonstrations of 16-III/V-die bonding to pre-patterned 200 mm silicon wafers have been performed for various hybrid silicon lasers, in which device library including Fabry-Perot (FP laser, lateral-coupled distributed feedback (LC-DFB laser with side wall grating, and mode-locked laser (MLL. From these results, the presented multiple D2W bonding technology can be a key enabler towards the large-scale heterogeneous integration of optoelectronic integrated circuits (H-OEIC.

  13. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    Science.gov (United States)

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  14. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  15. [Study on phase correction method of spatial heterodyne spectrometer].

    Science.gov (United States)

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  16. A submillimeter heterodyne receiver and its application in astronomy

    International Nuclear Information System (INIS)

    Vliet, A.H.F. van.

    1981-01-01

    A submm heterodyne receiver for astronomical observations has been developed which operates in the frequency range between 460 and 500 GHz. An InSb hot electron bolometer is used as the mixing element. The local oscillator power is obtained by doubling the frequency of a backward wave oscillator (B.W.O.). The sideband noise of the B.W.O. has appeared to be sufficiently weak to allow its use in combination with an InSb mixer. A method of measuring the matching of the mixer to the waveguide is described and some results of measurements of B.W.O. noise are given. A general description is presented of Gaussian beam theory and this is applied to the design of the receiver optics. Particular attention is given to the coupling between the receiver and the telescope. To prevent the usually troublesome effects of standing waves between the receiver and the telescope a circular polarizer can be applied. A review is given of different types of such polarizers as presently used in the optical and microwave regimes, with a view to their application in the submm range. Two types of circular polarizers were constructed and results of measurements on these are given. The final chapter describes the observation of the rotational CO J = 4→3 transition at 461 GHz in the Kleinman Low nebula. From a combination of this measurement with others, lower bounds for the gas kinetic temperature and column density of the shocked gas in this region are derived. (Auth.)

  17. FIR-laser scattering for JT-60

    International Nuclear Information System (INIS)

    Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo

    1977-09-01

    An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)

  18. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  19. Feasibility evaluations for the integration of laser butt welding of tubes in industrial pipe coil production lines

    Science.gov (United States)

    Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro

    1994-09-01

    Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    Science.gov (United States)

    Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.

    2009-10-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.

  1. Integrated Numerical Experiments (INEX) and the Free-Electron Laser Physical Process Code (FELPPC)

    International Nuclear Information System (INIS)

    Thode, L.E.; Chan, K.C.D.; Schmitt, M.J.; McKee, J.; Ostic, J.; Elliott, C.J.; McVey, B.D.

    1990-01-01

    The strong coupling of subsystem elements, such as the accelerator, wiggler, and optics, greatly complicates the understanding and design of a free electron laser (FEL), even at the conceptual level. To address the strong coupling character of the FEL the concept of an Integrated Numerical Experiment (INEX) was proposed. Unique features of the INEX approach are consistency and numerical equivalence of experimental diagnostics. The equivalent numerical diagnostics mitigates the major problem of misinterpretation that often occurs when theoretical and experimental data are compared. The INEX approach has been applied to a large number of accelerator and FEL experiments. Overall, the agreement between INEX and the experiments is very good. Despite the success of INEX, the approach is difficult to apply to trade-off and initial design studies because of the significant manpower and computational requirements. On the other hand, INEX provides a base from which realistic accelerator, wiggler, and optics models can be developed. The Free Electron Laser Physical Process Code (FELPPC) includes models developed from INEX, provides coupling between the subsystem models, and incorporates application models relevant to a specific trade-off or design study. In other words, FELPPC solves the complete physical process model using realistic physics and technology constraints. Because FELPPC provides a detailed design, a good estimate for the FEL mass, cost, and size can be made from a piece-part count of the FEL. FELPPC requires significant accelerator and FEL expertise to operate. The code can calculate complex FEL configurations including multiple accelerator and wiggler combinations

  2. Excimer laser doping technique for application in an integrated CdTe imaging device

    CERN Document Server

    Mochizuki, D; Aoki, T; Tomita, Y; Nihashi, T; Hatanaka, Y

    1999-01-01

    CdTe is an attractive semiconductor material for applications in solid-state high-energy X-ray and gamma-ray imaging systems because of its high absorption coefficient, large band gap, good mobility lifetime product of holes and stability at normal atmospheric conditions. We propose a new concept for fabricating an integrated CdTe with monolithic circuit configuration for two-dimensional imaging systems suitable for medical, research or industrial applications and operation at room temperature. A new doping technique has been recently developed that employs excimer laser radiation to diffuse impurity atoms into the semiconductor. Accordingly, heavily doped n- and p-type layers with resistivities less than 1 OMEGA cm can be formed on the high resistive CdTe crystals. We have further extended this technique for doping with spatial pattern. We will present the laser doping technique and various results thus obtained. Spatially patterned doping is demonstrated and we propose the use of these doping techniques for...

  3. Laser beam deflection-based perimeter scanning of integrated circuits for local overheating location

    International Nuclear Information System (INIS)

    Perpina, X; Jorda, X; Vellvehi, M; Altet, J; Mestres, N

    2009-01-01

    In integrated circuits, local overheating (hot spots) can be detected by monitoring the temperature gradients present in the silicon substrate at a given depth, laterally accessing the die with an infra-red laser beam probe. The sensed magnitude is the laser beam deflection, which is proportional to the temperature gradients found along the beam trajectory (mirage effect). Biasing the devices with periodic electrical functions allows employing lock-in detection strategies (noise immunity) and thermally isolating the analysed chip substrate thermal behaviour from the external boundary conditions by setting the excitation frequency (control of the thermal energy penetration depth). Measuring the first harmonic of the deflection signal components (vertical and horizontal) allows performing a fast and accurate location of devices, interconnects or circuits dissipating relatively high power levels without any calibration procedure. It has been concluded that the horizontal component of the beam deflection provides a higher spatial resolution than the vertical one when measurements are performed beyond the thermal energy penetration depth. (fast track communication)

  4. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity

    International Nuclear Information System (INIS)

    Tronciu, V Z; Mirasso, Claudio R; Colet, Pere

    2008-01-01

    We report the results of numerical investigations of the dynamical behaviour of an integrated device composed of a semiconductor laser and a double cavity that provides optical feedback. Due to the influence of the feedback, under the appropriate conditions, the system displays chaotic behaviour appropriate for chaos-based communications. The optimal conditions for chaos generation are identified. It is found that the double cavity feedback requires lower feedback strengths for developing high complexity chaos when compared with a single cavity. The synchronization of two unidirectional coupled (master-slave) systems and the influence of parameters mismatch on the synchronization quality are also studied. Finally, examples of message encoding and decoding are presented and discussed

  5. Integration of multiple theories for the simulation of laser interference lithography processes.

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-24

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  6. Integration of multiple theories for the simulation of laser interference lithography processes

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-01

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  7. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Exploring the potential of laser capture microdissection technology in integrated oral biosciences.

    Science.gov (United States)

    Thennavan, A; Sharma, M; Chandrashekar, C; Hunter, K; Radhakrishnan, R

    2017-09-01

    Laser capture microdissection (LCM) is a high-end research and diagnostic technology that helps in obtaining pure cell populations for the purpose of cell- or lesion-specific genomic and proteomic analysis. Literature search on the application of LCM in oral tissues was made through PubMed. There is ample evidence to substantiate the utility of LCM in understanding the underlying molecular mechanism involving an array of oral physiological and pathological processes, including odontogenesis, taste perception, eruptive tooth movement, oral microbes, and cancers of the mouth and jaw tumors. This review is aimed at exploring the potential application of LCM in oral tissues as a high-throughput tool for integrated oral sciences. The indispensable application of LCM in the construction of lesion-specific genomic libraries with emphasis on some of the novel molecular markers thus discovered is also highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Leonard, John T.; Pourhashemi, Arash; Oubei, Hassan M.; Alias, Mohd Sharizal; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.; Alyamani, Ahmed Y.; Eldesouki, Munir M.; Ooi, Boon S.

    2016-01-01

    To date, solid-state lighting (SSL), visible light communication (VLC) and optical clock generation functionalities in the blue-green color regime have been demonstrated based on discrete devices, including light-emitting diodes, laser diodes, and transverse-transmission modulators. This work presents the first integrated waveguide modulator-laser diode (IWM-LD) at 448 nm, offering the advantages of small-footprint, high-speed, and low power-consumption. A high modulation efficiency of 2.68 dB/V, deriving from a large extinction ratio of 9.4 dB and a low operating voltage range of 3.5 V, was measured. The electroabsorption characteristics revealed that the modulation effect, as observed from the red-shifting of the absorption edge, was resulted from the external-field-induced quantum-confined-Stark-effect (QCSE). A comparative analysis of the photocurrent versus wavelength spectra in semipolar- and polar-plane InGaN/GaN quantum wells (QWs) confirmed that the IWM-LD based on semipolar (20¯2 ¯1) QWs was able to operate in a manner similar to other III-V materials typically used in optical telecommunications, due to the reduced piezoelectric field. Utilizing the integrated modulator, a -3dB bandwidth of ~1 GHz was measured, and a data rate of 1 Gbit/s was demonstrated using on-off keying (OOK) modulation. Our experimental investigation highlighted the advantage of implementing the IWM-LD on the same semipolar QW epitaxy in enabling a high-efficiency platform for SSL-VLC dual-functionalities.

  10. High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm

    KAUST Repository

    Shen, Chao

    2016-01-25

    To date, solid-state lighting (SSL), visible light communication (VLC) and optical clock generation functionalities in the blue-green color regime have been demonstrated based on discrete devices, including light-emitting diodes, laser diodes, and transverse-transmission modulators. This work presents the first integrated waveguide modulator-laser diode (IWM-LD) at 448 nm, offering the advantages of small-footprint, high-speed, and low power-consumption. A high modulation efficiency of 2.68 dB/V, deriving from a large extinction ratio of 9.4 dB and a low operating voltage range of 3.5 V, was measured. The electroabsorption characteristics revealed that the modulation effect, as observed from the red-shifting of the absorption edge, was resulted from the external-field-induced quantum-confined-Stark-effect (QCSE). A comparative analysis of the photocurrent versus wavelength spectra in semipolar- and polar-plane InGaN/GaN quantum wells (QWs) confirmed that the IWM-LD based on semipolar (20¯2 ¯1) QWs was able to operate in a manner similar to other III-V materials typically used in optical telecommunications, due to the reduced piezoelectric field. Utilizing the integrated modulator, a -3dB bandwidth of ~1 GHz was measured, and a data rate of 1 Gbit/s was demonstrated using on-off keying (OOK) modulation. Our experimental investigation highlighted the advantage of implementing the IWM-LD on the same semipolar QW epitaxy in enabling a high-efficiency platform for SSL-VLC dual-functionalities.

  11. Integration of electro-absorption modulator in a vertical-cavity surface-emitting laser

    Science.gov (United States)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Rumeau, A.; Viallon, C.; Thienpont, H.; Panajotov, K.; Almuneau, G.

    2018-02-01

    VCSELs became dominant laser sources in many short optical link applications such as datacenter, active cables, etc. Actual standards and commercialized VCSEL are providing 25 Gb/s data rates, but new solutions are expected to settle the next device generation enabling 100 Gb/s. Directly modulated VCSEL have been extensively studied and improved to reach bandwidths in the range of 26-32 GHz [Chalmers, TU Berlin], however at the price of increased applied current and thus reduced device lifetime. Furthermore, the relaxation oscillation limit still subsists with this solution. Thus, splitting the emission and the modulation functions as done with DFB lasers is a very promising alternative [TI-Tech, TU Berlin]. Here, we study the vertical integration of an ElectroAbsorption Modulator (EAM) within a VCSEL, where the output light of the VCSEL is modulated through the EAM section. In our original design, we finely optimized the EAM design to maximize the modulation depth by implementing perturbative Quantum Confined Stark Effect (QCSE) calculations, while designing the vertical integration of the EAM without penalty on the VCSEL static performances. We will present the different fabricated vertical structures, as well as the experimental electrical and optical static measurements for those configurations demonstrating a very good agreement with the reflectivity and absorption simulations obtained for both the VCSEL and the EAM-VCSEL structures. Finally, to reach very high frequency modulation we studied the BCB electrical properties up to 110 GHz and investigated coplanar and microstrip lines access to decrease both the parasitic capacitance and the influence of the substrate.

  12. An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz

    Science.gov (United States)

    Siles, Jose V.; Mehdi, Imran; Schlecht, Erich T.; Gulkis, Samuel; Chattopadhyay, Goutam; Lin, Robert H.; Lee, Choonsup; Gill, John J.; Thomas, Bertrand; Maestrini, Alain E.

    2013-01-01

    Heterodyne receivers at submillimeter wavelengths have played a major role in astrophysics as well as Earth and planetary remote sensing. All-solid-state heterodyne receivers using both MMIC (monolithic microwave integrated circuit) Schottky-diode-based LO (local oscillator) sources and mixers are uniquely suited for long-term planetary missions or Earth climate monitoring missions as they can operate for decades without the need for any active cryogenic cooling. However, the main concern in using Schottky-diode-based mixers at frequencies beyond 1 THz has been the lack of enough LO power to drive the devices because 1 to 3 mW are required to properly pump Schottky diode mixers. Recent progress in HEMT- (high-electron-mobility- transistor) based power amplifier technology, with output power levels in excess of 1 W recently demonstrated at W-band, as well as advances in MMIC Schottky diode circuit technology, have led to measured output powers up to 1.4 mW at 0.9 THz. Here the first room-temperature tunable, all-planar, Schottky-diode-based receiver is reported that is operating at 1.2 THz over a wide (˜20%) bandwidth. The receiver front-end (see figure) consists of a Schottky-diode-based 540 to 640 GHz multiplied LO chain (featuring a cascade of W-band power amplifiers providing around 120 to 180 mW at W-band), a 200-GHz MMIC frequency doubler, and a 600-GHz MMIC frequency tripler, plus a biasable 1.2-THz MMIC sub-harmonic Schottky-diode mixer. The LO chain has been designed, fabricated, and tested at JPL and provides around 1 to 1.5 mW at 540 o 640 GHz. The sub-harmonic mixer consists of two Schottky diodes on a thin GaAs membrane in an anti-parallel configuration. An integrated metal insulator metal (MIM) capacitor has been included on-chip to allow dc bias for the Schottky diodes. A bias voltage of around 0.5 V/diode is necessary to reduce the LO power required down to the 1 to 1.5 mW available from the LO chain. The epilayer thickness and doping profiles have

  13. Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector.

    Science.gov (United States)

    Aharon Akram, Avihai; Rozban, Daniel; Kopeika, Natan S; Abramovich, Amir

    2013-06-10

    A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (P(lo)), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.

  14. Integration of InGaAs MOSFETs and GaAs/ AlGaAs lasers on Si Substrate for advanced opto-electronic integrated circuits (OEICs).

    Science.gov (United States)

    Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao

    2017-12-11

    Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.

  15. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans.

    Science.gov (United States)

    Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F

    2017-03-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Integrating Airborne and Terrestrial Laser Scanning data to monitor active landsliding

    Science.gov (United States)

    Székely, B.; Molnár, G.; Roncat, A.; Lehner, H.; Gaisecker, Th.; Drexel, P.

    2009-04-01

    Active slope processes often endanger various built-up objects and, as a consequence, sometimes human lives as well. Data acquision on the status and evolution of such slopes, especially those that had already affected by landsliding, therefore is a primary target for engineering geomorphic research. The method of laser scanning provides an appropriate data collection technique with the requested accuracy. Data from repeated Airborne Laser Scanning (ALS) campaigns are suitable to be analysed for the slow, incipient movements of the slope. The problem of this surveying technique is that repetition time is strongly dependent on the financial resources of the monitoring project, and often the requested recurrence of flight campaigns cannot be achieved. A possible solution to densify the data acquisition in time is the application of Terrestrial Laser Scanning (TLS) and intergration of its data with ALS data sets. TLS has the advantage of flexibility and shorter observation distances compared to ALS. This technique needs special considerations and tedious processing since the geometric setting of the data acquision considerably differ in TLS and ALS. Furthermore, obstacles in the landscape may partly hamper the data acqusition which rarely the case in ALS. Our case study area is a several-decade-long active landsliding in Doren (Federal State Vorarlberg, Austria) that as it develops, it is about to endangers houses of the locality. The site is especially suitable for the project, because multi-temporal data sets (from ALS flight campaigns in 2003, 2006 and 2007, respectively) of this area are available. The data integration is carried out in the form of production of point clouds (sensed from various points of the valley sides) and we compared the results with the results of the previous ALS campaigns. With the planned repetition of the TLS measurements new and detailed insights can be achieved concerning the evolution of the incipient and on-going slow motions. This

  17. Degradation of Side-Mode Suppression Ratio in a DFB Laser Integrated With a Semiconductor Optical Amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Lestrade, Michel; Camel, Jérôme

    2004-01-01

    The degradation of the side-mode suppression ratio (SMSR) in a monolithically integrated distributed feedback laser and semiconductor optical amplifier (SOA) cavity is investigated. An expression is derived that gives the degradation of the SMSR in the case of a perfectly antireflection-coated SO...

  18. Surface plasmon quantum cascade lasers as terahertz local oscillators

    NARCIS (Netherlands)

    Hajenius, M.; Khosropanah, P.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Barbieri, S.; Dhillon, S.; Filloux, P.; Sirtori, C.; Ritchie, D. A.; Beere, H. E.

    2008-01-01

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto

  19. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From the measure...... the measurements we derive the small-signal alpha-parameter and the time-dependent chirp for different operation conditions.......In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  20. Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars - A natural laser

    Science.gov (United States)

    Mumma, M. J.; Buhl, D.; Chin, G.; Deming, D.; Espenak, F.; Kostiuk, T.; Zipoy, D.

    1981-01-01

    Fully resolved intensity profiles of various lines in the carbon dioxide band at 10.4 micrometers have been measured on Mars with an infrared heterodyne spectrometer. Analysis of the line shapes shows that the Mars atmosphere exhibits positive gain in these lines. The detection of natural optical gain amplification enables identification of these lines as a definite natural laser.

  1. Laser Direct Writing and Selective Metallization of Metallic Circuits for Integrated Wireless Devices.

    Science.gov (United States)

    Cai, Jinguang; Lv, Chao; Watanabe, Akira

    2018-01-10

    Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.

  2. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao

    2018-02-14

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  3. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2018-01-01

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  4. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    Science.gov (United States)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  5. Advanced Technologies for Heterodyne Radio Astronomy Instrumentation - Part1 By A. Pavolotsky, and Advanced Technologies for Heterodyne Radio Astronomy Instrumentation - Part2 By V. Desmaris

    Science.gov (United States)

    Desmaris, Vincent

    2018-01-01

    We present the advanced micro/nano technological engineering at the atomic level producing state-of-the-art epitaxial NbN thin-films on GaN buffer layers. Furthermore, we report the outstanding performance of the hot electron bolometers fabricated on epitaxial NbN thin films on GaN buffer layers. Finally we present advanced passive devices such as waveguide hybrids, IF hybrids and combiners for the realization of heterodyne THz receivers.

  6. Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems

    International Nuclear Information System (INIS)

    Delettrez, J. A.; Myatt, J.; Radha, P. B.; Stoeckl, C.; Meyerhofer, D. D.

    2005-01-01

    Integrated fast-ignition experiments for the combined OMEGA/OMEGA EP laser systems have been simulated with the multidimensional hydrodynamic code DRACO. In the simplified electron transport model included in DRACO, the electrons are introduced at the pole of a 2-D simulation and transported in a straight line toward the target core, depositing their energy according to a recently published slowing-down formula.1 Simulations, including alpha transport, of an OMEGA cryogenic target designed to reach a 1-D fuel R of 500 mg/cm2 have been carried out for 1-D (clean) and, more realistic, 2-D (with nonuniformities) implosions to assess the sensitivity to energy, timing, and irradiance of the Gaussian fast-ignitor beam. The OMEGA laser system provides up to 30 kJ of compression energy, and OMEGA EP will provide two short pulse beams, each with energies up to 2.6 kJ. For the 1-D case, the neutron yield is predicted to be in excess of 1015 (compared to 1014 for no ignitor beam) over a timing range of about 80 ps. This talk will present these results and new 2-D simulation results that include the effects of realistic cryogenic target perturbations on the compressed core. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. (Author)

  7. Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors

    Science.gov (United States)

    Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.

    2018-05-01

    Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5  ×  10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.

  8. Low modulation bias InGaN-based integrated EA-modulator-laser on semipolar GaN substrate

    KAUST Repository

    Shen, Chao; Leonard, John; Pourhashemi, Arash; Oubei, Hassan M.; Alias, Mohd Sharizal; Ng, Tien Khee; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.; Alyamani, Ahmed Y.; Eldesouki, Munir M.; Ooi, Boon S.

    2015-01-01

    In summary, we demonstrated the monolithic integration of electroabsorption modulator with laser diode and measured DC and AC modulation characteristics of the device, which is grown on (2021̅) plane GaN substrate. By alternating the modulation voltage at −3.5 V and 0 V, we achieve the laser output power of < 1.5 mW to > 9 mW, respectively, leading to ∼8.1 dB On/Off ratio. Our results clearly show that a low power consumption modulator can be achieved with semipolar EA-modulator compared to that of the c-plane devices.

  9. Low modulation bias InGaN-based integrated EA-modulator-laser on semipolar GaN substrate

    KAUST Repository

    Shen, Chao

    2015-10-06

    In summary, we demonstrated the monolithic integration of electroabsorption modulator with laser diode and measured DC and AC modulation characteristics of the device, which is grown on (2021̅) plane GaN substrate. By alternating the modulation voltage at −3.5 V and 0 V, we achieve the laser output power of < 1.5 mW to > 9 mW, respectively, leading to ∼8.1 dB On/Off ratio. Our results clearly show that a low power consumption modulator can be achieved with semipolar EA-modulator compared to that of the c-plane devices.

  10. Origins Space Telescope: HEterodyne Receiver for OST (HERO)

    Science.gov (United States)

    Bergin, Edwin; Wiedner, Martina; Laurens, Andre; Gerin, Maryvonne; HERO team, Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is a mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies selected by NASA HQ for the 2020 Astronomy and Astrophysics Decadal survey. The OST study will encompass two mission concepts (poster by A. Cooray). Concept 1 is an extremely versatile observatory with 5 science instruments, of which the HEterodyne Receivers for OST (HERO) is one.HERO’s main targets are high spectral resolution observations (Dl/l up to 107 or Dv = 0.03km/s) of water to follow its trail from cores to YSOs as well as H2O and HDO observations on comets to explore the origins of water. HERO will probe all neutral ISM phases using cooling lines ([CII], [OI]) and hydrides as probes of CO-dark H2 (CH, HF). HERO will reveal how molecular clouds and filaments form in the local ISM up to nearby galaxies. HERO will enable detailed understanding of feedback mechanisms : shocks, cosmic rays, UV induced feedback and will provide a map of the cosmic ray ionization rate in the Galaxy and nearby galaxies using molecular ions (ArH+, OH+, H3O+).In order to achieve these observational goals, HERO will cover an extremely wide frequency range from 468 to 2700 GHz (641 to 111microns) and a window around the OI line at 4563 to 4752GHz (66 to 63 microns). It will consist of very large focal plane arrays of 128 pixels between 900 - 2700 GHz and at 4.7 THz, and 32 pixels for the 468 to 900 GHz range. The instrument is exploiting Herschel/HIFI heritage, but will go well beyond HIFIs capacities. HERO’s large arrays require low dissipation and low power components. The HERO concept makes use of the latest cryogenic SiGe amplifier technology, as well as CMOS technology for the backends with 2 orders of magnitude lower power. Advances in Local Oscillator technology have also been taken into account and ambitious, but realistic assumptions have been made for future amplifier multiplier chains going up to 4.7 THz.Origins will enable

  11. Development of SMM wave laser scattering apparatus for the measurements of waves and turbulences in the tokamak plasma

    International Nuclear Information System (INIS)

    Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.

    1980-01-01

    The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)

  12. Heterodyne quasi-elastic light-scattering instrument for biomedical diagnostics.

    Science.gov (United States)

    Lebedev, A D; Ivanova, M A; Lomakin, A V; Noskin, V A

    1997-10-20

    The heterodyne technique has a number of advantages over the homodyne technique when an accurate characterization of particle-size distribution (PSD) of heterogeneous systems is required. However, there are problems related to acoustic vibrations that make it difficult to take advantage of the heterodyne technique. An instrument developed for quasi-elastic light scattering (QELS) that uses the optical heterodyning principle is described. Vibration-related problems are considerably reduced because of the incorporation of all optical elements into one solid optical block. A real-time correlation analysis of the photocurrent fluctuations is performed by a PC-embedded analog-to-digital converter card with a digital signal processor. Investigation of the PSD in biological fluids for medical diagnostics is presented as a typical application. A diagnostic analysis of the PSD requires a simultaneous processing of a huge number of QELS data. An original statistical algorithm to accomplish this analysis has been developed. Technical specifications of instrumentation for heterodyne QELS measurement are discussed.

  13. Side-band-separating heterodyne mixer for band 9 of ALMA.

    NARCIS (Netherlands)

    Mena, F. P.; Baryshev, A. M.; Kooi, J.; Lodewijk, C. F. J.; Gerlofsma, G.; Hesper, R.; Wild, W.; Shen, XC; Lu, W; Zhang, J; Dou, WB

    2006-01-01

    Here we present the realization of a side-band-separating (2SB) heterodyne mixer for the frequency range from 602 to 720 GHz (corresponding to ALMA band 9). The mixer, in brief, consists of a quadrature hybrid, two LO injectors, two SIS junctions, and three dumping loads. All the parts were modeled

  14. Design of a side-band-separating heterodyne mixer for band 9 of ALMA

    NARCIS (Netherlands)

    Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W

    2005-01-01

    A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of

  15. On the Performance of Multihop Heterodyne FSO Systems With Pointing Errors

    KAUST Repository

    Zedini, Emna; Alouini, Mohamed-Slim

    2015-01-01

    This paper reports the end-to-end performance analysis of a multihop free-space optical system with amplify-and-forward (AF) channel-state-information (CSI)-assisted or fixed-gain relays using heterodyne detection over Gamma–Gamma turbulence fading

  16. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    Science.gov (United States)

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  17. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    Science.gov (United States)

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  18. Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography

    Directory of Open Access Journals (Sweden)

    Neil Slatcher

    2015-11-01

    Full Text Available During volcanic eruptions, measurements of the rate at which magma is erupted underpin hazard assessments. For eruptions dominated by the effusion of lava, estimates are often made using satellite data; here, in a case study at Mount Etna (Sicily, we make the first measurements based on terrestrial laser scanning (TLS, and we also include explosive products. During the study period (17–21 July 2012, regular Strombolian explosions were occurring within the Bocca Nuova crater, producing a ~50 m-high scoria cone and a small lava flow field. TLS surveys over multi-day intervals determined a mean cone growth rate (effusive and explosive products of ~0.24 m3·s−1. Differences between 0.3-m resolution DEMs acquired at 10-minute intervals captured the evolution of a breakout lava flow lobe advancing at 0.01–0.03 m3·s−1. Partial occlusion within the crater prevented similar measurement of the main flow, but integrating TLS data with time-lapse imagery enabled lava viscosity (7.4 × 105 Pa·s to be derived from surface velocities and, hence, a flux of 0.11 m3·s−1 to be calculated. Total dense rock equivalent magma discharge estimates are ~0.1–0.2 m3·s−1 over the measurement period and suggest that simultaneous estimates from satellite data are somewhat overestimated. Our results support the use of integrated TLS and time-lapse photography for ground-truthing space-based measurements and highlight the value of interactive image analysis when automated approaches, such as particle image velocimetry (PIV, fail.

  19. Toward the integration of optical sensors in smartphone screens using femtosecond laser writing.

    Science.gov (United States)

    Lapointe, Jerome; Parent, Francois; de Lima Filho, Elton Soares; Loranger, Sébastien; Kashyap, Raman

    2015-12-01

    We demonstrate a new type of sensor incorporated directly into Corning Gorilla glass, an ultraresistant glass widely used in the screen of popular devices such as smartphones, tablets, and smart watches. Although physical space is limited in portable devices, the screens have been so far neglected in regard to functionalization. Our proof-of-concept shows a new niche for photonics device development, in which the screen becomes an active component integrated into the device. The sensor itself is a near-surface waveguide, sensitive to refractive index changes, enabling the analysis of liquids directly on the screen of a smartphone, without the need for any add-ons, thus opening this part of the device to advanced functionalization. The primary function of the screen is unaffected, since the sensor and waveguide are effectively invisible to the naked eye. We fabricated a waveguide just below the glass surface, directly written without any surface preparation, in which the change in refractive index on the surface-air interface changes the light guidance, thus the transmission of light. This work reports on sensor fabrication, using a femtosecond pulsed laser, and the light-interaction model of the beam propagating at the surface is discussed and compared with experimental measurement for refractive indexes in the range 1.3-1.7. A new and improved model, including input and output reflections due to the effective mode index change, is also proposed and yields a better match with our experimental measurements and also with previous measurements reported in the literature.

  20. GEOMETRIC COMPLEXITY ANALYSIS IN AN INTEGRATIVE TECHNOLOGY EVALUATION MODEL (ITEM FOR SELECTIVE LASER MELTING (SLM#

    Directory of Open Access Journals (Sweden)

    S. Merkt

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Selective laser melting (SLM is becoming an economically viable choice for manufacturing complex serial parts. This paper focuses on a geometric complexity analysis as part of the integrative technology evaluation model (ITEM presented here. In contrast to conventional evaluation methodologies, the ITEM considers interactions between product and process innovations generated by SLM. The evaluation of manufacturing processes that compete with SLM is the main goal of ITEM. The paper includes a complexity analysis of a test part from Festo AG. The paper closes with a discussion of how the expanded design freedom of SLM can be used to improve company operations, and how the complexity analysis presented here can be seen as a starting point for feature-based complexity analysis..

    AFRIKAANSE OPSOMMING: Selektiewe lasersmelting word geleidelik ’n gangbare ekonomiese keuse vir die vervaar-diging van opeenvolgende komplekse onderdele. Die navorsing is toegespits op die ontleding van meetkundige kompleksiteit as ’n gedeelte van ’n integrerende tegnologiese evalueringsmodel. Gemeet teen konvensionele evalueringsmodelle behandel die genoemde metode interaksies tussen produkte- en prosesinnovasies wat gegenereer word. Die navorsing behandel ’n kompleksiteitsontleding van ’n toetsonderdeel van die firma FESTO AG. Die resultaat toon hoe kompleksiteits-analise gebruik kan word as die vertrekpunt vir eienskapsgebaseerde analise.

  1. Design of microreactor by integration of reverse engineering and direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Bineli, Aulus Roberto Romao; Gimenez Perez, Ana Paula; Bernardes, Luiz Fernando; Munhoz, Andre Luiz Jardini; Maciel Filho, Rubens [Universidade de Campinas (LOPCA/UNICAMP), SP (Brazil). School of Chemical Engineering. Laboratory of Optimization, Design and Advanced Process Control], Email: aulus@feq.unicamp.br

    2010-07-01

    The propose of this work is to present high precision microfabrication facilities using computer aided technologies as Reverse Engineering (RE) and Rapid Manufacturing (RM) to analyze, design and construct micro reactors to produce high content hydrogen gas. Micro reactors are very compact, have a high surface to volume ratio, exhibit enhanced heat and mass transfer rates, denotes extremely low pressure drop and allow improved thermal integration in the processes involved. The main goals of micro reactors are the optimization of conventional chemical plants and low footprint, opening different ways to research new process technologies and synthesis of new products. In this work, a microchannels plate and housing structure of these plates were fabricated using DMLS method (Direct Metal Laser Sintering). The plates were analyzed to verify the minimum thickness wall that machine can produce, and the housing structure were digitalized, using a 3D scanning, to perform a 3D inspection and to verify the deflection of the constructed part in comparison with original CAD design models. It was observed that DMLS systems are able to produce micro reactors and microchannels plates with high precision at different metallic materials. However, it is important to choose appropriate conditions to avoid residual stresses and consequently warping parts. (author)

  2. Compact system for high-speed velocimetry using heterodyne techniques

    International Nuclear Information System (INIS)

    Strand, O. T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.

    2006-01-01

    We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is ∼5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies

  3. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-01-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10 6 cm -2 . A threshold current density of J th ∼1.65 kA/cm 2 for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods

  4. Function analysis of working integrated circuit with scanning laser microscope. Laser kenbikyo ni yoru IC no dosa kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ode, T. (Lasertec Corp., Kanagawa (Japan))

    1992-10-20

    By scanning a laser light, the reaction of a specimen against the light is detected in some means. The optical effect can be visualized by displaying that on the CRT or the like in synchronism with the scanning. Among these, an image formed and visualized by internal photoelectric effect by light is called OBIC image, and chiefly used for evaluating and analyzing semiconductor devices. Observing this OBIC image by a high speed scanning laser microscope has been spotlighted these days as an effective means for observing the state of p-n junction of an IC in operation. This paper descries the principle, the observing method, the detecting circuit, etc. of the semiconductor observing method using a laser microscope. Further, actual examples of detecting defects of an IC by means of OBIC image are shown. As for the problem, since leak parts are displayed as negative contrast in the OBIC image to affect finding work of leak part, the necessity of improvement is pointed out. 39 refs., 11 figs.

  5. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    Science.gov (United States)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  6. Laser-induced heating integrated with a microfluidic platform for real-time DNA replication and detection

    Science.gov (United States)

    Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin

    2016-08-01

    This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.

  7. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    Science.gov (United States)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  8. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    International Nuclear Information System (INIS)

    Lin Jun; Pakhomov, Andrew V.

    2005-01-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (∼ 3x10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ∼35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements

  9. The first neural probe integrated with light source (blue laser diode) for optical stimulation and electrical recording.

    Science.gov (United States)

    Park, HyungDal; Shin, Hyun-Joon; Cho, Il-Joo; Yoon, Eui-sung; Suh, Jun-Kyo Francis; Im, Maesoon; Yoon, Euisik; Kim, Yong-Jun; Kim, Jinseok

    2011-01-01

    In this paper, we report a neural probe which can selectively stimulate target neurons optically through Si wet etched mirror surface and record extracellular neural signals in iridium oxide tetrodes. Consequently, the proposed approach provides to improve directional problem and achieve at least 150/m gap distance between stimulation and recording sites by wet etched mirror surface in V-groove. Also, we developed light source, blue laser diode (OSRAM Blue Laser Diode_PL 450), integration through simple jig for one-touch butt-coupling. Furthermore, optical power and impedance of iridium oxide tetrodes were measured as 200 μW on 5 mW from LD and 206.5 k Ω at 1 kHz and we demonstrated insertion test of probe in 0.5% agarose-gel successfully. We have successfully transmitted a light of 450 nm to optical fiber through the integrated LD using by butt-coupling method.

  10. Integrated Path Detection of Co2 and CH4 Using a Waveform Driven Electro-Optic Single Sideband Laser Source

    Directory of Open Access Journals (Sweden)

    Wagner Gerd

    2016-01-01

    Full Text Available Integrated path concentrations of ambient levels of carbon dioxide and methane have been measured during nighttime periods at NIST, Boulder (CO, USA, using a ground-based, eyesafe laser system. In this contribution, we describe the transmitter and receiver system, demonstrate measurements of CO2 and CH4 in comparison with an in situ point sensor measurement using a commercial cavity ring-down instrument, and demonstrate a speckle noise reduction method.

  11. Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Hongxin; Cai Weiquan; Liu Liang; Zhou Shanyu; Shu Wei; Li Fosheng

    1994-01-01

    In this paper, we report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity. With this red-shifted diffuse light, a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 20m/s. The mechanism of this kind of laser cooling and the experimental results are discussed. (author). 12 refs, 5 figs

  12. GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.; Alyamani, Ahmed Y.; Eldesouki, Munir M.; Ooi, Boon S.

    2017-01-01

    A 404-nm emitting InGaN-based laser diode with integrated-waveguide-modulator showing a large extinction ratio of 11.3 dB was demonstrated on semipolar (2021) plane GaN substrate. The device shows a low modulation voltage of −2.5 V and ∼ GHz −3 dB bandwidth, enabling 1.7 Gbps data transmission.

  13. GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode

    KAUST Repository

    Shen, Chao

    2017-01-30

    A 404-nm emitting InGaN-based laser diode with integrated-waveguide-modulator showing a large extinction ratio of 11.3 dB was demonstrated on semipolar (2021) plane GaN substrate. The device shows a low modulation voltage of −2.5 V and ∼ GHz −3 dB bandwidth, enabling 1.7 Gbps data transmission.

  14. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    Science.gov (United States)

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. Optimization of Integrated Electro-Absorption Modulated Laser Structures for 100 Gbit/s Ethernet Using Electromagnetic Simulation

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Kazmierski, Christophe; Jany, Christophe

    2007-01-01

    In this paper three options for very-high bit rate integrated electro-absorption modulated laser (EML) structures are investigated using electromagnetic simulation. A physics based distributed equivalent circuit model taking the slowwave propagation characteristics of the modulation signal...... into account is proposed for the electro-absorption modulator (EAM)electrode arrangement. This model makes it possible to apply an EM/circuit co-simulation approach to estimate the electrical to optical transmission bandwidth for the integrated EML. It is shown that a transmission bandwidth of 70 GHz seems...

  16. Efficient and ultra-narrow-linewidth integrated waveguide lasers in Al2O3:Yb and Al2O3:Er

    NARCIS (Netherlands)

    Bernhardi, Edward; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    The ability to integrate Bragg grating structures with optical waveguides provides the opportunity to realize a variety of compact monolithic optical devices, such as distributed feedback (DFB) lasers, and distributed Bragg reflector (DBR) lasers. In this work, we report passive DBR cavities with

  17. An asymmetric integrated extended cavity 20GHz mode-locked quantum well ring laser fabricated in the JePPIX technology platform

    NARCIS (Netherlands)

    Tahvili, M.S.; Barbarin, Y.; Ambrosius, H.P.M.M.; Smit, M.K.; Bente, E.A.J.M.; Leijtens, X.J.M.; Vries, de T.; Smalbrugge, E.; Bolk, J.

    2011-01-01

    In this paper, we present mode-locked operation of a monolithic 20GHz integrated extended cavity ring laser. The 4mm-long laser ring cavity incorporates a 750µm-long optical amplifier section (SOA), a separate 40µm long saturable absorber (SA) section, passive waveguide sections (shallow and deep

  18. On-chip multi-wavelength laser sources fabricated using generic photonic integration technology

    NARCIS (Netherlands)

    Latkowski, S.; Williams, K.A.; Bente, E.A.J.M.

    Generic photonic integration technology platforms allow for design and fabrication of large complexity application specific photonic integrated circuits. Monolithic active-passive integration on indium phosphide substrate naturally enables a reliable co-integration of optical gain elements and

  19. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-01-01

    of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser

  20. Integrated Laser Characterization, Data Acquisition, and Command and Control Test System

    Science.gov (United States)

    Stysley, Paul; Coyle, Barry; Lyness, Eric

    2012-01-01

    Satellite-based laser technology has been developed for topographical measurements of the Earth and of other planets. Lasers for such missions must be highly efficient and stable over long periods in the temperature variations of orbit. In this innovation, LabVIEW is used on an Apple Macintosh to acquire and analyze images of the laser beam as it exits the laser cavity to evaluate the laser s performance over time, and to monitor and control the environmental conditions under which the laser is tested. One computer attached to multiple cameras and instruments running LabVIEW-based software replaces a conglomeration of computers and software packages, saving hours in maintenance and data analysis, and making very longterm tests possible. This all-in-one system was written primarily using LabVIEW for Mac OS X, which allows the combining of data from multiple RS-232, USB, and Ethernet instruments for comprehensive laser analysis and control. The system acquires data from CCDs (charge coupled devices), power meters, thermistors, and oscilloscopes over a controllable period of time. This data is saved to an html file that can be accessed later from a variety of data analysis programs. Also, through the LabVIEW interface, engineers can easily control laser input parameters such as current, pulse width, chiller temperature, and repetition rates. All of these parameters can be adapted and cycled over a period of time.

  1. Risk factors for loss of epithelial flap integrity in laser-assisted subepithelial keratectomy surgery.

    Science.gov (United States)

    Galindo, Joanna; Fadlallah, Ali; Robinson, Steve; Chelala, Elias; Melki, Samir A

    2016-04-01

    To evaluate risk factors leading to loss of epithelial flap integrity in laser-assisted subepithelial keratectomy (LASEK). Boston Eye Group, Brookline, Massachusetts, USA. Retrospective case study. This retrospective chart review was performed for LASEK surgeries that occurred between January 2009 and October 2013. Logistic regression was performed to determine whether epithelium preservation was correlated with age, sex, sphere, cylinder, spherical equivalent (SE), keratometry, and central corneal thickness (CCT). The study reviewed 1009 eyes of 509 patients with a mean age of 29.1 years ± 12.2 (SD). The mean preoperative spherical refraction was -4.7 ± 2.5 diopters (D), and the mean preoperative cylinder was -1.1 ± 0.8 D. The mean preoperative decimal corrected distance visual acuity was 1.01 ± 0.07. Single-sheet mobilization of the loosened epithelium flap was found in 72.3% of cases. Fragmented preservation events occurred in 17.6% of cases; the flap was discarded in 10.0% of cases. Epithelium preservation was significantly correlated with age (P = .048) but not with other parameters (P > .05 for sex, sphere, cylinder, SE, keratometry, CCT, and surgeon experience). Epithelial flap dissection was less likely to lead to a single epithelial sheet in patients older than 50 years than in younger patients (56.3% versus 74.9%). The mean postoperative decimal uncorrected distance visual acuity (UDVA) at 3 months was 0.98 ± 0.08. There was no statistical difference in postoperative UDVA between the undiscarded flap group and discarded flap group (P = .128). Successful dissection of single-sheet epithelial flap diminished with age. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Experiment on Uav Photogrammetry and Terrestrial Laser Scanning for Ict-Integrated Construction

    Science.gov (United States)

    Takahashi, N.; Wakutsu, R.; Kato, T.; Wakaizumi, T.; Ooishi, T.; Matsuoka, R.

    2017-08-01

    In the 2016 fiscal year the Ministry of Land, Infrastructure, Transport and Tourism of Japan started a program integrating construction and ICT in earthwork and concrete placing. The new program named "i-Construction" focusing on productivity improvement adopts such new technologies as UAV photogrammetry and TLS. We report a field experiment to investigate whether the procedures of UAV photogrammetry and TLS following the standards for "i-Construction" are feasible or not. In the experiment we measured an embankment of about 80 metres by 160 metres immediately after earthwork was done on the embankment. We used two sets of UAV and camera in the experiment. One is a larger UAV enRoute Zion QC730 and its onboard camera Sony α6000. The other is a smaller UAV DJI Phantom 4 and its dedicated onboard camera. Moreover, we used a terrestrial laser scanner FARO Focus3D X330 based on the phase shift principle. The experiment results indicate that the procedures of UAV photogrammetry using a QC730 with an α6000 and TLS using a Focus3D X330 following the standards for "i-Construction" would be feasible. Furthermore, the experiment results show that UAV photogrammetry using a lower price UAV Phantom 4 was unable to satisfy the accuracy requirement for "i-Construction." The cause of the low accuracy by Phantom 4 is under investigation. We also found that the difference of image resolution on the ground would not have a great influence on the measurement accuracy in UAV photogrammetry.

  3. Application of Integrated Photogrammetric and Terrestrial Laser Scanning Data to Cultural Heritage Surveying

    Science.gov (United States)

    Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz

    2017-12-01

    The terrestrial laser scanning technology has a wide spectrum of applications, from land surveying, civil engineering and architecture to archaeology. The technology is capable of obtaining, in a short time, accurate coordinates of points which represent the surface of objects. Scanning of buildings is therefore a process which ensures obtaining information on all structural elements a building. The result is a point cloud consisting of millions of elements which are a perfect source of information on the object and its surrounding. The photogrammetric techniques allow documenting an object in high resolution in the form of orthophoto plans, or are a basis to develop 2D documentation or obtain point clouds for objects and 3D modelling. Integration of photogrammetric data and TLS brings a new quality in surveying historic monuments. Historic monuments play an important cultural and historical role. Centuries-old buildings require constant renovation and preservation of their structural and visual invariability while maintaining safety of people who use them. The full process of surveying allows evaluating the actual condition of monuments and planning repairs and renovations. Huge sizes and specific types of historic monuments cause problems in obtaining reliable and full information on them. The TLS technology allows obtaining such information in a short time and is non-invasive. A point cloud is not only a basis for developing architectural and construction documentation or evaluation of actual condition of a building. It also is a real visualization of monuments and their entire environment. The saved image of object surface can be presented at any time and place. A cyclical TLS survey of historic monuments allows detecting structural changes and evaluating damage and changes that cause deformation of monument’s components. The paper presents application of integrated photogrammetric data and TLS illustrated on an example of historic monuments from southern

  4. Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator

    Science.gov (United States)

    Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-09-01

    We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.

  5. Laser Protection TIL

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Protection TIL conducts research and analysis of laser protection materials along with integration schemes. The lab's objectives are to limit energy coming...

  6. Design and Analysis of Enhanced Modulation Response in Integrated Coupled Cavities DBR Lasers Using Photon-Photon Resonance

    Directory of Open Access Journals (Sweden)

    Paolo Bardella

    2016-01-01

    Full Text Available In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR at a frequency higher than the modulation bandwidth of the corresponding single-section laser. Design guidelines will be proposed, and dynamic small and large signal simulations results, calculated using a finite difference traveling wave (FDTW numerical simulator, will be discussed to confirm the design results. The effectiveness of the design procedure is verified in a structure with PPR frequency at 35 GHz allowing one to obtain an open eye diagram for a non-return-to-zero (NRZ digital signal up to 80 GHz . Furthermore, the investigation of the rich dynamics of this structure shows that with proper bias conditions, it is possible to obtain also a tunable self-pulsating signal in a frequency range related to the PPR design.

  7. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    Science.gov (United States)

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  8. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, David [Univ. of California, Davis, CA (United States)

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  9. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  10. Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Tannenwald, P.E.; Clifton, B.J.; Parker, C.D.; Fitzgerald, W.D.; Erickson, N.R.

    1978-01-01

    We have made heterodyne radiometric measurements with GaAs Schottky diode mixers, mounted in a corner-reflector configuration, over the spectral range 170 μm to 1 mm. At 400 μm, system noise temperatures of 9700 K DSB (NEP=1.4 x 10 - 19 W/Hz) and mixer noise temperatures of 5900 K have been achieved. This same quasioptical mixer has also been used to generate 10 - 7 W of tunable radiation suitable for spectroscopic applications

  11. Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system

    KAUST Repository

    Shen, Chao

    2017-02-28

    A high-performance waveguide photodetector (WPD) integrated with a laser diode (LD) sharing the single InGaN/GaN quantum well active region is demonstrated on a semipolar GaN substrate. The photocurrent of the integrated WPD is effectively tuned by the emitted optical power from the LD. The responsivity ranges from 0.018 to 0.051 A/W with increasing reverse bias from 0 to 10 V. The WPD shows a large 3 dB modulation bandwidth of 230 MHz. The integrated device, being used for power monitoring and on-chip communication, paves the way towards the eventual realization of a III–nitride on-chip photonic system.

  12. Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system

    KAUST Repository

    Shen, Chao; Lee, Changmin; Stegenburgs, Edgars; Lerma, Jorge Holguin; Ng, Tien Khee; Nakamura, Shuji; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    A high-performance waveguide photodetector (WPD) integrated with a laser diode (LD) sharing the single InGaN/GaN quantum well active region is demonstrated on a semipolar GaN substrate. The photocurrent of the integrated WPD is effectively tuned by the emitted optical power from the LD. The responsivity ranges from 0.018 to 0.051 A/W with increasing reverse bias from 0 to 10 V. The WPD shows a large 3 dB modulation bandwidth of 230 MHz. The integrated device, being used for power monitoring and on-chip communication, paves the way towards the eventual realization of a III–nitride on-chip photonic system.

  13. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    Science.gov (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.

    2018-03-01

    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  14. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  15. Integrated tapered active modulators for high efficiency Gbps PPM laser transmitter PICs

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern satellites must be able to transfer large amounts of data at very high speeds. Free-space optical communication using laser sources offers the fastest...

  16. Development of a Prototype 2 mm Fiber-Coupled Seed Laser for Integration in Lidar Transmitter

    Data.gov (United States)

    National Aeronautics and Space Administration — Optimize the performance of Gallium Antimonide (GaSb)-based 2.05 mm lasers (previously developed under JPL’s Research and Technology Development (R&TD) Program)...

  17. Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano

    Science.gov (United States)

    Pesci, Arianna; Fabris, Massimo; Conforti, Dario; Loddo, Fabiana; Baldi, Paolo; Anzidei, Marco

    2007-05-01

    This work deals with the integration of different surveying methodologies for the definition of very accurate Digital Terrain Models (DTM) and/or Digital Surface Models (DSM): in particular, the aerial digital photogrammetry and the terrestrial laser scanning were used to survey the Vesuvio volcano, allowing the total coverage of the internal cone and surroundings (the whole surveyed area was about 3 km × 3 km). The possibility to reach a very high precision, especially from the laser scanner data set, allowed a detailed description of the morphology of the volcano. The comparisons of models obtained in repeated surveys allow a detailed map of residuals providing a data set that can be used for detailed studies of the morphological evolution. Moreover, the reflectivity information, highly correlated to materials properties, allows for the measurement and quantification of some morphological variations in areas where structural discontinuities and displacements are present.

  18. Improved synthetic-heterodyne Michelson interferometer vibrometer using phase and gain control feedback.

    Science.gov (United States)

    Galeti, José Henrique; Kitano, Cláudio; Connelly, Michael J

    2015-12-10

    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity measurement using interferometric sensors as it can provide an output signal which is immune to interferometric drift. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In conventional synthetic-heterodyne demodulation schemes, to obtain the dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a new synthetic-heterodyne demodulation method is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly less sensitive to the received optical power. In addition, the application of two independent phase and gain feedback loops is used to compensate for the nonideal gain and phase response of the anti-aliasing filter required for the signal acquisition of the received wideband interferometer signal. The efficacy of the improved system is demonstrated by measuring the displacement sensitivity frequency response and linearity of a Piezoelectric Mirror-Shifter (PMS) over a range of 200 Hz-9 kHz. In addition, the system is used to measure the response of the PMS to triangular and impulse type stimuli. The experimental results show excellent agreement with measurements taken using two independent industry standard calibration methods.

  19. Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part1 By A. Pavolotsky, And Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part2 By V. Desmaris

    Science.gov (United States)

    Pavolotsky, Alexey

    2018-01-01

    Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.

  20. Development of a fast sweep heterodyne microwave reflectometer; Developpement d`un reflectometre micro-onde heterodyne a balayage ultra rapide

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Ph [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; [Universite de Provence, 13 - Marseille (France)

    1997-12-01

    The density profile of fusion plasmas can be investigated by the reflectometry diagnostic. The measurement principle is based on the radar techniques which calculate the phase shift of a millimeter wave propagating into the plasma and reflected at a cut-off layer. We have tried to describe the density fluctuation effects upon detected signal to understand the disturbing mechanisms which prevent, sometime, the measurement of the phase. First, we have tried to understand the mechanisms and the origin of the turbulence which is responsible for phase disturbance. We point out the role of collisionality {nu}{sup *} and plasma radiation (with the Hugill normalised parameter H) which control the instability. We also demonstrate that the phase delay of the probing wave is very sensitive to the plasma MHD phenomena and is less affected by the micro-turbulence. The second part of this work is the development and the use of a new heterodyne reflectometer. This new diagnostic uses O-mode beam polarisation and works on the 26-36 GHz frequency range. It launches simultaneously into the plasma two frequencies separated by 320 MHz and we can study them separately or with the amplitude modulation technique. It possesses a better sensitivity than the previous homodyne reflectometer and a higher frequency agility. Its heterodyne detection allows us to separate phase and amplitude informations from the detected signal. (author) 93 refs.

  1. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  2. Femtosecond Laser Direct Write Integration of Multi-Protein Patterns and 3D Microstructures into 3D Glass Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Daniela Serien

    2018-01-01

    Full Text Available Microfluidic devices and biochips offer miniaturized laboratories for the separation, reaction, and analysis of biochemical materials with high sensitivity and low reagent consumption. The integration of functional or biomimetic elements further functionalizes microfluidic devices for more complex biological studies. The recently proposed ship-in-a-bottle integration based on laser direct writing allows the construction of microcomponents made of photosensitive polymer inside closed microfluidic structures. Here, we expand this technology to integrate proteinaceous two-dimensional (2D and three-dimensional (3D microstructures with the aid of photo-induced cross-linking into glass microchannels. The concept is demonstrated with bovine serum albumin and enhanced green fluorescent protein, each mixed with photoinitiator (Sodium 4-[2-(4-Morpholino benzoyl-2-dimethylamino] butylbenzenesulfonate. Unlike the polymer integration, fabrication over the entire channel cross-section is challenging. Two proteins are integrated into the same channel to demonstrate multi-protein patterning. Using 50% w/w glycerol solvent instead of 100% water achieves almost the same fabrication resolution for in-channel fabrication as on-surface fabrication due to the improved refractive index matching, enabling the fabrication of 3D microstructures. A glycerol-water solvent also reduces the risk of drying samples. We believe this technology can integrate diverse proteins to contribute to the versatility of microfluidics.

  3. Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy

    Science.gov (United States)

    Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.

    2018-05-01

    An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.

  4. Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry

    Science.gov (United States)

    Lee, Wooram; Heo, Gunhaeng; You, Kwanho

    The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.

  5. Plasma diagnostics: Detection of laser scattering: Final report, September 1, 1978 to August 31, 1982

    International Nuclear Information System (INIS)

    Dutta, J.M.; Jones, C.R.

    1985-01-01

    Submillimeter (SMM) radiation is the optimum radiation to use in studying some parameters of plasmas produced in Tokamak machines. The ultimate objective has been in constructing a low-noise SMM receiver suitable for application to the diagnosis of Tokamak plasmas. In this connection, a compact, stable SMM laser has been designed and constructed, and its performance as a local oscillator in the heterodyne detection has been tested. The performance of Schottky diodes as mixer elements has been evaluated by utilizing them in a quasi-optical modulation for the heterodyne generation of tunable sidebands

  6. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    Science.gov (United States)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  7. Pulsed Heterodyne CO2 Laser/Scanner System. Volume 1. Assembly Report.

    Science.gov (United States)

    1983-06-01

    micrometer. The machine shop drawing (SK) numbers itemized with each component on the master parts list gives the part and number dimensions. Each part is...number also listed on the master parts list . Each optical element is identified in the master parts list by a technical description, (such as 90

  8. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinigardi, Stefano, E-mail: sinigardi@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Giove, Dario; De Martinis, Carlo [Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, Via F.lli Cervi 201, I-20090 Segrate (Italy); Bolton, Paul R. [Kansai Photon Science Institute (JAEA), Umemidai 8-1-7, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2014-03-11

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  9. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Science.gov (United States)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  10. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    International Nuclear Information System (INIS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-01-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments

  11. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics

    DEFF Research Database (Denmark)

    Morris, James M.; Mackenzie, Mark D.; Petersen, Christian Rosenberg

    2018-01-01

    Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero-dispersi...... ultrafast laser inscribed waveguide devices in GASIR-1 for mid-IR integrated optics applications. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.......Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero......-dispersion wavelength. Z-scan measurements of bulk samples have also been performed to determine the nonlinear refractive index. Finally, midIR supercontinuum generation has been shown when pumping the waveguides with femtosecond pulses centered at 4.6 mu m. Supercontinuum spanning approximately 4 mu m from 2.5 to 6...

  12. Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity.

    Science.gov (United States)

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.

  13. Heterogeneous integration of thin film compound semiconductor lasers and SU8 waveguides on SiO2/Si

    Science.gov (United States)

    Palit, Sabarni; Kirch, Jeremy; Mawst, Luke; Kuech, Thomas; Jokerst, Nan Marie

    2010-02-01

    We present the heterogeneous integration of a 3.8 μm thick InGaAs/GaAs edge emitting laser that was metal-metal bonded to SiO2/Si and end-fire coupled into a 2.8 μm thick tapered SU8 polymer waveguide integrated on the same substrate. The system was driven in pulsed mode and the waveguide output was captured on an IR imaging array to characterize the mode. The waveguide output was also coupled into a multimode fiber, and into an optical head and spectrum analyzer, indicating lasing at ~997 nm and a threshold current density of 250 A/cm2.

  14. Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry

    International Nuclear Information System (INIS)

    Wilcox, R.; Byrd, J.M.; Doolittle, L.; Huang, G.; Staples, J.W.

    2010-01-01

    New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

  15. Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A modified expression for the linewidth in the case of antireflection-coated SOA output facets is derived and ...

  16. Lights Will Guide You : Sample Preparation and Applications for Integrated Laser and Electron Microscopy

    Science.gov (United States)

    Karreman, M. A.

    2013-03-01

    Correlative microscopy is the combined use of two different forms of microscopy in the study of a specimen, allowing for the exploitation of the advantages of both imaging tools. The integrated Laser and Electron Microscope (iLEM), developed at Utrecht University, combines a fluorescence microscope (FM) and a transmission electron microscope (TEM) in a single set-up. The region of interest in the specimen is labeled or tagged with a fluorescent probe and can easily be identified within a large field of view with the FM. Next, this same area is retraced in the TEM and can be studied at high resolution. The iLEM demands samples that can be imaged with both FM and TEM. Biological specimen, typically composed of light elements, generate low image contrast in the TEM. Therefore, these samples are often ‘contrasted’ with heavy metal stains. FM, on the other hand, images fluorescent samples. Sample preparation for correlative microscopy, and iLEM in particular, is complicated by the fact that the heavy metals stains employed for TEM quench the fluorescent signal of the probe that is imaged with FM. The first part of this thesis outlines preparation procedures for biological material yielding specimen that can be imaged with the iLEM. Here, approaches for the contrasting of thin sections of cells and tissue are introduced that do not affect the fluorescence signal of the probe that marks the region of interest. Furthermore, two novel procedures, VIS2FIXH and VIS2FIX­FS are described that allow for the chemical fixation of thin sections of cryo-immobilized material. These procedures greatly expedite the sample preparation process, and open up novel possibilities for the immuno-labeling of difficult antigens, eg. proteins and lipids that are challenging to preserve. The second part of this thesis describes applications of iLEM in research in the field of life and material science. The iLEM was employed in the study of UVC induced apoptosis (programmed cell death) of

  17. Biocavity Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  18. RESIDUAL STRESS MEASUREMENTS AND STRUCTURAL INTEGRITY IMPLICATIONS FOR SELECTIVE LASER MELTED TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    Knowles, C. R.

    2012-11-01

    Full Text Available Selective laser melting (SLM of Ti-6Al-4V has significant potential in the aerospace and biotechnology industries. SLM employs a focused laser beam to melt successive layers of metallic powder into complex components. This process can result in the generation of high thermally-induced residual stresses. These residual stresses, together with micro-flaws/ pores from the inherent fabrication process, may lead to premature fatigue crack initiation and propagation at relatively low cyclic stresses. The hole-drilling strain gauge method was used to evaluate residual stresses within SLM Ti-6Al-4V specimens, with the intention of understanding the associated mechanisms for the successful application of SLM Ti-6Al-4V in industry.

  19. Collective CO2 laser scattering on moving discharge structures in the submillimeter range in a magnetohydrodynamic generator

    NARCIS (Netherlands)

    de Haas, J.C.M.; Schenkelaars, H.J.W.; vd Mortel, P.J.; Schram, D.C.; Veefkind, A.

    1986-01-01

    Collective scattering of CO/sub 2/ laser light on electrons is used to determine the radial scale length of the discharge structures occurring in a closed cycle magnetohydrodynamic generator. Heterodyne detection of scattered radiation is used to obtain a spatial resolution in the submillimeter

  20. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA

    OpenAIRE

    Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic

    2006-01-01

    Abstract Background Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM...

  1. AMiBA: BROADBAND HETERODYNE COSMIC MICROWAVE BACKGROUND INTERFEROMETRY

    International Nuclear Information System (INIS)

    Chen, M.-T.; Li, C.-T.; Hwang, Y.-J.; Jiang Homin; Altamirano, Pablo; Chang, C.-H.; Chang, S.-H.; Chang, S.-W.; Han, C.-C.; Huang, Y.-D.; Kubo, Derek; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei Tashun; Chiueh, T.-D.; Chu, T.-H.; Wang Huei; Kesteven, Michael; Wilson, Warwick

    2009-01-01

    The Y. T. Lee Array for Microwave Background (AMiBA) has reported the first results on the detection of galaxy clusters via the Sunyaev-Zel'dovich effect. The objectives required small reflectors in order to sample large-scale structures (20'), while interferometry provided modest resolutions (2'). With these constraints, we designed for the best sensitivity by utilizing the maximum possible continuum bandwidth matched to the atmospheric window at 86-102 GHz, with dual polarizations. A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. Monolithic millimeter-wave integrated circuit technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. These designs will find application in other upcoming astronomy projects. AMiBA is now in operation since 2006, and we are in the process to expand the array from seven to 13 elements.

  2. Integrated oxide graphene based device for laser inactivation of pathogenic microorganisms

    Science.gov (United States)

    Grishkanich, Alexsandr; Ruzankina, Julia; Afanasyev, Mikhail; Paklinov, Nikita; Hafizov, Nail

    2018-02-01

    We develop device for virus disinfection of pathogenic microorganisms. Viral decontamination can be carried out due to hard ultraviolet irradiation and singlet oxygen destroying the genetic material of a virus capsid. UV rays can destroy DNA, leading to the formation of dimers of nucleic acids. This practically does not occur in tissues, tk. UV rays penetrate badly through them, however, the viral particles are small and UV can destroy their genetic material, RNA / DNA and the virus can not replicate. It is with the construction of the ultraviolet laser water disinfection system (UFLOV) based on the continuous and periodic pulsed ultraviolet laser sources (pump) binds to solve sterility and depyrogenation of water. It has been established that small doses of UV irradiation stimulate reproduction, and large doses cause the death of pathogenic microorganisms. The effect of a dose of ultraviolet is the result of photochemical action on the substance of a living bacterial cell or virion. Also complex photodynamic laser inactivation on graphene oxide is realized.

  3. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Piels, Molly

    2016-01-01

    -pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz...... was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA(1/2), which is superior among microcavity lasers. This shows a high potential for a very high speed at low......For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have...

  4. Small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng

    2009-05-01

    A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.

  5. Flying Height Measurement of Magnetic Disk Using Double Common-path Heterodyne Interferometer

    International Nuclear Information System (INIS)

    Lin, D J; Yue, Z Y; Song, N H; Meng, Y G; Yin, C Y

    2006-01-01

    The magnetic storage capacity depends significantly on the area density, which is close related to the flying-height (FH) of magnetic head. In this paper a double common-path heterodyne interferometer is proposed to measure the FH. The resolution of FH measurement reaches 0.1nm by means of phase measurement method. The influence of vibration of magnetic disk and work table is considered in the configuration design so as to reduce the system error. The experimental results show that the error compensation is better than 10nm when the vibration of disk is 1.2μm

  6. Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.

    Science.gov (United States)

    Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji

    2013-01-01

    The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.

  7. Trace gas detection by laser intracavity photothermal spectroscopy

    International Nuclear Information System (INIS)

    Fung, K.H.; Lin, H.h.

    1986-01-01

    A novel laser intracavity photothermal detector is described. In this scheme, sample absorption of the pump laser power takes place within the cavity of a probe He-Ne laser causing modulation in the gain and in turn the output power. Comparison of this intracavity detector with two other photothermal techniques, namely, phase fluctuation optical heterodyne spectroscopy and thermal beam deflection, is made in terms of practicality and sensitivity. For in situ measurements, sensitivity of 0.5 x 10 -7 cm -1 for a probe length of 3 cm has been achieved

  8. Proceedings of the conference on lasers and electro-optics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book presents the papers discussed at a conference on the subject of electro-optics and lasers. Some of the topics discussed were: laser fusion and interactions; implosion experiments; tunable integrated Bragg lasers, CO 2 lasers; present status of integrated lasers; DFB lasers; transition metal lasers-solid state lasers, mirror laser resonators, multiquantumwell lasers; fusion laser technology; and dynamics and characteristics of diode lasers

  9. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    Science.gov (United States)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  10. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  11. Integration of micro-optics and microfluidics in a glass chip by fs-laser for optofluidic applications

    Science.gov (United States)

    Osellame, Roberto; Martinez, Rebeca; Laporta, Paolo; Ramponi, Roberta; Cerullo, Giulio

    2009-02-01

    A lab-on-a-chip (LOC) is a device that incorporates in a single substrate the functionalities of a biological laboratory, i.e. a network of fluidic channels, reservoirs, valves, pumps and sensors, all with micrometer dimensions. Its main advantages are the possibility of working with small samples quantities (from nano- to picoliters), high sensitivity, speed of analysis and the possibility of measurement automation and standardization. They are becoming the most powerful tools of analytical chemistry with a broad application in life sciences, biotechnology and drug development. The next technological challenge of LOCs is direct on-chip integration of photonic functionalities for sensing of biomolecules flowing in the microchannels. Ultrafast laser processing of the bulk of a dielectric material is a very flexible and simple method to produce photonic devices inside microfluidic chips for capillary electrophoresis (CE) or chemical microreactors. By taking advantage of the unique three-dimensional capabilities of this fabrication technique, more complex functionalities, such as splitters or Mach-Zehnder interferometers, can be implemented. In this work we report on the use of femtosecond laser pulses to fabricate photonic devices (as waveguides, splitters and interferometers) inside commercial CE chips, without affecting the manufacturing procedure of the microfluidic part of the device. The fabrication of single waveguides intersecting the channels allows one to perform absorption or Laser Induced Fluorescence (LIF) sensing of the molecules separated inside the microchannels. Waveguide splitters are used for multipoint excitation of the microfluidic channel for parallel or higher sensitivity measurements. Finally, Mach-Zehnder interferometers are used for label-free sensing of the samples flowing in the microfluidic channels by means of refractive index changes detection.

  12. 355 nm UV laser patterning and post-processing of FR4 PCB for fine pitch components integration

    Science.gov (United States)

    Dupont, F.; Stoukatch, S.; Laurent, P.; Dricot, S.; Kraft, M.

    2018-01-01

    Laser direct patterning of fine pitch features on standard PCB (Printed Circuit Board) was investigated. As a feasibility study, eight parameter sets were selected and the smallest achievable grooves and tracks were determined. Three regular FR4 (Flame Resistant 4) PCB substrates have been experimented with. The first two have respectively 18 μm and 35 μm bare copper conductive layer without finish while the third one has a 18 μm copper layer with ENIG (Electroless Nickel Immersion Gold) finish. Laser patterning of PCB conductive structure is a single step, maskless and purely dry operation expected to allow reaching fine pitch features, even on thick copper layers (≥ 18 μm) for which the traditional chemical wet processes encounter underetch problems. Aside PCB complete structuring, a second objective is to evaluate laser post-processing of standard patterned PCB as an economically viable technique to integrate a few fine pitch components on low cost PCBs. This process is suitable for prototyping and for small and medium series. The widths of the smallest grooves and tracks that we achieved were measured about 11 μm and 19 μm on 18 μm thick cooper layer, 13 μm and 39 μm on 35 μm thick cooper layer, and 11 μm and 38 μm on 18 μm cooper layer with ENIG finish. These values are well below what can be achieved with a wet process. Etching results are presented at high magnification both from the top and from a cross-sectioning perspective. The latter allows observation of the TAZ (Thermal Affected Zone) in the conductive layer and the damages in the FR4.

  13. Direct phase-locking of a 8.6-μm quantum cascade laser to a mid-IR optical frequency comb: application to precision spectroscopy of N2O.

    Science.gov (United States)

    Gambetta, Alessio; Cassinerio, Marco; Coluccelli, Nicola; Fasci, Eugenio; Castrillo, Antonio; Gianfrani, Livio; Gatti, Davide; Marangoni, Marco; Laporta, Paolo; Galzerano, Gianluca

    2015-02-01

    We developed a high-precision spectroscopic system at 8.6 μm based on direct heterodyne detection and phase-locking of a room-temperature quantum-cascade-laser against an harmonic, 250-MHz mid-IR frequency comb obtained by difference-frequency generation. The ∼30  dB signal-to-noise ratio of the detected beat-note together with the achieved closed-loop locking bandwidth of ∼500  kHz allows for a residual integrated phase noise of 0.78 rad (1 Hz-5 MHz), for an ultimate resolution of ∼21  kHz, limited by the measured linewidth of the mid-IR comb. The system was used to perform absolute measurement of line-center frequencies for the rotational components of the ν2 vibrational band of N2O, with a relative precision of 3×10(-10).

  14. Power and Energy Storage Requirements for Ship Integration of Solid-State Lasers on Naval Platforms

    Science.gov (United States)

    2016-06-01

    flash lamp and is used to excite the bound electrons in the gain medium. This results in a 5 population inversion, which in turn creates laser...m3 [6]. Key attributes are that lead acid batteries tend to take on the order of hours to recharge and should not be discharged lower than 50 percent...higher energy density (~1000 MJ/m3) and a better discharge tolerance (~80 to 90 percent). Li-ion batteries work under the same simple premise of

  15. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  16. Use of neutron diffraction and laser-induced plasma spectroscopy in integrated authentication methodologies of copper alloy artefacts

    International Nuclear Information System (INIS)

    Siano, S.; Bartol, L.; Mencaglia, A.A.; Agresti, J.; Miccio, M.

    2009-01-01

    The present study approaches the general problem of the authentication of copper alloy artefacts of art and historical interest using non-invasive analytical techniques. It aims to demonstrate that a suitable combination of time-of-flight neutron diffraction and laser-induced plasma spectroscopy in integrated multidisciplinary authentication methodologies can provide crucial data for discriminating between genuine archaeological objects and modern counterfeits. After introducing the methodology, which is dedicated in particular to copper alloy figurines of ancient style, two representative authentication case studies are discussed. The results of the work provide evidence that the combination of multiphase analysis using TOF-N D and elemental depth profiles provided by Lips makes it possible to solve most of the present authentication problems.

  17. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    International Nuclear Information System (INIS)

    Weichert, C; Köchert, P; Köning, R; Flügge, J; Andreas, B; Kuetgens, U; Yacoot, A

    2012-01-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction. (paper)

  18. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    Science.gov (United States)

    Weichert, C.; Köchert, P.; Köning, R.; Flügge, J.; Andreas, B.; Kuetgens, U.; Yacoot, A.

    2012-09-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction.

  19. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  20. Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information

    Science.gov (United States)

    Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.

    2015-10-01

    The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.

  1. Analysis of Hybrid-Integrated High-Speed Electro-Absorption Modulated Lasers Based on EM/Circuit Co-simulation

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Kazmierski, C.

    2009-01-01

    An improved electromagnetic simulation (EM) based approach has been developed for optimization of the electrical to optical (E/O) transmission properties of integrated electro-absorption modulated lasers (EMLs) aiming at 100 Gbit/s Ethernet applications. Our approach allows for an accurate analysis...... of the EML performance in a hybrid microstrip assembly. The established EM-based approach provides a design methodology for the future hybrid integration of the EML with its driving electronics....

  2. Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53microm.

    Science.gov (United States)

    Barbarin, Yohan; Bente, Erwin A J M; Heck, Martijn J R; Oei, Y S; Nötzel, Richard; Smit, Meint K

    2006-10-16

    We report on an extensive characterization of a 15GHz integrated bulk InGaAsP passively modelocked ring laser at 1530 nm. The laser is modelocked for a wide range of amplifier currents and reverse bias voltages on the saturable absorber. We have measured a timing jitter of 7.1 ps (20 kHz - 80 MHz), which is low for an all-active device using bulk material and due to the ring configuration. Measured output pulses are highly chirped, a FWHM bandwidth is obtained of up to 4.5 nm. Such lasers with high bandwidth pulses and compatible with active-passive integration are of great interest for OCDMA applications.

  3. Integration of instrumentation and processing software of a laser speckle contrast imaging system

    Science.gov (United States)

    Carrick, Jacob J.

    Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

  4. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    International Nuclear Information System (INIS)

    1981-07-01

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be required for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost

  5. Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method

    Science.gov (United States)

    Savage-Leuchs,; Matthias, P [Woodinville, WA

    2009-05-26

    Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.

  6. 61.3-Gbps hybrid fiber-wireless in-home network enabled by optical heterodyne and polarization multiplexing

    NARCIS (Netherlands)

    Cao, Z.; Li, F.; Liu, Y.; Yu, J.; Wang, Q.; Oh, C.W.; Jiao, Y.; Tran, N.C.; Boom, van den H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2014-01-01

    A hybrid fiber-wireless in-home network is proposed to support high-speed multiple input and multiple output (MIMO) orthogonal frequency division multiplexing systems operating at millimeter wave (mm-wave) band by employing optical heterodyne (OH) and polarization multiplexing (PolMux). OH enables

  7. Spatial heterodyne interferometry of VY Canis Majoris, alpha Orionis, alpha Scorpii, and R Leonis at 11 microns

    International Nuclear Information System (INIS)

    Sutton, E.C.; Storey, J.W.V.; Betz, A.L.; Townes, C.H.; Spears, D.L.

    1977-01-01

    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec

  8. Spatial heterodyne interferometry of VY Canis Major's, alpha Orionis, alpha Scorpii, and R leonis at 11 microns

    Science.gov (United States)

    Sutton, E. C.; Storey, J. W. V.; Betz, A. L.; Townes, C. H.; Spears, D. L.

    1977-01-01

    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec.

  9. Fast-scanning heterodyne receiver for measurement of the electron cyclotron emission from high-temperature plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Arunasalam, V.; Bitzer, R.; Campbell, L.; Hosea, J.C.

    1979-03-01

    A fast-scanning heterodyne receiver was developed that measures the fundamental cyclotron emission from the PLT plasma and thus ascertains the time evolution of the electron temperature profile. The receiver scans 60 to 90 GHz every 10 milliseconds and is interfaced to a computer for completely automated calibrated temperature measurements

  10. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA

    Directory of Open Access Journals (Sweden)

    Li Ming-Chung

    2006-04-01

    Full Text Available Abstract Background Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E, Nissl Stain (NS, and for immunofluorescence (IF as well as with the plasma cell-revealing methyl green pyronin (MGP stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. Results The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. Conclusion RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts.

  11. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA.

    Science.gov (United States)

    Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic

    2006-04-27

    Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E), Nissl Stain (NS), and for immunofluorescence (IF) as well as with the plasma cell-revealing methyl green pyronin (MGP) stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts.

  12. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    International Nuclear Information System (INIS)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C.; Koeber, S.; Freude, W.; Koos, C.; Rembe, C.

    2014-01-01

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB

  13. Deeply-etched DBR mirrors for photonic integrated circuits and tunable lasers

    NARCIS (Netherlands)

    Docter, B.

    2009-01-01

    Deeply-etched Distributed Bragg Reflector (DBR) mirrors are a new versatile building block for Photonic Integrated Circuits that allows us to create more complex circuits for optical telecommunication applications. The DBR mirrors increase the device design flexibility because the mirrors can be

  14. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C. [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Koeber, S.; Freude, W., E-mail: christian.koos@kit.edu; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany and Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Rembe, C. [Polytec GmbH, 76337 Waldbronn (Germany)

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  15. A high sensitivity heterodyne interferometer as a possible optical readout for the LISA gravitational reference sensor and its application to technology verification

    Energy Technology Data Exchange (ETDEWEB)

    Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Braxmaier, Claus [EADS Astrium, Claude-Dornier-Strasse, 88039 Friedrichshafen (Germany); Schuldt, Thilo; Peters, Achim, E-mail: martin.gohlke@astrium.eads.ne [Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2009-03-01

    The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) utilizes a high performance position sensor in order to measure the translation and tilt of the free flying proof mass with respect to the optical bench. Depending on the LISA optical bench design, this position sensor must have up to pm/sq rootHz sensitivity for the translation measurement and up to nrad/sq rootHz sensitivity for the tilt measurement. We developed a heterodyne interferometer, combined with differential wavefront sensing, for the tilt measurement. The interferometer design exhibits maximum symmetry where measurement and reference arm have the same frequency and polarization and the same optical path-lengths. The interferometer can be set up free of polarizing optical components preventing possible problems with thermal dependencies not suitable for the space environment. We developed a mechanically highly stable and compact setup which is located in a vacuum chamber. We measured initial noise levels below 10 pm/sq rootHz (longitudinal measurement) for frequencies above 10 mHz and below 20 nrad/sq rootHz (tilt measurement) for frequencies above 1 mHz. This setup can also be used for other applications, for example the measurement of the coefficient of thermal expansion (CTE) of structural materials, such as carbon fiber reinforced plastic (CFRP).

  16. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Directory of Open Access Journals (Sweden)

    Malik Kemiche

    2018-01-01

    Full Text Available We exploit slow light (high ng modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28, this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate of the pulsed laser signal.

  17. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Science.gov (United States)

    Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle

    2018-01-01

    We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.

  18. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    OpenAIRE

    Riccardo Cucini; Andrea Battistoni; Filippo Bencivenga; Alessandro Gessini; Riccardo Mincigrucci; Erika Giangrisostomi; Emiliano Principi; Flavio Capotondi; Emanuele Pedersoli; Michele Manfredda; Maya Kiskinova; Claudio Masciovecchio

    2015-01-01

    Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first resu...

  19. Integrated cooling-vacuum-assisted 1540-nm erbium:glass laser is effective in treating mild-to-moderate acne vulgaris.

    Science.gov (United States)

    Politi, Y; Levi, A; Enk, C D; Lapidoth, M

    2015-12-01

    Acne treatment by a mid-infrared laser may be unsatisfactory due to deeply situated acne-affected sebaceous glands which serve as its target. Skin manipulation by vacuum and contact cooling may improve laser-skin interaction, reduce pain sensation, and increase overall safety and efficacy. To evaluate the safety and efficacy of acne treatment using an integrated cooling-vacuum-assisted 1540-nm erbium:glass laser, a prospective interventional study was conducted. It included 12 patients (seven men and five women) suffering from mild-to-moderate acne vulgaris. The device utilizes a mid-infrared 1540-nm laser (Alma Lasers Ltd. Caesarea, Israel), which is integrated with combined cooling-vacuum-assisted technology. An acne lesion is initially manipulated upon contact by a vacuum-cooling-assisted tip, followed by three to four stacked laser pulses (500-600 mJ, 4 mm spot size, and frequency of 2 Hz). Patients underwent four to six treatment sessions with a 2-week interval and were followed-up 1 and 3 months after the last treatment. Clinical photographs were taken by high-resolution digital camera before and after treatment. Clinical evaluation was performed by two independent dermatologists, and results were graded on a scale of 0 (exacerbation) to 4 (76-100 % improvement). Patients' and physicians' satisfaction was also recorded. Pain perception and adverse effects were evaluated as well. All patients demonstrated a moderate to significant improvement (average score of 3.6 and 2.0 within 1 and 3 months, respectively, following last treatment session). No side effects, besides a transient erythema, were observed. Cooling-vacuum-assisted 1540-nm laser is safe and effective for the treatment of acne vulgaris.

  20. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.

    Science.gov (United States)

    Xiao, Dongming; Yang, Yongqiang; Su, Xubin; Wang, Di; Sun, Jianfeng

    2013-01-01

    The load-bearing bone implants materials should have sufficient stiffness and large porosity, which are interacted since larger porosity causes lower mechanical properties. This paper is to seek the maximum stiffness architecture with the constraint of specific volume fraction by topology optimization approach, that is, maximum porosity can be achieved with predefine stiffness properties. The effective elastic modulus of conventional cubic and topology optimized scaffolds were calculated using finite element analysis (FEA) method; also, some specimens with different porosities of 41.1%, 50.3%, 60.2% and 70.7% respectively were fabricated by Selective Laser Melting (SLM) process and were tested by compression test. Results showed that the computational effective elastic modulus of optimized scaffolds was approximately 13% higher than cubic scaffolds, the experimental stiffness values were reduced by 76% than the computational ones. The combination of topology optimization approach and SLM process would be available for development of titanium implants materials in consideration of both porosity and mechanical stiffness.

  1. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements.

    Science.gov (United States)

    Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H

    2009-02-01

    Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).

  2. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    Science.gov (United States)

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  3. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source

    Directory of Open Access Journals (Sweden)

    K. Venkatesan

    2017-07-01

    Full Text Available Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60–150 m/min, feed rates of 0.05–0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  4. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    Science.gov (United States)

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  5. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    Science.gov (United States)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  6. High accuracy amplitude and phase measurements based on a double heterodyne architecture

    International Nuclear Information System (INIS)

    Zhao Danyang; Wang Guangwei; Pan Weimin

    2015-01-01

    In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations. (authors)

  7. On the Performance of Multihop Heterodyne FSO Systems With Pointing Errors

    KAUST Repository

    Zedini, Emna

    2015-03-30

    This paper reports the end-to-end performance analysis of a multihop free-space optical system with amplify-and-forward (AF) channel-state-information (CSI)-assisted or fixed-gain relays using heterodyne detection over Gamma–Gamma turbulence fading with pointing error impairments. In particular, we derive new closed-form results for the average bit error rate (BER) of a variety of binary modulation schemes and the ergodic capacity in terms of the Meijer\\'s G function. We then offer new accurate asymptotic results for the average BER and the ergodic capacity at high SNR values in terms of simple elementary functions. For the capacity, novel asymptotic results at low and high average SNR regimes are also obtained via an alternative moments-based approach. All analytical results are verified via computer-based Monte-Carlo simulations.

  8. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    Science.gov (United States)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  9. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  10. Prototype development and field measurements of high etendue spatial heterodyne imaging spectrometer

    Science.gov (United States)

    Cai, Qisheng; Xiangli, Bin; Huang, Min; Han, Wei; Pei, Linlin; Bu, Meixia

    2018-03-01

    High etendue spatial heterodyne imaging spectrometer (HESHIS) is a new pushbroom Fourier transform hyperspectral imager with no moving parts. It is based on a Sagnac interferometer combined with a pair of parallel gratings. In this paper, the basic principle of HESHIS is reviewed and the first prototype of HESHIS is designed and developed. The spectral band of this prototype is designed at O2-A band (757 nm to 777 nm) and the average spectral resolution is 0.04 nm. Using the prototype, the pushbroom imaging experiments are carried out and the original interference images are obtained. The spectral data cube is generated using spectrum reconstruction method and high-resolution spectra are achieved.

  11. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent [Livermore, CA

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  12. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  13. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas; Alouini, Mohamed-Slim

    2016-01-01

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  14. Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique

    Science.gov (United States)

    Savostianova, N. A.; Mikhailov, S. A.

    2018-04-01

    Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.

  15. Integration of the AVLIS [atomic vapor laser isotopic separation] process into the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF 6 -in UF 6 -out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs

  16. Transverse mode selection in a monolithic microchip laser

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-11-01

    Full Text Available selection in a monolithic microchip laser Darryl Naidooa,b, Thomas Godinc, Michael Fromagerc, Emmanuel Cagniotc, Nicolas Passillyd, Andrew Forbesa,b and Kamel A?t-Ameurc1 a:CSIR National Laser Centre, P. O. Box 395, Pretoria 0001, South Africa b.... Lett. 77 (2000) 34-36. [14] W. Zhao, J. Tan and L. Qui, ?Improvement of confocal microscope performance by shaped annular beam and heterodyne confocal techniques,? Optik 116 (2005) 111-117. [15] T. Shiina, K. Yoshida, M. Ito and Y. Okamura, ?Long...

  17. Ion temperature via laser scattering on ion Bernstein waves

    International Nuclear Information System (INIS)

    Wurden, G.A.; Ono, M.; Wong, K.L.

    1981-10-01

    Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO 2 laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (ω approx. less than or equal to 2Ω/sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement

  18. Integrated Surveyng with Mobile Mapping System, Egnos, Ntrk and Laser Technologies in the Park "NINNI CASSARA" in Palermo

    Science.gov (United States)

    Dardanelli, G.; Carella, M.

    2013-09-01

    This article summarizes the experience gained between 2012 and 2013 by the department of "Civil Engineering, Environmental, Aerospace and Materials" of University of Palermo on the integrated survey of Ninni Park Cassara Park in Palermo and the subsequent testing of methods, tools and techniques based on current research regarding the acquisition and processing of GNSS (Global Navigation Satellite System) data and laser-scanner. A fruitful time dedicated to the design of the survey has allowed us to become aware of the critical issues that the site presents because of its vast extent and diversity in size and number of the elements of which it is composed. The work has been addressed thematizing the elements to detect and selecting the techniques as possible economic and fast to be applied in the acquisition phase. Sixteen control points evenly distributed within the site were first materialized and detected with static GNSS mode. The survey mode NRTK (Network Real Time Kinematic) of the elements was then planned and carried out. The survey of the numerous planting was done by exploiting the mode with EGNOS (European Geostationary Navigation Overlay Service) correction. We continued the work experimenting with MMS (Mobile Mapping System) acquisition through which it was possible to acquire data on the morphology of the terrain, the conditions of the state of footpaths, buildings and on the distribution of street furniture. The point clouds obtained were subjected to both automatic and manual procedures to verify, finally, their actual descriptive possibilities of real forms detected.

  19. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    Science.gov (United States)

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  20. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-04-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5

  1. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    Science.gov (United States)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  2. Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system

    International Nuclear Information System (INIS)

    Meier, W.R.; Anklam, T.M.; Erlandson, A.C.; Miles, R.R.; Simon, A.J.; Sawicki, R.; Storm, E.

    2010-01-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R and D targeted at the different options is quantified.

  3. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    International Nuclear Information System (INIS)

    Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

    2010-01-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R and D targeted at the different options is quantified.

  4. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  5. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  6. Teaching Resources and Instructor Professional Development for Integrating Laser Scanning, Structure from Motion, and GPS Surveying into Undergraduate Field Courses

    Science.gov (United States)

    Pratt-Sitaula, B.; Charlevoix, D. J.; Douglas, B. J.; Crosby, B. T.; Crosby, C. J.; Lauer, I. H.; Shervais, K.

    2017-12-01

    Field experiences have long been considered an integral part of geoscience learning. However, as data acquisition technologies evolve, undergraduate field courses need to keep pace so students gain exposure to new technologies relevant to the modern workforce. Maintaining expertise on new technologies is also challenging to established field education programs. Professional development and vetted curriculum present an opportunity to advance student exposure to new geoscience data acquisition technology. The GEodesy Tools for Societal Issues (GETSI) Field Collection, funded by NSF's Improving Undergraduate STEM Education program, addresses these needs in geodesy field education. Geodesy is the science of accurately measuring Earth's size, shape, orientation, mass distribution and the variations of these with time. Modern field geodesy methods include terrestrial laser scanning (TLS), kinematic and static GPS/GNSS surveying (global positioning system/global navigation satellite system), and structure from motion (SfM) photogrammetry. The GETSI Field Collection is a collaborative project between UNAVCO, Indiana University, and Idaho State University. The project is provides curriculum modules and instructor training (in the form of short courses) to facilitate the inclusion of SfM, TLS, and GPS surveying into geoscience courses with field components. The first module - Analyzing High Resolution Topography with TLS and SfM - is available via SERC; (serc.carleton.edu/getsi/teaching_materials/high-rez-topo) the second module - "High Precision Positioning with Static and Kinematic GPS/GNSS" - will be published in 2018. The module development and assessment follows the standards of the InTeGrate Project (an NSF STEP Center)previously tested on geodesy content in the GETSI classroom collection (serc.carleton.edu/getsi). This model emphasizes use of best practices in STEM education, including situating learning in the context of societal importance. Analysis of student work

  7. Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera

    Science.gov (United States)

    Dorrington, A. A.; Cree, M. J.; Payne, A. D.; Conroy, R. M.; Carnegie, D. A.

    2007-09-01

    We have developed a full-field solid-state range imaging system capable of capturing range and intensity data simultaneously for every pixel in a scene with sub-millimetre range precision. The system is based on indirect time-of-flight measurements by heterodyning intensity-modulated illumination with a gain modulation intensified digital video camera. Sub-millimetre precision to beyond 5 m and 2 mm precision out to 12 m has been achieved. In this paper, we describe the new sub-millimetre class range imaging system in detail, and review the important aspects that have been instrumental in achieving high precision ranging. We also present the results of performance characterization experiments and a method of resolving the range ambiguity problem associated with homodyne and heterodyne ranging systems.

  8. Measurement and simulation of laser power noise in GEO 600

    International Nuclear Information System (INIS)

    Smith, J R; Degallaix, J; Freise, A; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B

    2008-01-01

    This paper describes measurements and simulations related to power fluctuations of the laser light in the GEO 600 laser-interferometric gravitational wave detector. Measurements of the relative fluctuations of the light power at three different ports of the main interferometer are presented. In addition, measurements and simulations of the coupling transfer functions from power fluctuations at the input laser to these ports are shown. The transfer function from the input laser to the output port of the interferometer is found to be non-trivial. Despite this, the numerical simulation produces an excellent match to it and gives insight to the mechanisms leading to the complicated shape. Furthermore, the coupling transfer functions of power fluctuations to the main (heterodyne) detector outputs are measured and simulated. These are used to evaluate the level with which laser power fluctuations contribute to the overall noise level of the instrument

  9. Laser linewidth narrowing using transient spectral hole burning

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics and Astronomy, 2130 Fulton Street, University of San Francisco, San Francisco, CA 94117 (United States)

    2014-08-01

    We demonstrate significant narrowing of laser linewidths by high optical density materials with inhomogeneously broadened absorption. As a laser propagates through the material, the nonlinear spectral hole burning process causes a progressive self-filtering of the laser spectrum, potentially reaching values less than the homogeneous linewidth. The transient spectral hole dynamically adjusts itself to the instantaneous frequency of the laser, passively suppressing laser phase noise and side modes over the entire material absorption bandwidth without the need for electronic or optical feedback to the laser. Wide bandwidth laser phase noise suppression was demonstrated using Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3} at 1.5 μm by employing time-delayed self-heterodyne detection of an external cavity diode laser to study the spectral narrowing effect. Our method is not restricted to any particular wavelength or laser system and is attractive for a range of applications where ultra-low phase noise sources are required. - Highlights: • We demonstrate significant laser linewidths narrowing by high optical density materials. • Nonlinear spectral hole burning causes progressive self-filtering of laser spectrum. • Filter dynamically adjusts itself to the instantaneous frequency of the laser. • Demonstrated at 1.5 μm in Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3}. • Linewidth filtering is not restricted to any particular wavelength or laser system.

  10. A 24 GHz integrated SiGe BiCMOS vital signs detection radar front-end

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Johansen, Tom K.; Zhurbenko, Vitaliy

    2013-01-01

    In this paper a 24 GHz integrated front-end transceiver for vital signs detection (VSD) radars is described. The heterodyne radar transceiver integrates LO buffering and quadrature splitting circuits, up- and down-conversion SSB mixers and two cascaded receiver LNA's. The chip has been manufactured...

  11. Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer.

    Science.gov (United States)

    Ravaro, M; Manquest, C; Sirtori, C; Barbieri, S; Santarelli, G; Blary, K; Lampin, J-F; Khanna, S P; Linfield, E H

    2011-10-15

    We report the heterodyne detection and phase locking of a 2.5 THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10 mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80 dB of signal-to-noise ratio in a bandwidth of 1 Hz.

  12. Multichannel heterodyne radiometers with fast-scanning backward-wave oscillators for ECE measurement on HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Poznyak, V.I.; Ploskirev, G.; Kalupin, D.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Gao, X.; Wan, B.N.; Zhang, X.D.; Wang, K.J.; Kuang, G.L.

    2001-01-01

    Two sets of fast-scanning heterodyne radiometer receiver systems employing backward-wave oscillators (BWOs) in 78-118 and 118-178 GHz were developed and installed for electron cyclotron emission (ECE) measurements on HT-7 superconducting tokamak. The double sideband (DSB) radiometer in 78-118 GHz measures 16 ECE frequency points with a scanning time period of 0.65 ms. The other radiometer in 118-178 GHz consists of one independent channel of DSB heterodyne receiver with intermediate frequency (IF) of 100-500 MHz and two channels of single sideband (SSB) heterodyne receiver that are sensitive to upper sideband and lower sideband individually; the IF frequency of the SSB channels are 1.5 GHz around the local oscillator frequencies with 1 GHz bandwidth. By employing a novel design, this unique radiometer measures 3 ECE frequency points at each of the 16 local oscillator frequency points in 118-178 GHz, and the full band can be swept in 0.65 ms period, thus the radiometer measures 48 ECE frequency points in 0.65 ms in principle. Each of the local oscillators' frequency points can be preset by program to meet specific physics interests. Horizontal view of ECE was installed to measure electron temperature profiles; vertically viewing optics along a perpendicular chord was also installed to study nonthermal ECE spectra. Preliminary measurement results were presented during ohmic and pellet injection plasmas

  13. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  14. An integrated airborne laser scanning approach to forest management and cultural heritage issues: a case study at Porolissum, Romania

    Directory of Open Access Journals (Sweden)

    Anamaria Roman

    2017-07-01

    Full Text Available This paper explores the opportunities that arise where forest ecosystem management and cultural heritage monuments protection converge. The case study area for our analysis was the landscape surrounding the Moigrad-Porolissum Archaeological site. We emphasize that an Airborne Laser Scanning (ALS or LiDAR-Light Detection and Ranging approach to both forest management and cultural heritage conservation is an outstanding tool, assisting policy-makers and conservationists in decision making for integrated planning and management of the environment. LiDAR-derived surface models enabled a synoptic, never-seen-before view of the ancient Roman frontiers defensive systems while also revealing the present forest road network. The thorough and accurate road inventory data are very useful for updating and modifying forest base maps and registries and also for identifying the priority sectors for archaeological discharge. The ability to identify and determine optimal routes for forest management and to locate previously unmapped ancient archaeological remains aids in reducing costs and creating operational efficiencies as well as in complying with the legislation and avoiding infringements. The potential of LiDAR to demonstrate the long-term and comprehensive human impact on wooded areas is discussed. We identified a significant historical landscape change, consisting of a deforestation period, spanning over more than 160 years, during the Roman Period in Dacia (106-271 AD. The transdisciplinary analysis of the LiDAR data provides the base for combining knowledge from archaeology, forestry and environmental history in order to achieve a thorough analysis of the landscape changes and history. In the “nature versus culture” dichotomy, the landscape, outfield areas and forests are primarily perceived as nature, while in reality they are often heavily marked by human impact. LiDAR offers an efficient method for broadening our knowledge regarding the

  15. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  16. Spatial Heterodyne Observation of Water (SHOW) from a high altitude aircraft

    Science.gov (United States)

    Bourassa, A. E.; Langille, J.; Solheim, B.; Degenstein, D. A.; Letros, D.; Lloyd, N. D.; Loewen, P.

    2017-12-01

    The Spatial Heterodyne Observations of Water instrument (SHOW) is limb-sounding satellite prototype that is being developed in collaboration between the University of Saskatchewan, York University, the Canadian Space Agency and ABB. The SHOW instrument combines a field-widened SHS with an imaging system to observe limb-scattered sunlight in a vibrational band of water (1363 nm - 1366 nm). Currently, the instrument has been optimized for deployment on NASA's ER-2 aircraft. Flying at an altitude of 70, 000 ft the ER-2 configuration and SHOW viewing geometry provides high spatial resolution (limb-measurements of water vapor in the Upper troposphere and lower stratosphere region. During an observation campaign from July 15 - July 22, the SHOW instrument performed 10 hours of observations from the ER-2. This paper describes the SHOW measurement technique and presents the preliminary analysis and results from these flights. These observations are used to validate the SHOW measurement technique and demonstrate the sampling capabilities of the instrument.

  17. Terahertz imaging and spectroscopy based on hot electron bolometer (HEB) heterodyne detection

    Science.gov (United States)

    Gerecht, Eyal; You, Lixing

    2008-02-01

    Imaging and spectroscopy at terahertz frequencies have great potential for healthcare, plasma diagnostics, and homeland security applications. Terahertz frequencies correspond to energy level transitions of important molecules in biology and astrophysics. Terahertz radiation (T-rays) can penetrate clothing and, to some extent, can also penetrate biological materials. Because of their shorter wavelengths, they offer higher spatial resolution than do microwaves or millimeter waves. We are developing hot electron bolometer (HEB) mixer receivers for heterodyne detection at terahertz frequencies. HEB detectors provide unprecedented sensitivity and spectral resolution at terahertz frequencies. We describe the development of a two-pixel focal plane array (FPA) based on HEB technology. Furthermore, we have demonstrated a fully automated, two-dimensional scanning, passive imaging system based on our HEB technology operating at 0.85 THz. Our high spectral resolution terahertz imager has a total system noise equivalent temperature difference (NEΔT) value of better than 0.5 K and a spatial resolution of a few millimeters. HEB technology is becoming the basis for advanced terahertz imaging and spectroscopic technologies for the study of biological and chemical agents over the entire terahertz spectrum.

  18. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10-11 M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  19. Design of a photonic integrated circuit (pic) in silicon on isolator (soi) technology for a novel chaotic integrated laser light source (chill)

    NARCIS (Netherlands)

    Westerveld, W.J.

    2009-01-01

    A light source with the brightness of a laser but the bandwidth of a LED is required for different fields of applications, such as inspection and metrology in the semiconductor industry, data encryption in telecommunications and LIDAR. Currently, this issue is addressed by so-called coherence

  20. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW

  1. A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

    KAUST Repository

    Li, Ming

    2011-12-03

    We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO 2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of top and bottom electrode-patterned substrates fabricated with conventional lithography, sputtering and lift-off techniques. Processes of the developed fabrication method were illustrated. Major issues associated with this method as PDMS surface treatment and characterization, thickness-control of the transferred PDMS layer, and laser parameters optimization were discussed, along with the examination and testing of bonding with two representative materials (glass and silicon). The capability of this method was further demonstrated by fabricating a microfluidic chip with sputter-coated electrodes on the top and bottom substrates. The device functioning as a microparticle focusing and trapping chip was experimentally verified. It is confirmed that the proposed method has many advantages, including simple and fast fabrication process, low cost, easy integration of electronics, strong bonding strength, chemical and biological compatibility, etc. © Springer-Verlag 2011.

  2. Integration of multi-temporal airborne and terrestrial laser scanning data for the analysis and modelling of proglacial geomorphodynamic processes

    Science.gov (United States)

    Briese, Christian; Glira, Philipp; Pfeifer, Norbert

    2013-04-01

    The actual on-going and predicted climate change leads in sensitive areas like in high-mountain proglacial regions to significant geomorphodynamic processes (e.g. landslides). Within a short time period (even less than a year) these processes lead to a substantial change of the landscape. In order to study and analyse the recent changes in a proglacial environment the multi-disciplinary research project PROSA (high-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) selected the study area of the Gepatschferner (Tyrol), the second largest glacier in Austria. One of the challenges within the project is the geometric integration (i.e. georeferencing) of multi-temporal topographic data sets in a continuously changing environment. Furthermore, one has to deal with data sets of multiple scales (large area data sets vs. highly detailed local area observations) that are on one hand necessary to cover the complete proglacial area with the whole catchment and on the other hand guaranty a highly dense and accurate sampling of individual areas of interest (e.g. a certain highly affected slope). This contribution suggests a comprehensive method for the georeferencing of multi-temporal airborne and terrestrial laser scanning (ALS resp. TLS). It is studied by application to the data that was acquired within the project PROSA. In a first step a stable coordinate frame that allows the analysis of the changing environment has to be defined. Subsequently procedures for the transformation of the individual ALS and TLS data sets into this coordinate frame were developed. This includes the selection of appropriate reference areas as well as the development of special targets for the local TLS acquisition that can be used for the absolute georeferencing in the common coordinate frame. Due to the fact that different TLS instruments can be used (some larger distance sensors that allow covering larger areas vs. closer operating sensors that allow a

  3. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  4. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  5. Evidence for high-altitude haze thickening on the dark side of Venus from 10-micron heterodyne spectroscopy of CO2

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M.

    1982-01-01

    Infrared heterodyne spectroscopy provides data for isolated spectral lines with a spectral resolution which is small compared to the Doppler width. Heterodyne spectroscopy of CO2 lines near 10 micrometers was first reported for the atmosphere of Venus by Betz et al. (1976). The present investigation is concerned with observations of two absorption lines of (C-12)(O-16)2 conducted with an infrared heterodyne spectrometer interfaced with a solar telescope. The 10.8598-micrometer P(44) line was observed on the day side of Venus and the 10.3337-micrometer R(8) line was observed on the night side. It is shown that continuous opacity due to haze, and possible departures from vibrational LTE in CO2, are crucial considerations in fitting the observed lines.

  6. Heterodyne spatial interferometry of circumstellar dust shells at a wavelength of 11 microns

    International Nuclear Information System (INIS)

    Sutton, E.C.

    1979-01-01

    The spatial distribution of the 11 micron thermal emission from circumstellar dust envelopes has been studied using an infrared heterodyne interferometer. Circumstellar dust envelopes often exist around cool, late-type stars. These envelopes radiate strongly at 11 microns, particularly if they are composed of silicate grains, which have a strong emission feature near this wavelength. By measuring the spatial distribution of this dust emission it is possible to probe the temperatures and densities of the circumstellar material and thereby to gain an understanding of the structures of circumstellar envelopes. Among the sources which have been observed with this interferometer are α Orionis, o Ceti, VY Canis Majoris, and IRC + 10216. The 11 micron brightness distributions of these objects all have spatially extended dust-emission components which are resolved in these measurements. The dust envelopes of α Orionis and o Ceti are optically thin, having optical depths at 11 microns of 0.02 and 0.04, respectively. In addition, variations are seen in the 11 micron brightness distribution of o Ceti which correlate with the stellar variability. These variations primarily represent changes in the relative amount of spatially compact photospheric emission and spatially extended dust emission. The source VY Canis Majoris, on the other had, has a dust envelope which is optically thick at 11 microns. The dust envelope of IRC + 10216, although optically thick at visible wavelengths, does not seem to be optically thick at 11 microns since there is a spatially compact component of the 11 micron brightness distribution which presumably represents emission from the central star

  7. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science

    2007-01-16

    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  8. Time-resolved and integrated angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    2013-01-01

    Laser impact on metals in the UV regime results in a significant number of ablated plume ions even at moderate fluence (0.7–2.4 J/cm2). The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. The ion flow in different directions...... from a silver target irradiated by a laser beam at a wavelength of 355 nm in vacuum was measured with a hemispherical array of Langmuir probes. The time-of-flight spectra in all directions, as well as the total angular yield were determined. The angular distribution peaks strongly in forward direction...

  9. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  10. BER analysis of multi-hop heterodyne FSO systems with fixed gain relays over general Malaga turbulence channels

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-07-20

    This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) fixed-gain relaying system using heterodyne detection over misaligned general Malaga turbulence channels. More specifically, we present exact closed-form expressions for average bit-error rate achievable spectral efficiency non-adaptive/adaptive modulation schemes by employing generalized power series identity of Meijer\\'s G-function. Moreover, asymptotic closed-form expressions are derived to validate our results at high signal-to-noise ratio. In addition, the analytical results have been presented with compare to range of numerical values.

  11. An experimental vital signs detection radar using low-IF heterodyne architecture and single-sideband transmission

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Johansen, Tom Keinicke; Yan, Lei

    2013-01-01

    In this paper an experimental X-band radar system, called DTU-VISDAM, developed for the detection and monitoring of human vital signs is described. The DTU-VISDAM radar exploits a low intermediate frequency (IF) heterodyne RF front-end architecture and single-sideband (SSB) transmission for easier...... and more reliable extraction of the vital signs. The hardware implementation of the proposed low-IF RF front-end architecture and associated IF circuitry is discussed. Furthermore, the signal processing and calibration steps necessary to extract the vital signs information measured on a human subject...

  12. Dynamics of Dangling Od-Stretch at the Air/water Interface by Heterodyne-Detected Sfg Spectroscopy

    Science.gov (United States)

    Stiopkin, I. V.; Weeraman, C.; Shalhout, F.; Benderskii, A. V.

    2009-06-01

    SFG spectra of dangling OD-stretch at the air/water interface contain information on vibrational dephasing dynamics, ultrafast reorientational molecular motion, and vibrational energy transfer. To better separate these processes we conducted heterodyne-detected SFG experiments to measure real and imaginary contributions of the SFG spectrum of the dangling OD-stretch at the air/D_2O interface for SSP, PPP, and SPS polarizations. Variations in the temporal profiles of the SFG signals for these three polarizations will be also discussed.

  13. BER analysis of multi-hop heterodyne FSO systems with fixed gain relays over general Malaga turbulence channels

    KAUST Repository

    Alheadary, Wael Ghazy; Park, Kihong; Alouini, Mohamed-Slim

    2017-01-01

    This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) fixed-gain relaying system using heterodyne detection over misaligned general Malaga turbulence channels. More specifically, we present exact closed-form expressions for average bit-error rate achievable spectral efficiency non-adaptive/adaptive modulation schemes by employing generalized power series identity of Meijer's G-function. Moreover, asymptotic closed-form expressions are derived to validate our results at high signal-to-noise ratio. In addition, the analytical results have been presented with compare to range of numerical values.

  14. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Yi; Hsieh, Hung-Lin; Lerondel, Gilles; Deturche, Regis; Lu, Mini-Pei; Chen, Jyh-Chen

    2011-03-20

    We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

  15. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  16. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  17. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  18. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  19. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  20. Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser.

    Science.gov (United States)

    Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H

    2018-05-15

    We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4   cm -1 is resolvable.

  1. High-frequency acoustic spectrum analyzer based on polymer integrated optics

    Science.gov (United States)

    Yacoubian, Araz

    This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.

  2. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    Science.gov (United States)

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  3. Design of Integrated Circuits Approaching Terahertz Frequencies

    DEFF Research Database (Denmark)

    Yan, Lei

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also...... heterodyne receivers with requirements of room temperature operation, low system complexity, and high sensitivity, monolithic integrated Schottky diode technology is chosen for the implementation of submillimeterwave components. The corresponding subharmonic mixer and multiplier for a THz radiometer system...

  4. Spectral behavior of a terahertz quantum-cascade laser.

    Science.gov (United States)

    Hensley, J M; Montoya, Juan; Allen, M G; Xu, J; Mahler, L; Tredicucci, A; Beere, H E; Ritchie, D A

    2009-10-26

    In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intrapulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.

  5. Theory of differential and integral scattering of laser radiation by a dielectric surface taking a defect layer into account

    NARCIS (Netherlands)

    Azarova, VV; Dmitriev, VG; Lokhov, YN; Malitskii, KN

    The differential and integral light scattering by dielectric surfaces is studied theoretically taking a thin nearsurface defect layer into account. The expressions for the intensities of differential and total integral scattering are found by the Green function method. Conditions are found under

  6. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  7. 100-GHz Wireless-Over-Fiber Links With Up to 16-Gb/s QPSK Modulation Using Optical Heterodyne Generation and Digital Coherent Detection

    DEFF Research Database (Denmark)

    Sambaraju, R.; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    In this letter, a novel technique for direct conversion of an optical baseband quadrature phase-shift keying (QPSK) signal to a millimeter-wave wireless signal and subsequent signal demodulation is reported. Optical heterodyne mixing of the optical baseband QPSK signal with a free-running unmodul...

  8. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    Science.gov (United States)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  9. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  10. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  11. Useful method to monitor the physiological effects of alcohol ingestion by combination of micro-integrated laser Doppler blood flow meter and arm-raising test.

    Science.gov (United States)

    Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2012-10-01

    Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.

  12. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-01

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  13. Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors.

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-23

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  14. Application of Terrestrial Laser Scanner with an Integrated Thermal Camera in Non-Destructive Evaluation of Concrete Surface of Hydrotechnical Objects

    Science.gov (United States)

    Kaczmarek, Łukasz Dominik; Dobak, Paweł Józef; Kiełbasiński, Kamil

    2017-12-01

    The authors present possible applications of thermal data as an additional source of information on an object's behaviour during the technical assessment of the condition of a concrete surface. For the study one of the most recent propositions introduced by Zoller + Fröhlich company was used, which is an integration of a thermal camera with a terrestrial laser scanner. This solution enables an acquisition of geometric and spectral data on the surveyed object and also provides information on the surface's temperature in the selected points. A section of the dam's downstream concrete wall was selected as the subject of the study for which a number of scans were carried out and a number of thermal images were taken at different times of the day. The obtained thermal data was confronted with the acquired spectral information for the specified points. This made it possible to carry out broader analysis of the surface and an inspection of the revealed fissure. The thermal analysis of said fissure indicated that the temperature changes within it are slower, which may affect the way the concrete works and may require further elaboration by the appropriate experts. Through the integration of a thermal camera with a terrestrial laser scanner one can not only analyse changes of temperature in the discretely selected points but on the whole surface as well. Moreover, it is also possible to accurately determine the range and the area of the change affecting the surface. The authors note the limitations of the presented solution like, inter alia, the resolution of the thermal camera.

  15. Application of Terrestrial Laser Scanner with an Integrated Thermal Camera in Non-Destructive Evaluation of Concrete Surface of Hydrotechnical Objects

    Directory of Open Access Journals (Sweden)

    Kowalska Maria

    2017-12-01

    Full Text Available The authors present possible applications of thermal data as an additional source of information on an object’s behaviour during the technical assessment of the condition of a concrete surface. For the study one of the most recent propositions introduced by Zoller + Fröhlich company was used, which is an integration of a thermal camera with a terrestrial laser scanner. This solution enables an acquisition of geometric and spectral data on the surveyed object and also provides information on the surface’s temperature in the selected points. A section of the dam’s downstream concrete wall was selected as the subject of the study for which a number of scans were carried out and a number of thermal images were taken at different times of the day. The obtained thermal data was confronted with the acquired spectral information for the specified points. This made it possible to carry out broader analysis of the surface and an inspection of the revealed fissure. The thermal analysis of said fissure indicated that the temperature changes within it are slower, which may affect the way the concrete works and may require further elaboration by the appropriate experts. Through the integration of a thermal camera with a terrestrial laser scanner one can not only analyse changes of temperature in the discretely selected points but on the whole surface as well. Moreover, it is also possible to accurately determine the range and the area of the change affecting the surface. The authors note the limitations of the presented solution like, inter alia, the resolution of the thermal camera.

  16. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  17. Performance Analysis of Multi-Hop Heterodyne FSO Systems over Malaga Turbulent Channels with Pointing Error Using Mixture Gamma Distribution

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-11-16

    This work investigates the end-to-end performance of a free space optical amplify-and-forward relaying system using heterodyne detection over Malaga turbulence channels at the presence of pointing error. In order to overcome the analytical difficulties of the proposed composite channel model, we employed the mixture Gamma (MG) distribution. The proposed model shows a high accurate and tractable approximation just by adjusting some parameters. More specifically, we derived new closed-form expression for average bit error rate employing rectangular quadrature amplitude modulation in term of MG distribution and generalized power series of the Meijer\\'s G- function. The closed-form has been validated numerically and asymptotically at high signal to noise ratio.

  18. Performance analysis of multihop heterodyne free-space optical communication over general Malaga turbulence channels with pointing error

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-09-21

    This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) channel-state-information (CSI)-assisted relaying system using heterodyne detection over Malaga turbulence channels at the presence of pointing error employing rectangular quadrature amplitude modulation (R-QAM). More specifically, we present exact closed-form expressions for average bit-error rate for adaptive/non-adaptive modulation, achievable spectral efficiency, and ergodic capacity by utilizing generalized power series of Meijer\\'s G-function. Moreover, asymptotic closed form expressions are provided to validate our work at high power regime. In addition, all the presented analytical results are illustrated using a selected set of numerical results. Moreover, we applied the bisection method to find the optimum beam width for the proposed FSO system.

  19. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    Science.gov (United States)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  20. A short review on the pulsed laser deposition of Er3+ ion doped oxide glass thin films for integrated optics

    International Nuclear Information System (INIS)

    Irannejad, M.; Zhao, Z.; Jose, G.; Steenson, D.P.; Jha, A.

    2010-01-01

    Short pulsed (ns) excimer laser was employed as a technique for the deposition of more than 2 μm thick glassy films from phosphorous pentoxide and tungsten lanthanum modified tellurite bulk glasses. High quality glass thin films with measured propagation loss less than 0.15, 0.71 and 2.3 dB.cm -1 were obtained after optimization of deposition parameters for silica, siloxane and semiconductor substrates. The optical, spectroscopic and microstructural properties of deposited thin films were compared with bulk glass materials for demonstrating the differences in the properties, which must be optimized for device engineering. Channel waveguides were fabricated after using reactive ion etching technique, up to 2 μm thickness by using CHF 3 and Ar gas mixture

  1. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    Science.gov (United States)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  2. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    Directory of Open Access Journals (Sweden)

    Riccardo Cucini

    2015-01-01

    Full Text Available Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first results from extreme ultra violet transient grating experiments is also discussed.

  3. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  4. Towards THz integrated photonics

    OpenAIRE

    Hübers, Heinz-Wilhelm

    2010-01-01

    The demonstration of an integrated terahertz transceiver featuring a quantum cascade laser and a Schottky diode mixer promises new applications for compact and convenient terahertz photonic instrumentation.

  5. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  6. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  7. Assessing infrared intensity using the evaporation rate of liquid hydrogen inside a cryogenic integrating sphere for laser fusion targets

    Science.gov (United States)

    Iwano, K.; Iwamoto, A.; Asahina, T.; Yamanoi, K.; Arikawa, Y.; Nagatomo, H.; Nakai, M.; Norimatsu, T.; Azechi, H.

    2017-07-01

    Infrared (IR) heating processes have been studied to form a deuterium layer in an inertial confinement fusion target. To understand the relationship between the IR intensity and the fuel layering time constant, we have developed a new method to assess the IR intensity during irradiation. In our method, a glass flask acting as a dummy target is filled with liquid hydrogen (LH2) and is then irradiated with 2-μm light. The IR intensity is subsequently calculated from the time constant of the LH2 evaporation rate. Although LH2 evaporation is also caused by the heat inflow from the surroundings and by the background heat, the evaporation rate due to IR heating can be accurately determined by acquiring the time constant with and without irradiation. The experimentally measured IR intensity is 0.66 mW/cm2, which agrees well with a value estimated by considering the IR photon energy balance. Our results suggest that the present method can be used to measure the IR intensity inside a cryogenic system during IR irradiation of laser fusion targets.

  8. Equivalent circuit-level model of quantum cascade lasers with integrated hot-electron and hot-phonon effects

    Science.gov (United States)

    Yousefvand, H. R.

    2017-12-01

    We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.

  9. Assessing infrared intensity using the evaporation rate of liquid hydrogen inside a cryogenic integrating sphere for laser fusion targets.

    Science.gov (United States)

    Iwano, K; Iwamoto, A; Asahina, T; Yamanoi, K; Arikawa, Y; Nagatomo, H; Nakai, M; Norimatsu, T; Azechi, H

    2017-07-01

    Infrared (IR) heating processes have been studied to form a deuterium layer in an inertial confinement fusion target. To understand the relationship between the IR intensity and the fuel layering time constant, we have developed a new method to assess the IR intensity during irradiation. In our method, a glass flask acting as a dummy target is filled with liquid hydrogen (LH 2 ) and is then irradiated with 2-μm light. The IR intensity is subsequently calculated from the time constant of the LH 2 evaporation rate. Although LH 2 evaporation is also caused by the heat inflow from the surroundings and by the background heat, the evaporation rate due to IR heating can be accurately determined by acquiring the time constant with and without irradiation. The experimentally measured IR intensity is 0.66 mW/cm 2 , which agrees well with a value estimated by considering the IR photon energy balance. Our results suggest that the present method can be used to measure the IR intensity inside a cryogenic system during IR irradiation of laser fusion targets.

  10. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  11. Simultaneous distributed strain and temperature sensing based on combined Raman–Brillouin scattering using Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Bolognini, Gabriele; Soto, Marcelo A; Di Pasquale, Fabrizio

    2010-01-01

    An investigation is performed of the possibility of achieving simultaneous distributed strain and temperature sensing based on hybrid Raman–Brillouin scattering with the use of multi-wavelength optical sources such as common Fabry–Perot (FP) lasers. By employing a self-heterodyne detection scheme based on a multi-wavelength optical local oscillator, the benefits of FP lasers are fully exploited, allowing for high-power Raman intensity measurements and a simultaneous high-accuracy detection of the Brillouin frequency shift parameter for each FP longitudinal mode. Experimental results point out a significant reduction of coherent Rayleigh noise, and highlight the enhanced performance in hybrid Raman–Brillouin sensing when using FP lasers; in particular using standard FP lasers at 1550 nm results in about 12 dB (7 dB) temperature (strain) accuracy improvement at 25 km sensing distance with respect to the use of standard distributed feedback lasers

  12. Augmenting comprehension of geological relationships by integrating 3D laser scanned hand samples within a GIS environment

    Science.gov (United States)

    Harvey, A. S.; Fotopoulos, G.; Hall, B.; Amolins, K.

    2017-06-01

    Geological observations can be made on multiple scales, including micro- (e.g. thin section), meso- (e.g. hand-sized to outcrop) and macro- (e.g. outcrop and larger) scales. Types of meso-scale samples include, but are not limited to, rocks (including drill cores), minerals, and fossils. The spatial relationship among samples paired with physical (e.g. granulometric composition, density, roughness) and chemical (e.g. mineralogical and isotopic composition) properties can aid in interpreting geological settings, such as paleo-environmental and formational conditions as well as geomorphological history. Field samples are collected along traverses in the area of interest based on characteristic representativeness of a region, predetermined rate of sampling, and/or uniqueness. The location of a sample can provide relative context in seeking out additional key samples. Beyond labelling and recording of geospatial coordinates for samples, further analysis of physical and chemical properties may be conducted in the field and laboratory. The main motivation for this paper is to present a workflow for the digital preservation of samples (via 3D laser scanning) paired with the development of cyber infrastructure, which offers geoscientists and engineers the opportunity to access an increasingly diverse worldwide collection of digital Earth materials. This paper describes a Web-based graphical user interface developed using Web AppBuilder for ArcGIS for digitized meso-scale 3D scans of geological samples to be viewed alongside the macro-scale environment. Over 100 samples of virtual rocks, minerals and fossils populate the developed geological database and are linked explicitly with their associated attributes, characteristic properties, and location. Applications of this new Web-based geological visualization paradigm in the geosciences demonstrate the utility of such a tool in an age of increasing global data sharing.

  13. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  14. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  15. Characterization of laser metal deposited 316L stainless steel

    CSIR Research Space (South Africa)

    Bayode, A

    2016-06-01

    Full Text Available investigates the effects of laser power on the structural integrity, microstructure and microhardness of laser deposited 316L stainless steel. The result showed that the laser power has much influence on the evolving microstructure and microhardness...

  16. An Integrated Monitoring System Through 3d Laser Scanner and Traditional Instruments for Load Test on Arch Bridge

    Science.gov (United States)

    Pera, D.; Ferrando, I.

    2017-05-01

    The experimental campaign represents an example of how the careful design of the different test phases and the choice of the needed instrumentation are fundamental aspects to obtain a proper interpretation of the results, for future application on the real structures. Additionally, the present work represents a successful example of a combined monitoring system, integrating the traditional and innovative technical instrumentation for loading tests and geomatics survey techniques. The monitoring system has been designed with the aim of defining the load carrying capacity of a masonry arch bridge scaled model and to test the performances of a new retrofitting method. In particular, two different configuration have been considered: a first one with isolated arch and a second one with gravel fill on the arch.

  17. Integrating undergraduate research into the electro-optics and laser engineering technology program at Indiana University of Pennsylvania

    Science.gov (United States)

    Zhou, Andrew F.

    2014-07-01

    Bringing research into an undergraduate curriculum is a proven and powerful practice with many educational benefits to students and the professional rewards to faculty mentors. In recent years, undergraduate research has gained national prominence as an effective problem-based learning strategy. Developing and sustaining a vibrant undergraduate research program of high quality and productivity is an outstanding example of the problem-based learning. To foster student understanding of the content learned in the classroom and nurture enduring problem-solving and critical-thinking abilities, we have created a collaborative learning environment by building research into the Electro-Optics curriculum for the first- and second-year students. The teaching methodology is described and examples of the research projects are given. Such a research-integrated curriculum effectively enhances student learning and critical thinking skills, and strengthens the research culture for the first- and second-year students.

  18. AN INTEGRATED MONITORING SYSTEM THROUGH 3D LASER SCANNER AND TRADITIONAL INSTRUMENTS FOR LOAD TEST ON ARCH BRIDGE

    Directory of Open Access Journals (Sweden)

    D. Pera

    2017-05-01

    Full Text Available The experimental campaign represents an example of how the careful design of the different test phases and the choice of the needed instrumentation are fundamental aspects to obtain a proper interpretation of the results, for future application on the real structures. Additionally, the present work represents a successful example of a combined monitoring system, integrating the traditional and innovative technical instrumentation for loading tests and geomatics survey techniques. The monitoring system has been designed with the aim of defining the load carrying capacity of a masonry arch bridge scaled model and to test the performances of a new retrofitting method. In particular, two different configuration have been considered: a first one with isolated arch and a second one with gravel fill on the arch.

  19. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  20. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to