WorldWideScience

Sample records for integrated heterodyned laser

  1. Integrated heterodyne terahertz transceiver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  2. Integrated heterodyne terahertz transceiver

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  3. Laser Heterodyning

    CERN Document Server

    Protopopov, Vladimir V

    2009-01-01

    Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature – preserving phase information about optical wave in the electrical signal of the photo-detector – finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and Lidars, microscopy and other areas. The reader may be surprised by a variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.

  4. Dual-signal heterodyne lock-in amplification with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2006-01-01

    High-sensitivity heterodyne detection with lasers applied to radar and satellite communication is seriously hampered by the large electronic bandwidth due to Doppler shift and frequency instability. These drawbacks can be circumvented by dual-signal heterodyne detection. The system consists of

  5. Heterodyne interferometer laser source with a pair of two phase locked loop coupled He–Ne lasers by 632.8 nm

    International Nuclear Information System (INIS)

    Sternkopf, C; Diethold, C; Gerhardt, U; Manske, E; Wurmus, J

    2012-01-01

    Two He–Ne lasers are frequency and phase coupled by phase locking loop technique for a heterodyne laser interferometer. The heterodyne He–Ne laser is built of stabilized commercially used laser tubes. The two lasers create a high frequency stable heterodyne laser source with an output power of 2 mW. The laser source is coupled by two fibers (one fiber per laser) to the heterodyne laser head. This paper describes the configuration and the control theory basics of the laser system. The experimental setup and the equipment used are also described. First, experimental results with different parameters are represented. Then we discuss a novel heterodyne laser source which has achieved a master laser frequency stability of Δf 1 /f 1 = 1 · 10 −8 and a beat frequency stability of approximately Δf beat /f beat ≈ 4.5 · 10 −5 . (paper)

  6. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    Science.gov (United States)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  7. Laser heterodyne spectrometer for helioseismology

    Science.gov (United States)

    Glenar, D. A.; Deming, D.; Espenak, F.; Kostiuk, T.; Mumma, M. J.

    1986-01-01

    The technique of laser heterodyne spectroscopy has been applied to the measurement of solar oscillations. Coherent mixing of solar radiation with the output of a frequency-stabilized CO2 laser permits the measurement of fully resolved profiles of solar absorption lines with high spectral purity and excellent frequency stability. This technique has been used to measure OH pure rotation lines in the infrared solar spectrum. Power spectra of these line frequency measurements show the well-known 5-min oscillations as well as significant velocity power at shorter periods.

  8. Terahertz Heterodyne Receiver with an Electron-Heating Mixer and a Heterodyne Based on the Quantum-Cascade Laser

    Science.gov (United States)

    Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.

    2017-12-01

    We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.

  9. Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.

  10. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    Directory of Open Access Journals (Sweden)

    Yongqian Li

    2017-03-01

    Full Text Available A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively.

  11. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui

    2012-02-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%.

  12. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui

    2012-01-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%. (general)

  13. Multi-beam laser heterodyne measurement with ultra-precision for Young modulus based on oscillating mirror modulation

    Science.gov (United States)

    Li, Y. Chao; Ding, Q.; Gao, Y.; Ran, L. Ling; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng

    2014-07-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for Young modulus. Based on Doppler effect and heterodyne technology, loaded the information of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by mass variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain value of Young modulus of the sample by the calculation. This novel method is used to simulate measurement for Young modulus of wire under different mass by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.3%.

  14. Spatially-Heterodyned Holography

    Science.gov (United States)

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  15. Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Mavalvala, Nergis

    2003-01-01

    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers

  16. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    Science.gov (United States)

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  17. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui; Qu, Yang; Gao, Long; Cong, Hai-Fang; Yang, Yan-Ling; Gao, Jie; Wang, Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.

  18. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Ott, L.; McLinden, M. L.; Holben, B. N.; Wilson, E. L.

    2012-12-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal in the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations in pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  19. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.

    2012-01-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  20. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  1. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui; Qu Yang; Gao Long; Cong Hai-Fang; Yang Yan-Ling; Gao Jie; Wang Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Light scattering from thermal density fluctuations using a CW-CO2-laser and heterodyne detection

    International Nuclear Information System (INIS)

    Massig, J.H.

    1978-01-01

    The ion feature in the scattered light spectrum of an arc plasma was measured using heterodyne detection. A low-power CW-CO 2 -laser was employed. The weak signals were discriminated against noise by lock-in technique. (orig.) [de

  3. A Low-Cost Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Near-ir Measurements of CO2 and CH4 in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2016-01-01

    The miniaturized laser heterodyne radiometer (mini-LHR) is a ground-based passive variation of a laser heterodyne radiometer that uses sunlight to measure absorption of CO2 andCH4 in the infrared. Sunlight is collected using collimation optics mounted to an AERONET sun tracker, modulated with a fiber switch and mixed with infrared laser light in a fast photoreciever.The amplitude of the resultant RF (radio frequency) beat signal correlates with the concentration of the gas in the atmospheric column.

  4. FIR laser scattering and heterodyne receiver measurements on Alcator C

    International Nuclear Information System (INIS)

    Woskoboinikow, P.; Praddaude, H.C.; Mulligan, W.J.; Cohn, D.R.; Lax, B.

    1982-01-01

    The MIT program to develop high power collective Thomson scattering diagnostics is presented. The D 2 O laser Thomson scattering system is operational on Alcator C tokamak. The major components include a 0.5 MW, 150 ns D 2 O laser, a heterodyne receiver mixer, a 25 MW, 381 μ DCOOD laser local oscillator and X-band I.F. electronics including a 32 channel multiplexer filter centered at 9.4 GHz with 80 MHz wide channels. Initial scattering measurement showed high level of stray D 2 O laser power. The spectrum was obtained by operating the Thomson scattering diagnostics with no plasma in the tokamak. An X-band notch filter was placed after the Schottky diode mixer to reject a 240 MHz band centered at 9.4 GHz. The stray light level was reduced by 16 to 20 db. Other sources of background noise such as strong non-thermal scattering and ECE did not appear to be a problem. A gas filled cell was placed on the Alcator C scattering system to reduce the level of stray light. Work is underway to improve the transverse mode quality of the laser and receiver to improve matching to the beam and viewing dumps. (Kato, T.)

  5. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...

  6. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    Science.gov (United States)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  7. Single beam write and/or replay of spatial heterodyne holograms

    Science.gov (United States)

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  8. Infrared 7.6-microm lead-salt diode laser heterodyne radiometry of water vapor in a CH4-air premixed flat flame.

    Science.gov (United States)

    Weidmann, Damien; Courtois, Daniel

    2003-02-20

    We deal with the design of a diode laser heterodyne radiometer and its application in a combustion process. We present some experimental results obtained with a CH4-air premised flat flame as the optical source. The goal is to prove that heterodyne detection techniques are relevant in remote detection and diagnostics of combustion and can have important applications in both civil and military fields. To the best of our knowledge, it is the first time that this demonstration is made. The radiometer, in spite of the low-power lead-salt diode laser used as a local oscillator, enables us to record high-temperature water-vapor emission spectra in the region of 1315 cm(-1).

  9. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    Science.gov (United States)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  10. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited

  11. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

    DEFF Research Database (Denmark)

    Gobron, Olivier; Jung, K.; Galland, N.

    2017-01-01

    Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011......)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from...

  12. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

    NARCIS (Netherlands)

    Kloosterman, J.L.; Hayton, D.J.; Ren, Y.; Kao, T.Y.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Hu, Q.; Walker, C.K.; Reno, J.L.

    2013-01-01

    We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448?THz. The local oscillator is a third-order distributed feedback quantum cascade laser operating in continuous wave mode at 4.741?THz. A quasi-optical, superconducting NbN

  13. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  14. Development of a heterodyne laser interferometer for very small high frequency displacements detection

    International Nuclear Information System (INIS)

    Baarmann, P.

    1992-10-01

    A heterodyne laser interferometer with detection electronics has been developed for measuring very small amplitude high frequency vibrations. A laser beam from HeNe-laser is focused and reflected in the vibrating surface and the generated phase shifts are after interference with a reference beam detected with a photo detector and evaluated in a demodulation system. The set-up is a prototype and techniques to improve the accuracy and sensitivity of the system are presented. The present system can detect vibration amplitude from around 1 Angstrom and is linear up to 250 Angstrom (±4%). Frequencies from a few tens of kHz up to tens of MHz are covered. The low frequency region can be greatly improved. The minimum detectable displacement may be improved by narrowing the bandwidth of the detection system to the region of interest

  15. Demonstration of a fully integrated superconducting receiver with a 2.7 THz quantum cascade laser.

    Science.gov (United States)

    Miao, Wei; Lou, Zheng; Xu, Gang-Yi; Hu, Jie; Li, Shao-Liang; Zhang, Wen; Zhou, Kang-Min; Yao, Qi-Jun; Zhang, Kun; Duan, Wen-Ying; Shi, Sheng-Cai; Colombelli, Raffaele; Beere, Harvey E; Ritchie, David A

    2015-02-23

    We demonstrate for the first time the integration of a superconducting hot electron bolometer (HEB) mixer and a quantum cascade laser (QCL) on the same 4-K stage of a single cryostat, which is of particular interest for terahertz (THz) HEB/QCL integrated heterodyne receivers for practical applications. Two key issues are addressed. Firstly, a low power consumption QCL is adopted for preventing its heat dissipation from destroying the HEB's superconductivity. Secondly, a simple spherical lens located on the same 4-K stage is introduced to optimize the coupling between the HEB and the QCL, which has relatively limited output power owing to low input direct current (DC) power. Note that simulation techniques are used to design the HEB/QCL integrated heterodyne receiver to avoid the need for mechanical tuning. The integrated HEB/QCL receiver shows an uncorrected noise temperature of 1500 K at 2.7 THz, which is better than the performance of the same receiver with all the components not integrated.

  16. A SIMPLE HETERODYNE TEMPORAL SPECKLE-PATTERN INTERFEROMETER

    International Nuclear Information System (INIS)

    Wong, W. O.; Gao, Z.; Lu, J.

    2010-01-01

    A common light path design of heterodyne speckle pattern interferometer based on temporal speckle pattern interferometry is proposed for non-contact, full-field and real-time continuous displacement measurement. Double frequency laser is produced by rotating a half wave plate. An experiment was carried out to measure the dynamic displacement of a cantilever plate for testing the proposed common path heterodyne speckle pattern interferometer. The accuracy of displacement measurement was checked by measuring the motion at the mid-point of the plate with a point displacement sensor.

  17. A laser interferometer for measuring straightness and its position based on heterodyne interferometry

    International Nuclear Information System (INIS)

    Chen Benyong; Zhang Enzheng; Yan Liping; Li Chaorong; Tang Wuhua; Feng Qibo

    2009-01-01

    Not only the magnitude but also the position of straightness errors are of concern to users. However, current laser interferometers used for measuring straightness seldom give the relative position of the straightness error. To solve this problem, a laser interferometer for measuring straightness and its position based on heterodyne interferometry is proposed. The optical configuration of the interferometer is designed and the measurement principle is analyzed theoretically. Two experiments were carried out. The first experiment verifies the validity and repeatability of the interferometer by measuring a linear stage. Also, the second one for measuring a flexure-hinge stage demonstrates that the interferometer is capable of nanometer measurement accuracy. These results show that this interferometer has advantages of simultaneously measuring straightness error and the relative position with high precision, and a compact structure.

  18. Modeling and verifying non-linearities in heterodyne displacement interferometry

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.

    2002-01-01

    The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

  19. A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer.

    Energy Technology Data Exchange (ETDEWEB)

    Klaassen, T. O. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Hajenius, M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Adam, A. J. L. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Klapwijk, T. M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Baryshev, A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Kumar, Sushil (Massachusetts Institute of Technology, Cambridge, MA); Baselmans, J. J. A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hu, Qing (Massachusetts Institute of Technology, Cambridge, MA); Yang, Z. Q. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hovenier, J. N. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Williams, Benjamin S. (Massachusetts Institute of Technology, Cambridge, MA); Gao, J. R. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Reno, John Louis

    2005-03-01

    We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.

  20. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.

    Science.gov (United States)

    Barnett, Patrick D; Lamsal, Nirmal; Angel, S Michael

    2017-04-01

    A spatial heterodyne spectrometer (SHS) is described for standoff laser-induced breakdown spectroscopy (LIBS) measurements. The spatial heterodyne LIBS spectrometer (SHLS) is a diffraction grating based interferometer with no moving parts that offers a very large field of view, high light throughput, and high spectral resolution in a small package. The field of view of the SHLS spectrometer is shown to be ∼1° in standoff LIBS measurements. In the SHLS system described here, the collection aperture was defined by the 10 mm diffraction gratings in the SHS and standoff LIBS measurements were made up to 20 m with no additional collection optics, corresponding to a collection solid angle of 0.2 μsr, or f/2000, and also using a small telescope to increase the collection efficiency. The use of a microphone was demonstrated to rapidly optimize laser focus for 20 m standoff LIBS measurements.

  1. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-01-01

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  2. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  3. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    Science.gov (United States)

    Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent

    2012-01-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  4. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    Science.gov (United States)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  5. Wireless Data Transmission at Terahertz Carrier Waves Generated from a Hybrid InP-Polymer Dual Tunable DBR Laser Photonic Integrated Circuit.

    Science.gov (United States)

    Carpintero, Guillermo; Hisatake, Shintaro; de Felipe, David; Guzman, Robinson; Nagatsuma, Tadao; Keil, Norbert

    2018-02-14

    We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.5 THz) on a single photonic integrated circuit. We demonstrate the application of this source to generate a carrier wave at 330 GHz to establish a wireless data transmission link at a data rate up to 18 Gbit/s. Using a coherent detection scheme we increase the sensitivity by more than 10 dB over direct detection.

  6. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation

    Science.gov (United States)

    Matvienko, G. G.; Sukhanov, A. Y.

    2015-11-01

    Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.

  7. Ground based mid-IR heterodyne spectrometer concept for planetary atmospheres observations

    Science.gov (United States)

    Garamov, V.; Benderov, O.; Semenov, V.; Spiridonov, M.; Rodin, A.; Stepanov, B.

    2017-09-01

    We present a heterodyne spectrometer concept based on distributed feedback (DFB) quantum cascade lasers (QCL) operated in midle infrared region (MIR). The instrument is assumed to be mount on the Russian infrared observatories. The core features of the concept are compact design, utilizing a novel mid-IR fiber optical components and dynamic local oscillator frequency locking using reference molecule absorption line. The instrument characteristics are similar to modern heterodyne devices THIS (Cologne University, Germany) and MILAHI (Tohoku University, Japan) in terms of fundamental parameters, including spectral resolution, spectral coverage in a single observation. At present moment we created laboratory setup including all necessary elements of MIR heterodyne spectrometer. We have studied different components of noises of our system and found optimal value of LO power. The measured signal to noise ratio (SNR) with MCT PD was about 10 times greater than LO's shot noise (theoretical limit of heterodyne technique SNR) and limited by QCL relative intensity noise (RIN). However, applying additional filtering it is possible to reduce this value better than 5 shot noise level, which is typical to TEC cooled MCT PD. Also we demonstrate heterodyne signal measurements using laboratory black body with temperature of 400 oC.

  8. Mixed error compensation in a heterodyne interferometer using the iterated dual-EKF algorithm

    International Nuclear Information System (INIS)

    Lee, Woo Ram; Kim, Chang Rai; You, Kwan Ho

    2010-01-01

    The heterodyne laser interferometer has been widely used in the field of precise measurements. The limited measurement accuracy of a heterodyne laser interferometer arises from the periodic nonlinearity caused by non-ideal laser sources and imperfect optical components. In this paper, the iterated dual-EKF algorithm is used to compensate for the error caused by nonlinearity and external noise. With the iterated dual-EKF algorithm, the weight filter estimates the parameter uncertainties in the state equation caused by nonlinearity errors and has a high convergence rate of weight values due to the iteration process. To verify the performance of the proposed compensation algorithm, we present experimental results obtained by using the iterated dual-EKF algorithm and compare them with the results obtained by using a capacitance displacement sensor.

  9. Mixed error compensation in a heterodyne interferometer using the iterated dual-EKF algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo Ram; Kim, Chang Rai; You, Kwan Ho [Sungkyunkwan University, Suwon (Korea, Republic of)

    2010-10-15

    The heterodyne laser interferometer has been widely used in the field of precise measurements. The limited measurement accuracy of a heterodyne laser interferometer arises from the periodic nonlinearity caused by non-ideal laser sources and imperfect optical components. In this paper, the iterated dual-EKF algorithm is used to compensate for the error caused by nonlinearity and external noise. With the iterated dual-EKF algorithm, the weight filter estimates the parameter uncertainties in the state equation caused by nonlinearity errors and has a high convergence rate of weight values due to the iteration process. To verify the performance of the proposed compensation algorithm, we present experimental results obtained by using the iterated dual-EKF algorithm and compare them with the results obtained by using a capacitance displacement sensor.

  10. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Peng, X., E-mail: xiangpeng@pku.edu.cn; Li, W.; Guo, H., E-mail: hongguo@pku.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Center for Quantum Information Technology, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  11. Foundry fabricated photonic integrated circuit optical phase lock loop.

    Science.gov (United States)

    Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C

    2017-07-24

    This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.

  12. Low-Cost Miniaturized Laser Heterodyne Radiometer for Highly Sensitive Detection of CO2 and CH4 in the Atmospheric Column

    Science.gov (United States)

    Wilson, Emily L.; McLinden, Matthew L.; Miller, J. Houston

    2011-01-01

    We present a new passive ground-network instrument capable of measuring carbon dioxide (CO2) at 1.57 microns and methane (CH4) at 1.62 microns -- key for validation of OCO-2, ASCENDS, OCO-3, and GOSAT. Designed to piggy-back on an AERONET sun tracker (AERONET is a global network of more than 450 aerosol sensing instruments), this instrument could be rapidly deployed into the established AERONET network of ground sensors. Because aerosols induce a radiative effect that influences terrestrial carbon exchange, this simultaneous measure of aerosols and carbon cycle gases offers a uniquely comprehensive approach. This instrument is a variation of a laser heterodyne radiometer (LHR) that leverages recent advances in telecommunications lasers to miniaturize the instrument (the current version fits in a carry-on suitcase). In this technique, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. By dividing this RF signal into a filter bank, concentrations at different altitudes can be resolved. For a one second integration, we estimate column sensitivities of 0.1 ppmv for CO2, and <1 ppbv for CH4.

  13. CO2 laser imaging heterodyne and phase contrast interferometer for density profile and fluctuation measurements in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Akiyama, T.; Kawahata, K.; Ito, Y.; Vyacheslavov, L.N.; Sanin, A.L.; Okajima, S.

    2007-01-01

    A CO 2 laser heterodyne imaging interferometer (CO 2 HI) and a CO 2 laser phase contrast imaging interferometer (CO 2 PCI) were installed in LHD. The purpose of CO 2 HI is to measure electron density profile at high density (>1x10 20 m -3 ), where the existing far infrared laser (wavelength 118.9 μm) interferometer suffers from fringe jump due to the reduction of signal intensity caused by refraction. In the beginning of 10th LHD experimental campaign (2006-2007), sixty three three of CO 2 HI with 10 channels of YAG HI for vibration compensation, and in the later of 10th LHD experimental campaign. Eighty one channels CO 2 HI and 15 channels YAG HI became available. The purpose of CO 2 PCI is to measure turbulent fluctuation, which can contribute to the energy and particle transport. In order to get local fluctuation information, magnetic shear technique was applied with use of 48 (6 by 8) channel two dimensional detector. (author)

  14. Effect of Nonlinearity by the Amplitude Variation in coherent transmission in Laser Heterodyne Interferometric

    International Nuclear Information System (INIS)

    Chen, H F; Ding, X M; Zhong, Z; Xie, Z L; Yue, H

    2006-01-01

    To reduce the nonlinearity of nanometer measurement in laser heterodyne interferometric, the influence mechanics of the amplitude variation in coherent transmission upon nonlinearity must be confirmed. Based on the mechanics of nonlinearity, the models about how first-harmonic and second-harmonic nonlinearity caused by the amplitude variation in coherent transmission are proposed. The emulation result shows that different amplitude between measurement arm and reference arm increases the first-harmonic nonlinearity when laser beams nonorthogonality errors exist, but it doesn't change the relationship between nonlinearity and half wavelength. When the rotation angle error β of polarizing beam splitter (PBS) exists, amplitude variation only affects the first-harmonic nonlinearity. With a constant rotation angle of PBS β = 4 0 , when the amplitude factor of measurement arm reduces from 1 to 0.6, the nonlinearity increases from 0.25 nm to 3.81 nm, and the nonlinearity is simple superposition of first-harmonic and second-harmonic. Theoretic analysis and emulation show that the reduction of amplitude variation in coherent transmission can reduce influence on nonlinearity

  15. Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models

    Science.gov (United States)

    Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).

  16. Note: Comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect

    Science.gov (United States)

    Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping

    2018-04-01

    A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.

  17. Heterodyne lidar for chemical sensing

    International Nuclear Information System (INIS)

    Oldenborg, Richard C.; Tiee, Joe J.; Shimada, Tsutomu; Wilson, Carl W.; Remelius, Dennis K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO 2 transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics

  18. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.

    Science.gov (United States)

    Canagasabey, Albert; Michie, Andrew; Canning, John; Holdsworth, John; Fleming, Simon; Wang, Hsiao-Chuan; Aslund, Mattias L

    2011-01-01

    Linewidth measurements of a distributed feedback (DFB) fibre laser are made using delayed self heterodyne interferometry (DHSI) with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are w(L) (MZI) = (1.6 ± 0.2) kHz and w(L) (MI) = (1.4 ± 0.1) kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  19. Heterodyne polarimetry technology for inspection of critical dimensions

    Directory of Open Access Journals (Sweden)

    Protopopov V.

    2010-06-01

    Full Text Available Heterodyne polarimetry is based on the analysis of phases and polarization states of two frequency shifted cross-polarized waves, generated by Zeeman lasers and their analogs [1]. In semiconductor industry, manufacturing of memory chips depends on the width and aspect ratio of a great number of identical parallel vertical and horizontal word and bit address lines. Such a structure may be considered as a wire grid polarizer for visible optics, and it is reasonable to expect that polarimetry techniques may be efficient for detecting tiny variations in this type of structures on masks and wafers. Currently, both imaging and non-imaging modalities are considered as complementary inspection technologies. The talk will focus on instrumentation, theory, and experimental results of two different inspection tools: scanning polarimeters for mapping variations of critical dimensions over lithography masks and semiconductor wafers, and polarization-controlled dual-channel heterodyne microscope with super-resolution capabilities.

  20. Experiments on Josephson mixers for heterodyne reception at 0.3 mm wavelength

    International Nuclear Information System (INIS)

    Blaney, T.G.; Knight, D.J.E.

    1974-01-01

    A point contact Josephson junction was investigated as a heterodyne mixer at 337 μm. The conversion efficiency reached about -32 dB using a laser local oscillator and about -42 dB using 9th or 12th harmonic mixing with a klystron

  1. A Comparison of Delayed Self-Heterodyne Interference Measurement of Laser Linewidth Using Mach-Zehnder and Michelson Interferometers

    Directory of Open Access Journals (Sweden)

    Simon Fleming

    2011-09-01

    Full Text Available Linewidth measurements of a distributed feedback (DFB fibre laser are made using delayed self heterodyne interferometry (DHSI with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are wL (MZI = (1.6 ± 0.2 kHz and wL (MI = (1.4 ± 0.1 kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  2. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    International Nuclear Information System (INIS)

    Pfister, T; Günther, P; Nöthen, M; Czarske, J

    2010-01-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained

  3. Faster processing of multiple spatially-heterodyned direct to digital holograms

    Science.gov (United States)

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  4. A 4 U Laser Heterodyne Radiometer for Methane (CH4) and Carbon Dioxide (CO2) Measurements from an Occultation-Viewing CubSat

    Science.gov (United States)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, WIlliam W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; hide

    2017-01-01

    We present a design for a 4 U (20 cm 20 cm 10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor(H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  5. Two-wavelength spatial-heterodyne holography

    Science.gov (United States)

    Hanson, Gregory R.; Bingham, Philip R.; Simpson, John T.; Karnowski, Thomas P.; Voelkl, Edgar

    2007-12-25

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  6. Surface Fluctuation Scattering using Grating Heterodyne Spectroscopy

    DEFF Research Database (Denmark)

    Edwards, R. V.; Sirohi, R. S.; Mann, J. A.

    1982-01-01

    Heterodyne photon spectroscopy is used for the study of the viscoelastic properties of the liquid interface by studying light scattered from thermally generated surface fluctuations. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms...

  7. Camera-Based Lock-in and Heterodyne Carrierographic Photoluminescence Imaging of Crystalline Silicon Wafers

    Science.gov (United States)

    Sun, Q. M.; Melnikov, A.; Mandelis, A.

    2015-06-01

    Carrierographic (spectrally gated photoluminescence) imaging of a crystalline silicon wafer using an InGaAs camera and two spread super-bandgap illumination laser beams is introduced in both low-frequency lock-in and high-frequency heterodyne modes. Lock-in carrierographic images of the wafer up to 400 Hz modulation frequency are presented. To overcome the frame rate and exposure time limitations of the camera, a heterodyne method is employed for high-frequency carrierographic imaging which results in high-resolution near-subsurface information. The feasibility of the method is guaranteed by the typical superlinearity behavior of photoluminescence, which allows one to construct a slow enough beat frequency component from nonlinear mixing of two high frequencies. Intensity-scan measurements were carried out with a conventional single-element InGaAs detector photocarrier radiometry system, and the nonlinearity exponent of the wafer was found to be around 1.7. Heterodyne images of the wafer up to 4 kHz have been obtained and qualitatively analyzed. With the help of the complementary lock-in and heterodyne modes, camera-based carrierographic imaging in a wide frequency range has been realized for fundamental research and industrial applications toward in-line nondestructive testing of semiconductor materials and devices.

  8. Submillimeter heterodyne arrays for APEX

    NARCIS (Netherlands)

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.

    2008-01-01

    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  9. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    International Nuclear Information System (INIS)

    Wilson, Emily L; Oman, Luke D; DiGregorio, A J; Garner, Richard M; Riot, Vincent J; Ammons, Mark S; Bruner, William W; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E; Hoffman, Christine

    2017-01-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH 4 ), carbon dioxide (CO 2 ) and water vapor (H 2 O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO 2 , CH 4 , and H 2 O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone. (paper)

  10. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    Science.gov (United States)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, William W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; Hoffman, Christine; Garner, Richard M.

    2017-03-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor (H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  11. Molecular astronomy using heterodyne detection at 691 GHz

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Buhl, D.

    1984-01-01

    Observations of the CO J 6 - 5 transition at 691 GHz in new interstellar and planetary sources have been made. The heterodyne receiver uses an optically pumped laser local oscillator and a quasi-optical Schottky diode mixer, with measured noise temperatures consistently under 4000 K (double sideband). Continued improvements in system performance and antenna coupling have made possible the mapping of 691 GHz emission from W3, and the detection of CO J 5 - 6 absorption in the atmosphere of Venus. A detailed description of the instrumentation and recent observational data are provided. 14 references

  12. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  13. Ghost image in enhanced self-heterodyne synthetic aperture imaging ladar

    Science.gov (United States)

    Zhang, Guo; Sun, Jianfeng; Zhou, Yu; Lu, Zhiyong; Li, Guangyuan; Xu, Mengmeng; Zhang, Bo; Lao, Chenzhe; He, Hongyu

    2018-03-01

    The enhanced self-heterodyne synthetic aperture imaging ladar (SAIL) self-heterodynes two polarization-orthogonal echo signals to eliminate the phase disturbance caused by atmospheric turbulence and mechanical trembling, uses heterodyne receiver instead of self-heterodyne receiver to improve signal-to-noise ratio. The principle and structure of the enhanced self-heterodyne SAIL are presented. The imaging process of enhanced self-heterodyne SAIL for distributed target is also analyzed. In enhanced self-heterodyne SAIL, the phases of two orthogonal-polarization beams are modulated by four cylindrical lenses in transmitter to improve resolutions in orthogonal direction and travel direction, which will generate ghost image. The generation process of ghost image in enhanced self-heterodyne SAIL is mathematically detailed, and a method of eliminating ghost image is also presented, which is significant for far-distance imaging. A number of experiments of enhanced self-heterodyne SAIL for distributed target are presented, these experimental results verify the theoretical analysis of enhanced self-heterodyne SAIL. The enhanced self-heterodyne SAIL has the capability to eliminate the influence from the atmospheric turbulence and mechanical trembling, has high advantage in detecting weak signals, and has promising application for far-distance ladar imaging.

  14. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  15. An empirical correction for moderate multiple scattering in super-heterodyne light scattering.

    Science.gov (United States)

    Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas

    2017-05-28

    Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.

  16. Space communication and radar with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2005-01-01

    Sensitive heterodyne detection with lasers applied .to radar and satellite communication is seriously hampered by the large electronic bandwidth due to random Doppler shift and frequency instability. These drawbacks can be circumvented by dual signal heterodyne detection. The system consists of

  17. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming

    2016-09-01

    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.

  18. On-chip photonic integrated circuit structures for millimeter and terahertz wave signal generation

    NARCIS (Netherlands)

    Gordón, C.; Guzmán, R. C.; Corral, V.; Carpintero, G.; Leijtens, X.

    2015-01-01

    We present two different on-chip photonic integrated circuit (PIC) structures for continuous-wave generation of millimeter and terahertz waves, each one using a different approach. One approach is the optical heterodyne method, using an on-chip arrayed waveguide grating laser (OC-AWGL) which is

  19. Multifunctional fiber-optic microwave links based on remote heterodyne detection

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Nielsen, Søren Nørskov

    1998-01-01

    The multifunctionality of microwave links based on remote heterodyne detection (RHD) of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection (DD) in conjunction with optical intensity modulation is used to implement...... fiber-optic microwave links. The resulting links are inherently transparent. As opposed to DD links, RHD links can perform radio-system functionalities such as modulation and frequency conversion in addition to transparency. All of these three functionalities are presented and experimentally...

  20. Michelson interferometer vibrometer using self-correcting synthetic-heterodyne demodulation.

    Science.gov (United States)

    Connelly, Michael J; Galeti, José Henrique; Kitano, Cláudio

    2015-06-20

    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is a Michelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.

  1. A method of noise reduction in heterodyne interferometric vibration metrology by combining auto-correlation analysis and spectral filtering

    Science.gov (United States)

    Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng

    2018-01-01

    Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).

  2. Developments in Miniaturized Laser Heterodyne Radiometer (mini-LHR) construction for groundtruth measurements of CH4 and CO2 in harsh terrain

    Science.gov (United States)

    DiGregorio, A.; Wilson, E. L.; Hoffman, C.; Grunberg, C.; Mao, J.; Ramanathan, A. K.

    2016-12-01

    We present an updated, ruggedized design of NASA Goddard Space Flight Center's Miniaturized Laser Heterodyne Radiometer (mini-LHR), and the results of testing in the Bonanza Creek Research Forest. The mini-LHR is a passive variation of typical heterodyne radiometry instruments, designed to work in tandem with the AERONET sun photometer for collection of column methane (CH4) and carbon dioxide (CO2) in harsh environments. Advancements in the development of the Cube-Sat version of the mini-LHR have allowed a more than 50% reduction in size, weight, and power usage of the mini-LHR. Now small enough to fit in a medium handbag, the mini-LHR can be run off of a small 35 Watt solar panel and backup battery for continuous measurement. Using a touch-screen control interface built off of a Raspberry Pi, the updated mini-LHR is capable of data collection and preliminary data processing, even without internet, cellular, or satellite connectivity. The improvements made to the mini-LHR were tested in a field campaign in May 2016 funded under NASA's IDS program to track CH4 and CO2 emissions above thawing permafrost. In addition to being a comprehensive study of methane release from thawing permafrost, this pilot study tested the ruggedization and functionality of the instrument in three different environments- a black spruce forest, collapsed scar bog, and fen.

  3. Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.

    2013-12-01

    In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory

  4. Some n-p (Hg,Cd)Te photodiodes for 8-14 micrometer heterodyne applications

    Science.gov (United States)

    Shanley, J. F.; Flanagan, C. T.

    1980-01-01

    The results describing the dc and CO2 laser heterodyne characteristics of a three element photodiode array and single element and four element photodiode arrays are presented. The measured data shows that the n(+)-p configuration is capable of achieving bandwidths of 475 to 725 MHz and noise equivalent powers of 3.2 x 10 to the minus 20th power W/Hz at 77 K and 1.0 x 10 to the minus 19th power W/Hz at 145 K. The n(+)-n(-)-p photodiodes exhibited wide bandwidths (approximately 2.0 GHz) and fairly good effective heterodyne quantum efficiencies (approximately 13-30 percent at 2.0 GHz). Noise equivalent powers ranging from 1.44 x 10 to the minus 19th power W/Hz to 6.23 x 10 to the minus 20th power W/Hz were measured at 2.0 GHz.

  5. Terahertz heterodyne technology for astronomy and planetary science

    NARCIS (Netherlands)

    Wild, Wolfgang

    2007-01-01

    Heterodyne detection techniques play an important role in high-resolution spectroscopy in astronomy and planetary science. In particular, heterodyne technology in the Terahertz range has rapidly evolved in recent years. Cryogenically cooled receivers approaching quantum-limited sensitivity have been

  6. Development of a phase counter with real-time fringe jump corrector for heterodyne interferometer on LHD

    International Nuclear Information System (INIS)

    Ito, Y.; Tanaka, K.; Tokuzawa, T.; Akiyama, T.; Okajima, S.; Kawahata, K.

    2005-01-01

    Phase counters, which are used with heterodyne interferometers for plasma density measurements, frequently suffer from phase jumping and cause difficulties for data interpretation. An automatic fringe jump corrector (AFJC) circuit has been developed to compensate for fringe jumps. The AFJC can correct phase jumps automatically in real-time. The AFJC, which is integrated on one chip, is installed on the presently working phase counter circuit. As for the specification of this phase counter the intermediate beat signal is 1 MHz, the phase detection range is 31 fringes with phase resolution of 1/80 of a fringe and the response time of 10 μs. The circuit has been tested on the far infrared (FIR) laser interferometer on LHD. The AFJC works fine to correct fringe jumps, when fringe jumps occurred due to the strong density gradient produced by the hydrogen pellet injection

  7. 16 Gb/s QPSK Wireless-over-Fibre Link in 75-110GHz Band Employing Optical Heterodyne Generation and Coherent Detection

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2010-01-01

    We report on the first demonstration of QPSK based Wireless-over-Fibre link in 75-110GHz band with a record capacity of up to 16Gb/s. Photonic wireless signal generation by heterodyne beating of free-running lasers and baud-rate digital coherent detection are employed....

  8. CCAT Heterodyne Instrument Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will extend and proof-out the design concept for a high pixel count (128 pixels in 2 bands) submillimeter-wave heterodyne receiver array instrument for the...

  9. Continuous-Integration Laser Energy Lidar Monitor

    Science.gov (United States)

    Karsh, Jeremy

    2011-01-01

    This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.

  10. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  11. Sensitivity analysis of periodic errors in heterodyne interferometry

    International Nuclear Information System (INIS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-01-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors

  12. Sensitivity analysis of periodic errors in heterodyne interferometry

    Science.gov (United States)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  13. Heterodyne quasi-elastic light-scattering instrument for biomedical diagnostics.

    Science.gov (United States)

    Lebedev, A D; Ivanova, M A; Lomakin, A V; Noskin, V A

    1997-10-20

    The heterodyne technique has a number of advantages over the homodyne technique when an accurate characterization of particle-size distribution (PSD) of heterogeneous systems is required. However, there are problems related to acoustic vibrations that make it difficult to take advantage of the heterodyne technique. An instrument developed for quasi-elastic light scattering (QELS) that uses the optical heterodyning principle is described. Vibration-related problems are considerably reduced because of the incorporation of all optical elements into one solid optical block. A real-time correlation analysis of the photocurrent fluctuations is performed by a PC-embedded analog-to-digital converter card with a digital signal processor. Investigation of the PSD in biological fluids for medical diagnostics is presented as a typical application. A diagnostic analysis of the PSD requires a simultaneous processing of a huge number of QELS data. An original statistical algorithm to accomplish this analysis has been developed. Technical specifications of instrumentation for heterodyne QELS measurement are discussed.

  14. Background free CARS imaging by phase sensitive heterodyne CARS

    NARCIS (Netherlands)

    Jurna, M.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2008-01-01

    In this article we show that heterodyne CARS, based on a controlled and stable phase-preserving chain, can be used to measure amplitude and phase information of molecular vibration modes. The technique is validated by a comparison of the imaginary part of the heterodyne CARS spectrum to the

  15. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements

    Science.gov (United States)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien

    2016-12-01

    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  16. Cost-Efficient DWDM-PON / Mm-Wave Wireless Integration using Coherent Radio-over-Fiber (CRoF)

    DEFF Research Database (Denmark)

    Thakur, Manoj P.; Mikroulis, S.; Renaud, C. C.

    2015-01-01

    This work aims to investigate the performance of millimetre wave (mm-wave) broadband wireless access for seamless integration with the (ultra-dense) WDM infrastructure. By using two uncorrelated lasers, this system concept allows simple implementation that can additionally be improved, if thermally...... for transmission. In this work, we analyze the performance of heterodyne based optical receivers, using OOK and multilevel modulation formats....

  17. Molecular Spectroscopy With a Compact 557-GHz Heterodyne Receiver

    DEFF Research Database (Denmark)

    Neumaier, Philipp F.-X.; Richter, Heiko; Stake, Jan

    2014-01-01

    We report on a heterodyne terahertz spectrometer based on a fully integrated 557-GHz receiver and a digital fast Fourier transform spectrometer. The receiver consists of a chain of multipliers and power amplifiers, followed by a heterostructure barrier varactor tripler that subharmonically pumps...... a membrane GaAs Schottky diode mixer. All sub-components are newly developed and optimized with regard to the overall receiver performance such as noise temperature, power consumption, weight and physical size. The receiver works at room temperature, has a double sideband noise temperature as low as 2000 K...

  18. Four-state discrimination scheme beyond the heterodyne limit

    DEFF Research Database (Denmark)

    Muller, C. R.; Castaneda, Mario A. Usuga; Wittmann, C.

    2012-01-01

    We propose and experimentally demonstrate a hybrid discrimination scheme for the quadrature phase shift keying protocol, which outperforms heterodyne detection for any signal power. The discrimination is composed of a quadrature measurement, feed forward and photon detection.......We propose and experimentally demonstrate a hybrid discrimination scheme for the quadrature phase shift keying protocol, which outperforms heterodyne detection for any signal power. The discrimination is composed of a quadrature measurement, feed forward and photon detection....

  19. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technolog......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...... technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic...

  20. FIR-laser scattering for JT-60

    International Nuclear Information System (INIS)

    Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo

    1977-09-01

    An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)

  1. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...

  2. Coherent Detection in Laser Doppler Velocimeters

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner

    1974-01-01

    , but intelligible particle picture of electromagnetic waves. The analysis is carried out with special emphasis on the heterodyning process in the laser Doppler velocimeter (LDV) because the main purpose of this article is to provide a better understanding of this instrument. An aid for this purpose......The possibility of heterodyning between electromagnetic waves scattered by particles separated in space is explained from a classical point of view and from a quantum mechanical point of view. The last description being carried out using only the Heisenberg uncertainty principle and a rather coarse...

  3. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    Science.gov (United States)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  4. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing

    Science.gov (United States)

    Pontin, A.; Lang, J. E.; Chowdhury, A.; Vezio, P.; Marino, F.; Morana, B.; Serra, E.; Marin, F.; Monteiro, T. S.

    2018-01-01

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  5. Utility of optical heterodyne displacement sensing and laser ultrasonics as in situ process control diagnostic for additive manufacturing

    Science.gov (United States)

    Manzo, Anthony J.; Helvajian, Henry

    2018-04-01

    An in situ process control monitor is presented by way of experimental results and simulations, which utilizes a pulsed laser ultrasonic source as a probe and an optical heterodyne displacement meter as a sensor. The intent is for a process control system that operates in near real time, is nonintrusive, and in situ: A necessary requirement for a serial manufacturing technology such as additive manufacturing (AM). We show that the diagnostic approach has utility in characterizing the local temperature, the area of the heat-affected zone, and the surface roughness (Ra ˜ 0.4 μm). We further demonstrate that it can be used to identify solitary defects (i.e., holes) on the order of 10 to 20 μm in diameter. Moreover, the technique shows promise in measuring properties of materials with features that have a small radius of curvature. We present results for a thin wire of ˜650 μm in diameter. By applying multiple pairs of probe-sensor systems, the diagnostic could also measure the local cooling rate on the scale of 1 μs. Finally, while an obvious application is used in AM technology, then all optical diagnostics could be applied to other manufacturing technologies.

  6. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  7. Tunable Heterodyne Receiver from 100 Micron to 1,000 Micron for Airborne Observations

    Science.gov (United States)

    Roeser, H. P.; Wattenbach, R.; Vanderwal, P.

    1984-01-01

    Interest in high resolution spectrometers for the submillimeter wavelength range from 100 micron to 1,000 micron is mostly stimulated by molecular spectroscopy in radioastronomy and atmospheric physics, and by plasma diagnostic experiments. Schottky diodes in waveguide mixer technology and InSb-hot electron bolometers are successfully used in the 0.5 to a few millimeter range whereas tandem Fabry-Perot spectrometers combined with photoconductive detectors (Ge:Sb and Ge:Ga) are used for the 100 micron range. Recent research on heterodyne spectrometers, with Schottky diodes in an open structure mixer and a molecular laser as local oscillators, which can be used over the whole wavelength range is summarized.

  8. Heterodyne Interferometry in InfraRed at OCA-Calern Observatory in the seventies

    Science.gov (United States)

    Gay, J.; Rabbia, Y.

    2014-04-01

    We report on various works carried four decades ago, so as to develop Heterodyne Interferometry in InfraRed (10 μm) at Calern Observatory (OCA, France), by building an experiment, whose the acronym "SOIRDETE" means "Synthese d'Ouverture en InfraRouge par Detection hETErodyne". Scientific and technical contexts by this time are recalled, as well as basic principles of heterodyne interferometry. The preliminary works and the SOIRDETE experiment are briefly described. Short comments are given in conclusion regarding the difficulties which have prevented the full success of the SOIRDETE experiment.

  9. Multi-Axis Heterodyne Interferometry (MAHI)

    Science.gov (United States)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft

  10. Stability of heterodyne terahertz receivers

    NARCIS (Netherlands)

    Kooi, J.W.; Baselmans, J.J.A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T.M.; Voronov, B.; Gol'tsman, G.

    2006-01-01

    In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO)

  11. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  12. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination....

  13. Validation of separated source frequency delivery for a fiber-coupled heterodyne displacement interferometer

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    The use of optical fibers presents several advantages with respect to free-space optical transport regarding sourcefrequency delivery to individual heterodyne interferometers. Unfortunately, fiber delivery to individual coaxial heterodyne interferometers leads to an increase of (periodic)

  14. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    Science.gov (United States)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  15. Laser and photonic systems design and integration

    CERN Document Server

    Nof, Shimon Y; Cheng, Gary J

    2014-01-01

    New, significant scientific discoveries in laser and photonic technologies, systems perspectives, and integrated design approaches can improve even further the impact in critical areas of challenge. Yet this knowledge is dispersed across several disciplines and research arenas. Laser and Photonic Systems: Design and Integration brings together a multidisciplinary group of experts to increase understanding of the ways in which systems perspectives may influence laser and photonic innovations and application integration.By bringing together chapters from leading scientists and technologists, ind

  16. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  17. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states

  18. Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation.

    Science.gov (United States)

    Kervella, Gaël; Van Dijk, Frederic; Pillet, Grégoire; Lamponi, Marco; Chtioui, Mourad; Morvan, Loïc; Alouini, Mehdi

    2015-08-01

    We report on the stabilization of a 90-GHz millimeter-wave signal generated from a fully integrated photonic circuit. The chip consists of two DFB single-mode lasers whose optical signals are combined on a fast photodiode to generate a largely tunable heterodyne beat note. We generate an optical comb from each laser with a microwave synthesizer, and by self-injecting the resulting signal, we mutually correlate the phase noise of each DFB and stabilize the beatnote on a multiple of the frequency delivered by the synthesizer. The performances achieved beat note linewidth below 30 Hz.

  19. Phase locking of a 1.5 Terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver.

    Science.gov (United States)

    Rabanus, D; Graf, U U; Philipp, M; Ricken, O; Stutzki, J; Vowinkel, B; Wiedner, M C; Walther, C; Fischer, M; Faist, J

    2009-02-02

    We demonstrate for the first time the closure of an electronic phase lock loop for a continuous-wave quantum cascade laser (QCL) at 1.5 THz. The QCL is operated in a closed cycle cryo cooler. We achieved a frequency stability of better than 100 Hz, limited by the resolution bandwidth of the spectrum analyser. The PLL electronics make use of the intermediate frequency (IF) obtained from a hot electron bolometer (HEB) which is downconverted to a PLL IF of 125 MHz. The coarse selection of the longitudinal mode and the fine tuning is achieved via the bias voltage of the QCL. Within a QCL cavity mode, the free-running QCL shows frequency fluctuations of about 5 MHz, which the PLL circuit is able to control via the Stark-shift of the QCL gain material. Temperature dependent tuning is shown to be nonlinear, and of the order of -16 MHz/K. Additionally we have used the QCL as local oscillator (LO) to pump an HEB and perform, again for the first time at 1.5 THz, a heterodyne experiment, and obtain a receiver noise temperature of 1741 K.

  20. Pulsed laser-induced SEU in integrated circuits

    International Nuclear Information System (INIS)

    Buchner, S.; Kang, K.; Stapor, W.J.; Campbell, A.B.; Knudson, A.R.; McDonald, P.; Rivet, S.

    1990-01-01

    The authors have used a pulsed picosecond laser to measure the threshold for single event upset (SEU) and single event latchup (SEL) for two different kinds of integrated circuits. The relative thresholds show good agreement with published ion upset data. The consistency of the results together with the advantages of using a laser system suggest that the pulsed laser can be used for SEU/SEL hardness assurance of integrated circuits

  1. Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer.

    Science.gov (United States)

    Hu, Juju; Hu, Haijiang; Ji, Yinghua

    2010-03-15

    Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

  2. Heterodyne Detection in MM & Sub-mm Waves Developed at Paris Observatory

    Science.gov (United States)

    Beaudin, G.; Encrenaz, P.

    Millimeter and submillimeter-wave observations provide important informations for the studies of atmospheric chemistry and of astrochemistry (molecular clouds, stars formation, galactic study, comets and cosmology). But, these observations depend strongly on instrumentation techniques and on the site quality. New techniques or higher detector performances result in unprecedented observations and sometimes, the observational needs drive developments of new detector technologies, for example, superconducting junctions (SIS mixers) because of its high sensitivity in heterodyne detection in the millimeter and submillimeter wave range (100 GHz - 700 GHz), HEB (Hot Electron Bolometer) mixers which are being developed by several groups for application in THz observations. For the submillimetre wavelengths heterodyne receivers, the local oscillator (LO) is still a critical element. So far, solid state sources are often not powerful enough for most of the applications at millimetre or sub-millimetre wavelengths: large efforts using new planar components and integrated circuits on membrane substrate or new techniques (photomixing, QCL) are now in progress in few groups. The new large projects as SOFIA, Herschel, ALMA and the post-Herschel missions for astronomy, the other projects for aeronomy, meteorology (Megha-tropiques-Saphir) and for planetary science (ROSETTA, Mars exploration, ...), will benefit from the new developments to hunt more molecules.

  3. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  4. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  5. Guidance and control of MIR TDL radiation via flexible hollow metallic rectangular pipes and fibers for possible LHS and other optical system compaction and integration

    Science.gov (United States)

    Yu, C.

    1983-01-01

    Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.

  6. Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector.

    Science.gov (United States)

    Aharon Akram, Avihai; Rozban, Daniel; Kopeika, Natan S; Abramovich, Amir

    2013-06-10

    A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (P(lo)), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.

  7. Heterodyne displacement interferometer, insensitive for input polarization

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error

  8. Herriott Cell Augmentation of a Quadrature Heterodyne Interferometer

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2002-01-01

    A quadrature heterodyne interferometer is augmented with a Herriott Cell multi-pass reflector to increase instrument resolution and enable a separation of the phase shift due to neutral density from room vibrations...

  9. Tracking frequency laser distance gauge

    International Nuclear Information System (INIS)

    Phillips, J.D.; Reasenberg, R.D.

    2005-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components

  10. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  11. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  12. Development of our laser fusion integration simulation

    International Nuclear Information System (INIS)

    Li, J.; Zhai, C.; Li, S.; Li, X.; Zheng, W.; Yong, H.; Zeng, Q.; Hang, X.; Qi, J.; Yang, R.; Cheng, J.; Song, P.; Gu, P.; Zhang, A.; An, H.; Xu, X.; Guo, H.; Cao, X.; Mo, Z.; Pei, W.; Jiang, S.; Zhu, S. P.

    2013-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happening in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (authors)

  13. Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry

    Science.gov (United States)

    Lee, Wooram; Heo, Gunhaeng; You, Kwanho

    The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.

  14. Integrated two-section discrete mode laser

    NARCIS (Netherlands)

    Anandarajah, P.M.; Latkowski, S.; Browning, C.; Zhou, R.; O'Carroll, J.; Phelan, R.; Kelly, B.; O'Gorman, J.; Barry, L.P.

    2012-01-01

    The authors present the design and characterization of a novel integrated two-section discrete mode index patterned diode laser source. The two slotted regions etched into the laser ridge waveguide are formed in the same fabrication step as the ridge, thus avoiding the requirement for complex

  15. Trace gas detection by laser intracavity photothermal spectroscopy

    International Nuclear Information System (INIS)

    Fung, K.H.; Lin, H.h.

    1986-01-01

    A novel laser intracavity photothermal detector is described. In this scheme, sample absorption of the pump laser power takes place within the cavity of a probe He-Ne laser causing modulation in the gain and in turn the output power. Comparison of this intracavity detector with two other photothermal techniques, namely, phase fluctuation optical heterodyne spectroscopy and thermal beam deflection, is made in terms of practicality and sensitivity. For in situ measurements, sensitivity of 0.5 x 10 -7 cm -1 for a probe length of 3 cm has been achieved

  16. Vertical integration of dual wavelength index guided lasers

    NARCIS (Netherlands)

    Karouta, F.; Tan, H.H.; Jagadish, C.; Roy, van B.H.

    1999-01-01

    The vertical integration of two GaAs-based lasers operating at different wavelengths has been achieved with the use of re-growth technology. A V-channel substrate inner stripe structure was used for the bottom laser and a ridge waveguide for the top laser. Both lasers shared a common electrode and

  17. Stability of heterodyne terahertz receivers

    OpenAIRE

    Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.

    2006-01-01

    In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1/f spectral distribution. In a 60 MHz noise bandwidth this results in an Allan varian...

  18. Optoelectronic integrated circuits utilising vertical-cavity surface-emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Zakharov, S D; Fyodorov, V B; Tsvetkov, V V

    1999-01-01

    Optoelectronic integrated circuits with additional optical inputs/outputs, in which vertical-cavity surface-emitting (VCSE) lasers perform the data transfer functions, are considered. The mutual relationship and the 'affinity' between optical means for data transfer and processing, on the one hand, and the traditional electronic component base, on the other, are demonstrated in the case of implementation of three-dimensional interconnects with a high transmission capacity. Attention is drawn to the problems encountered when semiconductor injection lasers are used in communication lines. It is shown what role can be played by VCSE lasers in solving these problems. A detailed analysis is made of the topics relating to possible structural and technological solutions in the fabrication of single lasers and of their arrays, and also of the problems hindering integrating of lasers into emitter arrays. Considerable attention is given to integrated circuits with optoelectronic smart pixels. Various technological methods for vertical integration of GaAs VCSE lasers with the silicon substrate of a microcircuit (chip) are discussed. (review)

  19. Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars - A natural laser

    Science.gov (United States)

    Mumma, M. J.; Buhl, D.; Chin, G.; Deming, D.; Espenak, F.; Kostiuk, T.; Zipoy, D.

    1981-01-01

    Fully resolved intensity profiles of various lines in the carbon dioxide band at 10.4 micrometers have been measured on Mars with an infrared heterodyne spectrometer. Analysis of the line shapes shows that the Mars atmosphere exhibits positive gain in these lines. The detection of natural optical gain amplification enables identification of these lines as a definite natural laser.

  20. The laser integration line (LIL)

    International Nuclear Information System (INIS)

    Roussel, A.

    2006-01-01

    The laser integration line (LIL) was originally built to validate the technological choices made for the Megajoule laser that is being built nearby. The LIL is made up of a single line composed of 8 laser beams. Each laser beam consists of 4 main modules: 1) the impulse generator that delivers a 40 mm * 40 mm square cross section infrared laser beam (λ = 1053 nm); 2) the amplification module that involves 2 steps in power amplifying, the output signal is a laser impulse of 5 ns of time duration carrying an energy of 20.10 3 Joule at a wavelength of 1053 nm; 3) the transport line that leads 4 elementary laser beams through a system of 6 mirrors; and 4) the optical block of the focusing and frequency conversion system (SCF). The purpose of SCF is twofold, first to turn the 4 infrared elementary beams into 4 ultraviolet (λ = 351 nm) beams thanks to 2 KDP (potassium di-hydrogeno-phosphate) crystals, and secondly to merge and focus the 4 elementary beams on a unique spot of the target thanks to diffraction gratings with curved slits. (A.C.)

  1. THz transceiver characterization : LDRD project 139363 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph; Reno, John Louis; Fuller, Charles T.; Wendt, Joel Robert; Lee, Mark; Grine, Albert D.

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

  2. On the sensitivity of heterodyne detectors in far infrared astronomy

    International Nuclear Information System (INIS)

    Bueren, H.G. van

    1976-01-01

    The signal-to-noise ratio of astronomical heterodyne detection infrared spectrographs is considered, taking into account background, linewidth and seeing effects. A comparison with incoherent detector systems is presented. (author)

  3. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  4. On-chip integrated lasers for biophotonic applications

    DEFF Research Database (Denmark)

    Mappes, Timo; Wienhold, Tobias; Bog, Uwe

    Meeting the need of biomedical users, we develop disposable Lab-on-a-Chip systems based on commercially available polymers. We are combining passive microfluidics with active optical elements on-chip by integrating multiple solid-state and liquid-core lasers. While covering a wide range of laser ...

  5. An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz

    Science.gov (United States)

    Siles, Jose V.; Mehdi, Imran; Schlecht, Erich T.; Gulkis, Samuel; Chattopadhyay, Goutam; Lin, Robert H.; Lee, Choonsup; Gill, John J.; Thomas, Bertrand; Maestrini, Alain E.

    2013-01-01

    Heterodyne receivers at submillimeter wavelengths have played a major role in astrophysics as well as Earth and planetary remote sensing. All-solid-state heterodyne receivers using both MMIC (monolithic microwave integrated circuit) Schottky-diode-based LO (local oscillator) sources and mixers are uniquely suited for long-term planetary missions or Earth climate monitoring missions as they can operate for decades without the need for any active cryogenic cooling. However, the main concern in using Schottky-diode-based mixers at frequencies beyond 1 THz has been the lack of enough LO power to drive the devices because 1 to 3 mW are required to properly pump Schottky diode mixers. Recent progress in HEMT- (high-electron-mobility- transistor) based power amplifier technology, with output power levels in excess of 1 W recently demonstrated at W-band, as well as advances in MMIC Schottky diode circuit technology, have led to measured output powers up to 1.4 mW at 0.9 THz. Here the first room-temperature tunable, all-planar, Schottky-diode-based receiver is reported that is operating at 1.2 THz over a wide (˜20%) bandwidth. The receiver front-end (see figure) consists of a Schottky-diode-based 540 to 640 GHz multiplied LO chain (featuring a cascade of W-band power amplifiers providing around 120 to 180 mW at W-band), a 200-GHz MMIC frequency doubler, and a 600-GHz MMIC frequency tripler, plus a biasable 1.2-THz MMIC sub-harmonic Schottky-diode mixer. The LO chain has been designed, fabricated, and tested at JPL and provides around 1 to 1.5 mW at 540 o 640 GHz. The sub-harmonic mixer consists of two Schottky diodes on a thin GaAs membrane in an anti-parallel configuration. An integrated metal insulator metal (MIM) capacitor has been included on-chip to allow dc bias for the Schottky diodes. A bias voltage of around 0.5 V/diode is necessary to reduce the LO power required down to the 1 to 1.5 mW available from the LO chain. The epilayer thickness and doping profiles have

  6. Plasma diagnostics: Detection of laser scattering: Final report, September 1, 1978 to August 31, 1982

    International Nuclear Information System (INIS)

    Dutta, J.M.; Jones, C.R.

    1985-01-01

    Submillimeter (SMM) radiation is the optimum radiation to use in studying some parameters of plasmas produced in Tokamak machines. The ultimate objective has been in constructing a low-noise SMM receiver suitable for application to the diagnosis of Tokamak plasmas. In this connection, a compact, stable SMM laser has been designed and constructed, and its performance as a local oscillator in the heterodyne detection has been tested. The performance of Schottky diodes as mixer elements has been evaluated by utilizing them in a quasi-optical modulation for the heterodyne generation of tunable sidebands

  7. Surface plasmon quantum cascade lasers as terahertz local oscillators

    NARCIS (Netherlands)

    Hajenius, M.; Khosropanah, P.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Barbieri, S.; Dhillon, S.; Filloux, P.; Sirtori, C.; Ritchie, D. A.; Beere, H. E.

    2008-01-01

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto

  8. Transverse mode selection in a monolithic microchip laser

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-11-01

    Full Text Available selection in a monolithic microchip laser Darryl Naidooa,b, Thomas Godinc, Michael Fromagerc, Emmanuel Cagniotc, Nicolas Passillyd, Andrew Forbesa,b and Kamel A?t-Ameurc1 a:CSIR National Laser Centre, P. O. Box 395, Pretoria 0001, South Africa b.... Lett. 77 (2000) 34-36. [14] W. Zhao, J. Tan and L. Qui, ?Improvement of confocal microscope performance by shaped annular beam and heterodyne confocal techniques,? Optik 116 (2005) 111-117. [15] T. Shiina, K. Yoshida, M. Ito and Y. Okamura, ?Long...

  9. Monolithic integration of microfluidic channels and semiconductor lasers

    Science.gov (United States)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  10. Laboratory Heterodyne Spectrometers Operating at 100 and 300 GHZ

    Science.gov (United States)

    Maßen, Jakob; Wehres, Nadine; Hermanns, Marius; Lewen, Frank; Heyne, Bettina; Endres, Christian; Graf, Urs; Honingh, Netty; Schlemmer, Stephan

    2017-06-01

    Two new laboratory heterodyne emission spectrometers are presented that are currently used for high-resolution rotational spectroscopy of complex organic molecules. The room temperature heterodyne receiver operating between 80-110 GHz, as well as the SIS heterodyne receiver operating between 270-370 GHz allow access to two very important frequency regimes, coinciding with Bands 3 and 7 of the ALMA (Atacama Large Millimeter Array) telescope. Taking advantage of recent progresses in the field of mm/submm technology, we build these two spectrometers using an XFFFTS (eXtended Fast Fourier Transform Spectrometer) for spectral acquisition. The instantaneous bandwidth is 2.5 GHz in a single sideband, spread over 32768 channels. Thus, the spectral resolution is about 76 kHz per channel and thus comparable to high resolution spectra from telescopes. Both receivers are operated in double sideband mode resulting in a total instantaneous bandwidth of 5 GHz. The system performances, in particular the noise temperatures and stabilities are presented. Proof-of-concept is demonstrated by showing spectra of methyl cyanide obtained with both spectrometers. While the transition frequencies for this molecule are very well known, intensities of those transitions can also be determined with high accuracy using our new instruments. This additional information shall be exploited in future measurements to improve spectral predictions for astronomical observations. Other future prospects concern the study of more complex organic species, such as ethyl cyanide. These aspects of the new instruments as well as limitations of the two distinct receivers will be discussed.

  11. Active polarization imaging system based on optical heterodyne balanced receiver

    Science.gov (United States)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  12. Thermal crosstalk investigation in an integrated InP multiwavelength laser

    NARCIS (Netherlands)

    Gilardi, G.; Wale, M.J.; Smit, M.K.

    2012-01-01

    We numerically investigate the thermal crosstalk effects in an integrated InP multiwavelength laser. The multiwavelength laser under investigation consists of a number of Distributed Bragg Reflector lasers and an Arrayed Waveguide Grating. Each laser generates a fixed wavelength and the Arrayed

  13. Developments of integrated laser crystals by a direct bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Fukuyama, Hiroyasu; Katsumata, Masaki; Tanaka, Mitsuhiro; Okada, Yukikatu

    2003-01-01

    Laser crystal integration using a neodymium-doped yttrium vanadate (or orthovanadate) laser crystal, and non-doped yttrium vanadate crystals that function as cold fingers has been demonstrated. A newly developed dry etching process was adopted in the preparation for contact of mechanically polished surfaces. In the heat treatment process, temperature optimization was essential to get rid of precipitation of vanadic acid caused by the thermo-chemical reaction in a vacuum furnace. The bonded crystal was studied via optical characteristics, magnified inspections, laser output performances pumped by a CW laser diode. From these experiments, it was clear that the integrated Nd:YVO 4 laser crystal, securing the well-improved thermal conductivity, can increase laser output power nearly twice that of the conventional single crystal which was cracked in high power laser pumping of 10 W due to its intrinsic poor thermal conductivity. (author)

  14. Monitoring of laser material processing using machine integrated low-coherence interferometry

    Science.gov (United States)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  15. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  16. Integrated power conditioning for laser diode arrays

    International Nuclear Information System (INIS)

    Hanks, R.L.; Kirbie, H.C.; Newton, M.A.; Farhoud, M.S.

    1995-01-01

    This compact modulator has demonstated its ability to efficiently and accurately drive a laser diode array. The addition of the crowbar protection circuit is an invaluable addition to the integrated system and is capable of protecting the laser diode array against severe damage. We showed that the correlation between measured data and simulation indicates that our modulator model is valid and can be used as a tool in the design of future systems. The spectrometer measurements that we conducted underline the imprtance of current regulation to stable laser operation

  17. Ion temperature via laser scattering on ion Bernstein waves

    International Nuclear Information System (INIS)

    Wurden, G.A.; Ono, M.; Wong, K.L.

    1981-10-01

    Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO 2 laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (ω approx. less than or equal to 2Ω/sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement

  18. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  19. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  20. Development of SMM wave laser scattering apparatus for the measurements of waves and turbulences in the tokamak plasma

    International Nuclear Information System (INIS)

    Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.

    1980-01-01

    The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)

  1. Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    We demonstrate a new detection scheme for pump-probe and four-wave mixing heterodyne experiments, using balanced detection and a dual-phase lock-in for spectral filtering. The technique allows the use of low repetition-rate laser systems, as is demonstrated on an InGaAsP/InP bulk optical amplifier...... at 1.53 mym. Ultrafast pump-induced changes in the amplitude and phase of the transmitted probe signal are simultaneously measured, going from small to large signal changes and with no need of an absolute phase calibration, showing the versatility and the sensitivity of this detection scheme....... The results for small perturbations are consistent with previous pump-probe experiments reported in literature. Time-resolved four-wave mixing in the absorption regime of the device is measured, and compared with numerical simulations, indicating a 100 fs dephasing time....

  2. Heterodyne Receiver for Laboratory Spectrosocpy of Molecules of Astrophysical Importance

    Science.gov (United States)

    Wehres, Nadine; Lewen, Frank; Endres, Christian; Hermanns, Marius; Schlemmer, Stephan

    2016-06-01

    We present first results of a heterodyne receiver built for high-resolution emission laboratory spectroscopy of molecules of astrophysical interest. The room-temperature receiver operates at frequencies between 80 and 110 GHz, consistent with ALMA band 3. Many molecules have been identified in the interstellar and circumstellar medium at exactly these frequencies by comparing emission spectra obtained from telescopes to high-resolution laboratory absorption spectra. Taking advantage of the recent progresses in the field of mm/submm technology in the astronomy community, we have built a room-temperature emission spectrometer making use of heterodyne receiver technology at an instantaneous bandwidth of currently 2.5 GHz. The system performance, in particular the noise temperature and systematic errors, is presented. The proof-of-concept is demonstrated by comparing the emission spectrum of methyl cyanide to respective absorption spectra and to the literature. Future prospects as well as limitations of the new laboratory receiver for the spectroscopy of complex organic molecules or transient species in discharges will be discussed.

  3. On the Performance of Multihop Heterodyne FSO Systems With Pointing Errors

    KAUST Repository

    Zedini, Emna; Alouini, Mohamed-Slim

    2015-01-01

    This paper reports the end-to-end performance analysis of a multihop free-space optical system with amplify-and-forward (AF) channel-state-information (CSI)-assisted or fixed-gain relays using heterodyne detection over Gamma–Gamma turbulence fading

  4. Development of a fast sweep heterodyne microwave reflectometer; Developpement d`un reflectometre micro-onde heterodyne a balayage ultra rapide

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Ph [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; [Universite de Provence, 13 - Marseille (France)

    1997-12-01

    The density profile of fusion plasmas can be investigated by the reflectometry diagnostic. The measurement principle is based on the radar techniques which calculate the phase shift of a millimeter wave propagating into the plasma and reflected at a cut-off layer. We have tried to describe the density fluctuation effects upon detected signal to understand the disturbing mechanisms which prevent, sometime, the measurement of the phase. First, we have tried to understand the mechanisms and the origin of the turbulence which is responsible for phase disturbance. We point out the role of collisionality {nu}{sup *} and plasma radiation (with the Hugill normalised parameter H) which control the instability. We also demonstrate that the phase delay of the probing wave is very sensitive to the plasma MHD phenomena and is less affected by the micro-turbulence. The second part of this work is the development and the use of a new heterodyne reflectometer. This new diagnostic uses O-mode beam polarisation and works on the 26-36 GHz frequency range. It launches simultaneously into the plasma two frequencies separated by 320 MHz and we can study them separately or with the amplitude modulation technique. It possesses a better sensitivity than the previous homodyne reflectometer and a higher frequency agility. Its heterodyne detection allows us to separate phase and amplitude informations from the detected signal. (author) 93 refs.

  5. Quantum dash based single section mode locked lasers for photonic integrated circuits.

    Science.gov (United States)

    Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois

    2014-05-05

    We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

  6. Picometre and nanoradian heterodyne interferometry and its application in dilatometry and surface metrology

    International Nuclear Information System (INIS)

    Schuldt, T; Kögel, H; Spannagel, R; Braxmaier, C; Gohlke, M; Peters, A; Johann, U; Weise, D

    2012-01-01

    A high-sensitivity heterodyne interferometer implementing differential wavefront sensing for tilt measurement was developed over the last few years. With this setup, using an aluminium breadboard and compact optical mounts with a beam height of 2 cm, noise levels less than 5 pm Hz −1/2 in translation and less than 10 nrad Hz −1/2 in tilt measurement, both for frequencies above 10 −2 Hz, have been demonstrated. Here, a new, compact and ruggedized interferometer setup utilizing a baseplate made of Zerodur, a thermally and mechanically highly stable glass ceramic with a coefficient of thermal expansion (CTE) of 2 × 10 −8 K −1 , is presented. The optical components are fixed to the baseplate using a specifically developed, easy-to-handle, assembly-integration technology based on a space-qualified two-component epoxy. While developed as a prototype for future applications aboard satellite space missions (such as Laser Interferometer Space Antenna), the interferometer is used in laboratory experiments for dilatometry and surface metrology. A first dilatometer setup with a demonstrated accuracy of 10 −7 K −1 in CTE measurement was realized. As it was seen that the accuracy is limited by the dimensional stability of the sample tube support, a new setup was developed utilizing Zerodur as structural material for the sample tube support. In another activity, the interferometer is used for characterization of high-quality mirror surfaces at the picometre level and for high-accuracy two-dimensional surface characterization in a prototype for industrial applications. In this paper, the corresponding designs, their realizations and first measurements of both applications in dilatometry and surface metrology are presented

  7. Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part1 By A. Pavolotsky, And Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part2 By V. Desmaris

    Science.gov (United States)

    Pavolotsky, Alexey

    2018-01-01

    Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.

  8. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  9. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B., E-mail: bjtobias@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y. [University of California at Davis, Davis, California 95616 (United States)

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  10. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  11. Spectral behavior of a terahertz quantum-cascade laser.

    Science.gov (United States)

    Hensley, J M; Montoya, Juan; Allen, M G; Xu, J; Mahler, L; Tredicucci, A; Beere, H E; Ritchie, D A

    2009-10-26

    In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intrapulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.

  12. Photonic integrated circuits : a new approach to laser technology

    NARCIS (Netherlands)

    Piramidowicz, R.; Stopinski, S.T.; Lawniczuk, K.; Welikow, K.; Szczepanski, P.; Leijtens, X.J.M.; Smit, M.K.

    2012-01-01

    In this work a brief review on photonic integrated circuits (PICs) is presented with a specific focus on integrated lasers and amplifiers. The work presents the history of development of the integration technology in photonics and its comparison to microelectronics. The major part of the review is

  13. VCSEL Scaling, Laser Integration on Silicon, and Bit Energy

    Science.gov (United States)

    2017-03-01

    especially the laser. Highly compact directly modulated lasers ( DMLs ) have been researched to meet this goal. The most favored technology will likely be...question of which achieves lower bit energy, a DML or a continuous-wave (CW) laser coupled to an integrated modulator. Transceiver suppliers are also...development that can utilize high efficiency DMLs that reach very high modulation speed. Oxide-VCSELs [1] do not yet take full advantage of the

  14. Collective CO2 laser scattering on moving discharge structures in the submillimeter range in a magnetohydrodynamic generator

    NARCIS (Netherlands)

    de Haas, J.C.M.; Schenkelaars, H.J.W.; vd Mortel, P.J.; Schram, D.C.; Veefkind, A.

    1986-01-01

    Collective scattering of CO/sub 2/ laser light on electrons is used to determine the radial scale length of the discharge structures occurring in a closed cycle magnetohydrodynamic generator. Heterodyne detection of scattered radiation is used to obtain a spatial resolution in the submillimeter

  15. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    Science.gov (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.

    2018-03-01

    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  16. Side-band-separating heterodyne mixer for band 9 of ALMA.

    NARCIS (Netherlands)

    Mena, F. P.; Baryshev, A. M.; Kooi, J.; Lodewijk, C. F. J.; Gerlofsma, G.; Hesper, R.; Wild, W.; Shen, XC; Lu, W; Zhang, J; Dou, WB

    2006-01-01

    Here we present the realization of a side-band-separating (2SB) heterodyne mixer for the frequency range from 602 to 720 GHz (corresponding to ALMA band 9). The mixer, in brief, consists of a quadrature hybrid, two LO injectors, two SIS junctions, and three dumping loads. All the parts were modeled

  17. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From the measure...... the measurements we derive the small-signal alpha-parameter and the time-dependent chirp for different operation conditions.......In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  18. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.

    Science.gov (United States)

    Vannahme, Christoph; Klinkhammer, Sönke; Lemmer, Uli; Mappes, Timo

    2011-04-25

    Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in the field or at the point-of-care, a plastic lab-on-a-chip with integrated organic semiconductor lasers is presented here. First order distributed feedback lasers based on the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM), deep ultraviolet induced waveguides, and a nanostructured microfluidic channel are integrated into a poly(methyl methacrylate) (PMMA) substrate. A simple and parallel fabrication process is used comprising thermal imprint, DUV exposure, evaporation of the laser material, and sealing by thermal bonding. The excitation of two fluorescent marker model systems including labeled antibodies with light emitted by integrated lasers is demonstrated.

  19. Improved synthetic-heterodyne Michelson interferometer vibrometer using phase and gain control feedback.

    Science.gov (United States)

    Galeti, José Henrique; Kitano, Cláudio; Connelly, Michael J

    2015-12-10

    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity measurement using interferometric sensors as it can provide an output signal which is immune to interferometric drift. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In conventional synthetic-heterodyne demodulation schemes, to obtain the dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a new synthetic-heterodyne demodulation method is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly less sensitive to the received optical power. In addition, the application of two independent phase and gain feedback loops is used to compensate for the nonideal gain and phase response of the anti-aliasing filter required for the signal acquisition of the received wideband interferometer signal. The efficacy of the improved system is demonstrated by measuring the displacement sensitivity frequency response and linearity of a Piezoelectric Mirror-Shifter (PMS) over a range of 200 Hz-9 kHz. In addition, the system is used to measure the response of the PMS to triangular and impulse type stimuli. The experimental results show excellent agreement with measurements taken using two independent industry standard calibration methods.

  20. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    International Nuclear Information System (INIS)

    Fu, C.H.; Liu, J.F.; Guo, Andrew

    2015-01-01

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  1. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C.H., E-mail: cfu5@crimson.ua.edu [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Liu, J.F. [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Guo, Andrew [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); College of Arts and Science, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-10-30

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  2. Dielectrophoretic focusing integrated pulsed laser activated cell sorting

    Science.gov (United States)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu

    2017-08-01

    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  3. The JET ECE heterodyne radiometer and investigations of fast phenomena

    International Nuclear Information System (INIS)

    Bartlett, D.V.; Porte, L.

    1993-01-01

    In this paper, the design and performance characteristics of the JET heterodyne radiometer are reviewed, and some novel aspects of the instrument are described. Areas where the radiometer could benefit from further improvement are highlighted, and those improvements currently in progress are discussed. Some measurements which demonstrate the radiometer's power as a diagnostic of fast phenomena are presented. (orig.)

  4. Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer.

    Science.gov (United States)

    Ravaro, M; Manquest, C; Sirtori, C; Barbieri, S; Santarelli, G; Blary, K; Lampin, J-F; Khanna, S P; Linfield, E H

    2011-10-15

    We report the heterodyne detection and phase locking of a 2.5 THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10 mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80 dB of signal-to-noise ratio in a bandwidth of 1 Hz.

  5. Integration of multiwavelength lasers with fast electro-optical modulators

    NARCIS (Netherlands)

    Besten, den J.H.

    2004-01-01

    Photonic Integrated Circuits (PICs) are of key importance in Wavelength-Division Multiplexing (WDM) networks because of their reduced volume and packaging costs compared to discrete components. The research described in this thesis was focussed on the integration of WDM-lasers and Radio-Frequency

  6. Compact Integrated DBR Laser Source for Absorption Lidar Instruments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate a compact integrated laser module that addresses the requirements of the laser source in a water vapor differential absorption lidar (DIAL)...

  7. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    OpenAIRE

    Riccardo Cucini; Andrea Battistoni; Filippo Bencivenga; Alessandro Gessini; Riccardo Mincigrucci; Erika Giangrisostomi; Emiliano Principi; Flavio Capotondi; Emanuele Pedersoli; Michele Manfredda; Maya Kiskinova; Claudio Masciovecchio

    2015-01-01

    Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first resu...

  8. Infrared laser diagnostics for ITER

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Richards, R.K.; Ma, C.H.

    1995-01-01

    Two infrared laser-based diagnostics are under development at ORNL for measurements on burning plasmas such as ITER. The primary effort is the development of a CO 2 laser Thomson scattering diagnostic for the measurement of the velocity distribution of confined fusion-product alpha particles. Key components of the system include a high-power, single-mode CO 2 pulsed laser, an efficient optics system for beam transport and a multichannel low-noise infrared heterodyne receiver. A successful proof-of-principle experiment has been performed on the Advanced Toroidal Facility (ATF) stellerator at ORNL utilizing scattering from electron plasma frequency satellites. The diagnostic system is currently being installed on Alcator C-Mod at MIT for measurements of the fast ion tail produced by ICRH heating. A second diagnostic under development at ORNL is an infrared polarimeter for Faraday rotation measurements in future fusion experiments. A preliminary feasibility study of a CO 2 laser tangential viewing polarimeter for measuring electron density profiles in ITER has been completed. For ITER plasma parameters and a polarimeter wavelength of 10.6 microm, a Faraday rotation of up to 26 degree is predicted. An electro-optic polarization modulation technique has been developed at ORNL. Laboratory tests of this polarimeter demonstrated a sensitivity of ≤ 0.01 degree. Because of the similarity in the expected Faraday rotation in ITER and Alcator C-Mod, a collaboration between ORNL and the MIT Plasma Fusion Center has been undertaken to test this polarimeter system on Alcator C-Mod. A 10.6 microm polarimeter for this measurement has been constructed and integrated into the existing C-Mod multichannel two-color interferometer. With present experimental parameters for C-Mod, the predicted Faraday rotation was on the order of 0.1 degree. Significant output signals were observed during preliminary tests. Further experiment and detailed analyses are under way

  9. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  10. Evidence for high-altitude haze thickening on the dark side of Venus from 10-micron heterodyne spectroscopy of CO2

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M.

    1982-01-01

    Infrared heterodyne spectroscopy provides data for isolated spectral lines with a spectral resolution which is small compared to the Doppler width. Heterodyne spectroscopy of CO2 lines near 10 micrometers was first reported for the atmosphere of Venus by Betz et al. (1976). The present investigation is concerned with observations of two absorption lines of (C-12)(O-16)2 conducted with an infrared heterodyne spectrometer interfaced with a solar telescope. The 10.8598-micrometer P(44) line was observed on the day side of Venus and the 10.3337-micrometer R(8) line was observed on the night side. It is shown that continuous opacity due to haze, and possible departures from vibrational LTE in CO2, are crucial considerations in fitting the observed lines.

  11. Measurement and simulation of laser power noise in GEO 600

    International Nuclear Information System (INIS)

    Smith, J R; Degallaix, J; Freise, A; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B

    2008-01-01

    This paper describes measurements and simulations related to power fluctuations of the laser light in the GEO 600 laser-interferometric gravitational wave detector. Measurements of the relative fluctuations of the light power at three different ports of the main interferometer are presented. In addition, measurements and simulations of the coupling transfer functions from power fluctuations at the input laser to these ports are shown. The transfer function from the input laser to the output port of the interferometer is found to be non-trivial. Despite this, the numerical simulation produces an excellent match to it and gives insight to the mechanisms leading to the complicated shape. Furthermore, the coupling transfer functions of power fluctuations to the main (heterodyne) detector outputs are measured and simulated. These are used to evaluate the level with which laser power fluctuations contribute to the overall noise level of the instrument

  12. Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera

    Science.gov (United States)

    Dorrington, A. A.; Cree, M. J.; Payne, A. D.; Conroy, R. M.; Carnegie, D. A.

    2007-09-01

    We have developed a full-field solid-state range imaging system capable of capturing range and intensity data simultaneously for every pixel in a scene with sub-millimetre range precision. The system is based on indirect time-of-flight measurements by heterodyning intensity-modulated illumination with a gain modulation intensified digital video camera. Sub-millimetre precision to beyond 5 m and 2 mm precision out to 12 m has been achieved. In this paper, we describe the new sub-millimetre class range imaging system in detail, and review the important aspects that have been instrumental in achieving high precision ranging. We also present the results of performance characterization experiments and a method of resolving the range ambiguity problem associated with homodyne and heterodyne ranging systems.

  13. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    Science.gov (United States)

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application. PMID:22164040

  14. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    Science.gov (United States)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data

  15. Integrated semiconductor twin-microdisk laser under mutually optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  16. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library

    Science.gov (United States)

    d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan

    2017-07-01

    A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library FexSiyGe100-x-y (20 deposited by wedge-type multi-layer method on a 100 mm diameter sapphire wafer offering more than 300 analysis areas of different ternary alloy compositions.

  17. A low-cost, portable, laser heterodyne radiometer for validating passive satellite observations of column carbon dioxide and methane

    Science.gov (United States)

    Wilson, E. L.; DiGregorio, A.; Villanueva, G. L.; Miletti, K.; Grunberg, C.; Grunberg, M.; Floyd, M.; Menendez, A. R.

    2017-12-01

    We present a low-cost, portable, miniaturized, laser heterodyne radiometer (mini-LHR) capable of measuring column carbon dioxide (CO2) and methane (CH4) in remote locations to validate passive satellite observations. A benefit of the portability is that mini-LHR instruments can be calibrated and compared site-by-side to quantify any internal biases, or any biases in stationary column instruments such as those in the total carbon column observing network (TCCON). This is the latest iteration of an instrument that has been under development by our team since 2009. During our recent Interdisciplinary Science (IDS) effort that involved measuring carbon emissions over thawing permafrost, it became clear that our mini-LHR needed to be redesigned to be significantly smaller, lighter, and to operate from a small solar panel so that it could be easily carried to the field sites located within the Bonanza Creek Research Forest near Fairbanks, AK. The boreal peatland sites at Bonanza Creek have forests that are underlain by cold soils, permafrost, collapse scar thermokarst bogs resulting from permafrost thaw, and rich fens with various underlying sediments and gravels that are not frozen. While these sites are extremely interesting for their role in carbon storage, the practical issue with these sites is that they are very wet (the fen site for example is periodically under several inches of water) and the trails to reach these sites are extremely muddy, narrow, and populated with swarms of biting insects. The soils at these sites are delicate and easily damaged by excessive foot traffic. They are also prone to periodic wild fires - making permanent column instrument installations impractical. Here, we compare data from the permafrost field work as well as data collected as part of the Hawai'i Space Exploration Analog and Simulation (Hi-SEAS) project where crewmembers are currently testing the mini-LHR on an isolated Mars-like site on the Mauna Loa side of the saddle area on

  18. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    OpenAIRE

    Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang

    2016-01-01

    We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...

  19. An optoelectronic integrated device including a laser and its driving circuit

    Energy Technology Data Exchange (ETDEWEB)

    Matsueda, H.; Nakano, H.; Tanaka, T.P.

    1984-10-01

    A monolithic optoelectronic integrated circuit (OEIC) including a laser diode, photomonitor and driving and detecting circuits has been fabricated on a semi-insulating GaAs substrate. The OEIC has a horizontal integrating structure which is suitable for realising high-density multifunctional devices. The fabricating process and the static and dynamic characteristics of the optical and electronic elements are described. The preliminary results of the co-operative operation of the laser and its driving circuit are also presented.

  20. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    Energy Technology Data Exchange (ETDEWEB)

    Olyaee, Saeed; Hamedi, Samaneh, E-mail: s_olyaee@srttu.edu [Nano-photonics and Optoelectronics Research Laboratory (NORLab), Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University (SRTTU), Lavizan, 16788, Tehran (Iran, Islamic Republic of)

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  1. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    International Nuclear Information System (INIS)

    Olyaee, Saeed; Hamedi, Samaneh

    2011-01-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  2. Advanced Technologies for Heterodyne Radio Astronomy Instrumentation - Part1 By A. Pavolotsky, and Advanced Technologies for Heterodyne Radio Astronomy Instrumentation - Part2 By V. Desmaris

    Science.gov (United States)

    Desmaris, Vincent

    2018-01-01

    We present the advanced micro/nano technological engineering at the atomic level producing state-of-the-art epitaxial NbN thin-films on GaN buffer layers. Furthermore, we report the outstanding performance of the hot electron bolometers fabricated on epitaxial NbN thin films on GaN buffer layers. Finally we present advanced passive devices such as waveguide hybrids, IF hybrids and combiners for the realization of heterodyne THz receivers.

  3. Study of the interaction between heavy ions and integrated circuits using a pulsed laser beam

    International Nuclear Information System (INIS)

    Lewis, D.; Fouillat, P.; Pouget, V.; Lapuyade, H.

    2002-01-01

    A new pulsed laser beam equipment dedicated to the characterization of integrated circuit is presented. Using ultra-short laser pulses is a convenient way to simulate experimentally the spatial environment of integrated circuits when interactions with heavy ions occur. This experimental set-up can be considered as a complementary tool for particle accelerators to evaluate the hardness assurance of integrated circuits for space applications. These particles generate temporally electrical disturbance called Single Event Effect (SEE). The theoretical approach of an equivalence between heavy ions and a laser pulses is discussed. The experimental set-up and some relevant operational methodologies are presented. Experimental results demonstrate that the induced electrical responses due to an heavy ion or a laser pulse are quite similar. Some sensitivity mappings of integrated circuits provided by this test bench illustrate the capabilities and the limitations of this laser-based technique. Contrary to the particle accelerators, it provides useful information concerning the spatial and temporal dependences of SEE mechanisms. (authors)

  4. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  5. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    Science.gov (United States)

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  6. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    International Nuclear Information System (INIS)

    Weichert, C; Köchert, P; Köning, R; Flügge, J; Andreas, B; Kuetgens, U; Yacoot, A

    2012-01-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction. (paper)

  7. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    Science.gov (United States)

    Weichert, C.; Köchert, P.; Köning, R.; Flügge, J.; Andreas, B.; Kuetgens, U.; Yacoot, A.

    2012-09-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction.

  8. Laser metrology for a next generation gravimetric mission

    Science.gov (United States)

    Mottini, Sergio; Biondetti, Giorgio; Cesare, Stefano; Castorina, Giuseppe; Musso, Fabio; Pisani, Marco; Leone, Bruno

    2017-11-01

    Within the ESA technology research project "Laser Interferometer High Precision tracking for LEO", Thales Alenia Space Italia is developing a laser metrology system for a Next Generation Gravimetric Mission (NGGM) based on satellite-to-satellite tracking. This technique is based on the precise measurement of the displacement between two satellites flying in formation at low altitude for monitoring the variations of Earth's gravity field at high resolution over a long time period. The laser metrology system that has been defined for this mission consists of the following elements: • an heterodyne Michelson interferometer for measuring the distance variation between retroreflectors positioned on the two satellites; • an angle metrology for measuring the orientation of the laser beam in the reference frames of the two satellites; • a lateral displacement metrology for measuring the deviations of the laser beam axis from the target retro-reflector. The laser interferometer makes use of a chopped measurement beam to avoid spurious signals and nonlinearity caused by the unbalance between the strong local beam and the weak return beam. The main results of the design, development and test activities performed on the breadboard of the metrology system are summarized in this paper.

  9. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  10. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  11. Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej

    2016-01-01

    Roč. 16, č. 9 (2016), 1428:1-11 ISSN 1424-8220 R&D Projects: GA ČR(CZ) GPP102/12/P962; GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Fabry-Perot cavity * unbalance Michelson interferometer * noise suppression * heterodyne interferometry * displacement measurement Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.677, year: 2016

  12. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    Directory of Open Access Journals (Sweden)

    Riccardo Cucini

    2015-01-01

    Full Text Available Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first results from extreme ultra violet transient grating experiments is also discussed.

  13. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  14. Design of a side-band-separating heterodyne mixer for band 9 of ALMA

    NARCIS (Netherlands)

    Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W

    2005-01-01

    A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of

  15. Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Tannenwald, P.E.; Clifton, B.J.; Parker, C.D.; Fitzgerald, W.D.; Erickson, N.R.

    1978-01-01

    We have made heterodyne radiometric measurements with GaAs Schottky diode mixers, mounted in a corner-reflector configuration, over the spectral range 170 μm to 1 mm. At 400 μm, system noise temperatures of 9700 K DSB (NEP=1.4 x 10 - 19 W/Hz) and mixer noise temperatures of 5900 K have been achieved. This same quasioptical mixer has also been used to generate 10 - 7 W of tunable radiation suitable for spectroscopic applications

  16. A 24 GHz integrated SiGe BiCMOS vital signs detection radar front-end

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Johansen, Tom K.; Zhurbenko, Vitaliy

    2013-01-01

    In this paper a 24 GHz integrated front-end transceiver for vital signs detection (VSD) radars is described. The heterodyne radar transceiver integrates LO buffering and quadrature splitting circuits, up- and down-conversion SSB mixers and two cascaded receiver LNA's. The chip has been manufactured...

  17. The Evaluation of Surface Integrity During Machining of Inconel 718 with Various Laser Assistance Strategies

    Directory of Open Access Journals (Sweden)

    Wojciechowski Szymon

    2017-01-01

    Full Text Available The paper is focused on the evaluation of surface integrity formed during turning of Inconel 718 with the application of various laser assistance strategies. The primary objective of the work was to determine the relations between the applied machining strategy and the obtained surface integrity, in order to select the effective cutting conditions allowing the obtainment of high surface quality. The carried out experiment included the machining of Inconel 718 in the conventional turning conditions, as well as during the continuous laser assisted machining and sequential laser assistance. The surface integrity was evaluated by the measurements of machined surface topographies, microstructures and the microhardness. Results revealed that surface integrity of Inconel 718 is strongly affected by the selected machining strategy. The significant improvement of the surface roughness formed during machining of Inconel 718, can be reached by the application of simultaneous laser heating and cutting (LAM.

  18. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.

    Science.gov (United States)

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.

  19. Laser linewidth narrowing using transient spectral hole burning

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics and Astronomy, 2130 Fulton Street, University of San Francisco, San Francisco, CA 94117 (United States)

    2014-08-01

    We demonstrate significant narrowing of laser linewidths by high optical density materials with inhomogeneously broadened absorption. As a laser propagates through the material, the nonlinear spectral hole burning process causes a progressive self-filtering of the laser spectrum, potentially reaching values less than the homogeneous linewidth. The transient spectral hole dynamically adjusts itself to the instantaneous frequency of the laser, passively suppressing laser phase noise and side modes over the entire material absorption bandwidth without the need for electronic or optical feedback to the laser. Wide bandwidth laser phase noise suppression was demonstrated using Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3} at 1.5 μm by employing time-delayed self-heterodyne detection of an external cavity diode laser to study the spectral narrowing effect. Our method is not restricted to any particular wavelength or laser system and is attractive for a range of applications where ultra-low phase noise sources are required. - Highlights: • We demonstrate significant laser linewidths narrowing by high optical density materials. • Nonlinear spectral hole burning causes progressive self-filtering of laser spectrum. • Filter dynamically adjusts itself to the instantaneous frequency of the laser. • Demonstrated at 1.5 μm in Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3}. • Linewidth filtering is not restricted to any particular wavelength or laser system.

  20. Raman laser spectrometer optical head: qualification model assembly and integration verification

    Science.gov (United States)

    Ramos, G.; Sanz-Palomino, M.; Moral, A. G.; Canora, C. P.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; Lopez-Reyes, G.; Rull, F.

    2017-08-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.

  1. Multichannel heterodyne radiometers with fast-scanning backward-wave oscillators for ECE measurement on HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Poznyak, V.I.; Ploskirev, G.; Kalupin, D.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Gao, X.; Wan, B.N.; Zhang, X.D.; Wang, K.J.; Kuang, G.L.

    2001-01-01

    Two sets of fast-scanning heterodyne radiometer receiver systems employing backward-wave oscillators (BWOs) in 78-118 and 118-178 GHz were developed and installed for electron cyclotron emission (ECE) measurements on HT-7 superconducting tokamak. The double sideband (DSB) radiometer in 78-118 GHz measures 16 ECE frequency points with a scanning time period of 0.65 ms. The other radiometer in 118-178 GHz consists of one independent channel of DSB heterodyne receiver with intermediate frequency (IF) of 100-500 MHz and two channels of single sideband (SSB) heterodyne receiver that are sensitive to upper sideband and lower sideband individually; the IF frequency of the SSB channels are 1.5 GHz around the local oscillator frequencies with 1 GHz bandwidth. By employing a novel design, this unique radiometer measures 3 ECE frequency points at each of the 16 local oscillator frequency points in 118-178 GHz, and the full band can be swept in 0.65 ms period, thus the radiometer measures 48 ECE frequency points in 0.65 ms in principle. Each of the local oscillators' frequency points can be preset by program to meet specific physics interests. Horizontal view of ECE was installed to measure electron temperature profiles; vertically viewing optics along a perpendicular chord was also installed to study nonthermal ECE spectra. Preliminary measurement results were presented during ohmic and pellet injection plasmas

  2. Integration of the Aurora KrF ICF laser system at Los Alamos

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Blair, L.S.

    1988-01-01

    The Aurora laser system, under construction at the Los Alamos National Laboratory for the past few years, is now being integrated into a working system for examining the applicability of high-power KrF lasers to inertial confinement fusion (ICF). The design principles of the system have been described in detail in earlier publications and conferences. Multikilojoule 248-nm 5-ns duration laser pulses, which have been derived from angular-multiplexed electron-beam-driven KrF amplifiers, are to be delivered to ICF targets when the system is fully integrated. The authors describe the progress of the Aurora system toward the goal of delivering energy (MkJ/48 pulses stacked into one 5-ns pulse/200-μm spot) to ICF targets. Integrated performance to date of the front end optical multiplexer/demultiplexer e-beam-driven amplifiers and alignment hardware are discussed in particular. They have concentrated on the demonstration of system integration at a modest (--100-J) level of energy on-target (without the final amplifier stage). They discuss the amplifier gain measurements, the extraction of energy from a chain of three e-beam-driven machines, and progress toward the delivery of on-target energy

  3. Integrated numerical modeling of a laser gun injector

    International Nuclear Information System (INIS)

    Liu, H.; Benson, S.; Bisognano, J.; Liger, P.; Neil, G.; Neuffer, D.; Sinclair, C.; Yunn, B.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ''conditioning for final bunching'' is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittance and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source

  4. Power Measurements for Microvision, Inc., Aircrew Integrated Helmet System Scanning Laser Helmet-Mounted Display

    National Research Council Canada - National Science Library

    Rash, Clarence

    2002-01-01

    ...) technology based on scanning lasers. Under this program, Microvision, Inc., Bothell, Washington, has developed a scanning laser HMD prototype for use with the Aircrew Integrated Helmet System (AIHS...

  5. High-Throughput Multiple Dies-to-Wafer Bonding Technology and III/V-on-Si Hybrid Lasers for Heterogeneous Integration of Optoelectronic Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Xianshu eLuo

    2015-04-01

    Full Text Available Integrated optical light source on silicon is one of the key building blocks for optical interconnect technology. Great research efforts have been devoting worldwide to explore various approaches to integrate optical light source onto the silicon substrate. The achievements so far include the successful demonstration of III/V-on-Si hybrid lasers through III/V-gain material to silicon wafer bonding technology. However, for potential large-scale integration, leveraging on mature silicon complementary metal oxide semiconductor (CMOS fabrication technology and infrastructure, more effective bonding scheme with high bonding yield is in great demand considering manufacturing needs. In this paper, we propose and demonstrate a high-throughput multiple dies-to-wafer (D2W bonding technology which is then applied for the demonstration of hybrid silicon lasers. By temporarily bonding III/V dies to a handle silicon wafer for simultaneous batch processing, it is expected to bond unlimited III/V dies to silicon device wafer with high yield. As proof-of-concept, more than 100 III/V dies bonding to 200 mm silicon wafer is demonstrated. The high performance of the bonding interface is examined with various characterization techniques. Repeatable demonstrations of 16-III/V-die bonding to pre-patterned 200 mm silicon wafers have been performed for various hybrid silicon lasers, in which device library including Fabry-Perot (FP laser, lateral-coupled distributed feedback (LC-DFB laser with side wall grating, and mode-locked laser (MLL. From these results, the presented multiple D2W bonding technology can be a key enabler towards the large-scale heterogeneous integration of optoelectronic integrated circuits (H-OEIC.

  6. Integration of quantum cascade lasers and passive waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William [MIT Lincoln Laboratory, 244 Wood St, Lexington, Massachusetts 02420 (United States)

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  7. Integration of quantum cascade lasers and passive waveguides

    International Nuclear Information System (INIS)

    Montoya, Juan; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William

    2015-01-01

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm −1 in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  8. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  9. Laser-assisted patterning of double-sided adhesive tapes for optofluidic chip integration

    Science.gov (United States)

    Zamora, Vanessa; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Havlik, George; Queisser, Marco; Schröder, Henning

    2018-02-01

    Portable high-sensitivity biosensors exhibit a growing demand in healthcare, food industry and environmental monitoring sectors. Optical biosensors based on photonic integration platforms are attractive candidates due to their high sensitivity, compactness and multiplexing capabilities. However, they need a low-cost and reliable integration with the microfluidic system. Laser-micropatterned double-sided biocompatible adhesive tapes are promising bonding layers for hybrid integration of an optofluidic biochip. As a part of the EU-PHOCNOSIS project, double-sided adhesive tapes have been proposed to integrate the polymer microfluidic system with the optical integrated waveguide sensor chip. Here the adhesive tape should be patterned in a micrometer scale in order to create an interaction between the sample that flows through the polymer microchannel and the photonic sensing microstructure. Three laser-assisted structuring methods are investigated to transfer microchannel patterns to the adhesive tape. The test structure design consists of a single channel with 400 μm wide, 30 mm length and two circular receivers with 3 mm radius. The best structuring results are found by using the picosecond UV laser where smooth and straight channel cross-sections are obtained. Such patterned tapes are used to bond blank polymer substrates to blank silicon substrates. As a proof of concept, the hybrid integration is tested using colored DI-water. Structuring tests related to the reduction of channel widths are also considered in this work. The use of this technique enables a simple and rapid manufacturing of narrow channels (50-60 μm in width) in adhesive tapes, achieving a cheap and stable integration of the optofluidic biochip.

  10. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers

    Science.gov (United States)

    Chen, Hao; Li, Irene Ling; Ruan, Shuangchen; Guo, Tuan; Yan, Peiguang

    2016-08-01

    We propose two schemes for achieving tungsten disulfide (WS2)-based saturable absorber (SA) and saturable absorber mirror (SAM). By utilizing the pulsed laser deposition method, we grow the WS2 film on microfiber to form an evanescent field interaction SA device. Incorporating this SA device into a common ring-cavity erbium-doped fiber (EDF) laser, stably passive mode-locking can be achieved with pulse duration of 395 fs and signal-to-noise ratio of 64 dB. We also produce a fiber tip integrated WS2-SAM by utilizing the magnetron sputtering technique (MST). This new type of SAM combines the WS2 layer as SA and gold mirror as high reflective mirror. By employing the WS2-SAM, we construct the linear-cavity EDF lasers, and achieve passive mode-locking operation with pulse duration of ˜1 ns and SNR of ˜61 dB. We further achieve stably passive Q-switching operation with pulse duration of ˜160 ns and pulse energy of 54.4 nJ. These fiber-integrated SAs and SAMs have merits of compactness and reliability, paving the way for the development of new photonic devices such as SAs for pulsed laser technology.

  11. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent

  12. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  13. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Yi; Hsieh, Hung-Lin; Lerondel, Gilles; Deturche, Regis; Lu, Mini-Pei; Chen, Jyh-Chen

    2011-03-20

    We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

  14. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  15. The Thomson scattering experiment pulsed by CO2 laser in FT

    International Nuclear Information System (INIS)

    Bartolini, L.; Fornetti, G.; Nardi, M.; Occhionero, G.; Ferri de Collibus, M.

    1987-01-01

    An experiment carried out to measure the plasma ion temperature Tsub(i) in the tokamak FT in Frascati by Collective Thomson Scattering. A tandem laser system generates two single mode beams (10.6μ) one of which is pulsed and amplified up to levels of 5 MW, 1μs and actively frequency locked to a second continuous wave low pressure CO 2 laser. The pulse beam crosses the plasma and the forward scattered light is collected at angles between 1 degrees centigrade and 1.6 degrees centigrade. An heterodyne technique in which the c.w. beam is the local oscillator is used to measure the Doppler enlarged spectral density of the signal. The experimental apparatus is described and the results are reported and discussed

  16. High-contrast gratings for long-wavelength laser integration on silicon

    Science.gov (United States)

    Sciancalepore, Corrado; Descos, Antoine; Bordel, Damien; Duprez, Hélène; Letartre, Xavier; Menezo, Sylvie; Ben Bakir, Badhise

    2014-02-01

    Silicon photonics is increasingly considered as the most promising way-out to the relentless growth of data traffic in today's telecommunications infrastructures, driving an increase in transmission rates and computing capabilities. This is in fact challenging the intrinsic limit of copper-based, short-reach interconnects and microelectronic circuits in data centers and server architectures to offer enough modulation bandwidth at reasonable power dissipation. In the context of the heterogeneous integration of III-V direct-bandgap materials on silicon, optics with high-contrast metastructures enables the efficient implementation of optical functions such as laser feedback, input/output (I/O) to active/passive components, and optical filtering, while heterogeneous integration of III-V layers provides sufficient optical gain, resulting in silicon-integrated laser sources. The latest ensure reduced packaging costs and reduced footprint for the optical transceivers, a key point for the short reach communications. The invited talk will introduce the audience to the latest breakthroughs concerning the use of high-contrast gratings (HCGs) for the integration of III-V-on-Si verticalcavity surface-emitting lasers (VCSELs) as well as Fabry-Perot edge-emitters (EELs) in the main telecom band around 1.55 μm. The strong near-field mode overlap within HCG mirrors can be exploited to implement unique optical functions such as dense wavelength division multiplexing (DWDM): a 16-λ100-GHz-spaced channels VCSEL array is demonstrated. On the other hand, high fabrication yields obtained via molecular wafer bonding of III-V alloys on silicon-on-insulator (SOI) conjugate excellent device performances with cost-effective high-throughput production, supporting industrial needs for a rapid research-to-market transfer.

  17. Integrated code development for studying laser driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Hideaki; Nagatomo, Hideo; Sunahara, Atsusi; Ohnishi, Naofumi; Naruo, Syuji; Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Present status and plan for developing an integrated implosion code are briefly explained by focusing on motivation, numerical scheme and issues to be developed more. Highly nonlinear stage of Rayleigh-Taylor instability of ablation front by laser irradiation has been simulated so as to be compared with model experiments. Improvement in transport and rezoning/remapping algorithms in ILESTA code is described. (author)

  18. Simultaneous distributed strain and temperature sensing based on combined Raman–Brillouin scattering using Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Bolognini, Gabriele; Soto, Marcelo A; Di Pasquale, Fabrizio

    2010-01-01

    An investigation is performed of the possibility of achieving simultaneous distributed strain and temperature sensing based on hybrid Raman–Brillouin scattering with the use of multi-wavelength optical sources such as common Fabry–Perot (FP) lasers. By employing a self-heterodyne detection scheme based on a multi-wavelength optical local oscillator, the benefits of FP lasers are fully exploited, allowing for high-power Raman intensity measurements and a simultaneous high-accuracy detection of the Brillouin frequency shift parameter for each FP longitudinal mode. Experimental results point out a significant reduction of coherent Rayleigh noise, and highlight the enhanced performance in hybrid Raman–Brillouin sensing when using FP lasers; in particular using standard FP lasers at 1550 nm results in about 12 dB (7 dB) temperature (strain) accuracy improvement at 25 km sensing distance with respect to the use of standard distributed feedback lasers

  19. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  20. Noise sources in the LTP heterodyne interferometer

    International Nuclear Information System (INIS)

    Wand, V; Bogenstahl, J; Braxmaier, C; Danzmann, K; GarcIa, A; Guzman, F; Heinzel, G; Hough, J; Jennrich, O; Killow, C; Robertson, D; Sodnik, Z; Steier, F; Ward, H

    2006-01-01

    The LISA Technology Package uses a heterodyne Mach-Zehnder interferometer to monitor the relative motion of the test masses with picometer accuracy. This paper discusses two classes of noise sources that were identified and investigated during the prototype experiments. Most troublesome are electrically induced sidebands on the light, which give rise to nonlinearities in the interferometer output. Even worse, if the differential pathlength between two optical fibres fluctuates, a noise term of milliradian amplitude appears and completely spoils the performance. We discuss the origin and mitigation of this process. Dissimilar beam shapes of the interfering beams produce another type of noise in conjunction with beam jitter and spatially inhomogeneous photodetectors. To study and minimize this effect, we have built a real-time high-resolution phasefront imaging system that will be used for the production of the flight model

  1. Integration of InGaAs MOSFETs and GaAs/ AlGaAs lasers on Si Substrate for advanced opto-electronic integrated circuits (OEICs).

    Science.gov (United States)

    Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao

    2017-12-11

    Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.

  2. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  3. Design of Integrated Circuits Approaching Terahertz Frequencies

    DEFF Research Database (Denmark)

    Yan, Lei

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also...... heterodyne receivers with requirements of room temperature operation, low system complexity, and high sensitivity, monolithic integrated Schottky diode technology is chosen for the implementation of submillimeterwave components. The corresponding subharmonic mixer and multiplier for a THz radiometer system...

  4. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  5. 61.3-Gbps hybrid fiber-wireless in-home network enabled by optical heterodyne and polarization multiplexing

    NARCIS (Netherlands)

    Cao, Z.; Li, F.; Liu, Y.; Yu, J.; Wang, Q.; Oh, C.W.; Jiao, Y.; Tran, N.C.; Boom, van den H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2014-01-01

    A hybrid fiber-wireless in-home network is proposed to support high-speed multiple input and multiple output (MIMO) orthogonal frequency division multiplexing systems operating at millimeter wave (mm-wave) band by employing optical heterodyne (OH) and polarization multiplexing (PolMux). OH enables

  6. Frequency and Phase-lock Control of a 3 THz Quantum Cascade Laser

    Science.gov (United States)

    Betz, A. L.; Boreiko, R. T.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2005-01-01

    We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with l-part-in-lO(exp 8) accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.

  7. Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference

    Science.gov (United States)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.; hide

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.

  8. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao

    2018-02-14

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  9. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2018-01-01

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  10. Fast-scanning heterodyne receiver for measurement of the electron cyclotron emission from high-temperature plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Arunasalam, V.; Bitzer, R.; Campbell, L.; Hosea, J.C.

    1979-03-01

    A fast-scanning heterodyne receiver was developed that measures the fundamental cyclotron emission from the PLT plasma and thus ascertains the time evolution of the electron temperature profile. The receiver scans 60 to 90 GHz every 10 milliseconds and is interfaced to a computer for completely automated calibrated temperature measurements

  11. An integrated analog O/E/O link for multi-channel laser neurons

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, Mitchell A., E-mail: mnahmias@princeton.edu; Tait, Alexander N.; Tolias, Leonidas; Chang, Matthew P.; Ferreira de Lima, Thomas; Shastri, Bhavin J.; Prucnal, Paul R. [Electrical Engineering Department, Princeton University, 41 Olden St, Princeton, New Jersey 08540 (United States)

    2016-04-11

    We demonstrate an analog O/E/O electronic link to allow integrated laser neurons to accept many distinguishable, high bandwidth input signals simultaneously. This device utilizes wavelength division multiplexing to achieve multi-channel fan-in, a photodetector to sum signals together, and a laser cavity to perform a nonlinear operation. Its speed outpaces accelerated-time neuromorphic electronics, and it represents a viable direction towards scalable networking approaches.

  12. Integrated IoT technology in industrial lasers for the improved user experience

    Science.gov (United States)

    Ding, Jianwu; Liu, Jinhui

    2018-02-01

    The end users' biggest concern for any industrial equipment is the reliability and the service down-time. This is especially true for industrial lasers as they are typically used in fully or semi- automated processes. Here we demonstrate how to use the integrated Internet of Things (IoT) technology in industrial lasers to address the reliability and the service down-time so to improve end users' experience.

  13. Phase noise characterization of a QD-based diode laser frequency comb.

    Science.gov (United States)

    Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing

    2017-07-10

    We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

  14. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  15. Development of an integrated automated retinal surgical laser system.

    Science.gov (United States)

    Barrett, S F; Wright, C H; Oberg, E D; Rockwell, B A; Cain, C; Rylander, H G; Welch, A J

    1996-01-01

    Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Preliminary testing on rhesus primate subjects have been accomplished with the CW argon laser and also the ultrashort pulse laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Several interesting areas of study have developed in integrating the two subsystems: 1) "doughnut" shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, 2) the optimal retinal field of view (FOV) to achieve both tracking and lesion parameter control, and 3) development of a hybrid analog/digital tracker using confocal reflectometry to achieve retinal tracking speeds of up to 100 dgs. This presentation will discuss these design issues of this clinically significant prototype system. Details of the hybrid prototype system are provided in "Hybrid Eye Tracking for Computer-Aided Retinal Surgery" at this conference. The paper will close with remaining technical hurdles to clear prior to testing the full-up clinical prototype system.

  16. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    Science.gov (United States)

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  17. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    Science.gov (United States)

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  18. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  19. Mid infrared LHS system packaging using flexible waveguides

    Science.gov (United States)

    Yu, Chung

    1987-01-01

    As mid IR fiber optic systems are rapidly approaching a reality, so is the feasibility of fiber optic laser heterodyne systems. Laser heterodyne spectroscopy for high resolution monitoring of atmospheric gaseous pollutants is necessarily in the mid IR, the region in which the absorption signature of gaseous species is most prominent. It so happens that the lowest theoretical loss due to Rayleigh-Brillouin scattering also lies in the mid IR. Prospects of highly efficient laser heterodyne systems are thus very good. Such fibers are now beginning to be commercially available, and a test program is being conducted for such fibers with ambient temperature ranging from cryogenic to above room, and stringest mechanical flexibility requirements. Preliminary results are encouraging. A program is being started to explore the possibility of mid IR fiber optic device applications, by taking advantage of this phonon rich region. The potential long interaction length in fibers coupled with predicted extremely low losses point to stimulated Brillouin scattering based devices in the mW range. The generation of backscattered sBs at low laser powers is significant not only as an ultimate power limiting factor for laser transmission in fibers in the mid IR, but also the presence of frequency-shifted multiple order sBs Stokes and antiStokes lines will certainly have severe effect on the laser beats crucial in high resolution heterodyne spectroscopy.

  20. Multi-wavelength laser based on an arrayed waveguide grating and Sagnac loop reflectors monolithically integrated on InP

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Doménech, J.D.; Rius, M.; Capmany, J.; Chen, L.R.; Habib, C.; Leijtens, X.J.M.; Vries, de T.; Heck, M.J.R.; Augustin, L.M.; Nötzel, R.; Robbins, D.J.

    2010-01-01

    In this paper, a multi-wavelength laser monolithically integrated on InP is presented. A linear laser cavity is built between two integrated Sagnac loop reflectors, with an Arrayed Waveguide Grating (AWG) as frequency selective device, and Semiconductor Optical Amplifiers (SOA) as gain sections. The

  1. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  2. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  3. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    Science.gov (United States)

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  4. Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration

    International Nuclear Information System (INIS)

    Liu, Jifeng; Kimerling, Lionel C; Michel, Jurgen

    2012-01-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic–photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500–1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  5. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    Kervevan, L.

    2006-12-01

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb 3+ :Er 3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er 3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  6. Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.

    Science.gov (United States)

    Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji

    2013-01-01

    The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.

  7. Direct phase-locking of a 8.6-μm quantum cascade laser to a mid-IR optical frequency comb: application to precision spectroscopy of N2O.

    Science.gov (United States)

    Gambetta, Alessio; Cassinerio, Marco; Coluccelli, Nicola; Fasci, Eugenio; Castrillo, Antonio; Gianfrani, Livio; Gatti, Davide; Marangoni, Marco; Laporta, Paolo; Galzerano, Gianluca

    2015-02-01

    We developed a high-precision spectroscopic system at 8.6 μm based on direct heterodyne detection and phase-locking of a room-temperature quantum-cascade-laser against an harmonic, 250-MHz mid-IR frequency comb obtained by difference-frequency generation. The ∼30  dB signal-to-noise ratio of the detected beat-note together with the achieved closed-loop locking bandwidth of ∼500  kHz allows for a residual integrated phase noise of 0.78 rad (1 Hz-5 MHz), for an ultimate resolution of ∼21  kHz, limited by the measured linewidth of the mid-IR comb. The system was used to perform absolute measurement of line-center frequencies for the rotational components of the ν2 vibrational band of N2O, with a relative precision of 3×10(-10).

  8. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    Science.gov (United States)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  9. Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    International Nuclear Information System (INIS)

    Borisov, V M; Vinokhodov, A Yu; Ivanov, A S; Kiryukhin, Yu B; Mishchenko, V A; Prokof'ev, A V; Khristoforov, O B

    2009-01-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz. (laser applications and other topics in quantum electronics)

  10. Integrated lasers in crystalline double tungstates with focused-ion-beam nanostructured photonic cavities

    International Nuclear Information System (INIS)

    Ay, F; Iñurrategui, I; Geskus, D; Aravazhi, S; Pollnau, M

    2011-01-01

    Deeply etched Bragg gratings were fabricated by focused ion beam (FIB) milling in KGd x Lu 1-x (WO 4 ) 2 :Yb 3+ to obtain photonic cavity structures. By optimizing parameters such as dose per area, dwell time and pixel resolution the redeposition effects were minimized and grating structures more than 4 μm in depth with an improved sidewall angle of ∼ 5° were achieved. Fabry-Perot microcavities were defined and used to assess the optical performance of the grating structures at ∼ 1530 nm. An on-chip integrated laser cavity at ∼ 980 nm was achieved by defining a FIB reflective grating and FIB polished waveguide end-facet. With this cavity, an on-chip integrated waveguide laser in crystalline potassium double tungstate was demonstrated

  11. External cavity diode laser-based detection of trace gases with NICE-OHMS using current modulation.

    Science.gov (United States)

    Centeno, R; Mandon, J; Cristescu, S M; Axner, O; Harren, F J M

    2015-03-09

    We combine an external cavity diode laser with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) using current modulation. With a finesse of 1600, we demonstrate noise equivalent absorption sensitivities of 4.1 x 10(-10) cm(-1) Hz(-1/2), resulting in sub-ppbv detection limits for Doppler-broadened transitions of CH(4) at 6132.3 cm(-1), C(2)H(2) at 6578.5 cm(-1) and HCN at 6541.7 cm(-1). The system is used for hydrogen cyanide detection from sweet almonds.

  12. Monostatic coaxial 1.5 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2013-01-01

    on heterodyne detection, our sFPI-LDV has the advantages of having large remote sensing range not limited by laser coherence, high velocity dynamic range not limited by detector bandwidth and inherent sign discrimination of Doppler shift. The more optically efficient coaxial arrangement where transmitter...... achieves ~40 dB reduction in strength of unwanted reflections (i.e. leakage) while maintaining high optical efficiency. Experiments with a solid target demonstrate the performance of the sFPI-LDV system with high sensitivity down to pW level at present update rates up to 10 Hz....

  13. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  14. Spatial heterodyne interferometry of VY Canis Majoris, alpha Orionis, alpha Scorpii, and R Leonis at 11 microns

    International Nuclear Information System (INIS)

    Sutton, E.C.; Storey, J.W.V.; Betz, A.L.; Townes, C.H.; Spears, D.L.

    1977-01-01

    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec

  15. Spatial heterodyne interferometry of VY Canis Major's, alpha Orionis, alpha Scorpii, and R leonis at 11 microns

    Science.gov (United States)

    Sutton, E. C.; Storey, J. W. V.; Betz, A. L.; Townes, C. H.; Spears, D. L.

    1977-01-01

    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec.

  16. Performance Analysis of Heterodyne-Detected OCDMA Systems Using PolSK Modulation over a Free-Space Optical Turbulence Channel

    Directory of Open Access Journals (Sweden)

    Fan Bai

    2015-10-01

    Full Text Available This paper presents a novel model of heterodyne-detected optical code-division multiple-access (OCDMA systems employing polarization shift keying (PolSK modulation over a free-space optical (FSO turbulence channel. In this article, a new transceiver configuration and detailed analytical model for the proposed system are provided and discussed, taking into consideration the potential of heterodyne detection on mitigating the impact of turbulence-induced irradiance fluctuation on the performance of the proposed system under the gamma-gamma turbulence channel. Furthermore, we derived the closed-form expressions for the system error probability and outage probability, respectively. We determine the advantages of the proposed modeling by performing a comparison with a direct detection scheme obtained from an evaluation of link performance under the same environment conditions. The presented work also shows the most significant impact factor that degrades the performance of the proposed system and indicates that the proposed approach offers an optimum link performance compared to conventional cases.

  17. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    Science.gov (United States)

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  18. Surface plasmon quantum cascade lasers as terahertz local oscillators.

    Science.gov (United States)

    Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E

    2008-02-15

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.

  19. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    Science.gov (United States)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  20. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  1. Experimental Demonstration of Nonlinearity and Phase Noise Tolerant 16-QAM OFDM W-Band (75–110 GHz) Signal Over Fiber System

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser i...

  2. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay.

    Science.gov (United States)

    Liu, Dong; Sun, Changzheng; Xiong, Bing; Luo, Yi

    2014-03-10

    We report rich nonlinear dynamics in integrated coupled lasers with ultra-short coupling delay. Mutually stable locking, period-1 oscillation, frequency locking, quasi-periodicity and chaos are observed experimentally. The dynamic behaviors are reproduced numerically by solving coupled delay differential equations that take the variation of both frequency detuning and coupling phase into account. Moreover, it is pointed out that the round-trip frequency is not involved in the above nonlinear dynamical behaviors. Instead, the relationship between the frequency detuning Δν and the relaxation oscillation frequency νr under mutual injection are found to be critical for the various observed dynamics in mutually coupled lasers with very short delay.

  3. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  4. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    Science.gov (United States)

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  5. Flying Height Measurement of Magnetic Disk Using Double Common-path Heterodyne Interferometer

    International Nuclear Information System (INIS)

    Lin, D J; Yue, Z Y; Song, N H; Meng, Y G; Yin, C Y

    2006-01-01

    The magnetic storage capacity depends significantly on the area density, which is close related to the flying-height (FH) of magnetic head. In this paper a double common-path heterodyne interferometer is proposed to measure the FH. The resolution of FH measurement reaches 0.1nm by means of phase measurement method. The influence of vibration of magnetic disk and work table is considered in the configuration design so as to reduce the system error. The experimental results show that the error compensation is better than 10nm when the vibration of disk is 1.2μm

  6. Coherent Frequency Shifter, Optical Isolator, Lasers on an Integrated Platform for Cold Atom Microsystems

    Science.gov (United States)

    2017-10-11

    frequency shifting with < 10 % leakage ; (5) experimental demonstration achieving frequency shifting with < 3 dB forward optical loss; (6) 29.3 dBm RF...using heterodyne detection . (b) 100 MHz up-conversion, 20 dB side lobe suppression. (c) 100 MHz down-conversion, 14 dB side lobe suppression...shifting with < 10 % leakage ; (5) experimental demonstration achieving frequency shifting with < 3 dB forward optical loss; (6) 29.3 dBm RF power

  7. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans.

    Science.gov (United States)

    Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F

    2017-03-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes

    KAUST Repository

    Shen, Chao

    2017-11-30

    The challenges to realizing III-nitride photonic integrated circuit (PIC) are discussed. Utilizing InGaN-based multi-section laser diode (LD) on semipolar GaN substrate, the seamless on-chip integration of III-nitride waveguide photodetector (WPD) in the visible regime has been demonstrated.

  9. Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.; Ooi, Boon S.

    2017-01-01

    The challenges to realizing III-nitride photonic integrated circuit (PIC) are discussed. Utilizing InGaN-based multi-section laser diode (LD) on semipolar GaN substrate, the seamless on-chip integration of III-nitride waveguide photodetector (WPD) in the visible regime has been demonstrated.

  10. Monolithic integration of collimating Fresnel lens for beam quality enhancement in tapered high-power laser diode

    NARCIS (Netherlands)

    Lau, F.K.; Tee, C.W.; Zhao, Xin; Williams, K.A.; Penty, R.V.; White, I.H.; Calligaro, M.; Lecomte, M.; Parillaud, O.; Michel, N.; Krakowski, M.

    2006-01-01

    We demonstrate, for the first time, a monolithic integrated lens for wide aperture gain-guided tapered laser beam quality enhancement by compensating the quadratic phase curvature. The 3mm long tapered laser with an output aperture of 170µm adopted in this design consists of a gain-guided tapered

  11. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    Science.gov (United States)

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  12. Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halbwax, M. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France); Sarnet, T. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France)], E-mail: sarnet@lp3.univ-mrs.fr; Hermann, J.; Delaporte, Ph.; Sentis, M. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France); Fares, L.; Haller, G. [STMicroelectronics, 190 Avenue Celestin Coq, ZI, 13106 Rousset Cedex (France)

    2007-12-15

    The latest International Technology Roadmap for Semiconductors (ITRS) has highlighted the detection and analysis of defects in Integrated Circuits (IC) as a major challenge faced by the semiconductor industry. Advanced tools used today for defect cross sectioning include dual beams (focused ion- and electron-beam technologies) with resolution down to the sub-Angstrom level. However ion milling an IC with a FIB is time consuming because of the need to open wide cavities in front of the cross-sections that need to be analyzed. Therefore the use of a femtosecond laser as a tool for direct material removal is discussed in this paper. Experiments were performed on IC structures to reveal the different layers of fabrication: selective or total ablation can occur depending on the laser energy density, without delamination of the layers. Different laser irradiation conditions like pressure (air, vacuum), polarization, beam shaping, and scanning parameters have been used to produce different types of cavities. The femtosecond laser engraving of silicon-based structures could be useful for cross-sectioning devices but also for other applications like direct-write lithography, photomask repair, maskless implantation or reverse engineering/restructuring.

  13. Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis

    International Nuclear Information System (INIS)

    Halbwax, M.; Sarnet, T.; Hermann, J.; Delaporte, Ph.; Sentis, M.; Fares, L.; Haller, G.

    2007-01-01

    The latest International Technology Roadmap for Semiconductors (ITRS) has highlighted the detection and analysis of defects in Integrated Circuits (IC) as a major challenge faced by the semiconductor industry. Advanced tools used today for defect cross sectioning include dual beams (focused ion- and electron-beam technologies) with resolution down to the sub-Angstrom level. However ion milling an IC with a FIB is time consuming because of the need to open wide cavities in front of the cross-sections that need to be analyzed. Therefore the use of a femtosecond laser as a tool for direct material removal is discussed in this paper. Experiments were performed on IC structures to reveal the different layers of fabrication: selective or total ablation can occur depending on the laser energy density, without delamination of the layers. Different laser irradiation conditions like pressure (air, vacuum), polarization, beam shaping, and scanning parameters have been used to produce different types of cavities. The femtosecond laser engraving of silicon-based structures could be useful for cross-sectioning devices but also for other applications like direct-write lithography, photomask repair, maskless implantation or reverse engineering/restructuring

  14. High speed gain coupled DFB laser diode integrated with MQW electroabsorption modulator

    International Nuclear Information System (INIS)

    Kim, Myung Gyoo; Lee, Seung Won; Park, Seong Su; Oh, Dae Kon; Lee, Hee Tae; Kim, Hong man; Pyun, Kwang Eui

    1998-01-01

    We have demonstrated stable modulation characteristics of the gain coupled distributed feedback(GC-DFB) laser diode integrated with butt-coupled InGaAsP/InGaAsP strain compensated MQW(multiple-Quantum-well) modulator for high speed optical transmission. For this purpose, we have adopted the InGaAsP/InGaAsP strain compensated MQW structure for the EA modulator and n-doped InGaAs absorptive grating for DFB laser. The typical threshold current and slope efficiency were about 15 mA and 0.1 mW/mA, respectively. The extinction ratio of fabricated integrated device was about 15 dB at -2 V, and the small signal bandwidth was shown to be around 17GHz. We also found that the α parameter becomes negative at below a -0.6 V bias voltage. We transmitted 10 Gbps NRZ electrical signal over 90 km of standard single mode optical fiber (SMF). A clearly opened eye diagram was observed in the modulated output

  15. High speed gain coupled DFB laser diode integrated with MQW electroabsorption modulator

    CERN Document Server

    Kim, M G; Park, S S; Oh, D K; Lee, H T; Kim, H M; Pyun, K E

    1998-01-01

    We have demonstrated stable modulation characteristics of the gain coupled distributed feedback(GC-DFB) laser diode integrated with butt-coupled InGaAsP/InGaAsP strain compensated MQW(multiple-Quantum-well) modulator for high speed optical transmission. For this purpose, we have adopted the InGaAsP/InGaAsP strain compensated MQW structure for the EA modulator and n-doped InGaAs absorptive grating for DFB laser. The typical threshold current and slope efficiency were about 15 mA and 0.1 mW/mA, respectively. The extinction ratio of fabricated integrated device was about 15 dB at -2 V, and the small signal bandwidth was shown to be around 17GHz. We also found that the alpha parameter becomes negative at below a -0.6 V bias voltage. We transmitted 10 Gbps NRZ electrical signal over 90 km of standard single mode optical fiber (SMF). A clearly opened eye diagram was observed in the modulated output.

  16. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  17. Development of a heterodyne micro-wave reflectometer with ultra-fast sweeping. The study of the plasma turbulence influence on the measurements of electron density profile; Developppement d`un reflectometre micro-onde heterodyne a balayage ultra rapide. Etude de l`influence de la turbulence du plasma sur la mesure des profils de densite electronique

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Philippe [Aix-Marseille-1 Univ., 13 - Marseille (France)

    1997-10-17

    The density profile of the fusion plasmas can be investigated by the reflectometry diagnostics. The measurement principle is based on the radar techniques which calculate the phase shift of a millimeter wave propagating into the plasma and reflected at a cut-off layer. However, this propagation is perturbed by the plasma turbulence. These phenomena affect the phase delay measurement by not well understood a process. In this work we have tried to find the mechanisms and origin of the turbulence which is responsible for the phase disturbance. We point out the role of collisionality and plasma radiation in controlling the instability and also, demonstrate that the phase delay of the probing wave is very sensitive to the plasma MHD phenomena and is less affected by the micro-turbulence. The second part of this work is the development and the use of a new heterodyne reflectometer. The principal characteristics are given. Its heterodyne detection allows the separation of phase and amplitude information from the detected signal and then to study their contribution to the mechanism of signal perturbation. The use of this reflectometer allows us to point out the following points: - a high dynamic availability, required by the large amplitude drops, often greater than 30 db; - fast sweep operation requirement to `freeze` the plasma turbulence; - multiple reflection effects which modulate the amplitude and phase of the probing wave if they are not suppressed by filtering the detected signal; - very good localisation of the measurement (of the order of millimeter). The heterodyne reflectometer developed during this work offers several advantages of different distinct reflectometry techniques (fast sweep, absolute and differential phase measurements, heterodyne detection). It could be developed to work over higher frequency range so as to measure density profile over larger radial extension with very high performances. (author) 93 refs., 101 figs., 8 tabs. 3 ills.

  18. Multi-channel normal speed gated integrator in the measurement of the laser scattering light energy

    International Nuclear Information System (INIS)

    Yang Dong; Yu Xiaoqi; Hu Yuanfeng

    2005-01-01

    With the method of integration in a limited time, a Multi-channel normal speed gated integrator based on VXI system has been developed for measuring the signals with changeable pulse width in laser scattering light experiment. It has been tested with signal sources in ICF experiment. In tests, the integral nonlinearity between the integral results of the gated integrator and that of an oscilloscope is less than 1%. In the ICF experiments the maximum error between the integral results of the gated integrator and that of oscilloscope is less than 3% of the full scale range of the gated integrator. (authors)

  19. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Richards, R.K.; Vander Sluis, K.L.; Hutchinson, D.P.

    1987-08-01

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO 2 laser beam from such a plasma, a resonance in the scattered power occurs near 90 0 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  20. Heterodyne interferometric technique for displacement control at the nanometric scale

    Science.gov (United States)

    Topcu, Suat; Chassagne, Luc; Haddad, Darine; Alayli, Yasser; Juncar, Patrick

    2003-11-01

    We propose a method of displacement control that addresses the measurement requirements of the nanotechnology community and provide a traceability to the definition of the mèter at the nanometric scale. The method is based on the use of both a heterodyne Michelson's interferometer and a homemade high frequency electronic circuit. The system so established allows us to control the displacement of a translation stage with a known step of 4.945 nm. Intrinsic relative uncertainty on the step value is 1.6×10-9. Controls of the period of repetition of these steps with a high-stability quartz oscillator permits to impose an uniform speed to the translation stage with the same accuracy. This property will be used for the watt balance project of the Bureau National de Métrologie of France.

  1. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder

    International Nuclear Information System (INIS)

    De Lange, Gert; Boersma, Dick; Dercksen, Johannes; Ermakov, Andrey B; Golstein, Hans; Hoogeveen, Ruud W M; De Jong, Leo; Khudchenko, Andrey V; Kinev, Nickolay V; Kiselev, Oleg S; Van Kuik, Bart; De Lange, Arno; Van Rantwijk, Joris; Selig, Avri M; De Vries, Ed; Birk, Manfred; Dmitriev, Pavel; Filippenko, Lyudmila V; Sobolev, Alexander S; Torgashin, Mikhail Yu

    2010-01-01

    The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.

  2. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder

    Energy Technology Data Exchange (ETDEWEB)

    De Lange, Gert; Boersma, Dick; Dercksen, Johannes; Ermakov, Andrey B; Golstein, Hans; Hoogeveen, Ruud W M; De Jong, Leo; Khudchenko, Andrey V; Kinev, Nickolay V; Kiselev, Oleg S; Van Kuik, Bart; De Lange, Arno; Van Rantwijk, Joris; Selig, Avri M; De Vries, Ed [SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV Groningen (Netherlands); Birk, Manfred [DLR German Aerospace Centre, Remote Sensing Technology Institute, D-82234 Wessling (Germany); Dmitriev, Pavel; Filippenko, Lyudmila V; Sobolev, Alexander S; Torgashin, Mikhail Yu, E-mail: G.de.Lange@sron.n, E-mail: valery@hitech.cplire.r [Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Science, 11/7 Mokhovaya Street, 125009, Moscow (Russian Federation)

    2010-04-15

    The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.

  3. Integrative Laser Medicine and High-Tech Acupuncture at the Medical University of Graz, Austria, Europe

    Directory of Open Access Journals (Sweden)

    Gerhard Litscher

    2012-01-01

    Full Text Available At the moment, modernization of acupuncture has a high priority. On the traditional side, acupuncture has only recently been awarded the status of Intangible Cultural Heritage by the UNESCO. On the innovative side, high-tech acupuncture is a registered trademark in Austria. Acupuncture has been used for medical treatment for thousands of years. A large number of empirical data are available but the technical quantification of effects was not possible up to now. Using electroacupuncture, needle, or laser stimulation and modern biomedical techniques, it was possible for the first time to quantify changes in biological activities caused by acupuncture. This paper which serves as introduction for the special issue “High-Tech Acupuncture and Integrative Laser Medicine” of the present journal, focuses on the latest innovative aspects that underline the further enhancement and development of acupuncture. Special emphasis is given to new methodological and technical investigations, for example, results obtained from all kinds of acupuncture innovations (e.g., teleacupuncture and integrative laser medicine.

  4. Integrative Laser Medicine and High-Tech Acupuncture at the Medical University of Graz, Austria, Europe

    Science.gov (United States)

    Litscher, Gerhard

    2012-01-01

    At the moment, modernization of acupuncture has a high priority. On the traditional side, acupuncture has only recently been awarded the status of Intangible Cultural Heritage by the UNESCO. On the innovative side, high-tech acupuncture is a registered trademark in Austria. Acupuncture has been used for medical treatment for thousands of years. A large number of empirical data are available but the technical quantification of effects was not possible up to now. Using electroacupuncture, needle, or laser stimulation and modern biomedical techniques, it was possible for the first time to quantify changes in biological activities caused by acupuncture. This paper which serves as introduction for the special issue “High-Tech Acupuncture and Integrative Laser Medicine” of the present journal, focuses on the latest innovative aspects that underline the further enhancement and development of acupuncture. Special emphasis is given to new methodological and technical investigations, for example, results obtained from all kinds of acupuncture innovations (e.g., teleacupuncture) and integrative laser medicine. PMID:22570669

  5. Electro-optical frequency shifting of lasers for plasma diagnostics

    International Nuclear Information System (INIS)

    Forman, P.R.

    1977-07-01

    An electro-optical frequency shifting device is proposed as an aid for plasma physics heterodyne interferometry and heterodyne scattering experiments. The method has the advantage over other electro-optic shifters, that a pure separable frequency shifted beam can be obtained even when less than half wave voltage is applied. (orig.) [de

  6. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  7. Small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng

    2009-05-01

    A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.

  8. Wafer-scale laser pantography: Fabrication of n-metal-oxide-semiconductor transistors and small-scale integrated circuits by direct-write laser-induced pyrolytic reactions

    International Nuclear Information System (INIS)

    McWilliams, B.M.; Herman, I.P.; Mitlitsky, F.; Hyde, R.A.; Wood, L.L.

    1983-01-01

    A complete set of processes sufficient for manufacture of n-metal-oxide-semiconductor (n-MOS) transistors by a laser-induced direct-write process has been demonstrated separately, and integrated to yield functional transistors. Gates and interconnects were fabricated of various combinations of n-doped and intrinsic polysilicon, tungsten, and tungsten silicide compounds. Both 0.1-μm and 1-μm-thick gate oxides were micromachined with and without etchant gas, and the exposed p-Si [100] substrate was cleaned and, at times, etched. Diffusion regions were doped by laser-induced pyrolytic decomposition of phosphine followed by laser annealing. Along with the successful manufacture of working n-MOS transistors and a set of elementary digital logic gates, this letter reports the successful use of several laser-induced surface reactions that have not been reported previously

  9. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    Science.gov (United States)

    Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.

    2009-10-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.

  10. Biocavity Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  11. Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser

    International Nuclear Information System (INIS)

    Patel, P. K.; Key, M. H.; Mackinnon, A. J.; Akli, K.; Berry, R.; Borghesi, M.; Brummit, P. A.; Chambers, D.; Clarke, R. J.; Damian, C.; Chen, H.; Eagleton, R.; Freeman, R.; Glenzer, S.; Gregori, G.; Heathcote, R.; Izumi, N.; Kar, S.; King, J. A.; Kock, J.; Kuba, J.; May, M.; Moon, S.; Neely, D.; Neville, D. R.; Nikroo, A.; Niles, A.; Pasley, J.; Patel, N.; Park, H. S.; Romagnani, L.; Shepherd, R.; Snavely, R. A.; Stephens, R.; Stoeckl, C.; Storm, M.; Theobald, W.; Van Maren, R.; Wilks, S. C.; Zhang, B.

    2005-01-01

    We report on two recent experimental campaigns performed on the new Petawatt laser at the Rutherford Appleton Laboratory in the UK.The laser has recently demonstrated performance characteristics of 400 J of laser energy being delivered on target in a sub 400 fs pulse, reaching a peak focal intensity on the order of 10''21 W/cm''2. The experiments covered multiplic areas of investigation including hot electron transport in planar foil and cone focus geometries, relativistic laser-solid interactions proton beam focusing and heating, and high energy K-alpha production and radiography. A somewhat novel approach was taken to the experiments in that all of the diagnostics required for the different areas of study were fielded simultaneously and operated on all shots. Thus, we were able to obtain extensive sets of measurements on a single-shot basis which provides significant benefit to our understanding of the laser-target interaction conditions and plasma properties. (Author)

  12. Integrated laser-target interaction experiments on the RAL petawatt laser

    International Nuclear Information System (INIS)

    Patel, P K; Key, M H; Mackinnon, A J

    2005-01-01

    We review a recent experimental campaign to study the interaction physics of petawatt laser pulses incident at relativistic intensities on solid targets. The campaign was performed on the 500 J sub-picosecond petawatt laser at the Rutherford Appleton Laboratory. An extensive suite of optical, x-ray, and particle diagnostics was employed to characterise the processes of laser absorption, electron generation and transport, thermal and K-alpha x-ray generation, and proton acceleration

  13. Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53microm.

    Science.gov (United States)

    Barbarin, Yohan; Bente, Erwin A J M; Heck, Martijn J R; Oei, Y S; Nötzel, Richard; Smit, Meint K

    2006-10-16

    We report on an extensive characterization of a 15GHz integrated bulk InGaAsP passively modelocked ring laser at 1530 nm. The laser is modelocked for a wide range of amplifier currents and reverse bias voltages on the saturable absorber. We have measured a timing jitter of 7.1 ps (20 kHz - 80 MHz), which is low for an all-active device using bulk material and due to the ring configuration. Measured output pulses are highly chirped, a FWHM bandwidth is obtained of up to 4.5 nm. Such lasers with high bandwidth pulses and compatible with active-passive integration are of great interest for OCDMA applications.

  14. Linear and Nonlinear Molecular Spectroscopy with Laser Frequency Combs

    Science.gov (United States)

    Picque, Nathalie

    2013-06-01

    The regular pulse train of a mode-locked femtosecond laser can give rise to a comb spectrum of millions of laser modes with a spacing precisely equal to the pulse repetition frequency. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. They are now becoming enabling tools for an increasing number of applications, including molecular spectroscopy. Recent experiments of multi-heterodyne frequency comb Fourier transform spectroscopy (also called dual-comb spectroscopy) have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of linear absorption spectroscopy. The first proof-of-principle experiments have demonstrated a very exciting potential of dual-comb spectroscopy without moving parts for ultra-rapid and ultra-sensitive recording of complex broad spectral bandwidth molecular spectra. Compared to conventional Michelson-based Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. The resolution improves proportionally to the measurement time. Therefore longer recordings allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. Moreover, since laser frequency combs involve intense ultrashort laser pulses, nonlinear interactions can be harnessed. Broad spectral bandwidth ultra-rapid nonlinear molecular spectroscopy and imaging with two laser frequency combs is demonstrated with coherent Raman effects and two-photon excitation. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy. B. Bernhardt et al., Nature Photonics 4, 55-57 (2010); A. Schliesser et al. Nature Photonics 6, 440-449 (2012); T. Ideguchi et al. arXiv:1201.4177 (2012) T

  15. [Study on phase correction method of spatial heterodyne spectrometer].

    Science.gov (United States)

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  16. Dynamics of Dangling Od-Stretch at the Air/water Interface by Heterodyne-Detected Sfg Spectroscopy

    Science.gov (United States)

    Stiopkin, I. V.; Weeraman, C.; Shalhout, F.; Benderskii, A. V.

    2009-06-01

    SFG spectra of dangling OD-stretch at the air/water interface contain information on vibrational dephasing dynamics, ultrafast reorientational molecular motion, and vibrational energy transfer. To better separate these processes we conducted heterodyne-detected SFG experiments to measure real and imaginary contributions of the SFG spectrum of the dangling OD-stretch at the air/D_2O interface for SSP, PPP, and SPS polarizations. Variations in the temporal profiles of the SFG signals for these three polarizations will be also discussed.

  17. An integrated fiber and stone basket device for use in Thulium fiber laser lithotripsy

    Science.gov (United States)

    Wilson, Christopher R.; Hutchens, Thomas C.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the Holmium:YAG laser. The TFL's superior near-single mode beam profile enables higher power transmission through smaller fibers with reduced proximal fiber tip damage. Recent studies have also reported that attaching hollow steel tubing to the distal fiber tip decreases fiber degradation and burn-back without compromising stone ablation rates. However, significant stone retropulsion was observed, which increased with pulse rate. In this study, the hollow steel tip fiber design was integrated with a stone basket to minimize stone retropulsion during ablation. A device was constructed consisting of a 100-μm-core, 140-μm-OD silica fiber outfitted with 5-mm-long stainless steel tubing at the distal tip, and integrated with a 1.3-Fr (0.433-mm-OD) disposable nitinol wire basket, to form an overall 1.9-Fr (0.633-mm- OD) integrated device. This compact design may provide several potential advantages including increased flexibility, higher saline irrigation rates through the ureteroscope working channel, and reduced fiber tip degradation compared to separate fiber and stone basket manipulation. TFL pulse energy of 31.5 mJ with 500 μs pulse duration and pulse rate of 500 Hz was delivered through the integrated fiber/basket device in contact with human uric acid stones, ex vivo. TFL stone ablation rates measured 1.5 +/- 0.2 mg/s, comparable to 1.7 +/- 0.3 mg/s (P > 0.05) using standard bare fiber tips separately with a stone basket. With further development, this device may be useful for minimizing stone retropulsion, thus enabling more efficient TFL lithotripsy at higher pulse rates.

  18. High-frequency acoustic spectrum analyzer based on polymer integrated optics

    Science.gov (United States)

    Yacoubian, Araz

    This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.

  19. FY 2000 Project of developing international standards for supporting new industries. Standardization of the testing/evaluation methods for high coherent lasers; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Ko coherent laser no shiken (hyoka hoho no hyojunka)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the development of high-precision, stabilized lasers, laser interferometers and signal processors, and developmental researches on the testing/evaluation methods for spectral characteristics of high-performance lasers, among others, for proposing the international standards. The program for narrowing the spectral lines for semiconductor lasers experimentally confirms validity of the external resonator structure with the diffraction lattice. The program for the developmental research on spectral width meter designs the width meter based on the delayed self-heterodyne technique, because of necessity for measurement of the spectral line width at a resolution of several hundreds Hz or less. The program for the saturation spectroscopy of iodine molecule designs and fabricates the iodine cell, to lock the semiconductor laser wavelength on the specific absorption line of iodine. It is judged, based on the test results, to be rational to adopt the absorption line of the (6-3) transitional P33 superfine structure. The program for the developmental research on wavelength meter conducts the preliminary tests for atmospheric pressure, temperature and humidity changes as the parameters which affect the measurement accuracy. (NEDO)

  20. Prototype development and field measurements of high etendue spatial heterodyne imaging spectrometer

    Science.gov (United States)

    Cai, Qisheng; Xiangli, Bin; Huang, Min; Han, Wei; Pei, Linlin; Bu, Meixia

    2018-03-01

    High etendue spatial heterodyne imaging spectrometer (HESHIS) is a new pushbroom Fourier transform hyperspectral imager with no moving parts. It is based on a Sagnac interferometer combined with a pair of parallel gratings. In this paper, the basic principle of HESHIS is reviewed and the first prototype of HESHIS is designed and developed. The spectral band of this prototype is designed at O2-A band (757 nm to 777 nm) and the average spectral resolution is 0.04 nm. Using the prototype, the pushbroom imaging experiments are carried out and the original interference images are obtained. The spectral data cube is generated using spectrum reconstruction method and high-resolution spectra are achieved.

  1. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  2. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  3. Influence of non-ideal performance of lasers on displacement precision in single-grating heterodyne interferometry

    Science.gov (United States)

    Wang, Guochao; Xie, Xuedong; Yan, Shuhua

    2010-10-01

    Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .

  4. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-01-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10 6 cm -2 . A threshold current density of J th ∼1.65 kA/cm 2 for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods

  5. Collective laser light scattering from electron density fluctuations in fusion research plasmas (invited)

    International Nuclear Information System (INIS)

    Holzhauer, E.; Dodel, G.

    1990-01-01

    In magnetically confined plasmas density fluctuations of apparently turbulent nature with broad spectra in wave number and frequency space are observed which are thought to be the cause for anomalous energy and particle transport across the confining magnetic field. Collective laser light scattering has been used to study the nature of these fluctuations. Specific problems of scattering from fusion plasmas are addressed and illustrated with experimental results from the 119 μm far infrared laser scattering experiment operated on the ASDEX tokamak. Using the system in the heterodyne mode the direction of propagation with respect to the laboratory frame can be determined. Spatial resolution has bean improved by making use of the change in pitch of the total magnetic field across the minor plasma radius. Special emphasis is placed on the ohmic phase where a number of parameter variations including electron density, electron temperature, toroidal magnetic field, and filling gas were performed

  6. On the Performance of Multihop Heterodyne FSO Systems With Pointing Errors

    KAUST Repository

    Zedini, Emna

    2015-03-30

    This paper reports the end-to-end performance analysis of a multihop free-space optical system with amplify-and-forward (AF) channel-state-information (CSI)-assisted or fixed-gain relays using heterodyne detection over Gamma–Gamma turbulence fading with pointing error impairments. In particular, we derive new closed-form results for the average bit error rate (BER) of a variety of binary modulation schemes and the ergodic capacity in terms of the Meijer\\'s G function. We then offer new accurate asymptotic results for the average BER and the ergodic capacity at high SNR values in terms of simple elementary functions. For the capacity, novel asymptotic results at low and high average SNR regimes are also obtained via an alternative moments-based approach. All analytical results are verified via computer-based Monte-Carlo simulations.

  7. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    Science.gov (United States)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  8. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    Science.gov (United States)

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.

  9. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  10. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  11. Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system

    Science.gov (United States)

    Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin

    2010-09-01

    Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.

  12. Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2012-01-01

    The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.

  13. High power CO2 laser development with AOM integration for ultra high-speed pulses

    Science.gov (United States)

    Bohrer, Markus; Vaupel, Matthias; Nirnberger, Robert; Weinberger, Bernhard; Jamalieh, Murad

    2017-01-01

    There is a 500 billion USD world market for packaging expected to grow to a trillion in 2030. Austria plays an important role world wide for high speed laser engraving applications — especially when it comes to high end solutions. Such high end solutions are fundamental for the production of print forms for the packaging and decorating industry (e. g. cans). They are additionally used for security applications (e. g. for printing banknotes), for the textile printing industry and for creating embossing forms (e. g. for the production of dashboards in the automotive industry). High speed, high precision laser engraving needs laser resonators with very stable laser beams (400 - 800W) especially in combination with AOMs. Based upon a unique carbon fiber structure - stable within the sub-micrometer range - a new resonator has been developed, accompanied by most recent thermo-mechanical FEM calculations. The resulting beam is evaluated on an automated optical bench using hexapods, allowing to optimize the complete beam path with collimators and AOM. The major steps related to laser engraving of dry offset printing plates during the full workflow from the artists design to the printed result on an aluminum can is presented in this paper as well as laser characteristics, AOM integration and correlative CLSM and SEM investigation of the results.

  14. An experimental vital signs detection radar using low-IF heterodyne architecture and single-sideband transmission

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Johansen, Tom Keinicke; Yan, Lei

    2013-01-01

    In this paper an experimental X-band radar system, called DTU-VISDAM, developed for the detection and monitoring of human vital signs is described. The DTU-VISDAM radar exploits a low intermediate frequency (IF) heterodyne RF front-end architecture and single-sideband (SSB) transmission for easier...... and more reliable extraction of the vital signs. The hardware implementation of the proposed low-IF RF front-end architecture and associated IF circuitry is discussed. Furthermore, the signal processing and calibration steps necessary to extract the vital signs information measured on a human subject...

  15. 100-GHz Wireless-Over-Fiber Links With Up to 16-Gb/s QPSK Modulation Using Optical Heterodyne Generation and Digital Coherent Detection

    DEFF Research Database (Denmark)

    Sambaraju, R.; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    In this letter, a novel technique for direct conversion of an optical baseband quadrature phase-shift keying (QPSK) signal to a millimeter-wave wireless signal and subsequent signal demodulation is reported. Optical heterodyne mixing of the optical baseband QPSK signal with a free-running unmodul...

  16. A new high sensitivity far-infrared laser interferometer for the HL-2A tokamak

    Science.gov (United States)

    Li, Y. G.; Zhou, Y.; Li, Y.; Deng, Z. C.; Wang, H. X.; Yi, J.

    2017-08-01

    A new four-chord Michelson-type formic acid (HCOOH, λ = 432.5 μm) laser interferometer has been successfully commissioned on the HL-2A tokamak to measure the electron density and density fluctuations. Due to the employment of the two-laser heterodyne technique, the time resolution of the interferometer reached 1.0 microseconds (μs). Four chords of line electron densities with a line-averaged density resolution 2 × 1016/m3 were obtained in a recent HL-2A experimental campaign, and detailed electron density fluctuations, caused by events such as edge localized mode, sawtooth precursor-oscillations, and energetic particle driven instabilities, were distinctly measured. In particular, the high-frequency electron density fluctuations (up to 500 kHz) caused by the reversed shear Alfvénic eigenmode were observed by the internal two interferometry channels, and their fluctuation location could be approximately identified from the spectra characteristics of multi-chord line electron densities.

  17. Power System and Energy Storage Models for Laser Integration on Naval Platforms

    Science.gov (United States)

    2015-09-30

    Power System and Energy Storage Models for Laser Integration on Naval Platforms A.L. Gattozzi, J.D. Herbst, R.E. Hebner Center for... Electromechanics , University of Texas Austin, Texas a.gattozzi@cem.utexas.edu J.A. Blau, K.R. Cohn, W.B. Colson, J.E. Sylvester, M.A. Woehrman Physics...emerging technologies present significant challenges to the electric power distribution and thermal management systems, particularly for

  18. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    Science.gov (United States)

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  19. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    Science.gov (United States)

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Laser-induced heating integrated with a microfluidic platform for real-time DNA replication and detection

    Science.gov (United States)

    Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin

    2016-08-01

    This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.

  1. Efficient and ultra-narrow-linewidth integrated waveguide lasers in Al2O3:Yb and Al2O3:Er

    NARCIS (Netherlands)

    Bernhardi, Edward; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    The ability to integrate Bragg grating structures with optical waveguides provides the opportunity to realize a variety of compact monolithic optical devices, such as distributed feedback (DFB) lasers, and distributed Bragg reflector (DBR) lasers. In this work, we report passive DBR cavities with

  2. Feasibility evaluations for the integration of laser butt welding of tubes in industrial pipe coil production lines

    Science.gov (United States)

    Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro

    1994-09-01

    Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is

  3. Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration

    Science.gov (United States)

    Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.

    2017-11-01

    Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4

  4. Laser frequency stabilisation by the Pound - Drever - Hall method using an acousto-optic phase modulator operating in the pure Raman - Nath diffraction regime

    International Nuclear Information System (INIS)

    Baryshev, Vyacheslav N

    2012-01-01

    Frequency stabilisation of diode laser radiation has been implemented by the Pound - Drever - Hall method using a new acousto-optic phase modulator, operating in the pure Raman - Nath diffraction regime. It is experimentally shown that, as in the case of saturated-absorption spectroscopy in atomic vapour, the spatial divergence of the frequency-modulated output spectrum of this modulator does not interfere with obtaining error signals by means of heterodyne frequency-modulation spectroscopy with a frequency discriminator based on a high-Q Fabry - Perot cavity with finesse of several tens of thousands.

  5. Heterogeneous Silicon III-V Mode-Locked Lasers

    Science.gov (United States)

    Davenport, Michael Loehrlein

    Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.

  6. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-04-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5

  7. A high sensitivity heterodyne interferometer as a possible optical readout for the LISA gravitational reference sensor and its application to technology verification

    Energy Technology Data Exchange (ETDEWEB)

    Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Braxmaier, Claus [EADS Astrium, Claude-Dornier-Strasse, 88039 Friedrichshafen (Germany); Schuldt, Thilo; Peters, Achim, E-mail: martin.gohlke@astrium.eads.ne [Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2009-03-01

    The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) utilizes a high performance position sensor in order to measure the translation and tilt of the free flying proof mass with respect to the optical bench. Depending on the LISA optical bench design, this position sensor must have up to pm/sq rootHz sensitivity for the translation measurement and up to nrad/sq rootHz sensitivity for the tilt measurement. We developed a heterodyne interferometer, combined with differential wavefront sensing, for the tilt measurement. The interferometer design exhibits maximum symmetry where measurement and reference arm have the same frequency and polarization and the same optical path-lengths. The interferometer can be set up free of polarizing optical components preventing possible problems with thermal dependencies not suitable for the space environment. We developed a mechanically highly stable and compact setup which is located in a vacuum chamber. We measured initial noise levels below 10 pm/sq rootHz (longitudinal measurement) for frequencies above 10 mHz and below 20 nrad/sq rootHz (tilt measurement) for frequencies above 1 mHz. This setup can also be used for other applications, for example the measurement of the coefficient of thermal expansion (CTE) of structural materials, such as carbon fiber reinforced plastic (CFRP).

  8. Transillumination optical sensing for biomedicine and diagnostics: feasibility of early diagnosis for rheumatoid arthritis

    International Nuclear Information System (INIS)

    Yuasa, Tetsuya; Sasaki, Yoshiaki; Devaraj, Balasigamani; Akatsuka, Takao; Tanosaki, Shinji; Takagi, Michiaki; Taniguchi, Hiroshi

    2002-01-01

    Optical computed tomography of thick biological tissues remains an elusive but fascinating area of research with potential applications in biomedicine. Our measurement use the optical heterodyne detection method wherein CW and single frequency lasers are used to exploit the maximum advantages of heterodyne detection such as high directionality, selectivity and sensitivity. We have demonstrated the advantages and capabilities of the measurement technique for transillumination optical computed tomography in biomedicine. Biological tissues by nature are heterogeneous, complex and forward scattering media. The optical heterodyne detection method enables selective filtering of the directional coherence retaining emergent photons for image reconstruction similar to those as in X-ray CT. Here, we report our recent results on transillumination in vivo imaging for diagnosis of rheumatoid arthritis (RA). In particular, we demonstrate the feasibility of early diagnosis for RA by comparing the laser tomographic images of fingers of an RA patient and a healthy volunteer. (author)

  9. Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator

    Science.gov (United States)

    Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-09-01

    We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.

  10. High accuracy amplitude and phase measurements based on a double heterodyne architecture

    International Nuclear Information System (INIS)

    Zhao Danyang; Wang Guangwei; Pan Weimin

    2015-01-01

    In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations. (authors)

  11. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent [Livermore, CA

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  12. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  13. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    Science.gov (United States)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  14. The European answer to the integration issues of excimer laser annealing in MOS technology

    International Nuclear Information System (INIS)

    Privitera, V.; La Magna, A.; Fortunato, G.; Camalleri, M.; Magri, A.; Simon, F.; Svensson, B.G.

    2004-01-01

    Excimer laser annealing (ELA) of MOSFET devices is currently studied and evaluated within the frame of the IST project 'Fundamentals and applications of laser processing for highly innovative MOS technology' (FLASH), funded by the European Commission. This European consortium aim to demonstrate that ELA can be industrialized in the context of semiconductor device fabrication. The technical achievement of homogeneous irradiation of entire wafers by industrial line beam system set up has been combined with device design solutions, in order to avoid the detrimental effects of the laser beam on device structures and tackle the integration issues, main obstacles for the use of ELA in the semiconductor industry. The launch of ELA, to open a new market segment in the semiconductor industry, implies also the availability of reliable process simulation tools. Therefore, a simulation program based on the phase-field method was produced, fully working and available

  15. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    Science.gov (United States)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  16. Integrated cooling-vacuum-assisted 1540-nm erbium:glass laser is effective in treating mild-to-moderate acne vulgaris.

    Science.gov (United States)

    Politi, Y; Levi, A; Enk, C D; Lapidoth, M

    2015-12-01

    Acne treatment by a mid-infrared laser may be unsatisfactory due to deeply situated acne-affected sebaceous glands which serve as its target. Skin manipulation by vacuum and contact cooling may improve laser-skin interaction, reduce pain sensation, and increase overall safety and efficacy. To evaluate the safety and efficacy of acne treatment using an integrated cooling-vacuum-assisted 1540-nm erbium:glass laser, a prospective interventional study was conducted. It included 12 patients (seven men and five women) suffering from mild-to-moderate acne vulgaris. The device utilizes a mid-infrared 1540-nm laser (Alma Lasers Ltd. Caesarea, Israel), which is integrated with combined cooling-vacuum-assisted technology. An acne lesion is initially manipulated upon contact by a vacuum-cooling-assisted tip, followed by three to four stacked laser pulses (500-600 mJ, 4 mm spot size, and frequency of 2 Hz). Patients underwent four to six treatment sessions with a 2-week interval and were followed-up 1 and 3 months after the last treatment. Clinical photographs were taken by high-resolution digital camera before and after treatment. Clinical evaluation was performed by two independent dermatologists, and results were graded on a scale of 0 (exacerbation) to 4 (76-100 % improvement). Patients' and physicians' satisfaction was also recorded. Pain perception and adverse effects were evaluated as well. All patients demonstrated a moderate to significant improvement (average score of 3.6 and 2.0 within 1 and 3 months, respectively, following last treatment session). No side effects, besides a transient erythema, were observed. Cooling-vacuum-assisted 1540-nm laser is safe and effective for the treatment of acne vulgaris.

  17. An asymmetric integrated extended cavity 20GHz mode-locked quantum well ring laser fabricated in the JePPIX technology platform

    NARCIS (Netherlands)

    Tahvili, M.S.; Barbarin, Y.; Ambrosius, H.P.M.M.; Smit, M.K.; Bente, E.A.J.M.; Leijtens, X.J.M.; Vries, de T.; Smalbrugge, E.; Bolk, J.

    2011-01-01

    In this paper, we present mode-locked operation of a monolithic 20GHz integrated extended cavity ring laser. The 4mm-long laser ring cavity incorporates a 750µm-long optical amplifier section (SOA), a separate 40µm long saturable absorber (SA) section, passive waveguide sections (shallow and deep

  18. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW

  19. High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm

    KAUST Repository

    Shen, Chao

    2016-01-25

    To date, solid-state lighting (SSL), visible light communication (VLC) and optical clock generation functionalities in the blue-green color regime have been demonstrated based on discrete devices, including light-emitting diodes, laser diodes, and transverse-transmission modulators. This work presents the first integrated waveguide modulator-laser diode (IWM-LD) at 448 nm, offering the advantages of small-footprint, high-speed, and low power-consumption. A high modulation efficiency of 2.68 dB/V, deriving from a large extinction ratio of 9.4 dB and a low operating voltage range of 3.5 V, was measured. The electroabsorption characteristics revealed that the modulation effect, as observed from the red-shifting of the absorption edge, was resulted from the external-field-induced quantum-confined-Stark-effect (QCSE). A comparative analysis of the photocurrent versus wavelength spectra in semipolar- and polar-plane InGaN/GaN quantum wells (QWs) confirmed that the IWM-LD based on semipolar (20¯2 ¯1) QWs was able to operate in a manner similar to other III-V materials typically used in optical telecommunications, due to the reduced piezoelectric field. Utilizing the integrated modulator, a -3dB bandwidth of ~1 GHz was measured, and a data rate of 1 Gbit/s was demonstrated using on-off keying (OOK) modulation. Our experimental investigation highlighted the advantage of implementing the IWM-LD on the same semipolar QW epitaxy in enabling a high-efficiency platform for SSL-VLC dual-functionalities.

  20. High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Leonard, John T.; Pourhashemi, Arash; Oubei, Hassan M.; Alias, Mohd Sharizal; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.; Alyamani, Ahmed Y.; Eldesouki, Munir M.; Ooi, Boon S.

    2016-01-01

    To date, solid-state lighting (SSL), visible light communication (VLC) and optical clock generation functionalities in the blue-green color regime have been demonstrated based on discrete devices, including light-emitting diodes, laser diodes, and transverse-transmission modulators. This work presents the first integrated waveguide modulator-laser diode (IWM-LD) at 448 nm, offering the advantages of small-footprint, high-speed, and low power-consumption. A high modulation efficiency of 2.68 dB/V, deriving from a large extinction ratio of 9.4 dB and a low operating voltage range of 3.5 V, was measured. The electroabsorption characteristics revealed that the modulation effect, as observed from the red-shifting of the absorption edge, was resulted from the external-field-induced quantum-confined-Stark-effect (QCSE). A comparative analysis of the photocurrent versus wavelength spectra in semipolar- and polar-plane InGaN/GaN quantum wells (QWs) confirmed that the IWM-LD based on semipolar (20¯2 ¯1) QWs was able to operate in a manner similar to other III-V materials typically used in optical telecommunications, due to the reduced piezoelectric field. Utilizing the integrated modulator, a -3dB bandwidth of ~1 GHz was measured, and a data rate of 1 Gbit/s was demonstrated using on-off keying (OOK) modulation. Our experimental investigation highlighted the advantage of implementing the IWM-LD on the same semipolar QW epitaxy in enabling a high-efficiency platform for SSL-VLC dual-functionalities.

  1. Proceedings of the conference on lasers and electro-optics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book presents the papers discussed at a conference on the subject of electro-optics and lasers. Some of the topics discussed were: laser fusion and interactions; implosion experiments; tunable integrated Bragg lasers, CO 2 lasers; present status of integrated lasers; DFB lasers; transition metal lasers-solid state lasers, mirror laser resonators, multiquantumwell lasers; fusion laser technology; and dynamics and characteristics of diode lasers

  2. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  3. Quantum Limits of Space-to-Ground Optical Communications

    Science.gov (United States)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  4. Coherent Optical Generation of a 6 GHz Microwave Signal with Directly Phase Locked Semiconductor DFB Lasers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene

    1992-01-01

    Experimental results of a wideband heterodyne second order optical phase locked loop with 1.5 ¿m semiconductor lasers are presented. The loop has a bandwidth of 180 MHz, a gain of 181 dBHz and a propagation delay of only 400 ps. A beat signal of 8 MHz linewidth is phase locked to become a replica...... of a microwave reference source close to carrier with a noise level of ¿125 dBc/Hz. The total phase variance of the locked carrier is 0.04 rad2 and carriers can be generated in a continuous range from 3 to 18 GHz. The loop reliability is excellent with an average time to cycle slip of 1011 seconds...

  5. Analysis of Hybrid-Integrated High-Speed Electro-Absorption Modulated Lasers Based on EM/Circuit Co-simulation

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Kazmierski, C.

    2009-01-01

    An improved electromagnetic simulation (EM) based approach has been developed for optimization of the electrical to optical (E/O) transmission properties of integrated electro-absorption modulated lasers (EMLs) aiming at 100 Gbit/s Ethernet applications. Our approach allows for an accurate analysis...... of the EML performance in a hybrid microstrip assembly. The established EM-based approach provides a design methodology for the future hybrid integration of the EML with its driving electronics....

  6. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    Science.gov (United States)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  7. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    International Nuclear Information System (INIS)

    Lin Jun; Pakhomov, Andrew V.

    2005-01-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (∼ 3x10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ∼35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements

  8. Beam-modulation methods in quantitative and flow-visualization holographic interferometry

    Science.gov (United States)

    Decker, Arthur J.

    1986-01-01

    Heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam are discussed. Both methods will be used for the measurement and visualization of internal transonic flows where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  9. Spatial Heterodyne Observation of Water (SHOW) from a high altitude aircraft

    Science.gov (United States)

    Bourassa, A. E.; Langille, J.; Solheim, B.; Degenstein, D. A.; Letros, D.; Lloyd, N. D.; Loewen, P.

    2017-12-01

    The Spatial Heterodyne Observations of Water instrument (SHOW) is limb-sounding satellite prototype that is being developed in collaboration between the University of Saskatchewan, York University, the Canadian Space Agency and ABB. The SHOW instrument combines a field-widened SHS with an imaging system to observe limb-scattered sunlight in a vibrational band of water (1363 nm - 1366 nm). Currently, the instrument has been optimized for deployment on NASA's ER-2 aircraft. Flying at an altitude of 70, 000 ft the ER-2 configuration and SHOW viewing geometry provides high spatial resolution (limb-measurements of water vapor in the Upper troposphere and lower stratosphere region. During an observation campaign from July 15 - July 22, the SHOW instrument performed 10 hours of observations from the ER-2. This paper describes the SHOW measurement technique and presents the preliminary analysis and results from these flights. These observations are used to validate the SHOW measurement technique and demonstrate the sampling capabilities of the instrument.

  10. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    Science.gov (United States)

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  11. Materials behaviour in metal curring: strains, strain rates and temperatures in chip formation

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.; Jaspers, S.P.F.C.; Dautzenberg, J.H.

    2002-01-01

    The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

  12. BER analysis of multi-hop heterodyne FSO systems with fixed gain relays over general Malaga turbulence channels

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-07-20

    This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) fixed-gain relaying system using heterodyne detection over misaligned general Malaga turbulence channels. More specifically, we present exact closed-form expressions for average bit-error rate achievable spectral efficiency non-adaptive/adaptive modulation schemes by employing generalized power series identity of Meijer\\'s G-function. Moreover, asymptotic closed-form expressions are derived to validate our results at high signal-to-noise ratio. In addition, the analytical results have been presented with compare to range of numerical values.

  13. BER analysis of multi-hop heterodyne FSO systems with fixed gain relays over general Malaga turbulence channels

    KAUST Repository

    Alheadary, Wael Ghazy; Park, Kihong; Alouini, Mohamed-Slim

    2017-01-01

    This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) fixed-gain relaying system using heterodyne detection over misaligned general Malaga turbulence channels. More specifically, we present exact closed-form expressions for average bit-error rate achievable spectral efficiency non-adaptive/adaptive modulation schemes by employing generalized power series identity of Meijer's G-function. Moreover, asymptotic closed-form expressions are derived to validate our results at high signal-to-noise ratio. In addition, the analytical results have been presented with compare to range of numerical values.

  14. Re-investigation of the (3, 0) band in the b4Σ- - a4Π system for nitric oxide by laser absorption spectroscopy

    Science.gov (United States)

    Li, Chuanliang; Shao, Ligang; Wang, Hailing; Zhou, Qinghong; Qiu, Xuanbing; Wei, Jilin; Deng, Lunhua; Chen, Yangqin

    2018-04-01

    Nitric oxide (NO) radicals in the a4Π state were produced by discharging the mixture of NO gas and helium at the audio frequency. In the near infrared region, the spectra of the b4Σ- - a4Π system of the NO radical were studied by optical heterodyne - concentration modulation laser absorption spectroscopy. More than one hundred and thirty lines and eleven branches were recorded for the first time and assigned to the (3, 0) band. A global fitting was carried out to extract the molecular constants. In particular, the parameters D, p, γ and AD were precisely determined.

  15. Laser Protection TIL

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Protection TIL conducts research and analysis of laser protection materials along with integration schemes. The lab's objectives are to limit energy coming...

  16. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  17. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas; Alouini, Mohamed-Slim

    2016-01-01

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  18. Degradation of Side-Mode Suppression Ratio in a DFB Laser Integrated With a Semiconductor Optical Amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Lestrade, Michel; Camel, Jérôme

    2004-01-01

    The degradation of the side-mode suppression ratio (SMSR) in a monolithically integrated distributed feedback laser and semiconductor optical amplifier (SOA) cavity is investigated. An expression is derived that gives the degradation of the SMSR in the case of a perfectly antireflection-coated SO...

  19. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, D.

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  20. Integration of optical fibers in mega-joule class laser environments: advantages and limitations

    International Nuclear Information System (INIS)

    Girard, S.; Marcandella, C.; Bisutti, J.; Ouerdane, Y.; Boukenter, A.; Meunier, J.P.; Baggio, J.

    2012-01-01

    We review the advantages and limitations for the integration of optical fibers in the radiative environment associated with Megajoule class lasers as Laser Megajoule (LMJ) in France or National Ignition Facility (NIF) in the USA. Optical fibers present numerous advantages, like their electromagnetic immunity, for integration in these facilities devoted to the fusion by inertial confinement studies. Despite these advantages, it is also well-known that optical fibers suffer from a degradation of their macroscopic properties under irradiation, limiting their transmission capability. We studied the major mechanisms governing the amplitude of this degradation, focusing our discussion on the transient radiation-induced attenuation (RIA) phenomena that is often the limiting factor for LMJ applications. The amplitude and growth and decay kinetics of RIA are affected by different parameters related to the fibers themselves but also depend on the application and irradiation characteristics. We particularly investigated the fiber transient radiation responses when the optical links have to operate during the pulsed and mixed environment associated with ignition shots. Our study shows that, if the same parameters affect the fiber sensitivity for steady state and transient irradiations, the radiation tolerances of the different classes of waveguides strongly differ, implying dedicated experiments for LMJ facility needs. (authors)

  1. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  2. Low modulation bias InGaN-based integrated EA-modulator-laser on semipolar GaN substrate

    KAUST Repository

    Shen, Chao

    2015-10-06

    In summary, we demonstrated the monolithic integration of electroabsorption modulator with laser diode and measured DC and AC modulation characteristics of the device, which is grown on (2021̅) plane GaN substrate. By alternating the modulation voltage at −3.5 V and 0 V, we achieve the laser output power of < 1.5 mW to > 9 mW, respectively, leading to ∼8.1 dB On/Off ratio. Our results clearly show that a low power consumption modulator can be achieved with semipolar EA-modulator compared to that of the c-plane devices.

  3. Low modulation bias InGaN-based integrated EA-modulator-laser on semipolar GaN substrate

    KAUST Repository

    Shen, Chao; Leonard, John; Pourhashemi, Arash; Oubei, Hassan M.; Alias, Mohd Sharizal; Ng, Tien Khee; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.; Alyamani, Ahmed Y.; Eldesouki, Munir M.; Ooi, Boon S.

    2015-01-01

    In summary, we demonstrated the monolithic integration of electroabsorption modulator with laser diode and measured DC and AC modulation characteristics of the device, which is grown on (2021̅) plane GaN substrate. By alternating the modulation voltage at −3.5 V and 0 V, we achieve the laser output power of < 1.5 mW to > 9 mW, respectively, leading to ∼8.1 dB On/Off ratio. Our results clearly show that a low power consumption modulator can be achieved with semipolar EA-modulator compared to that of the c-plane devices.

  4. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  5. Integration of a terahertz quantum cascade laser with a hollow waveguide

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM

    2012-07-03

    The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.

  6. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    Science.gov (United States)

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  7. Beam-modulation methods in quantitative and flow visualization holographic interferometry

    Science.gov (United States)

    Decker, A.

    1986-01-01

    This report discusses heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam. Both methods will be used for the measurement and visualization of internal transonic flows, where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  8. Synchronization in spread spectrum laser radar systems based on PMD-DLL

    Science.gov (United States)

    Buxbaum, Bernd; Schwarte, Rudolf; Ringbeck, Thorsten; Luan, Xuming; Zhang, Zhigang; Xu, Zhanping; Hess, H.

    2000-09-01

    This paper proposes a new optoelectronic delay locked loop (OE-DLL) and its use in optical ranging systems. The so called PMD-DLL receiver module is based on a novel electro-optical modulator (EOM), called the Photonic Mixer Device (PMD). This sensor element is a semiconductor device, which combines fast optical sensing and mixing of incoherent light signals in one component part by its unique and powerful principle of operation. Integration of some simple additional on-chip components offers a high integrated electro-optical correlation unit. Simulations and experimental results have already impressively verified the operation principle of PMD structures, all realized in CMOS technology so far. Although other technologies are also promising candidates for the PMD realization they should not be further discussed in this contribution. The principle of the new DLL approach is intensively discussed in this paper. Theoretical analysis as well as experimental results of a realized PMD-DLL system are demonstrated and judged. Due to the operation principle of sophisticated PMD devices and their unique features, a correlation process may be realized in order to synchronize a reflected incoherent light wave with an electronic reference signal. The phase shift between both signals represents the distance to an obstacle and may be determined by means of the synchronization process. This new approach, avoiding so far needed critical components such as broadband amplifiers and mixers for the detection of small photo currents in optical distance measurement, offers an extremely fast and precise phase determination in ranging applications based on the time- of-flight (TOF) principle. However, the optical measurement signal may be incoherent -- therefore a laser source is not needed imperatively. The kind of waveform used for the modulation of the light signal is variable and depends on the demands of every specific application. Even if there are plenty other alternatives (e

  9. An elegant Breadboard of the optical bench for eLISA/NGO

    Science.gov (United States)

    d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis

    2017-11-01

    The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.

  10. Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system

    KAUST Repository

    Shen, Chao

    2017-02-28

    A high-performance waveguide photodetector (WPD) integrated with a laser diode (LD) sharing the single InGaN/GaN quantum well active region is demonstrated on a semipolar GaN substrate. The photocurrent of the integrated WPD is effectively tuned by the emitted optical power from the LD. The responsivity ranges from 0.018 to 0.051 A/W with increasing reverse bias from 0 to 10 V. The WPD shows a large 3 dB modulation bandwidth of 230 MHz. The integrated device, being used for power monitoring and on-chip communication, paves the way towards the eventual realization of a III–nitride on-chip photonic system.

  11. Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system

    KAUST Repository

    Shen, Chao; Lee, Changmin; Stegenburgs, Edgars; Lerma, Jorge Holguin; Ng, Tien Khee; Nakamura, Shuji; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    A high-performance waveguide photodetector (WPD) integrated with a laser diode (LD) sharing the single InGaN/GaN quantum well active region is demonstrated on a semipolar GaN substrate. The photocurrent of the integrated WPD is effectively tuned by the emitted optical power from the LD. The responsivity ranges from 0.018 to 0.051 A/W with increasing reverse bias from 0 to 10 V. The WPD shows a large 3 dB modulation bandwidth of 230 MHz. The integrated device, being used for power monitoring and on-chip communication, paves the way towards the eventual realization of a III–nitride on-chip photonic system.

  12. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    Science.gov (United States)

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  13. Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique

    Science.gov (United States)

    Savostianova, N. A.; Mikhailov, S. A.

    2018-04-01

    Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.

  14. The first neural probe integrated with light source (blue laser diode) for optical stimulation and electrical recording.

    Science.gov (United States)

    Park, HyungDal; Shin, Hyun-Joon; Cho, Il-Joo; Yoon, Eui-sung; Suh, Jun-Kyo Francis; Im, Maesoon; Yoon, Euisik; Kim, Yong-Jun; Kim, Jinseok

    2011-01-01

    In this paper, we report a neural probe which can selectively stimulate target neurons optically through Si wet etched mirror surface and record extracellular neural signals in iridium oxide tetrodes. Consequently, the proposed approach provides to improve directional problem and achieve at least 150/m gap distance between stimulation and recording sites by wet etched mirror surface in V-groove. Also, we developed light source, blue laser diode (OSRAM Blue Laser Diode_PL 450), integration through simple jig for one-touch butt-coupling. Furthermore, optical power and impedance of iridium oxide tetrodes were measured as 200 μW on 5 mW from LD and 206.5 k Ω at 1 kHz and we demonstrated insertion test of probe in 0.5% agarose-gel successfully. We have successfully transmitted a light of 450 nm to optical fiber through the integrated LD using by butt-coupling method.

  15. Low-Power-Consumption Integrated PPM Laser Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional PPM laser transmitters, a CW laser followed by a modulator, are inherently inefficient since the data must be carved from the laser's steady output. 95%...

  16. Low-Power-Consumption Integrated PPM Laser Transmitter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional PPM laser transmitters, a CW laser followed by a modulator, are inherently inefficient since the data must be carved from the laser's steady output. 95%...

  17. Integration of image exposure time into a modified laser speckle imaging method

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J [Optics Department, INAOE, Puebla (Mexico); Huang, Y C [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA (United States); Choi, B, E-mail: jcram@inaoep.m [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA (United States)

    2010-11-21

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  18. Integration of image exposure time into a modified laser speckle imaging method

    International Nuclear Information System (INIS)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J; Huang, Y C; Choi, B

    2010-01-01

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  19. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  20. Optimization of Integrated Electro-Absorption Modulated Laser Structures for 100 Gbit/s Ethernet Using Electromagnetic Simulation

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Kazmierski, Christophe; Jany, Christophe

    2007-01-01

    In this paper three options for very-high bit rate integrated electro-absorption modulated laser (EML) structures are investigated using electromagnetic simulation. A physics based distributed equivalent circuit model taking the slowwave propagation characteristics of the modulation signal...... into account is proposed for the electro-absorption modulator (EAM)electrode arrangement. This model makes it possible to apply an EM/circuit co-simulation approach to estimate the electrical to optical transmission bandwidth for the integrated EML. It is shown that a transmission bandwidth of 70 GHz seems...

  1. Ion temperature measurements of H-, D- and He-plasmas in the TCA tokamak by collective Thomson scattering of D2O laser radiation

    International Nuclear Information System (INIS)

    Behn, R.; Dicken, D.; Hackmann, J.; Salito, S.A.; Siegrist, M.R.

    1989-01-01

    Development of collective Thomson scattering as a method to measure the ion temperature of a tokamak plasma has been successful and encouraging results have been obtained during experiments on TCA in H-, D- and He-plasmas. Using a laser source in the far-infrared spectral region allows scattering angles close to 90 o , which results in excellent spatial resolution. The system installed on the TCA tokamak comprises an optically pumped D 2 O laser emitting 0.5 J in a 1.4 μs pulse on its Raman transition at 385μm. A heterodyne receiver with a Schottky barrier diode mixer has been chosen to detect the scattered radiation and analyze its spectral distribution in 12 channels of 80 MHz. Recent improvements of the mixer and 1st IF-amplifier yielded a system NEP of 2.2·10 -19 W/Hz. As a consequence we have obtained results which allow for the first time to evaluate the ion temperature T i in a single laser shot. (author) 3 figs., 1 tab

  2. Seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Dong, Ze; Cao, Zizheng; Chi, Nan; Zhang, Junwen; Shao, Yufeng; Tao, Li

    2012-10-22

    We experimentally demonstrated the seamless integration of 57.2-Gb/s signal wireline transmission and 100-GHz wireless delivery adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation with 400-km single-mode fiber-28 (SMF-28) transmission and 1-m wireless delivery. The X- and Y-polarization components of optical PDM-QPSK baseband signal are simultaneously up-converted to 100 GHz by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which make up a 2x2 multiple-input multiple-output (MIMO) wireless link based on microwave polarization multiplexing. At the wireless receiver, a two-stage down conversion is firstly done in analog domain based on balanced mixer and sinusoidal radio frequency (RF) signal, and then in digital domain based on digital signal processing (DSP). Polarization de-multiplexing is realized by constant modulus algorithm (CMA) based on DSP in heterodyne coherent detection. Our experimental results show that more taps are required for CMA when the X- and Y-polarization antennas have different wireless distance.

  3. Speckles generated by skewed, short-coherence light beams

    International Nuclear Information System (INIS)

    Brogioli, D; Salerno, D; Ziano, R; Mantegazza, F; Croccolo, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called ‘skewed coherence beam’, i.e. a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. Moreover, we show that the heterodyne signal is not affected by multiple scattering. We suggest that the phenomenon presented here can be used as a means of carrying out heterodyne scattering measurement with any short-coherence radiation, including x-rays. (paper)

  4. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    Science.gov (United States)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  5. Integration of electro-absorption modulator in a vertical-cavity surface-emitting laser

    Science.gov (United States)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Rumeau, A.; Viallon, C.; Thienpont, H.; Panajotov, K.; Almuneau, G.

    2018-02-01

    VCSELs became dominant laser sources in many short optical link applications such as datacenter, active cables, etc. Actual standards and commercialized VCSEL are providing 25 Gb/s data rates, but new solutions are expected to settle the next device generation enabling 100 Gb/s. Directly modulated VCSEL have been extensively studied and improved to reach bandwidths in the range of 26-32 GHz [Chalmers, TU Berlin], however at the price of increased applied current and thus reduced device lifetime. Furthermore, the relaxation oscillation limit still subsists with this solution. Thus, splitting the emission and the modulation functions as done with DFB lasers is a very promising alternative [TI-Tech, TU Berlin]. Here, we study the vertical integration of an ElectroAbsorption Modulator (EAM) within a VCSEL, where the output light of the VCSEL is modulated through the EAM section. In our original design, we finely optimized the EAM design to maximize the modulation depth by implementing perturbative Quantum Confined Stark Effect (QCSE) calculations, while designing the vertical integration of the EAM without penalty on the VCSEL static performances. We will present the different fabricated vertical structures, as well as the experimental electrical and optical static measurements for those configurations demonstrating a very good agreement with the reflectivity and absorption simulations obtained for both the VCSEL and the EAM-VCSEL structures. Finally, to reach very high frequency modulation we studied the BCB electrical properties up to 110 GHz and investigated coplanar and microstrip lines access to decrease both the parasitic capacitance and the influence of the substrate.

  6. Laser beam deflection-based perimeter scanning of integrated circuits for local overheating location

    International Nuclear Information System (INIS)

    Perpina, X; Jorda, X; Vellvehi, M; Altet, J; Mestres, N

    2009-01-01

    In integrated circuits, local overheating (hot spots) can be detected by monitoring the temperature gradients present in the silicon substrate at a given depth, laterally accessing the die with an infra-red laser beam probe. The sensed magnitude is the laser beam deflection, which is proportional to the temperature gradients found along the beam trajectory (mirage effect). Biasing the devices with periodic electrical functions allows employing lock-in detection strategies (noise immunity) and thermally isolating the analysed chip substrate thermal behaviour from the external boundary conditions by setting the excitation frequency (control of the thermal energy penetration depth). Measuring the first harmonic of the deflection signal components (vertical and horizontal) allows performing a fast and accurate location of devices, interconnects or circuits dissipating relatively high power levels without any calibration procedure. It has been concluded that the horizontal component of the beam deflection provides a higher spatial resolution than the vertical one when measurements are performed beyond the thermal energy penetration depth. (fast track communication)

  7. Excimer laser doping technique for application in an integrated CdTe imaging device

    CERN Document Server

    Mochizuki, D; Aoki, T; Tomita, Y; Nihashi, T; Hatanaka, Y

    1999-01-01

    CdTe is an attractive semiconductor material for applications in solid-state high-energy X-ray and gamma-ray imaging systems because of its high absorption coefficient, large band gap, good mobility lifetime product of holes and stability at normal atmospheric conditions. We propose a new concept for fabricating an integrated CdTe with monolithic circuit configuration for two-dimensional imaging systems suitable for medical, research or industrial applications and operation at room temperature. A new doping technique has been recently developed that employs excimer laser radiation to diffuse impurity atoms into the semiconductor. Accordingly, heavily doped n- and p-type layers with resistivities less than 1 OMEGA cm can be formed on the high resistive CdTe crystals. We have further extended this technique for doping with spatial pattern. We will present the laser doping technique and various results thus obtained. Spatially patterned doping is demonstrated and we propose the use of these doping techniques for...

  8. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Science.gov (United States)

    Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle

    2018-01-01

    We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.

  9. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Directory of Open Access Journals (Sweden)

    Malik Kemiche

    2018-01-01

    Full Text Available We exploit slow light (high ng modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28, this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate of the pulsed laser signal.

  10. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  11. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  12. Tunable Reflective Spatial Heterodyne Spectrometer: A Technique for High Resolving Power, Wide Field Of View Observation Of Diffuse Emission Line Sources

    Science.gov (United States)

    Hosseini, Seyedeh Sona

    The purpose of this dissertation is to discuss the need for new technology in broadband high-resolution spectroscopy based on the emerging technique of Spatial Heterodyne Spectroscopy (SHS) and to propose new solutions that should enhance and generalize this technology to other fields. Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. In current high resolving power devices, the drawback of high-resolution spectroscopy is bound to the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become handicapping for observation of faint and/or extended targets and for spacecraft encounters. A technique with promise for the study of faint and extended sources at high resolving power is the reflective format of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally tailored for both high etendue (defined in section 2.2.5) and high resolving power. In contrast, to achieve similar spectral grasp, grating spectrometers require large telescopes. For reference, SHS is a cyclical interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. The large etendue obtained by SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables one to study the dynamical and physical properties described above. This document contains four chapters. Chapter 1, introduces a class of scientific targets that formerly have

  13. Multi-Functional Fibre-Optic Microwave Links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo

    1998-01-01

    The multi-functionality of microwave links based on remote heterodyne detection of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection in conjunction with optical intensity modulation is used to implement fibre......-optic microwave links. The resulting links are inherently transparent and mainly used for signal transmission. As opposed to direct detection links, remote heterodyne detection links can directly perform functionalities such as modulation, frequency conversion, and transparent signal recovery in addition...

  14. Prospects for ion temperature measurements in JET by Thomson scattering of submillimetre waves

    International Nuclear Information System (INIS)

    Whitbourn, L.B.

    1975-03-01

    The Thomson scattering of submillimeter waves is envisaged as a possible means for measuring the ion temperature of the JET plasma. The present discussion is principally concerned with the practical limitations imposed to the method by the availability of high power pulsed sources and sensitive detectors and noise due to plasma emission at submillimeter wavelengths (bremsstrahlung and electron cyclotron emission). Coherent scattering from plasma wave (e.g. ion acoustic waves and electron drift waves) with millimeter and submillimeter waves are considered briefly. Further suitable development of lasers and heterodyne detectors would make such measurements possible. A pulsed HCN laser associated with a detectors with a lower heterodyne noise equivalent power could then be used to advantage. For scattering with CH 3 F laser the NEP of a Josephson junction would be adequate because a relatively high level of plasma emission is expected at 496 μm [fr

  15. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    Science.gov (United States)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  16. A Fiber Interferometer for the Magnetized Shock Experiment

    International Nuclear Information System (INIS)

    Yoo, Christian

    2012-01-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  17. Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters

    Energy Technology Data Exchange (ETDEWEB)

    Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland); Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch; Tardy, Camille; Terazzi, Romain; Gresch, Tobias; Blaser, Stéphane; Muller, Antoine [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Faist, Jerome [Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland)

    2015-11-30

    In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolution molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.

  18. High-power planar dielectric waveguide lasers

    International Nuclear Information System (INIS)

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  19. Hybrid III-V/silicon lasers

    Science.gov (United States)

    Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.

    2014-05-01

    The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.

  20. Progress on CD-DVD laser microfabrication method to develop cell culture scaffolds integrating biomimetic characteristics

    Science.gov (United States)

    Hautefeuille, Mathieu; Vázquez-Victorio, Genaro; Cruz-Ramírez, Aaron; Cabriales, Lucia; Jiménez-Diaz, Edgar; Escutia-Guadarrama, Lidia; López-Aparicio, Jehú; Pérez-Calixto, Daniel; Cano-Jorge, Mariel; Nieto-Rivera, Brenda; Sánchez-Olvera, Raúl

    2018-02-01

    The development of organ-on-chip and biological scaffolds is currently requiring simpler methods to microstructure biocompatible materials in three dimensions, fabricate structural and functional elements in biomaterials or modify the physicochemical properties of desired substrates. With the aim of creating simple, cost-effective alternatives to conventional existing techniques to produce such platforms with very specific properties, a low-power CD-DVD laser pickup head was recycled and mounted on a programmable three-axis micro-displacement system in order to modify the surface of polymeric materials in a local fashion. Thanks to a specially-designed method using a strongly absorbing additive coating the materials of interest, it has been possible to establish and precisely control processes useful in microtechnology for biomedical applications and normally restricted to much less affordable high-power lasers. In this work, we present our latest progress regarding the application of our fabrication technique to the development of organ-on-chip platforms thanks to the simple integration of several biomimetic characteristics typically achieved with traditional, less cost-effective microtechnology methods in one step or through replica-molding. Our straightforward approach indeed enables great control of local laser microablation for true on-demand biomimetic micropatterned designs in several transparent polymers and hydrogels of tunable stiffness and is allowing integration of microfluidics, microelectronics, optical waveguides, surface microstructuring and even transfer of superficial protein micropatterns on a variety of biocompatible materials. The results presented here were validated using hepatic and fibroblasts cell lines to demonstrate the viability of our procedure for organ-on-chip development and show the impact of such features in cell culture.

  1. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements.

    Science.gov (United States)

    Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H

    2009-02-01

    Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).

  2. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  3. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  4. Design and Analysis of Enhanced Modulation Response in Integrated Coupled Cavities DBR Lasers Using Photon-Photon Resonance

    Directory of Open Access Journals (Sweden)

    Paolo Bardella

    2016-01-01

    Full Text Available In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR at a frequency higher than the modulation bandwidth of the corresponding single-section laser. Design guidelines will be proposed, and dynamic small and large signal simulations results, calculated using a finite difference traveling wave (FDTW numerical simulator, will be discussed to confirm the design results. The effectiveness of the design procedure is verified in a structure with PPR frequency at 35 GHz allowing one to obtain an open eye diagram for a non-return-to-zero (NRZ digital signal up to 80 GHz . Furthermore, the investigation of the rich dynamics of this structure shows that with proper bias conditions, it is possible to obtain also a tunable self-pulsating signal in a frequency range related to the PPR design.

  5. NASA's Preparations for ESA's L3 Gravitational Wave Mission

    Science.gov (United States)

    Stebbins, Robin

    2016-01-01

    Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.

  6. Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Chen, H.; Shepherd, R.; Chung, H. K.; Kemp, A.; Hansen, S. B.; Wilks, S. C.; Ping, Y.; Widmann, K.; Fournier, K. B.; Beiersdorfer, P.; Dyer, G.; Faenov, A.; Pikuz, T.

    2007-01-01

    We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10 17 , 10 18 , and 10 19 W/cm 2 , using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kα generation, collisional coupling, and plasma expansion

  7. GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode

    KAUST Repository

    Shen, Chao

    2017-01-30

    A 404-nm emitting InGaN-based laser diode with integrated-waveguide-modulator showing a large extinction ratio of 11.3 dB was demonstrated on semipolar (2021) plane GaN substrate. The device shows a low modulation voltage of −2.5 V and ∼ GHz −3 dB bandwidth, enabling 1.7 Gbps data transmission.

  8. GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.; Alyamani, Ahmed Y.; Eldesouki, Munir M.; Ooi, Boon S.

    2017-01-01

    A 404-nm emitting InGaN-based laser diode with integrated-waveguide-modulator showing a large extinction ratio of 11.3 dB was demonstrated on semipolar (2021) plane GaN substrate. The device shows a low modulation voltage of −2.5 V and ∼ GHz −3 dB bandwidth, enabling 1.7 Gbps data transmission.

  9. Integrating Airborne and Terrestrial Laser Scanning data to monitor active landsliding

    Science.gov (United States)

    Székely, B.; Molnár, G.; Roncat, A.; Lehner, H.; Gaisecker, Th.; Drexel, P.

    2009-04-01

    Active slope processes often endanger various built-up objects and, as a consequence, sometimes human lives as well. Data acquision on the status and evolution of such slopes, especially those that had already affected by landsliding, therefore is a primary target for engineering geomorphic research. The method of laser scanning provides an appropriate data collection technique with the requested accuracy. Data from repeated Airborne Laser Scanning (ALS) campaigns are suitable to be analysed for the slow, incipient movements of the slope. The problem of this surveying technique is that repetition time is strongly dependent on the financial resources of the monitoring project, and often the requested recurrence of flight campaigns cannot be achieved. A possible solution to densify the data acquisition in time is the application of Terrestrial Laser Scanning (TLS) and intergration of its data with ALS data sets. TLS has the advantage of flexibility and shorter observation distances compared to ALS. This technique needs special considerations and tedious processing since the geometric setting of the data acquision considerably differ in TLS and ALS. Furthermore, obstacles in the landscape may partly hamper the data acqusition which rarely the case in ALS. Our case study area is a several-decade-long active landsliding in Doren (Federal State Vorarlberg, Austria) that as it develops, it is about to endangers houses of the locality. The site is especially suitable for the project, because multi-temporal data sets (from ALS flight campaigns in 2003, 2006 and 2007, respectively) of this area are available. The data integration is carried out in the form of production of point clouds (sensed from various points of the valley sides) and we compared the results with the results of the previous ALS campaigns. With the planned repetition of the TLS measurements new and detailed insights can be achieved concerning the evolution of the incipient and on-going slow motions. This

  10. A primary standard for low-g shock calibration by laser interferometry

    Science.gov (United States)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2014-07-01

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He-Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s-2 and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1.

  11. A primary standard for low-g shock calibration by laser interferometry

    International Nuclear Information System (INIS)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2014-01-01

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He–Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s −2  and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1. (paper)

  12. Hollow laser plasma self-confined microjet generation

    Science.gov (United States)

    Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team

    2017-10-01

    Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.

  13. Statistical properties of visible and infrared beams retroreflected through a turbulent atmosphere

    International Nuclear Information System (INIS)

    Slatkine, M.; Bensimon, D.; Englander, A.; Shtrikman, S.; Treves, D.

    1980-01-01

    Statistical properties of HeNe and CO 2 laser beams retroreflected through a turbulent atmosphere are investigated experimentally for round paths of 1 km and 12 km. Both heterodyne and direct detection are used

  14. A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

    KAUST Repository

    Li, Ming

    2011-12-03

    We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO 2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of top and bottom electrode-patterned substrates fabricated with conventional lithography, sputtering and lift-off techniques. Processes of the developed fabrication method were illustrated. Major issues associated with this method as PDMS surface treatment and characterization, thickness-control of the transferred PDMS layer, and laser parameters optimization were discussed, along with the examination and testing of bonding with two representative materials (glass and silicon). The capability of this method was further demonstrated by fabricating a microfluidic chip with sputter-coated electrodes on the top and bottom substrates. The device functioning as a microparticle focusing and trapping chip was experimentally verified. It is confirmed that the proposed method has many advantages, including simple and fast fabrication process, low cost, easy integration of electronics, strong bonding strength, chemical and biological compatibility, etc. © Springer-Verlag 2011.

  15. Optical interferometry for measurement of the geometric dimensions of industrial parts

    International Nuclear Information System (INIS)

    Groot, Peter de; Biegen, Jim; Clark, Jack; Lega, Xavier Colonna de; Grigg, David

    2002-01-01

    We describe an instrument for the measurement of surface flatness, parallelism, and size (thickness) of plane-parallel parts in a single measurement to 1σ gauge capability of 0.02, 0.03, and 0.06 μm, respectively. A low-coherence IR profiler viewing both sides of the part simultaneously, believed to be novel, accommodates a wide variety of industrial surface finishes, including machined, ground, or lapped parts, with a 75-mm field of view and 15,000 pixels per side. A heterodyne laser displacement gauge together with an integrated zeroing system allows for a range of part sizes from 0 to 100 mm

  16. Design of a real-time two-color interferometer for MAST Upgrade

    International Nuclear Information System (INIS)

    O’Gorman, T.; Naylor, G.; Scannell, R.; Cunningham, G.; Martin, R.; Croft, D.; Brunner, K. J.

    2014-01-01

    A single chord two-color CO 2 /HeNe (10.6/0.633 μm) heterodyne laser interferometer has been designed to measure the line integral electron density along the mid-plane of the MAST Upgrade tokamak, with a typical error of 1 × 10 18 m −3 (∼2° phase error) at 4 MHz temporal resolution. To ensure this diagnostic system can be restored from any failures without stopping MAST Upgrade operations, it has been located outside of the machine area. The final design and initial testing of this system, including details of the optics, vibration isolation, and a novel phase detection scheme are discussed in this paper

  17. 8. High power laser and ignition facilities

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  18. Phase-Locked Optical Generation of mmW/THz Signals

    Science.gov (United States)

    2009-11-01

    structure. (3 mo.) $50k 3. Design of EICs EIC de signs f or qua lified foundry fabrication (3 mo.) $50k 4. PIC fabrication Complete fab of...slave laser tuning section, Hs(s). Laser Network Analyser Optical filter Photo- detector AM + FM AM - FM Laser Photo-detector...in the UCSB nanofabrication facility, part of the NSF funded NNIN network . References [1] R .T. Ramos and A.J. Seeds, “Fast heterodyne optical

  19. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  20. Performance analysis of multihop heterodyne free-space optical communication over general Malaga turbulence channels with pointing error

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-09-21

    This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) channel-state-information (CSI)-assisted relaying system using heterodyne detection over Malaga turbulence channels at the presence of pointing error employing rectangular quadrature amplitude modulation (R-QAM). More specifically, we present exact closed-form expressions for average bit-error rate for adaptive/non-adaptive modulation, achievable spectral efficiency, and ergodic capacity by utilizing generalized power series of Meijer\\'s G-function. Moreover, asymptotic closed form expressions are provided to validate our work at high power regime. In addition, all the presented analytical results are illustrated using a selected set of numerical results. Moreover, we applied the bisection method to find the optimum beam width for the proposed FSO system.

  1. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics

    DEFF Research Database (Denmark)

    Morris, James M.; Mackenzie, Mark D.; Petersen, Christian Rosenberg

    2018-01-01

    Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero-dispersi...... ultrafast laser inscribed waveguide devices in GASIR-1 for mid-IR integrated optics applications. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.......Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero......-dispersion wavelength. Z-scan measurements of bulk samples have also been performed to determine the nonlinear refractive index. Finally, midIR supercontinuum generation has been shown when pumping the waveguides with femtosecond pulses centered at 4.6 mu m. Supercontinuum spanning approximately 4 mu m from 2.5 to 6...

  2. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis

    Science.gov (United States)

    Langille, J. A.; Letros, D.; Zawada, D.; Bourassa, A.; Degenstein, D.; Solheim, B.

    2018-04-01

    A spatial heterodyne spectrometer (SHS) has been developed to measure the vertical distribution of water vapour in the upper troposphere and the lower stratosphere with a high vertical resolution (∼500 m). The Spatial Heterodyne Observations of Water (SHOW) instrument combines an imaging system with a monolithic field-widened SHS to observe limb scattered sunlight in a vibrational band of water (1363 nm-1366 nm). The instrument has been optimized for observations from NASA's ER-2 aircraft as a proof-of-concept for a future low earth orbit satellite deployment. A robust model has been developed to simulate SHOW ER-2 limb measurements and retrievals. This paper presents the simulation of the SHOW ER-2 limb measurements along a hypothetical flight track and examines the sensitivity of the measurement and retrieval approach. Water vapour fields from an Environment and Climate Change Canada forecast model are used to represent realistic spatial variability along the flight path. High spectral resolution limb scattered radiances are simulated using the SASKTRAN radiative transfer model. It is shown that the SHOW instrument onboard the ER-2 is capable of resolving the water vapour variability in the UTLS from approximately 12 km - 18 km with ±1 ppm accuracy. Vertical resolutions between 500 m and 1 km are feasible. The along track sampling capability of the instrument is also discussed.

  3. Terahertz imaging and spectroscopy based on hot electron bolometer (HEB) heterodyne detection

    Science.gov (United States)

    Gerecht, Eyal; You, Lixing

    2008-02-01

    Imaging and spectroscopy at terahertz frequencies have great potential for healthcare, plasma diagnostics, and homeland security applications. Terahertz frequencies correspond to energy level transitions of important molecules in biology and astrophysics. Terahertz radiation (T-rays) can penetrate clothing and, to some extent, can also penetrate biological materials. Because of their shorter wavelengths, they offer higher spatial resolution than do microwaves or millimeter waves. We are developing hot electron bolometer (HEB) mixer receivers for heterodyne detection at terahertz frequencies. HEB detectors provide unprecedented sensitivity and spectral resolution at terahertz frequencies. We describe the development of a two-pixel focal plane array (FPA) based on HEB technology. Furthermore, we have demonstrated a fully automated, two-dimensional scanning, passive imaging system based on our HEB technology operating at 0.85 THz. Our high spectral resolution terahertz imager has a total system noise equivalent temperature difference (NEΔT) value of better than 0.5 K and a spatial resolution of a few millimeters. HEB technology is becoming the basis for advanced terahertz imaging and spectroscopic technologies for the study of biological and chemical agents over the entire terahertz spectrum.

  4. A submillimeter heterodyne receiver and its application in astronomy

    International Nuclear Information System (INIS)

    Vliet, A.H.F. van.

    1981-01-01

    A submm heterodyne receiver for astronomical observations has been developed which operates in the frequency range between 460 and 500 GHz. An InSb hot electron bolometer is used as the mixing element. The local oscillator power is obtained by doubling the frequency of a backward wave oscillator (B.W.O.). The sideband noise of the B.W.O. has appeared to be sufficiently weak to allow its use in combination with an InSb mixer. A method of measuring the matching of the mixer to the waveguide is described and some results of measurements of B.W.O. noise are given. A general description is presented of Gaussian beam theory and this is applied to the design of the receiver optics. Particular attention is given to the coupling between the receiver and the telescope. To prevent the usually troublesome effects of standing waves between the receiver and the telescope a circular polarizer can be applied. A review is given of different types of such polarizers as presently used in the optical and microwave regimes, with a view to their application in the submm range. Two types of circular polarizers were constructed and results of measurements on these are given. The final chapter describes the observation of the rotational CO J = 4→3 transition at 461 GHz in the Kleinman Low nebula. From a combination of this measurement with others, lower bounds for the gas kinetic temperature and column density of the shocked gas in this region are derived. (Auth.)

  5. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    Science.gov (United States)

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  6. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Heterogeneous integration of thin film compound semiconductor lasers and SU8 waveguides on SiO2/Si

    Science.gov (United States)

    Palit, Sabarni; Kirch, Jeremy; Mawst, Luke; Kuech, Thomas; Jokerst, Nan Marie

    2010-02-01

    We present the heterogeneous integration of a 3.8 μm thick InGaAs/GaAs edge emitting laser that was metal-metal bonded to SiO2/Si and end-fire coupled into a 2.8 μm thick tapered SU8 polymer waveguide integrated on the same substrate. The system was driven in pulsed mode and the waveguide output was captured on an IR imaging array to characterize the mode. The waveguide output was also coupled into a multimode fiber, and into an optical head and spectrum analyzer, indicating lasing at ~997 nm and a threshold current density of 250 A/cm2.

  8. Integrating Laser Scanner and Bim for Conservation and Reuse: "the Lyric Theatre of Milan"

    Science.gov (United States)

    Utica, G.; Pinti, L.; Guzzoni, L.; Bonelli, S.; Brizzolari, A.

    2017-12-01

    The paper underlines the importance to apply a methodology that integrates the Building Information Modeling (BIM), Work Breakdown Structure (WBS) and the Laser Scanner tool in conservation and reuse projects. As it is known, the laser scanner technology provides a survey of the building object which is more accurate rather than that carried out using traditional methodologies. Today most existing buildings present their attributes in a dispersed way, stored and collected in paper documents, in sheets of equipment information, in file folders of maintenance records. In some cases, it is difficult to find updated technical documentation and the research of reliable data can be a cost and time-consuming process. Therefore, this new survey technology, embedded with BIM systems represents a valid tool to obtain a coherent picture of the building state. The following case consists in the conservation and reuse project of Milan Lyric Theatre, started in 2013 from the collaboration between the Milan Polytechnic and the Municipality. This project first attempts to integrate these new techniques which are already professional standards in many other countries such as the US, Norway, Finland, England and so on. Concerning the methodology, the choice has been to use BIM software for the structured analysis of the project, with the aim to define a single code of communication to develop a coherent documentation according to rules in a consistent manner and in tight schedules. This process provides the definition of an effective and efficient operating method that can be applied to other projects.

  9. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    Science.gov (United States)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  10. Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Hongxin; Cai Weiquan; Liu Liang; Zhou Shanyu; Shu Wei; Li Fosheng

    1994-01-01

    In this paper, we report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity. With this red-shifted diffuse light, a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 20m/s. The mechanism of this kind of laser cooling and the experimental results are discussed. (author). 12 refs, 5 figs

  11. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  12. Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano

    Science.gov (United States)

    Pesci, Arianna; Fabris, Massimo; Conforti, Dario; Loddo, Fabiana; Baldi, Paolo; Anzidei, Marco

    2007-05-01

    This work deals with the integration of different surveying methodologies for the definition of very accurate Digital Terrain Models (DTM) and/or Digital Surface Models (DSM): in particular, the aerial digital photogrammetry and the terrestrial laser scanning were used to survey the Vesuvio volcano, allowing the total coverage of the internal cone and surroundings (the whole surveyed area was about 3 km × 3 km). The possibility to reach a very high precision, especially from the laser scanner data set, allowed a detailed description of the morphology of the volcano. The comparisons of models obtained in repeated surveys allow a detailed map of residuals providing a data set that can be used for detailed studies of the morphological evolution. Moreover, the reflectivity information, highly correlated to materials properties, allows for the measurement and quantification of some morphological variations in areas where structural discontinuities and displacements are present.

  13. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation

    Science.gov (United States)

    Sakanoi, Takeshi; Kasaba, Yasumasa; Kagitani, Masato; Nakagawa, Hiromu; Kuhn, Jeff; Okano, Shoichi

    2014-08-01

    We report the development of infrared Echelle spectrograph covering 1 - 4 micron and mid-infrared heterodyne spectrometer around 10 micron installed on the 60-cm telescope at the summit of Haleakala, Hawaii (alt.=3000m). It is essential to carry out continuous measurement of planetary atmosphere, such as the Jovian infrared aurora and the volcanoes on Jovian satellite Io, to understand its time and spatial variations. A compact and easy-to-use high resolution infrared spectrometer provide the good opportunity to investigate these objects continuously. We are developing an Echelle spectrograph called ESPRIT: Echelle Spectrograph for Planetary Research In Tohoku university. The main target of ESPRIT is to measure the Jovian H3+ fundamental line at 3.9 micron, and H2 nu=1 at 2.1 micron. The 256x256 pixel CRC463 InSb array is used. An appropriate Echelle grating is selected to optimize at 3.9 micron and 2.1 micron for the Jovian infrared auroral observations. The pixel scale corresponds to the atmospheric seeing (0.3 arcsec/pixel). This spectrograph is characterized by a long slit field-of-view of ~ 50 arcsec with a spectral resolution is over 20,000. In addition, we recently developed a heterodyne spectrometer called MILAHI on the 60 cm telescope. MILAHI is characterized by super high-resolving power (more than 1,500,000) covering from 7 - 13 microns. Its sensitivity is 2400 K at 9.6 micron with a MCT photo diode detector of which bandwidth of 3000 MHz. ESPRIT and MILAHI is planned to be installed on 60 cm telescope is planned in 2014.

  14. Integrated Laser Characterization, Data Acquisition, and Command and Control Test System

    Science.gov (United States)

    Stysley, Paul; Coyle, Barry; Lyness, Eric

    2012-01-01

    Satellite-based laser technology has been developed for topographical measurements of the Earth and of other planets. Lasers for such missions must be highly efficient and stable over long periods in the temperature variations of orbit. In this innovation, LabVIEW is used on an Apple Macintosh to acquire and analyze images of the laser beam as it exits the laser cavity to evaluate the laser s performance over time, and to monitor and control the environmental conditions under which the laser is tested. One computer attached to multiple cameras and instruments running LabVIEW-based software replaces a conglomeration of computers and software packages, saving hours in maintenance and data analysis, and making very longterm tests possible. This all-in-one system was written primarily using LabVIEW for Mac OS X, which allows the combining of data from multiple RS-232, USB, and Ethernet instruments for comprehensive laser analysis and control. The system acquires data from CCDs (charge coupled devices), power meters, thermistors, and oscilloscopes over a controllable period of time. This data is saved to an html file that can be accessed later from a variety of data analysis programs. Also, through the LabVIEW interface, engineers can easily control laser input parameters such as current, pulse width, chiller temperature, and repetition rates. All of these parameters can be adapted and cycled over a period of time.

  15. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  16. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  17. Remote measurement of atmospheric pollutants

    Science.gov (United States)

    Allario, F.; Hoell, J.; Seals, R. K.

    1979-01-01

    The concentration and vertical distribution of atmospheric ammonia and ozone are remotely sensed, using dual-C02-laser multichannel infrared Heterodyne Spectrometer (1HS). Innovation makes atmospheric pollution measurements possible with nearly-quantum-noise-limited sensitivity and ultrafine spectral resolution.

  18. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Science.gov (United States)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  19. Design and prototype results of a far-infrared interferometer for MFTF-B

    International Nuclear Information System (INIS)

    Monjes, J.A.; Throop, A.L.; Thomas, S.R.; Peebles, A.; Zu, Qin-Zin.

    1983-01-01

    A Far-Infrared (FIR) Laser Interferometer (FLI), operating at 185 μm wavelength is planned as part of the initial start-up set of plasma diagnostics for the Mirror Fusion Test Facility (MFTF-B). The FLI will consist of a heterodyne, three-chord laser interferometer which will be used initially to measure line-integrated plasma density in the high-density, center cell region of the machine. The conceptual system design and analysis has been completed. There are several unique environmental/physical constraints and performance requirements for this system which have required that technology-evaluation and prototyping experiments be completed to support the design effort and confirm the expected performance parameters. Issues which have been addressed include extensive use of long-path dielectric waveguide, coupling and control of free-space propagation of the beam, and polarization control. The results and conclusions of the design analysis and experimental measurements will be presented

  20. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  1. Performance Analysis of Multi-Hop Heterodyne FSO Systems over Malaga Turbulent Channels with Pointing Error Using Mixture Gamma Distribution

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-11-16

    This work investigates the end-to-end performance of a free space optical amplify-and-forward relaying system using heterodyne detection over Malaga turbulence channels at the presence of pointing error. In order to overcome the analytical difficulties of the proposed composite channel model, we employed the mixture Gamma (MG) distribution. The proposed model shows a high accurate and tractable approximation just by adjusting some parameters. More specifically, we derived new closed-form expression for average bit error rate employing rectangular quadrature amplitude modulation in term of MG distribution and generalized power series of the Meijer\\'s G- function. The closed-form has been validated numerically and asymptotically at high signal to noise ratio.

  2. Status of Nuclear-Pumped Laser research

    International Nuclear Information System (INIS)

    Prelas, M.A.

    1984-01-01

    The field of Nuclear-Pumped lasers (NPLs) has progressed in many directions since the discovery of the first NPL in 1974. This paper discusses developments in the area of coupling nuclear energy to a laser media, kinetics, and the integration of nuclear reactors to a laser (or other types of energy conversion medium). Many questions about the process of nuclear-pumping have been examined since the discovery of the first NPL in 1974. During a period of time between 1974 and 1981, several types of lasers have been driven by nuclear reactions (ie rare gas lasers, impurity type lasers, molecular lasers, and an ion laser). Three of the lasers discovered, had demonstrated efficiencies of >1%. In addition, volume scaling of NPLs was demonstrated

  3. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    Science.gov (United States)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  4. Fractional laser-assisted drug uptake

    DEFF Research Database (Denmark)

    Banzhaf, Christina A; Thaysen-Petersen, Daniel; Bay, Christiane

    2017-01-01

    BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) is acknowledged to increase uptake of topically applied agents in skin. AFXL channels gradually close over time, which may impair this capability. The time frame for applying a drug after AFXL exposure remains to be established. The aim...... in laser-exposed and non-laser-exposed skin at 24-48 hours. CONCLUSIONS: The time frame to maintain enhanced drug delivery sustained for several hours after AFXL exposure, corresponding to channel morphology and loss of skin integrity. Lasers Surg. Med. 49:348-354, 2017. © 2016 Wiley Periodicals, Inc....

  5. Laser and plasma diagnostics for the OMEGA Upgrade Laser System (invited) (abstract)

    International Nuclear Information System (INIS)

    Letzring, S.A.

    1995-01-01

    The upgraded OMEGA laser system will be capable of delivering up to 30 kJ of 351-nm laser light with various temporal pulse shapes onto a variety of targets for both ICF and basic plasma physics experiments. ICF experiments will cover a wide parameter space up to near-ignition conditions, and basic interaction and plasma physics experiments will cover previously unattainable parameter spaces. The laser system is the tool with which the experiments are performed; the diagnostics, both of the laser system and the interaction between the laser and the target, form the heart of the experiment. A new suite of diagnostics is now being designed and constructed. Most of these are based on diagnostics previously fielded on the OMEGA laser system very successfully over the last ten years, but there are some new diagnostics, both for the laser and the interaction experiments, which have had to be invented. Laser system diagnostics include high-energy, full-beam calorimetry for all of the 60 beams of the upgrade; a novel, multispectral energy-measuring system for assessing the tuning of the frequency-multiplying crystals; a beam-balance diagnostic that forms the heart of the energy-balance system; and a peak power diagnostic that forms the heart of the power-balance system. Target diagnostics will include the usual time-integrated x-ray imaging systems, both pinhole cameras and x-ray microscopes; x-ray spectrometers, both imaging and spatially integrating; plamsa calorimeters, including x-ray calorimetry; and time-resolved x-ray diagnostics, both nonimaging and imaging in one and two dimensions. Neutron diagnostics will include several measurements of total yield, secondary, and possibly tertiary yield and neutron spectroscopy with several time-of-flight spectrometers. Other measurements will include ''knock-on'' particle measurements and neutron activation of shell materials as a diagnostic of compressed fuel and shell density

  6. Measurements of Mode Converted Ion Cyclotron Wave with Phase Contrast Imaging in Alcator C-Mod and Comparisons with Synthetic PCI Simulations in TORIC

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Edlund, E. M.; Lin, L.; Lin, Y.; Wright, J. C.; Wukitch, S. J.

    2009-01-01

    Mode converted ion cyclotron wave (ICW) has been observed with phase contrast imaging (PCI) in D- 3 He plasmas in Alcator C-Mod. The measurements were carried out with the optical heterodyne technique using acousto-optic modulators which modulate the CO2 laser beam intensity near the ion cyclotron frequency. With recently improved calibration of the PCI system using a calibrated sound wave source, the measurements have been compared with the full-wave code TORIC, as interpreted by a synthetic diagnostic. Because of the line-integrated nature of the PCI signal, the predictions are sensitive to the exact wave field pattern. The simulations are found to be in qualitative agreement with the measurements.

  7. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza

    2015-01-01

    into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has......We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light...

  8. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  9. Next generation diode lasers with enhanced brightness

    Science.gov (United States)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  10. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.

    Science.gov (United States)

    Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf

    2005-12-01

    Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.

  11. Multi-peta-watt laser performances

    International Nuclear Information System (INIS)

    Reichart, A.; Blanchot, N.; Nicolaizeau, M.; Ribeyre, X.; Bettinger, A.

    2000-01-01

    A multi-Peta-watt laser inside the 'Ligne d'integration laser' building is studied. We present simulations of the different amplification stages to reach broadband 10 kJ pulses in order to obtain a multi-Peta-watt laser beam. The results for preamplifier and power amplifier are detailed. Challenges of a multi-Peta-watt system are to increase the limit of compressed energy an order of magnitude, to perform a focal spot around 100 μm for Fast Ignitor applications, and to provide a temporal contrast better than 10 10 , for X-ray laser and plasma interaction applications. These first 1-D calculations are helpful for the design of a multi-Peta-watt laser. (authors)

  12. Integration of multiple theories for the simulation of laser interference lithography processes.

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-24

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  13. Integration of multiple theories for the simulation of laser interference lithography processes

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-01

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  14. Characterization of laser metal deposited 316L stainless steel

    CSIR Research Space (South Africa)

    Bayode, A

    2016-06-01

    Full Text Available investigates the effects of laser power on the structural integrity, microstructure and microhardness of laser deposited 316L stainless steel. The result showed that the laser power has much influence on the evolving microstructure and microhardness...

  15. Laser fusion research with GEKKO XII and PW laser system at Osaka

    International Nuclear Information System (INIS)

    Izawa, Y.; Mima, K.; Azechi, H.; Fujioka, S.; Fujita, H.; Fujimoto, Y.; Jitsuno, T.; Johzaki, Y.; Kitagawa, Y.; Kodama, R.; Kondo, K.; Miyanaga, N.; Nagai, K.; Nagatomo, H.; Nakai, M.; Nishihara, K.; Nishimura, H.; Norimatsu, T.; Shiraga, H.; Shigemori, K.; Sunahara, A.; Tanaka, K.A.; Tsubakimoto, K.; Nakao, Y.; Norreys, P.; Sakagami, H.

    2005-01-01

    Fast heating of the compressed core plasma up to 500eV has been successfully demonstrated by injecting a 400J/0.6ps PW laser into a compressed CD shell through a hollow gold cone. According to this result, we started the FIREX (Fast Ignition Realization Experiment) project toward demonstrating the ignition of the highly compressed DT fuel by the high energy PW laser heating. A new heating laser LFEX (Laser for Fast Ignition Experiment) is under construction. In this paper the progresses in the experimental studies on scientific issues related to fast ignition and the integrated code development toward the FIREX will be reported. Research results on implosion hydrodynamics, Rayleigh-Taylor instability growth and a new stabilization mechanism are also reported. (author)

  16. Compact system for high-speed velocimetry using heterodyne techniques

    International Nuclear Information System (INIS)

    Strand, O. T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.

    2006-01-01

    We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is ∼5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies

  17. Recent advances in long wavelength quantum dot lasers and amplifiers

    NARCIS (Netherlands)

    Nötzel, R.; Bente, E.A.J.M.; Smit, M.K.; Dorren, H.J.S.

    2009-01-01

    We demonstrate 1.55-µm InAs/InGaAsP/InP (100) quantum dot (QD) shallow and deep etched Fabry-Pérot and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated lasers, polarization control of gain, and wavelength conversion in QD amplifiers.

  18. Power balance on a multibeam laser

    Science.gov (United States)

    Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.

    2018-02-01

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.

  19. Frequency locking of compact laser-diode modules at 633 nm

    Science.gov (United States)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  20. Integrated fringe projection 3D scanning system for large-scale metrology based on laser tracker

    Science.gov (United States)

    Du, Hui; Chen, Xiaobo; Zhou, Dan; Guo, Gen; Xi, Juntong

    2017-10-01

    Large scale components exist widely in advance manufacturing industry,3D profilometry plays a pivotal role for the quality control. This paper proposes a flexible, robust large-scale 3D scanning system by integrating a robot with a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. And a mathematical model is established for the global data fusion. Subsequently, a flexible and robust method and mechanism is introduced for the establishment of the end coordination system. Based on this method, a virtual robot noumenon is constructed for hand-eye calibration. And then the transformation matrix between end coordination system and world coordination system is solved. Validation experiment is implemented for verifying the proposed algorithms. Firstly, hand-eye transformation matrix is solved. Then a car body rear is measured for 16 times for the global data fusion algorithm verification. And the 3D shape of the rear is reconstructed successfully.

  1. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity

    International Nuclear Information System (INIS)

    Tronciu, V Z; Mirasso, Claudio R; Colet, Pere

    2008-01-01

    We report the results of numerical investigations of the dynamical behaviour of an integrated device composed of a semiconductor laser and a double cavity that provides optical feedback. Due to the influence of the feedback, under the appropriate conditions, the system displays chaotic behaviour appropriate for chaos-based communications. The optimal conditions for chaos generation are identified. It is found that the double cavity feedback requires lower feedback strengths for developing high complexity chaos when compared with a single cavity. The synchronization of two unidirectional coupled (master-slave) systems and the influence of parameters mismatch on the synchronization quality are also studied. Finally, examples of message encoding and decoding are presented and discussed

  2. Performance of Shiva as a laser fusion irradiation facility

    International Nuclear Information System (INIS)

    Speck, D.R.; Bliss, E.S.; Glaze, J.A.; Johnson, B.C.; Manes, K.R.; Ozarski, R.G.; Rupert, P.R.; Simmons, W.W.; Swift, C.D.; Thompson, C.E.

    1979-01-01

    Shiva is a 20 beam Nd:Glass Laser and Target Irradiation Facility at the Lawrence Livermore Laboratory. The laser system and integrated target facility evolved during the last year from a large, untested, experimental laser system to a target irradiation facility which has provided significant laser driven inertial confinement fusion data. The operation of the facility is discussed

  3. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  4. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films

    Science.gov (United States)

    Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.

    2018-05-01

    We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.

  5. Very Low NF, High DR Heterodyne RF Lightwave Links Using a Simple, Versatile Photonic Integration Technology

    National Research Council Canada - National Science Library

    Forrest, Stephen R

    2006-01-01

    ...: Demonstration of a versatile integration technology based on the asymmetric twin waveguide platform that allowed for the realization of a broad range of components useful in RF photonic components...

  6. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  7. The osmotic fragility of human erythrocytes is inhibited by laser irradiation

    International Nuclear Information System (INIS)

    Habodaszova, D.; Sikurova, L.; Waczulikova, I.

    2004-01-01

    In this study we investigated the influence of green laser irradiation (532 nm, 30 mW, 31,7 J/cm 2 ) on the membrane integrity of human erythrocytes and compared the results with the effect of infrared laser irradiation (810 nm, 50 mW, 31,3 J/cm 2 ). To evaluate the membrane integrity of erythrocytes, one clinical parameter, the osmotic fragility, was investigated. We observed a decrease in osmotic fragility of the erythrocytes after irradiation by the green laser light as well as by the infrared laser compared to non-irradiated controls (Authors)

  8. Exploring the potential of laser capture microdissection technology in integrated oral biosciences.

    Science.gov (United States)

    Thennavan, A; Sharma, M; Chandrashekar, C; Hunter, K; Radhakrishnan, R

    2017-09-01

    Laser capture microdissection (LCM) is a high-end research and diagnostic technology that helps in obtaining pure cell populations for the purpose of cell- or lesion-specific genomic and proteomic analysis. Literature search on the application of LCM in oral tissues was made through PubMed. There is ample evidence to substantiate the utility of LCM in understanding the underlying molecular mechanism involving an array of oral physiological and pathological processes, including odontogenesis, taste perception, eruptive tooth movement, oral microbes, and cancers of the mouth and jaw tumors. This review is aimed at exploring the potential application of LCM in oral tissues as a high-throughput tool for integrated oral sciences. The indispensable application of LCM in the construction of lesion-specific genomic libraries with emphasis on some of the novel molecular markers thus discovered is also highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Laser cutting: industrial relevance, process optimization, and laser safety

    Science.gov (United States)

    Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver

    1998-09-01

    Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to

  10. A comparison of Doppler lidar wind sensors for Earth-orbit global measurement applications

    Science.gov (United States)

    Menzies, Robert T.

    1985-01-01

    Now, there are four Doppler lidar configurations which are being promoted for the measurement of tropospheric winds: (1) the coherent CO2 Lidar, operating in the 9 micrometer region using a pulsed, atmospheric pressure CO2 gas discharge laser transmitter, and heterodyne detection; (2) the coherent Neodymium doped YAG or Glass Lidar, operating at 1.06 micrometers, using flashlamp or diode laser optical pumping of the solid state laser medium, and heterodyne detection; (3) the Neodymium doped YAG/Glass Lidar, operating at the doubled frequency (at 530 nm wavelength), again using flashlamp or diode laser pumping of the laser transmitter, and using a high resolution tandem Fabry-Perot filter and direct detection; and (4) the Raman shifted Xenon Chloride Lidar, operating at 350 nm wavelength, using a pulsed, atmospheric pressure XeCl gas discharge laser transmitter at 308 nm, Raman shifted in a high pressure hydrogen cell to 350 nm in order to avoid strong stratospheric ozone absorption, also using a high resolution tandem Fabry-Perot filter and direct detection. Comparisons of these four systems can include many factors and tradeoffs. The major portion of this comparison is devoted to efficiency. Efficiency comparisons are made by estimating the number of transmitted photons required for a single pulse wind velocity estimate of + or - 1 m/s accuracy in the middle troposphere, from an altitude of 800 km, which is assured to be reasonable for a polar orbiting platform.

  11. Method and apparatus for optical communication by frequency modulation

    Science.gov (United States)

    Priatko, Gordon J.

    1988-01-01

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  12. Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems

    International Nuclear Information System (INIS)

    Delettrez, J. A.; Myatt, J.; Radha, P. B.; Stoeckl, C.; Meyerhofer, D. D.

    2005-01-01

    Integrated fast-ignition experiments for the combined OMEGA/OMEGA EP laser systems have been simulated with the multidimensional hydrodynamic code DRACO. In the simplified electron transport model included in DRACO, the electrons are introduced at the pole of a 2-D simulation and transported in a straight line toward the target core, depositing their energy according to a recently published slowing-down formula.1 Simulations, including alpha transport, of an OMEGA cryogenic target designed to reach a 1-D fuel R of 500 mg/cm2 have been carried out for 1-D (clean) and, more realistic, 2-D (with nonuniformities) implosions to assess the sensitivity to energy, timing, and irradiance of the Gaussian fast-ignitor beam. The OMEGA laser system provides up to 30 kJ of compression energy, and OMEGA EP will provide two short pulse beams, each with energies up to 2.6 kJ. For the 1-D case, the neutron yield is predicted to be in excess of 1015 (compared to 1014 for no ignitor beam) over a timing range of about 80 ps. This talk will present these results and new 2-D simulation results that include the effects of realistic cryogenic target perturbations on the compressed core. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. (Author)

  13. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    CERN Document Server

    Plettner, Tomas; Spencer, James; Wisdom, Jeffrey

    2005-01-01

    Laser driven particle accelerators based on the current generation of lasers will require sub-micron control of the laser field as well as precise beam guiding. Hence the fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such particle accelerators. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003 but with a variety of complications on the laser side. Fortunately, in recent years the fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss this area, its advantages such as the range of materials it provides and various ways to implement it followed by some different test examples that have been considered. One important goal of this approach is an integrated system that could avoid the necessity of having to inject either laser or particle pulses into these structures.

  14. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index of the films can be controlled by germanium co...... as well as thermal influence. A simple method for producing an array of planar waveguide lasers is presented and it is shown that the difference in output wavelength of the individual lasers can be controlled with great accuracy....

  15. Planar waveguide amplifiers and laser in erbium doped silica

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Kristensen, Martin

    1999-01-01

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index o fthe films can be controlled by germanium co...... as well as thermal influence. A simple method for producing an array of planar waveguide lasers is presented and it is shown that the difference in output wavelength of the individual lasers can be controlled with great accuracy....

  16. Disruptive laser diode source for embedded LIDAR sensors

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  17. Integration of laser trapping for continuous and selective monitoring of photothermal response of a single microparticle.

    Science.gov (United States)

    Vasudevan, Srivathsan; Chen, George C K; Ahluwalia, Balpreet Singh

    2008-12-01

    Photothermal response (PTR) is an established pump and probe technique for real-time sensing of biological assays. Continuous and selective PTR monitoring is difficult owing to the Brownian motion changing the relative position of the target with respect to the beams. Integration of laser trapping with PTR is proposed as a solution. The proposed method is verified on red polystyrene microparticles. PTR is continuously monitored for 30 min. Results show that the mean relaxation time variation of the acquired signals is less than 5%. The proposed method is then applied to human red blood cells for continuous and selective PTR.

  18. Adhesive Bonding for Optical Metrology Systems in Space Applications

    International Nuclear Information System (INIS)

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  19. STIFFNESS CHANGES OF THE CUPULA ASSOCIATED WITH THE MECHANICS OF HAIR-CELLS IN THE FISH LATERAL-LINE

    NARCIS (Netherlands)

    van Netten, S.M.; KHANNA, SM

    1994-01-01

    Cupular vibration in the lateral-line canal of fish was measured in response to motion of the fluid in the canal by laser-heterodyne interferometry. The results show that the mechanical output/input ratio of the cupula depends on the stimulus amplitude; the cupula thus behaves nonlinearly. The

  20. LED provides engineering and electrooptics support to the Laser Program

    International Nuclear Information System (INIS)

    Pehrson, D.

    1985-01-01

    The work of the Laser Engineering Division is reviewed. The division provides engineering and electrooptics support to the laser program. The laser program has been an integral part of the efforts to explore the potential of lasers in harnessing thermonuclear fusion for energy and for defense-related physics studies and in efficiently separating fissile fuels