WorldWideScience

Sample records for integrated energy response

  1. Demand Response and Energy Storage Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.; Matson, Nance; Sohn, Michael D.; Rose, Cody M.; Dudley, Junqiao Han; Goli, Sasank; Kiliccote, Sila; Cappers, Peter; MacDonald, Jason; Denholm, Paul; Hummon, Marissa; Jorgenson, Jennie; Palchak, David; Starke, Michael; Alkadi, Nasr; Bhatnagar, Dhruv; Currier, Aileen; Hernandez, Jaci; Kirby, Brendan; O' Malley, Mark

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  2. The Integration of Energy Efficiency, Renewable Energy, DemandResponse and Climate Change: Challenges and Opportunities for Evaluatorsand Planners

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2007-05-29

    This paper explores the feasibility of integrating energyefficiency program evaluation with the emerging need for the evaluationof programs from different "energy cultures" (demand response, renewableenergy, and climate change). The paper reviews key features andinformation needs of the energy cultures and critically reviews theopportunities and challenges associated with integrating these withenergy efficiency program evaluation. There is a need to integrate thedifferent policy arenas where energy efficiency, demand response, andclimate change programs are developed, and there are positive signs thatthis integration is starting to occur.

  3. Climate-smart technologies. Integrating renewable energy and energy efficiency in mitigation and adaptation responses

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Mannke, Franziska; Schulte, Veronika [Hamburg Univ. of Applied Sciences (Germany). Faculty of Life Sciences; Mohee, Romeela; Surroop, Dinesh (eds.) [Mauritius Univ., Reduit (Mauritius). Chemical and Environmental Engineering Dept.

    2013-11-01

    Explores the links between climate change and technologies. Relates to the links between renewable energy and climate change. Documents and promotes a collection of experiences from island nations. Has a strong international focus and value to developing countries. The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project ''Small Developing Island Renewable Energy Knowledge and Technology Transfer Network'' (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region.

  4. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  5. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  6. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  7. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  9. Retrofits for Energy Efficient Office Buildings: Integration of Optimized Photovoltaics in the Form of Responsive Shading Devices

    Directory of Open Access Journals (Sweden)

    Hardi K. Abdullah

    2017-11-01

    Full Text Available This study presents a retrofit strategy: integrating optimized photovoltaics (PV in the form of responsive shading devices using a dual-axis solar tracking system. A prototype-based model was fabricated to compare the efficiency of PV in this implementation with the conventional fixed installation. The office building, T1 Empire World in Erbil, was selected as a retrofit case study and for the application of the proposed integration system. In order to assess the effectiveness of the proposed retrofit method, the energy performance of the base case is simulated to be compared later with the energy performance simulations after the integration technique. The amount of generated electricity from the PV surfaces of the integrated shading elements is calculated. The energy simulations were performed using OpenStudio® (NREL, Washington, DC, USA, EnergyPlusTM (NREL, Washington, DC, USA, and Grasshopper/ Ladybug tools in which the essential results were recorded for the baseline reference, as well as the energy performance of the retrofitted building. The results emphasize that the PV-integrated responsive shading devices can maximize the efficiency of PV cells by 36.8% in comparison to the fixed installation. The integrated system can provide approximately 15.39% of the electricity demand for operating the building. This retrofit method has reduced the total site energy consumption by 33.2% compared to the existing building performance. Total electricity end-use of the various utilities was lowered by 33.5%, and the total natural gas end-use of heating demand was reduced by 30.9%. Therefore, the percentage reduction in electricity cooling demand in July and August is 42.7% due to minimizing the heat gain in summer through blocking the sun’s harsh rays from penetrating into interior spaces of the building. In general, this system has multiple benefits, starting with being extremely efficient and viable in generating sustainable alternative energy

  10. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system

    International Nuclear Information System (INIS)

    Jiang, Yibo; Xu, Jian; Sun, Yuanzhang; Wei, Congying; Wang, Jing; Ke, Deping; Li, Xiong; Yang, Jun; Peng, Xiaotao; Tang, Bowen

    2017-01-01

    Highlights: • Improving the utilization of wind power by the demand response of residential hybrid energy system. • An optimal scheduling of home energy management system integrating micro-CHP. • The scattered response capability of consumers is aggregated by demand bidding curve. • A stochastic day-ahead economic dispatch model considering demand response and wind power. - Abstract: As the installed capacity of wind power is growing, the stochastic variability of wind power leads to the mismatch of demand and generated power. Employing the regulating capability of demand to improve the utilization of wind power has become a new research direction. Meanwhile, the micro combined heat and power (micro-CHP) allows residential consumers to choose whether generating electricity by themselves or purchasing from the utility company, which forms a residential hybrid energy system. However, the impact of the demand response with hybrid energy system contained micro-CHP on the large-scale wind power utilization has not been analyzed quantitatively. This paper proposes an operation optimization model of the residential hybrid energy system based on price response, integrating micro-CHP and smart appliances intelligently. Moreover, a novel load aggregation method is adopted to centralize scattered response capability of residential load. At the power grid level, a day-ahead stochastic economic dispatch model considering demand response and wind power is constructed. Furthermore, simulation is conducted respectively on the modified 6-bus system and IEEE 118-bus system. The results show that with the method proposed, the wind power curtailment of the system decreases by 78% in 6-bus system. In the meantime, the energy costs of residential consumers and the operating costs of the power system reduced by 10.7% and 11.7% in 118-bus system, respectively.

  11. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  12. Optimal Real-time Dispatch for Integrated Energy Systems

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Rahimi-Kian, Ashkan

    2016-01-01

    With the emerging of small-scale integrated energy systems (IESs), there are significant potentials to increase the functionality of a typical demand-side management (DSM) strategy and typical implementation of building-level distributed energy resources (DERs). By integrating DSM and DERs...... into a cohesive, networked package that fully utilizes smart energy-efficient end-use devices, advanced building control/automation systems, and integrated communications architectures, it is possible to efficiently manage energy and comfort at the end-use location. In this paper, an ontology-driven multi......-agent control system with intelligent optimizers is proposed for optimal real-time dispatch of an integrated building and microgrid system considering coordinated demand response (DR) and DERs management. The optimal dispatch problem is formulated as a mixed integer nonlinear programing problem (MINLP...

  13. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    Science.gov (United States)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  14. ABNT NBR ISO 26000 priorities to integrate the social responsibilities in peaceful use of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Biazini Filho, Francisco L.; Sordi, Gian-Maria, E-mail: gian@atomo.com.br, E-mail: Francisco.biazini@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The aim of this paper is to indicate the priorities in the themes and issues to integrate the social responsibilities (SR) in of the peaceful use of nuclear energy. The ABNT NBR ISO 26000 - Guidance on Social Responsibility{sub (1)}. Social responsibility should be an integral part of core organizational strategy, with assigned responsibilities and accountability at all appropriate levels of the organization. It should be reflected in decision making and considered in implementing activities. The process suggested is: 1 - determining relevance; 2 - determining significance and 3 - establishing priorities for addressing issues. The relevancies of each issue are established for us, in this paper, from the activities of the peaceful use of nuclear energy. For each relevant issue the priority are established and are: Core subject : The environment 6.5: Issue 1 : Prevention of pollution 6.5.3: Offers guidances to recognized authority sources on how to measure, assess, prevent or control the most common forms of pollution, including emissions to air, discharge waters, toxic products, waste management, biological agents, odors, visual pollution, among others. Core subject : The environment 6.5: Issue 2 : Sustainable resource use 6.5.4: Presents a series of actions aimed at the more smart use of resources, including energy efficiency, conservation, access and use of water, and extracting the most efficiency in the use of materials, renewable or not, reusing or recycling these resources whenever possible. Core subject : Community involvement and development 6.8: Issue 6 : Health 6.8.8: The organization must appreciate to eliminate the negative impacts of their activities on people's health, contributing as possible pair increase access to medicines and sanitation, as well as raise awareness about the disease as much as healthy lifestyles. In the next jobs we should consider the following to determine whether an action to address these 3 issues. (author)

  15. ABNT NBR ISO 26000 priorities to integrate the social responsibilities in peaceful use of nuclear energy

    International Nuclear Information System (INIS)

    Biazini Filho, Francisco L.; Sordi, Gian-Maria

    2013-01-01

    The aim of this paper is to indicate the priorities in the themes and issues to integrate the social responsibilities (SR) in of the peaceful use of nuclear energy. The ABNT NBR ISO 26000 - Guidance on Social Responsibility (1) . Social responsibility should be an integral part of core organizational strategy, with assigned responsibilities and accountability at all appropriate levels of the organization. It should be reflected in decision making and considered in implementing activities. The process suggested is: 1 - determining relevance; 2 - determining significance and 3 - establishing priorities for addressing issues. The relevancies of each issue are established for us, in this paper, from the activities of the peaceful use of nuclear energy. For each relevant issue the priority are established and are: Core subject : The environment 6.5: Issue 1 : Prevention of pollution 6.5.3: Offers guidances to recognized authority sources on how to measure, assess, prevent or control the most common forms of pollution, including emissions to air, discharge waters, toxic products, waste management, biological agents, odors, visual pollution, among others. Core subject : The environment 6.5: Issue 2 : Sustainable resource use 6.5.4: Presents a series of actions aimed at the more smart use of resources, including energy efficiency, conservation, access and use of water, and extracting the most efficiency in the use of materials, renewable or not, reusing or recycling these resources whenever possible. Core subject : Community involvement and development 6.8: Issue 6 : Health 6.8.8: The organization must appreciate to eliminate the negative impacts of their activities on people's health, contributing as possible pair increase access to medicines and sanitation, as well as raise awareness about the disease as much as healthy lifestyles. In the next jobs we should consider the following to determine whether an action to address these 3 issues. (author)

  16. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put...

  17. Integration of supercapacitive storage in renewable energy system to compare the response of two level and five level inverter with RL type load

    Science.gov (United States)

    Jana, Suman; Biswas, Pabitra Kumar; Das, Upama

    2018-04-01

    The analytical and simulation-based study in this presented paper shows a comparative report between two level inverter and five-level inverter with the integration of Supercapacitive storage in Renewable Energy system. Sometime dependent numerical models are used to measure the voltage and current response of two level and five level inverter in MATLAB Simulink based environment. In this study supercapacitive sources, which are fed by solar cells are used as input sources to experiment the response of multilevel inverter with integration of su-percapacitor as a storage device of Renewable Energy System. The RL load is used to compute the time response in MATLABSimulink based environment. With the simulation results a comparative study has been made of two different level types of inverters. Two basic types of inverter are discussed in the study with reference to their electrical behavior. It is also simulated that multilevel inverter can convert stored energy within supercapacitor which is extracted from Renewable Energy System.

  18. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  19. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    , utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources challenge to utility companies, grid operators, and other stakeholders involved in wind energy integration recording is available from the July 16 webinar "Smart Grid Research at NREL's Energy Systems

  20. Renewable generation and demand response integration in micro-grids. Development of a new energy management and control system

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Bel, C.; Escriva-Escriva, G.; Alcazar-Ortega, M. [Institute for Energy Engineering, Universitat Politecnica de Valencia, Valencia (Spain)

    2013-11-15

    The aim of this research resides in the development of an energy management and control system to control a micro-grid based on the use of renewable generation and demand resources to introduce the application of demand response concepts to the management of micro-grids in order to effectively integrate the demand side as an operation resource for the grid and improve energy efficiency of the elements. As an additional result, the evaluation of reductions in the total amount of CO2 emitted into the atmosphere due to the improvement of the energy efficiency of the system is assessed.

  1. Integration of Methodologies for the Evaluation of Offer Curves in Energy and Capacity Markets through Energy Efficiency and Demand Response

    Directory of Open Access Journals (Sweden)

    Antonio Gabaldón

    2018-02-01

    Full Text Available The objectives of improving the efficiency, and integration, of renewable sources by 2030–2050 are complex in practice and should be linked to an increase of demand-side flexibility. The main challenges to achieving this flexibility are the lack of incentives and an adequate framework. For instance, customers’ revenue is usually low, the volatility of prices is high and there is not any practical feedback to customers from smart meters. The possibility of increasing customer revenue could reduce the uncertainty with respect to economic concerns, improving investments in efficiency, enabling technology and thus, engaging more customers in these policies. This objective could be achieved by the participation of customers in several markets. Moreover, Demand Response and Energy Efficiency can share ICT technologies but this participation needs to perform an aggregation of demand. The idea of this paper is to present some methodologies for facilitating the definition and evaluation of energy versus cost curves; and subsequently to estimate potential revenues due to Demand Response. This can be accomplished by models that estimate: demand and energy aggregation; economic opportunities and benefits; impacts on customer convenience; customer feedback and price analysis. By doing so, we would have comprehensive information that can help customers and aggregators to define energy packages and their monetary value with the objective of fostering their market participation.

  2. Consumer Response to Product-Integrated Energy Feedback: Behavior, Goal Level Shifts and Energy Conservation

    NARCIS (Netherlands)

    McCalley, L.T.; de Vries, Pieter Walter; Midden, Cees J.H.

    2011-01-01

    Results of recent experiments suggest that interactive control panels of individual appliances can be used to stimulate energy saving behavior by offering the means for consumers to set a goal and receive immediate energy use feedback. The underlying source of the behavioral response, however,

  3. Consumer response to product-integrated energy feedback : behavior, goal level shifts, and energy conservation

    NARCIS (Netherlands)

    McCalley, L.T.; Vries, de P.W.; Midden, C.J.H.

    2011-01-01

    Results of recent experiments suggest that interactive control panels of individual appliances can be used to stimulate energy saving behavior by offering the means for consumers to set a goal and receive immediate energy use feedback. The underlying source of the behavioral response, however,

  4. Integration of renewable energies into the power supply system; Integration erneuerbarer Energien in das Stromversorgungssystem

    Energy Technology Data Exchange (ETDEWEB)

    Neubarth, Juergen [e3 consult, Innsbruck (Austria)

    2011-08-15

    In contrast to the record breaking speed with which the German government presented its new energy concept in response to the Fukushima reactor disaster, the practical task of transforming our energy supply system will take decades. One of the greatest challenges involved in the energy turnaround will be that of integrating renewable energies into the power supply system. A holistic analysis and assessment of all aspects involved in this is therefore of utmost importance. Under the focal topic of its new publication ''Energie fuer Deutschland 2011'', Weltenergierat Deutschland e.V. presents a detailed summary of this challenge, thus providing a basis for further discussion. It shows that efficient integration of renewable energies must necessarily involve a combination of systems engineering and organisational measures.

  5. Does energy integrate?

    International Nuclear Information System (INIS)

    Hira, Anil; Amaya, Libardo

    2003-01-01

    Amidst the international movement to privatize and deregulate electricity and gas sectors of economies, the question of the integration of those sectors has been somewhat underestimated. In fact, the integration of energy markets across boundaries is occurring. We examine this process in three regions: Europe, Central America, and South America. We analyze the forces driving integration in each area, and estimate the prospects for progress. We take a close look at Nordpool, which is now the most integrated market in the world, to see if it can serve as a model for other regions. We close with a set of conditions that we suggest are necessary for a successful international integration of energy markets

  6. Does energy integrate?

    International Nuclear Information System (INIS)

    Hira, A.; Amaya, L.

    2003-01-01

    Amidst the international movement to privatize and deregulate electricity and gas sectors of economics, the question of the integration of those sectors has been somewhat underestimated. In fact, the integration of energy markets across boundaries is occurring. We examine this process in three regions: Europe, Central America, and South America. We analyze the forces driving integration in each area, and estimate the prospects for progress. We take a close look at Nordpool, which is now the most integrated market in the world, to see if it can serve as a model for other regions. We close with a set of conditions that we suggest are necessary for a successful international integration of energy markets. (author)

  7. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Energy Technology Data Exchange (ETDEWEB)

    Hummon, Marissa [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palchak, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Olsen, Daniel J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kiliccote, Sila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Matson, Nance [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rose, Cody [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dudley, Junqiao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ma, Ookie [U.S. Dept. of Energy, Washington, DC (United States)

    2013-12-01

    This report is one of a series stemming from the U.S. Department of Energy (DOE) Demand Response and Energy Storage Integration Study. This study is a multi-national-laboratory effort to assess the potential value of demand response (DR) and energy storage to electricity systems with different penetration levels of variable renewable resources and to improve our understanding of associatedmarkets and institutions. This report implements DR resources in the commercial production cost model PLEXOS.

  8. Approximate calculation method for integral of mean square value of nonstationary response

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Fukano, Azusa

    2010-01-01

    The response of the structure subjected to nonstationary random vibration such as earthquake excitation is nonstationary random vibration. Calculating method for statistical characteristics of such a response is complicated. Mean square value of the response is usually used to evaluate random response. Integral of mean square value of the response corresponds to total energy of the response. In this paper, a simplified calculation method to obtain integral of mean square value of the response is proposed. As input excitation, nonstationary white noise and nonstationary filtered white noise are used. Integrals of mean square value of the response are calculated for various values of parameters. It is found that the proposed method gives exact value of integral of mean square value of the response.

  9. Development of integrated-type dosimeter responsive to high energy neutrons (2)

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Teruko; Murai, Ikuo; Abe, Masashi; Uoyama, Kazuya; Das, Mala [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tuda, Shuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The response of superheated drop detectors or bubble detectors (BDs) was measured for quasi-monoenergetic neutron beams in the 40-75 MeV range. The experiments were performed at the AVF cyclotron facility, TAKASAKI Ion Accelerator for Advanced Radiation Application (TIARA) of Japan Atomic Energy Research Institute (JAERI). The measured dose sensitivities showed to be lowered to about a half the nominal sensitivity. A lead-breeder introduced to extend response to the high energy region were investigated and compared with Monte Carlo calculations by MCNPX code. (author)

  10. Conference on renewable energies integration to power grids

    International Nuclear Information System (INIS)

    Laffaille, Didier; Bischoff, Torsten; Merkel, Marcus; Rohrig, Kurt; Glatigny, Alain; Quitmann, Eckard; Lehec, Guillaume; Teirlynck, Thierry; Stahl, Oliver

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on renewable energies integration to power grids. In the framework of this French-German exchange of experience, more than 150 participants exchanged views on the perspectives and possible solutions of this integration in order to warrant the security of supplies and the grid stability in a context of increasing injection and decentralization of renewable power sources. This document brings together the available presentations (slides) made during this event: 1 - French distribution grids - Overview and perspectives (Didier Laffaille); 2 - Distribution Grids in Germany - Overview and Perspective (Torsten Bischoff); 3 - Integration of renewable energies into distribution grids - a case example from Germany (Marcus Merkel); 4 - Regeneratives Kombikraftwerk Deutschland: System Services with 100 % Renewable energies (Kurt Rohrig); 5 - Overview of the different grid instrumentation-control and automation tools (Alain Glatigny); 6 - Which Ancillary Services needs the Power System? The contribution from Wind Power Plants (Eckard Quitmann); 7 - The Flexibility Aggregator - the example of the GreenLys Project (Guillaume Lehec); 8 - Energy Pool - Providing flexibility to the electric system. Consumption cut-off solutions in France (Thierry Teirlynck); 9 - Demand Response experiences from Germany (Oliver Stahl)

  11. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

    Science.gov (United States)

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-10-28

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

  12. An Integrated Behavioural Model towards Evaluating and Influencing Energy Behaviour—The Role of Motivation in Behaviour Demand Response

    Directory of Open Access Journals (Sweden)

    Julia Blanke

    2017-12-01

    Full Text Available The change in the actual use of buildings by its occupants is receiving more and more attention. Over the lifecycle of a building the occupants and therefore the demands towards the buildings often change a lot. To match these altering conditions, particularly in the context of the demand for energy efficiency, purely technical approaches usually cannot solve the problem on their own or are not financially viable. It is therefore essential to take the behaviour of the end user into account and ask the fundamental question: “How is it possible to influence people’s behaviour towards a more pro-environmental outcome, and also in the long-term?” To approach this question we will present a model-driven approach for dynamically involving building occupants into the energy optimisation process. To do so we will further develop an integrated behavioural model based on established behavioural theories, having a closer look how motivational variables can be integrated into the process. This should lead to novel approaches for behaviour demand response, enabling additional demand shifting and shedding through targeted real-time engagement with energy prosumers.

  13. Large scale grid integration of renewable energy sources

    CERN Document Server

    Moreno-Munoz, Antonio

    2017-01-01

    This book presents comprehensive coverage of the means to integrate renewable power, namely wind and solar power. It looks at new approaches to meet the challenges, such as increasing interconnection capacity among geographical areas, hybridisation of different distributed energy resources and building up demand response capabilities.

  14. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  15. Market integration of responsive customers : application to energy and balancing markets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, C.; Valencia, I.; Alcazar, M. [Univ. Politecnica de Valencia, Valencia (Spain). Inst. of Energy Engineering; Gabaldon, A.; Escriva, G. [Univ. Politecnica de Cartagena, Cartagena (Spain). Dept. of Electrical Engineering

    2009-07-01

    Demand response management methods are now being adopted by many deregulated electric utilities. This article presented details of a method designed to create offers and bids for large electricity customers. The method was developed to analyze daily and monthly energy consumption rates and participation in energy and ancillary service markets in Spain. A simulation was used to analyze day-ahead, inter-daily, and balancing scenarios. Peak demand in winter and summer months was characterized. Energy consumption was analyzed for different demand packages related to air conditioning, outdoor lighting, indoor lighting, and other domestic loads. Prices for each package were calculated in order to assess demand reduction capabilities. Differences between real consumption levels and energy prices bought at real-time prices were compared. An overview of Spanish electricity market structures was provided. Results of the study showed that electricity customers may benefit from participating in demand response programs. It was concluded that lower prices obtained during periods of low electricity production outweighed the higher costs of peak electricity periods. 13 refs., 3 tabs., 9 figs.

  16. Market integration of responsive customers : application to energy and balancing markets

    International Nuclear Information System (INIS)

    Alvarez, C.; Valencia, I.; Alcazar, M.; Gabaldon, A.; Escriva, G.

    2009-01-01

    Demand response management methods are now being adopted by many deregulated electric utilities. This article presented details of a method designed to create offers and bids for large electricity customers. The method was developed to analyze daily and monthly energy consumption rates and participation in energy and ancillary service markets in Spain. A simulation was used to analyze day-ahead, inter-daily, and balancing scenarios. Peak demand in winter and summer months was characterized. Energy consumption was analyzed for different demand packages related to air conditioning, outdoor lighting, indoor lighting, and other domestic loads. Prices for each package were calculated in order to assess demand reduction capabilities. Differences between real consumption levels and energy prices bought at real-time prices were compared. An overview of Spanish electricity market structures was provided. Results of the study showed that electricity customers may benefit from participating in demand response programs. It was concluded that lower prices obtained during periods of low electricity production outweighed the higher costs of peak electricity periods. 13 refs., 3 tabs., 9 figs

  17. Nuclear Hybrid Energy Systems Initial Integrated Case Study Development and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US Department of Energy Office of Nuclear Energy established the Nuclear Hybrid Energy System (NHES) project to develop a systematic, rigorous, technically accurate set of methods to model, analyze, and optimize the integration of dispatchable nuclear, fossil, and electric storage with an industrial customer. Ideally, the optimized integration of these systems will provide economic and operational benefits to the overall system compared to independent operation, and it will enhance the stability and responsiveness of the grid as intermittent, nondispatchable, renewable resources provide a greater share of grid power.

  18. Increasing efficiency through integrated energy data management

    International Nuclear Information System (INIS)

    Brack, M.

    2002-01-01

    This article discusses how improved management of energy data can bring about the increase in efficiency that is necessary for an electricity enterprise operating in a liberalised electricity market. The relevant technical and business processes involved for a typical power distribution utility are described. The present situation is reviewed and the various physical, data-logistics and commercial 'domains' involved are examined. Possible solutions for energy data logistics and integrated data management are discussed from the points of view of the operating utility, the power supplier and those responsible for balancing out supply and demand

  19. Energy efficiency through integrated environmental management.

    Science.gov (United States)

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  20. Efficient integration of wind energy at EnBW TSO

    Energy Technology Data Exchange (ETDEWEB)

    Graeber, Dietmar; Chatillon, Olivier [EnBW Transportnetze AG, Stuttgart (Germany)

    2009-07-01

    In Germany, the four transmission system operators (TSOs) are in charge of integrating the fluctuating electricity production of wind power plants into the grid. EnBW Transportnetze AG is responsible for the market integration of about 14% of the wind energy production in Germany. This paper describes the integration of wind power in Germany especially at the TSO in the country's south-west EnBW Transportnetze AG. The framework of the Renewable Energy Sources Act (EEG) and the immediate exchange of wind power between the four German grid control areas are explained briefly. The different activities for transforming and balancing wind energy are described in more detail. These activities can be divided into two parts: transformation of the fluctuating wind generation into baseload power supply by using the wholesale markets day ahead and earlier and activities for balancing the differences between forecasted and the real wind power generation using the intraday and balancing markets. The focus of the paper is to report practical experiences. (orig.)

  1. Energy Optimization and Management of Demand Response Interactions in a Smart Campus

    Directory of Open Access Journals (Sweden)

    Antimo Barbato

    2016-05-01

    Full Text Available The proposed framework enables innovative power management in smart campuses, integrating local renewable energy sources, battery banks and controllable loads and supporting Demand Response interactions with the electricity grid operators. The paper describes each system component: the Energy Management System responsible for power usage scheduling, the telecommunication infrastructure in charge of data exchanging and the integrated data repository devoted to information storage. We also discuss the relevant use cases and validate the framework in a few deployed demonstrators.

  2. Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage

    NARCIS (Netherlands)

    Korkas, C; Baldi, S.; Michailidis, I; Kosmatopoulos, EB

    2016-01-01

    Integration of renewable energy sources in microgrids can be achieved via demand response programs, which change the electric usage in response to changes in the availability and price of electricity over time. This paper presents a novel control algorithm for joint demand response management and

  3. Factors that influence the acceptance of integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, A. S.; Tschanz, J. F.; Mosena, D.; Erley, D.; Gil, E.; Slovak, P.; Lenth, C. S.

    1977-01-01

    This report is part of a series of studies designed to analyze the commercialization potential of various concepts of community-scale energy systems that have been termed Integrated Community Energy Systems (ICES). The study reported here concerns ways that affected individuals and organizations will respond to proposed ICES development projects. The intent is an initial examination of several institutional sectors that will: (1) anticipate responses that could impede ICES proposals and (2) provide an information base from which strategies to address adverse responses can be formulated.

  4. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  5. Integration of energy efficient technologies in UK supermarkets

    International Nuclear Information System (INIS)

    Ochieng, E.G.; Jones, N.; Price, A.D.F.; Ruan, X.; Egbu, C.O; Zuofa, T.

    2014-01-01

    The purpose of this paper is twofold: to determine if the integration of energy efficient technologies in UK supermarkets can determine consumer behaviour, and to establish if such activities can help satisfying the environmental elements of the clients corporate social responsibilities (CSR) in an attempt to create a competitive advantage. A literature review of existing material considered the history and drivers of sustainability, the types of energy efficient technologies and factors concerning CSR and consumer behaviour in relation to the supermarket industry. Interviews with 15 senior store managers were recorded and transcribed. The opinions of the senior store managers were then sought and analysed using qualitative research software NVivo software. Validity of the data was achieved at a later stage through workshops. The results of this paper suggested that there is a definite lack of awareness and knowledge amongst customers regarding energy efficient technologies. From the findings, it was further established that the key driver for retailers who integrate energy efficient technologies is fiscal incentives, although it was suggested some retailers use CSR strategies to report there are environmental achievements it was ultimately found that cost savings were the primary driver. - Highlights: • The effect of sustainability towards consumer behaviour was explored. • Majority of consumers are unaware of energy efficient technologies. • Energy efficient technologies do not determine or create shifts in paradigm in consumer actions. • Stores are driven to integrate energy efficient technologies more by government legislation. • Participants were clear in making the point that their image and reputation was based on trust

  6. Energy Systems Integration: Demonstrating Distributed Resource Communications

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  7. Sharing our energies. Corporate social responsibility report 2005

    International Nuclear Information System (INIS)

    2006-05-01

    Total is a multinational energy company, the fourth largest publicly-traded integrated oil and gas company in the world. Total worldwide operations are conducted through three business segments: Upstream includes oil and gas Exploration and Production, Gas and Power and other energy sources. Downstream covers Trading and Shipping,Refining and the Marketing of TOTAL and Elf brand petroleum products, automotive and other fuels, and specialties such as LPG, aviation fuel and lubricants, through both the retail network and other outlets worldwide. Chemicals comprises various activities including Base chemicals (Petrochemicals and Fertilizers) and Specialties for industry and the consumer market. This corporate social responsibility report presents the Group activity for the year 2005 in the following domains: the business principles, the environment safety and health, the social responsibility and the local development, the future of energy (fossil fuels, renewable energies and towards energy vectors). (A.L.B.)

  8. Continuous-Integration Laser Energy Lidar Monitor

    Science.gov (United States)

    Karsh, Jeremy

    2011-01-01

    This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.

  9. Integration of energy analytics and smart energy microgrid into mobile medicine operations for the 2012 Democratic National Convention.

    Science.gov (United States)

    McCahill, Peter W; Noste, Erin E; Rossman, A J; Callaway, David W

    2014-12-01

    Disasters create major strain on energy infrastructure in affected communities. Advances in microgrid technology offer the potential to improve "off-grid" mobile disaster medical response capabilities beyond traditional diesel generation. The Carolinas Medical Center's mobile emergency medical unit (MED-1) Green Project (M1G) is a multi-phase project designed to demonstrate the benefits of integrating distributive generation (DG), high-efficiency batteries, and "smart" energy utilization in support of major out-of-hospital medical response operations. Carolinas MED-1 is a mobile medical facility composed of a fleet of vehicles and trailers that provides comprehensive medical care capacities to support disaster response and special-event operations. The M1G project partnered with local energy companies to deploy energy analytics and an energy microgrid in support of mobile clinical operations for the 2012 Democratic National Convention (DNC) in Charlotte, North Carolina (USA). Energy use data recorded throughout the DNC were analyzed to create energy utilization models that integrate advanced battery technology, solar photovoltaic (PV), and energy conservation measures (ECM) to improve future disaster response operations. The generators that supply power for MED-1 have a minimum loading ratio (MLR) of 30 kVA. This means that loads below 30 kW lead to diesel fuel consumption at the same rate as a 30 kW load. Data gathered from the two DNC training and support deployments showed the maximum load of MED-1 to be around 20 kW. This discrepancy in MLR versus actual load leads to significant energy waste. The lack of an energy storage system reduces generator efficiency and limits integration of alternative energy generation strategies. A storage system would also allow for alternative generation sources, such as PV, to be incorporated. Modeling with a 450 kWh battery bank and 13.5 kW PV array showed a 2-fold increase in potential deployment times using the same amount of

  10. Environmental impact assessment for energy pathways: an integrated methodology

    International Nuclear Information System (INIS)

    Sommereux-Blanc, Isabelle

    2010-01-01

    This document presents the synthesis of my research work contributing to the development of an integrated methodology of environmental impact assessment for energy pathways. In the context of world globalization, environmental impact assessments issues are highly linked with the following questioning: Which environmental impacts? for which demand? at which location? at which temporal scale? My work is built upon the definition of a conceptual framework able to handle these issues and upon its progressive implementation. The integration of the spatial and temporal issues within the methodology are key elements. Fundamental cornerstones of this framework are presented along the DPSIR concept (Driving forces, Pressures, State, Impacts, Responses). They cover a comprehensive analysis of the limits and the relevance of life cycle analysis and the development of a geo-spatialized environmental performance approach for an electrical production pathway. Perspectives linked with the development of this integrated methodology are detailed for energy pathways. (author)

  11. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  12. Integration of the North American energy market; Integration du marche Nord-Americain de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Lapointe, A

    2002-07-01

    The US energy policy of President Bush administration proposes to develop a North American energy framework with a greater energy integration between Canada, the USA and Mexico in the respect of the sovereignty of each country. This article tries to evaluate the integration status of the energy sector in Northern America with respect to the North American free-exchange agreement and to the deregulation process observed in the natural gas and electric power sectors. The commercial energy fluxes between Canada, Mexico and the US show that the integration is a reality and that it is in constant progress. This integration is particularly important in the case of Canada and the USA while major constraints remain in Mexico where the property and exploitation of natural resources is a government monopoly. For this reason, Mexico could never exploit the full potentialities of its resources and suffers from a chronical under-investment in its energy infrastructures which limits the energy trade. Despite this, there is a strong will from the Mexican authorities to ensure the modernization of its energy sector and to contribute more to the integration process of the north American energy market. A series of reforms, and in particular the fiscal reform started by the government should reduce the excessive dependence of the government incomes with the dividends from the energy sector. This should allow the different government companies to reinvest more its benefits in order to improve the existing infrastructures and to increase the capacities (in particular in the gas and electricity sectors). Finally, the recent will of the government to open the gas sector should allow the development of this energy source. (J.S.)

  13. Responsibility and Integrated Thinking

    OpenAIRE

    Robinson, SJ

    2014-01-01

    Integrated thinking is essentially focused in dialogue and communication. This is partly because relationships and related purpose focus on action, which itself acts as a means of integration, and partly because critical dialogue enables better, more responsive, integrated thinking and action.

  14. Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Smarter Grid Solutions Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  15. Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress.

    Science.gov (United States)

    Gust, Kurt A; Najar, Fares Z; Habib, Tanwir; Lotufo, Guilherme R; Piggot, Alan M; Fouke, Bruce W; Laird, Jennifer G; Wilbanks, Mitchell S; Rawat, Arun; Indest, Karl J; Roe, Bruce A; Perkins, Edward J

    2014-07-12

    Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5. Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral/zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (i.e. cytochrome P450 and UDP glucuronosyltransferase 2 family) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production

  16. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Lund, H.; Nørgård, Per Bromand

    2007-01-01

    Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...... transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy....... No single technology can solve the problem of ever increasing CO2 emissions from transport. Transport must be integrated into energy planning, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning is proposed, using multiple means promoting sustainable...

  17. Demand Response Resource Quantification with Detailed Building Energy Models

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine; Horsey, Henry; Merket, Noel; Stoll, Brady; Nag, Ambarish

    2017-04-03

    Demand response is a broad suite of technologies that enables changes in electrical load operations in support of power system reliability and efficiency. Although demand response is not a new concept, there is new appetite for comprehensively evaluating its technical potential in the context of renewable energy integration. The complexity of demand response makes this task difficult -- we present new methods for capturing the heterogeneity of potential responses from buildings, their time-varying nature, and metrics such as thermal comfort that help quantify likely acceptability of specific demand response actions. Computed with an automated software framework, the methods are scalable.

  18. Energy response study of modified CR-39 neutron personnel dosimeter

    International Nuclear Information System (INIS)

    Sathian, Deepa; Bakshi, A.K.; Datta, D.; Nair, Sreejith S.; Sathian, V.; Mishra, Jitendra; Sen, Meghnath

    2018-01-01

    Personnel neutron dosimetry is an integral part of radiation protection. No single dosimeter provides the satisfactory energy response, sensitivity, angular dependence characteristics and accuracy necessary to meet the requirement of an ideal personnel neutron dosimeter. The response of a personnel neutron dosimeter is critically dependent upon the energy distribution of the neutron field. CR-39 personnel neutron dosimeters were typically calibrated in the standard neutron field of 252 Cf and 241 Am-Be in our laboratory, although actual neutron fields may vary from the calibration neutron spectrum. Recently the badge cassette of the personnel neutron dosimeter was changed due to frequent damage of the PVC badge used earlier. This paper discusses energy response of CR-39 solid state nuclear track detector loaded in this modified badge cassette as per latest ISO recommendation

  19. Local Alternative for Energy Supply : Performance Assessment of Integrated Community Energy Systems

    NARCIS (Netherlands)

    Koirala, B.P.; Chaves Avila, J.P.; Gomez, T.; Hakvoort, R.A.; Herder, P.M.

    2016-01-01

    Integrated community energy systems (ICESs) are emerging as a modern development to re-organize local energy systems allowing simultaneous integration of distributed energy resources (DERs) and engagement of local communities. Although local energy initiatives, such as ICESs are rapidly emerging due

  20. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  1. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  2. Integrating climate change adaptation in energy planning and decision-making - Key challenges and opportunities

    DEFF Research Database (Denmark)

    Olhoff, Anne; Olsen, Karen Holm

    2011-01-01

    management framework is used as the basis for identifying key challenges and opportunities to enhance the integration of climate change adaptation in energy planning and decision-making. Given its importance for raising awareness and for stimulating action by planners and decision-makers, emphasis is placed......Energy systems are significantly vulnerable to current climate variability and extreme events. As climate change becomes more pronounced, the risks and vulnerabilities will be exacerbated. To date, energy sector adaptation issues have received very limited attention. In this paper, a climate risk...... barriers to integration of climate risks and adaptive responses in energy planning and decision making. Both detailed assessments of the costs and benefits of integrating adaptation measures and rougher ‘order of magnitude’ estimates would enhance awareness raising and momentum for action....

  3. Optimal planning of integrated multi-energy systems

    DEFF Research Database (Denmark)

    van Beuzekom, I.; Gibescu, M.; Pinson, Pierre

    2017-01-01

    In this paper, a mathematical approach for the optimal planning of integrated energy systems is proposed. In order to address the challenges of future, RES-dominated energy systems, the model deliberates between the expansion of traditional energy infrastructures, the integration...... and sustainability goals for 2030 and 2045. Optimal green- and brownfield designs for a district's future integrated energy system are compared using a one-step, as well as a two-step planning approach. As expected, the greenfield designs are more cost efficient, as their results are not constrained by the existing...

  4. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  5. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  6. Regional Integration of Renewable Energies

    International Nuclear Information System (INIS)

    Amador Guerra, J.; Dominguez Bravo, J.

    2000-01-01

    The aim of this report is to show how Energetic Planning and Territorial Policy should be working together for a better integration of Renewable Energies into Region. This Integration should to contemplate social, economic and environmental aspects of the territory. The report has been classified into 7 items: planning, energetic scenarios, technology transfer for Renewable Energies dissemination, barriers for this dissemination, environmental aspects, European Union Policy and Decision Support Systems (and specially GIS). (Author) 54 refs

  7. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  8. Energy Systems Integration: Demonstrating Distributed Grid-Edge Control Hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the OMNETRIC Group Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  9. Comparative Studies of Traditional (Non-Energy Integration and Energy Integration of Catalytic Reforming Unit using Pinch Analysis

    Directory of Open Access Journals (Sweden)

    M. Alta

    2012-12-01

    Full Text Available Energy Integration of Catalytic Reforming Unit (CRU of Kaduna Refinery and petrochemicals Company Kaduna Nigeria was carried out using Pinch Technology. The pinch analysis was carried out using Maple. Optimum minimum approach temperature of 20 °C was used to determine the energy target. The pinch point temperature was found to be 278 °C. The utilities targets for the minimum approach temperature were found to be 72711839.47 kJ/hr and 87105834.43 kJ/hr for hot and cold utilities respectively. Pinch analysis as an energy integration technique was found to save more energy and utilities cost than the traditional energy technique. Key words: Pinch point, CRU, Energy Target, Maple

  10. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  11. The energy innovation network : fuelling an integrated energy future

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2005-07-01

    Global primary energy demand is expected to increase by 1.7 per cent annually from 2000 to 2030, reaching an annual level of 15.3 billion tonnes of oil equivalent. Fossil fuels are expected to supply over 90 per cent of global incremental energy demand through 2030, while gas consumption is estimated to double between 2000 and 2030 due to its cost competitiveness, high availability and environmental advantages. Oil will remain the largest fuel source with demand increasing by 1.6 per cent annually. In order to tap the vast Canadian resource potential, innovative new technologies are needed to unlock the remaining conventional oil and gas reserves. It was argued that no single source of energy will be sufficient to meet world or Canadian demand. Therefore, there is also a need for a collaborative initiative to facilitate a long-term effort to implement an integrated energy innovation strategy. The Energy Innovation Network (EnergyINet) was created help industry, governments, and the research community address the challenges of ensuring an abundant supply of environmentally responsible energy. Given the right technologies, bitumen, coal, and coalbed methane have hundreds of years of production remaining. Production of those reserves depends on finding effective solutions to production costs, cost and availability of feedstocks needed to produce higher valued products, market limitations, and land, water, air, and greenhouse gas issues. The main challenge is to finance the development of such technologies into reliable, large-scale commercial applications. It was concluded that Canada's ability to maintain competitive energy supplies from conventional and non-conventional energy systems will be severely limited as the need to protect the environment, reduce greenhouse gas emissions, and conserve water moves higher on the public agenda. 13 refs.

  12. Integration of liberalised energy market

    International Nuclear Information System (INIS)

    Klinge Jacobsen, H.; Fristrup, P.; Munksgaard, J.; Pade, L.L.; Henriksen, T.C.

    2004-03-01

    The markets for electricity, natural gas and district heating are inter-linked both with respect to the energy flows and with respect to ownership of supply sources and infrastructure. The extent and the possible consequences of these linkages are examined in this report. The options for public interventions in these markets are analysed to compare instruments with respect to their ability to provide the necessary incentives for an efficient functioning of the liberalised markets. Aspects of retail markets with households facing multi-product distribution companies and aspects of the production of combined heat and power based on natural gas has been covered. This project identifies some important aspects related to final consumers and the interaction of markets with different types of regulation and scope for liberalisation. From a Danish perspective the district heat market and the dependence on market conditions for natural gas is a specific concern. Consumer concerns also relate to the creation of multi-product energy distribution companies that are privately owned and possibly controlled by foreign interests. Such companies might use bundled sales of energy products to extent their dominant position in one market e.g. a regulated heat market to a market with considerable competition (electricity). Bundled sales would not necessarily result in a loss for the consumer due to economies of scope in supplying energy products. However, the regulatory authorities responsible for district heat prices will have a more complicated job in surveying the bundled price setting. Integration of activities within natural gas distribution and CHP production has been analysed with respect to incentives and welfare implications. Results of the project point to critical market conditions and identify areas of concern for regulatory policies. The analysis shows that there is a large welfare loss associated with having monopolies in both natural gas supplies and the CHP production

  13. Integration of the North American energy market

    International Nuclear Information System (INIS)

    Lapointe, A.

    2002-07-01

    The US energy policy of President Bush administration proposes to develop a North American energy framework with a greater energy integration between Canada, the USA and Mexico in the respect of the sovereignty of each country. This article tries to evaluate the integration status of the energy sector in Northern America with respect to the North American free-exchange agreement and to the deregulation process observed in the natural gas and electric power sectors. The commercial energy fluxes between Canada, Mexico and the US show that the integration is a reality and that it is in constant progress. This integration is particularly important in the case of Canada and the USA while major constraints remain in Mexico where the property and exploitation of natural resources is a government monopoly. For this reason, Mexico could never exploit the full potentialities of its resources and suffers from a chronical under-investment in its energy infrastructures which limits the energy trade. Despite this, there is a strong will from the Mexican authorities to ensure the modernization of its energy sector and to contribute more to the integration process of the north American energy market. A series of reforms, and in particular the fiscal reform started by the government should reduce the excessive dependence of the government incomes with the dividends from the energy sector. This should allow the different government companies to reinvest more its benefits in order to improve the existing infrastructures and to increase the capacities (in particular in the gas and electricity sectors). Finally, the recent will of the government to open the gas sector should allow the development of this energy source. (J.S.)

  14. Fostering renewable energy integration in the industry

    International Nuclear Information System (INIS)

    Galichon, Ines; Dennery, Pierre; Julien, Emmanuel; Wiedmer, Damien; Brochier, Jean Baptiste; Martin, Etienne; Touokong, Benoit; Paunescu, Michael; Philibert, Cedric; ); Gerbaud, Manon; Streiff, Frederic; Petrick, Kristian; Bucquet, Coraline; Jager, David de; )

    2017-03-01

    Renewable energy (RE) integration in the industry is already widespread worldwide. Beyond GHG emissions reduction, it brings direct operational, economical and non-financial benefits to industrial players in a changing energy environment. ENEA Consulting published the results of a study on the integration of RE in the industry conducted in partnership with Kerdos Energy for the International Energy Agency Renewable Energy Technology Deployment (IEA-RETD) who operates under the legal framework of the International Energy Agency. This study aims to provide inspiration and state-of-the-art applications of RE in the industry (identification of more than 200 projects worldwide), present best practices and key developments of such projects for industrial players (21 detailed case studies); and formulate policy recommendations for policy makers and provide lessons learned for industrial actors to make RE integration a widespread practice in the industry globally. Different integration schemes are possible, from simple and investment-light projects to more complex integration projects which can lead to core production processes adaptation. RE integration in industrial assets brings direct benefits to industrial players to better operate their assets, such as energy costs reduction and energy prices hedging, and improved energy supply reliability. Nevertheless, various barriers still hinder full RE development in the industry. However, industrial players and policy makers have a wide array of options to overcome them. Eight issues have been identified that can tilt an industrial actor towards or away from deploying RE production assets in its facilities. Thus, third party energy production schemes represent a significant opportunity for industrial players who lack the equity capital / cash needed to develop RE projects. Similarly, new shorter-term contractual schemes that fit better with industrial players' and third party energy producers' constraints are being developed

  15. Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?

    International Nuclear Information System (INIS)

    Xu, Peng; Xu, Tengfang; Shen, Pengyuan

    2013-01-01

    Based upon the results from extensive building monitoring and surveys on occupant’s behaviors in a representative nine-story apartment building in northern China, building energy simulations were performed to evaluate the impacts of integrative retrofits implemented. Integrative retrofits required by the newer building energy standard produced significant heating-energy savings (i.e., 53%) when compared with baseline buildings commonly built in early 1980s. Taking into account district-heating-system upgrades as part of integrative retrofit measures, a representative apartment building was 66% more efficient than the baseline building. Contrary to expectation, little behavioral change was found in response to the provisions of monetary incentive, billing-method reform, or metering of heating energy use in individual apartment units. Yet this paper identified sizable energy savings potential if occupants’ behavioral changes were to actually happen. This indicates that provisions of financial incentives or individual metering were insufficient for triggering substantial behavioral changes leading toward more energy savings in the current buildings. It is recommended that innovative energy policies, technology upgrades, and education would be needed to promote behavioral changes toward additional energy savings. Finally, measures and strategies to further enhance thermal integrity criteria (e.g., insulations of roof and balcony) are recommended in China’s future building energy policy reforms. - Highlights: ► Integrative retrofits significantly reduce residential heating energy in north China. ► Energy effects of retrofits, incentive, billing and behavioral changes were studied. ► Monetary incentive, control or metering technologies did not lead to behavior change. ► Potential energy savings due to occupants’ behavioral changes are sizable. ► Thermal integrity needs to be enhanced in future building standards and policies.

  16. Sharing our energies. Corporate social responsibility report 2005; Notre energie en partage. Rapport societal et environnemental 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    Total is a multinational energy company, the fourth largest publicly-traded integrated oil and gas company in the world. Total worldwide operations are conducted through three business segments: Upstream includes oil and gas Exploration and Production, Gas and Power and other energy sources. Downstream covers Trading and Shipping,Refining and the Marketing of TOTAL and Elf brand petroleum products, automotive and other fuels, and specialties such as LPG, aviation fuel and lubricants, through both the retail network and other outlets worldwide. Chemicals comprises various activities including Base chemicals (Petrochemicals and Fertilizers) and Specialties for industry and the consumer market. This corporate social responsibility report presents the Group activity for the year 2005 in the following domains: the business principles, the environment safety and health, the social responsibility and the local development, the future of energy (fossil fuels, renewable energies and towards energy vectors). (A.L.B.)

  17. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  18. Seismic response of reactor building on alluvial soil by direct implicit integration

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dinkar, A.K.

    1983-01-01

    The evaluation of seismic response of a reactor building is a complex problem. A study has been made in this paper of seismic response of a reactor building by direct implicit integration method. The direct implicit integration methods besides being unconditionally stable have the merit of including response of higher modes without much effort. A reactor building consisting of external shell, internal shell, internals and raft is considered to be resting on alluvium. The complete building including the foundation is idealized by axisymmetric finite elements. The structure is analyzed separately for horizontal and vertical components of ground motion using harmonic analysis. Total response is found by superposition of two responses. The variation of several parameters, such as soil stiffness, embedment depth, inertia of foundation, viscous boundary and damping on seismic response is studied. The structural response is seen to depend significantly on the soil stiffness and damping. The seismic response is observed to be less sensitive to embedment depth and inertia of foundation. The vertical accelerations on the raft, boiler room floor slab and dome due to vertical ground motions are quite appreciable. The viscous boundary is seen to alter structural response in significantly compared to rigid boundaries in a larger mesh and its use appears to be promising in absorbing energy of body waves when used with direct implicit integration method. (orig.)

  19. Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications

    International Nuclear Information System (INIS)

    Feuerriegel, Stefan; Neumann, Dirk

    2016-01-01

    Demand Response allows for the management of demand side resources in real-time; i.e. shifting electricity demand according to fluctuating supply. When integrated into electricity markets, Demand Response can be used for load shifting and as a replacement for both control reserve and balancing energy. These three usage scenarios are compared based on historic German data from 2011 to determine that load shifting provides the highest benefit: its annual financial savings accumulate to €3.110 M for both households and the service sector. This equals to relative savings of 2.83% compared to a scenario without load shifting. To improve Demand Response integration, the proposed model suggests policy implications: reducing bid sizes, delivery periods and the time-lag between market transactions and delivery dates in electricity markets. - Highlights: •Comparison of 3 scenarios to integrate Demand Response into electricity markets. •These are: optimize procurement, offer as control reserve, avoid balancing energy. •Ex post simulation to quantify financial impact and policy implications. •Highest savings from load shifting with a cost reduction of 3%. •Model suggests reducing bid sizes, delivery periods and time lags as policy issues.

  20. Global format for energy-momentum based time integration in nonlinear dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2014-01-01

    A global format is developed for momentum and energy consistent time integration of second‐order dynamic systems with general nonlinear stiffness. The algorithm is formulated by integrating the state‐space equations of motion over the time increment. The internal force is first represented...... of mean value products at the element level or explicit use of a geometric stiffness matrix. An optional monotonic algorithmic damping, increasing with response frequency, is developed in terms of a single damping parameter. In the solution procedure, the velocity is eliminated and the nonlinear...

  1. Energy market integration and regional institutions in east Asia

    International Nuclear Information System (INIS)

    Aalto, Pami

    2014-01-01

    This article assesses the case made for energy market integration in East Asia by comparing the role of institutions in South East Asia and North East Asia. The types and functions of institutions and their overall structure are examined in light of global energy market trends. In South East Asia, the shift attempted by ASEAN towards more competitive markets is hampered by the remaining statist variants of the trade institution and bilateral energy diplomacy, which, as regards transaction cost functions, are sub-optimal. As for institutions with order-creating functions, the unresolved status of sovereignty within ASEAN hampers regulatory harmonisation; the great power management institution has since ASEAN's establishment reduced conflicts without providing decisive leadership conducive to integration. North East Asia's dependence on global energy markets overshadows the regional integration potential of the diverse liberalisation efforts and interconnection projects. Bilateral energy diplomacies, new trilateral institutions combined with ‘Track Two’ institutions and remaining great power competition co-exist. In both regions the institutional structure allows for step-wise, technical infrastructure integration. The environmental stewardship institution co-exists with statist energy security and development objectives while it supports cooperation on green energy. The overall structure of informal institutions constrains deeper energy market integration in several ways. - Highlights: • The structures of institutions explain East Asian energy market integration. • Transaction costs are increased by statist trade institutions and bilateralism. • Order-creating institutions are sub-optimal for energy market integration. • Multi-level great power management offers limited leadership for integration. • The environmental stewardship institution supports cooperation on green energy

  2. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  3. Energy integration: Regional economic integration lever and possible insertion factor in the global economy

    International Nuclear Information System (INIS)

    Lokolo, M.C.

    2001-01-01

    In the 1920s, just after the War, an idea began taking root in the Old Continent, to build what could be described as the United States of Europe. Thirty years later, in 1951, a new source of energy, coal, paved the way for the economic integration of Europe. It culminated into monetary integration in January 2002. Economic integration makes sense in the context of the relatively small size of some national economies and markets, and the judicious utilization of rare resources and their unequal distribution. In this document, the author elaborated on the principles at play in economic integration and argued that the integration of the national energy markets could be the lever for economic integration through the gradual elimination of the various obstacles to trade. The author first presented a brief historical overview of economic integration from the perspective of global economic relationships, covering the period between the two world wars to the General Agreement on Tariffs and Trade (GATT) to the World Trade Organization (WTO). The concept and the forms of economic integration were reviewed. Energy integration as a lever of regional economic integration and as a factor in global economic insertion were discussed. Energy integration is a tool for the improvement of the human condition. 15 refs

  4. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  5. Self-powered integrated systems-on-chip (energy chip)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-04-23

    In today\\'s world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  6. Self-powered integrated systems-on-chip (energy chip)

    Science.gov (United States)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  7. Energy Systems Integration: A Convergence of Ideas

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O' Malley, M.; Zimmerle, D.

    2012-07-01

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  8. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. of Technology, Chicago, IL (United States)

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision

  9. Renewable energy integration challenges and solutions

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book examines challenges involved in the integration of renewable energy into existing electricity grids. It provides models of power systems to show how the integration will effect conventional grids and various solutions to minimize the impacts.

  10. A Multi-Agent Based Energy Management Solution for Integrated Buildings and Microgrid System

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Rahimi-Kian, Ashkan; Mirian, Maryam S.

    2017-01-01

    -reflex to complex learning agents are designed and implemented to cooperate with each other to reach an optimal operating strategy for the mentioned integrated energy system (IES) while meeting the system’s objectives and related constraints. The optimization process for the EMS is defined as a coordinated......In this paper, an ontology-driven multi-agent based energy management system (EMS) is proposed for monitoring and optimal control of an integrated homes/buildings and microgrid system with various renewable energy resources (RESs) and controllable loads. Different agents ranging from simple...... distributed generation (DG) and demand response (DR) management problem within the studied environment and is solved by the proposed agent-based approach utilizing cooperation and communication among decision agents. To verify the effectiveness and applicability of the proposed multi-agent based EMS, several...

  11. Energy management and grid stability aspects of wind energy integration

    International Nuclear Information System (INIS)

    Saulnier, B.; Krau, S.; Gagnon, R.

    2002-01-01

    Wind energy management on power grids was discussed with reference to a wind integration study in Vermont and new projects at Hydro-Quebec's electricity research institute (IREQ (Recherche en Electricite du Quebec)). Modeling concepts for wind integration were presented for hydro/wind systems and for thermal/wind systems. A large scale wind power integration study for the Quebec/Labrador area has shown that large wind power capacity can be integrated in the existing power system without special investment. The Canadian Wind Energy Association's goal of integrating 10,000 MW of wind in Canadian grids appears realistic from a technical point of view. The Vermont thermal system type project involves the integration of wind and biomass. The project objective is to evaluate the impacts, by 2010, of high penetration levels of renewable energy on the Vermont grid. The study showed that wind power can represent a large portion of Vermont's total generation because transmission capacities to get to other regions are large, plus Vermont has ties with other power systems. The Hydro-Quebec load and Vermont wind are well correlated, meaning that Hydro-Quebec's peak is driven by winter electric space heating demand, and Vermont's best wind resource period is also in the winter. Model results show an economic benefit of adding wind power in the Vermont Power system when it is managed with Quebec's generation assets. The impact that this would have on the transmission system was also discussed. 1 tab., 13 figs

  12. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  13. Conference on grid integration of renewable energies

    International Nuclear Information System (INIS)

    Fontaine, Pierre; Goeke, Berthold; Mignon, Herve; Brakelmann, Heinrich; Huebner, Gundula; Tanja Schmedes; Remy Garaude Verdier; Pierre-Guy Therond; Werner Diwald

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on grid integration of renewable energies. In the framework of this French-German exchange of experience, about a hundred of participants exchanged views on the similarities and differences between the French and German approaches of renewable energies integration to grids. This document brings together the available presentations (slides) made during this event: 1 - Power grid development - Policy and challenges (Pierre Fontaine); 2 - Grid Development: German Strategy (Berthold Goeke); 3 - Power grids development: situational analysis (Herve Mignon); 4 - Traditional Power Lines, Partial Underground Cabling and HVDC lines: Costs, Benefits and Acceptance (Heinrich Brakelmann); 5 - Transmission Lines - Local Acceptance (Gundula Huebner); 6 - eTelligence- energy meets Intelligence: experience feedback from the grid operator EWe on smart grids and the integration of renewable energies (Tanja Schmedes); 7 - Nice Grid, The French Smart Grid Project within Grid4eU (Remy Garaude Verdier); 8 - Economical Analysis Of energy Storage For Renewable energy Farms - experience of EDF en on the basis of 3 call for tender issued by the French Government in 01/2010, 11/2010, and 09/2011: what conditions for a real deployment (Pierre-Guy Therond); 9 - Hydrogen as a renewable energies storage mean (Werner Diwald)

  14. Integrated topology optimisation of multi-energy networks

    NARCIS (Netherlands)

    Mazairac, L.A.J.; Salenbien, R.; Vanhoudt, D.; Desmedt, J.; Vries, de B.

    2015-01-01

    Multi-carrier hybrid energy distribution net- works provide flexibility in case of network malfunctions, energy shortages and price fluctuations through energy conversion and storage. Therefore hybrid networks can cope with large-scale integration of distributed and intermittent renewable energy

  15. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  16. Energy market integration in South America

    International Nuclear Information System (INIS)

    Hammons, T.J.; Franco, N. de; Sbertoli, L.V.; Khelil, C.; Rudnick, H.; Clerici, A.; Longhi, A.

    1997-01-01

    This article is a summary of presentations made during the 1997 Winter Meeting panel session on Power and Natural Gas in Latin America: Towards an Integrated Market. Reregulation and demand for energy resources to support economic growth are driving international natural gas and electricity exchange initiatives. Panelists focused on the gas and electric power industry in Latin America in terms of the: transport of gas or transmission of electricity; energy market integration in the southern cone of South America; and issues on gas use for electricity generation in South America countries. Countries such as Argentina, Bolivia, and Peru will export natural gas to Brazil, Uruguay, Paraguay and Chile, an the energy matrices of these countries will change

  17. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    Science.gov (United States)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  18. Energy Level Composite Curves-a new graphical methodology for the integration of energy intensive processes

    International Nuclear Information System (INIS)

    Anantharaman, Rahul; Abbas, Own Syed; Gundersen, Truls

    2006-01-01

    Pinch Analysis, Exergy Analysis and Optimization have all been used independently or in combination for the energy integration of process plants. In order to address the issue of energy integration, taking into account composition and pressure effects, the concept of energy level as proposed by [X. Feng, X.X. Zhu, Combining pinch and exergy analysis for process modifications, Appl. Therm. Eng. 17 (1997) 249] has been modified and expanded in this work. We have developed a strategy for energy integration that uses process simulation tools to define the interaction between the various subsystems in the plant and a graphical technique to help the engineer interpret the results of the simulation with physical insights that point towards exploring possible integration schemes to increase energy efficiency. The proposed graphical representation of energy levels of processes is very similar to the Composite Curves of Pinch Analysis-the interpretation of the Energy Level Composite Curves reduces to the Pinch Analysis case when dealing with heat transfer. Other similarities and differences are detailed in this work. Energy integration of a methanol plant is taken as a case study to test the efficacy of this methodology. Potential integration schemes are identified that would have been difficult to visualize without the help of the new graphical representation

  19. Integrating global energy and climate governance: The changing role of the International Energy Agency

    International Nuclear Information System (INIS)

    Heubaum, Harald; Biermann, Frank

    2015-01-01

    Despite the long-recognized interlinkages between global energy consumption and climate change, there has historically been only limited policy interaction, let alone integration, between the two fields. This compartmentalization is mirrored in scholarship, where much research has focused on the fragmentation of, respectively, global energy and global climate governance, but only little has been said about how these fields might be integrated. Our analysis of the International Energy Agency’s (IEA) changing activities in recent years shows that governance integration – both within global energy governance and between global energy and climate governance – is now happening. The IEA has broadened its portfolio to embrace the full spectrum of energy issues, including renewable energy and climate change; it has built and is expanding key partnerships with both the UN climate convention and the International Renewable Energy Agency (IRENA); and it has become an authoritative advocate for the inter-related goals of a low-carbon transition and climate change mitigation. We show that these developments are not the result of a top-down plan, but have rather emerged through the Agency’s various efforts to pursue its energy-centric mandate in a fast-changing global policy environment. - Highlights: • Assesses integration between global energy and global climate governance. • Analyzes organizational change in the IEA and its impact on governance integration. • Discusses recent activities and advocacy by the IEA in relation to climate change.

  20. Energy drift in reversible time integration

    International Nuclear Information System (INIS)

    McLachlan, R I; Perlmutter, M

    2004-01-01

    Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(√T). (letter to the editor)

  1. Integration of radiation monitoring for nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, J T; Thompson, N Y [Royal Military Coll. of Canada, Kingston, ON (Canada)

    1994-12-31

    The Canadian Forces have established Nuclear Emergency Response Teams to cope with potential radiation accidents. Previously, only gamma and high-energy beta radiation could be detected. Recently, new radiation sampling, detecting, and analytical equipment has been bought, including air samplers, beta counters, high-purity germanium gamma detectors, and multi-channel analyzers together with Gamma Vision Software to analyze gamma spectra. The purpose of the present study is to propose a way to use the new equipment, to analyze the results from the gamma and beta detectors, and to integrate the results into a format for decision making. Integration is achieved through the creation of a computer program, Radiation Integration Program (RIP). This program analyzes gross beta counts, and uses them to estimate danger to the thyroid. As well the results from Gamma Vision are converted from Bq to dose rate for several parts of the body. Overall gamma results affecting the thyroid are compared to the beta results to verify the initial estimations.

  2. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  3. Dynamic response characteristics of dual flow-path integrally bladed rotors

    Science.gov (United States)

    Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.

    2015-02-01

    New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.

  4. Integration with Energy Harvesting Technology

    Directory of Open Access Journals (Sweden)

    S. Williams

    2012-11-01

    Full Text Available This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.

  5. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  6. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  7. Integrated energy system for a high performance building

    Science.gov (United States)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  8. Energy conservation in Newmark based time integration algorithms

    DEFF Research Database (Denmark)

    Krenk, Steen

    2006-01-01

    Energy balance equations are established for the Newmark time integration algorithm, and for the derived algorithms with algorithmic damping introduced via averaging, the so-called a-methods. The energy balance equations form a sequence applicable to: Newmark integration of the undamped equations...... of motion, an extended form including structural damping, and finally the generalized form including structural as well as algorithmic damping. In all three cases the expression for energy, appearing in the balance equation, is the mechanical energy plus some additional terms generated by the discretization...

  9. Macro-level integrated renewable energy production schemes for sustainable development

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2011-01-01

    The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored. - Research highlights: → Discusses the need for macro-level renewable energy production schemes. → Scope of hybrid and integrated industrial ecology for renewable energy production. → Integrated Renewable Energy Parks (IREPs): A macro-level energy production scheme. → Discusses the principle foundations and global applications of IREPs. → Describes the significance of IREPs in the carbon-neutral future business arena.

  10. Energy Systems Integration Newsletter - December 2016 | Energy Systems

    Science.gov (United States)

    system makes renewable energy integration easier. ESIF Research Shows That Connected Residential Devices and business intelligence. Baggu also noted the opportunity to harness next-generation graphical -through, ramp rate control, soft-start reconnection, and voltage-watt control. NREL then conducted power

  11. SIMULTANEOUS INTEGRATION OF WATER AND ENERGY: ACHIEVEMENTS AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    Junior Lorenzo Llanes

    2016-01-01

    Full Text Available Process Integration (PI is a tool that for over forty years has demonstrated its strength to provide optimal solutions to complex problems. The interaction of exchange systems of energy and water networks is a typical case of such problems. The gradual increase in the consumption of water and energy has determined the development of methodologies that take into account the simultaneous integration of these resources. This paper aims to present a literature review related to the simultaneous integration of water and energy. First, general items related to this research field are presented, emphasizing the approaches to simultaneous integration (Pinch Analysis and Mathematical Programming. Some recent cases of studies, demonstrating the strength of these tools mainly focus to sugar industry, are also presented. Finally some of the challenges to be faced by the simultaneous integration of water and energy for the diversification of the Cuban sugar industry are presented.

  12. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Nørgaard, P.

    2008-01-01

    No single technology can solve the problem of ever increasing CO2 emissions from transport. Here, a coherent effort to integrate transport into energyplanning is proposed, using multiple means promoting sustainable transport. It is concluded that a 100 per cent renewable energy transport system...... is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production of food. The integration of the transport with the energy system is crucial as is a multi-pronged strategy. Short term solutions have to consider...

  13. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  14. Foreign energy conservation integrated programs

    International Nuclear Information System (INIS)

    Lisboa, Maria Luiza Viana; Bajay, Sergio Valdir

    1999-01-01

    The promotion of energy economy and efficiency is recognized as the single most cost-effective and least controversial component of any strategy of matching energy demand and supply with resource and environmental constraints. Historically such efficiency gains are not out of reach for the industrialized market economy countries, but are unlikely to be reached under present conditions by developing countries and economics in transition. The aim of the work was to analyze the main characteristics of United Kingdom, France, Japan, Canada, Australia and Denmark energy conservation integrated programs

  15. Response of corn markets to climate volatility under alternative energy futures.

    Science.gov (United States)

    Diffenbaugh, Noah S; Hertel, Thomas W; Scherer, Martin; Verma, Monika

    2012-07-01

    Recent price spikes(1,2) have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades(3,4). However, commodity price volatility is also influenced by other factors(5,6), which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change.

  16. Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation

    Directory of Open Access Journals (Sweden)

    Hengrui Ma

    2018-01-01

    Full Text Available Ancillary services are critical to maintaining the safe and stable operation of power systems that contain a high penetration level of renewable energy resources. As a high-quality regulation resource, the regional integrated energy system (RIES with energy storage system (ESS can effectively adjust the non-negligible frequency offset caused by the renewable energy integration into the power system, and help solve the problem of power system frequency stability. In this paper, the optimization model aiming at regional integrated energy system as a participant in the regulation market based on pay-for-performance is established. Meanwhile YALMIP + CPLEX is used to simulate and analyze the total operating cost under different dispatch modes. This paper uses the actual operation model of the PJM regulation market to guide the optimal allocation of regulation resource in the regional integrated energy system, and provides a balance between the power trading revenue and regulation market revenue in order to achieve the maximum profit.

  17. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  18. Efficiency improvement for vehicle powertrains using energy integration techniques

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the energy services for mobility and comfort are integrated. The energy integration of the mobility and the comfort service is a...

  19. Distributed Energy Systems Integration and Demand Optimization for Autonomous Operations and Electric Grid Transactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenlots, San Francisco, CA (United States); Mashayekh, Salman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Center for Energy and Innovation Technologies (Austria); Yin, Rongxin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Zhenhua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-29

    Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost, energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.

  20. An integrated energy policy for Korea

    International Nuclear Information System (INIS)

    Kim, Tai-Yoo; Kim, Seung-Rae

    1993-01-01

    Economic theory defines a market failure when competitive markets cannot reach an equilibrium maximizing social welfare. One of its most typical examples has proved to be the energy market. Exhaustible energy resources provide the limits to economic growth, at least in the short term. Thus an energy policy for energy importing countries like Korea has been focused on minimizing the negative influences of external energy price shocks to the domestic economy. This study suggests one of the possible directions for an integrated energy policy which seeks to present a flow of policy rules which lead government policy to attain equilibrium, maximizing the national economic benefits by offsetting the market failure

  1. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user......The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric......'s energy consumption during a period of one year. Furthermore, simulations were performed considering real data of PV generation, consumption, prices taken from the Spanish market and costs of battery and photovoltaic systems....

  2. Locally Integrated Energy Sectors supported by renewable network management within municipalities

    International Nuclear Information System (INIS)

    Kostevšek, Anja; Petek, Janez; Čuček, Lidija; Klemeš, Jiří Jaromír; Varbanov, Petar Sabev

    2015-01-01

    The decarbonisation of energy systems is one of the important issues of the present energy policies. One of the ways of achieving this is to focus on local energy systems, thus ensuring as much as possible their heat and power self-sufficiency by applying local renewable resource integration and transformation of the renewable energy. Increasing the share of renewables within the local energy balance could be accomplished by using a variety of approaches. One possibility is combining the Locally Integrated Energy Sectors' concept with the novel management and organisation of a renewables-based network. As a first priority, the proposed comprehensive approach focuses on increasing the energy efficiency of municipal heat and power systems using the Locally Integrated Energy Sectors' concept, which is followed by the integration of renewable energy sources with the establishment of a renewable-based network. The proposed approach is illustrated by a case study of district heating based on wood biomass for the municipality Ormož, Slovenia by integrating various end-users from different sectors. - Highlights: • The paper presents a new approach for accelerated inception of RES in municipalities. • LIES with RES network increases energy efficiency and accelerates RES integration. • A demonstration case of district heating on wood biomass within Ormož was performed.

  3. The regional energy integration: the latin-american experiences

    International Nuclear Information System (INIS)

    2003-01-01

    The ways of the regional economic integrations are not identical and generate different repercussions on the markets and the energy industries evolution. The example of the Latin America proposes many various experiences to evaluate the stakes and the limits of each regional integrations. These limits lead to solution researches including indisputable convergencies. The first part of this document presents the genesis of these regional economic integrations experiences in Latina America, to study in the second part the energy consequences of the liberal ALENA and of the more political MERCOSUR. (A.L.B.)

  4. Excess electricity diagrams and the integration of renewable energy

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article presents a methodology of showing the rate of integration off specific renewable energy sources into the electricity supply system.......The article presents a methodology of showing the rate of integration off specific renewable energy sources into the electricity supply system....

  5. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.

    Science.gov (United States)

    Chowdhury, Raja; Viamajala, Sridhar; Gerlach, Robin

    2012-03-01

    The life cycle impacts were assessed for an integrated microalgal biodiesel production system that facilitates energy- and nutrient- recovery through anaerobic digestion, and utilizes glycerol generated within the facility for additional heterotrophic biodiesel production. Results show that when external fossil energy inputs are lowered through process integration, the energy demand, global warming potential (GWP), and process water demand decrease significantly and become less sensitive to algal lipid content. When substitution allocation is used to assign additional credit for avoidance of fossil energy use (through utilization of recycled nutrients and biogas), GWP and water demand can, in fact, increase with increase in lipid content. Relative to stand-alone algal biofuel facilities, energy demand can be lowered by 3-14 GJ per ton of biodiesel through process integration. GWP of biodiesel from the integrated system can be lowered by up to 71% compared to petroleum fuel. Evaporative water loss was the primary water demand driver. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Conference on wind energy and grid integration

    International Nuclear Information System (INIS)

    Laffaille, Didier; Boemer, Jens; Fraisse, Jean-Luc; Mignon, Herve; Gonot, Jean-Pierre; Rohrig, Kurt; Lange, Matthias; Bagusche, Daniel; Wagner, Stefan; Schiel, Johannes

    2008-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the grid integration of wind farms. In the framework of this French-German exchange of experience, more than 80 participants exchanged views on the evolutions of tariffs and licensing procedures, and on grid capacity improvements and production forecasts. This document brings together the available presentations (slides) made during this event: 1 - The necessary evolution of billing and procedures for wind turbines connection to the grid in France (Didier Laffaille); 2 - Improvement of wind turbines integration to the grid in the framework of the EEG 2009 law (Jens Boemer); 3 - Decentralized power generation on the French power grids - 15, 20 kV and low voltage (Jean-Luc Fraisse); 4 - GOTTESWIND? Solution for the future: towards a grid evolution (Herve Mignon); 5 - Production forecasts in Germany - State-of-the-art and challenges for the grid exploitation (Kurt Rohrig); 6 - High-voltage lines capacity evaluation in meteorological situations with high wind energy production (Matthias Lange); 7 - The IPES project for the integration of wind energy production in the exploitation of the French power system (Jean-Pierre Gonot); 8 - Experience feedback from a wind turbine manufacturer in France and in Germany (Daniel Bagusche); 9 - Solutions for grid security improvement and capacity enhancement: cooperation between grid and power plant operators (Stefan Wagner); 10 - Open questions on wind energy integration to French and German grids (Johannes Schiel)

  7. Sizing of an Energy Storage System for Grid Inertial Response and Primary Frequency Reserve

    DEFF Research Database (Denmark)

    Knap, Vaclav; Chaudhary, Sanjay Kumar; Stroe, Daniel Loan

    2016-01-01

    Large-scale integration of renewable energy sources in power system leads to the replacement of conventional power plants (CPPs) and consequently challenges in power system reliability and security are introduced. This study is focused on improving the grid frequency response after a contingency ...

  8. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    Energy Technology Data Exchange (ETDEWEB)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  9. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  10. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems

    DEFF Research Database (Denmark)

    Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng

    2018-01-01

    . Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...

  11. A review of computer tools for analysing the integration of renewable energy into various energy systems

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    to integrating renewable energy, but instead the ‘ideal’ energy tool is highly dependent on the specific objectives that must be fulfilled. The typical applications for the 37 tools reviewed (from analysing single-building systems to national energy-systems), combined with numerous other factors......This paper includes a review of the different computer tools that can be used to analyse the integration of renewable energy. Initially 68 tools were considered, but 37 were included in the final analysis which was carried out in collaboration with the tool developers or recommended points...... of contact. The results in this paper provide the information necessary to identify a suitable energy tool for analysing the integration of renewable energy into various energy-systems under different objectives. It is evident from this paper that there is no energy tool that addresses all issues related...

  12. 77 FR 41481 - Integration of Variable Energy Resources

    Science.gov (United States)

    2012-07-13

    ... point to the importance of the Proposed Rule in removing market barriers to VER integration. NextEra... Commission's initiative to remove market and operational barriers to VERs integration and eliminate undue... Commission 18 CFR Part 35 Integration of Variable Energy Resources; Final Rule #0;#0;Federal Register / Vol...

  13. Towards integrated solutions for water, energy, and land using an integrated nexus modeling framework

    Science.gov (United States)

    Wada, Y.

    2017-12-01

    Humanity has already reached or even exceeded the Earth's carrying capacity. Growing needs for food, energy and water will only exacerbate existing challenges over the next decades. Consequently, the acceptance of "business as usual" is eroding and we are being challenged to adopt new, more integrated, and more inclusive development pathways that avoid dangerous interference with the local environment and global planetary boundaries. This challenge is embodied in the United Nation's Sustainable Development Goals (SDGs), which endeavor to set a global agenda for moving towards more sustainable development strategies. To improve and sustain human welfare, it is critical that access to modern, reliable, and affordable water, energy, and food is expanded and maintained. The Integrated Solutions for Water, Energy, and Land (IS-WEL) project has been launched by IIASA, together with the Global Environment Facility (GEF) and the United Nations Industrial Development Organization (UNIDO). This project focuses on the water-energy-land nexus in the context of other major global challenges such as urbanization, environmental degradation, and equitable and sustainable futures. It develops a consistent framework for looking at the water-energy-land nexus and identify strategies for achieving the needed transformational outcomes through an advanced assessment framework. A multi-scalar approach are being developed that aims to combine global and regional integrated assessment tools with local stakeholder knowledge in order to identify robust solutions to energy, water, food, and ecosystem security in selected regions of the world. These are regions facing multiple energy, water and land use challenges and rapid demographic and economic changes, and are hardest hit by increasing climate variability and change. This project combines the global integrated assessment model (MESSAGE) with the global land (GLOBIOM) and water (Community Water Model) model respectively, and the integrated

  14. Tools and measures for stimulation the efficient energy consumption. Integrated resource planning in Romania

    International Nuclear Information System (INIS)

    Scripcariu, Daniela; Scripcariu, Mircea; Leca, Aureliu

    1996-01-01

    The integrated resource planning is based on analyses of the energy generation and energy consumption as a whole. Thus, increasing the energy efficiency appears to be the cheapest, the most available and the most cost-effective energy resource. In order to stimulate the increase of efficiency of energy consumption, besides economic efficiency criteria for selecting technical solutions, additional tools and measures are necessary. The paper presents the main tools and measures needed to foster an efficient energy consumption. Actions meant to stimulate DSM (Demand-Side Management) implementation in Romania are proposed. The paper contains 5 sections. In the introduction, the main aspects of the DSM are considered, namely, where the programs are implemented, who is the responsible, which are the objectives and finally, how the DSM programs are implemented. The following tools in management of energy use are examined: the energy prices, the regulation in the field of energy efficiency, standards and norms, energy labelling of the products and energy education. Among the measures for managing the energy use, the paper takes into consideration the institutions responsible for DSM, for instance, the Romanian Agency for Energy Conservation (ARCE), decentralization of decision making, the program approaches and financing the actions aiming at improving the energy efficiency. Finally, the paper analyses the criteria in choosing adequate solutions of improving the energy efficiency

  15. European conferences. Integration of renewable energies in buildings; Conferences europeennes. Integration des energies renouvelables dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    Bal, J.L. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France); Letz, T. [Asder, 73 - Saint Alban Leysse (France); Tuille, F. [Observ' er, 75 - Paris (France)] [and others

    2001-07-01

    This document comprises 2 parts. First part is a detailed program of the exhibition with a press dossier which presents the different topics discussed during conferences and round tables, the market of renewable energies, and a list of agencies and companies involved in renewable energies development and products. The second part is the abstracts of the lectures presented during the European conferences on the integration of renewable energies in buildings (solar-thermal and photovoltaic systems, wood fuel and biomass). (J.S.)

  16. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  17. Response Surface Methodology and Aspen Plus Integration for the Simulation of the Catalytic Steam Reforming of Ethanol

    Directory of Open Access Journals (Sweden)

    Bernay Cifuentes

    2017-01-01

    Full Text Available The steam reforming of ethanol (SRE on a bimetallic RhPt/CeO2 catalyst was evaluated by the integration of Response Surface Methodology (RSM and Aspen Plus (version 9.0, Aspen Tech, Burlington, MA, USA, 2016. First, the effect of the Rh–Pt weight ratio (1:0, 3:1, 1:1, 1:3, and 0:1 on the performance of SRE on RhPt/CeO2 was assessed between 400 to 700 °C with a stoichiometric steam/ethanol molar ratio of 3. RSM enabled modeling of the system and identification of a maximum of 4.2 mol H2/mol EtOH (700 °C with the Rh0.4Pt0.4/CeO2 catalyst. The mathematical models were integrated into Aspen Plus through Excel in order to simulate a process involving SRE, H2 purification, and electricity production in a fuel cell (FC. An energy sensitivity analysis of the process was performed in Aspen Plus, and the information obtained was used to generate new response surfaces. The response surfaces demonstrated that an increase in H2 production requires more energy consumption in the steam reforming of ethanol. However, increasing H2 production rebounds in more energy production in the fuel cell, which increases the overall efficiency of the system. The minimum H2 yield needed to make the system energetically sustainable was identified as 1.2 mol H2/mol EtOH. According to the results of the integration of RSM models into Aspen Plus, the system using Rh0.4Pt0.4/CeO2 can produce a maximum net energy of 742 kJ/mol H2, of which 40% could be converted into electricity in the FC (297 kJ/mol H2 produced. The remaining energy can be recovered as heat.

  18. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  19. Integrated solar capacitors for energy conversion and storage

    Institute of Scientific and Technical Information of China (English)

    Ruiyuan Liu; Yuqiang Liu; Haiyang Zou; Tao Song; Baoquan Sun

    2017-01-01

    Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society.Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost.However,the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation.Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors,with emphasis on the structures,materials,performance,and new design features.The current challenges and future prospects are discussed with the aim of expanding research and development in this field.

  20. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  1. Smart thermal grid with integration of distributed and centralized solar energy systems

    International Nuclear Information System (INIS)

    Yang, Libing; Entchev, Evgueniy; Rosato, Antonio; Sibilio, Sergio

    2017-01-01

    Smart thermal grids (STGs) are able to perform the same function as classical grids, but are developed in order to make better use of distributed, possibly intermittent, thermal energy resources and to provide the required energy when needed through efficient resources utilization and intelligent management. District heating (DH) plays a significant role in the implementation of future smart energy systems. To fulfil its role, DH technologies must be further developed to integrate renewable resources, create low-temperature networks, and consequently to make existing or new DH networks ready for integration into future STGs. Solar heating is a promising option for low-temperature DH systems. Thermal energy storage (TES) can make the availability of the energy supply match the demand. An integration of centralized seasonal and distributed short-term thermal storages would facilitate an efficient recovery of the solar energy. This study, through modelling and simulation, investigates the impacts of such integration on the overall performance of a community-level solar DH system. The performance analysis results show that the solar DH system with integration of distributed and centralized seasonal TESs improves system overall efficiency, and reduces DH network heat losses, primary energy consumption and greenhouse gas emissions, in comparison to the one without integration. - Highlights: • STG should be designed to store energy in the most efficient way at the most effective location. • Integration of centralized seasonal and distributed TESs in a solar DH system is proposed. • Performance of such integrated solar DH system is evaluated and compared to the one without. • The integration results in reduction of primary energy consumption and GHG emission. • The integration improves the overall efficiency of the total solar energy system.

  2. Facilitating energy transition through energy commons : An application of socio-ecological systems framework for integrated community energy systems

    NARCIS (Netherlands)

    Acosta, Cristina; Ortega, Mariana; Bunsen, Till; Koirala, B.P.; Ghorbani, A.

    2018-01-01

    Integrated Community Energy Systems (ICES) are an emerging local energy system focusing on the collective use of distributed energy resources (DER). These socio-technical systems (STSs) have a high potential to advance the transition towards socially inclusive, environmentally-friendly energy

  3. Facilitating energy transition through energy commons : An application of socio-ecological systems framework for integrated community energy systems

    NARCIS (Netherlands)

    Acosta, Cristina; Ortega, Mariana; Bunsen, Till; Koirala, Binod Prasad; Ghorbani, Amineh

    2018-01-01

    Integrated Community Energy Systems (ICES) are an emerging local energy system focusing on the collective use of distributed energy resources (DER). These socio-technical systems (STSs) have a high potential to advance the transition towards socially inclusive, environmentally-friendly energy

  4. Demand response in energy markets

    International Nuclear Information System (INIS)

    Skytte, K.; Birk Mortensen, J.

    2004-11-01

    Improving the ability of energy demand to respond to wholesale prices during critical periods of the spot market can reduce the total costs of reliably meeting demand, and the level and volatility of the prices. This fact has lead to a growing interest in the short-run demand response. There has especially been a growing interest in the electricity market where peak-load periods with high spot prices and occasional local blackouts have recently been seen. Market concentration at the supply side can result in even higher peak-load prices. Demand response by shifting demand from peak to base-load periods can counteract the market power in the peak-load. However, demand response has so far been modest since the current short-term price elasticity seems to be small. This is also the case for related markets, for example, green certificates where the demand is determined as a percentage of the power demand, or for heat and natural gas markets. This raises a number of interesting research issues: 1) Demand response in different energy markets, 2) Estimation of price elasticity and flexibility, 3) Stimulation of demand response, 4) Regulation, policy and modelling aspects, 5) Demand response and market power at the supply side, 6) Energy security of supply, 7) Demand response in forward, spot, ancillary service, balance and capacity markets, 8) Demand response in deviated markets, e.g., emission, futures, and green certificate markets, 9) Value of increased demand response, 10) Flexible households. (BA)

  5. Technical and Economic Potential of Distributed Energy Storages for the Integration of Renewable Energy

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Trier, Daniel; Hansen, Kenneth

    Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role decentral...... indicate that sector coupling along with an intelligent choice of distributed energy storage technologies can enable the integration of large shares of fluctuating renewable energy in an energy efficient and cost-effective way.......Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role...... decentralised energy storages (DES) should play in integrating fluctuating renewable energy sources. The technical and economic potential for DES solutions is quantified using energy system modelling, and it is identified which DES technologies have the largest total (technical and economic) potential. For this...

  6. Southern Africa’s Water–Energy Nexus: Towards Regional Integration and Development

    Directory of Open Access Journals (Sweden)

    Tafadzwanashe Mabhaudhi

    2016-06-01

    Full Text Available The Southern African Development Community’s (SADC water and energy sectors are under increasing pressure due to population growth and agricultural and industrial development. Climate change is also negatively impacting on the region’s water and energy resources. As the majority of SADC’s population lives in poverty, regional development and integration are underpinned by water and energy security as the watercourses in the region are transboundary in nature. This paper reviews the region’s water and energy resources and recommends policies based on the water–energy nexus approach. This is achieved by reviewing literature on water and energy resources as well as policy issues. Water resources governance provides a strong case to create a water–energy nexus platform to support regional planning and integration as SADC countries share similar climatic and hydrological conditions. However, there has been a gap between water and energy sector planning in terms of policy alignment and technical convergence. These challenges hinder national policies on delivering economic and social development goals, as well as constraining the regional goal of greater integration. Regional objectives on sustainable energy and access to clean water for all can only be achieved through the recognition of the water–energy nexus, championed in an integrated and sustainable manner. A coordinated regional water–energy nexus approach stimulates economic growth, alleviates poverty and reduces high unemployment rates. The shared nature of water and energy resources requires far more transboundary water–energy nexus studies to be done in the context of regional integration and policy formulation.

  7. EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas

    International Nuclear Information System (INIS)

    Girardin, Luc; Marechal, Francois; Dubuis, Matthias; Calame-Darbellay, Nicole; Favrat, Daniel

    2010-01-01

    A geographical information system has been developed to model the energy requirements of an urban area. The purpose of the platform is to model with sufficient detail the energy services requirements of a given geographical area in order to allow the evaluation of the integration of advanced integrated energy conversion systems. This tool is used to study the emergence of more efficient cities that realize energy efficiency measures, integrate energy efficient conversion technologies and promote the use of endogenous renewable energy. The model is illustrated with case studies for the energetic planning of the Geneva district (Switzerland).

  8. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  9. An assessment of the role mass market demand response could play in contributing to the management of variable generation integration issues

    International Nuclear Information System (INIS)

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

    2012-01-01

    The penetration of wind and solar generating resources is expected to dramatically increase in the United States over the coming years. It is widely understood that large scale deployment of these types of renewable energy sources (e.g., wind, solar) that have variable and less predictable production characteristics than traditional thermal resources poses integration challenges for bulk power system operators. At present, bulk power system operators primarily utilize strategies that rely on existing thermal generation resources and improved wind and solar energy production forecasts to manage this uncertainty; a host of additional options are also envisioned for the near future including demand response (DR). There are well-established bodies of research that examine variable generation integration issues as well as demand response potential; but, the existing literature that provides a comparative assessment of the two neither treats this topic comprehensively nor in a highly integrated fashion. Thus, this paper seeks to address these missing pieces by considering the full range of opportunities and challenges for mass market DR rates and programs to support integration of variable renewable generation. - Highlights: ► Mass market demand response can help manage the integration of renewable resources. ► To be more effective, retail electricity rates must apply contemporaneous prices. ► Demand response programs will require shorter duration and more frequent events. ► Mass market customers will likely need to accept control technology. ► Market rules and regulatory policies must change to expand demand response's role.

  10. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  11. Integrating renewable energy into general practice : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-01

    This feasibility study was conducted to determine the viability of integrating solar thermal residential domestic hot water systems and community ground source heating and air conditioning within low-income housing projects in Toronto. The study examined the organizational changes needed to incorporate renewable energy systems for small-scale district and individual homes. The study was conducted on behalf of Habitat for Humanity (HFHT). Results of the study showed that the most significant benefits of integrating renewable energy systems will be the elimination of fossil fuel usage; reductions in home operating costs for partner families; and the potential for leveraging increased sponsorship funds. A geoexchange heating, ventilation and air conditioning (HVAC) system was recommended for the new HFHT headquarters as well as for future housing projects. It was concluded that HFHT should prepare for increased integration of renewable energy technologies as capital costs decrease and greater financial incentives become available. 15 tabs., 3 figs.

  12. Integrating Nuclear Energy to Oilfield Operations - Two Case Studies

    International Nuclear Information System (INIS)

    Robertson, Eric P.; Nelson, Lee O.; McKellar, Michael G.; Gandrik, Anastasia M.; Patterson, Mike W.

    2011-01-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  13. Demand response with locational dynamic pricing to support the integration of renewables

    International Nuclear Information System (INIS)

    Dupont, B.; De Jonghe, C.; Olmos, L.; Belmans, R.

    2014-01-01

    Electricity production from centralised and decentralised renewable energy resources in Europe is gaining significance, resulting in operational challenges in the electricity system. Although these challenges add to the locational and time dependency of the underlying cost of operating the system, this variability in time and location is not reflected in residential tariff schemes. Consequently, residential users are not incentivised to react to varying system conditions and to help the integration of renewable energy resources. Therefore, this paper provides a theoretical framework for designing a locational dynamic pricing scheme. This can be used to assess existing tariff structures for consumption and injection, and can serve as a theoretical background for developing new tariff schemes. Starting from the underlying costs, this paper shows that the potential for locational dynamic pricing depends on the locational and time dependency of its cost drivers. When converting costs into tariffs, the tariff design should be determined. This includes the advance notice of sending tariffs to users, and the length of price blocks and price patterns. This tariff design should find a balance between tariff principles related to costs, practicality and social acceptability on the one hand, and the resulting demand response incentive on the other. - Highlights: • The integration of renewables affects the locational and time dependency of costs. • Locational dynamic pricing reflects cost variability and allows demand response. • A theoretical framework for designing and assessing tariff schemes is proposed. • Tariff variability depends on the locational and time dependency of its cost drivers. • The tariff design should consider the resulting demand response incentive

  14. Integrated energy optimisation for the cement industry: A case study perspective

    International Nuclear Information System (INIS)

    Swanepoel, Jan Adriaan; Mathews, Edward Henry; Vosloo, Jan; Liebenberg, Leon

    2014-01-01

    Highlights: • Integration of all energy-intensive components of a cement plant production process in a simulation package. • Uniquely, the simulation model incorporates constraints such as maintenance, production and dynamic energy costs. • The system was implemented on four different cement plants and a total energy cost saving of 7.1% was achieved. - Abstract: Energy costs play a major role in the cement production process. As much as 60% of total cost is allocated to energy and 18% to the consumption of electrical energy. Historically, energy cost savings were achieved by large infrastructure upgrades. These upgrades are often costly and lead to interruptions in production. In this paper the operation of all the energy intensive components of the cement production process are identified, modelled, integrated and optimised for minimum operational costs while meeting production targets. This integrated approach allows for simulation of the collective effect of individual production components. The system incorporates constraints such as maintenance, production and dynamic energy costs. No published research could be found where these constraints are incorporated into a single operational solution. The system was implemented on four cement plants and a total energy cost saving of 7% was achieved. This highlights the practical significance of an integrated approach to energy cost savings

  15. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO2/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H2 generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g−1 at 0.5 A g−1 and 287 F g−1 at 1 A g−1 are obtained with TiO2/Ni(OH)2 nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application. PMID:23248745

  16. Spatio-temporal data analytics for wind energy integration

    CERN Document Server

    Yang, Lei; Zhang, Junshan

    2014-01-01

    This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic di

  17. Optimisation of integrated energy and materials systems

    International Nuclear Information System (INIS)

    Gielen, D.J.; Okken, P.A.

    1994-06-01

    To define cost-effective long term CO2 reduction strategies an integrated energy and materials system model for the Netherlands for the period 2000-2040 is developed. The model is based upon the energy system model MARKAL, which configures an optimal mix of technologies to satisfy the specified energy and product/materials service demands. This study concentrates on CO 2 emission reduction in the materials system. For this purpose, the energy system model is enlarged with a materials system model including all steps 'from cradle to grave'. The materials system model includes 29 materials, 20 product groups and 30 waste materials. The system is divided into seven types of technologies; 250 technologies are modeled. The results show that the integrated optimisation of the energy system and the materials system can significantly reduce the emission reduction costs, especially at higher reduction percentages. The reduction is achieved through shifts in materials production and waste handling and through materials substitution in products. Shifts in materials production and waste management seem cost-effective, while the cost-effectiveness of shifts in product composition is sensitive due to the cost structure of products. For the building sector, transportation applications and packaging, CO 2 policies show a significant impact on prices, and shifts in product composition could occur. For other products, the reduction through materials substitution seems less promising. The impact on materials consumption seems most significant for cement (reduced), timber and aluminium (both increased). For steel and plastics, the net effect is balanced, but shifts between applications do occur. The MARKAL-approach is feasible to study integrated energy and materials systems. The progress compared to other environmental system analysis instruments is much more insight in the interaction of technologies on a national scale and in time

  18. Review of Real-time Electricity Markets for Integrating Distributed Energy Resources and Demand Response

    DEFF Research Database (Denmark)

    Wang, Qi; Zhang, Chunyu; Ding, Yi

    2015-01-01

    The high penetration of both Distributed Energy Resources (DER) and Demand Response (DR) in modern power systems requires a sequence of advanced strategies and technologies for maintaining system reliability and flexibility. Real-time electricity markets (RTM) are the nondiscriminatory transaction...... platforms for providing necessary balancing services, where the market clearing (nodal or zonal prices depending on markets) is very close to real time operations of power systems. One of the primary functions of RTMs in modern power systems is establishing an efficient and effective mechanism for small DER...... and DR to participate in balancing market transactions, while handling their meteorological or intermittent characteristics, facilitating asset utilization, and stimulating their active responses. Consequently, RTMs are dedicated to maintaining the flexibility and reliability of power systems. This paper...

  19. Exergy Steam Drying and Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prem; Muenter, Claes (Exergy Engineering and Consulting, SE-417 55 Goeteborg (Sweden)). e-mail: verma@exergyse.com

    2008-10-15

    Exergy Steam Drying technology has existed for past 28 years and many new applications have been developed during this period. But during past few years the real benefits have been exploited in connection with bio-fuel production and energy integration. The steam dryer consists of a closed loop system, where the product is conveyed by superheated and pressurised carrier steam. The carrier steam is generated by the water vapours from the product being dried, and is indirectly superheated by another higher temperature energy source such as steam, flue gas, thermal oil etc. Besides the superior heat transfer advantages of using pressurised steam as a drying medium, the energy recovery is efficient and simple as the recovered energy (80-90%) is available in the form of steam. In some applications the product quality is significantly improved. Examples presented in this paper: Bio-Combine for pellets production: Through integration of the Exergy Steam Dryer for wood with a combined heat and power (CHP) plant, together with HP steam turbine, the excess carrier steam can be utilised for district heating and/or electrical power production in a condensing turbine. Bio-ethanol production: Both for first and second generation of ethanol can the Exergy process be integrated for treatment of raw material and by-products. Exergy Steam Dryer can dry the distillers dark grains and solubles (DDGS), wood, bagasse and lignin. Bio-diesel production: Oil containing seeds and fruits can be treated in order to improve both the quality of oil and animal feed protein, thus minimizing further oil processing costs and increasing the sales revenues. Sewage sludge as bio-mass: Municipal sewage sludge can be considered as a renewable bio-fuel. By drying and incineration, the combustion heat value of the sludge is sufficient for the drying process, generation of electrical energy and production of district heat. Keywords; Exergy, bio-fuel, bio-mass, pellets, bio-ethanol, biodiesel, bio

  20. Energy management system for an integrated steel plant

    Energy Technology Data Exchange (ETDEWEB)

    Perti, A.K.; Sankarasubramian, K.; Shivramakrishnan, J. (Bhilai Steel Plant, Bhilai (India))

    1992-09-01

    The cost of energy contributes 35 to 40% to the cost of steel production. Thus a lot of importance is being given to energy conservation in steel production. The paper outlines energy conservation measures at the Bhilai Steel Plant, India. Measures include: modifications to furnaces; partial briquetting of coal charge; and setting up an energy centre to integrate measurement and computer systems with despatches, engineers and managers of energy. 4 refs., 4 figs., 3 tabs.

  1. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Integrated community energy solutions : a roadmap for action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Integrated community energy solutions (ICES) can significantly improve community energy performance and help to achieve Canada's energy efficiency and climate change objectives. The solutions integrate physical components from multiple sectors, including transportation; housing and buildings; industry; water; waste management; and other local community services. However, ICES require the support of communities, governments and investors who can help to reduce barriers to action and define a marketplace. This road map provided details of provincial, territorial, and federal government inputs to ensuring the adoption of ICES. The roles of municipalities, developers, energy utilities and other stakeholders were also discussed. Key roles, sectoral building blocks, and barriers affecting ICES implementation were discussed. A 3-phase transition approach was presented in which the overarching strategies of ICES implementation were described. A menu of ICES tools was also included. 17 figs.

  3. Multisensory integration produces an initial response enhancement

    Directory of Open Access Journals (Sweden)

    Benjamin A Rowland

    2007-11-01

    Full Text Available The brain has evolved the ability to integrate information across the senses in order to improve the detection and disambiguation of biologically significant events. This multisensory synthesis of information leads to faster (and more accurate behavioral responses, yet the underlying neural mechanisms by which these responses are speeded are as yet unclear. The aim of these experiments was to evaluate the temporal properties of multisensory enhancement in the physiological responses of neuron in the superior colliculus (SC. Of specific interest was the temporal evolution of their responses to individual modality-specific stimuli as well as to cross-modal combinations of these stimuli. The results demonstrate that cross-modal stimuli typically elicit faster, more robust, and more reliable physiological responses than do their modality-specific component stimuli. Response measures sensitive to the time domain showed that these multisensory responses were enhanced from their very onset, and that the acceleration of the enhancement was greatest within the first 40 ms (or 50% of the response. The latter half of the multisensory response was typically only as robust and informative as predicted by a linear combination of the unisensory component responses. These results may reveal some of the key physiological changes underlying many of the SC-mediated behavioral benefits of multisensory integration.

  4. Integrated modelling of ecosystem services and energy systems research

    Science.gov (United States)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion

  5. Integration properties of disaggregated solar, geothermal and biomass energy consumption in the U.S

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Tsoumas, Chris

    2011-01-01

    This paper investigates the integration properties of disaggregated solar, geothermal and biomass energy consumption in the U.S. The analysis is performed for the 1989-2009 period and covers all sectors which use these types of energy, i.e., transportation, residence, industrial, electric power and commercial. The results suggest that there are differences in the order of integration depending on both the type of energy and the sector involved. Moreover, the inclusion of structural breaks traced from the regulatory changes for these energy types seem to affect the order of integration for each series. - Highlights: → Increasing importance of renewable energy sources. → Integration properties of solar, geothermal and biomass energy consumption in the U.S. → The results show differences in the order of integration depending on the type of energy. → Structural breaks traced for these energy types affect the order of integration. → The order of integration is less than 1, so energy conservation policies are transitory.

  6. Development of a Rapidly Deployed Department of Energy Emergency Response Element

    International Nuclear Information System (INIS)

    Riland, C.A.; Hopkins, R.C.; Tighe, R.J.

    1999-01-01

    The Federal Radiological Emergency Response Plan (FRERP) directs the Department of Energy (DOE) to maintain a viable, timely, and fully documented response option capable of supporting the responsible Lead Federal Agency in the event of a radiological emergency impacting any state or US territory (e.g., CONUS). In addition, the DOE maintains a response option to support radiological emergencies outside the continental US (OCONUS). While the OCUNUS mission is not governed by the FREP, this response is operationally similar to that assigned to the DOE by the FREP. The DOE is prepared to alert, activate, and deploy radiological response teams to augment the Radiological Assistance Program and/or local responders. The Radiological Monitoring and Assessment Center (RMAC) is a phased response that integrates with the Federal Radiological Monitoring and Assessment Center (FRMAC) in CONUS environments and represents a stand-alone DOE response for OCONUS environments. The FRMAC/RMAC Phase I was formally ''stood up'' as an operational element in April 1999. The FRMAC/RMAC Phase II proposed ''stand-up'' date is midyear 2000

  7. Demand Response Technology Readiness Levels for Energy Management in Blocks of Buildings

    Directory of Open Access Journals (Sweden)

    Tracey Crosbie

    2018-01-01

    Full Text Available Fossil fuels deliver most of the flexibility in contemporary electricity systems. The pressing need to reduce CO2 emissions requires new methods to provide this flexibility. Demand response (DR offers consumers a significant role in the delivery of flexibility by reducing or shifting their electricity usage during periods of stress or constraint. Blocks of buildings offer more flexibility in the timing and use of energy than single buildings, however, and a lack of relevant scalable ICT tools hampers DR in blocks of buildings. To ameliorate this problem, a current innovation project called “Demand Response in Blocks of Buildings” (DR-BoB: www.dr-bob.eu has integrated existing technologies into a scalable cloud-based solution for DR in blocks of buildings. The degree to which the DR-BoB energy management solution can increase the ability of any given site to participate in DR is dependent upon its current energy systems, i.e., the energy metering, the telemetry and control technologies in building management systems, and the existence/capacity of local power generation and storage plants. To encourage the owners and managers of blocks of buildings to participate in DR, a method of assessing and validating the technological readiness to participate in DR energy management solutions at any given site is required. This paper describes the DR-BoB energy management solution and outlines what we have called the demand response technology readiness levels (DRTRLs for the implementation of such a solution in blocks of buildings.

  8. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  9. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  10. Sensitivity of the dispatch strategy in designing grid integrated hybrid energy systems

    OpenAIRE

    Perera, Amarasinghage Tharindu Dasun; Mauree, Dasaraden; Scartezzini, Jean-Louis; Nik, Vahid M.

    2016-01-01

    Integrating renewable energy technologies based on solar PV (SPV) and wind energy in the energy system is challenging due to time dependence of the energy potential for these energy sources. Grid integrated hybrid energy systems combining SPV panels, wind turbines, battery bank and internal combustion generators (ICG) can be used in this regard specially for distributed generation. Energy-economic dispatch strategy plays a vital role in managing the energy flow of the system. However, it is d...

  11. Response of TLD-100 LiF dosimeters for X-rays of low energies

    International Nuclear Information System (INIS)

    Bonzi, E. V.; Mainardi, R. T.

    2011-10-01

    In diverse practical applications as the existent in radiological clinics, industrial facilities and research laboratories, the solid state dosimeters are used for the measure of the different types of ionizing radiations. At the present time dosimeters are manufactured with different types of materials that present thermoluminescent properties, to the effects of determining the absorbed radiation dose. Under these conditions, the radiation dose is determined integrated in all the range of energies of the beam of X-rays, since it assumes that the response of these dosimeters is lineal with the energy of the photons or radiant particles. Because interest exists in advancing in the development of a determination method in the way of the X-rays spectrum emitted by a tube of those used in diagnostic or therapy, we have measured the response of TLD-100 LiF dosimeters for low energies, minor at 60 keV, for a several group of these dosimeters. (Author)

  12. Calculation of quantum-mechanical system energy spectra using path integrals

    International Nuclear Information System (INIS)

    Evseev, A.M.; Dmitriev, V.P.

    1977-01-01

    A solution of the Feynman quantum-mechanical integral connecting a wave function (psi (x, t)) at a moment t+tau (tau → 0) with the wave function at the moment t is provided by complex variable substitution and subsequent path integration. Time dependence of the wave function is calculated by the Monte Carlo method. The Fourier inverse transformation of the wave function by path integration calculated has been applied to determine the energy spectra. Energy spectra are presented of a hydrogen atom derived from wave function psi (x, t) at different x, as well as boson energy spectra of He, Li, and Be atoms obtained from psi (x, t) at X = O

  13. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  14. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  15. The regional energy integration: the latin-american experiences; L'integration energetique regionale: les experiences latino-americaines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The ways of the regional economic integrations are not identical and generate different repercussions on the markets and the energy industries evolution. The example of the Latin America proposes many various experiences to evaluate the stakes and the limits of each regional integrations. These limits lead to solution researches including indisputable convergencies. The first part of this document presents the genesis of these regional economic integrations experiences in Latina America, to study in the second part the energy consequences of the liberal ALENA and of the more political MERCOSUR. (A.L.B.)

  16. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  17. Financial overview of integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Croke, K. G.; Hurter, A. P.; Lerner, E.; Breen, W.; Baum, J.

    1977-01-01

    This report is designed to analyze the commercialization potential of various concepts of community-scale energy systems that have been termed Integrated Community Energy Systems (ICES). A case analysis of alternative ICES concepts applied to a major metropolitan development complex is documented. The intent of this study is twofold: (1) to develop a framework for comparing ICES technologies to conventional energy supply systems and (2) to identify potential problems in the commercialization of new systems approaches to energy conservation. In brief, the ICES Program of the ERDA Office of Energy Conservation is intended to identify the opportunities for energy conservation in the community context through analysis, development, and/or demonstration of: location and design of buildings, building complexes, and infrastructure links; engineering and systems design of existing, emerging, and advanced energy production and delivery technologies and systems; regulatory designs for public planning, administration, and regulation of energy-conserving community development and energy services; and financial planning for energy-conserving community development and energy supply systems.

  18. Information-integration category learning and the human uncertainty response.

    Science.gov (United States)

    Paul, Erick J; Boomer, Joseph; Smith, J David; Ashby, F Gregory

    2011-04-01

    The human response to uncertainty has been well studied in tasks requiring attention and declarative memory systems. However, uncertainty monitoring and control have not been studied in multi-dimensional, information-integration categorization tasks that rely on non-declarative procedural memory. Three experiments are described that investigated the human uncertainty response in such tasks. Experiment 1 showed that following standard categorization training, uncertainty responding was similar in information-integration tasks and rule-based tasks requiring declarative memory. In Experiment 2, however, uncertainty responding in untrained information-integration tasks impaired the ability of many participants to master those tasks. Finally, Experiment 3 showed that the deficit observed in Experiment 2 was not because of the uncertainty response option per se, but rather because the uncertainty response provided participants a mechanism via which to eliminate stimuli that were inconsistent with a simple declarative response strategy. These results are considered in the light of recent models of category learning and metacognition.

  19. Task force for integral test of High Energy nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  20. Energy crisis: policy response

    Energy Technology Data Exchange (ETDEWEB)

    Nemetz, P N [ed.

    1981-01-01

    Resource-management techniques must be applied to assess the risks, benefits, priorities, and potentials of the different energy options as prospective slowdowns in the flow of crude oil threaten recurring energy crises. The 23 contributors to this book use various managerial approaches in the formulation of energy policies. There is little agreement among the remedies put forth as to which policies will best achieve a balanced energy system. While some experts argue that Canadian energy policy should emphasize intensive development of coal, others claim that it ought to strive for greater reliance on electricity, and still others contend that the transition to soft energy paths is a preferable policy approach. The essays offer a broad range of policy responses, examining not only technical and economic possibilities, but political and institutional alternatives as well. 147 references, 18 figures, 30 tables.

  1. Technology integration plan

    International Nuclear Information System (INIS)

    Henry, R.; Sumpter, K.C.

    1995-01-01

    In 1992, the Secretary of Energy directed the Assistant Secretary for Environmental Management (EM) to develop an integrated, long-term, spent nuclear fuel (SNF) management program. In response, EM created the Integrated SNF Program to assess the US Department of Energy (DOE) SNF and SNF storage facilities. As shown in Figure 1 the Integrated SNF Program is responsible for life-cycle management of DOE SNF; that is characterization, processing, interim storage and preparation for disposal. In order to implement the Program it was recognized that technology needs must be identified. A Technology Integration Program was formed to integrate the DOE complex-wide efforts for establishing timely, cost effective and consistent technical criteria for the development of technical solutions. The program is directed toward identification of: (a) what activities need to be done, (b) when they need to be completed, and (c) what priority should be assigned to the various activities

  2. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models.

    Science.gov (United States)

    Palsson, Sirus; Hickling, Timothy P; Bradshaw-Pierce, Erica L; Zager, Michael; Jooss, Karin; O'Brien, Peter J; Spilker, Mary E; Palsson, Bernhard O; Vicini, Paolo

    2013-09-28

    The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The

  3. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting

    International Nuclear Information System (INIS)

    Moure, A.; Izquierdo Rodríguez, M.A.; Rueda, S. Hernández; Gonzalo, A.; Rubio-Marcos, F.; Cuadros, D. Urquiza; Pérez-Lepe, A.; Fernández, J.F.

    2016-01-01

    Graphical abstract: A system based on piezoelectric cymbals embedded in asphalt for the first time is used as harvester for wasted vibrational energy produced by traffic. Energy density in the range of other alternative sources is achieved, with an estimated projected cost that shows the feasibility of this harvesting energy system. - Highlights: • Piezoelectric cymbals have been directly integrated in asphalt for the first time. • Harvesting from wasted vibrational energy caused by vehicles is demonstrated to be feasible by this integration. • Energy density and cost are estimated to be competitive with other sources as photovoltaic. • A 10% of the energy generated in the Region of Madrid can be obtained by covering only the 0.6% of its roads. - Abstract: Piezoelectric cymbals with 29-mm diameter and different configurations are fabricated and tested to determine the best conditions to optimize the conversion of mechanical to electric energy. Then, the ones with the best results are integrated directly in asphalt to evaluate their performance as vibration energy harvesters in roads, in a test bench designed to characterize these parameters. The main cymbal parameters and their integration in the asphalt are determined. For the first time, the electrical energy that can be obtained with the embedment of cymbals in asphalt is evaluated. Each single piezoceramic cymbal recovers up to 16 μW for the pass of one heavy vehicle wheel. An extrapolation of the energy transformed by the integrated cymbals in roads with high vehicle densities, such as in a peri-urban motorway, is approached. Energy densities in the range of 40–50 MW h/m"2 can be obtained at 100 m of road (use of 30,000 cymbals), which could account for more than 65 MW h in a year. All this with a relatively low cost for an emerging technology (less than 2 €/kW h). The conversion of wasted and unused vibrational energy in roads by piezoelectric cymbals is thus proved as a real possibility of

  4. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    Science.gov (United States)

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  5. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-01

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  6. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation.

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-28

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  7. Storage Integration in Energy Systems: A New Perspective

    International Nuclear Information System (INIS)

    Faure-Schuyer, Aurelie

    2016-06-01

    Energy storage is partly an 'old story' and a new one. Energy storage is an essential stabilizing factor in existing electrical systems. Looking forward, energy storage is being considered as a key element of the transformation of energy systems, given the higher shares of renewable generation integrating the systems and demand-side management offered to end-customers. Today, the cost of electricity produced from battery storage is approaching parity with electricity bought from the grid. For this trend to gain strength and energy storage to be part of new business models, energy policies and regulatory frameworks need to be adapted. (author)

  8. System Integration of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Nyeng, Preben

    units, including the ICT solutions that can facilitate the integration. Specifically, the international standard "IEC 61850-7-420 Communications systems for Distributed Energy Resources" is considered as a possible brick in the solution. This standard has undergone continuous development....... It is therefore investigated in this project how ancillary services can be provided by alternatives to central power stations, and to what extent these can be integrated in the system by means of market-based methods. Particular emphasis is put on automatic solutions, which is particularly relevant for small......, and this project has actively contributed to its further development and improvements. Different types of integration methods are investigated in the project. Some are based on local measurement and control, e.g. by measuring the grid frequency, whereas others are based on direct remote control or market...

  9. Integrated energy, air quality and greenhouse gas management plan

    International Nuclear Information System (INIS)

    2004-03-01

    This report outlines the measures that the Resort Municipality of Whistler has taken to become a sustainable community. In 2000, the Municipality adopted the Natural Step, a tool developed by international scientists to integrate ecological principles into the practices of communities, organizations and individuals. In 2001, the Municipality adopted a comprehensive sustainability plan. This report describes the efforts to manage energy, air quality, and greenhouse gases (GHG). More than 90 per cent of the common air contaminants that contribute to air quality problems in Whistler come from the combustion of fossil fuels. The community can reduce emissions of carbon monoxide, oxides of nitrogen, oxides of sulphur, volatile organic compounds, and particulate matter by managing energy and GHG emissions. This report is divided into several sections dealing with corporate and community energy use. It presents a community profile for Whistler, its energy and emissions inventory from 2000, and an integrated energy plan. An energy and emissions forecast for 2000 to 2020 was also included along with an implementation strategy for a sustainable energy future for Whistler. refs., tabs., figs

  10. Continental integration and energy demand in the United States

    International Nuclear Information System (INIS)

    Manning, D.J.

    2004-01-01

    This presentation highlighted some of the major issues regarding energy demand in the United States and continental integration. The energy markets in Canada and the United States are economically integrated with large cross-border investment. Therefore, the energy infrastructure can be significantly affected by inconsistencies between the two countries in policy, regulatory processes and fiscal regimes. The author discussed the inelasticity in the natural gas demand in the United States in the near-term, and how natural gas consumption, particularly for power generation, is greater than North America's supply capacity. New supplies such as liquefied natural gas and arctic gas are needed to meet growing demands. The role of renewable energy technologies and energy efficiency was also discussed. It was emphasized that imbalances in supply and demand inevitably lead to price volatility and that high prices are a major obstacle to economic growth. tabs., figs

  11. FOREN 2004. Sustainable Energy Development and European Integration

    International Nuclear Information System (INIS)

    Iancu Iulian

    2004-01-01

    The 7th Regional Energy Forum- FOREN 2004 with the main topic 'Sustainable Energy Development and European Integration' took place in Neptun-Olimp, on 13th to 17th June 2004. The event was organized by WEC Romanian National Committee, under the auspices of the World Energy Council (WEC). The event was accompanied by several related manifestation as: An up to date Technical Programme designed to explore key issues concerning the ability of the Romanian energy industry to integrate in the European Union; An Exhibition providing first hand access to service and equipment providers; A Partnership Programme, to present the achievements and developments of power companies in round tables, film projections, technical visits and advertising; Social events giving to participants the opportunity to establish direct connections with the Romanian colleagues. The Forum was open to members of the World Energy Council, energy industry leaders, government ministers and officials, heads of international organizations like: UNECE, EC, IEA, Eurelectric, IGU, EUROgas, USAID, academics, media, individual and corporate members interested in sustainable energy development. For further details concerning the agenda and registration. Forum 2004 was structured on five sections each containing a key issue a panel session, communication session and poster presentation on the following items: 1. Energy legislation and institutional framework; 2. The technological dimension of sustainable energy; 3. The ecological dimension of sustainable development; 4. The social dimension of sustainable development; 5. The power equipment manufacturing industry

  12. Integration of the nuclear energy among the production facilities of energy in France; Integration de l'energie nucleaire parmi les moyens de production de l'energie en france

    Energy Technology Data Exchange (ETDEWEB)

    Ailleret, P [Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches; Taranger, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The present report gives an overview of the present facilities of energy productions in France and their perspectives. the electric production comes for half about power stations hydraulics and for half of thermal power stations. However due to the increase of the energy consumption, France is particularly interested by the atomic energy that appears to bring a supply in due time to the hydraulics and to limit a development of the thermal power stations to which the natural resources of France in classic fuel would not permit to cope presumably. The integration of the nuclear plants to the other production facilities will make itself gradually according to the evolution of the energy needs. (M.B.) [French] Le present rapport donne un apercu des moyens actuels de productions energetiques en France et de ses perspectives. la production electrique provient pour moitie environ de centrales hydraulique et pour moitie de centrales thermiques. Cependant face a l'augmentation de la consommation energetique, la France est tres particulierement interessee par l'energie atomique qui parait devoir apporter en temps utile la releve a l'hydraulique et limiter un developpement des centrales thermiques auxquels les ressources naturelles de la France en combustible classique ne permettraient vraisemblablement pas de faire face. L'integration des centrales nucleaires aux autres moyens de production se fera graduellment en fonction de l'evolution des besoins energetiques. (M.B.)

  13. INTEGRAL highlights in the high energy astrophysics panorama

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.

    2013-10-15

    ESAs INTEGRAL Space Observatory has spent his first decade in orbit, and its scientific outcome has completely changed our view of the hard-X/soft γ-ray sky. The scientific result comprises, among other discoveries, the production of the all-sky high energy sources catalogue, confirming the time variability over all time scales of most of the soft γ-ray sources observed, the first detailed map of the Aluminium and 511 keV annihilation line in the Galaxy and the evidence of polarized γ-ray emission from the Crab Nebula and Cyg X-1. This paper will review the latest INTEGRAL discoveries in the framework of the high energy sky panorama.

  14. Does energy and CO_2 emissions performance of China benefit from regional integration?

    International Nuclear Information System (INIS)

    Li, Jianglong; Lin, Boqiang

    2017-01-01

    Low energy and carbon efficiency and widespread market segmentation are two stylized facts of China's regional economies. This paper evaluates energy and CO_2 emissions performance using a newly developed non-radial directional distance function, and China's regional integration is investigated using a price approach. The study points to evidence that: (1) most provinces do not perform efficiently in terms of energy use and CO_2 emissions with performance gaps among regions becoming larger, indicating regional segmentation; (2) magnitude of regional integration has increased dramatically, while China's eastern provinces are less integrated in domestic side due to their convenience to international openness; (3) regional integration has significant and robust positive effects on energy and CO_2 emissions performance with over 70% of effects coming from artificial barriers, rather than geographical distance; (4) international openness is also beneficial for promoting energy and CO_2 emissions performance, but cannot substitute for regional integration because of China's specialization in energy-intensive manufacturing in the global economy. Based on the empirical findings, we suggest that central government should continue to encourage regional integration given that local governments have incentives to fragment because it is a way of promoting energy and CO_2 emissions performance and stimulating economy at the same time. - Highlights: • NDDF method is applied to evaluate China's regional energy and carbon performance. • Difficulties in identifying NDDF using parametric approach are discussed. • Panel data of China's regional integration using the price approach is constructed. • Local protectionism is particularly identified by filtering effects of geography. • World trade cannot substitute domestic integration for improving energy efficiency.

  15. The Role of CHP Plants in the Integration of Fluctuating Renewable Energy Sources

    DEFF Research Database (Denmark)

    Lund, Henrik

    2002-01-01

    The paper is an Expression of Interest to the European Commission about renewable energy sources and their integration in a energy system......The paper is an Expression of Interest to the European Commission about renewable energy sources and their integration in a energy system...

  16. Chiral magnetic currents with QGP medium response in heavy-ion collisions at RHIC and LHC energies

    Science.gov (United States)

    She, Duan; Feng, Sheng-Qin; Zhong, Yang; Yin, Zhong-Bao

    2018-03-01

    We calculate the electromagnetic current with a more realistic approach in the RHIC and LHC energy regions in the article. We take the partons formation time as the initial time of the magnetic field response of QGP medium. The maximum electromagnetic current and the time-integrated current are two important characteristics of the chiral magnetic effect (CME), which can characterize the intensity and duration of fluctuations of CME. We consider the finite frequency response of CME to a time-varying magnetic field, find a significant impact from QGP medium feedback, and estimate the generated electromagnetic current as a function of time, beam energy and impact parameter.

  17. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2015-01-01

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources

  18. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-06-15

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  19. Decision support for integrated water-energy planning.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

    2009-10-01

    Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

  20. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    Science.gov (United States)

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males

    Science.gov (United States)

    ALAJMI, NAWAL; DEIGHTON, KEVIN; KING, JAMES A.; REISCHAK-OLIVEIRA, ALVARO; WASSE, LUCY K.; JONES, JENNY; BATTERHAM, RACHEL L.; STENSEL, DAVID J.

    2016-01-01

    ABSTRACT Purpose To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods In experiment one, 12 healthy women completed three 9-h trials (control, exercise-induced (Ex-Def) and food restriction–induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90-min run, ∼70% of V˙O2max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7-h trials (control and exercise). Sixty minutes of running (∼70% of V˙O2max) was performed at the beginning of the exercise trial. The participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones, and ad libitum energy intake were assessed during main trials. Results In experiment one, an energy deficit of approximately 3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3–36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than in control, but energy intake did not differ between trials. The appetite, acylated ghrelin, and energy intake response to exercise did not differ between men and women. Conclusions Women exhibit compensatory appetite, gut hormone, and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women seem to exhibit similar acylated ghrelin and PYY3–36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women. PMID:26465216

  2. Review of Integration of Distributed Energy Resources (DERs) into Power Systems

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Xu, Zhao

    2011-01-01

    state‐of‐the‐art DER integration concepts  relations existing DER integration concepts to the EV system The power balancing challenges of power systems brought by high penetration of intermittent DER have been discussed, especially the wind power integration in the Danish context. The relevance...... of the integration of electric vehicles (EVs) to the DER integration concepts have been analyzed as well based on the energy storage potential of EVs.   Two main concepts for DER integration, virtual power plant (VPP) and microgrids, are described and a comparison of the two concepts have been done. The comparison......An overview of the integration of distributed energy resources (DER) into power systems has been presented in this report. Different aspects of integration of DER into power systems have been reviewed and discussed which are listed below.    needs of DER integration into power systems  various...

  3. Examining demand response, renewable energy and efficiencies to meet growing electricity needs

    International Nuclear Information System (INIS)

    Elliot, N.; Eldridge, M.; Shipley, A.M.; Laitner, J.S.; Nadel, S.; Silverstein, A.; Hedman, B.; Sloan, M.

    2007-01-01

    While Texas has already taken steps to improve its renewable energy portfolio (RPS), and its energy efficiency improvement program (EEIP), the level of savings that utilities can achieve through the EEIP can be greatly increased. This report estimated the size of energy efficiency and renewable energy resources in Texas, and suggested a range of policy options that might be adopted to further extend EEIP. Current forecasts suggest that peak demand in Texas will increase by 2.3 per cent annually from 2007-2012, a level of growth which is threatening the state's ability to maintain grid reliability at reasonable cost. Almost 70 per cent of installed generating capacity is fuelled by natural gas in Texas. Recent polling has suggested that over 70 per cent of Texans are willing support increased spending on energy efficiency. Demand response measures that may be implemented in the state include incentive-based programs that pay users to reduce their electricity consumption during specific times and pricing programs, where customers are given a price signal and are expected to moderate their electricity usage. By 2023, the widespread availability of time-varying retail electric rates and complementary communications and control methods will permanently change the nature of electricity demand in the state. At present, the integrated utilities in Texas offer a variety of direct load control and time-of-use, curtailable, and interruptible rates. However, with the advent of retail competition now available as a result of the structural unbundling of investor-owned utilities, there is less demand response available in Texas. It was concluded that energy efficiency, demand response, and renewable energy resources can meet the increasing demand for electricity in Texas over the next 15 years. 4 figs

  4. Integrated Land-Water-Energy assessment using the Foreseer Tool

    Science.gov (United States)

    Allwood, Julian; Konadu, Dennis; Mourao, Zenaida; Lupton, Rick; Richards, Keith; Fenner, Richard; Skelton, Sandy; McMahon, Richard

    2016-04-01

    This study presents an integrated energy and resource modelling and visualisation approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for energy system pathways. The Foreseer Tool maps linked energy, water and land resource futures by outputting a set of Sankey diagrams for energy, water and land, showing the flow from basic resource (e.g. coal, surface water, and forested land) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). By 'mapping' resources in this way, policy-makers can more easily understand the competing uses through the identification of the services it delivers (e.g. food production, landscaping, energy), the potential opportunities for improving the management of the resource and the connections with other resources which are often overlooked in a traditional sector-based management strategy. This paper will present a case study of the UK Carbon Plan, and highlights the need for integrated resource planning and policy development.

  5. Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement

    International Nuclear Information System (INIS)

    Poudineh, Rahmatallah; Jamasb, Tooraj

    2014-01-01

    The need for investment in capital intensive electricity networks is on the rise in many countries. A major advantage of distributed resources is their potential for deferring investments in distribution network capacity. However, utilizing the full benefits of these resources requires addressing several technical, economic and regulatory challenges. A significant barrier pertains to the lack of an efficient market mechanism that enables this concept and also is consistent with business model of distribution companies under an unbundled power sector paradigm. This paper proposes a market-oriented approach termed as “contract for deferral scheme” (CDS). The scheme outlines how an economically efficient portfolio of distributed generation, storage, demand response and energy efficiency can be integrated as network resources to reduce the need for grid capacity and defer demand driven network investments. - Highlights: • The paper explores a practical framework for smart electricity distribution grids. • The aim is to defer large capital investments in the network by utilizing and incentivising distributed generation, demand response, energy efficiency and storage as network resources. • The paper discusses a possible new market model that enables integration of distributed resources as alternative to grid capacity enhancement

  6. Integrating uncertainty into public energy research and development decisions

    Science.gov (United States)

    Anadón, Laura Díaz; Baker, Erin; Bosetti, Valentina

    2017-05-01

    Public energy research and development (R&D) is recognized as a key policy tool for transforming the world's energy system in a cost-effective way. However, managing the uncertainty surrounding technological change is a critical challenge for designing robust and cost-effective energy policies. The design of such policies is particularly important if countries are going to both meet the ambitious greenhouse-gas emissions reductions goals set by the Paris Agreement and achieve the required harmonization with the broader set of objectives dictated by the Sustainable Development Goals. The complexity of informing energy technology policy requires, and is producing, a growing collaboration between different academic disciplines and practitioners. Three analytical components have emerged to support the integration of technological uncertainty into energy policy: expert elicitations, integrated assessment models, and decision frameworks. Here we review efforts to incorporate all three approaches to facilitate public energy R&D decision-making under uncertainty. We highlight emerging insights that are robust across elicitations, models, and frameworks, relating to the allocation of public R&D investments, and identify gaps and challenges that remain.

  7. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  8. Renewable energy and integrated resource planning

    International Nuclear Information System (INIS)

    Porter, K.L.

    1992-01-01

    Integrated resource planning, or IRP, is a new means of comparing resource choices for electric and gas utilities. Since its inception in 1986, at least 15 states have implemented IRP, and more are considering adopting IRP or have limited IRP processes in place. Some of the characteristics of IRP, such as increased public participation and an expanded analysis of the costs and benefits of energy resources, can contribute to addressing some of the technical and market barriers that hinder the increased deployment of renewable energy technologies. This paper looks at the status of some of these issues

  9. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  10. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  11. The regional energy integration: the latin-american experiences; L'integration energetique regionale: les experiences latino-americaines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The ways of the regional economic integrations are not identical and generate different repercussions on the markets and the energy industries evolution. The example of the Latin America proposes many various experiences to evaluate the stakes and the limits of each regional integrations. These limits lead to solution researches including indisputable convergencies. The first part of this document presents the genesis of these regional economic integrations experiences in Latina America, to study in the second part the energy consequences of the liberal ALENA and of the more political MERCOSUR. (A.L.B.)

  12. City-integrated renewable energy for urban sustainability.

    Science.gov (United States)

    Kammen, Daniel M; Sunter, Deborah A

    2016-05-20

    To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability. Copyright © 2016, American Association for the Advancement of Science.

  13. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A New Modular Multilevel Converter with Integrated Energy Storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    applications. Furthermore, this solution can interconnect a DC and AC grid with bidirectional power flow, where both of them can receive or generate excess power to the third source integrated in each converter sub-module. This particularity enables the converter usage as a high voltage UPS system......This paper introduces a new modular converter with integrated energy storage based on the cascaded half-bridge modular multilevel converter with common DC bus. It represents a complete modular solution with power electronics and energy storage building blocks, for medium and high voltage...... in the future HVDC meshed grids. Its functionality and flexibility makes the converter independent on the energy storage unit characteristic. The converter concept with its basic functions and control schemes are described and evaluated in this paper....

  15. REopt: A Platform for Energy System Integration and Optimization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, T.; Cutler, D.; Anderson, K.; Olis, D.; Elgqvist, E.; Callahan, M.; Walker, A.

    2014-08-01

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, and energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.

  16. Gains from an integrated market for tradable renewable energy credits

    International Nuclear Information System (INIS)

    Mozumder, Pallab; Marathe, Achla

    2004-01-01

    Decoupling the environmental attributes of renewable energy (RE) generation from the physical unit of energy is an innovative mechanism for marketing green or renewable power. The introduction of 'Tradable Renewable Energy Credits' (TRECs) allows the green power attributes of energy to be sold or traded separately from the physical unit of energy. Since the green power certificate system removes potential locational and physical bottlenecks, both suppliers and consumers gain flexibility in the marketplace. The TREC is also an efficient tool to meet 'Renewable Portfolio Standard' (RPS) required by different states in the US. This paper discusses the RPS requirements for different states and examines the implications of an integrated TREC market. It offers a competitive setting to the consumers to pay for renewable energy and a cost effective tool to support renewable energy generation [Grace and Wiser, 2002]. This paper also highlights some practical difficulties that should be addressed in order to establish an efficient integrated TREC market

  17. Air source integrated heat pump simulation model for EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; New, Joshua; Baxter, Van

    2017-12-01

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy saving potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.

  18. Power and Responsibility in Therapy: Integrating Feminism and Multiculturalism

    Science.gov (United States)

    Williams, Elizabeth Nutt; Barber, Jill S.

    2004-01-01

    The integration of feminist and multicultural approaches to psychotherapy, called for many times, has not yet materialized. This article reviews possible reasons this integration has not taken place and offers an approach to integration based on the guiding principles of power and responsibility, which builds on previous theories and approaches.

  19. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  20. Integration of renew able energy sources in smart grid: a review

    International Nuclear Information System (INIS)

    Zafar, S.; Nawaz, K.; Naqvi, S.A.R.; Malik, T.N.

    2013-01-01

    The increasing complexity of the existing power grid due to rapid population growth, development in technology, infrastructure and computational tools are the factors that contribute to the need of deployment of smart grid for secure and efficient use of electrical energy. The modernization of electric grids toward a smart grid is being carried out to improve reliability, facilitate integration of renewable energies, and improve power consumption management. Due to continuous depletion of primary fuel resources and global concern about the environmental pollution, the development of smart grids based on renewable energy resources has gained huge strategic significance now a days to resolve the energy crisis. However the intermittent and fluctuating nature of these sources makes the integration a difficult task that needs to be effectively addressed. Firstly this paper briefly discuss the emerging renewable energy resources (RERs) and Energy storage systems (EES). Secondly this work comprehensively reviews the potential challenges in integration of these sources in smart grid along with the applied control strategies for their facilitation and some practical case studies. (author)

  1. FTR: Performance-Aware and Energy-Efficient Communication Protocol for Integrating Sensor Networks into the Internet

    Directory of Open Access Journals (Sweden)

    Sinung Suakanto

    2014-11-01

    Full Text Available Integrating sensor networks into the Internet brings many advantages. For example, users can monitor or control the state of the sensors remotely without visiting the field. Some researchers have proposed methods using a REST-based web service or HTTP to establish communication between sensors and server via the Internet. Unfortunately, as we know, HTTP is a best-effort service. In some cases this means that if the number of sensors increases the end-to-end Quality of Service will decrease. The end-to-end network delay increases, as well as the failure rate of data sending caused by HTTP timeouts. In this paper, we propose Finite Time Response (FTR HTTP as a communication protocol suitable for integrating sensor networks into the Internet. We have defined a cross-layer approach that coordinates between the application layer and the physical layer to control not only performance but also energy efficiency. The HTTP request-response delay measured at the application layer is used as the decision factor at the physical layer to control the active and sleep periods. We also propose a forced-sleep period as a control mechanism to guarantee average performance for all nodes. The experimental results have shown that FTR has the ability to maintain better performance, indicated by a lower average response time and a lower average timeout experience. Optimization is still needed to gain better performance and better energy efficiency while also considering the average value of the update time.

  2. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  3. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2013-01-01

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  4. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  5. Integrated Solar-Energy-Harvesting and -Storage Device

    Science.gov (United States)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  6. Integrated online energy and battery life management for hybrid long haulage truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.

    2014-01-01

    Battery lifetime management plays an important role for successful commercializing hybrid electric vehicles. This paper aims at integrating the battery lifetime management into the energy management system of a heavy-duty hybrid electric truck. The developed strategy called Integrated Energy

  7. Renewable energy integration into the Spanish power system

    International Nuclear Information System (INIS)

    Duvison Garcia, Miguel R.; Rivas Cuenca, Ana

    2013-01-01

    The increase in renewable energy sources in the Spanish peninsular system, along with the installation of other technologies represents a challenge due to the particularities of this type of technologies. Innovative solutions and new operation paradigms may be needed in order to cope with these challenges. Grid codes must incorporate new specifications for these technologies and demand management strategies must be incorporated in control centers in order to balance the system, maximize renewable production and maintain system security. In real time, the most significant improvements that ease integration of renewable resources are the introduction of observability and controllability, which is especially important in dealing with the problem of system balancing and the impact of renewable energy on matching generation and demand. In this regard the commissioning of a control center specifically for management of these technologies have been taken in the Spanish electrical system in order to integrate the maximum amount of renewable energy

  8. Micro-relay technology for energy-efficient integrated circuits

    CERN Document Server

    Kam, Hei

    2015-01-01

    This book describes the design of relay-based circuit systems from device fabrication to circuit micro-architectures. This book is ideal for both device engineers as well as circuit system designers and highlights the importance of co-design across design hierarchies when optimizing system performance (in this case, energy-efficiency). This book is ideal for researchers and engineers focused on semiconductors, integrated circuits, and energy efficient electronics. This book also: ·         Covers microsystem fabrication, MEMS device design, circuit design, circuit micro-architecture, and CAD ·         Describes work previously done in the field and also lays the groundwork and criteria for future energy-efficient device and system design ·         Maximizes reader insights into the design and modeling of micro-relay, micro-relay reliability, integrated circuit design with micro-relays, and more

  9. The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil

    International Nuclear Information System (INIS)

    Ordenes, Martin; Marinoski, Deivis Luis; Braun, Priscila; Ruther, Ricardo

    2007-01-01

    Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasilia and Florianopolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatistica - Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informacoes de Posses de Eletrodomesticos e Habitos de Consumo - Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each facade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical facades at the sites investigated. (Author)

  10. Energy expressions in density-functional theory using line integrals.

    NARCIS (Netherlands)

    van Leeuwen, R.; Baerends, E.J.

    1995-01-01

    In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along

  11. City and mobility: towards an integrated approach to resolve energy problems

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2012-07-01

    Full Text Available The issue of integration between city, mobility and energy plays a central role in the current EU policies, aimed at achieving energy saving targets, independence from fossil fuels and enhance of the urban systems resilience, but the strategies of the single states are, however, still far from its implementation. This paper proposes a reading of the current policies and of the recent initiatives aimed at improving the energy efficiency of settlements, implemented at both Community and national level, aimed at laying the groundwork for the definition of an integrated approach between city and mobility to resolve energy problem. Therefore, the paper is divided into six parts. The first part describes the transition from the concept of sustainability to the concept of resilience and illustrates the central role played by this one in the current urban and territorial research; the second part briefly analyzes the main and more recent European directives related to city, mobility and energy, while the third part describes how the energy problem is afforded in the current programming and planning tools. The fourth and fifth parts, are intended to describe the innovative practices promoted in some European and Italian cities concerning energy efficiency aimed at the integration between urban and transport systems. The last part of the paper, finally, deals with the definition of a new systemic approach for achieving objectives of energy sustainability. This approach aims at integrating strategies and actions for strategies of mobility governance, based on the certain assumption that the core for the most part of energy problems is mainly represented in medium and large cities. 

  12. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... in transport may play a role in furthering such integration. The objective of this research is to make a contribution to the development of methodologies to identify and develop future sustainable transport systems as well as to apply such methodologies to the case of China. In particular, the methodological...... development focuses on 1) identifying suitable transport technologies and strategies based on renewable energy and 2) evaluating such technologies from the perspective of overall renewable energy system integration. For this purpose, a methodological framework involving the research fields of both...

  13. Efficient integration of renewable energies in the German electricity market

    International Nuclear Information System (INIS)

    Nabe, C.A.

    2006-01-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  14. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  15. Small-scale hybrid plant integrated with municipal energy supply system

    International Nuclear Information System (INIS)

    Bakken, B.H.; Fossum, M.; Belsnes, M.M.

    2001-01-01

    This paper describes a research program started in 2001 to optimize environmental impact and cost of a small-scale hybrid plant based on candidate resources, transportation technologies and conversion efficiency, including integration with existing energy distribution systems. Special attention is given to a novel hybrid energy concept fuelled by municipal solid waste. The commercial interest for the model is expected to be more pronounced in remote communities and villages, including communities subject to growing prosperity. To enable optimization of complex energy distribution systems with multiple energy sources and carriers a flexible and robust methodology must be developed. This will enable energy companies and consultants to carry out comprehensive feasibility studies prior to investment, including technological, economic and environmental aspects. Governmental and municipal bodies will be able to pursue scenario studies involving energy systems and their impact on the environment, and measure the consequences of possible regulation regimes on environmental questions. This paper describes the hybrid concept for conversion of municipal solid waste in terms of energy supply, as well as the methodology for optimizing such integrated energy systems. (author)

  16. Regional Energy Integration in Latin America and the Caribbean

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    The regional study has been conducted by the WEC Latin American Member Committees. Having identified that the weak link between existing national energy infrastructures remains a major stumbling block to strengthening regional economic integration, this study aims to propose alternative views -- primarily on the integration of electricity and natural gas markets.

  17. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...

  18. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  19. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Directory of Open Access Journals (Sweden)

    Yuharu Shinki

    2017-08-01

    Full Text Available This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  20. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  1. Perceptions, realities, concession-What is driving the integration of European energy policies?

    International Nuclear Information System (INIS)

    Pointvogl, Andreas

    2009-01-01

    Today's European energy policy is characterised by national approaches portraying it as one of the least successful areas of integration despite its importance for our everyday life. This exploratory study presents a new way in analysing the approaches and processes operative in this area. It introduces a new dimension of policy evaluation, the role of national energy majors, and proposes its utilisation in the increasingly important method of using indexes for energy supply security. By doing so, the relevance of perceptions of energy supply security for energy policy integration is highlighted, pointing at the concessions necessary to overcome the integratory deadlock. The indexes proposed in this paper can provide insights for policy-makers and researchers into the ongoing integration process and the crucial importance energy business plays therein. Finally, the exploratory methodology developed in this essay can be employed in various other policy areas to classify, discover and analyse policy directions.

  2. Economical investigation of an integrated boiler-solar energy saving system in Jordan

    International Nuclear Information System (INIS)

    Al-Salaymeh, A.; Al-Rawabdeh, I.; Emran, S.

    2010-01-01

    Jordan is relatively poor in conventional energy resources and is basically a non-oil producing country, i.e. its energy supply relies to a very large extent on imports. It is therefore unlikely that any future energy scenario for Jordan will not include a significant proportion of its energy to come from renewable sources such as solar energy. The lack of an integrated energy saving system which utilizes the solar energy for domestic hot water as well as for building space heating was the main motivation for the present study. In Jordan, there is no existing system can provide the integration mechanisms of solar energy and fuel combustion with electrical ones. Also adding new and related products increases sales of current boilers products and can be offered at competitive prices. During our investigations, it has been found that the market demand for boiler-solar integration system in terms of the system acceptability, system feasibility, and system values is very high especially after the increased in oil prices during the last 3 years, i.e. 2006-2008. The market trend shows that even though solar collector is not attractive as an energy source for domestic hot water, but the combined system for space heating and domestic hot water is fully accepted. However, the market demand for such a system is not completely identified yet but the awareness and the discussion of the idea shows a good potential. The economical study about the integration system of boiler and solar energy shows that using solar water heaters to heat space and for domestic water is cost-effective. Payback can be as low as 3 years, and utility bills are much lower than they would be using a conventional heating system. The initial draft and design of a prototype for the boiler-solar-electrical integration system has been carried out.

  3. Regional Integration of Renewable Energies; Integracion Regional de energias Renovables

    Energy Technology Data Exchange (ETDEWEB)

    Amador Guerra, J; Dominguez Bravo, J [Ciemat.Madrid (Spain)

    2000-07-01

    The aim of this report is to show how Energetic Planning and Territorial Policy should be working together for a better integration of Renewable Energies into Region. This Integration should to contemplate social, economic and environmental aspects of the territory. The report has been classified into 7 items: planning, energetic scenarios, technology transfer for Renewable Energies dissemination, barriers for this dissemination, environmental aspects, European Union Policy and Decision Support Systems (and specially GIS). (Author) 54 refs.

  4. Evaluating the applicability of integrated domestic energy consumption frameworks in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2006-01-01

    Domestic energy consumption (DEC) has been traditionally understood using disciplinary perspectives, focusing on specific components of the energy consumption system such as technologies or costs. However, early attempts to encourage energy conservation demonstrated that these frameworks often miss important contextual factors such as cultural values and behavioural interactions with technologies. This evidence, combined with the present need for energy policies that can address environmental, social, and economic concerns, suggests that a broader perspective is needed. Integrated frameworks of DEC were first proposed over 20 years ago but very little has been said about the ideas proposed in these papers, whether it be critiquing their form or assessing their impact on theory and practice. This paper attempts to fill this gap by examining the influence of integrated frameworks in academic literature and in UK energy policy. It is argued that a common language could stimulate renewed interest in the integrated perspective and thereby help policy makers meet these diverse goals. To this end, a flexible agent-based framework is proposed to stimulate debate and clarify the role of an integrated approach to domestic energy policy

  5. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    Science.gov (United States)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  6. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  7. Impacts of integration of production of black and green energy

    International Nuclear Information System (INIS)

    Zhou, Huizhong; Tamas, Meszaros Matyas

    2010-01-01

    As the mandate for minimum renewable sources renders Tradable Green Certificates (TGCs) an essential input for power generation, it may induce mergers between power companies of conventional and renewable sources. Such mergers enable the integrated firms to extend market power from the TGC market to the physical energy market. We find that the price of TGCs is indeed higher in the integrated market than the disintegrated market, indicating the presence of market power leveraging. However, despite higher TGC price, the total supply of electricity is greater under integration than disintegration, reflecting efficiency gains from vertical integration, which eliminates double marginalization. The thrust of this paper is that market changes induced by environmental policies will in turn affect environmental and economic regulations. For example, increased supply resulting from integration induced by the renewable source mandate may reduce the effectiveness of programs that promote energy saving behavior, but at the same time creates room for raising the minimum of renewable sources without unduly depressing production and consumption. (author)

  8. INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics

    Science.gov (United States)

    Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling

    2018-03-01

    instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results: Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.

  9. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.

    1993-01-01

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  10. Energy-efficient neuron, synapse and STDP integrated circuits.

    Science.gov (United States)

    Cruz-Albrecht, Jose M; Yung, Michael W; Srinivasa, Narayan

    2012-06-01

    Ultra-low energy biologically-inspired neuron and synapse integrated circuits are presented. The synapse includes a spike timing dependent plasticity (STDP) learning rule circuit. These circuits have been designed, fabricated and tested using a 90 nm CMOS process. Experimental measurements demonstrate proper operation. The neuron and the synapse with STDP circuits have an energy consumption of around 0.4 pJ per spike and synaptic operation respectively.

  11. The influence of a scaled boundary response on integral system transient behavior

    International Nuclear Information System (INIS)

    Dimenna, R.A.; Kullberg, C.M.

    1989-01-01

    Scaling relationships associated with the thermal-hydraulic response of a closed-loop system are applied to a calculational assessment of a feed-and-bleed recovery in a nuclear reactor integral effects test. The analysis demonstrates both the influence of scale on the system response and the ability of the thermal-hydraulics code to represent those effects. The qualitative response of the fluid is shown to be coupled to the behavior of the bounding walls through the energy equation. The results of the analysis described in this paper influence the determination of computer code applicability. The sensitivity of the code response to scaling variations introduced in the analysis is found to be appropriate with respect to scaling criteria determined from the scaling literature. Differences in the system response associated with different scaling criteria are found to be plausible and easily explained using well-known principles of heat transfer. Therefore, it is concluded that RELAP5/MOD2 can adequately represent the scaled effects of heat transfer boundary conditions of the thermal-hydraulic calculations through the mechanism of communicating walls. The results of the analysis also serve to clarify certain aspects of experiment and facility design

  12. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Directory of Open Access Journals (Sweden)

    Sang Hun Lee

    2015-06-01

    Full Text Available Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  13. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    Science.gov (United States)

    2013-05-01

    reduced greenhouse gas (GHG) emissions; 2. Increased energy efficiency; and 3. Increased energy surety. This demonstration will also directly impact ...megawatt (MW), as well as a gas-fired cogeneration plant in excess of 7 MW. In the future, additional solar PV, fuel cells and advanced energy storage... Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations May 2013 Report Documentation Page Form

  14. Sustainable energy development as an integral part of hydroelectric business management

    International Nuclear Information System (INIS)

    Lee, W.; Yu, M.; Young, C.

    1996-01-01

    Elements of Ontario Hydro's strategy for sustainable energy development were discussed, highlighting key developments in the business management practices in Ontario Hydro's Hydroelectric Business Unit. Sustainable development considerations are now integral part of any business case analysis; management of the environment also has been integrated into the Utilities' business management process. Several environmental management practices intended to enhance sustainability have been introduced, including a full-fledged environmental management system based on ISO 14001 standards. Energy efficiency opportunities are aggressively pursued, including turbine upgrades, and energy efficient lighting. Experience to date indicates that business performance and progress towards sustainable energy development need not be mutually exclusive

  15. Moving energies as first integrals of nonholonomic systems with affine constraints

    Science.gov (United States)

    Fassò, Francesco; García-Naranjo, Luis C.; Sansonetto, Nicola

    2018-03-01

    In nonholonomic mechanical systems with constraints that are affine (linear nonhomogeneous) functions of the velocities, the energy is typically not a first integral. It was shown in Fassò and Sansonetto (2016 J. Nonlinear Sci. 26 519-44) that, nevertheless, there exist modifications of the energy, called there moving energies, which under suitable conditions are first integrals. The first goal of this paper is to study the properties of these functions and the conditions that lead to their conservation. In particular, we enlarge the class of moving energies considered in Fassò and Sansonetto (2016 J. Nonlinear Sci. 26 519-44). The second goal of the paper is to demonstrate the relevance of moving energies in nonholonomic mechanics. We show that certain first integrals of some well known systems (the affine Veselova and LR systems), which had been detected on a case-by-case way, are instances of moving energies. Moreover, we determine conserved moving energies for a class of affine systems on Lie groups that include the LR systems, for a heavy convex rigid body that rolls without slipping on a uniformly rotating plane, and for an n-dimensional generalization of the Chaplygin sphere problem to a uniformly rotating hyperplane.

  16. Integration of liberalised energy market; Samspillet mellem de liberaliserede energimarkeder

    Energy Technology Data Exchange (ETDEWEB)

    Klinge Jacobsen, H.; Fristrup, P.; Munksgaard, J.; Pade, L.L.; Henriksen, T.C.

    2004-03-01

    The markets for electricity, natural gas and district heating are inter-linked both with respect to the energy flows and with respect to ownership of supply sources and infrastructure. The extent and the possible consequences of these linkages are examined in this report. The options for public interventions in these markets are analysed to compare instruments with respect to their ability to provide the necessary incentives for an efficient functioning of the liberalised markets. Aspects of retail markets with households facing multi-product distribution companies and aspects of the production of combined heat and power based on natural gas has been covered. This project identifies some important aspects related to final consumers and the interaction of markets with different types of regulation and scope for liberalisation. From a Danish perspective the district heat market and the dependence on market conditions for natural gas is a specific concern. Consumer concerns also relate to the creation of multi-product energy distribution companies that are privately owned and possibly controlled by foreign interests. Such companies might use bundled sales of energy products to extent their dominant position in one market e.g. a regulated heat market to a market with considerable competition (electricity). Bundled sales would not necessarily result in a loss for the consumer due to economies of scope in supplying energy products. However, the regulatory authorities responsible for district heat prices will have a more complicated job in surveying the bundled price setting. Integration of activities within natural gas distribution and CHP production has been analysed with respect to incentives and welfare implications. Results of the project point to critical market conditions and identify areas of concern for regulatory policies. The analysis shows that there is a large welfare loss associated with having monopolies in both natural gas supplies and the CHP production

  17. European energy market liberalisation and integration. An assesment of the new EU energy package

    International Nuclear Information System (INIS)

    De Joode, J.; Van Oostvoorn, F.

    2008-06-01

    The new energy package presented by the European Commission (EC) in September 2007 contains a number of diverse, and sometimes controversial, measures aimed at bringing current European energy markets closer to the ideal of one competitive and fully integrated market. We discuss the flaws and merits of the package and signal a number of concerns regarding the ultimate effectiveness of the new energy market Directive into which the proposed package will culminate

  18. Analysis of Optimal Operation of an Energy Integrated Distillation Plant

    DEFF Research Database (Denmark)

    Li, Hong Wen; Hansen, C.A.; Gani, Rafiqul

    2003-01-01

    The efficiency of manufacturing systems can be significantly increased through diligent application of control based on mathematical models thereby enabling more tight integration of decision making with systems operation. In the present paper analysis of optimal operation of an energy integrated...

  19. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  20. Integrated National Energy Planning (INEP) in developing countries

    International Nuclear Information System (INIS)

    Munasinghe, M.

    1989-01-01

    Issues of coordinated energy planning are emphasized, with particular reference to interrelationships among the policies adopted in various energy sub-sectors such as electric power (including hydro, nuclear, geothermal, oil and coal sources), petroleum, natural gas, coal, non-conventional (solar, bio-gas, mini-hydro) and traditional fuels (woodfuel, bagasse or vegetable residue). The scope and objectives of integrated national energy planning, the policy tools available, and constraints particular to the developing countries are discussed next. Section 3.0 outlines how energy planning is carried out, while the problems of implementing the resulting policy conclusions are examined in section 4.0. 5 refs, 4 figs

  1. Integrated simulation of emergency response in disasters

    International Nuclear Information System (INIS)

    Kanno, Taro; Furuta, Kazuo

    2005-01-01

    An integrated simulation system of emergency response in disasters is under development that can consider various factors of disasters, such as disaster phenomena, activities of response organizations, resident behavior, and their environment. The aim of this system is to provide support for design and assessment of disaster management systems. This paper introduces the conceptual design of the entire system and presents simulators of organizational behavior in nuclear and earthquake disasters. (author)

  2. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  3. Energy options and the role of coal: an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Institute, Edmonton, AB (Canada)

    2006-07-01

    Considers energy goals and options with particular regard to providing affordable energy to Canada. Gasification of coal and carbon to provide a reliable source of clean power and heat to the oil sand industry and for feedstocks for the production of fertilizer, methanol, petrochemicals, and ultra-clean fuels is examined. The layout for integrated gasification polygeneration with carbon feed and plans for Canada's first commercial gasification plant (the Nexen Long Lake Project) are shown in diagrams. Progress in coal gasification at a clean coal Luscar/Sherritt pilot plant is outlined. Clean coal technology is part of a strategy to provide integration across energy systems, generate value for all hydrocarbon resources, and minimize emissions. 15 figs., 2 tabs.

  4. Integrating and Promoting Wind – Tide Energy for Renewable ...

    African Journals Online (AJOL)

    The continual decline in supply of conventional energy in Nigeria due to the depletion of the national reserve as the demand continued to increase has resulted to energy crisis with epileptic power supply, rising cost of production and food prices and threat to poverty reduction as its effects. Integrating and promoting ...

  5. On market integration of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Schroeer, Sebastian

    2014-12-05

    Since the liberalization of electricity and gas markets in Europe, the energy sector has changed in every respect with one constant: most actors have underestimated renewable energies with regard to their growth, their economies of scale and their impact on existing energy markets. If that trend continues, the urgency for policy measures will increase. Given the security of supply, integration of renewables into energy markets is necessary to replace fossil and nuclear capacities. However, the further development of renewable energies plays a crucial role in the ability to meet the energy and climate policy targets. Thus, it increases the need for regulation to achieve societally desirable outcomes. This thesis has examined the effects of renewable energies on existing energy markets. It has also investigated the various other cost-efficient options that policy makers have in striving to reach energy and climate policy targets. We assumed that cost efficiency is a relevant side condition. In the past, this has not always been the case. Today, cost efficiency is definitely relevant and might also be an essential target in the future (see Bundesregierung 2013, p. 50). We contributed to the analysis of power prices as a result of increasing shares of renewables by showing that shutting down conventional capacities will have a merit order effect. This is necessary if renewable energies are to replace fossil and nuclear capacities. Any discussion of a change of market design should make mention of this effect, since spot market revenues impact a company's behaviour within potential capacity markets. From a consumer perspective, we have shown that there is a substantial need for secured capacity with low marginal costs to keep spot prices stable. This outcome has important implications for policy makers if they are to provide consumers with low-cost renewable market integration. Policy makers have numerous ways to reach policy targets than rapidly expanding

  6. On market integration of renewable energies

    International Nuclear Information System (INIS)

    Schroeer, Sebastian

    2014-01-01

    Since the liberalization of electricity and gas markets in Europe, the energy sector has changed in every respect with one constant: most actors have underestimated renewable energies with regard to their growth, their economies of scale and their impact on existing energy markets. If that trend continues, the urgency for policy measures will increase. Given the security of supply, integration of renewables into energy markets is necessary to replace fossil and nuclear capacities. However, the further development of renewable energies plays a crucial role in the ability to meet the energy and climate policy targets. Thus, it increases the need for regulation to achieve societally desirable outcomes. This thesis has examined the effects of renewable energies on existing energy markets. It has also investigated the various other cost-efficient options that policy makers have in striving to reach energy and climate policy targets. We assumed that cost efficiency is a relevant side condition. In the past, this has not always been the case. Today, cost efficiency is definitely relevant and might also be an essential target in the future (see Bundesregierung 2013, p. 50). We contributed to the analysis of power prices as a result of increasing shares of renewables by showing that shutting down conventional capacities will have a merit order effect. This is necessary if renewable energies are to replace fossil and nuclear capacities. Any discussion of a change of market design should make mention of this effect, since spot market revenues impact a company's behaviour within potential capacity markets. From a consumer perspective, we have shown that there is a substantial need for secured capacity with low marginal costs to keep spot prices stable. This outcome has important implications for policy makers if they are to provide consumers with low-cost renewable market integration. Policy makers have numerous ways to reach policy targets than rapidly expanding

  7. Self-powered integrated systems-on-chip (energy chip)

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, H.; Rojas, Jhonathan Prieto; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-01-01

    and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency

  8. Presentations given at the Enerplan Conference: facilitating photovoltaic energy integration in the grid

    International Nuclear Information System (INIS)

    Mueth, Thierry; Thomas, Christophe; Loyen, Richard; Masson, Gaetan; Najdawi, Celine; Dubus, Jean-Michel; Carre, Olivier; Resseguier, Stephane de; Alazard, Raymond; Prest, Ignace de; Humez, Herve; Kaiser, Martin; Cassagne, Valerick; Dauphin, Francois; Merley, Jacques; Laffaille, Didier; Gossement, Arnaud; Belon, Daniel; Blanquet, Francois; Bonnet, Jean-Philippe; Sanchez, Louis; Vienot, Raphaelle; Lambert, Karine; Berly, Frederic

    2013-07-01

    Large-scale integration of photovoltaic energy in power grids are present day topics of strategical stakes for the development of the photovoltaic industry and for the success of the energy transition. This conference provided some answers to three main subjects which were the main themes of the 3 round-tables: 1 - Identifying the context elements leading to a large integration of solar energy in Europe and in France; 2 - Identifying the technical solutions facilitating the technical integration of photovoltaic energy in power grids; 3 - Analysing the expected regional schemes for connecting renewable energies to the network, in order to shift from an administrative planning to a dynamical and practical approach profitable to the photovoltaic industry. This document brings together the available presentations (slides) given at the colloquium

  9. The integration of renewable energy in the French electricity system: what challenges for optimization?

    International Nuclear Information System (INIS)

    Mathieu, Mathilde; Ruedinger, Andreas; Pescia, Dimitri

    2016-01-01

    demand-side potential for flexibility. On the other hand, the deployment of RES calls for a considering of the size and operational management of the nuclear fleet in the future, between a traditional function as baseload or more flexible load-following. The implementation of market premia aims at facilitating the economic integration of RES by making producers more responsible. It also represents an interesting potential to optimize the RES technical integration. Nevertheless, a careful calibration of the mechanism is necessary to limit the impact of this change in regulation on the cost and achievement of the targets for electric renewable energy development

  10. Integrating hydrogen into Canada's energy future

    International Nuclear Information System (INIS)

    Rivard, P.

    2006-01-01

    This presentation outlines the steps in integrating of hydrogen into Canada's energy future. Canada's hydrogen and fuel cell investment is primarily driven by two government commitments - climate change commitments and innovation leadership commitments. Canada's leading hydrogen and fuel cell industry is viewed as a long-term player in meeting the above commitments. A hydrogen and fuel cell national strategy is being jointly developed to create 'Win-Wins' with industry

  11. Study of renewable energy, fuel cell and demotics integration for stationary energy production

    Energy Technology Data Exchange (ETDEWEB)

    Andaloro, L.; Ferraro, M.; Sergi, F.; Brunaccini, G.; Antonucci, V. [National Research Inst., Messina (Italy)

    2009-07-01

    This paper described a study in which a small house equipped with various renewable technologies was modelled. The aim of the study was to evaluated the integration of fuel cells with various other energy sources. Technologies installed in the house included a photovoltaic (PV) system; a hydrogen system; fuel cells; a battery-storage system; and a thermal solar panel. Maximum energy savings were evaluated for different configurations and combinations of the installed energy sources. A domotic system was also used to automatically control the use of electrical appliances and improve safety and comfort. An energy side management system was designed and compared with a demand side management system. Various scenarios were simulated in order to test the energy management systems in relation to the automated domotic system.

  12. The GENiC architecture for integrated data centre energy management

    NARCIS (Netherlands)

    Pesch, D.; McGibney, A.; Sobonski, P.; Rea, S.; Scherer, Th.; Chen, L.; Engbersen, T.; Mehta, D.; O'Sullivan, B.; Pages, E.; Townley, J.; Kasinathan, Dh.; Torrens, J.I.; Zavrel, V.; Hensen, J.L.M.

    2015-01-01

    We present an architecture for integrated data centre energy management developed in the EC funded GENiC project. The architecture was devised to create a platform that can integrate functions for workload management, cooling, power management and control of heat recovery for future, highly

  13. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. W. [GE Energy Management, Schenectady, NY (United States); Shao, M. [GE Energy Management, Schenectady, NY (United States); Pajic, S. [GE Energy Management, Schenectady, NY (United States); D' Aquila, R. [GE Energy Management, Schenectady, NY (United States)

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  14. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing

    International Nuclear Information System (INIS)

    Koku, Oludolapo; Perry, Simon; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Development of thermal integration modelling framework for the utilisation of LNG cold energy. • Feasibility study for various design options for the integration of low-temperature cold energy. • Provision of a design approach for achieving efficient use of cold energy in LNG terminals. • Understanding of techno-economic impacts associated with the thermal integration of LNG cold energy. - Abstract: This paper addresses a conceptual study investigating the techno-economic feasibility for the thermal Integration of LNG cold vaporisation energy in power generation applications. In conventional regasification systems, this valuable LNG cold energy is often being wasted to ambient heat sources, representing a thermodynamic inefficient process with a significant thermal impact on the local environment. A combined facility consisting of a non-integrated Combined Cycle Power Plant (CCPP) and an LNG receiving terminal employing traditional Open Rack Vaporisers (ORV) technology, has been modelled, as a base case. Retrofit strategies for the integration of LNG cold energy have been investigated, and their impacts on power production and system efficiency are systematically compared. Retrofit design options considered in this work include the use of a propane Rankine cycle coupled with the direct expansion of natural gas, the integration of a closed-loop water cycle or open-loop water circuit with a steam Rankine cycle, and the facilitation of integrated air cooling for a gas turbine

  15. Essays on the efficient integration of renewable energies into electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Obermueller, Frank

    2018-01-09

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO{sub 2}-emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO{sub 2}-reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  16. Essays on the efficient integration of renewable energies into electricity markets

    International Nuclear Information System (INIS)

    Obermueller, Frank

    2018-01-01

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO 2 -emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO 2 -reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  17. An integrated assessment for wind energy in Lake Michigan coastal counties.

    Science.gov (United States)

    Nordman, Erik; VanderMolen, Jon; Gajewski, Betty; Isely, Paul; Fan, Yue; Koches, John; Damm, Sara; Ferguson, Aaron; Schoolmaster, Claire

    2015-04-01

    The benefits and challenges of onshore and offshore wind energy development were assessed for a 4-county area of coastal Michigan. Economic, social, environmental, and spatial dimensions were considered. The coastal counties have suitable wind resources for energy development, which could contribute toward Michigan's 10% renewable energy standard. Wind energy is cost-effective with contract prices less than the benchmark energy price of a new coal-fired power plant. Constructing a 100 MW wind farm could have a $54.7 million economic impact. A patchwork of township-level zoning ordinances regulates wind energy siting. Voluntary collaborations among adjacent townships standardizing the ordinances could reduce regulatory complexity. A Delphi Inquiry on offshore wind energy in Lake Michigan elicited considerable agreement on its challenges, but little agreement on the benefits to coastal communities. Offshore turbines could be acceptable to the participants if they reduced pollution, benefited coastal communities, involved substantial public participation, and had minimal impact on property values and tourism. The US Coast Guard will take a risk-based approach to evaluating individual offshore developments and has no plans to issue blanket restrictions around the wind farms. Models showed that using wind energy to reach the remainder of the 10% renewable energy standard could reduce SO2 , NOx , and CO2 pollution by 4% to 7%. Turbines are highly likely to impact the area's navigational and defense radar systems but planning and technological upgrades can reduce the impact. The integrated assessment shows that responsible wind energy development can enhance the quality of life by reducing air pollution and associated health problems and enhancing economic development. Policies could reduce the negative impacts to local communities while preserving the benefits to the broader region. © 2015 SETAC.

  18. A gateless charge integrator for Borexino energy measurement

    International Nuclear Information System (INIS)

    Lagomarsino, V.; Testera, G.

    1999-01-01

    A gateless charge integrator designed for the energy measurement in the Borexino experiment is described and the results of various tests performed on prototypes are shown. The circuit integrates always its input taking advantage of the AC coupling to the photomultipliers that equalizes to zero the charge associated with each event signal. A double sampling of the integrator output allows to perform a charge measurement in principle without dead time, avoiding the use of gate signals and baseline restoration networks and permitting a precise detection of the fast correlated events (delayed coincidences due to the decay of a nuclide producing a daughter having a lifetime in the tens of ns time range). The precision of the charge measurement is discussed together with the performances of the front end Borexino board where the integrator is mounted

  19. Electricity market design for facilitating the integration of wind energy. Experience and prospects with the Australian National Electricity Market

    International Nuclear Information System (INIS)

    MacGill, Iain

    2010-01-01

    Australia has been an early and enthusiastic adopter of both electricity industry restructuring and market-based environmental regulation. The Australian National Electricity Market (NEM) was established in 1999 and Australia also implemented one of the world's first renewable energy target schemes in 2001. With significant recent growth in wind generation, Australia provides an interesting case for assessing different approaches to facilitating wind integration into the electricity industry. Wind project developers in Australia must assess both potential energy market and Tradeable Green Certificate income streams when making investments. Wind-farm energy income depends on the match of its uncertain time varying output with the regional half hourly market price; a price that exhibits daily, weekly and seasonal patterns and considerable uncertainty. Such price signals assist in driving investments that maximize project value to the electricity industry as a whole, including integration costs and benefits for other participants. Recent NEM rule changes will formally integrate wind generation in the market's scheduling processes while a centralized wind forecasting system has also been introduced. This paper outlines experience to date with wind integration in the NEM, describes the evolution of market rules in response and assesses their possible implications for facilitating high future wind penetrations. (author)

  20. Energy markets and European Integration: The World Energy Council role

    International Nuclear Information System (INIS)

    Murray, J.

    2002-01-01

    Energy market reform brings many benefits. Central and East Europe's challenge is to establish such markets when, at list in the case of electricity, the established market economies are still wrestling with how to apply competitive principles to this market. Design challenges include the natural monopoly elements within the electricity supply chain and the fact that it is, in practical terms, as essential social service. There is no one single model suitable to all markets at all stages of development. At the same time, there is a need for sustainable energy pricing, which means prices should cover all costs, with transparent and time-limited subsidies bringing the afford ability gap. Cross-border integration extends the benefits available from market reform by overcoming constraints at the national level and by broadening the geographical limits of a market. The World Energy Council works with its Central and East European members to analyse, understand and meet these challenges. (author)

  1. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    International Nuclear Information System (INIS)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon

    2014-01-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO 2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13–22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement. - Highlights: • We assessed long-term impacts of building codes and climate policy using GCAM. • Building energy codes would reduce Chinese building energy use by 13–22%. • The impacts of codes on building energy use vary by climate region and sub-sector

  2. Integrated food–energy systems for climate-smart agriculture

    Directory of Open Access Journals (Sweden)

    Bogdanski Anne

    2012-07-01

    Full Text Available Abstract Food production needs to increase by 70%, mostly through yield increases, to feed the world in 2050. Increases in productivity achieved in the past are attributed in part to the significant use of fossil fuels. Energy use in agriculture is therefore also expected to rise in the future, further contributing to greenhouse emissions. At the same time, more than two-fifths of the world’s population still depends on unsustainably harvested wood energy for cooking and heating. Both types of energy use have detrimental impacts on the climate and natural resources. Continuing on this path is not an option as it will put additional pressure on the already stressed natural resource base and local livelihoods, while climate change is further reducing the resilience of agro-ecosystems and smallholder farmers. Ecosystem approaches that combine both food and energy production, such as agroforestry or integrated crop–livestock–biogas systems, could substantially mitigate these risks while providing both food and energy to rural and urban populations. Information and understanding on how to change course through the implementation of the practices outlined in this paper are urgently needed. Yet the scientific basis of such integrated systems, which is essential to inform decision-makers and to secure policy support, is still relatively scarce. The author therefore argues that new assessment methodologies based on a systems-oriented analysis are needed for analyzing these complex, multidisciplinary and large-scale phenomena.

  3. Integrating NEPA (National Environmental Policy Act) and CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) requirements during remedial responses at DOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.B.; Smith, E.D.; Sharples, F.E.; Eddlemon, G.K.

    1990-07-01

    US Department of Energy (DOE) Order 5400.4, issued October 6, 1989, calls for integrating the requirements of the National Environmental Policy Act (NEPA) with those of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for DOE remedial actions under CERCLA. CERCLA requires that decisions on site remediation be made through a formal process called a Remedial Investigation/Feasibility Study (RI/FS). According to the DOE order, integration is to be accomplished by conducting the NEPA and CERCLA environmental planning and review procedures concurrently. The primary instrument for integrating the processes is to be the RI/FS process, which will be supplemented as needed to meet the procedural and documentational requirements of NEPA. The final product of the integrated process will be a single, integrated set of documents; namely, an RI report and an FS-EIS that satisfy the requirements of both NEPA and CERCLA. The contents of the report include (1) an overview and comparison of the requirements of the two processes; (2) descriptions of the major tasks included in the integrated RI/FS-EIS process; (3) recommended contents for integrated RI/FS-EIS documents; and (4)a discussion of some potential problems in integrating NEPA and CERCLA that fall outisde the scope of the RI/FS-EIS process, with suggestions for resolving some of these problems. 15 refs.

  4. Integrating NEPA [National Environmental Policy Act] and CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] requirements during remedial responses at DOE facilities

    International Nuclear Information System (INIS)

    Levine, M.B.; Smith, E.D.; Sharples, F.E.; Eddlemon, G.K.

    1990-07-01

    US Department of Energy (DOE) Order 5400.4, issued October 6, 1989, calls for integrating the requirements of the National Environmental Policy Act (NEPA) with those of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for DOE remedial actions under CERCLA. CERCLA requires that decisions on site remediation be made through a formal process called a Remedial Investigation/Feasibility Study (RI/FS). According to the DOE order, integration is to be accomplished by conducting the NEPA and CERCLA environmental planning and review procedures concurrently. The primary instrument for integrating the processes is to be the RI/FS process, which will be supplemented as needed to meet the procedural and documentational requirements of NEPA. The final product of the integrated process will be a single, integrated set of documents; namely, an RI report and an FS-EIS that satisfy the requirements of both NEPA and CERCLA. The contents of the report include (1) an overview and comparison of the requirements of the two processes; (2) descriptions of the major tasks included in the integrated RI/FS-EIS process; (3) recommended contents for integrated RI/FS-EIS documents; and (4)a discussion of some potential problems in integrating NEPA and CERCLA that fall outisde the scope of the RI/FS-EIS process, with suggestions for resolving some of these problems. 15 refs

  5. Integrated energy systems for hydrogen and electricity supply

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Univ. of Central Florida, Cocoa, FL (United States). Florida Solar Energy Center; Manikowski, A.; Noland, G. [Procyon Power Systems Inc., Alameda, CA (United States)

    2002-07-01

    The United States will soon need an increase in electric generating capacity along with an increase in the distribution capacity of the electricity grid. The cost and time required to build additional electrical distribution and transmission systems can be avoided by using distributed power generation. This paper examines the development of an integrated stand-alone energy system that can produce hydrogen, electricity and heat. The concept is based on integrated operation of a thermocatalytic pyrolysis (TCP) reactor and a solid oxide fuel cell (SOFC). The benefits include high overall energy efficiency, the production of high quality hydrogen (90 to 95 per cent free of carbon oxides), low emissions, and fuel flexibility. Experimental data is presented regarding the thermocatalytic pyrolysis of methane compared with an iron-based catalyst (which is sulfur resistant) and gasification of the resulting carbon with steam and carbon dioxide. With distributed generation, additional electrical generating capacity can be added in small increments distributed over the grid. An integrated energy system will be applicable to any type of hydrocarbon fuel, such as natural gas, liquid propane gas, gasoline, kerosene, jet fuel, diesel fuel and sulfurous residual oils. The suitable range of operating parameters needed to decoke a catalyst bed using steam and carbon dioxide as a degasifying agent was also determined. The Fe-catalyst was efficient in both methane pyrolysis and steam/CO{sub 2} gasification of carbon. It was shown that the TCP and SOFC complement each other in may ways. With the IES, high quality hydrogen is delivered to the end user. IES can also operate as either a hydrogen production unit or as an electrical power generator. The energy efficiency of the IES is estimated at 45-55 per cent. 6 refs., 8 figs.

  6. A new high precision energy-preserving integrator for system of oscillatory second-order differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin, E-mail: wangbinmaths@gmail.com [Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093 (China); Wu, Xinyuan, E-mail: xywu@nju.edu.cn [Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093 (China)

    2012-03-05

    This Letter proposes a new high precision energy-preserving integrator for system of oscillatory second-order differential equations q{sup ″}(t)+Mq(t)=f(q(t)) with a symmetric and positive semi-definite matrix M and f(q)=−∇U(q). The system is equivalent to a separable Hamiltonian system with Hamiltonian H(p,q)=1/2 p{sup T}p+1/2 q{sup T}Mq+U(q). The properties of the new energy-preserving integrator are analyzed. The well-known Fermi–Pasta–Ulam problem is performed numerically to show that the new integrator preserves the energy integral with higher accuracy than Average Vector Field (AVF) method and an energy-preserving collocation method. -- Highlights: ► A novel high order energy-preserving integrator AAVF-GL is proposed. ► The important properties of the new integrator AAVF-GL are shown. ► Numerical experiment is carried out compared with AVF method etc. appeared recently.

  7. A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density.

    Science.gov (United States)

    Wang, Faxing; Yang, Hongliu; Zhang, Jian; Zhang, Panpan; Wang, Gang; Zhuang, Xiaodong; Cuniberti, Gianaurelio; Feng, Xinliang

    2018-06-01

    Stimuli-responsive energy storage devices have emerged for the fast-growing popularity of intelligent electronics. However, all previously reported stimuli-responsive energy storage devices have rather low energy densities (energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br 2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg -1 , which outperforms those for the state-of-the-art stimuli-responsive electrochemical energy storage devices. This work offers a promising approach for designing multi-stimuli-responsive and high-energy rechargeable batteries without sacrificing the electrochemical performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Zhang, Nan; Smith, Robin; Bulatov, Igor; Klemeš, Jiří Jaromír

    2013-01-01

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  9. Integration of Geometrical and Material Nonlinear Energy Sink with Piezoelectric Material Energy Harvester

    Directory of Open Access Journals (Sweden)

    Ye-Wei Zhang

    2017-01-01

    Full Text Available This paper presents a novel design by integrating geometrical and material nonlinear energy sink (NES with a piezoelectric-based vibration energy harvester under shock excitation, which can realize vibration control and energy harvesting. The nonlinear spring and hysteresis behavior of the NES could reflect geometrical and material nonlinearity, respectively. Two configurations of the piezoelectric device, including the piezoelectric element embedded between the NES mass and the single-degree-of-freedom system or ground, are utilised to examine the energy dissipated by damper and hysteresis behavior of NES and the energy harvested by the piezoelectric element. Similar numerical research methods of Runge-Kutta algorithm are used to investigate the two configurations. The energy transaction measure (ETM is adopted to examine the instantaneous energy transaction between the primary and the NES-piezoelectricity system. And it demonstrates that the dissipated and harvested energy transaction is transferred from the primary system to the NES-piezoelectricity system and the instantaneous transaction of mechanical energy occupies a major part of the energy of transaction. Both figurations could realize vibration control efficiently.

  10. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  11. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  12. Integrated marketing communications at solar energy equipment market

    OpenAIRE

    I.L. Litovchenko; I.A. Shkurupskaya

    2013-01-01

    The aim of the article. The article is devoted to the development of the concept of «integrated marketing communications», as well as its adaptation to a specific market of solar energy equipment. The theoretical development of foreign and domestic scholars in the field of IMC is considered. The aim of the article is to define the concept of «integrated marketing communications» and use them in the market of solar еnergy equipment in an information economy. The author's definition of the c...

  13. Efficient integration of renewable energies in the German electricity market; Effiziente Integration erneuerbarer Energien in den deutschen Elektrizitaetsmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Nabe, C.A.

    2006-07-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  14. Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

    Directory of Open Access Journals (Sweden)

    Maher Kayal

    2013-02-01

    Full Text Available This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used to transmit the measurement results to a base station. As the harvested solar energy varies considerably in different lighting conditions, in order to guarantee autonomous operation of the sensor, the proposed area- and energy-efficient circuit scales the power consumption and performance of the sensor. The power management circuit dynamically decreases the operating frequency of digital circuits and bias currents of analog circuits in the sensor interface circuit and increases the idle time of the transceiver under reduced light intensity. The proposed microsystem has been implemented in a 0.18 µm complementary metal-oxide-semiconductor (CMOS process and occupies a core area of only 0.25 mm2. This circuit features a low power consumption of 2.1 µW when operating at its highest performance. It operates with low power supply voltage in the 0.8V to 1.6 V range.

  15. Integrative real-time geographic visualization of energy resources

    International Nuclear Information System (INIS)

    Sorokine, A.; Shankar, M.; Stovall, J.; Bhaduri, B.; King, T.; Fernandez, S.; Datar, N.; Omitaomu, O.

    2009-01-01

    'Full text:' Several models forecast that climatic changes will increase the frequency of disastrous events like droughts, hurricanes, and snow storms. Responding to these events and also to power outages caused by system errors such as the 2003 North American blackout require an interconnect-wide real-time monitoring system for various energy resources. Such a system should be capable of providing situational awareness to its users in the government and energy utilities by dynamically visualizing the status of the elements of the energy grid infrastructure and supply chain in geographic contexts. We demonstrate an approach that relies on Google Earth and similar standard-based platforms as client-side geographic viewers with a data-dependent server component. The users of the system can view status information in spatial and temporal contexts. These data can be integrated with a wide range of geographic sources including all standard Google Earth layers and a large number of energy and environmental data feeds. In addition, we show a real-time spatio-temporal data sharing capability across the users of the system, novel methods for visualizing dynamic network data, and a fine-grain access to very large multi-resolution geographic datasets for faster delivery of the data. The system can be extended to integrate contingency analysis results and other grid models to assess recovery and repair scenarios in the case of major disruption. (author)

  16. Evaluating multifunctional storage usage for the integration of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Koopmann, Simon; Wasowicz, Bartholomaeus; Raths, Stephan; Pollok, Thomas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. for High Voltage Technology

    2012-07-01

    Market and grid integration of the increasing share of renewable energy sources (RES) pose significant challenges to the electricity system in Germany. Energy storages are frequently discussed as one part of the solution. However, storage operators in a liberalized electricity market are profit maximizing actors, who are only interested in supporting the integration of RES, if it is economically attractive. A storage dispatch optimization model has been developed to comprehensively analyze the wide range of storage applications. Three storage operational modes are introduced and evaluated in this paper. The entirely market-focused multimarket operation is found to be the most profitable option for storage operators. Integration of RES is of minor importance in this operational mode. Using storage systems only for grid purposes in the grid supportive operational mode is found to be least profitable. A combined storage usage for market and grid applications in the multifunctional operation achieves similar benefits for the grid as in the grid supportive mode by better integrating RES, while also achieving profits from the markets. The current market and regulatory framework however, provides no incentives for storage operators to pursue this dispatch strategy, which is favorable for an improved RES integration.

  17. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    International Nuclear Information System (INIS)

    Morais, H.; Sousa, T.; Soares, J.; Faria, P.; Vale, Z.

    2015-01-01

    Highlights: • Definition fuel shifting demand response programs applied to the electric vehicles. • Integration of the proposed fuel shifting in energy resource management algorithm. • Analysis of fuel shifting contribution to support the consumption increasing. • Analysis of fuel shifting contribution to support the electric vehicles growing. • Sensitivity analysis considering different electric vehicles penetration levels. - Abstract: In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required

  18. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1997-01-01

    Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled ''Economic Development through Biomass Systems Integration'', with the objective of investigating the feasibility of integrated biomass energy systems utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide., CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO 2 emissions are in the most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass. (author)

  19. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1996-01-01

    Electric Power Research Institute (EPRI) and US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled 'Economic Development through Biomass Systems Integration', with the objective to investigate the feasibility of integrated biomass energy systems, utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full cycle for four of these case studies, which have been examined with regard to the emissions of greenhouse gases, especially CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared to a 100% coal power system. By introducing a DFSS on former farmland, the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly, as much as 95%. The important conclusion is the great potential of reducing greenhouse gas emissions through the offset of coal by biomass. 23 refs,, 8 figs, 2 tabs

  20. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  1. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.

    Science.gov (United States)

    Lueke, Jonathan; Badr, Ahmed; Lou, Edmond; Moussa, Walied A

    2015-05-26

    This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

  2. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    Science.gov (United States)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation

  3. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  4. An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response

    International Nuclear Information System (INIS)

    Koltsaklis, Nikolaos E.; Liu, Pei; Georgiadis, Michael C.

    2015-01-01

    The power sector faces a rapid transformation worldwide from a dominant fossil-fueled towards a low carbon electricity generation mix. Renewable energy technologies (RES) are steadily becoming a greater part of the global energy mix, in particular in regions that have put in place policies and measures to promote their utilization. This paper presents an optimization-based approach to address the generation expansion planning (GEP) problem of a large-scale, central power system in a highly uncertain and volatile electricity industry environment. A multi-regional, multi-period linear mixed-integer linear programming (MILP) model is presented, combining optimization techniques with a Monte Carlo (MCA) method and demand response concepts. The optimization goal concerns the minimization of the total discounted cost by determining optimal power capacity additions per time interval and region, and the power generation mix per technology and time period. The model is evaluated on the Greek power system (GPS), taking also into consideration the scheduled interconnection of the mainland power system with those of selected autonomous islands (Cyclades and Crete), and aims at providing full insight into the composition of the long-term energy roadmap at a national level. - Highlights: • A spatial, multi-period, long-term generation expansion planning model is presented. • A Monte-Carlo method along with a demand response mechanism are incorporated. • Autonomous power systems interconnection is considered. • Electricity and CO 2 emission trade are taken into account. • Lignite, natural gas and wind power comprise the dominant power technologies

  5. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    Energy Technology Data Exchange (ETDEWEB)

    Ram, B. [Energetics, Inc., Columbia, MD (United States)

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  6. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  7. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modern energy access to all in rural India: An integrated implementation strategy

    International Nuclear Information System (INIS)

    Balachandra, P.

    2011-01-01

    Expanding energy access to the rural population of India presents a critical challenge for its government. The presence of 364 million people without access to electricity and 726 million who rely on biomass for cooking indicate both the failure of past policies and programs, and the need for a radical redesign of the current system. We propose an integrated implementation framework with recommendations for adopting business principles with innovative institutional, regulatory, financing and delivery mechanisms. The framework entails establishment of rural energy access authorities and energy access funds, both at the national and regional levels, to be empowered with enabling regulatory policies, capital resources and the support of multi-stakeholder partnership. These institutions are expected to design, lead, manage and monitor the rural energy interventions. At the other end, trained entrepreneurs would be expected to establish bioenergy-based micro-enterprises that will produce and distribute energy carriers to rural households at an affordable cost. The ESCOs will function as intermediaries between these enterprises and the international carbon market both in aggregating carbon credits and in trading them under CDM. If implemented, such a program could address the challenges of rural energy empowerment by creating access to modern energy carriers and climate change mitigation. - Highlights: ► Expanding rural energy access in India is critical with majority lacking access to modern energy. ► Innovative and integrated implementation strategy for achieving universal rural energy access. ► Design of an integrated rural energy policy and proposal for new institutional mechanism. ► Establishing rural energy access authorities and energy access funds as supporting mechanisms. ► Bioenergy-based micro-enterprises for delivering energy services at an affordable cost.

  9. Control structure selection for energy integrated distillation column

    DEFF Research Database (Denmark)

    Hansen, J.E.; Jørgensen, Sten Bay

    1998-01-01

    This paper treats a case study on control structure selection for an almost binary distillation column. The column is energy integrated with a heat pump in order to transfer heat from the condenser to the reboiler. This integrated plant configuration renders the possible control structures somewhat...... different from what is usual for binary distillation columns. Further the heat pump enables disturbances to propagate faster through the system. The plant has six possible actuators of which three must be used to stabilize the system. Hereby three actuators are left for product purity control. An MILP...

  10. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    Science.gov (United States)

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the

  11. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy

    Energy Technology Data Exchange (ETDEWEB)

    Ebenau, Melanie, E-mail: melanie.ebenau@tu-dortmunde.de; Sommer, Holger; Spaan, Bernhard; Eichmann, Marion [Fakultät Physik, Technische Universität Dortmund, Otto-Hahn Str. 4a, 44221 Dortmund (Germany); Radeck, Désirée; Bambynek, Markus [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Flühs, Dirk [Universitätsklinikum Essen, Hufelandstr. 55, 45147 Essen (Germany)

    2016-08-15

    Purpose: Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm{sup 3}) made from the commonly used plastic scintillator BC400. Methods: Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a {sup 60}Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks’ formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. Results: The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks’ formula was determined to be kB = (12.3 ± 0.9) mg MeV{sup −1} cm{sup −2}. Conclusions: The energy response was quantified relative to the response to {sup 60}Co which is the common radiation quality for the calibration of therapy dosemeters. The

  12. Using smart meter data to estimate demand response potential, with application to solar energy integration

    International Nuclear Information System (INIS)

    Dyson, Mark E.H.; Borgeson, Samuel D.; Tabone, Michaelangelo D.; Callaway, Duncan S.

    2014-01-01

    This paper presents a new method for estimating the demand response potential of residential air conditioning (A/C), using hourly electricity consumption data (“smart meter” data) from 30,000 customer accounts in Northern California. We apply linear regression and unsupervised classification methods to hourly, whole-home consumption and outdoor air temperature data to determine the hours, if any, that each home's A/C is active, and the temperature dependence of consumption when it is active. When results from our sample are scaled up to the total population, we find a maximum of 270–360 MW (95% c.i.) of demand response potential over a 1-h duration with a 4 °F setpoint change, and up to 3.2–3.8 GW of short-term curtailment potential. The estimated resource correlates well with the evening decline of solar production on hot, summer afternoons, suggesting that demand response could potentially act as reserves for the grid during these periods in the near future with expected higher adoption rates of solar energy. Additionally, the top 5% of homes in the sample represent 40% of the total MW-hours of DR resource, suggesting that policies and programs to take advantage of this resource should target these high users to maximize cost-effectiveness. - Highlights: • We use hourly electricity use data to estimate residential demand response (DR) potential. • The residential cooling DR resource is large and well-matched to solar variability. • Customer heterogeneity is large; programs should target high potential customers

  13. Economic effect of fusion in energy market. Various externalities of energy systems and the integrated evaluation

    International Nuclear Information System (INIS)

    Ito, Keishiro

    2002-01-01

    The primacy of a nuclear fusion reactor in a competitive energy market remarkably depends on to what extent the reactor contributes to reduce the externalities of energy. The reduction effects are classified into two effects, which have quite dissimilar characteristics. One is an effect of environmental dimensions. The other is related to energy security. In this study I took up the results of EC's ExternE project studies as a representative example of the former effect. Concerning the latter effect, I clarified the fundamental characteristics of externalities related to energy security and the conceptual framework for the purpose of evaluation. In the socio-economical evaluation of research into and development investments in nuclear fusions reactors, the public will require the development of integrated evaluation systems to support the cost-effect analysis of how well the reduction effects of externalities have been integrated with the effects of technological innovation, learning, spillover, etc. (author)

  14. Economic dispatch optimization for system integrating renewable energy sources

    Science.gov (United States)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  15. Renewable energy integration in smart grids-multicriteria assessment using the fuzzy analytical hierarchy process

    OpenAIRE

    JANJIC, ALEKSANDAR; SAVIC, SUZANA; VELIMIROVIC, LAZAR; NIKOLIC, VESNA

    2015-01-01

    Unlike the traditional way of efficiency assessment of renewable energy sources integration, the smart grid concept is introducing new goals and objectives regarding increased use of renewable electricity sources, grid security, energy conservation, energy efficiency, and deregulated energy market. Possible benefits brought by renewable sources integration are evaluated by the degree of the approach to the ideal smart grid. In this paper, fuzzy analytical hierarchy process methodology for the...

  16. An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector

    International Nuclear Information System (INIS)

    Marinakis, Vangelis; Doukas, Haris; Karakosta, Charikleia; Psarras, John

    2013-01-01

    Highlights: ► We developed an interactive software for building automation systems. ► Monitoring of energy consumption in real time. ► Optimization of energy consumption implementing appropriate control scenarios. ► Pilot appraisal on remote control of active systems in the tertiary sector building. ► Significant decrease in energy and operating cost of A/C system. -- Abstract: Although integrated building automation systems have become increasingly popular, an integrated system which includes remote control technology to enable real-time monitoring of the energy consumption by energy end-users, as well as optimization functions is required. To respond to this common interest, the main aim of the paper is to present an integrated system for buildings’ energy-efficient automation. The proposed system is based on a prototype software tool for the simulation and optimization of energy consumption in the building sector, enhancing the interactivity of building automation systems. The system can incorporate energy-efficient automation functions for heating, cooling and/or lighting based on recent guidance and decisions of the National Law, energy efficiency requirements of EN 15232 and ISO 50001 Energy Management Standard among others. The presented system was applied to a supermarket building in Greece and focused on the remote control of active systems.

  17. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.

    Science.gov (United States)

    Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-01-01

    One major challenge for wearable electronics is that the state-of-the-art batteries are inadequate to provide sufficient energy for long-term operations, leading to inconvenient battery replacement or frequent recharging. Other than the pursuit of high energy density of secondary batteries, an alternative approach recently drawing intensive attention from the research community, is to integrate energy-generation and energy-storage devices into self-charging power systems (SCPSs), so that the scavenged energy can be simultaneously stored for sustainable power supply. This paper reviews recent developments in SCPSs with the integration of various energy-harvesting devices (including piezoelectric nanogenerators, triboelectric nanogenerators, solar cells, and thermoelectric nanogenerators) and energy-storage devices, such as batteries and supercapacitors. SCPSs with multiple energy-harvesting devices are also included. Emphasis is placed on integrated flexible or wearable SCPSs. Remaining challenges and perspectives are also examined to suggest how to bring the appealing SCPSs into practical applications in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment

    Science.gov (United States)

    Adika, Christopher Otieno

    The advancement of renewable energy technologies and the deregulation of the electricity market have seen the emergence of Demand response (DR) programs. Demand response is a cost-effective load management strategy which enables the electricity suppliers to maintain the integrity of the power grid during high peak periods, when the customers' electrical load is high. DR programs are designed to influence electricity users to alter their normal consumption patterns by offering them financial incentives. A well designed incentive-based DR scheme that offer competitive electricity pricing structure can result in numerous benefits to all the players in the electricity market. Lower power consumption during peak periods will significantly enhance the robustness of constrained networks by reducing the level of power of generation and transmission infrastructure needed to provide electric service. Therefore, this will ease the pressure of building new power networks as we avoiding costly energy procurements thereby translating into huge financial savings for the power suppliers. Peak load reduction will also reduce the inconveniences suffered by end users as a result of brownouts or blackouts. Demand response will also drastically lower the price peaks associated with wholesale markets. This will in turn reduce the electricity costs and risks for all the players in the energy market. Additionally, DR is environmentally friendly since it enhances the flexibility of the power grid through accommodation of renewable energy resources. Despite its many benefits, DR has not been embraced by most electricity networks. This can be attributed to the fact that the existing programs do not provide enough incentives to the end users and, therefore, most electricity users are not willing to participate in them. To overcome these challenges, most utilities are coming up with innovative strategies that will be more attractive to their customers. Thus, this dissertation presents various

  19. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  20. Integral high energy nuclon-nucleus cross sections for mathematical experiments with electronuclear facilities

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Gudowski, W.; Polanski, A.

    1999-01-01

    A parametrization of the integral cross sections σ nonel , σ tl , σ tot for the elastic nonelastic and total proton- and neutron-nucleus interactions is considered at medium and high energies. On the basis of this parametrization a code is created for the interpolational calculations of the integral cross sections for arbitrary target nuclei at proton energies E=1 MeV - 1 TeV and neutron energies E=12.5 MeV - 1 TeV

  1. Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition

    International Nuclear Information System (INIS)

    Szklo, Alexandre; Schaeffer, Roberto

    2006-01-01

    In this viewpoint, we discuss the importance of consorting alternative energy sources with oil, and not of opposing them. That is why we introduce the concept of alternative energy systems, which we feel is broader-ranging and more effective than alternative energy sources, as this deals with the actual transformation process of the global energy system. Alternative energy systems integrate oil with other energy sources and pave the way for new systems, which will benefit from what we call the 'virtues of oil'. They produce energy carriers for multi-fuel and multi-product strategies, where flexibility is a key target, allied to other co-benefits, especially those related to the increased use of renewable energy sources. The concept of alternative energy systems can bring a new light to the oil transition era discussion and might also influence energy policies for promoting renewables

  2. Integration and Optimization of Alternative Sources of Energy in a Remote Region

    Science.gov (United States)

    Berberi, Pellumb; Inodnorjani, Spiro; Aleti, Riza

    2010-01-01

    In a remote coastal region supply of energy from national grid is insufficient for a sustainable development. Integration and optimization of local alternative renewable energy sources is an optional solution of the problem. In this paper we have studied the energetic potential of local sources of renewable energy (water, solar, wind and biomass). A bottom-up energy system optimization model is proposed in order to support planning policies for promoting the use of renewable energy sources. A software, based on multiple factors and constrains analysis for optimization energy flow is proposed, which provides detailed information for exploitation each source of energy, power and heat generation, GHG emissions and end-use sectors. Economical analysis shows that with existing technologies both stand alone and regional facilities may be feasible. Improving specific legislation will foster investments from Central or Local Governments and also from individuals, private companies or small families. The study is carried on the frame work of a FP6 project "Integrated Renewable Energy System."

  3. US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    White, D.L. [Oak Ridge National Lab., TN (United States); Mihlmester, P.E. [Aspen Systems Corp., Oak Ridge, TN (United States)

    1993-12-17

    The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

  4. Large-scale integration of wind power into the existing Chinese energy system

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    stability, the maximum feasible wind power penetration in the existing Chinese energy system is approximately 26% from both technical and economic points of view. A fuel efficiency decrease occurred when increasing wind power penetration in the system, due to its rigid power supply structure and the task......This paper presents the ability of the existing Chinese energy system to integrate wind power and explores how the Chinese energy system needs to prepare itself in order to integrate more fluctuating renewable energy in the future. With this purpose in mind, a model of the Chinese energy system has...... been constructed by using EnergyPLAN based on the year 2007, which has then been used for investigating three issues. Firstly, the accuracy of the model itself has been examined and then the maximum feasible wind power penetration in the existing energy system has been identified. Finally, barriers...

  5. EFFICIENT USE OF ENERGY IN A ELECTRIC ARC FURNANCE BY HEAT INTEGRATION APPROACH

    OpenAIRE

    Umesh Kumar, Dr. A K Prasad, Sourabh Kumar Soni

    2016-01-01

    Based on the principles of heat integration, the present work investigates the design and operational modifications which can lead to efficient energy integration in an electric arc furnace being operated with direct reduction process. This process is one of the oldest and most widely applied processes amongst the commercially used process in India. For the purpose of energy integration stream data is extracted from the actual flow sheet of the plant, which consists of supply and target tempe...

  6. Gamma-ray relative energy response of Ce: YAG crystal

    International Nuclear Information System (INIS)

    Zhang Jianhua; Zhang Chuanfei; Hu Mengchun; Peng Taiping; Wang Zhentong; Tang Dengpan; Zhao Guangjun

    2010-01-01

    Gamma-ray relative energy response of Ce: YAG crystal, which is important for pulsed γ-ray measurement, was studied in this work.The Ce: YAG crystal, which was developed at Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, was aligned point by point with γ-rays scattered from an industrial 60 Co line source. The γ-ray relative energy response was calculated using the mass attenuation coefficient. The results show that the numerical calculation method of γ-ray relative energy response is reliable, and the experimental method with multi-energy point γ-ray by Compton scattering is also feasible, that can be used for checking up correctness of the numerical calculation results. (authors)

  7. Editorial : Introduction to Energy Strategy Reviews theme issue “Future Energy Systems and Market Integration of Wind Power”

    NARCIS (Netherlands)

    Lund, H.; Weijermars, R.

    2013-01-01

    Energy Strategy Reviews (ESR) provides a peer-reviewed publication platformto evaluate strategy options for tomorrow’s energy systems. The focus in this special issue is on “Future Energy Systems and Market Integration of Wind Power” and possible solutions are highlighted from the strategy viewpoint

  8. Integration of renewable energy plants based on generic data models in the energy management of a virtual power plant; Integration von erneuerbaren Energieanlagen auf Basis generischer Datenmodelle in das Energiemanagement eines virtuellen Kraftwerks

    Energy Technology Data Exchange (ETDEWEB)

    Wickert, Manuel; Slaby, Wolfgang; Hochloff, Patrick [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany); Winter, Martin [Siemens AG, Muenchen (Germany). Corporate Technology

    2012-07-01

    The integration of different types of energy resources manufactured by different vendors is one of the main challenges for virtual power plants. One of the important problems is a highly heterogeneous standardization environment for decentralized renewable energy resources. On the one hand proprietary solutions are implemented for some types of energy resources. In a future smart grid it is getting more and more important to handle decentralized energy generation. The project RegModHarz researched the dynamic integration of energy resources in virtual power plants based on generic data models. This paper introduces a concept for the integration of heterogeneous energy resources into the energy management of a virtual power plant using a uniform data model. On the assumption of a market-oriented virtual power plant the main attributes of this data model are generally identified and afterwards explained by examples. The capability of this data model is shown in a comprehensive field test with different renewable energy resources. (orig.)

  9. Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Integrating Variable Renewable Energy into the Grid: Key Issues'. To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability and reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, and Planning for a High RE Future.

  10. An integrated assessment of climate change, air pollution, and energy security policy

    International Nuclear Information System (INIS)

    Bollen, Johannes; Hers, Sebastiaan; Van der Zwaan, Bob

    2010-01-01

    This article presents an integrated assessment of climate change, air pollution, and energy security policy. Basis of our analysis is the MERGE model, designed to study the interaction between the global economy, energy use, and the impacts of climate change. For our purposes we expanded MERGE with expressions that quantify damages incurred to regional economies as a result of air pollution and lack of energy security. One of the main findings of our cost-benefit analysis is that energy security policy alone does not decrease the use of oil: global oil consumption is only delayed by several decades and oil reserves are still practically depleted before the end of the 21st century. If, on the other hand, energy security policy is integrated with optimal climate change and air pollution policy, the world's oil reserves will not be depleted, at least not before our modeling horizon well into the 22nd century: total cumulative demand for oil decreases by about 24%. More generally, we demonstrate that there are multiple other benefits of combining climate change, air pollution, and energy security policies and exploiting the possible synergies between them. These benefits can be large: for Europe the achievable CO 2 emission abatement and oil consumption reduction levels are significantly deeper for integrated policy than when a strategy is adopted in which one of the three policies is omitted. Integrated optimal energy policy can reduce the number of premature deaths from air pollution by about 14,000 annually in Europe and over 3 million per year globally, by lowering the chronic exposure to ambient particulate matter. Only the optimal strategy combining the three types of energy policy can constrain the global average atmospheric temperature increase to a limit of 3 C with respect to the pre-industrial level. (author)

  11. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    organization and independent system operator settle energy transactions in its real-time markets at the same time interval it dispatches energy, and settle operating reserves transactions in its real-time markets the electric grid. These control systems will enable real-time coordination between distributed energy

  12. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  13. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  14. Energy in Southeast Asia: from Networks to Markets Integration

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-01-01

    Southeast Asia is one of the world's most dynamic regions and experiences strong economic and energy demand growth rates. In this context, the Association of Southeast Asian Nations (ASEAN) is seeking to interconnect the electric grids and gas networks of the countries through two initiatives, the Asean Power Grid and the Trans-Asean Gas Pipeline, in order to pool resources and optimize energy markets integration in the region

  15. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  16. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  17. The social responsibility of nuclear energy

    International Nuclear Information System (INIS)

    Mizuo, Junichi

    2008-01-01

    Interest in the concept of Social Responsibility (SR) has increased recently. Continuing advances in the pace of innovative science and information technology development, growing competition in the world's markets, economic globalization and harsh criticism from communities have all drawn attention to the behavior of different organizations. As a way of drawing global attention to the fulfillment of SR, the goal of coexistence assumes an increasingly significant role from the standpoint of sustainable development of organizations and society. This implies that SR involves two responsibilities: the primary responsibility being an obligation to society, and the secondary responsibility being a positive contribution to society. Seen from the same perspective, Nuclear Energy (NE) is expected to make a positive contribution to the advancement of society and to encourage a safety culture that prevents serious accidents while also encouraging the sound development of organizations and society. ('Society' includes the environment and the economy, with the same sense as a 'triple bottom line'.) Considering the Social Responsibility of Nuclear Energy (NSR) from these points-of-view, NE should coexist with multiple stakeholders. The purpose of this paper is to clarify the relationship between NE and society, to define a framework for problem-solving, and finally to suggest changes in NSR as a whole. (author)

  18. Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China

    International Nuclear Information System (INIS)

    Zhang Jianjun; Fu Meichen; Geng Yuhuan; Tao Jin

    2011-01-01

    The small or middle coal mines with illegal operations in developing countries or regions can cause bad energy waste and environmental disruption. The project of coal-resource integration in Shanxi Province of China gives a new idea or an approach to energy saving and emission reduction. It is a social- and economic-ecological project. The paper shows the targets of energy saving and emission reduction in Shanxi Province, and analyses the aims, significance, design process and implementation of the integration project. Based on that, the paper discusses the challenges and opportunities the project brings. The analysis shows that the project of coal-resource integration in developing countries or regions can effectively improve mining technologies, collect capital and impel international cooperation and exchange. Finally, the paper analyses the concerns about the future, including the possible problems of implementation period, industrial updating, environmental impact and re-employment. However, the successful integration of coal resources can mitigate energy crisis and climate crisis and promote cleaner production effectively. - Highlights: → Coal-resource integration gives a new idea or an approach to energy saving and emission reduction. → Coal-resource integration mitigates climate crisis and promotes cleaner production. → Coal-resource integration brings challenges and opportunities to traditional mining industries.

  19. Comparison of the energy and environmental impact by integrating a H_2 vehicle and an electric vehicle into a zero-energy building

    International Nuclear Information System (INIS)

    Cao, Sunliang

    2016-01-01

    Highlights: • Integrating a commercial-scale H_2 vehicle (HV) or electric vehicle (EV) into a ZEB. • Simultaneously fulfilling net-zero energy building and absolute-zero energy vehicle. • Energy performance comparison between the ZEBs with HV, EV, and no vehicle. • The energy matching-enhancing solutions for integrating the HV or EV with the ZEB. • Solutions for improving the matching and relieving the negative impact on the grid. - Abstract: The boundary extension of a zero-energy building to integrate a new energy vehicle will facilitate the realization of the target set by the EU 2050 roadmap. In this study, either a hydrogen vehicle (HV) or an electric vehicle (EV) is integrated into a renewable-supported building system with appropriate control strategies. The focused variables in this study are renewable energy capacities, vehicle system options, extents to utilize vehicle storages for domestic purposes, and the Excess REe-HW recharging strategies. The analysing aspects include the energy and environmental impact as well as the energy matching and the grid interactions. The results show that the annual net-zero energy/emission balance can be met by a 16, 12, and 12 kW rated wind turbine, or by a 195.8, 160.2, and 142.4 m"2 PV, for the building with the HV, the EV and no vehicle (NV), respectively. The building with the HV will be more demanding in meeting the balance due to the less efficient HV system than that with the EV. Moreover, better matching for the zero-energy system can be achieved by relieving the condition to discharge the vehicle storages for domestic usages and by using the Excess REe-HW recharging strategy. However, their negative effect will be a slight increase in the annual net-energy consumption, due to an increased loss from both the HV/EV integrated system and the thermal storage.

  20. Integrating Food-Water-Energy Research through a Socio-Ecosystem Approach

    Directory of Open Access Journals (Sweden)

    Manuel Maass

    2017-08-01

    Full Text Available The nexus approach helps in recognizing the link between water, energy, and food production systems, emphasizing the need to manage them in a more integrated way. The socio-ecosystem (SES approach, however, goes beyond that, by incorporating the regulation and supporting services in the management equation. Changes in ecosystem integrity affect the delivery of ecosystem services to society, which affects local people's well-being, creating a feedback mechanism regarding management strategies. The SES approach makes explicit the “human-bio-physical” nature of our interaction with ecosystems, highlighting the need for a more integrated and interconnected social-ecological research perspective. In addition, the SES approach makes more explicit the multi-scale character of the ecological processes that structure and maintain social-ecological systems. Water dynamics have an important role in shaping ecosystem's structure and functioning, as well as determining the systems capacity for delivering provisioning services. The tropical dry-deciduous forest (TDF, is particularly useful in studying water-food-energy trade-off interactions. Recently, a category 5 hurricane landed in the study area (Mexico's Pacific coast, triggering various social and ecological problems. This event is challenging the current forest management strategies in the region. The extreme hydrometeorological event created an excellent opportunity to test and promote the SES approach for more integrated food-water-energy research. By using the SES approach within our long-term socio-ecological research project, it was easier to identify opportunities for tackling trade-offs between maintaining the transformation of the system and a more sustainable alternative: promoting the maintenance of the ecosystem's integrity and its capacity to deliver provisioning and regulating services.

  1. INNOVATIVE INTEGRATION OF SOCIAL RESPONSIBILITY IN BUSINESS STRATEGY

    OpenAIRE

    ALBU MĂDĂLINA

    2015-01-01

    Innovative integration of social responsibility in the decision making in companies and other organizations, is an activity that causes immediate positive effect on those directly involved, on local communities and society as a whole. Setting up a framework to promote and implement the concept of social responsibility is an important factor for promoting economic development and sustainable development of local communities and society in general. The paper presents aspects of how ...

  2. Proposing a Master's Programme on Participatory Integrated Assessment of Energy Systems to Promote Energy Access and Energy Efficiency in Southern Africa

    Science.gov (United States)

    Kiravu, Cheddi; Diaz-Maurin, François; Giampietro, Mario; Brent, Alan C.; Bukkens, Sandra G.F.; Chiguvare, Zivayi; Gasennelwe-Jeffrey, Mandu A.; Gope, Gideon; Kovacic, Zora; Magole, Lapologang; Musango, Josephine Kaviti; Ruiz-Rivas Hernando, Ulpiano; Smit, Suzanne; Vázquez Barquero, Antonio; Yunta Mezquita, Felipe

    2018-01-01

    Purpose: This paper aims to present a new master's programme for promoting energy access and energy efficiency in Southern Africa. Design/methodology/approach: A transdisciplinary approach called "participatory integrated assessment of energy systems" (PARTICIPIA) was used for the development of the curriculum. This approach is based on…

  3. Microfabrication and Integration of a Sol-Gel PZT Folded Spring Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2015-05-01

    Full Text Available This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

  4. Economics of Renewable Energy Integration and Energy Storage via Low Load Diesel Application

    Directory of Open Access Journals (Sweden)

    James Hamilton

    2018-04-01

    Full Text Available One-quarter of the world’s population lives without access to electricity. Unfortunately, the generation technology most commonly employed to advance rural electrification, diesel generation, carries considerable commercial and ecological risks. One approach used to address both the cost and pollution of diesel generation is renewable energy (RE integration. However, to successfully integrate RE, both the stochastic nature of the RE resource and the operating characteristics of diesel generation require careful consideration. Typically, diesel generation is configured to run heavily loaded, achieving peak efficiencies within 70–80% of rated capacity. Diesel generation is also commonly sized to peak demand. These characteristics serve to constrain the possible RE penetration. While energy storage can relieve the constraint, this adds cost and complexity to the system. This paper identifies an alternative approach, redefining the low load capability of diesel generation. Low load diesel (LLD allows a diesel engine to operate across its full capacity in support of improved RE utilization. LLD uses existing diesel assets, resulting in a reduced-cost, low-complexity substitute. This paper presents an economic analysis of LLD, with results compared to conventional energy storage applications. The results identify a novel pathway for consumers to transition from low to medium levels of RE penetration, without additional cost or system complexity.

  5. Wearable Fall Detector using Integrated Sensors and Energy Devices

    Science.gov (United States)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  6. Disaggregated energy consumption and GDP in Taiwan: A threshold co-integration analysis

    International Nuclear Information System (INIS)

    Hu, J.-L.; Lin, C.-H.

    2008-01-01

    Energy consumption growth is much higher than economic growth for Taiwan in recent years, worsening its energy efficiency. This paper provides a solid explanation by examining the equilibrium relationship between GDP and disaggregated energy consumption under a non-linear framework. The threshold co-integration test developed with asymmetric dynamic adjusting processes proposed by Hansen and Seo [Hansen, B.E., Seo, B., 2002. Testing for two-regime threshold cointegration in vector error-correction models. Journal of Econometrics 110, 293-318.] is applied. Non-linear co-integrations between GDP and disaggregated energy consumptions are confirmed except for oil consumption. The two-regime vector error-correction models (VECM) show that the adjustment process of energy consumption toward equilibrium is highly persistent when an appropriately threshold is reached. There is mean-reverting behavior when the threshold is reached, making aggregate and disaggregated energy consumptions grow faster than GDP in Taiwan

  7. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata

    Directory of Open Access Journals (Sweden)

    Mónica Escandón

    2018-04-01

    Full Text Available The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3 at which P. radiata plants changed from an initial stress response program (shorter-term response to an acclimation one (longer-term response. Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs, fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR and isopentenyl adenosine (iPA as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin, crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.

  8. A time use survey derived integrative human-physical household system energy performance model

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Y.S. [Carnegie Mellon Univ., Pittsburgh, PA (United States). School of Architecture

    2009-07-01

    This paper reported on a virtual experiment that extrapolated the stochastic yet patterned behaviour of the integrative model of a 4-bedroom house in Chicago with 4 different household compositions. The integrative household system theory considers the household as a combination of 2 sub-systems, notably the physical system and the human system. The physical system is the materials and devices of a dwelling, and the human system is the occupants that live within the dwelling. A third element is the environment that influences the operation of the 2 sub-systems. The human-physical integrative household energy model provided a platform to simulate the effect of sub-house energy conservation measures. The virtual experiment showed that the use of the bootstrap sampling approach on American Time Use Survey (ATUS) data to determine the occupant's stochastic energy consumption behaviour has resulted in a robust complex system model. Bell-shaped distributions were presented for annual appliance, heating and cooling load demands. The virtual experiment also pointed to the development of advanced multi-zone residential HVAC system as a suitable strategy for major residential energy efficiency improvement. The load profiles generated from the integrative model simulation were found to be in good agreement with those from field studies. It was concluded that the behaviour of the integrative model is a good representation of the energy consumption behaviour of real households. 10 refs., 4 tabs., 12 figs.

  9. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis.

    Science.gov (United States)

    Hu, Fang; Xu, Yong; Liu, Feng

    2016-06-01

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight. mTOR integrates signals from a variety of "energy balancing" hormones such as leptin, insulin, and ghrelin, although its action varies in response to these distinct hormonal stimuli as well as across different neuronal populations. In this review, we summarize and highlight recent findings regarding the functional roles of mTOR complex 1 (mTORC1) in the hypothalamus specifically in its regulation of body weight, energy expenditure, and glucose/lipid homeostasis. Understanding the role and underlying mechanisms behind mTOR-related signaling in the brain will undoubtedly pave new avenues for future therapeutics and interventions that can combat obesity, insulin resistance, and diabetes. Copyright © 2016 the American Physiological Society.

  10. Practical application of Integrated National Energy Planning (INEP) using microcomputers

    International Nuclear Information System (INIS)

    Munasinghe, M.

    1989-01-01

    The paper describes the use of a practical microcomputer-based, hierarchical modelling framework for Integrated National Energy Planning (INEP), and policy analysis. The rationale for the concept and the development of the methodology are traced, following the energy crises of the 1970s. Details of the INEP process, which includes analysis at three hierarchical levels (the energy-microeconomic, energy sector and energy subsector) are given. A description of the various models, the scenarios and assumptions used in the analysis, as well as the linkages and interactions, is provided. The Sri Lanka energy situation is summarized, and the principal energy issues and options derived from the modelling are used to synthesize a national energy strategy. (author). 11 refs, 8 figs, 11 tabs

  11. Energy-Integrating Master Plan for the City of Atlantic City, New Jersey: energy conservation element. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The Master Plan describes a coordinated energy-conservation effort for the City, the effective application and ultimate success of which depend primarily on the active involvement of the City government and its functional departments. Following an introductory section, Section XXI, Community Energy Determinants, describes the natural and man-made environment, growth and energy profiles, and the institutional environment. Additional sections are entitled: Energy-Conservation Options (passive energy options and active energy-conservation options); Energy Integration; Community Energy Management; Energy-Conservation Implementation Plan; and an appendix containing an energy-related glossary, a directory to various sources of information on energy conservation, various technical documents, a copy of the National Energy Act, and a bibliography. (MCW)

  12. Highly efficient integrated rectifier and voltage boosting circuits for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    D. Maurath

    2008-05-01

    Full Text Available This paper presents novel circuit concepts for integrated rectifiers and voltage converting interfaces for energy harvesting micro-generators. In the context of energy harvesting, usually only small voltages are supplied by vibration-driven generators. Therefore, rectification with minimum voltage losses and low reverse currents is an important issue. This is realized by novel integrated rectifiers which were fabricated and are presented in this article. Additionally, there is a crucial need for dynamic load adaptation as well as voltage up-conversion. A circuit concept is presented, which is able to obtain both requirements. This generator interface adapts its input impedance for an optimal energy transfer efficiency. Furthermore, this generator interface provides implicit voltage up-conversion, whereas the generator output energy is stored on a buffer, which is connected to the output of the voltage converting interface. As simulations express, this fully integrated converter is able to boost ac-voltages greater than |0.35 V| to an output dc-voltage of 2.0 V–2.5 V. Thereby, high harvesting efficiencies above 80% are possible within the entire operational range.

  13. Energy and exergy analyses of an integrated solar heat pump system

    International Nuclear Information System (INIS)

    Suleman, F.; Dincer, I.; Agelin-Chaab, M.

    2014-01-01

    An integrated solar and heat pump based system for industrial heating is developed in this study. The system comprises heat pump cycle for process heating water and solar energy for another industrial heating process. Comprehensive energy and exergy analyses are performed on the system. These analyses generated some compelling results as expected because of the use of green and environmentally friendly energy sources. The results show that the energy efficiency of the process is 58% while the exergy efficiency is 75%. Energetic COP of the heat pump cycle is 3.54 whereas the exergy efficiency is 42.5%. Moreover, the energetic COP of the system is 2.97 and the exergy efficiency of the system is 35.7%. In the parametric study, a different variation such as changing the temperature and pressure of the condenser also shows positive results. - Highlights: • An integrated system is analysed using renewable energy source which can be used in textile industry. • Energy losses and exergy destructions are calculated at all major components. • Energy and exergy efficiencies of all subunits, subsystems and overall system are determined. • A parametric study shows the effect of environment and operating conditions on efficiencies. • Solar energy for heating in textile industry is efficient and environmentally friendly

  14. Uncertainty analysis of an integrated energy system based on information theory

    International Nuclear Information System (INIS)

    Fu, Xueqian; Sun, Hongbin; Guo, Qinglai; Pan, Zhaoguang; Xiong, Wen; Wang, Li

    2017-01-01

    Currently, a custom-designed configuration of different renewable technologies named the integrated energy system (IES) has become popular due to its high efficiency, benefiting from complementary multi-energy technologies. This paper proposes an information entropy approach to quantify uncertainty in an integrated energy system based on a stochastic model that drives a power system model derived from an actual network on Barry Island. Due to the complexity of co-behaviours between generators, a copula-based approach is utilized to articulate the dependency structure of the generator outputs with regard to such factors as weather conditions. Correlation coefficients and mutual information, which are effective for assessing the dependence relationships, are applied to judge whether the stochastic IES model is correct. The calculated information values can be used to analyse the impacts of the coupling of power and heat on power flows and heat flows, and this approach will be helpful for improving the operation of IES. - Highlights: • The paper explores uncertainty of an integrated energy system. • The dependent weather model is verified from the perspective of correlativity. • The IES model considers the dependence between power and heat. • The information theory helps analyse the complexity of IES operation. • The application of the model is studied using an operational system on Barry Island.

  15. Nonlocal kinetic energy functionals by functional integration

    Science.gov (United States)

    Mi, Wenhui; Genova, Alessandro; Pavanello, Michele

    2018-05-01

    Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.

  16. DOE Heat Pump Centered Integrated Community Energy Systems Project

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J. M.

    1979-01-01

    The Heat Pump Centered Integrated Community Energy Systems (HP-ICES) Project is a multiphase undertaking seeking to demonstrate one or more operational HP-ICES by the end of 1983. The seven phases include System Development, Demonstration Design, Design Completion, HP-ICES Construction, Operation and Data Acquisition, HP-ICES Evaluation, and Upgraded Continuation. This project is sponsored by the Community Systems Branch, Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applicaions, U.S. Department of Energy (DOE). It is part of the Community Systems Program and is managed by the Energy and Environmental Systems Division of Argonne Natinal Laboratory.

  17. Distributed Generation Integration in the Electric Grid: Energy Storage System for Frequency Control

    Directory of Open Access Journals (Sweden)

    Maurizio Delfanti

    2014-01-01

    Full Text Available During the last few years generation from renewable energy sources (RESs has grown considerably in European electrical networks. Transmission system operators are greatly concerned about the impact of RESs on the operational security and efficiency of their networks and more in general of the ENTSO-E interconnected system. Grid codes are to be revised in order to harmonise the rules regarding the connection of RES power plants. A main issue concerns frequency control: frequency is greatly affected by RESs intermittency and its deviations must be limited as much as possible in order to guarantee a suitable level of power quality. To improve frequency stability, in the future, Grid codes could extend frequency control requirements also to RES units, whereas today they are applied only to conventional power plants. Energy storage systems can be a possible solution to increase the flexibility and performance of RES power plants: they allow generators to modulate their power injections without wasting renewable energy. In this paper, the authors studied the suitability of extending frequency control to RES units integrating them with energy storage systems. In particular, the paper focuses on the impact of frequency control on the storage lifetime by analysing the power charge/discharge in response to real frequency oscillations.

  18. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  19. Integrating the flexibility of the average Serbian consumer as a virtual storage option into the planning of energy systems

    Directory of Open Access Journals (Sweden)

    Batas-Bjelić Ilija R.

    2014-01-01

    Full Text Available With the integration of more variable renewable energy, the need for storage is growing. Rather than utility scale storage, smart grid technology (not restricted, but mainly involving bidirectional communication between the supply and demand side and dynamic pricing enables flexible consumption to be a virtual storage alternative for moderation of the production of variable renewable energy sources on the micro grid level. A study, motivated with energy loss allocation, electric demand and the legal framework that is characteristic for the average Serbian household, was performed using the HOMER software tool. The decision to shift or build deferrable load rather than sell on site generated energy from variable renewable energy sources to the grid was based on the consumer's net present cost minimization. Based on decreasing the grid sales hours of the micro grid system to the transmission grid from 3,498 to 2,009, it was shown that the demand response could be included in long-term planning of the virtual storage option. Demand responsive actions that could be interpreted as storage investment costs were quantified to 1€2 per year in this article. [Projekat Ministarstva nauke Republike Srbije, br. 42009: Smart grid

  20. An Optimisation Study on Integrating and Incentivising Thermal Energy Storage (TES in a Dwelling Energy System

    Directory of Open Access Journals (Sweden)

    Gbemi Oluleye

    2018-04-01

    Full Text Available In spite of the benefits from thermal energy storage (TES integration in dwellings, the penetration rate in Europe is 5%. Effective fiscal policies are necessary to accelerate deployment. However, there is currently no direct support for TES in buildings compared to support for electricity storage. This could be due to lack of evidence to support incentivisation. In this study, a novel systematic framework is developed to provide a case in support of TES incentivisation. The model determines the costs, CO2 emissions, dispatch strategy and sizes of technologies, and TES for a domestic user under policy neutral and policy intensive scenarios. The model is applied to different building types in the UK. The model is applied to a case study for a detached dwelling in the UK (floor area of 122 m2, where heat demand is satisfied by a boiler and electricity imported from the grid. Results show that under a policy neutral scenario, integrating a micro-Combined Heat and Power (CHP reduces the primary energy demand by 11%, CO2 emissions by 21%, but with a 16 year payback. Additional benefits from TES integration can pay for the investment within the first 9 years, reducing to 3.5–6 years when the CO2 levy is accounted for. Under a policy intensive scenario (for example considering the Feed in Tariff (FIT, primary energy demand and CO2 emissions reduce by 17 and 33% respectively with a 5 year payback. In this case, the additional benefits for TES integration can pay for the investment in TES within the first 2 years. The framework developed is a useful tool is determining the role TES in decarbonising domestic energy systems.

  1. Corporate Social Responsibility (CSR) and energy industry

    International Nuclear Information System (INIS)

    Landhaeusser, Werner; Hildebrandt, Alexandra

    2016-01-01

    What means Corporate Social Responsibility (CSR) in the energy industry? A rising energy demand with limited natural resources pose utilities, industry and consumers with new challenges. This book follows an interdisciplinary approach and for the first time brings together debates and findings from industry, science, politics, culture and media. Because the energy transition can only succeed if it is comprehensible for the individual and fragmented perspectives and interests are merged. [de

  2. Nuclear energy and the responsibilities of the Atomic Energy Board

    International Nuclear Information System (INIS)

    De Villiers, J.W.L.

    1980-01-01

    The paper discusses nuclear energy and the responsibilities of the previous Atomic Energy Board, (now the Atomic Energy Corporation) of South Africa in this respect. The paper starts by giving a brief introduction to the Atomic Energy Board, its organization and its functions. Research is undertaken in various fields such as the exploitation of nuclear fuels, radiobiology, radioisotopes, etc. Certain activities of the Board was also more directly related to Koeberg. The paper covers four of these areas, namely the early studies of the feasibility of introducing nuclear power in South Africa; the services involving the Board's special expertise in certain areas which Escom makes use of; the regulatory function and the preparation for handling and disposal of radioactive waste

  3. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence E.

    2012-01-05

    A variety of studies have recently evaluated the opportunities for the large-scale integration of wind energy into the US power system. These studies have included, but are not limited to, "20 Percent Wind Energy by 2030: Increasing Wind Energy's Contribution to US Electricity Supply", the "Western Wind and Solar Integration Study", and the "Eastern Wind Integration and Transmission Study." Each of these US based studies have evaluated a variety of activities that can be undertaken by utilities to help integrate wind energy.

  4. 28.3THz bowtie antenna integrated rectifier for infrared energy harvesting

    KAUST Repository

    Gadalla, Mena N.

    2014-10-01

    The design, fabrication and characterization of an asymmetric 28.3 THz antenna integrated rectifier (rectenna) using Au/Al2O3/Pt is presented. The rectenna design comprises a sharp tip bowtie antenna and a tunneling Metal-insulator-Metal (MIM) diode. The design benefits from the geometric field enhancement around the nano tips of the bowtie antenna. Simultaneous optimization of the antenna\\'s length and flare angle resulted in a relative intensity enhancement of 104 for a 10 nm gap. In order to benefit from the field enhancement, the THz diode is realized through the overlap of the bowtie sharp tips exactly at the hot spot. Dissimilar electrodes are used to allow THz signals rectification at zero bias, which is critical for energy harvesting applications. The rectenna exhibits a zero bias responsivity of 10 A/W. © 2014 European Microwave Association.

  5. The urban wind energy potential for integrated roof wind energy systems based on local building height distributions

    NARCIS (Netherlands)

    Blok, R.; Coers, M.D.

    2017-01-01

    An Integrated Roof Wind Energy System (IRWES) is a roof mounted structure with an internal wind turbine that uses smart aerodynamics to catch and accelerate wind flow. It has been designed for application on (existing) buildings in the urban environment. To estimate the maximum total wind energy

  6. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  7. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  8. European Energy Integration in East European Countries: Real Necessity to Assure Fair Market prices for Energy Resources

    Directory of Open Access Journals (Sweden)

    Augustin IGNATOV

    2016-06-01

    Full Text Available In order to assure energy, and therefore, economic stability of East European States (hereafter EES there should be undertaken visible steps towards deeper energetic integration of the region under the coordination of EU. In such a way there will be considerably strengthened the regional economic security through creating functional mechanisms of solving current and potential energy issues including diversification of supplies and fairer market prices. Moreover, it will be possible to develop and implement more effectively energy infrastructure projects. Deeper and more functional energy integration in EES will create favorable preconditions of fostering the states’ economic development. Also, there will be considerably reduced the macroeconomic risks which could possible occur as a result of the struggle of interests of importing and supplying countries. The current paper is intended to underline the most important weaknesses in terms of energy security of EES and exemplify how efficient these problems could be tackled by cumulating common countries’ efforts in the sector. Also, it highlights the shortcomings of EU energy policy in EES and how these affect the economic prospective of the countries. Finally, it is remarked that EES need a common energy market in order to strengthen their negotiation positions in relation with supplying countries.

  9. Why energy from waste incineration is an essential component of environmentally responsible waste management

    International Nuclear Information System (INIS)

    Porteous, A.

    2005-01-01

    This paper outlines the key factors involved in adopting energy from waste incineration (EfWI) as part of a waste management strategy. Incineration means all forms of controlled direct combustion of waste. 'Emerging' technologies, such as gasification, are, in the author's view, 5 to 10 years from proven commercial application. The strict combustion regimen employed and the emissions therefrom are detailed. It is shown that EfWI merits consideration as an integral part of an environmentally responsible and sustainable waste management strategy, where suitable quantities of waste are available

  10. Analysis to develop a program for energy-integrated farm systems

    Energy Technology Data Exchange (ETDEWEB)

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.; Johnson, K.I.

    1981-09-01

    A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The purpose of the research presented is to establish the objective of the program and identify guidelines for program development. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of: (1) market need, (2) conversion potential, (3) technological opportunities, and (4) acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy. Each of these factors is analyzed in Chapters 2 to 4. Chapter 5 draws on the analysis of these factors to establish the objective of the program and identify guidelines for the distribution of program funds. Chapter 6 then discusses the acceptability of integrated farm systems, which can not be quantified like the other factors.

  11. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  12. High energy gamma ray response of liquid scintillator

    International Nuclear Information System (INIS)

    Shigyo, N.; Ishibashi, K.; Matsufuji, N.; Nakamoto, T.; Numajiri, M.

    1994-01-01

    We made the experiment on the spallation reaction. NE213 organic liquid scintillators were used for measuring neutrons and γ rays. To produce the γ ray emission cross section, we used the response functions by EGS4 code. The response functions look like uniform above γ ray energies of 60 MeV. The experimental data of the γ ray emission cross section are different from the data of High Energy Transport Code. (author)

  13. Evaluation of the x-ray response of a position-sensitive microstrip detector with an integrated readout chip

    International Nuclear Information System (INIS)

    Rossington, C.; Jaklevic, J.; Haber, C.; Spieler, H.; Reid, J.

    1990-08-01

    The performance of an SVX silicon microstrip detector and its compatible integrated readout chip have been evaluated in response to Rh Kα x-rays (average energy 20.5 keV). The energy and spatial discrimination capabilities, efficient data management and fast readout rates make it an attractive alternative to the CCD and PDA detectors now being offered for x-ray position sensitive diffraction and EXAFS work. The SVX system was designed for high energy physics applications and thus further development of the existing system is required to optimize it for use in practical x-ray experiments. For optimum energy resolution the system noise must be decreased to its previously demonstrated low levels of 2 keV FWHM at 60 keV or less, and the data handling rate of the computer must be increased. New readout chips are now available that offer the potential of better performance. 15 refs., 7 figs

  14. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

    2011-09-10

    This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the “silver bullet” for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

  15. The energy integration in the sectoral policies. Good practices of european towns; L'integration de l'energie dans les politiques sectorielles. Bonnes pratiques de villes europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Lacassagne, S.

    2003-07-01

    Some european towns developed a specific energy and environmental policy, function of many factors. Policies are implemented to favorite the energy consumption and the pollutant emission control. The actions of local collectivities in the domain have been analyzed following three axis: the measure of the energy performance of local collectivities, the territorial energy management tools, the energy integration in sectoral policies. This report takes stock on the third axis analysis. (A.L.B.)

  16. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study

    International Nuclear Information System (INIS)

    Wouters, Carmen; Fraga, Eric S.; James, Adrian M.

    2015-01-01

    The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids

  17. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. DTU International Energy Report 2015

    DEFF Research Database (Denmark)

    to solve some of the challenges introduced by the broader integration of renewable sources. Closer integration and coordination of energy infrastructures might also lead to a more cost-effective energy system with a lower impact on the environment and climate. The DTU International Energy Report 2015......One of the challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources is to secure a well-functioning and stable electricity infrastructure. Today, conventional generation is responsible for providing many of the power system services needed...... for stable and reliable electricity infrastructure operation. When fluctuating renewable energy sources are taking over, the heating, cooling, gas, and transport infrastructures may be able to provide some of the flexibility needed. Closer integration of the various energy infrastructures is thus a means...

  19. An efficient energy response model for liquid scintillator detectors

    Science.gov (United States)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  20. Inducement and responsibility in the energy turnaround

    International Nuclear Information System (INIS)

    Loewer, Wolfgang

    2013-01-01

    The book includes several contributions concerning the Bonn discussion on energy legislation (volume 7): inducement and responsibility -in terms of constitutional law; between Europe and re-regulation - what is the regulation framework? Continuity requirement as legislative action directive; the future of the nuclear fuel tax after the nuclear phaseout - problems of the constitutional finance and the European tax legislation, strategy and energy markets; regulatory challenges in the realization of the energy turnaround policy.

  1. Design of energy efficient optical networks with software enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2015-01-01

    energy consumption by proposing a new integrated control plane structure utilising Software Defined Networking technologies. The integrated control plane increases the efficiencies of exchanging control information across different network domains, while introducing new possibilities to the routing...... methods and the control over quality of service (QoS). The structure is defined as an overlay generalised multi-protocol label switching (GMPLS) control model. With the defined structure, the integrated control plane is able to gather information from different domains (i.e. optical core network......'s) routing behaviours. With the flexibility of the routing structure, results show that the energy efficiency of the network can be improved without compromising the QoS for delay/blocking sensitive services....

  2. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent

  3. Estimation of demand response to energy price signals in energy consumption behaviour in Beijing, China

    International Nuclear Information System (INIS)

    He, Y.X.; Liu, Y.Y.; Xia, T.; Zhou, B.

    2014-01-01

    Highlights: • Demand response to energy price signals in energy consumption in Beijing is studied. • The electricity price is of great importance to Beijing’s energy market stability. • Industrial sectors have a large electricity self-elasticity and cross-elasticity. • When consuming electricity, customers pay more attention to natural gas price. • Analysis of demand response to energy price can provide guidance to energy policies. - Abstract: The energy price system in Beijing has not fully exploited customers’ price elasticity, and has a negative impact on achieving the goals of energy saving. This paper analyses the response behaviours of different customers to typical energy prices. As for electricity self-elasticity, the range of the primary, secondary, tertiary industry and residents are −0.026 to −0.033, −0.045 to −0.059, −0.035 to −0.047 and −0.024 to −0.032, respectively. As regards self-elasticity on coal, the range of the primary, secondary, tertiary industry and residents are −0.030 to −0.037, −0.066 to −0.093, −0.055 to −0.072 and −0.034 to −0.051, respectively. The self-elasticities on oil and natural gas are very weak. As for cross-elasticity, when consuming electricity and oil, customers mainly focus on the prices of natural gas, which are 0.185 and 0.112. When consuming coal and natural gas, customers are concerned about the electricity prices, and their cross-elasticities are 0.03 and 0.36, respectively. The estimation of demand response to energy price signals in energy consumption behaviours can provide a decision support for formulating rational energy price policies

  4. Beta and low energy photon response

    International Nuclear Information System (INIS)

    Cummings, F.M.; Yoder, R.C.

    1981-01-01

    This study quantifies the observed dosimeter response for a variety of beta and photon energies. The reportable skin dose is also included in the discussion. Presently, the reportable skin dose is determined by adding the nonpenetrating and penetrating dose components together. The scheme presently used to estimate the nonpenetrating dose component for personnel at Hanford utilizes the difference in light outputs of a TLD-700 chip filtered only by the security credential (total of 88 mg/cm 2 ) and a TLD-700 chip filtered by a 0.064 cm thick aluminum filter as well as the credential. The study indicates that a maximum chip response occurs in the range of photon energies between 30 keV and 40 keV and results in an overestimation of the calculated nonpenetrating dose by a factor of approximately 2. The reportable skin dose is overestimated by a factor of approximately 2.5 following adding the nonpenetrating and penetrating dose components. The effect of removing the security credential is slight and tends to increase the steepness of slope in the photon response curve

  5. The balancing problem of distributed generation and the integration of different renewable energy sources

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article presents the results of analyses of large- scale integration of wind power, photo voltaic and wave power into a Danish reference energy system......The article presents the results of analyses of large- scale integration of wind power, photo voltaic and wave power into a Danish reference energy system...

  6. The balancing problem of distrubuted generation and the integration of different renewable energy sources

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article presents the results of analyses of large-scale integration of wind power, photo voltaic and wave power into a Danish reference energy system.......The article presents the results of analyses of large-scale integration of wind power, photo voltaic and wave power into a Danish reference energy system....

  7. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    grids. In terms of paper sessions, NREL ESI researcher Santosh Veda chaired a session on energy Kroposki chaired a session on advanced renewable energy power systems. While Veda, Muljadi, and Kroposki

  8. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  9. South America's energy integration overshadows Venezuela-US confrontational posture

    International Nuclear Information System (INIS)

    Abrantes, Dayse

    2006-01-01

    Venezuela's plans of a 10 000 km gas pipeline project spanning Latin America is presented. A brief analysis of Venezuela's petroleum industry is provided. President Hugo Chavez' main ambitions include reducing oil sales to the USA and to spark South America's energy integration

  10. Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid

    International Nuclear Information System (INIS)

    Perera, A.T.D.; Nik, Vahid M.; Mauree, Dasaraden; Scartezzini, Jean-Louis

    2017-01-01

    Highlights: • A novel method introduced to optimize Electrical Hubs. • Novel dispatch based on fuzzy control and finite state machines. • Evaluating sensitivity of three performance indices for system autonomy. • Multi objective optimization considering system autonomy-cost. • Electrical Hubs can cover above 60% of the demand using wind and Solar PV. - Abstract: A paradigm change in energy system design tools, energy market, and energy policy is required to attain the target levels in renewable energy integration and in minimizing pollutant emissions in power generation. Integrating non-dispatchable renewable energy sources such as solar and wind energy is vital in this context. Distributed generation has been identified as a promising method to integrate Solar PV (SPV) and wind energy into grid in recent literature. Distributed generation using grid-tied electrical hubs, which consist of Internal Combustion Generator (ICG), non-dispatchable energy sources (i.e., wind turbines and SPV panels) and energy storage for providing the electricity demand in Sri Lanka is considered in this study. A novel dispatch strategy is introduced to address the limitations in the existing methods in optimizing grid-integrated electrical hubs considering real time pricing of the electricity grid and curtailments in grid integration. Multi-objective optimization is conducted for the system design considering grid integration level and Levelized Energy Cost (LEC) as objective functions to evaluate the potential of electrical hubs to integrate SPV and wind energy. The sensitivity of grid curtailments, energy market, price of wind turbines and SPV panels on Pareto front is evaluated subsequently. Results from the Pareto analysis demonstrate the potential of electrical hubs to cover more than 60% of the annual electricity demand from SPV and wind energy considering stringent grid curtailments. Such a share from SPV and wind energy is quite significant when compared to direct grid

  11. An Integrated Approach to Water-Energy Nexus in Shale-Gas Production

    Directory of Open Access Journals (Sweden)

    Fadhil Y. Al-Aboosi

    2018-05-01

    Full Text Available Shale gas production is associated with significant usage of fresh water and discharge of wastewater. Consequently, there is a necessity to create proper management strategies for water resources in shale gas production and to integrate conventional energy sources (e.g., shale gas with renewables (e.g., solar energy. The objective of this study is to develop a design framework for integrating water and energy systems including multiple energy sources, the cogeneration process and desalination technologies in treating wastewater and providing fresh water for shale gas production. Solar energy is included to provide thermal power directly to a multi-effect distillation plant (MED exclusively (to be more feasible economically or indirect supply through a thermal energy storage system. Thus, MED is driven by direct or indirect solar energy and excess or direct cogeneration process heat. The proposed thermal energy storage along with the fossil fuel boiler will allow for the dual-purpose system to operate at steady-state by managing the dynamic variability of solar energy. Additionally, electric production is considered to supply a reverse osmosis plant (RO without connecting to the local electric grid. A multi-period mixed integer nonlinear program (MINLP is developed and applied to discretize the operation period to track the diurnal fluctuations of solar energy. The solution of the optimization program determines the optimal mix of solar energy, thermal storage and fossil fuel to attain the maximum annual profit of the entire system. A case study is solved for water treatment and energy management for Eagle Ford Basin in Texas.

  12. Energy consumption and GDP in Turkey : Is there a co-integration relationship?

    NARCIS (Netherlands)

    Montfort, van K.; Lise, W.

    2007-01-01

    Energy consumption and GDP are expected to grow by 5.9% and 7% annually until 2025 in Turkey. This paper tries to unfold the linkage between energy consumption and GDP by undertaking a co-integration analysis for Turkey with annual data over the period 1970-2003. The analysis shows that energy

  13. Energy consumption and GDP in Turkey: is there a co-integration relationship?

    NARCIS (Netherlands)

    van Montfort, C.A.G.M.; Lise, W.

    2007-01-01

    Energy consumption and GDP are expected to grow by 5.9% and 7% annually until 2025 in Turkey. This paper tries to unfold the linkage between energy consumption and GDP by undertaking a co-integration analysis for Turkey with annual data over the period 1970-2003. The analysis shows that energy

  14. Determination for energy response and directionality of neutron survey meters

    International Nuclear Information System (INIS)

    Chen Changmao; Liu Jinhua; Xie Jianlun; Su Jingling

    1992-01-01

    The energy response and directionality of neutron survey meter type MK7 and 2202D are determined. The reactor thermal column beam, reactor filtered beams (6 eV, 24.4 keV and 144 keV), 226 Ra-Be, 241 Am-Be, 252 Cf and its moderated sources are used for the measurement. The results shows: the survey meters are influenced obviously by the direction; the response of middle-energy region is large, the energy response of 2202D is better than MK7

  15. Improved break-in-slope analysis of the plasma energy response in tokamaks

    International Nuclear Information System (INIS)

    Lerche, E A; Eester, D van

    2008-01-01

    The break-in-slope method is a simple-although powerful-data analysis technique that is commonly used to determine the power absorption profiles of the plasma species during auxiliary heating experiments in tokamaks. It is based on the study of the energy response of the particles to sudden changes in the external power applied to the plasma. Even though some experimental conditions are favorable for the straightforward application of the break-in-slope analysis in its most simple form (linear fit of the experimental temperature signals), most situations require the retention of additional terms in the linearized energy conservation equation for a successful use of this technique. In this paper, important corrections necessary to extend the applicability of the traditional break-in-slope technique will be presented: (i) the numerical determination of the break-in-slope instants in the plasma energy response allowing the study of indirect (collisional) heating scenarios; (ii) the inclusion of the density variations due to the external power step based on fast density measurements; (iii) the exponential representation of the plasma energy evolution after the power break, describing the saturation of the experimental signals in slow modulation or single power step experiments; (iv) a first assessment of the influence of the change in the radiated power on the break-in-slope results. As will be shown, these corrections are particularly important in low absorption scenarios and in single power step studies, where the change in the external power cannot be considered 'non-perturbative' and the standard break-in-slope analysis usually leads to integrated power levels well below the actual power injected into the plasma

  16. Responsibility for atomic energy damages and indemnification

    International Nuclear Information System (INIS)

    Pelzer, N.M.

    1980-01-01

    In the Federal Republic of Germany, the overall regulations on civil responsibility for the damages by nuclear fission or the effect of radiation of radioactive materials were established for the first time in the law concerning peaceful use and protection from danger of atomic energy (hereafter referred to as Atomgesetz) in 1959. Responsibility without error was adopted by German legislators. The liability of the owners of atomic energy facilities (Article 25) was distinguished from that of the possessors of radioactive materials (Article 26) under the law. Facility responsibility (Anlagenhaftung) was limited to 500 million German marks at the maximum. Facility owners had the obligation to offer monetary security of 80 million German marks at the maximum by insurances, etc. When disasters exceeded the amount, the owners were exempted by the state up to the maximum 500 million German marks. The Federal Republic adopted the Paris Agreement in 1975 by a law, and the domestic adjustment of Atomgesetz to the European treaty on atomic energy responsibility was made through the third revision of the Gesetz. According to Article 25-1 of Atomgesetz, the regulations of Paris Agreement are first applied to the owners of atomic energy facilities (operators), and as supplement, Articles 25 to 40 of Atomgesetz are applied. The maximum liability amount is 1,000 million German marks. The demand right of indemnification expires in 3 years after demanders find or are bound to find damages and offenders, and terminates in 30 years regardless of whether the former finds the latter or not. Brussels nuclear ship agreement is applied to nuclear ship owners in Germany (Article 25a, Atomgesetz). (Okada, K.)

  17. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  18. Integrating Corporate Social Responsibility Awareness into a Retail Management Course

    Science.gov (United States)

    Beitelspacher, Lauren; Rodgers, Vikki L.

    2018-01-01

    Both students and industry are demanding that marketing instructors incorporate discussions of environmental and social responsibility into their courses. Marketing educators play a critical role in developing the knowledge and skills students need to effectively integrate corporate social responsibility (CSR) into their future business endeavors.…

  19. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  20. Photon and neutron energy response of Thermoluminescent (TL) dosimeters

    International Nuclear Information System (INIS)

    Thilagam, L.; Priya, M.R.; Mohapatra, D.K.

    2018-01-01

    Theoretical Monte Carlo (MC) simulations are carried out to investigate the relative thermoluminesence (TL) response of the most commonly used TLD materials to a wide range of photon energy. The effect of polytetrafluoroethylene (PTFE) on TL response of CaSO 4 :Dy is also studied. Additionally, the neutron response of LiF:Mg,Ti TL materials with different concentrations of 6 Li is estimated in terms of the number of 6 Li(n, t) 4 He capture reactions for a wider neutron energy

  1. Energy preserving integration of bi-Hamiltonian partial differential equations

    NARCIS (Netherlands)

    Karasozen, B.; Simsek, G.

    2013-01-01

    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the

  2. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  3. Closed expressions for specific massive multiloop self-energy integrals

    International Nuclear Information System (INIS)

    Berends, F.A.; Boehm, M.; Buza, M.; Scharf, R.

    1994-01-01

    In this paper the class of N loop massive scalar self-energy diagrams with N + 1 propagators is studied in an arbitrary number of dimensions. As it is known these integrals cannot be expressed in terms of polylogarithms. Here it is shown, however, that they can be described by generalized hypergeometric functions of several variables, namely Laricella functions. These results represent previous small and large momentum expansions in closed form. Numerical comparisons for the finite part in four dimensions with a two-dimensional integral representation show good agreement. (orig.)

  4. Energy savings due to daylight and artificial lighting integration in office buildings in hot climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ashwal, Nagib T. [Sana' a University, Sana' a (Yemen); Budaiwi, Ismail M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-01

    Reducing energy consumption while maintaining acceptable environmental quality in buildings has been a challenging task for building professionals. In office buildings, artificial lighting systems are a major consumer of energy and can significantly contribute to building cooling load. Furthermore, although reliable, artificial lighting does not necessarily provide the required quality of lighting. Significant improvement in lighting quality and energy consumption can be achieved by proper integration of daylight and artificial lighting. The objective of this study is to investigate the energy performance of office buildings resulting from daylight and artificial lighting integration in hot climates. A parametric analysis is conducted to find the impact of different window design parameters, including window area, height and glazing type, on building energy performance. Results have shown that as much as 35% reduction in lighting energy consumption and 13% reduction in total energy consumption can be obtained when proper daylighting and artificial lighting integration is achieved.

  5. Review of recent benchmark experiments on integral test for high energy nuclear data evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Konno, Chikara; Fukahori, Tokio; Hayashi, Katsumi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    A survey work of recent benchmark experiments on an integral test for high energy nuclear data evaluation was carried out as one of the work of the Task Force on JENDL High Energy File Integral Evaluation (JHEFIE). In this paper the results are compiled and the status of recent benchmark experiments is described. (author)

  6. The integration of renewable energies into the electricity systems of North Africa

    International Nuclear Information System (INIS)

    Brand, Bernhard

    2015-01-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  7. The integration of renewable energies into the electricity systems of North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Bernhard

    2015-11-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL January 2018 Blockchain concept demonstrated Blockchain to Enable Energy Market in BlockCypher Partnership NREL is partnering with BlockCypher, a blockchain Web services provider, to demonstrate how blockchain technology can support distributed energy markets. For some, the language and

  9. Cardiovascular responses to energy drinks in a healthy population: The C-energy study.

    Science.gov (United States)

    Kozik, Teri M; Shah, Sachin; Bhattacharyya, Mouchumi; Franklin, Teresa T; Connolly, Therese Farrell; Chien, Walter; Charos, George S; Pelter, Michele M

    2016-07-01

    Energy drink consumption has increased significantly over the past decade and is associated with greater than 20,000 emergency department visits per year. Most often these visits are due to cardiovascular complaints ranging from palpitations to cardiac arrest. To determine if energy drinks alter; blood pressure, electrolytes, activated bleeding time (ACT), and/or cardiac responses measured with a 12-lead electrocardiographic (ECG) Holter. Continuous ECG data was collected for five hours (30 minutes baseline and 4 hours post consumption [PC]). Subjects consumed 32 ounces of energy drink within one hour and data (vital signs and blood samples) was collected throughout the study period. Paired students t-test and a corresponding non-parametric test (Wilcoxon signed rank) were used for analysis of the data. Fourteen healthy young subjects were recruited (mean age 28.6 years). Systolic blood pressure (baseline=132, ±7.83; PC=151, ±11.21; P=.001); QTc interval (baseline=423, ±22.74; PC=503, ±24.56; P500 milliseconds PC. Other T-wave changes were noted in 9/14 (64.3%) subjects PC. Energy drinks increased systolic blood pressure, altered electrolytes, and resulted in repolarization abnormalities. These physiological responses can lead to arrhythmias and other abnormal cardiac responses highlighting the importance that emergency room personnel assess for energy drink consumption and potential toxicity. Copyright © 2016. Published by Elsevier Inc.

  10. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shiyuan, E-mail: redaple@bit.edu.cn; Sun, Haoyu, E-mail: redaple@bit.edu.cn; Xu, Chunguang, E-mail: redaple@bit.edu.cn; Cao, Xiandong, E-mail: redaple@bit.edu.cn; Cui, Liming, E-mail: redaple@bit.edu.cn; Xiao, Dingguo, E-mail: redaple@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China NO.5 Zhongguancun South Street, Haidian District, Beijing 100081 (China)

    2015-03-31

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  11. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  12. Wind energy integration in the Spanish electrical system

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel [Red Electrica de Espana s.a. (Spain)

    2009-07-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  13. Wind energy integration in the Spanish electrical system

    International Nuclear Information System (INIS)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel

    2009-01-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  14. Development of integrated systems dynamics models for the sustainability assessment of nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2005-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions allowing full stakeholder involvement in deciding on the role of nuclear energy as part of a sustainable energy generation mix in the future. Integrated system dynamics models of nuclear energy systems are interesting tools for such assessment studies allowing performing material flow accounting, environmental impact, economic competitiveness and socio-political analysis and this for time-evolving nuclear energy systems. No single tool today is capable of covering all the dimensions for such integrated assessment while various developments are ongoing in different places around the world to make such tools available in the nearby future. Argonne National Laboratory has embarked on such tool development since the year 2000 and has developed various tools among which the DANESS-code shall be described in some more detail in this paper. (author)

  15. Integral energy concepts for housing estates; Integrale Energiekonzepte fuer Wohnsiedlungen

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, M.N.; Kuehl, L. [Technische Univ. Braunschweig (Germany)

    1998-06-01

    Integral energy concepts for housing estates require an early cooperation between architects, planners, and specialist engineers on the basis of a holistic planning approach. This is how future-oriented, sustainable concepts evolve which do justice to the multifarious requirements on the integral energy system of a housing estate. The present paper elucidates different approaches to optimising the energy efficiency of buildings such as the implementation of low-energy house concepts, building site and architectural planning, and detailed planning of heat insulation concepts, ventilation and air tightness concepts, and adapted heating systems. The solarisation of development plans has an influence on the arrangement of buildings, which are now planned to give the greatest possible passive and active solar energy gains. The authors also describe solar-assisted district heating systems for housing estates. [Deutsch] Integrale Energiekonzepte fuer Wohnsiedlungen erfordern die fruehe Zusammenarbeit von Architekten, Planern und Fachingenieuren im Rahmen einer ganzheitlichen Planung. So entstehen zukunftsweisende und tragfaehige Konzepte, die den vielschichtigen Anforderungen des Gesamtenergiesystems ``Wohnsiedlung`` gerecht werden. Im Folgenden wird die energetische Optimierung von Gebaeuden wie die Umsetzung von Niedrigenergiehaus-Konzepten, Standort und Gebaeudeplanung sowie Detailplanung in Bezug auf das Waermedaemmkonzept, Lueftungs-/Dichtheitskonzept und auf angepasste Waermeversorgungssysteme erl autert. Die Solarisierung von Bebauungsplaenen beeinflusste Anordnung der Gebaeude hinsichtlich der Nutzung passivsolarer Gewinne sowie des Einsatzes von Systemen der aktiven Solarenergienutzung. Solarunterstuetzte Nahwaermenetze fuer Wohnsiedlungen werden ebenfalls beschrieben.

  16. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe

    2016-12-27

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  17. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe; Collier, N.; Dalcin, Lisandro; Brown, D.L.; Calo, V.M.

    2016-01-01

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  18. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  19. Optimization of the energy response of radiographic films by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Moslehi, A. [Physics Department, Faculty of Science, Arak University, Shariati Square, Arak 38156 (Iran, Islamic Republic of); Hamidi, S., E-mail: s-hamidi@araku.ac.i [Physics Department, Faculty of Science, Arak University, Shariati Square, Arak 38156 (Iran, Islamic Republic of); Raisali, G. [Radiation Application Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran (Iran, Islamic Republic of); Gheshlaghi, F. [Film Badge Dosimetry Laboratory, National Radiation Protection Department, Iranian Nuclear Regulatory Authority, Atomic Energy Organization of Iran (Iran, Islamic Republic of)

    2010-01-15

    In the present work a simple model for calculation of the energy response of radiographic films was introduced. According to the model the energy response of a radiographic film is directly proportional to the optical density on the film and thus to the number of developed grains in the emulsion. The model was simulated by Monte Carlo method using MCNP code and the relative energy response of Kodak type 2 film under a few filters of A.E.R.E./R.P.S. film badge was calculated. The simulated responses were in agreement with the experimental data in the region of 30 keV-1.5 MeV. In the next stage a multi-element filter was simulated to optimize the energy response in the above energies. The energy response varied by 25% between 40 keV and 1.5 MeV. So the dose received by the film is equivalent to the desired true dose and there would be no need to the correction factors.

  20. Optimization of the energy response of radiographic films by Monte Carlo method

    International Nuclear Information System (INIS)

    Moslehi, A.; Hamidi, S.; Raisali, G.; Gheshlaghi, F.

    2010-01-01

    In the present work a simple model for calculation of the energy response of radiographic films was introduced. According to the model the energy response of a radiographic film is directly proportional to the optical density on the film and thus to the number of developed grains in the emulsion. The model was simulated by Monte Carlo method using MCNP code and the relative energy response of Kodak type 2 film under a few filters of A.E.R.E./R.P.S. film badge was calculated. The simulated responses were in agreement with the experimental data in the region of 30 keV-1.5 MeV. In the next stage a multi-element filter was simulated to optimize the energy response in the above energies. The energy response varied by 25% between 40 keV and 1.5 MeV. So the dose received by the film is equivalent to the desired true dose and there would be no need to the correction factors.

  1. BC Hydro best practices : energy efficiency and integrated planning

    International Nuclear Information System (INIS)

    Henriques, D.

    2004-01-01

    The key elements to success in energy efficiency include integrated energy planning, a review of conservation potential, pursuing a target, risk sharing between all parties, and long term planning when making investments in demand side management (DSM). The barriers to cost effective energy efficiency investment were also outlined along with the scope of the conservation potential review which included 95 per cent of electricity end use applications in all market sectors including residential, commercial, institutional and industrial. BC Hydro's Power Smart program focuses on energy efficiency and load displacement to meet 35 per cent of the utility's forecasted growth by 2012. The sources of savings within each of the market sectors were identified. Key recommendations regarding energy efficiency and conservation were also presented with reference to financial incentives offered by BC Hydro to consumers to encourage a switch to more efficient lighting systems. 10 figs

  2. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  3. Economic aspects for South America energy integration; Aspectos economicos para a integracao energetica da America do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Vela, Jorge Alberto Alcala; Cardozo, Fernando Simoes [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Expansion of the internal market and external, production on a large scale and more dynamic economic growth would be the consequences of a regional integration in South America. However, due to the specific characteristics of South America this process did not occur. Many attempts were made through the years with the creation of institutions that tried to promote the integration of different forms of South America. This article analyses the current economic conditions in which this initiative is to achieve an energy integration, which seems feasible given the provision expresses the presidents of South American countries before a possible rationing of energy. Through analysis of the results it may be concluded that there is a growing demand for energy in all countries, which should be resolved first in order not to cut the development of South America. The main economic aspects which affect the process of integrating energy are the commercial structures of energy, the energy complementarities, the degree of development of infrastructure for interconnection, the industrial structure and conformation electric business. However, an immediate solution would be to boost bilateral integration energy projects and construction of transmission lines that interconnect the regional stations for the supply of electric energy. Moreover, as the conditions are not improved political and economic and there is no compatible models between technical institutions and legal and administrative, will not be achieved significant progress in the process of regional energy integration of South America. (author)

  4. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  5. Regional energy integration in Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This report is the first publication produced within the framework of the WEC's Africa Regional Action Plan as part of the 2005-2007 Work Programme. Presently, over 80% of the total energy consumption in Africa is based on traditional biomass used mostly for cooking. This lack of access to modern energy is holding back economic and social development for 1.6 billion people around the world. The situation is particularly grave in sub-Sahara Africa where over 80% of the population lives in rural areas and the average electrification rate is less than 5%. At least 50 million new connections are needed to provide electricity to supply the non-connected areas in Africa. The over 700 million potential customers represented by these new connections provide a major business opportunity. It is now widely recognised that development assistance, bilateral aid, multilateral financing institutions, a multitude of international aid agencies, NGOs and others have failed to make a significant difference. A new approach is required, otherwise the number of people without access to electricity will continue to grow, and none of the Millennium Development Goals set by the United Nations will be achieved. This regional report highlights key factors that affect cooperative energy projects. The geopolitical context, investment climate and appropriate regulation are just as important as the institutional and technical capacity required to execute many of these projects. The report identifies four key benefits of regional integration: improved security of supply and accessibility; increased economic efficiency; enhanced environmental quality and broader development of renewable resources.

  6. Regional energy integration in Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This report is the first publication produced within the framework of the WEC's Africa Regional Action Plan as part of the 2005-2007 Work Programme. Presently, over 80% of the total energy consumption in Africa is based on traditional biomass used mostly for cooking. This lack of access to modern energy is holding back economic and social development for 1.6 billion people around the world. The situation is particularly grave in sub-Sahara Africa where over 80% of the population lives in rural areas and the average electrification rate is less than 5%. At least 50 million new connections are needed to provide electricity to supply the non-connected areas in Africa. The over 700 million potential customers represented by these new connections provide a major business opportunity. It is now widely recognised that development assistance, bilateral aid, multilateral financing institutions, a multitude of international aid agencies, NGOs and others have failed to make a significant difference. A new approach is required, otherwise the number of people without access to electricity will continue to grow, and none of the Millennium Development Goals set by the United Nations will be achieved. This regional report highlights key factors that affect cooperative energy projects. The geopolitical context, investment climate and appropriate regulation are just as important as the institutional and technical capacity required to execute many of these projects. The report identifies four key benefits of regional integration: improved security of supply and accessibility; increased economic efficiency; enhanced environmental quality and broader development of renewable resources.

  7. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  8. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.

    2008-01-01

    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  9. Methods for assessing the sustainability of integrated municipal waste management and energy supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Luoranen, M.

    2009-07-01

    The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU's Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: Formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste

  10. Smart Energy Systems and Energy Transition

    International Nuclear Information System (INIS)

    Duic, N.

    2016-01-01

    Transition to decarbonized energy systems is becoming more attractive with fall of investment costs of renewables and volatile prices and political insecurity of fossil fuels. Improving energy efficiency, especially of buildings and transport, is important, but due to long life of buildings, it will be a slow way of decarbonization. The renewable energy resources are bountiful, especially wind and solar, while integrating them into current energy systems is proving to be a challenge. Solar has reached grid parity making it cheapest electricity source for retail customers in most of the World, creating new prosumer markets. It has started to reach cost parity in sunny countries, and soon solar energy will be cheapest everywhere. The limit of cheap and easy integration for wind is around 20% of yearly electricity generation, while a combined wind and solar may reach 30%. Going any further asks for implementation of completely free energy markets (involving day ahead, intraday and various reserve and ancillary services markets), demand response, coupling of wholesale and retail energy prices, and it involves integration between electricity, heat, water and transport systems. The cheapest and simplest way of increasing further the penetration of renewables is integrating power and heating/cooling systems through the use of district heating and cooling (which may be centrally controlled and may have significant heat storage capacity), since power to heat technologies are excellent for demand response. District cooling is of particular importance to historic cities that want to remove split systems from their facades. In countries with low heat demand water supply system may be used to increase the penetration of renewables, by using water at higher potential energy as storage media, or in dry climates desalination and stored water may be used for those purposes, and reversible hydro may be used as balancing technology. Electrification of personal car transport allows

  11. Derivation of integral energy balance for the manotea facility

    Energy Technology Data Exchange (ETDEWEB)

    Pollman, Anthony, E-mail: pollman@nps.edu [Mechanical and Aeronautical Engineering Department, United States Naval Postgraduate School, Monterey, CA 93943 (United States); Marzo, Marino di [Fire Protection Engineering Department, University of Maryland, College Park, MD 20742 (United States)

    2013-12-15

    Highlights: • An integral energy balance was derived for the MANOTEA facility. • A second equation was derived which frames transients in terms of inventory alone. • Both equations were implemented and showed good agreement with experimental data. • The equations capture the physical mechanisms behind MANOTEA transients. • Physical understanding is required in order to properly model these transients with TRACE. - Abstract: Rapid-condensation-induced fluid motion occurs in several nuclear reactor accident sequences, as well as during normal operation. Modeling these events is central to our ability to regulate and ensure safe reactor operations. The UMD-USNA Near One-dimensional Transient Experimental Apparatus (MANOTEA) was constructed in order to create a rapid-condensation dataset for subsequent comparison to TRACE output. This paper outlines a derivation of the energy balance for the facility. A path integral based on mass and energy, rather than fluid mechanical, considerations is derived in order to characterize the physical mechanisms governing MANOTEA transients. This equation is further simplified to obtain an expression that frames transients in term of liquid inventory alone. Using data obtained from an actual transient, the path integral is implemented using three variables (change in liquid inventory, liquid inventory as a function of time, and change in metal temperature) to predict the outcome of a fourth independently measured variable (condenser pressure as a function of time). The implementation yields a very good approximation of the actual data. The inventory equation is also implemented and shows reasonable agreement. These equations, and the physical intuition that they yield, are key to properly characterizing MANOTEA transients and any subsequent modeling efforts.

  12. The technical and economic implications of integrating fluctuating renewable energy using energy storage

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    This paper investigates how large-scale energystorage can assist the integration of fluctuatingrenewableenergy by using the Irish energy system, pumped hydroelectric energystorage (PHES), and wind power as a case study. In total three key aspects were investigated in relation to PHES: its operation...... are sensitive to changes in the PHES capacities used, fuel prices, interest rates, and the total annual wind energy produced. Finally, the optimum capacities of PHES identified for Ireland in 2020 were compared to two other alternatives which required the same investment: domestic heat pumps and district......, size, and cost. From the results it was evident that PHES can increase the wind penetration feasible on the Irish energy system and also reduce its operating costs. However, under predicted 2020 fuel prices and a conventional 6% interest rate, these savings may not be sufficient since the savings...

  13. Wind energy and integration into the grid

    International Nuclear Information System (INIS)

    Fox, B.

    2009-01-01

    The development of wind power plants raises multiple challenges in terms of planning, exploitation and control of power systems. One characteristic of this energy source is its variability with time and its difficulty to be planned. This book takes stock of the theoretical and practical aspects of the question. It gives us a state-of-the-art of the existing solutions to integrate this energy source to the national grid beside other sources of different origin (nuclear, thermal..). In order to allow the reader to understand the stakes and the solutions, some basic notions of electrotechnics and wind technologies are presented first. Then it deals with the wind power impact on power system operation when the wind energy penetration reaches 10% of the whole power. The production/consumption balancing is analyzed and the problem of wind power unpredictability is approached. Beside the problems of voltage regulation of a wind farm and supply maintenance during voltage drop, the book allows to apprehend the operation of electricity markets and in particular those related to wind power (meteorology forecasts and anticipation of production). (J.S.)

  14. Stakeholder consultations in the energy directorate : can they help integrate climate change?

    NARCIS (Netherlands)

    Vasileiadou, E.; Tuinstra, W.

    2013-01-01

    Investigation of the conditions under which formal stakeholder consultations of the Directorate General Energy of the European Commission can help integrate climate change policy in energy policy in the European Union suggests that stakeholder consultations that aim at producing soft law and binding

  15. Radiation response of high speed CMOS integrated circuits

    International Nuclear Information System (INIS)

    Yue, H.; Davison, D.; Jennings, R.F.; Lothongkam, P.; Rinerson, D.; Wyland, D.

    1987-01-01

    This paper studies the total dose and dose rate radiation response of the FCT family of high speed CMOS integrated circuits. Data taken on the devices is used to establish the dominant failure modes, and this data is further analyzed using one-sided tolerance factors for normal distribution statistical analysis

  16. Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain

    International Nuclear Information System (INIS)

    Liu, Yingqi

    2017-01-01

    Demand-side resources like demand response (DR) and energy efficiency (EE) can contribute to the capacity adequacy underpinning power system reliability. Forward capacity markets are established in many liberalised markets to procure capacity, with a strong interest in procuring DR and EE. With case studies of ISO New England, PJM and Great Britain, this paper examines the process and trends of procuring DR and EE in forward capacity markets, and the design for integration mechanisms. It finds that the contribution of DR and EE varies wildly across these three capacity markets, due to a set of factors regarding mechanism design, market conditions and regulatory provisions, and the offering of EE is more heavily influenced by regulatory utility EE obligation. DR and EE are complementary in targeting end-uses and customers for capacity resources, thus highlighting the value of procuring them both. System needs and resources’ market potential need to be considered in defining capacity products. Over the long-term, it is important to ensure the removal of barriers for these demand-side resources and the capability of providers in addressing risks of unstable funding and forward planning. For the EDR Pilot in the UK, better coordination with forward capacity auction needs to be achieved. - Highlights: • Trends of demand response and energy efficiency in capacity markets are analysed. • Integration mechanisms, market conditions and regulatory provisions are key factors. • Participation of energy efficiency is influenced by regulatory utility obligations. • Procuring both demand response and energy efficiency in capacity market is valuable. • Critical analysis of the design of capacity products and integration mechanisms.

  17. Integration of national and regional energy development programs in Baltic States

    International Nuclear Information System (INIS)

    Klevas, V.; Antinucci, M.

    2004-01-01

    The report is dedicated to the presentation of the general framework of regional energy planning activities in Baltic States. The objective is to provide information on the context, in which regional energy policy instruments have to operate, and which has to be taken into consideration when compiling energy development measures for regional development and structural funds. The major issue of the publication is to discuss perspective of the formation methodology for energy management integration into development of regional planning documents. The main objective of this publication is to make a brief overview of what are the prospects of regional energy development. The place of municipal and regional energy development programs in general energy investment strategy is defined. The guidelines for regional energy programs are presented

  18. Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?

    International Nuclear Information System (INIS)

    Zakeri, Behnam; Syri, Sanna; Rinne, Samuli

    2015-01-01

    Finland is to increase the share of RES (renewable energy sources) up to 38% in final energy consumption by 2020. While benefiting from local biomass resources Finnish energy system is deemed to achieve this goal, increasing the share of other intermittent renewables is under development, namely wind power and solar energy. Yet the maximum flexibility of the existing energy system in integration of renewable energy is not investigated, which is an important step before undertaking new renewable energy obligations. This study aims at filling this gap by hourly analysis and comprehensive modeling of the energy system including electricity, heat, and transportation, by employing EnergyPLAN tool. Focusing on technical and economic implications, we assess the maximum potential of different RESs separately (including bioenergy, hydropower, wind power, solar heating and PV, and heat pumps), as well as an optimal mix of different technologies. Furthermore, we propose a new index for assessing the maximum flexibility of energy systems in absorbing variable renewable energy. The results demonstrate that wind energy can be harvested at maximum levels of 18–19% of annual power demand (approx. 16 TWh/a), without major enhancements in the flexibility of energy infrastructure. With today's energy demand, the maximum feasible renewable energy for Finland is around 44–50% by an optimal mix of different technologies, which promises 35% reduction in carbon emissions from 2012's level. Moreover, Finnish energy system is flexible to augment the share of renewables in gross electricity consumption up to 69–72%, at maximum. Higher shares of RES calls for lower energy consumption (energy efficiency) and more flexibility in balancing energy supply and consumption (e.g. by energy storage). - Highlights: • By hourly analysis, we model the whole energy system of Finland. • With existing energy infrastructure, RES (renewable energy sources) in primary energy cannot go beyond 50%.

  19. Scheduling Model for Renewable Energy Sources Integration in an Insular Power System

    Directory of Open Access Journals (Sweden)

    Gerardo J. Osório

    2018-01-01

    Full Text Available Insular power systems represent an asset and an excellent starting point for the development and analysis of innovative tools and technologies. The integration of renewable energy resources that has taken place in several islands in the south of Europe, particularly in Portugal, has brought more uncertainty to production management. In this work, an innovative scheduling model is proposed, which considers the integration of wind and solar resources in an insular power system in Portugal, with a strong conventional generation basis. This study aims to show the benefits of increasing the integration of renewable energy resources in this insular power system, and the objectives are related to minimizing the time for which conventional generation is in operation, maximizing profits, reducing production costs, and consequently, reducing greenhouse gas emissions.

  20. Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains

    International Nuclear Information System (INIS)

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The improvement of the efficiency of vehicle energy systems promotes an active search to find innovative solutions during the design process. This requires more accurate modeling of complex systems, which offers new ways to improve the design efficiency of energy systems. The vehicle is a highly dynamic system. The size and the efficiency of the convertors are dependent on the dynamic driving profile. In order to increase the energy efficiency, using energy integration techniques, an adapted methodology is required to choose the best points for the integrated system design. The idea is to clusterize the dynamic profile on typical multi-periods of the vehicle use. The energy system design is then optimized for these typical multi-periods. In this article a new methodology is applied on hybrid electric vehicles, in order to define the energy integrated powertrain configuration of the vehicle. The energy recovery potential of a single stage Organic Rankine Cycle for a thermal engine in combination with a hybrid electric powertrain is assessed for different drive cycles profiles and comfort situations. After the energy integration, a multi-objective optimization is applied to define the optimal design of a hybrid electric vehicle with a waste heat recovery system. - Highlights: • K-means algorithm transforms the dynamic driving profile on static multi-periods. • The clusters represent the typical powertrain use and size the heat recovery utility. • The maximal heat recovery potential on thermal powertrains is 11% for urban driving. • The maximal heat recovery potential on hybrid electric powertrains is 5%. • Engine downsizing increases heat recovery potential on hybrid electric powertrains

  1. Special Issue on Advances in Integrated Energy Systems Design, Control and Optimization

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    and novel operation schemes, and new incentives and business models. This revolution is affecting the current paradigm and demanding that energy systems be integrated into multi-carrier energy hubs [1]. It is greatly increasing the interactions between today’s energy systems at various scales (ranging from...... energy costs to all consumers, increase reliability of service and mitigate carbon footprints. However, this plan of action necessitates regulatory frameworks, strategic incentives and business models for efficient deployment....

  2. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  3. International Requirements for Large Integration of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Molina-Garcia, Angel; Hansen, Anca Daniela; Muljadi, Ed

    2017-01-01

    Most European countries have concerns about the integration of large amounts of renewable energy sources (RES) into electric power systems, and this is currently a topic of growing interest. In January 2008, the European Commission published the 2020 package, which proposes committing the European...... Union to a 20% reduction in greenhouse gas emissions, to achieve a target of deriving 20% of the European Union's final energy consumption from renewable sources, and to achieve 20% improvement in energy efficiency both by the year 2020 [1]. Member states have different individual goals to meet...... these overall objectives, and they each need to provide a detailed roadmap describing how they will meet these legally binding targets [2]. At this time, RES are an indispensable part of the global energy mix, which has been partially motivated by the continuous increases in hydropower as well as the rapid...

  4. Integrated project delivery methods for energy renovation of social housing

    Directory of Open Access Journals (Sweden)

    Tadeo Baldiri Salcedo Rahola

    2015-11-01

    Full Text Available Optimised project delivery methods forsocial housing energy renovations European Social Housing Organisations (SHOs are currently facing challenging times. The ageing of their housing stock and the economic crisis, which has affected both their finances and the finances of their tenants, are testing their capacity to stick to their aim of providing decent and affordable housing. Housing renovation projects offer the possibility of upgrading the health and comfort levels of their old housing stock to current standards and improve energy efficiency, and this solution also addresses the fuel poverty problems suffered by some tenants. Unfortunately, the limited financial capacity of SHOs is hampering the scale of housing renovation projects and the energy savings achieved.  At the same time, the renovation of the existing housing stock is seen as one of the most promising alternative routes to achieving the ambitious CO2 emissions reduction targets set by European authorities – namely, to reduce EU CO2 emissions to 20% below their 1990 levels by 2020. The synergy between European targets and the aims of SHOs has been addressed by the energy policies of the member states, which focus on the potential energy savings achievable by renovating social housing. In fact, the European initiatives have prioritised energy savings in social housing renovations to such an extent that these are referred to as ‘energy renovations’. Energy renovation is therefore a renovation project with higher energy savings target than a regular renovation project. In total, European SHOs own 21.5 million dwellings representing around 9.4% of the total housing stock. Each SHO owns a large number of dwellings, which means there are fewer people to convince of the need to make energy savings through building renovations, maximising the potentially high impact of decisions. Moreover, SHOs are responsible for maintaining and upgrading their properties in order to continue

  5. Integrating the bottom-up and top-down approach to energy economy modelling. The case of Denmark

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper presents results from an integration project covering Danish models based on bottom-up and top-down approaches to energy]economy modelling. The purpose of the project was to identify theoretical and methodological problems for integrating existing models for Denmark and to implement...... an integration of the models. The integration was established through a number of links between energy bottom-up modules and a macroeconomic model. In this integrated model it is possible to analyse both top-down instruments, such as taxes along with bottom-up instruments, such as regulation of technology...

  6. Evaluation of energy responses for neutron dose-equivalent meters made in Japan

    International Nuclear Information System (INIS)

    Saegusa, J.; Yoshizawa, M.; Tanimura, Y.; Yoshida, M.; Yamano, T.; Nakaoka, H.

    2004-01-01

    Energy responses of three types of Japanese neutron dose-equivalent (DE) meters were evaluated by Monte Carlo simulations and measurements. The energy responses were evaluated for thermal neutrons, monoenergetic neutrons with energies up to 15.2 MeV, and also for neutrons from such radionuclide sources as 252 Cf and 241 Am-Be. The calculated results were corroborated with the measured ones. The angular dependence of the response and the DE response were also evaluated. As a result, reliable energy responses were obtained by careful simulations of the proportional counter, moderator and absorber of the DE meters. Furthermore, the relationship between pressure of counting gas and response of the DE meter was discussed. By using the obtained responses, relations between predicted readings of the DE meters and true DE values were studied for various workplace spectra

  7. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  8. Wind Integration National Dataset (WIND) Toolkit; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, Caroline; Hodge, Bri-Mathias

    2015-07-14

    A webinar about the Wind Integration National Dataset (WIND) Toolkit was presented by Bri-Mathias Hodge and Caroline Draxl on July 14, 2015. It was hosted by the Southern Alliance for Clean Energy. The toolkit is a grid integration data set that contains meteorological and power data at a 5-minute resolution across the continental United States for 7 years and hourly power forecasts.

  9. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  10. Dissecting stimulus-response binding effects: Grouping by color separately impacts integration and retrieval processes.

    Science.gov (United States)

    Laub, Ruth; Frings, Christian; Moeller, Birte

    2018-04-23

    In selection tasks, target and distractor features can be encoded together with the response into the same short-lived memory trace, or event file (see Hommel, 2004), leading to bindings between stimulus and response features. The repetition of a stored target or distractor feature can lead to the retrieval of the entire episode, including the response-so-called "binding effects." Binding effects due to distractor repetition are stronger for grouped than for nongrouped target and distractor stimulus configurations. Modulation of either of two mechanisms that lead to the observed binding effects might be responsible here: Grouping may influence either stimulus-response integration or stimulus-response retrieval. In the present study we investigated the influences of grouping on both mechanisms independently. In two experiments, target and distractor letters were grouped (or nongrouped) via color (dis)similarity separately during integration and retrieval. Grouping by color similarity affected integration and retrieval mechanisms independently and in different ways. Color dissimilarity enhanced distractor-based retrieval, whereas color similarity enhanced distractor integration. We concluded that stimulus grouping is relevant for binding effects, but that the mechanisms that contribute to binding effects should be carefully separated.

  11. Design Process for Integrated Concepts with Responsive Building Elements

    DEFF Research Database (Denmark)

    Aa, Van der A.; Heiselberg, Per

    2008-01-01

    An integrated building concept is a prerequisite to come to an energy efficient building with a good and healthy IAQ indoor comfort. A design process that defines the targets and boundary conditions in the very first stage of the design and guarantees them until the building is finished and used...... is needed. The hard question is however: how to make the right choice of the combination of individual measures from building components and building services elements. Within the framework of IEA-ECBCS Annex 44 research has been conducted about the design process for integrated building concepts...

  12. Nuclear response functions at large energy and momentum transfer

    International Nuclear Information System (INIS)

    Bertozzi, W.; Moniz, E.J.; Lourie, R.W.

    1991-01-01

    Quasifree nucleon processes are expected to dominate the nuclear electromagnetic response function for large energy and momentum transfers, i.e., for energy transfers large compared with nuclear single particle energies and momentum transfers large compared with typical nuclear momenta. Despite the evident success of the quasifree picture in providing the basic frame work for discussing and understanding the large energy, large momentum nuclear response, the limits of this picture have also become quite clear. In this article a selected set of inclusive and coincidence data are presented in order to define the limits of the quasifree picture more quantitatively. Specific dynamical mechanisms thought to be important in going beyond the quasifree picture are discussed as well. 75 refs, 37 figs

  13. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  14. Fully integrated CMOS pixel detector for high energy particles

    International Nuclear Information System (INIS)

    Vanstraelen, G.; Debusschere, I.; Claeys, C.; Declerck, G.

    1989-01-01

    A novel type of position and energy sensitive, monolithic pixel array with integrated readout electronics is proposed. Special features of the design are a reduction of the number of output channels and of the amount of output data, and the use of transistors on the high resistivity silicon. The number of output channels for the detector array is reduced by handling in parallel a number of pixels, chosen as a function of the time resolution required for the system, and by the use of an address decoder. A further reduction of data is achieved by reading out only those pixels which have been activated. The pixel detector circuit will be realized in a 3 μm p-well CMOS process, which is optimized for the full integration of readout electronics and detector diodes on high resistivity Si. A retrograde well is formed by means of a high energy implantation, followed by the appropriate temperature steps. The optimization of the well shape takes into account the high substrate bias applied during the detector operation. The design is largely based on the use of MOS transistors on the high resistivity silicon itself. These have proven to perform as well as transistors on standard doped substrate. The basic building elements as well as the design strategy of the integrated pixel detector are presented in detail. (orig.)

  15. JEM-X: The X-ray monitor on INTEGRAL

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Lund, Niels; Westergaard, Niels Jørgen Stenfeldt

    2004-01-01

    The INTEGRAL X-ray monitor, JEM-X, (together with the two gamma ray instruments, SPI and IBIS) provides simultaneous imaging with arcminute angular resolution in the 3-35 keV band. The good angular resolution and low energy response of JEM-X plays an important role in the detection and identifica......The INTEGRAL X-ray monitor, JEM-X, (together with the two gamma ray instruments, SPI and IBIS) provides simultaneous imaging with arcminute angular resolution in the 3-35 keV band. The good angular resolution and low energy response of JEM-X plays an important role in the detection...

  16. The integration of corporate social responsibility (CSR) initiatives into business activities

    DEFF Research Database (Denmark)

    Knudsen, Jette Steen

    2013-01-01

    While proponents of corporate social responsibility (CSR) have suggested that CSR initiatives should be integrated into mainstream business activities as 'strategic CSR' or 'shared value', research is lacking that explores how CSR programmes are integrated in companies. This paper compares CSR...... initiatives with human resource management (HRM) activities, which have a longer tradition of being integrated into company strategy. The focus is on gender diversity and CSR in a US multinational corporation (MNC). The MNC sees gender diversity as an integral part of business activities. In contrast, the MNC...

  17. The Integration of Corporate Social Responsibility (CSR) Initiatives into Business Activities

    DEFF Research Database (Denmark)

    Knudsen, Jette Steen

    While proponents of Corporate Social Responsibility (CSR) have suggested that CSR initiatives should be integrated into mainstream business activities as ‘strategic CSR’ or ‘shared value’, research is lacking that explores how CSR initiatives are integrated in companies. This article compares CSR...... initiatives to human resource management (HRM) initiatives, which have a longer tradition of being integrated into company strategy. The focus is on gender diversity and CSR initiatives in a US multinational corporation (MNC). The MNC sees gender diversity as an integral part of business activities...

  18. MODEL OF INTEGRATED VALUE OF PROJECTS IN THE FIELD OF ALTERNATIVE ENERGY

    Directory of Open Access Journals (Sweden)

    Наталія Ігорівна БОРИСОВА

    2015-05-01

    Full Text Available Development of alternative energy sources requires the implementation of complex problems, the solution of which is necessary to apply the project approach. The uniqueness of alternative energy projects (AEP necessitates individual approach to evaluating the effectiveness of each. The paper contains the results of the project management features's analysis in the field of alternative energy, determining the values and developing of the value management integrated conceptual model of AEP. In assessing the effectiveness of AEP considered the socio-economic and commercial aspects. Value management integrated conceptual model of AEP was obtained by combining the classical model of the project management goals with the project values model "Five "E" and two "A". The classical model of the project management goals have been complemented with risk parameters.

  19. Embedded generation for industrial demand response in renewable energy markets

    International Nuclear Information System (INIS)

    Leanez, Frank J.; Drayton, Glenn

    2010-01-01

    Uncertainty in the electrical energy market is expected to increase with growth in the percentage of generation using renewable resources. Demand response can play a key role in giving stability to system operation. This paper discusses the embedded generation for industrial demand response in renewable energy markets. The methodology of the demand response is explained. It consists of long-term optimization and stochastic optimization. Wind energy, among all the renewable resources, is becoming increasingly popular. Volatility in the wind energy sector is high and this is explained using examples. Uncertainty in the wind market is shown using stochastic optimization. Alternative techniques for generation of wind energy were seen to be needed. Embedded generation techniques include co-generation (CHP) and pump storage among others. These techniques are analyzed and the results are presented. From these results, it is seen that investment in renewables is immediately required and that innovative generation technologies are also required over the long-term.

  20. Time for a revolution: smart energy and microgrid use in disaster response.

    Science.gov (United States)

    Callaway, David Wayne; Noste, Erin; McCahill, Peter Woods; Rossman, A J; Lempereur, Dominique; Kaney, Kathleen; Swanson, Doug

    2014-06-01

    Modern health care and disaster response are inextricably linked to high volume, reliable, quality power. Disasters place major strain on energy infrastructure in affected communities. Advances in renewable energy and microgrid technology offer the potential to improve mobile disaster medical response capabilities. However, very little is known about the energy requirements of and alternative power sources in disaster response. A gap analysis of the energy components of modern disaster response reveals multiple deficiencies. The MED-1 Green Project has been executed as a multiphase project designed to identify energy utilization inefficiencies, decrease demands on diesel generators, and employ modern energy management strategies to expand operational independence. This approach, in turn, allows for longer deployments in potentially more austere environments and minimizes the unit's environmental footprint. The ultimate goal is to serve as a proof of concept for other mobile medical units to create strategies for energy independence.

  1. Sapphire Energy - Integrated Algal Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    White, Rebecca L. [Sapphire Energy, Inc., Columbus, NM (United States). Columbus Algal Biomass Farm; Tyler, Mike [Sapphire Energy, Inc., San Diego, CA (United States)

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  2. A Responsive, Integrative Spanish Curriculum at UNC Charlotte

    Science.gov (United States)

    Doyle, Michael S.

    2010-01-01

    The Spanish program at UNC Charlotte is timely and responsive because it is designed to meet documented societal (job market) needs in today's and tomorrow's global village and economy by providing graduates with strong specialties in English-Spanish translating and in business Spanish. It is integrative in that it does so while maintaining its…

  3. FORMING OF THE SUSTAINABLE SUPPLY CHAINS BASED ON INCREASING OF THEIR INTEGRATED ENERGY EFFICIENCY

    Directory of Open Access Journals (Sweden)

    SHVETS V. J.

    2016-03-01

    Full Text Available Purpose. Key challenges and barriers of mining machinery enterprises in the context of forming sustainable supply chains in the mining industry are specified. Methodology. The algorithm of forming the industrial relations, which are carried out by the enterprises of mining machinery in order to increase the sustainable development of a mining industry, is offered. Conclusions.. Modern supply chains are confronted with dynamic trends and developments that are hard to predict. In order to respond to these changes and remain competitive advantage, companies should be able to identify and understand new sustainability issues in their branches. It is established that in the conditions of globalization of the market and the general orientation of Ukraine’s economy to the European principles of development, for mining machinery enterprises a proof of the commitment and observance of requirements of energy efficiency, i.e. energy saving, energy safety and social energy responsibility are very important. Supply channels should increase not only energy efficiency, economic and production stability of the company, but also strengthen the stability of all participants in the production chain, as well as other stakeholders (business partners, customers, investors, local communities, etc.. Originality. The interrelation of an indicator of energy efficiency in forming sustainable supply chain in a mining industry is established. Practical value. Using the principles of sustainable development in the forming of value chains will improve energy efficiency of industry in general; provide a competitive advantage to entry into the global production chains in terms of European integration of Ukraine.

  4. Hydrogen and fuel cell research: Institute for Integrated Energy Systems (IESVic)

    International Nuclear Information System (INIS)

    Pitt, L.

    2006-01-01

    Vision: IESVic's mission is to chart feasible paths to sustainable energy. Current research areas of investigation: 1. Energy system analysis 2. Computational fuel cell engineering; Fuel cell parameter measurement; Microscale fuel cells 3. Hydrogen dispersion studies for safety codes 4. Active magnetic refrigeration for hydrogen liquifaction and heat transfer in metal hydrides 5. Hydrogen and fuel cell system integration (author)

  5. Technical and economic analysis of integrating low-medium temperature solar energy into power plant

    International Nuclear Information System (INIS)

    Wang, Fu; Li, Hailong; Zhao, Jun; Deng, Shuai; Yan, Jinyue

    2016-01-01

    Highlights: • Seven configurations were studied regarding the integration of solar thermal energy. • Economic analysis was conducted on new built plants and retrofitted power plants. • Using solar thermal energy to preheat high pressure feedwater shows the best performance. - Abstract: In order to mitigate CO_2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO_2 ​capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO_2​ capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO_2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO_2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m"2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO_2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO_2 capture more clearly than those without CO_2 capture.

  6. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  7. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  8. Market response to the public display of energy performance rating at property sales

    DEFF Research Database (Denmark)

    Jensen, Ole Michael; Hansen, Anders Rhiger; Kragh, Jesper

    2016-01-01

    Energy labels have generally received positive response from consumers and have moved the market for white goods and cars in the direction of more energy-efficient products. On the real estate market, it was expected that an energy label, rating the energy performance of a property based on a nat......Energy labels have generally received positive response from consumers and have moved the market for white goods and cars in the direction of more energy-efficient products. On the real estate market, it was expected that an energy label, rating the energy performance of a property based...... on a national energy performance certificate (EPC) might receive similar response. However, in Denmark no response to the energy performance rating was observed for 15 years. This was a surprise considering that Denmark was the first country to implement an A to G rating of the energy performance of buildings...

  9. Ethical Responsibility of Governance for Integrating Disaster Risk Reduction with Development

    Science.gov (United States)

    Parkash Gupta, Surya

    2015-04-01

    The development in the public as well as the private sectors is controlled and regulated, directly or indirectly by the governments at federal, provincial and local levels. If this development goes haphazard and unplanned, without due considerations to environmental constraints and potential hazards; it is likely to cause disasters or may get affected by disasters. Therefore, it becomes an ethical responsibility of the people involved in governance sector to integrate disaster risk reduction with development in their administrative territories through enforcement of appropriate policies, guidelines and regulatory mechanisms. Such mechanisms should address the social, scientific, economic, environmental, and legal requirements that play significant role in planning, implementation of developmental activities as well as disaster management. The paper focuses on defining the ethical responsibilities for the governance sector for integrating disaster risk reduction with development. It highlights the ethical issues with examples from two case studies, one from the Uttarakhand state and the other Odhisa state in India. The case studies illustrates how does it make a difference in disaster risk reduction if the governments own or do not own ethical responsibilities. The paper considers two major disaster events, flash floods in Uttarakhand state and Cyclone Phailin in Odhisa state, that happened during the year 2013. The study points out that it makes a great difference in terms of consequences and response to disasters when ethical responsibilities are owned by the governance sector. The papers attempts to define these ethical responsibilities for integrating disaster risk reduction with development so that the governments can be held accountable for their acts or non-actions.

  10. Uncertainties in modeling and scaling in the prediction of fuel stored energy and thermal response

    International Nuclear Information System (INIS)

    Wulff, W.

    1987-01-01

    The steady-state temperature distribution and the stored energy in nuclear fuel elements are computed by analytical methods and used to rank, in the order of importance, the effects on stored energy from statistical uncertainties in modeling parameters, in boundary and in operating conditions. An integral technique is used to calculate the transient fuel temperature and to estimate the uncertainties in predicting the fuel thermal response and the peak clad temperature during a large-break loss of coolant accident. The uncertainty analysis presented here is an important part of evaluating the applicability, the uncertainties and the scaling capabilities of computer codes for nuclear reactor safety analyses. The methods employed in this analysis merit general attention because of their simplicity. It is shown that the blowdown peak is dominated by fuel stored energy alone or, equivalently, by linear heating rate. Gap conductance, peaking factors and fuel thermal conductivity are the three most important fuel modeling parameters affecting peak clad temperature uncertainty. 26 refs., 10 figs., 6 tabs

  11. The integrity of the tax system after BEPS : A shared responsibility

    NARCIS (Netherlands)

    Gribnau, Hans

    2017-01-01

    The international tax system is the result of the interaction of different actors who share the responsibility for its integrity. States and multinational corporations both enjoy to a certain extent freedom of choice with regard to their tax behaviour – which entails moral responsibility. Making,

  12. Campus and community micro grids integration of building integrated photovoltaic renewable energy sources: Case study of Split 3 area, Croatia - part A

    Directory of Open Access Journals (Sweden)

    Gašparović Goran

    2016-01-01

    Full Text Available Micro grids interconnect loads and distributed energy resources as a single controllable entity. New installations of renewable energy sources (RES in urban areas, such as Building Integrated Photovoltaic (BIPV, provide opportunities to increase energy independence and diversify energy sources in the energy system. This paper explores the integration of RES into two case study communities in an urban agglomeration to provide optimal conditions to meet a share of the electrical loads. Energy planning case studies for decentralized generation of renewable energy are conducted in H2RES energy planning software for hourly energy balances. The results indicate that BIPV and PV in the case study communities can cover about 17% of the recorded electrical demand of both areas. On a yearly basis, there will be a 0.025 GWh surplus of PV production with a maximum value of 1.25 MWh in one hour of operation unless grid storage is used. This amounts to a total investment cost of 13.36 million EUR. The results are useful for proposing future directions for the various case study communities targeting sustainable development.

  13. Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response

    International Nuclear Information System (INIS)

    Vahid-Pakdel, M.J.; Nojavan, Sayyad; Mohammadi-ivatloo, B.; Zare, Kazem

    2017-01-01

    Highlights: • Studying heating market impact on energy hub operation considering price uncertainty. • Investigating impact of implementation of heat demand response on hub operation. • Presenting stochastic method to consider wind generation and prices uncertainties. - Abstract: Multi carrier energy systems or energy hubs has provided more flexibility for energy management systems. On the other hand, due to mutual impact of different energy carriers in energy hubs, energy management studies become more challengeable. The initial patterns of energy demands from grids point of view can be modified by optimal scheduling of energy hubs. In this work, optimal operation of multi carrier energy system has been studied in the presence of wind farm, electrical and thermal storage systems, electrical and thermal demand response programs, electricity market and thermal energy market. Stochastic programming is implemented for modeling the system uncertainties such as demands, market prices and wind speed. It is shown that adding new source of heat energy for providing demand of consumers with market mechanism changes the optimal operation point of multi carrier energy system. Presented mixed integer linear formulation for the problem has been solved by executing CPLEX solver of GAMS optimization software. Simulation results shows that hub’s operation cost reduces up to 4.8% by enabling the option of using thermal energy market for meeting heat demand.

  14. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts

    International Nuclear Information System (INIS)

    Fonseca, Jimeno A.; Schlueter, Arno

    2015-01-01

    Highlights: • A model to describe spatiotemporal building energy demand patterns was developed. • The model integrates existing methods in urban and energy planning domains. • The model is useful to analyze energy efficiency strategies in neighborhoods. • Applicability in educational, urban and energy planning practices was found. - Abstract: We introduce an integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. The model addresses the need for a comprehensive method to identify present and potential states of building energy consumption in the context of urban transformation. The focus lies on determining the spatiotemporal variability of energy services in both standing and future buildings in the residential, commercial and industrial sectors. This detailed characterization facilitates the assessment of potential energy efficiency measures at the neighborhood and city district scales. In a novel approach we integrated existing methods in urban and energy planning domains such as spatial analysis, dynamic building energy modeling and energy mapping to provide a comprehensive, multi-scale and multi-dimensional model of analysis. The model is part of a geographic information system (GIS), which serves as a platform for the allocation and future dissemination of spatiotemporal data. The model is validated against measured data and a peer model for a city district in Switzerland. In this context, we present practical applications in the analysis of energy efficiency measures in buildings and urban zoning. We furthermore discuss potential applications in educational, urban and energy planning practices

  15. Flexible operation of thermal plants with integrated energy storage technologies

    Science.gov (United States)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  16. REopt: A Platform for Energy System Integration and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cutler, Dylan S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olis, Daniel R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Xiangkun [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Laws, Nicholas D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DiOrio, Nicholas A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Walker, H. A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-22

    REopt is a techno-economic decision support model used to optimize energy systems for buildings, campuses, communities, and microgrids. The primary application of the model is for optimizing the integration and operation of behind-the-meter energy assets. This report provides an overview of the model, including its capabilities and typical applications; inputs and outputs; economic calculations; technology descriptions; and model parameters, variables, and equations. The model is highly flexible, and is continually evolving to meet the needs of each analysis. Therefore, this report is not an exhaustive description of all capabilities, but rather a summary of the core components of the model.

  17. An integrated management systems approach to corporate social responsibility.

    NARCIS (Netherlands)

    Asif, M.; Searcy, C.; Zutshi, A.; Fisscher, O.A.M.

    2011-01-01

    A great deal of research has emphasized the strategic management of corporate social responsibility (CSR). However, gaps remain on how CSR can be effectively integrated with existing business processes. One key question remaining is how to design business processes so that they accommodate

  18. Dynamic state estimation for distribution networks with renewable energy integration

    NARCIS (Netherlands)

    Nguyen, P.H.; Venayagamoorthy, G.K.; Kling, W.L.; Ribeiro, P.F.

    2013-01-01

    The massive integration of variable and unpredictable Renewable Energy Sources (RES) and new types of load consumptions increases the dynamic and uncertain nature of the electricity grid. Emerging interests have focused on improving the monitoring capabilities of network operators so that they can

  19. Grid Integration Webinars | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Grid Integration Webinars Grid Integration Webinars Watch presentations from NREL analysts on various topics related to grid integration. Wind Curtailment and the Value of Transmission under a 2050 renewable curtailment under these high wind scenarios. Text Version Grid Integration Webinar: Exploring

  20. Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties

    International Nuclear Information System (INIS)

    Shayeghi, H.; Sobhani, B.

    2014-01-01

    Highlights: • Modelling mathematical integration of the proposed central bidding strategy for microgrids. • Considering and modelling the intra-market for adjusting the energy imbalances. • Analyzing effect of uncertainty of demand response and imbalance prices in profit of MG components. - Abstract: Due to the uncertain nature and limited predictability of wind and PV generated power, these resources participating in most of electricity markets are subject to significant deviation penalties during market settlements. In order to balance the unpredicted wind and PV power variations, system operators need to schedule additional reserves. This paper presents the optimal integrated participation model of wind and PV energy including demand response, storage devices, and dispatchable distributed generations in microgrids or virtual microgrids to increase their revenues in the intra-market. This market is considered 3–7 h before the delivered time, so that the amount of the contracted energy could be updated to reduce the produced power deviation of microgrid. A stochastic programming approach is considered in the development of the proposed bidding strategies for microgrid producers and loads. The optimization model is characterized by making the analysis of several scenarios and simultaneously treating three kinds of uncertainty including wind and PV power, intra-market, and imbalance prices. In order to predict these uncertainty variables, a neuro-fuzzy based approach has been applied. Historic data are used to forecast future prices and wind and PV power production in the adjustment markets. Also, a probabilistic approach based on the error of forecasted and real historic data is considered for estimating the future IM and imbalance prices of wind and PV produced power. Further, a test case is applied to example the microgrid using the Spanish market rules during one week, month, and year period to illustrate the potential benefits of the proposed joint

  1. Hydrogen, fuel cells and renewable energy integration in islands

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.; Foradini, F.; Hart, D.

    2002-01-01

    Remote areas such as islands rely on costly and highly polluting diesel and heavy fuel oil for their electricity supply. This paper explored the opportunities for exploiting economically and environmentally viable renewable energy sources, in particular hydrogen storage, on such islands. In particular, this study focused on addressing the challenge of matching energy supply with demand and with technical issues regarding weak grids that are hindered with high steady state voltage levels and voltage fluctuations. The main technical characteristics of integrated renewable energy and hydrogen systems were determined by modelling a case study for the island of El Hierro (Canary Islands). The paper referred to the challenges regarding the technical and economic viability of such systems and their contribution to the economic development of remote communities. It was noted that energy storage plays an important role in addressing supply and demand issues by offering a way to control voltage and using surplus electricity at times of low load. Electrical energy can be stored in the form of potential or chemical energy. New decentralized generation technologies have also played a role in improving the energy efficiency of renewable energy sources. The feasibility of using hydrogen for energy storage was examined with particular reference to fuel-cell based energy supply in isolated island communities. 4 refs., 5 figs

  2. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  3. Integrated energy and climate policy. Securing the supply of natural energy. An investigation of the German and European law; Integrierte Energie- und Klimapolitik. Die Sicherstellung der Erdgasversorgung. Eine Untersuchung deutschen und europaeischen Rechts

    Energy Technology Data Exchange (ETDEWEB)

    Nordmann, Henning

    2012-07-01

    Due to the extreme importance of natural gas as an energy source within an integrated energy policy and climate policy at national and European level, and due to the specific risks associated with the supply of natural gas, the contribution under consideration reports on the security of supply of natural gas. The following aspects are examined: To what extent are regulations on security of the natural gas supply provided in the German and European law. Which actors have the responsibility for the security of supply? What are the weaknesses in the legal arrangement of security of supply? The contribution also reports on the increasing importance of the EU as an actor of guarantee. The contribution of the EU to the security of supply in the supply of natural gas also is analysed.

  4. White matter integrity as a predictor of response to treatment in first episode psychosis.

    Science.gov (United States)

    Reis Marques, Tiago; Taylor, Heather; Chaddock, Chris; Dell'acqua, Flavio; Handley, Rowena; Reinders, A A T Simone; Mondelli, Valeria; Bonaccorso, Stefania; Diforti, Marta; Simmons, Andrew; David, Anthony S; Murray, Robin M; Pariante, Carmine M; Kapur, Shitij; Dazzan, Paola

    2014-01-01

    The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response.

  5. Calculated energy response of lithium fluoride finger-tip dosimeters

    International Nuclear Information System (INIS)

    Johns, T.F.

    1965-07-01

    Calculations have been made of the energy response of the lithium fluoride thermoluminescent dosimeters being used at A.E.E. Winfrith for the measurement of radiation doses to the finger-tips of people handling radio-active materials. It is shown that the energy response is likely to be materially affected if the sachet in which the powder is held contains elements with atomic numbers much higher than 9 (e.g. if the sachet is made from polyvinyl chloride). (author)

  6. Direct evaluation of free energy for large system through structure integration approach.

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2015-09-30

    We propose a new approach, 'structure integration', enabling direct evaluation of configurational free energy for large systems. The present approach is based on the statistical information of lattice. Through first-principles-based simulation, we find that the present method evaluates configurational free energy accurately in disorder states above critical temperature.

  7. Energy saving analysis and management modeling based on index decomposition analysis integrated energy saving potential method: Application to complex chemical processes

    International Nuclear Information System (INIS)

    Geng, Zhiqiang; Gao, Huachao; Wang, Yanqing; Han, Yongming; Zhu, Qunxiong

    2017-01-01

    Highlights: • The integrated framework that combines IDA with energy-saving potential method is proposed. • Energy saving analysis and management framework of complex chemical processes is obtained. • This proposed method is efficient in energy optimization and carbon emissions of complex chemical processes. - Abstract: Energy saving and management of complex chemical processes play a crucial role in the sustainable development procedure. In order to analyze the effect of the technology, management level, and production structure having on energy efficiency and energy saving potential, this paper proposed a novel integrated framework that combines index decomposition analysis (IDA) with energy saving potential method. The IDA method can obtain the level of energy activity, energy hierarchy and energy intensity effectively based on data-drive to reflect the impact of energy usage. The energy saving potential method can verify the correctness of the improvement direction proposed by the IDA method. Meanwhile, energy efficiency improvement, energy consumption reduction and energy savings can be visually discovered by the proposed framework. The demonstration analysis of ethylene production has verified the practicality of the proposed method. Moreover, we can obtain the corresponding improvement for the ethylene production based on the demonstration analysis. The energy efficiency index and the energy saving potential of these worst months can be increased by 6.7% and 7.4%, respectively. And the carbon emissions can be reduced by 7.4–8.2%.

  8. The Gulf Nuclear Energy Infrastructure Institute (GNEII) Four Years On

    International Nuclear Information System (INIS)

    Finch, Robert J.; Mohagheghi, Amir H.; Solodov, Alexander; Beeley, Philip A.; Boyle, David R.

    2014-01-01

    Introduction: What is GNEII? • Regionally based Institution → human resource capability → Future decision makers → managers & regulators. • Education & Development → Nuclear energy infrastructure → Integrated safeguards, safety, and security (3S) → Nuclear power fundamentals. • Strategic effort → Coordinated partnership → Responsible national nuclear energy program → Regional context. Why GNEII? • Build indigenous human resources → Education, Research, Technical capacity → Integrated 3S Systems Approach - coupled with - Nuclear Energy Infrastructure. • GNEII Addresses a Need → Increased nuclear power demand → Regional Nuclear Infrastructure → GNEII is a sustainable mechanism for developing a responsible nuclear energy program

  9. State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System

    Science.gov (United States)

    Zheng, Zhan; Zhang, Yongjun

    2017-08-01

    Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.

  10. A tool to guide the process of integrating health system responses to public health problems

    Directory of Open Access Journals (Sweden)

    Tilahun Nigatu Haregu

    2015-06-01

    Full Text Available An integrated model of health system responses to public health problems is considered to be the most preferable approach. Accordingly, there are several models that stipulate what an integrated architecture should look like. However, tools that can guide the overall process of integration are lacking. This tool is designed to guide the entire process of integration of health system responses to major public health problems. It is developed by taking into account the contexts of health systems of developing countries and the emergence of double-burden of chronic diseases in these settings. Chronic diseases – HIV/AIDS and NCDs – represented the evidence base for the development of the model. System level horizontal integration of health system responses were considered in the development of this tool.

  11. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    International Nuclear Information System (INIS)

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Highlights: • Novel optimization-based methodology to integrate renewable energy systems in cities. • Multiperiod model including storage, heat integration and Life Cycle Assessment. • Case study: systematic assessment of deep geothermal and wood conversion pathways. • Identification of novel wood-geothermal hybrid systems leading to higher efficiencies. • Extensive Supplementary Material to ensure full reproducibility of the work. - Abstract: Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and woody biomass in an urban energy system. The city is modeled in its entirety as a multiperiod optimization problem with the total annual cost as an objective, assessing as well the environmental impact with a Life Cycle Assessment approach. For geothermal energy, deep aquifers and Enhanced Geothermal Systems are considered for stand-alone production of heat and electricity, and for cogeneration. For biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of alternative processes (pyrolysis, Fischer-Tropsch synthesis and synthetic natural gas production) is studied. With a scenario-based approach, all pathways are first individually evaluated. Secondly, all possible combinations between geothermal and biomass options are systematically compared, taking into account the possibility of hybrid systems. Results show that integrating these two resources generates configurations featuring both lower costs and environmental impacts. In particular, synergies are found in innovative hybrid systems using

  12. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  13. Integrated energy wood and pulpwood harvesting in first-thinning stands

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, K.; Pajuoja, H. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi, Email: heikki.pajuoja@metsateho.fi; Hoegnaes, T. (Metsaehallitus, Kajaani (Finland)), Email: tore.hognas@metsa.fi; Mutikainen, A. (TTS Research, Rajamaeki (Finland)), Email: arto.mutikainen@tts.fi

    2009-07-01

    The integrated harvesting of industrial roundwood and energy wood by the so-called 'two-pile cutting method' has increased strongly in young forests in Finland during the last two years. The studies carried out by Metsaeteho Oy, Metsaehallitus and TTS Research (I) determined the time consumption and productivity in cutting work when using the integrated cutting of first-thinning wood, (II) clarified the development of the total removal in integrated harvesting operation, and (III) investigated the quality of pulpwood poles when using integrated the quality of pulpwood poles when using integrated cutting with multi-tree handling. The studies indicated that the total removal in integrated wood harvesting increases significantly compared to that of conventional, separate roundwood harvesting. When the total removal from the harvesting site increased considerably, there was a significant increase in the productivity of cutting work in integrated wood harvesting compared to the situation in separate pulpwood harvesting. In addition, the delimbing quality and bucking accuracy of the pulpwood poles obtained in multi-tree processing were comparable to those produced in single-tree handling. There were no problems with measuring the work output by a grapple scale attached to the boom of the forwarder. As the studies indicated very promising experiences in integrated wood cutting, integrated harvesting is likely to continue to increase in both first and later thinning in Finland. (orig.)

  14. Integral energy concepts for office and residential buildings; Integrale Energiekonzepte fuer Buero- und Wohngebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Velten, W.

    1998-06-01

    It has been confirmed by practical project experience that integral energy concepts are an excellent basis for the construction of energy-efficient buildings. In the extreme case buildings can even be self-sufficient in their energy supply. Uniting the responsibility for the overall energy and technology concept in the hands of a single contractor can help reduce frictional losses between those involved in the planning as well costs. A good example of this is the use of a simulation calculation for the prescribed demonstration of proper heat insulation. The presented projects show that it is possible to construct ecologically answerable buildings at attractively low costs. The presented concepts appear particularly convincing from the viewpoint of long-term maintenance of value and user-specific advantages such as agreeable working conditions. [Deutsch] Die konkreten Projekterfahrungen bestaetigen, dass durch integrale Energiekonzepte sowohl im Verwaltungs- als auch im Wohnungsbau hervorragende Voraussetzungen fuer energiesparende Gebaeude geschaffen werden koennen. Im Extremfall kann sogar eine autarke Energieversorgung erreicht werden. Durch Zusammenfassung der Gesamtverantwortung fuer das Energie- und Technikkonzept in einer Hand koennen Reibungsverluste zwischen den Planungsbeteiligten reduziert und Kosten gesenkt werden. Ein Beispiel hierfuer ist die Verbindung des vorgeschriebenen Waermeschutznachweises mit einer fuer alle Beteiligten wesentlich aussagekraeftigeren Simulationsrechnung. Die vorgestellten Projekte zeigen, dass oekologisch sinnvolle Gebaeude auch zu oekonomisch attraktiven Kosten erstellt werden koennen, wobei insbesondere der Aspekt des langfristigen Werterhalts und die nutzerspezifischen Vorteile, z.B. durch angenehmere Arbeitsbedingungen, fuer die vorgestellten Konzepte spricht. (orig.)

  15. An economic model for energisation and its integration into the urban energy planning process

    International Nuclear Information System (INIS)

    Nissing, Christian; Blottnitz, Harro von

    2010-01-01

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea, and if implemented in its full complexity it should have multiple beneficial effects. To demonstrate this, an economic model is developed for an urban developmental context, drawing on the theory of urban ecosystems and illustrating energy and waste production and consumption issues with current South African data sets. This new understanding of the concept of energisation is then integrated into a local government energy planning process, by means of a checklist for energy planners, covering 18 aspects that between them affect all 7 identifiable tiers of the energy service supply network. A 6-step structured approach is proposed for integrating sustainable energisation into the first four phases of the advanced local energy planning (ALEP) tool.

  16. Energy Compensation in Response to Aerobic Exercise Training in Overweight Adults.

    Science.gov (United States)

    Flack, Kyle D; Ufholz, Kelsey Elise; Johnson, LuAnn K; Fitzgerald, John S; Roemmich, James N

    2018-06-13

    Weight loss from exercise is often less than expected. Putative compensatory mechanisms may limit exercise-induced reductions in body fat and might be proportional to exercise energy expenditure. To determine compensation (difference between accumulated exercise energy expenditure and changes in body tissue energy stores) and compensatory responses to 1500 or 3000 kcal/week of exercise energy expenditure. Overweight to obese (n=36) sedentary men and women were randomized to groups expending 300 or 600 kcal/exercise session, 5 days/week, for 12 weeks. 14 participants in the 300 kcal group and 15 in the 600 kcal group completed the study. The primary outcome was energy compensation assessed through changes in body tissue energy stores. Secondary outcomes were putative compensatory responses of resting metabolic rate (RMR), food reinforcement, dietary intake, and serum acylated ghrelin and glucagon-like peptide-1 (GLP-1). All measures were determined pre- and post-training. The 3000 kcal/week group decreased (<0.01) percentage and kg body fat while the 1500 kcal/week group did not. The 1500 and 3000 kcal/week groups compensated 943 (-164 to 2050) and 1007 (32 to 1982) kcal/week (mean, 95% CI, P>0.93), or 62.9% and 33.6% of exercise energy expenditure, respectively. RMR and energy intake did not change. Food reinforcement and GLP-1 decreased (P<0.02), while acylated ghrelin increased (P<0.02). Compensation is not proportional to exercise energy expenditure. Similar energy compensation occurred in response to1500 kcal/week and 3000 kcal/week of exercise energy expenditure. Exercise energy expenditure of 3000 kcal/week is great enough to exceed compensatory responses and reduce fat mass.

  17. Integrating renewable energy sources in the Portuguese power system

    International Nuclear Information System (INIS)

    Martins, Nuno; Cabral, Pedro; Azevedo, Helena

    2012-01-01

    The integration of large amounts of renewable energy is an important challenge for the future management of electric systems, since it affects the operation of the electric power system and the design of the transmission and distribution network infrastructure. This is specially due to the connection requirements of the renewable energy technologies, to the extension and adjustment of the grid infrastructure and to the identification of new solutions for operational reserve, in order to maintain the overall system flexibility and security. In this paper, the impact of high penetration of intermittent energy sources, expected in long term in the Portuguese Power System, is analysed and the operational reserve requirements to accomplish a reliable and reasonable electrical energy supply are identified. It was concluded that pumped storage power plants, special power plants with regulating capabilities, will have an important task to provide the operational reserve requirements of the Portuguese Power System. This technology assumes a fundamental role not only to ensure the adequate levels of security of supply but also to allow the maximum exploitation of the installed capacity in renewable energy sources. (authors)

  18. Design of demand side response model in energy internet demonstration park

    Science.gov (United States)

    Zhang, Q.; Liu, D. N.

    2017-08-01

    The implementation of demand side response can bring a lot of benefits to the power system, users and society, but there are still many problems in the actual operation. Firstly, this paper analyses the current situation and problems of demand side response. On this basis, this paper analyses the advantages of implementing demand side response in the energy Internet demonstration park. Finally, the paper designs three kinds of feasible demand side response modes in the energy Internet demonstration park.

  19. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    Science.gov (United States)

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  20. RE Data Explorer: Informing Variable Renewable Energy Grid Integration for Low Emission Development

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-08

    The RE Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based analysis tool that utilizes geospatial and spatiotemporal renewable energy data to visualize, execute, and support analysis of renewable energy potential under various user-defined scenarios. This analysis can inform high-level prospecting, integrated planning, and policy making to enable low emission development.