WorldWideScience

Sample records for integrated dynamic test

  1. Dynamic behavior and functional integrity tests on RC shear walls

    International Nuclear Information System (INIS)

    Akino, Kinji; Nasuda, Toshiaki; Shibata, Akenori.

    1991-01-01

    A project consisting of seven subprojects has been conducted to study the dynamic behavior and functional integrity of reinforced concrete (RC) shear walls in reactor buildings. The objective of this project is to obtain the data to improve and prepare the seismic analysis code regarding the nonlinear structural behavior and integrity of reactor buildings during and after earthquakes. The project started in April, 1986, and will end in March, 1994. Seven subprojects are strain rate test, damping characteristic test, ultimate state response test and the verification test for the test of restoring force characteristics regarding dynamic restoring force characteristics and damping performance; the restoring force characteristic test on the shear walls with openings; and pull-out strength test and the test on air leakage through concrete cracks regarding the functional integrity. The objectives of respective subprojects, the test models and the interim results are reported. Three subprojects have been completed by March, 1990. The results of these projects will be used for the overall evaluation. The strain rate test showed that the ultimate strength of shear walls increased with strain rate. A formula for estimating air flow through the cracks in walls was given by the leakage test. (K.I.)

  2. Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors

    Science.gov (United States)

    Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus

    2013-05-01

    Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.

  3. Hydraulically driven control rod concept for integral reactors: fluid dynamic simulation and preliminary test

    International Nuclear Information System (INIS)

    Ricotti, M.E.; Cammi, A.; Lombardi, C.; Passoni, M.; Rizzo, C.; Carelli, M.; Colombo, E.

    2003-01-01

    The paper deals with the preliminary study of the Hydraulically Driven Control Rod concept, tailored for PWR control rods (spider type) with hydraulic drive mechanism completely immersed in the primary water. A specific solution suitable for advanced versions of the IRIS integral reactor is under investigation. The configuration of the Hydraulic Control Rod device, made up by an external movable piston and an internal fixed cylinder, is described. After a brief description of the whole control system, particular attention is devoted to the Control Rod characterization via Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior, including dynamic equilibrium and stability properties, has been carried out. Finally, preliminary tests were performed in a low pressure, low temperature, reduced length experimental facility. The results are compared with the dynamic control model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performs correctly, allowing stable dynamic equilibrium positions for the Control Rod and stable behavior during withdrawal and insertion steps. (author)

  4. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  5. Dynamics of test black holes

    International Nuclear Information System (INIS)

    Epikhin, E.N.

    1981-01-01

    A concept of a test object is introduced. This definition includes also small black holes. Reduced approximation of testing permits to unambiguously introduce a concept of background space-time. Dynamic values for test objects are introduced by means of the Noether theorem which gave the possibility to covariantly generalize pseudotensor of the Papapetru energy-momentum for the case of curved background space-time. Additional use of radiation approximation and the accountancy of the zero and first momenta of dynamic values lead to the conclusion that motion of the test object (including small black holes) is subordinated to the Matthiessen-Papapetru equations. The above results are testified to the accountancy of a proper gravitational field of the test object in integrated dynamic values [ru

  6. A dynamic integrated fault diagnosis method for power transformers.

    Science.gov (United States)

    Gao, Wensheng; Bai, Cuifen; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.

  7. A Dynamic Integrated Fault Diagnosis Method for Power Transformers

    Science.gov (United States)

    Gao, Wensheng; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

  8. Nonlinear dynamics non-integrable systems and chaotic dynamics

    CERN Document Server

    Borisov, Alexander

    2017-01-01

    This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.

  9. Testing Object-Oriented Programs using Dynamic Aspects and Non-Determinism

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2010-01-01

    decisions exposing private data. We present an approach that both improves the expressiveness of test cases using non-deterministic choice and reduces design modifications using dynamic aspect-oriented programming techniques. Non-deterministic choice facilitates local definitions of multiple executions...... without parameterization or generation of tests. It also eases modelling naturally non-deterministic program features like IO or multi-threading in integration tests. Dynamic AOP facilitates powerful design adaptations without exposing test features, keeping the scope of these adaptations local to each...... test. We also combine non-determinism and dynamic aspects in a new approach to testing multi-threaded programs using co-routines....

  10. Research on Generating Method of Embedded Software Test Document Based on Dynamic Model

    Science.gov (United States)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Liu, Ying

    2018-03-01

    This paper provides a dynamic model-based test document generation method for embedded software that provides automatic generation of two documents: test requirements specification documentation and configuration item test documentation. This method enables dynamic test requirements to be implemented in dynamic models, enabling dynamic test demand tracking to be easily generated; able to automatically generate standardized, standardized test requirements and test documentation, improved document-related content inconsistency and lack of integrity And other issues, improve the efficiency.

  11. Adaptive Integration of Nonsmooth Dynamical Systems

    Science.gov (United States)

    2017-10-11

    2017 W911NF-12-R-0012-03: Adaptive Integration of Nonsmooth Dynamical Systems The views, opinions and/or findings contained in this report are those of...Integration of Nonsmooth Dynamical Systems Report Term: 0-Other Email: drum@gwu.edu Distribution Statement: 1-Approved for public release; distribution is...classdrake_1_1systems_1_1_integrator_base.html ; 3) a solver for dynamical systems with arbitrary unilateral and bilateral constraints (the key component of the time stepping systems )- see

  12. A general treatment of dynamic integrity constraints

    NARCIS (Netherlands)

    de Brock, EO

    This paper introduces a general, set-theoretic model for expressing dynamic integrity constraints, i.e., integrity constraints on the state changes that are allowed in a given state space. In a managerial context, such dynamic integrity constraints can be seen as representations of "real world"

  13. Evaluation of Dynamic Characteristics of the Footbridge with Integral Abutments

    Science.gov (United States)

    Pańtak, Marek; Jarek, Bogusław

    2017-09-01

    The paper presents the results of dynamic field tests and numerical analysis of the footbridge designed as a three-span composite structure with integral abutments. The adopted design solution which has allowed to achieve a high resistance of the structure to dynamic loads and to meet the requirements of the criteria of comfort of use with a large reserve has been characterized. For comparative purposes, numerical analyzes of three construction variants of the footbridge were presented: F-1 - construction with integral abutments (realized variant), F-2 - construction with girders anchored in the abutments by means of tension rocker bearings, F-3 - construction with concrete side spans.

  14. Evaluation of Dynamic Characteristics of the Footbridge with Integral Abutments

    Directory of Open Access Journals (Sweden)

    Pańtak Marek

    2017-09-01

    Full Text Available The paper presents the results of dynamic field tests and numerical analysis of the footbridge designed as a three-span composite structure with integral abutments. The adopted design solution which has allowed to achieve a high resistance of the structure to dynamic loads and to meet the requirements of the criteria of comfort of use with a large reserve has been characterized. For comparative purposes, numerical analyzes of three construction variants of the footbridge were presented: F-1 - construction with integral abutments (realized variant, F-2 - construction with girders anchored in the abutments by means of tension rocker bearings, F-3 - construction with concrete side spans.

  15. Consequence Based Design. An approach for integrating computational collaborative models (Integrated Dynamic Models) in the building design phase

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    relies on various advancements in the area of integrated dynamic models. It also relies on the application and test of the approach in practice to evaluate the Consequence based design and the use of integrated dynamic models. As a result, the Consequence based design approach has been applied in five...... and define new ways to implement integrated dynamic models for the following project. In parallel, seven different developments of new methods, tools and algorithms have been performed to support the application of the approach. The developments concern: Decision diagrams – to clarify goals and the ability...... affect the design process and collaboration between building designers and simulationists. Within the limits of applying the approach of Consequence based design to five case studies, followed by documentation based on interviews, surveys and project related documentations derived from internal reports...

  16. SAP crm integration testing

    OpenAIRE

    Černiavskaitė, Marija

    2017-01-01

    This Bachelor's thesis presents SAP CRM and integration systems testing analysis: investigation in SAP CRM and SAP PO systems, presentation of relationship between systems, introduction to third-party system (non-SAP) – Network Informational System (NIS) which has integration with SAP, presentation of best CRM testing practises, analysis and recommendation of integration testing. Practical integration testing is done in accordance to recommendations.

  17. An Integrated Dynamic Weighing System Based on SCADA

    Directory of Open Access Journals (Sweden)

    Piotr Bazydło

    2015-01-01

    Full Text Available A prototyped dynamic weighing system has been presented which integrates together three advanced software environments: MATLAB, LabVIEW and iFIX SCADA. They were used for advanced signal processing, data acquisition, as well as visualization and process control. Dynamic weighing is a constantly developing field of metrology. Because of the highly complicated structure of any electronic weighing module, it is vulnerable to many sources of environmental disturbances. For this reason, there is a lot of research concerned with weighing signal processing, mechanical matters and functionality of the system. In the paper, some issues connected with dynamic weighing have been presented, and the necessity of implementing signal processing methods has been discussed. Implementation of this feature is impossible in the majority of SCADA systems. The integration of the three environments mentioned above is an attempt to create an industrial system with capabilities to deal with major dynamic weighing problems. It is innovative because it connects the industrial SCADA, laboratory/industrial product LabVIEW and MATLAB. In addition, the algorithms responsible for process control and data exchange are presented. The paper includes a description of the capabilities, performance tests, as well as benefits and drawbacks, of the system. The outcome of the research is a prototyped system and evaluation of its usefulness. (original abstract

  18. Testing all six person-oriented principles in dynamic factor analysis.

    Science.gov (United States)

    Molenaar, Peter C M

    2010-05-01

    All six person-oriented principles identified by Sterba and Bauer's Keynote Article can be tested by means of dynamic factor analysis in its current form. In particular, it is shown how complex interactions and interindividual differences/intraindividual change can be tested in this way. In addition, the necessity to use single-subject methods in the analysis of developmental processes is emphasized, and attention is drawn to the possibility to optimally treat developmental psychopathology by means of new computational techniques that can be integrated with dynamic factor analysis.

  19. Integrability of dynamical systems algebra and analysis

    CERN Document Server

    Zhang, Xiang

    2017-01-01

    This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.

  20. A new Laplace transformation method for dynamic testing of solar collectors

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Perers, Bengt; Fan, Jianhua

    2015-01-01

    A new dynamic method for solar collector testing is developed. It is characterized by using the Laplace transformation technique to solve the differential governing equation. The new method was inspired by the so called New Dynamic Method (NDM) (Amer E. et al (1999) [1]) but totally different....... By integration of the Laplace transformation technique with the Quasi Dynamic Test (QDT) model (Fischer S. et al (2004) [2]), the Laplace – QDT (L-QDT) model is derived. Two experimental methods are then introduced. One is the shielding method which needs to shield and un-shield solar collector continuously...

  1. Functional integral approach to classical statistical dynamics

    International Nuclear Information System (INIS)

    Jensen, R.V.

    1980-04-01

    A functional integral method is developed for the statistical solution of nonlinear stochastic differential equations which arise in classical dynamics. The functional integral approach provides a very natural and elegant derivation of the statistical dynamical equations that have been derived using the operator formalism of Martin, Siggia, and Rose

  2. Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods

    International Nuclear Information System (INIS)

    Gray, S.K.; Noid, D.W.; Sumpter, B.G.

    1994-01-01

    We test the suitability of a variety of explicit symplectic integrators for molecular dynamics calculations on Hamiltonian systems. These integrators are extremely simple algorithms with low memory requirements, and appear to be well suited for large scale simulations. We first apply all the methods to a simple test case using the ideas of Berendsen and van Gunsteren. We then use the integrators to generate long time trajectories of a 1000 unit polyethylene chain. Calculations are also performed with two popular but nonsymplectic integrators. The most efficient integrators of the set investigated are deduced. We also discuss certain variations on the basic symplectic integration technique

  3. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-05

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  4. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-01

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  5. Models of the heat dynamics of solar collectors for performance testing

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    accurate estimates of parameters in physical models. The applied method is described by Kristensen et al. (2004) and implemented in the software CTSM1. Examples of successful applications of the method includes modelling the of the heat dynamics of integrated photo-voltaic modules (Friling et al., 2009......) and modelling of the heat dynamics of buildings (Madsen and Holst, 1995). Measurements obtained at a test site in Denmark during the spring 2010 are used for the modelling. The tested collector is a single glazed large area flat plate collector with selective absorber and Teflon anti convection layer. The test...

  6. DYNAMIC SOCIAL INTEGRATION: SOCIAL INTEGRATION OF RELIGIOUS FOLLOWERS IN AMBON

    Directory of Open Access Journals (Sweden)

    Saidin Ernas

    2015-12-01

    Full Text Available The social dynamics in post-conflict Ambon, Maluku, 1999-2004, indicated that even though people were segregated in the ​​Islamic-Christian areas, gradually social integration began to occur naturally. The process of integration that occurred also gave birth to new values ​​and inclusive views that give hope to future peace building. Using the theory of social integration of dynamic adaptation of the Parsonian structural-functional classic paradigm and combined with a qualitative research model, this study successfully formulated several important findings. First, social integration occurred in the city of Ambon could run naturally through economic interactions, consensus on political balance and inclusive religious spirit. In addition, the presence of public spaces such as offices, schools, malls and coffee shops served as a natural integration medium that is increasingly important in the dynamics of the society. Second, the new social integration has created an increasingly important meaning that leads to a model of active harmony characterized by a process of the increasingly active social interaction between different religions, as well as strengthening pluralism and multiculturalism insight due to campaign by educational institutions and civil society groups. Third, this study also reminds us that although there has been a process of the increasingly positive social integration in Ambon city, people still need to be aware of the growth of radical religious ideologies at a certain level, and also of strengthening identity politics in the long run that will potentially give birth to primordial and ethnocentric attitudes that are harmful to the development of peace.

  7. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Science.gov (United States)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  8. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  9. Applicability of laboratory data to large scale tests under dynamic loading conditions

    International Nuclear Information System (INIS)

    Kussmaul, K.; Klenk, A.

    1993-01-01

    The analysis of dynamic loading and subsequent fracture must be based on reliable data for loading and deformation history. This paper describes an investigation to examine the applicability of parameters which are determined by means of small-scale laboratory tests to large-scale tests. The following steps were carried out: (1) Determination of crack initiation by means of strain gauges applied in the crack tip field of compact tension specimens. (2) Determination of dynamic crack resistance curves of CT-specimens using a modified key-curve technique. The key curves are determined by dynamic finite element analyses. (3) Determination of strain-rate-dependent stress-strain relationships for the finite element simulation of small-scale and large-scale tests. (4) Analysis of the loading history for small-scale tests with the aid of experimental data and finite element calculations. (5) Testing of dynamically loaded tensile specimens taken as strips from ferritic steel pipes with a thickness of 13 mm resp. 18 mm. The strips contained slits and surface cracks. (6) Fracture mechanics analyses of the above mentioned tests and of wide plate tests. The wide plates (960x608x40 mm 3 ) had been tested in a propellant-driven 12 MN dynamic testing facility. For calculating the fracture mechanics parameters of both tests, a dynamic finite element simulation considering the dynamic material behaviour was employed. The finite element analyses showed a good agreement with the simulated tests. This prerequisite allowed to gain critical J-integral values. Generally the results of the large-scale tests were conservative. 19 refs., 20 figs., 4 tabs

  10. Dynamical analysis of a PWR internals using super-elements in an integrated 3-D model model. Part 1: model description and static tests

    International Nuclear Information System (INIS)

    Jesus Miranda, C.A. de.

    1992-01-01

    An integrated 3-D model of a research PWR reactor core support internals structures was developed for its dynamic analyses. The static tests for the validation of the model are presented. There are about 90 super-elements with, approximately, 85000 degrees of freedom (DoF), 8200 masters DoF, 12000 elements with about 8400 thin shell elements. A DEC VAX computer 11/785 model and the ANSYS program were used. If impacts occurs the spectral seismic analysis will be changed to a non-linear one with direct integration of the displacement pulse derived from the seismic accelerogram. This last will be obtained from the seismic acceleration response spectra. (author)

  11. Dynamic Analysis and Test Results for an STC Stirling Generator

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.

    2004-02-01

    Long-life, high-efficiency generators based on free-piston Stirling machines are a future energy-conversion solution for both space and commercial applications. To aid in design and system integration efforts, Stirling Technology Company (STC) has developed dynamic simulation models for the internal moving subassemblies and for complete Stirling convertor assemblies. These dynamic models have been validated using test data from operating prototypes. Simplified versions of these models are presented to help explain the operating characteristics of the Stirling convertor. Power spectrum analysis is presented for the test data for casing acceleration, piston motion, displacer motion, and controller current/voltage during full power operation. The harmonics of a Stirling convertor and its moving components are identified for the STC zener-diode control scheme. The dynamic behavior of each moving component and its contribution to the system dynamics and resultant vibration forces are discussed. Additionally, the effects of a passive balancer and external suspension are predicted by another simplified system model.

  12. Dynamic Enforcement of the Strict Integrity Policy

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiangfeng; LIANGHongliang; SUNYufang

    2005-01-01

    The Strict integrity policy (SIP) in Biba's integrity model is widely used in protecting information integrity, but the static integrity labels of both subjects and objects increase compatibility cost of applications and might prevent some operations that are indeed harmless.In order to improve compatibility, Dynamic enforcement of the Strict integrity policy (DESIP) is put forward. The current integrity label attribute of a subject in SIP is replaced with two attributes in DESIP, which are used to confine dynamically the range of objects a subject could be allowed to access. The new rules of access control in DESIP are given for each kind of access mode (observe,modify and invoke) together with the proofs of their valid-ity. Comparison between SIP and DESIP shows that after a sequence of operations, a subject controlled by DESIP tends to behave in a similar way as it is controlled by SIP and DESIP is more compatible than SIP.

  13. Integrating microbial diversity in soil carbon dynamic models parameters

    Science.gov (United States)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  14. Integrated framework for dynamic safety analysis

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Karanki, Durga R.

    2012-01-01

    In the conventional PSA (Probabilistic Safety Assessment), detailed plant simulations by independent thermal hydraulic (TH) codes are used in the development of accident sequence models. Typical accidents in a NPP involve complex interactions among process, safety systems, and operator actions. As independent TH codes do not have the models of operator actions and full safety systems, they cannot literally simulate the integrated and dynamic interactions of process, safety systems, and operator responses. Offline simulation with pre decided states and time delays may not model the accident sequences properly. Moreover, when stochastic variability in responses of accident models is considered, defining all the combinations for simulations will be cumbersome task. To overcome some of these limitations of conventional safety analysis approach, TH models are coupled with the stochastic models in the dynamic event tree (DET) framework, which provides flexibility to model the integrated response due to better communication as all the accident elements are in the same model. The advantages of this framework also include: Realistic modeling in dynamic scenarios, comprehensive results, integrated approach (both deterministic and probabilistic models), and support for HRA (Human Reliability Analysis)

  15. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    Science.gov (United States)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  16. Integrated test schedule for buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Brown, J.T.; McDonald, J.K.

    1992-05-01

    The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ''windows of opportunity'' schedule. The ''windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M

  17. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    Science.gov (United States)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  18. Dynamic characteristics of lead rubber bearings with dynamic two-dimensional test equipment

    International Nuclear Information System (INIS)

    Ohtori, Y.; Ishida, K.; Mazda, T.

    1994-01-01

    Although studies have previously been done on the static mechanical properties of lead rubber bearings, this study aims to grasp the dynamic characteristics of lead rubber bearings from experimental results, using two-dimensional dynamic test equipment which is designed to grasp in detail such dynamic characteristics as deformation capacity and proof stress. This paper describes the results from three types of tests: (1) dynamic mechanical properties tests, (2) cyclic loading tests, and (3) dynamic ultimate tests. Through these tests, it was confirmed that the dynamic characteristics of lead rubber bearings are independent of strain rate

  19. VLT deformable secondary mirror: integration and electromechanical tests results

    Science.gov (United States)

    Biasi, R.; Andrighettoni, M.; Angerer, G.; Mair, C.; Pescoller, D.; Lazzarini, P.; Anaclerio, E.; Mantegazza, M.; Gallieni, D.; Vernet, E.; Arsenault, R.; Madec, P.-Y.; Duhoux, P.; Riccardi, A.; Xompero, M.; Briguglio, R.; Manetti, M.; Morandini, M.

    2012-07-01

    The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.

  20. Supply-side dimensions and dynamics of integrating HIV testing and counselling into routine antenatal care: a facility assessment from Morogoro Region, Tanzania.

    Science.gov (United States)

    An, Selena J; George, Asha S; LeFevre, Amnesty E; Mpembeni, Rose; Mosha, Idda; Mohan, Diwakar; Yang, Ann; Chebet, Joy; Lipingu, Chrisostom; Baqui, Abdullah H; Killewo, Japhet; Winch, Peter J; Kilewo, Charles

    2015-10-04

    Integration of HIV into RMNCH (reproductive, maternal, newborn and child health) services is an important process addressing the disproportionate burden of HIV among mothers and children in sub-Saharan Africa. We assess the structural inputs and processes of care that support HIV testing and counselling in routine antenatal care to understand supply-side dynamics critical to scaling up further integration of HIV into RMNCH services prior to recent changes in HIV policy in Tanzania. This study, as a part of a maternal and newborn health program evaluation in Morogoro Region, Tanzania, drew from an assessment of health centers with 18 facility checklists, 65 quantitative and 57 qualitative provider interviews, and 203 antenatal care observations. Descriptive analyses were performed with quantitative data using Stata 12.0, and qualitative data were analyzed thematically with data managed by Atlas.ti. Limitations in structural inputs, such as infrastructure, supplies, and staffing, constrain the potential for integration of HIV testing and counselling into routine antenatal care services. While assessment of infrastructure, including waiting areas, appeared adequate, long queues and small rooms made private and confidential HIV testing and counselling difficult for individual women. Unreliable stocks of HIV test kits, essential medicines, and infection prevention equipment also had implications for provider-patient relationships, with reported decreases in women's care seeking at health centers. In addition, low staffing levels were reported to increase workloads and lower motivation for health workers. Despite adequate knowledge of counselling messages, antenatal counselling sessions were brief with incomplete messages conveyed to pregnant women. In addition, coping mechanisms, such as scheduling of clinical activities on different days, limited service availability. Antenatal care is a strategic entry point for the delivery of critical tests and counselling messages

  1. Feature extraction for dynamic integration of classifiers

    NARCIS (Netherlands)

    Pechenizkiy, M.; Tsymbal, A.; Puuronen, S.; Patterson, D.W.

    2007-01-01

    Recent research has shown the integration of multiple classifiers to be one of the most important directions in machine learning and data mining. In this paper, we present an algorithm for the dynamic integration of classifiers in the space of extracted features (FEDIC). It is based on the technique

  2. Low level constraints on dynamic contour path integration.

    Directory of Open Access Journals (Sweden)

    Sophie Hall

    Full Text Available Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200 ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°, temporal (200 ms, colour (over 10 colours and luminance (-25% to 25% information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections.

  3. Geometry and dynamics of integrable systems

    CERN Document Server

    Matveev, Vladimir

    2016-01-01

    Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mir...

  4. Dynamic testing of adhesive joints using a shock testing machine

    NARCIS (Netherlands)

    Aanhold, J.E. van; Weersink, A.F.J.; Ludolphy, J.W.L.

    1998-01-01

    A light-weight shock testing machine, designed for type approval testing of naval equipment up to 300 kg mass, has been modified into a dynamic tensile test rig. This enables to test structural details for high rate dynamic tensile loadings such as occur during underwater shock. The maximum capacity

  5. Eigenstates and dynamics of Hooke's atom: Exact results and path integral simulations

    Science.gov (United States)

    Gholizadehkalkhoran, Hossein; Ruokosenmäki, Ilkka; Rantala, Tapio T.

    2018-05-01

    The system of two interacting electrons in one-dimensional harmonic potential or Hooke's atom is considered, again. On one hand, it appears as a model for quantum dots in a strong confinement regime, and on the other hand, it provides us with a hard test bench for new methods with the "space splitting" arising from the one-dimensional Coulomb potential. Here, we complete the numerous previous studies of the ground state of Hooke's atom by including the excited states and dynamics, not considered earlier. With the perturbation theory, we reach essentially exact eigenstate energies and wave functions for the strong confinement regime as novel results. We also consider external perturbation induced quantum dynamics in a simple separable case. Finally, we test our novel numerical approach based on real-time path integrals (RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach with exact account of electronic correlations for solving the eigenstates and dynamics without the conventional restrictions of electronic structure methods.

  6. Dynamic test of the ITER blanket key and ceramic insulated pad

    International Nuclear Information System (INIS)

    Khomyakov, S.; Sysoev, G.; Strebkov, Yu.; Kucherov, A.; Ioki, K.

    2010-01-01

    The dynamic testing of the blanket module's key integrated into ITER vacuum vessel portion has been performed in 2008 to investigate its capability to react the electro-magnetic (EM) loads. The preliminary analysis showed the large dynamic amplification factor (DAF) of the reactions because of technological gaps between the blanket module and key. Shock load may yield the bronze pads, which protect the blanket electrical insulation from damage. However the dynamic analysis of such particularly non-linear system needs an experimental ground and confirmation. Toward this end, as well as demonstration of the key reliability, the special test facility has been made, and the full-scale mock-up of the inboard intermodular key was tested. So as not to scale non-linear dynamic parameters, 1-ton mass was built on the single flexible support. The key was welded in a 60-mm thick steel plate modeled with a fragment of the VV. The different gaps were set in between the bronze pad of the key and the mass shock worker. This system (supplemented with some additional constraints) has natural oscillations like as the 4-ton module built on four flexible supports. Thus the most critical radial torque might be modeled with a straight force. The objectives of the test were as follows: dynamic response, DAF and damping factor determination; measurement of the strain oscillations in the key's base and in the weld seam; comparison of the measured data with computation results. The paper will present the analytical grounds of the testing conditions, test facility description, analytical adaptation of the facility, experimental results, its comparison with analysis and discussion, and guidelines for the next experimental phase.

  7. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  8. A System Dynamics Model for Integrated Decision Making ...

    Science.gov (United States)

    EPA’s Sustainable and Healthy Communities Research Program (SHC) is conducting transdisciplinary research to inform and empower decision-makers. EPA tools and approaches are being developed to enable communities to effectively weigh and integrate human health, socioeconomic, environmental, and ecological factors into their decisions to promote community sustainability. To help achieve this goal, EPA researchers have developed systems approaches to account for the linkages among resources, assets, and outcomes managed by a community. System dynamics (SD) is a member of the family of systems approaches and provides a framework for dynamic modeling that can assist with assessing and understanding complex issues across multiple dimensions. To test the utility of such tools when applied to a real-world situation, the EPA has developed a prototype SD model for community sustainability using the proposed Durham-Orange Light Rail Project (D-O LRP) as a case study.The EPA D-O LRP SD modeling team chose the proposed D-O LRP to demonstrate that an integrated modeling approach could represent the multitude of related cross-sectoral decisions that would be made and the cascading impacts that could result from a light rail transit system connecting Durham and Chapel Hill, NC. In keeping with the SHC vision described above, the proposal for the light rail is a starting point solution for the more intractable problems of population growth, unsustainable land use, environmenta

  9. UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E

    Science.gov (United States)

    Marston, Michael

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  10. Dynamical Intention: Integrated Intelligence Modeling for Goal-directed Embodied Agents

    Directory of Open Access Journals (Sweden)

    Eric Aaron

    2016-11-01

    Full Text Available Intelligent embodied robots are integrated systems: As they move continuously through their environments, executing behaviors and carrying out tasks, components for low-level and high-level intelligence are integrated in the robot's cognitive system, and cognitive and physical processes combine to create their behavior. For a modeling framework to enable the design and analysis of such integrated intelligence, the underlying representations in the design of the robot should be dynamically sensitive, capable of reflecting both continuous motion and micro-cognitive influences, while also directly representing the necessary beliefs and intentions for goal-directed behavior. In this paper, a dynamical intention-based modeling framework is presented that satisfies these criteria, along with a hybrid dynamical cognitive agent (HDCA framework for employing dynamical intentions in embodied agents. This dynamical intention-HDCA (DI-HDCA modeling framework is a fusion of concepts from spreading activation networks, hybrid dynamical system models, and the BDI (belief-desire-intention theory of goal-directed reasoning, adapted and employed unconventionally to meet entailments of environment and embodiment. The paper presents two kinds of autonomous agent learning results that demonstrate dynamical intentions and the multi-faceted integration they enable in embodied robots: with a simulated service robot in a grid-world office environment, reactive-level learning minimizes reliance on deliberative-level intelligence, enabling task sequencing and action selection to be distributed over both deliberative and reactive levels; and with a simulated game of Tag, the cognitive-physical integration of an autonomous agent enables the straightforward learning of a user-specified strategy during gameplay, without interruption to the game. In addition, the paper argues that dynamical intentions are consistent with cognitive theory underlying goal-directed behavior, and

  11. DYNAMIC OPTIMAL BUDGET ALLOCATION FOR INTEGRATED MARKETING CONSIDERING PERSISTENCE

    OpenAIRE

    SHIZHONG AI; RONG DU; QIYING HU

    2010-01-01

    Aiming at forming dynamic optimal integrated marketing policies, we build a budget allocation model considering both current effects and sustained ones. The model includes multiple time periods and multiple marketing tools which interact through a common resource pool as well as through delayed cross influences on each other's sales, reflecting the nature of "integrated marketing" and its dynamics. In our study, marginal analysis is used to illuminate the structure of optimal policy. We deriv...

  12. A global first integral for certain dynamical systems and related remarks

    International Nuclear Information System (INIS)

    Gonzalez-Gascon, F.

    1977-01-01

    A global first integral for certain dynamical systems and the related remarks are presented. In particular, it is shown that for these dynamical systems by introducing the (intrinsic) definition of the divergence of a vector field defined on an orientable differentiable manifold, the first integral, i.e. the (intrinsic) divergence of a vector field is now, automatically, a global first integral. (author)

  13. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  14. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.

    2017-08-29

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  15. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Weber, Andreas G.; Michels, Dominik L.

    2017-01-01

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  16. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    Science.gov (United States)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  17. Dynamic testing in schizophrenia: does training change the construct validity of a test?

    Science.gov (United States)

    Wiedl, Karl H; Schöttke, Henning; Green, Michael F; Nuechterlein, Keith H

    2004-01-01

    Dynamic testing typically involves specific interventions for a test to assess the extent to which test performance can be modified, beyond level of baseline (static) performance. This study used a dynamic version of the Wisconsin Card Sorting Test (WCST) that is based on cognitive remediation techniques within a test-training-test procedure. From results of previous studies with schizophrenia patients, we concluded that the dynamic and static versions of the WCST should have different construct validity. This hypothesis was tested by examining the patterns of correlations with measures of executive functioning, secondary verbal memory, and verbal intelligence. Results demonstrated a specific construct validity of WCST dynamic (i.e., posttest) scores as an index of problem solving (Tower of Hanoi) and secondary verbal memory and learning (Auditory Verbal Learning Test), whereas the impact of general verbal capacity and selective attention (Verbal IQ, Stroop Test) was reduced. It is concluded that the construct validity of the test changes with dynamic administration and that this difference helps to explain why the dynamic version of the WCST predicts functional outcome better than the static version.

  18. Model tests on dynamic performance of RC shear walls

    International Nuclear Information System (INIS)

    Nagashima, Toshio; Shibata, Akenori; Inoue, Norio; Muroi, Kazuo.

    1991-01-01

    For the inelastic dynamic response analysis of a reactor building subjected to earthquakes, it is essentially important to properly evaluate its restoring force characteristics under dynamic loading condition and its damping performance. Reinforced concrete shear walls are the main structural members of a reactor building, and dominate its seismic behavior. In order to obtain the basic information on the dynamic restoring force characteristics and damping performance of shear walls, the dynamic test using a large shaking table, static displacement control test and the pseudo-dynamic test on the models of a shear wall were conducted. In the dynamic test, four specimens were tested on a large shaking table. In the static test, four specimens were tested, and in the pseudo-dynamic test, three specimens were tested. These tests are outlined. The results of these tests were compared, placing emphasis on the restoring force characteristics and damping performance of the RC wall models. The strength was higher in the dynamic test models than in the static test models mainly due to the effect of loading rate. (K.I.)

  19. A Multi-Actor Dynamic Integrated Assessment Model (MADIAM)

    OpenAIRE

    Weber, Michael

    2004-01-01

    The interactions between climate and the socio-economic system are investigated with a Multi-Actor Dynamic Integrated Assessment Model (MADIAM) obtained by coupling a nonlinear impulse response model of the climate sub-system (NICCS) to a multi-actor dynamic economic model (MADEM). The main goal is to initiate a model development that is able to treat the dynamics of the coupled climate socio-economic system, including endogenous technological change, in a non-equilibrium situation, thereby o...

  20. Entanglement dynamics after quantum quenches in generic integrable systems

    Directory of Open Access Journals (Sweden)

    Vincenzo Alba, Pasquale Calabrese

    2018-03-01

    Full Text Available The time evolution of the entanglement entropy in non-equilibrium quantum systems provides crucial information about the structure of the time-dependent state. For quantum quench protocols, by combining a quasiparticle picture for the entanglement spreading with the exact knowledge of the stationary state provided by Bethe ansatz, it is possible to obtain an exact and analytic description of the evolution of the entanglement entropy. Here we discuss the application of these ideas to several integrable models. First we show that for non-interacting systems, both bosonic and fermionic, the exact time-dependence of the entanglement entropy can be derived by elementary techniques and without solving the dynamics. We then provide exact results for interacting spin chains that are carefully tested against numerical simulations. Finally, we apply this method to integrable one-dimensional Bose gases (Lieb-Liniger model both in the attractive and repulsive regimes. We highlight a peculiar behaviour of the entanglement entropy due to the absence of a maximum velocity of excitations.

  1. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  2. Nonlinear Analysis and Intelligent Control of Integrated Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    C. Huang

    2014-01-01

    Full Text Available With increasing and more stringent requirements for advanced vehicle integration, including vehicle dynamics and control, traditional control and optimization strategies may not qualify for many applications. This is because, among other factors, they do not consider the nonlinear characteristics of practical systems. Moreover, the vehicle wheel model has some inadequacies regarding the sideslip angle, road adhesion coefficient, vertical load, and velocity. In this paper, an adaptive neural wheel network is introduced, and the interaction between the lateral and vertical dynamics of the vehicle is analyzed. By means of nonlinear analyses such as the use of a bifurcation diagram and the Lyapunov exponent, the vehicle is shown to exhibit complicated motions with increasing forward speed. Furthermore, electric power steering (EPS and active suspension system (ASS, which are based on intelligent control, are used to reduce the nonlinear effect, and a negotiation algorithm is designed to manage the interdependences and conflicts among handling stability, driving smoothness, and safety. Further, a rapid control prototype was built using the hardware-in-the-loop simulation platform dSPACE and used to conduct a real vehicle test. The results of the test were consistent with those of the simulation, thereby validating the proposed control.

  3. Recent developments in dynamic testing of materials

    Directory of Open Access Journals (Sweden)

    Gilat Amos

    2015-01-01

    Full Text Available New techniques for dynamic characterization of materials that have been developed in the last three years (since the last DYMAT conference in 2012, and results from recent dynamic testing of Inconel 718 are presented. The first development is a dynamic punch test in which three dimensional Digital Image Correlation (DIC is used to measure the deformation of the rear surface of a specimen as it being penetrated. The second experimental technique that is under development is a dynamic tension experiment in which full-field strain measurement with DIC and full-field temperature measurement are done simultaneously during the test.

  4. Integration testing through reusing representative unit test cases for high-confidence medical software.

    Science.gov (United States)

    Shin, Youngsul; Choi, Yunja; Lee, Woo Jin

    2013-06-01

    As medical software is getting larger-sized, complex, and connected with other devices, finding faults in integrated software modules gets more difficult and time consuming. Existing integration testing typically takes a black-box approach, which treats the target software as a black box and selects test cases without considering internal behavior of each software module. Though it could be cost-effective, this black-box approach cannot thoroughly test interaction behavior among integrated modules and might leave critical faults undetected, which should not happen in safety-critical systems such as medical software. This work anticipates that information on internal behavior is necessary even for integration testing to define thorough test cases for critical software and proposes a new integration testing method by reusing test cases used for unit testing. The goal is to provide a cost-effective method to detect subtle interaction faults at the integration testing phase by reusing the knowledge obtained from unit testing phase. The suggested approach notes that the test cases for the unit testing include knowledge on internal behavior of each unit and extracts test cases for the integration testing from the test cases for the unit testing for a given test criteria. The extracted representative test cases are connected with functions under test using the state domain and a single test sequence to cover the test cases is produced. By means of reusing unit test cases, the tester has effective test cases to examine diverse execution paths and find interaction faults without analyzing complex modules. The produced test sequence can have test coverage as high as the unit testing coverage and its length is close to the length of optimal test sequences. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Overview of Dynamics Integration Research (DIR) program at Langley Research Center

    Science.gov (United States)

    Sliwa, Steven M.; Abel, Irving

    1989-01-01

    Research goals and objectives for an ongoing activity at Langley Research Center (LaRC) are described. The activity is aimed principally at dynamics optimization for aircraft. The effort involves active participation by the Flight Systems, Structures, and Electronics directorates at LaRC. The Functional Integration Technology (FIT) team has been pursuing related goals since 1985. A prime goal has been the integration and optimization of vehicle dynamics through collaboration at the basic principles or equation level. Some significant technical progress has been accomplished since then and is reflected here. An augmentation for this activity, Dynamics Integration Research (DIR), has been proposed to NASA Headquarters and is being considered for funding in FY 1990 or FY 1991.

  6. Integrated testing strategies can be optimal for chemical risk classification.

    Science.gov (United States)

    Raseta, Marko; Pitchford, Jon; Cussens, James; Doe, John

    2017-08-01

    There is an urgent need to refine strategies for testing the safety of chemical compounds. This need arises both from the financial and ethical costs of animal tests, but also from the opportunities presented by new in-vitro and in-silico alternatives. Here we explore the mathematical theory underpinning the formulation of optimal testing strategies in toxicology. We show how the costs and imprecisions of the various tests, and the variability in exposures and responses of individuals, can be assembled rationally to form a Markov Decision Problem. We compute the corresponding optimal policies using well developed theory based on Dynamic Programming, thereby identifying and overcoming some methodological and logical inconsistencies which may exist in the current toxicological testing. By illustrating our methods for two simple but readily generalisable examples we show how so-called integrated testing strategies, where information of different precisions from different sources is combined and where different initial test outcomes lead to different sets of future tests, can arise naturally as optimal policies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Overview of Power Quality and Integrated Testing at JSC

    Science.gov (United States)

    Davies, Francis

    2018-01-01

    This presentation describes the basic philosophy behind integrated testing and partially integrated testing. It lists some well known errors in space systems that were or could have been caught during integrated testing. Two examples of integrated testing at the Johnson Space Center (JSC) are mentioned, and then an overview of two test facilities that do power testing (partially integrated testing) at JSC are presented, with information on the capabilities of each. Finally a list of three projects that has problems caught during power quality or Electromagnetic Interference (EMI) testing is presented.

  8. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    Science.gov (United States)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for

  9. Dynamic performance of a novel offshore power system integrated with a wind farm

    DEFF Research Database (Denmark)

    Orlandini, Valentina; Pierobon, Leonardo; Schløer, Signe

    2016-01-01

    Offshore wind technology is rapidly developing and a wind farm can be integrated with offshore power stations. This paper considers as case study a futuristic platform powered by a wind farm and three combined cycle units consisting of a gas turbine and an ORC (organic Rankine cycle) module....... The first aim of this paper is to identify the maximum amount of wind power that can be integrated into the system, without compromising the electric grid balance. The stability of the grid is tested using a dynamic model of the power system based on first principles. Additionally, the dynamics...... of the system is compared with a simplified plant consisting of three gas turbines and a wind farm, in order to identify benefits of the installation of the ORC system. The maximum allowable wind power is 10 MW for a nominal platform load of 30 MW. The results show that the presence of the ORC system allows...

  10. Dynamic performance of a novel offshore power system integrated with a wind farm

    DEFF Research Database (Denmark)

    Orlandini, Valentina; Pierobon, Leonardo; Schløer, Signe

    2016-01-01

    of the system is compared with a simplified plant consisting of three gas turbines and a wind farm, in order to identify benefits of the installation of the ORC system. The maximum allowable wind power is 10 MW for a nominal platform load of 30 MW. The results show that the presence of the ORC system allows......Offshore wind technology is rapidly developing and a wind farm can be integrated with offshore power stations. This paper considers as case study a futuristic platform powered by a wind farm and three combined cycle units consisting of a gas turbine and an ORC (organic Rankine cycle) module....... The first aim of this paper is to identify the maximum amount of wind power that can be integrated into the system, without compromising the electric grid balance. The stability of the grid is tested using a dynamic model of the power system based on first principles. Additionally, the dynamics...

  11. Path integral methods for the dynamics of stochastic and disordered systems

    International Nuclear Information System (INIS)

    Hertz, John A; Roudi, Yasser; Sollich, Peter

    2017-01-01

    We review some of the techniques used to study the dynamics of disordered systems subject to both quenched and fast (thermal) noise. Starting from the Martin–Siggia–Rose/Janssen–De Dominicis–Peliti path integral formalism for a single variable stochastic dynamics, we provide a pedagogical survey of the perturbative, i.e. diagrammatic, approach to dynamics and how this formalism can be used for studying soft spin models. We review the supersymmetric formulation of the Langevin dynamics of these models and discuss the physical implications of the supersymmetry. We also describe the key steps involved in studying the disorder-averaged dynamics. Finally, we discuss the path integral approach for the case of hard Ising spins and review some recent developments in the dynamics of such kinetic Ising models. (topical review)

  12. “Coupled processes” as dynamic capabilities in systems integration

    Directory of Open Access Journals (Sweden)

    Milton de Freitas Chagas Jr.

    2017-05-01

    Full Text Available The dynamics of innovation in complex systems industries is becoming an independent research stream. Apart from conventional uncertainties related to commerce and technology, complex-system industries must cope with systemic uncertainty. This paper’s objective is to analyze evolving technological paths from one product generation to the next through two case studies in the Brazilian aerospace indus­try, considering systems integration as an empirical instantiation of dynamic capabilities. A proposed “coupled processes” model intertwines two organizational processes regarded as two levels of dynamic capabilities: new product and technological developments. The model addresses the role of emergent properties in shaping a firm’s technological base. Moreover, it uses a technology readiness level to unveil systems integration business tricks and as a decision-making yardstick. The “coupled processes” model is revealed as a set of dynamic capabilities presenting ambidexterity in complex systems indus­tries, a finding that may be relevant for newly industrialized economies.

  13. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Science.gov (United States)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  14. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    International Nuclear Information System (INIS)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; Edstrom, Dean; Harms, Elvin

    2017-01-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  15. Integration and test planning patterns in different organizations

    NARCIS (Netherlands)

    Jong, de I.S.M.; Boumen, R.; Mortel - Fronczak, van de J.M.; Rooda, J.E.; Tretmans, J.

    2007-01-01

    Planning an integration and test phase is often done by experts in the visited organizations. These experts have a thorough knowledge about the system, integration and testing and the business drivers of an organization. An integration and test plan developedfor an airplane is different than the

  16. Actinide integral measurements in the CFRMF and integral tests for ENDF/B-V

    International Nuclear Information System (INIS)

    Anderl, R.A.

    1982-01-01

    Integral capture and/or fission rates have been reported earlier for several actinides irradiated in the fast neutron field of the Coupled Fast Reactivity Measurements Facility (CFRMF). These nuclides include 232 Th, 233 U, 235 U, 238 U, 237 Np, 239 Pu, 240 Pu, 242 Pu, 241 Am and 243 Am. This paper forucses on the utilization of these integral data for testing the respective cross sections on ENDF/B-V. Integral cross sections derived from the measured reaction rates are tabulated. Results are presented for cross-section data testing which includes integral testing based on a comparison of calculated and measured integral cross sections and testing based on least-squares-adjustment analyses

  17. "COUPLED PROCESSES" AS DYNAMIC CAPABILITIES IN SYSTEMS INTEGRATION

    OpenAIRE

    Chagas Jr, Milton de Freitas; Leite, Dinah Eluze Sales; Jesus, Gabriel Torres de

    2017-01-01

    ABSTRACT The dynamics of innovation in complex systems industries is becoming an independent research stream. Apart from conventional uncertainties related to commerce and technology, complex-system industries must cope with systemic uncertainty. This paper's objective is to analyze evolving technological paths from one product generation to the next through two case studies in the Brazilian aerospace industry, considering systems integration as an empirical instantiation of dynamic capabilit...

  18. The ground testing of a 2 kWe solar dynamic space power system

    International Nuclear Information System (INIS)

    Calogeras, J.E.

    1992-01-01

    Over the past 25 years Space Solar Dynamic component development has advanced to the point where it is considered a leading candidate power source technology for the evolutionary phases of the Space Station Freedom (SSF) program. Selection of SD power was based on studies and analyses which indicated significant savings in life cycle costs, launch mass and EVA requirements were possible when the system is compared to more conventional photovoltaic/battery power systems. Issues associated with micro-gravity operation such as the behavior of the thermal energy storage materials are being addressed in other programs. This paper reports that a ground test of a 2 kWe solar dynamic system is being planned by the NASA Office of Aeronautics and Space Technology to address the integration issues. The test will be scalable up to 25 kWe, will be flight configured and will incorporate relevant features of the SSF Solar Dynamic Power Module design

  19. Seeing the System: Dynamics and Complexity of Technology Integration in Secondary Schools

    Science.gov (United States)

    Howard, Sarah K.; Thompson, Kate

    2016-01-01

    This paper introduces system dynamics modeling to understand, visualize and explore technology integration in schools, through the development of a theoretical model of technology-related change in teachers' practice. Technology integration is a dynamic social practice, within the social system of education. It is difficult, if not nearly…

  20. An Integrated Platform for Dynamic Software Updating and its Application in Self-* systems

    DEFF Research Database (Denmark)

    Gregersen, Allan Raundahl; Jørgensen, Bo Nørregaard; Hadaytullah

    2012-01-01

    Practical dynamic updating of modern Java applications requires tool support to become an integral part of the software development and maintenance lifecycle. In this paper we present Javeleon, an easy-to-use tool for dynamic updates of Java applications. To support integration with specific...... frameworks, component systems and application servers, Javeleon currently provides tight integration with the NetBeans Platform, facilitating dynamic updating for applications built on top of the NetBeans Platform in an unconstrained manner. Javeleon supports state-preserving unanticipated runtime evolution...

  1. Simulation of quantum dynamics with integrated photonics

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  2. Ares I Integrated Test Approach

    Science.gov (United States)

    Taylor, Jim

    2008-01-01

    This slide presentation reviews the testing approach that NASA is developing for the Ares I launch vehicle. NASA is planning a complete series of development, qualification and verification tests. These include: (1) Upper stage engine sea-level and altitude testing (2) First stage development and qualification motors (3) Upper stage structural and thermal development and qualification test articles (4) Main Propulsion Test Article (MPTA) (5) Upper stage green run testing (6) Integrated Vehicle Ground Vibration Testing (IVGVT) and (7) Aerodynamic characterization testing.

  3. Dynamic testing and qualification

    International Nuclear Information System (INIS)

    Kleine Tebbe, A.; Schmidt, G.; Theymann, W.

    1990-01-01

    The core structure of an HTR-plant consists of the side reflector, the bottom reflector, the top reflector and the pebble bed of spherical fuel elements. Dynamically this system is a many-body structure with non-linear force-deformation couplings. The integrity of the system under seismic loads is given by radially orientated spring packs. These spring packs must be stiff against earthquake loads, but must allow radial thermal movements. To verify the seismic safety of the system, scaled-down models were tested. The results of these tests were compared with those of analytical methods. The good-natured behaviour of the pebble-bed under seismic loads has been confirmed. Due to the granular structure of the non-regular packed pebble-bed, high damping occurs during seismic excitations. With increasing depth the damping ratio decreases because of restriction of movement. We are able to describe the seismic behaviour of the pebble-bed analytically. The one- and two-dimensional test configurations of the top reflector were used to analyse resonance and lumping effects. The experimental results were verified by the computer codes CRUNCH-1D AND CRUNCH-2D. The experimental investigations of the side reflector are underway. The results show a non-critical behaviour under horizontal excitations. Small rigid-body motions of single blocks are detected, but they do not cause any global ovalisations of the complete ring structure. Finite element calculations with contact and friction between the blocks show a close agreement with the experimental results. Seismic qualification of ground mounted electrical equipment is usually performed on the basis of codes like IEEE, IEC, KTA, etc. These standards give different possibilities of the excitation mode: sinusoidal excitation in every natural frequency (continuous or sine beat) or time history excitation which covers a prescribed required response spectrum. Recently performed tests are compared regarding the usefulness and severity

  4. Wafer-level testing and test during burn-in for integrated circuits

    CERN Document Server

    Bahukudumbi, Sudarshan

    2010-01-01

    Wafer-level testing refers to a critical process of subjecting integrated circuits and semiconductor devices to electrical testing while they are still in wafer form. Burn-in is a temperature/bias reliability stress test used in detecting and screening out potential early life device failures. This hands-on resource provides a comprehensive analysis of these methods, showing how wafer-level testing during burn-in (WLTBI) helps lower product cost in semiconductor manufacturing.Engineers learn how to implement the testing of integrated circuits at the wafer-level under various resource constrain

  5. Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation

    OpenAIRE

    Xu, Jiafeng; Halse, Karl Henning

    2016-01-01

    In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...

  6. New integrable problems in a rigid body dynamics with cubic integral in velocities

    Science.gov (United States)

    Elmandouh, A. A.

    2018-03-01

    We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.

  7. OOK power model based dynamic error testing for smart electricity meter

    International Nuclear Information System (INIS)

    Wang, Xuewei; Chen, Jingxia; Jia, Xiaolu; Zhu, Meng; Yuan, Ruiming; Jiang, Zhenyu

    2017-01-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%. (paper)

  8. OOK power model based dynamic error testing for smart electricity meter

    Science.gov (United States)

    Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu

    2017-02-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.

  9. Operational test report, integrated system test (ventilation upgrade)

    International Nuclear Information System (INIS)

    HARTY, W.M.

    1999-01-01

    Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, AY102, AZ101, AZ102

  10. Operational test report integrated system test (ventilation upgrade)

    Energy Technology Data Exchange (ETDEWEB)

    HARTY, W.M.

    1999-10-05

    Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

  11. Dynamic testing of nuclear power plant structures: an evaluation

    International Nuclear Information System (INIS)

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants

  12. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  13. Multisignal detecting system of pile integrity testing

    Science.gov (United States)

    Liu, Zuting; Luo, Ying; Yu, Shihai

    2002-05-01

    The low strain reflection wave method plays a principal rule in the integrating detection of base piles. However, there are some deficiencies with this method. For example, there is a blind area of detection on top of the tested pile; it is difficult to recognize the defects at deep-seated parts of the pile; there is still the planar of 3D domino effect, etc. It is very difficult to solve these problems only with the single-transducer pile integrity testing system. A new multi-signal piles integrity testing system is proposed in this paper, which is able to impulse and collect signals on multiple points on top of the pile. By using the multiple superposition data processing method, the detecting system can effectively restrain the interference and elevate the precision and SNR of pile integrity testing. The system can also be applied to the evaluation of engineering structure health.

  14. Multiloop integral system test (MIST)

    International Nuclear Information System (INIS)

    Gloudemans, J.R.

    1989-07-01

    The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock and Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The individual tests are described in detail in Volumes 2 through 8 and Volume 11, and are summarized in Volume 1. Inter-group comparisons are addressed in this document, Volume 9. These comparisons are grouped as follows: mapping versus SBLOCA transients, SBLOCA, pump effects, and the effects of noncondensible gases. Appendix A provides an index and description of the microfiched plots for each test, which are enclosed with the corresponding Volumes 2 through 8. 147 figs., 5 tabs

  15. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  16. A geometrical method towards first integrals for dynamical systems

    International Nuclear Information System (INIS)

    Labrunie, S.; Conte, R.

    1996-01-01

    We develop a method, based on Darboux close-quote s and Liouville close-quote s works, to find first integrals and/or invariant manifolds for a physically relevant class of dynamical systems, without making any assumption on these elements close-quote forms. We apply it to three dynamical systems: Lotka endash Volterra, Lorenz and Rikitake. copyright 1996 American Institute of Physics

  17. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  18. Development of DCC software dynamic test facility: past and future

    International Nuclear Information System (INIS)

    McDonald, A.M.; Thai, N.D.; Buijs, W.J.

    1996-01-01

    This paper describes a test facility for future dynamic testing of DCC software used in the control computers of CANDU nuclear power stations. It is a network of three computers: the DCC emulator, the dynamic CANDU plant simulator and the testing computer. Shared network files are used for input/output data exchange between computers. The DCC emulator runs directly on the binary image of the DCC software. The dynamic CANDU plant simulator accepts control signals from the DCC emulator and returns realistic plant behaviour. The testing computer accepts test scripts written in AECL Test Language. Both dynamic test and static tests may be performed on the DCC software to verify control program outputs and dynamic responses. (author)

  19. Operational test report for LERF Basin 242AL-44 integrity test

    International Nuclear Information System (INIS)

    Galioto, T.M.

    1994-01-01

    This operational test report documents the results of LERF operational testing per operational test procedure (OTP) TFPE-WP-0231, ''LERF Basin Integrity Testing.'' The primary purpose of the OTP was to resolve test exceptions generated as a result of TFPE-WP-0184. The TOP was prepared and performed in accordance with WHC-SD-534-OTP-002, ''Operational Test Plan for the 242-A Evaporator Upgrades and the Liquid Effluent Retention Facility.'' WHC-S-086, ''Specification for Operational Testing of the Liquid Effluent Retention Facility, Basin Integrity Testing,'' identified the test requirements and acceptance criteria. The completed, signed-off test procedure is contained in Appendix A. The test log is contained in Appendix B. Section 2.1 describes all the test exceptions written during performance of the Operational Test Procedure. The test revisions generated during the testing are discussed in Section 2.2. The dispositioned test exception forms are contained in Appendix C

  20. Addressable-Matrix Integrated-Circuit Test Structure

    Science.gov (United States)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  1. The simulation research for the dynamic performance of integrated PWR

    International Nuclear Information System (INIS)

    Yuan Jiandong; Xia Guoqing; Fu Mingyu

    2005-01-01

    The mathematical model of the reactor core of integrated PWR has been studied and simplified properly. With the lumped parameter method, authors have established the mathematical model of the reactor core, including the neutron dynamic equation, the feedback reactivities model and the thermo-hydraulic model of the reactor. Based on the above equations and models, the incremental transfer functions of the reactor core model have been built. By simulation experimentation, authors have compared the dynamic characteristics of the integrated PWR with the traditional dispersed PWR. The simulation results show that the mathematical models and equations are correct. (authors)

  2. Towards better integrators for dissipative particle dynamics simulations

    DEFF Research Database (Denmark)

    Besold, Gerhard; Vattulainen, Ilpo Tapio; Karttunen, Mikko

    2000-01-01

    Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the com...

  3. Probabilistic Dynamics for Integrated Analysis of Accident Sequences considering Uncertain Events

    Directory of Open Access Journals (Sweden)

    Robertas Alzbutas

    2015-01-01

    Full Text Available The analytical/deterministic modelling and simulation/probabilistic methods are used separately as a rule in order to analyse the physical processes and random or uncertain events. However, in the currently used probabilistic safety assessment this is an issue. The lack of treatment of dynamic interactions between the physical processes on one hand and random events on the other hand causes the limited assessment. In general, there are a lot of mathematical modelling theories, which can be used separately or integrated in order to extend possibilities of modelling and analysis. The Theory of Probabilistic Dynamics (TPD and its augmented version based on the concept of stimulus and delay are introduced for the dynamic reliability modelling and the simulation of accidents in hybrid (continuous-discrete systems considering uncertain events. An approach of non-Markovian simulation and uncertainty analysis is discussed in order to adapt the Stimulus-Driven TPD for practical applications. The developed approach and related methods are used as a basis for a test case simulation in view of various methods applications for severe accident scenario simulation and uncertainty analysis. For this and for wider analysis of accident sequences the initial test case specification is then extended and discussed. Finally, it is concluded that enhancing the modelling of stimulated dynamics with uncertainty and sensitivity analysis allows the detailed simulation of complex system characteristics and representation of their uncertainty. The developed approach of accident modelling and analysis can be efficiently used to estimate the reliability of hybrid systems and at the same time to analyze and possibly decrease the uncertainty of this estimate.

  4. Quantifying chaotic dynamics from integrate-and-fire processes

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, A. N. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Saratov State Technical University, Politehnicheskaya Str. 77, 410054 Saratov (Russian Federation); Pavlova, O. N. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Mohammad, Y. K. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Tikrit University Salahudin, Tikrit Qadisiyah, University Str. P.O. Box 42, Tikrit (Iraq); Kurths, J. [Potsdam Institute for Climate Impact Research, Telegraphenberg A 31, 14473 Potsdam (Germany); Institute of Physics, Humboldt University Berlin, 12489 Berlin (Germany)

    2015-01-15

    Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periods of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.

  5. Influence of visual control, conduction, and central integration on static and dynamic balance in healthy older adults.

    Science.gov (United States)

    Perrin, P P; Jeandel, C; Perrin, C A; Béné, M C

    1997-01-01

    Aging is associated with decreased balance abilities, resulting in an increased risk of fall. In order to appreciate the visual, somatosensory, and central signals involved in balance control, sophisticated methods of posturography assessment have been developed, using static and dynamic tests, eventually associated with electromyographic measurements. We applied such methods to a population of healthy older adults in order to appreciate the respective importance of each of these sensorial inputs in aging individuals. Posture control parameters were recorded on a force-measuring platform in 41 healthy young (age 28.5 +/- 5.9 years) and 50 older (age 69.8 +/- 5.9 years) adults, using a static test and two dynamic tests performed by all individuals first with eyes open, then with eyes closed. The distance covered by the center of foot pressure, sway area, and anteroposterior oscillations were significantly higher, with eyes open or closed, in older people than in young subjects. Significant differences were noted in dynamic tests with longer latency responses in the group of old people. Dynamic recordings in a sinusoidal test had a more regular pattern when performed eyes open in both groups and evidenced significantly greater instability in old people. These data suggest that vision remains important in maintaining postural control while conduction and central integration become less efficient with age.

  6. Integrability and chaos in quantum systems (as viewed from geometry and dynamical symmetry)

    International Nuclear Information System (INIS)

    Zhang, Wei-Min.

    1989-01-01

    It is known that the development and deep understanding of modern interaction theory and classical mechanics are made through geometry and symmetry. Yet, quantum mechanics which was regarded to be the microscopic theory of classical mechanics and achieved the crowning success in interpreting the entire microscopic world was developed purely from algebraic methods. In this thesis, the author will study the geometry and dynamical symmetry in quantum systems, from which the question of integrability and chaos are explicitly addressed. First of all, the quantum dynamical degrees of freedom and quantum integrability are precisely defined and the inherent geometrical structure of quantum systems is explored from the fundamental structure of quantum theory. Such a geometrical structure can provide a framework to simultaneously build quantum and classical mechanics. The quantum-classical correspondence is then explicitly deduced. The dynamics of quantum system before it reaches the classical limit is formulated. Thus, the classical chaos is proven to be a special limiting phenomena of quantum systems and the dynamics before the system reaches its classical chaos is explored. The latter is the first step to seek the quantum manifestation of chaos. The relationship between integrability and dynamical symmetry are studied and some universal properties are discovered: a dynamical system (both quantum and classical) in integrable if it possesses a dynamical symmetry. Chaos will occur if the system undergoes a dynamical symmetry breaking and is accompanied by a structural phase transition. Thus, the concept of dynamical symmetry can be used to predict the general behaviors of a system. The theoretical underpinnings developed in this thesis are verified by many basic quantum mechanical examples

  7. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics

    DEFF Research Database (Denmark)

    Papaleo, Elena

    2015-01-01

    that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome...... with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties...... simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations....

  8. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    International Nuclear Information System (INIS)

    Taylor, J'Tia Patrice; Shropshire, David E.

    2009-01-01

    This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system

  9. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Dynamic strength of retention system test.... (2) The retention system strength test equipment shall consist of a dynamic impact apparatus that... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus...

  10. Integrated test plan for directional boring

    International Nuclear Information System (INIS)

    Volk, B.W.

    1993-01-01

    This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department of Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing

  11. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    Science.gov (United States)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  12. Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping

    Science.gov (United States)

    Lu, Jianfeng; Zhou, Zhennan

    2018-02-01

    To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.

  13. Algorithms for testing of fractional dynamics: a practical guide to ARFIMA modelling

    International Nuclear Information System (INIS)

    Burnecki, Krzysztof; Weron, Aleksander

    2014-01-01

    In this survey paper we present a systematic methodology which demonstrates how to identify the origins of fractional dynamics. We consider three mechanisms which lead to it, namely fractional Brownian motion, fractional Lévy stable motion and an autoregressive fractionally integrated moving average (ARFIMA) process but we concentrate on the ARFIMA modelling. The methodology is based on statistical tools for identification and validation of the fractional dynamics, in particular on an ARFIMA parameter estimator, an ergodicity test, a self-similarity index estimator based on sample p-variation and a memory parameter estimator based on sample mean-squared displacement. A complete list of algorithms needed for this is provided in appendices A–F. Finally, we illustrate the methodology on various empirical data and show that ARFIMA can be considered as a universal model for fractional dynamics. Thus, we provide a practical guide for experimentalists on how to efficiently use ARFIMA modelling for a large class of anomalous diffusion data. (paper)

  14. Integrable topological billiards and equivalent dynamical systems

    Science.gov (United States)

    Vedyushkina, V. V.; Fomenko, A. T.

    2017-08-01

    We consider several topological integrable billiards and prove that they are Liouville equivalent to many systems of rigid body dynamics. The proof uses the Fomenko-Zieschang theory of invariants of integrable systems. We study billiards bounded by arcs of confocal quadrics and their generalizations, generalized billiards, where the motion occurs on a locally planar surface obtained by gluing several planar domains isometrically along their boundaries, which are arcs of confocal quadrics. We describe two new classes of integrable billiards bounded by arcs of confocal quadrics, namely, non-compact billiards and generalized billiards obtained by gluing planar billiards along non-convex parts of their boundaries. We completely classify non-compact billiards bounded by arcs of confocal quadrics and study their topology using the Fomenko invariants that describe the bifurcations of singular leaves of the additional integral. We study the topology of isoenergy surfaces for some non-convex generalized billiards. It turns out that they possess exotic Liouville foliations: the integral trajectories of the billiard that lie on some singular leaves admit no continuous extension. Such billiards appear to be leafwise equivalent to billiards bounded by arcs of confocal quadrics in the Minkowski metric.

  15. Dynamic analysis and qualification test of nuclear components

    International Nuclear Information System (INIS)

    Kim, B.K.; Lee, C.H.; Park, S.H.; Kim, Y.M.; Kim, B.S.; Kim, I.G.; Chung, C.W.; Kim, Y.M.

    1981-01-01

    This report contains the study on the dynamic characteristics of Wolsung fuel rod and on the dynamic balancing of rotating machinery to evaluate the performance of nuclear reactor components. The study on the dynamic characteristics of Wolsung fuel rod was carried out by both experimental and theoretical methods. Forced vibration testing of actual Wolsung fuel rod using sine sweep and sine dwell excitation was conducted to find the dynamic and nonlinear characteristics of the fuel rod. The data obtained by the test were used to analyze the nonlinear impact characteristics of the fuel rod which has a motion-constraint stop in the center of the rod. The parameters used in the test were the input force level of the exciter, the clearance gap between the fuel rod and the motion constraints, and the frequencies. Test results were in good agreement with the analytical results

  16. Topological classification of the Goryachev integrable case in rigid body dynamics

    International Nuclear Information System (INIS)

    Nikolaenko, S S

    2016-01-01

    A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics -- in other words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles

  17. Vitrification Facility integrated system performance testing report

    International Nuclear Information System (INIS)

    Elliott, D.

    1997-01-01

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process

  18. Prototype development and demonstration for integrated dynamic transit operations.

    Science.gov (United States)

    2016-01-01

    This document serves as the Final Report specific to the Integrated Dynamic Transit Operations (IDTO) Prototype Development and Deployment Project, hereafter referred to as IDTO Prototype Deployment or IDTO PD project. This project was performed unde...

  19. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    Science.gov (United States)

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  20. Development of dynamic Bayesian models for web application test management

    Science.gov (United States)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  1. Interchanging parameters and integrals in dynamical systems: the mapping case

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, John A.G. [Department of Mathematics, La Trobe University, Bundoora, VIC (Australia) and School of Mathematics, University of New South Wales, Sydney, NSW (Australia)]. E-mail: jagr@maths.unsw.edu.au; Apostolos, Iatrou; Quispel, G.R.W. [Department of Mathematics, La Trobe University, Bundoora, VIC (Australia)]. E-mails: A.Iatrou@latrobe.edu.au; R.Quispel@latrobe.edu.au

    2002-03-08

    We consider dynamical systems with discrete time (maps) that possess one or more integrals depending upon parameters. We show that integrals can be used to replace parameters in the original map so as to construct a different map with different integrals. We also highlight a process of reparametrization that can be used to increase the number of parameters in the original map prior to using integrals to replace them. Properties of the original map and the new map are compared. The theory is motivated by, and illustrated with, examples of a three-dimensional trace map and some four-dimensional maps previously shown to be integrable. (author)

  2. Overview of containment integrity test at NUPEC

    International Nuclear Information System (INIS)

    Takumi, K.; Yamada, T.

    2004-01-01

    NUPEC has started NUPEC Containment Integrity project entitled 'Proving Test on the Reliability for Reactor Containment Vessel' since June 1987. This is the project for the term of twelve years sponsored by MITI (Ministry of International Trade and Industry, Japanese Government). The test items are (1) Hydrogen mixing and distribution test, (2) Hydrogen Burning Test, (3) Iodine trapping characteristics test, and (4) Structural behavior test. Based on the test results, computer codes are verified and as the results of analysis and evaluation by the computer codes, containment integrity is to be confirmed. This paper indicates the results of hydrogen mixing and distribution test and hydrogen burning test. The NUPEC tests conducted so far suggest that hydrogen will be well mixed in the model containment vessel and the prediction by the computer code is in excellent agreement with the data. The NUPEC hydrogen burning test data is in good agreement with the FITS data at SNL that were obtained at the lower hydrogen concentration condition. (author)

  3. Quantum Dynamics of Test Particle in Curved Space-Time

    International Nuclear Information System (INIS)

    Piechocki, W.

    2002-01-01

    To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)

  4. Path integral methods for the dynamics of stochastic and disordered systems

    DEFF Research Database (Denmark)

    Hertz, John A.; Roudi, Yasser; Sollich, Peter

    2017-01-01

    We review some of the techniques used to study the dynamics of disordered systems subject to both quenched and fast (thermal) noise. Starting from the Martin–Siggia–Rose/Janssen–De Dominicis–Peliti path integral formalism for a single variable stochastic dynamics, we provide a pedagogical survey...

  5. Dynamic testing of cable structures

    Directory of Open Access Journals (Sweden)

    Caetano Elsa

    2015-01-01

    Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.

  6. The role of emotion in dynamic audiovisual integration of faces and voices.

    Science.gov (United States)

    Kokinous, Jenny; Kotz, Sonja A; Tavano, Alessandro; Schröger, Erich

    2015-05-01

    We used human electroencephalogram to study early audiovisual integration of dynamic angry and neutral expressions. An auditory-only condition served as a baseline for the interpretation of integration effects. In the audiovisual conditions, the validity of visual information was manipulated using facial expressions that were either emotionally congruent or incongruent with the vocal expressions. First, we report an N1 suppression effect for angry compared with neutral vocalizations in the auditory-only condition. Second, we confirm early integration of congruent visual and auditory information as indexed by a suppression of the auditory N1 and P2 components in the audiovisual compared with the auditory-only condition. Third, audiovisual N1 suppression was modulated by audiovisual congruency in interaction with emotion: for neutral vocalizations, there was N1 suppression in both the congruent and the incongruent audiovisual conditions. For angry vocalizations, there was N1 suppression only in the congruent but not in the incongruent condition. Extending previous findings of dynamic audiovisual integration, the current results suggest that audiovisual N1 suppression is congruency- and emotion-specific and indicate that dynamic emotional expressions compared with non-emotional expressions are preferentially processed in early audiovisual integration. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Biomechanical assessment of dynamic balance: Specificity of different balance tests.

    Science.gov (United States)

    Ringhof, Steffen; Stein, Thorsten

    2018-04-01

    Dynamic balance is vitally important for most sports and activities of daily living, so the assessment of dynamic stability has become an important issue. In consequence, a large number of balance tests have been developed. However, it is not yet known whether these tests (i) measure the same construct and (ii) can differentiate between athletes with different balance expertise. We therefore studied three common dynamic balance tests: one-leg jump landings, Posturomed perturbations and simulated forward falls. Participants were 24 healthy young females in regular training in either gymnastics (n = 12) or swimming (n = 12). In each of the tests, the participants were instructed to recover balance as quickly as possible. Dynamic stability was computed by time to stabilization and margin of stability, deduced from force plates and motion capture respectively. Pearson's correlations between the dynamic balance tests found no significant associations between the respective dynamic stability measures. Furthermore, independent t-tests indicated that only jump landings could properly distinguish between both groups of athletes. In essence, the different dynamic balance tests applied did not measure the same construct but rather task-specific skills, each of which depends on multifactorial internal and external constraints. Our study therefore contradicts the traditional view of considering balance as a general ability, and reinforces that dynamic balance measures are not interchangeable. This highlights the importance of selecting appropriate balance tests. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Distributed Energy Resources and Dynamic Microgrid: An Integrated Assessment

    Science.gov (United States)

    Shang, Duo Rick

    The overall goal of this thesis is to improve understanding in terms of the benefit of DERs to both utility and to electricity end-users when integrated in power distribution system. To achieve this goal, a series of two studies was conducted to assess the value of DERs when integrated with new power paradigms. First, the arbitrage value of DERs was examined in markets with time-variant electricity pricing rates (e.g., time of use, real time pricing) under a smart grid distribution paradigm. This study uses a stochastic optimization model to estimate the potential profit from electricity price arbitrage over a five-year period. The optimization process involves two types of PHEVs (PHEV-10, and PHEV-40) under three scenarios with different assumptions on technology performance, electricity market and PHEV owner types. The simulation results indicate that expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing ancillary services without more favorable policy and PHEV battery technologies. Subsidy or change in electricity tariff or both are needed. Second, it examined the concept of dynamic microgrid as a measure to improve distribution resilience, and estimates the prices of this emerging service. An economic load dispatch (ELD) model is developed to estimate the market-clearing price in a hypothetical community with single bid auction electricity market. The results show that the electricity market clearing price on the dynamic microgrid is predominantly decided by power output and cost of electricity of each type of DGs. At circumstances where CHP is the only source, the electricity market clearing price in the island is even cheaper than the on-grid electricity price at normal times. Integration of PHEVs in the dynamic microgrid will increase electricity market clearing prices. It demonstrates that dynamic microgrid is an economically viable alternative to enhance grid resilience.

  9. Standard Test Methods for Wet Insulation Integrity Testing of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 These test methods provide procedures to determine the insulation resistance of a photovoltaic (PV) module, i.e. the electrical resistance between the module's internal electrical components and its exposed, electrically conductive, non-current carrying parts and surfaces. 1.2 The insulation integrity procedures are a combination of wet insulation resistance and wet dielectric voltage withstand test procedures. 1.3 These procedures are similar to and reference the insulation integrity test procedures described in Test Methods E 1462, with the difference being that the photovoltaic module under test is immersed in a wetting solution during the procedures. 1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods. 1.5 The values stated in SI units are to be regarded as the standard. 1.6 There is no similar or equivalent ISO standard. 1.7 This standard does not purport to address all of the safety conce...

  10. Bootstrap Score Tests for Fractional Integration in Heteroskedastic ARFIMA Models, with an Application to Price Dynamics in Commodity Spot and Futures Markets

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Morten Ørregaard; Taylor, A.M. Robert

    Empirical evidence from time series methods which assume the usual I(0)/I(1) paradigm suggests that the efficient market hypothesis, stating that spot and futures prices of a commodity should cointegrate with a unit slope on futures prices, does not hold. However, these statistical methods...... fractionally integrated model we are able to find a body of evidence in support of the efficient market hypothesis for a number of commodities. Our new tests are wild bootstrap implementations of score-based tests for the order of integration of a fractionally integrated time series. These tests are designed...... principle do. A Monte Carlo simulation study demonstrates that very significant improvements infinite sample behaviour can be obtained by the bootstrap vis-à-vis the corresponding asymptotic tests in both heteroskedastic and homoskedastic environments....

  11. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    Energy Technology Data Exchange (ETDEWEB)

    J' Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  12. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe

    2017-01-01

    The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course ab......The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time...

  13. Dynamic response characteristics of dual flow-path integrally bladed rotors

    Science.gov (United States)

    Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.

    2015-02-01

    New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.

  14. Care Model Design for E-Health: Integration of Point-of-Care Testing at Dutch General Practices

    Directory of Open Access Journals (Sweden)

    Bart Verhees

    2017-12-01

    Full Text Available Point-of-care testing (POCT—laboratory tests performed with new mobile devices and online technologies outside of the central laboratory—is rapidly outpacing the traditional laboratory test market, growing at a rate of 12 to 15% each year. POCT impacts the diagnostic process of care providers by yielding high efficiency benefits in terms of turnaround time and related quality improvements in the reduction of errors. However, the implementation of this disruptive eHealth technology requires the integration and transformation of diagnostic services across the boundaries of healthcare organizations. Research has revealed both advantages and barriers of POCT implementations, yet to date, there is no business model for the integration of POCT within general practice. The aim of this article is to contribute with a design for a care model that enables the integration of POCT in primary healthcare. In this research, we used a design modelling toolkit for data collection at five general practices. Through an iterative design process, we modelled the actors and value transactions, and designed an optimized care model for the dynamic integration of POCTs into the GP’s network of care delivery. The care model design will have a direct bearing on improving the integration of POCT through the connectivity and norm guidelines between the general practice, the POC technology, and the diagnostic centre.

  15. Care Model Design for E-Health: Integration of Point-of-Care Testing at Dutch General Practices.

    Science.gov (United States)

    Verhees, Bart; van Kuijk, Kees; Simonse, Lianne

    2017-12-21

    Point-of-care testing (POCT)-laboratory tests performed with new mobile devices and online technologies outside of the central laboratory-is rapidly outpacing the traditional laboratory test market, growing at a rate of 12 to 15% each year. POCT impacts the diagnostic process of care providers by yielding high efficiency benefits in terms of turnaround time and related quality improvements in the reduction of errors. However, the implementation of this disruptive eHealth technology requires the integration and transformation of diagnostic services across the boundaries of healthcare organizations. Research has revealed both advantages and barriers of POCT implementations, yet to date, there is no business model for the integration of POCT within general practice. The aim of this article is to contribute with a design for a care model that enables the integration of POCT in primary healthcare. In this research, we used a design modelling toolkit for data collection at five general practices. Through an iterative design process, we modelled the actors and value transactions, and designed an optimized care model for the dynamic integration of POCTs into the GP's network of care delivery. The care model design will have a direct bearing on improving the integration of POCT through the connectivity and norm guidelines between the general practice, the POC technology, and the diagnostic centre.

  16. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    Science.gov (United States)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to

  17. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    Science.gov (United States)

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  18. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  19. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems

    DEFF Research Database (Denmark)

    Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng

    2018-01-01

    . Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...

  20. Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) Integration Manager

    Science.gov (United States)

    Pham, Kim; Bialas, Thomas

    2012-01-01

    The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.

  1. Continuous waves probing in dynamic acoustoelastic testing

    Science.gov (United States)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  2. A study of the use of abstract types for the representation of engineering units in integration and test applications

    Science.gov (United States)

    Johnson, Charles S.

    1986-01-01

    Physical quantities using various units of measurement can be well represented in Ada by the use of abstract types. Computation involving these quantities (electric potential, mass, volume) can also automatically invoke the computation and checking of some of the implicitly associable attributes of measurements. Quantities can be held internally in SI units, transparently to the user, with automatic conversion. Through dimensional analysis, the type of the derived quantity resulting from a computation is known, thereby allowing dynamic checks of the equations used. The impact of the possible implementation of these techniques in integration and test applications is discussed. The overhead of computing and transporting measurement attributes is weighed against the advantages gained by their use. The construction of a run time interpreter using physical quantities in equations can be aided by the dynamic equation checks provided by dimensional analysis. The effects of high levels of abstraction on the generation and maintenance of software used in integration and test applications are also discussed.

  3. Improved Integral Attacks on SIMON32 and SIMON48 with Dynamic Key-Guessing Techniques

    Directory of Open Access Journals (Sweden)

    Zhihui Chu

    2018-01-01

    Full Text Available Dynamic key-guessing techniques, which exploit the property of AND operation, could improve the differential and linear cryptanalytic results by reducing the number of guessed subkey bits and lead to good cryptanalytic results for SIMON. They have only been applied in differential and linear attacks as far as we know. In this paper, dynamic key-guessing techniques are first introduced in integral cryptanalysis. According to the features of integral cryptanalysis, we extend dynamic key-guessing techniques and get better integral cryptanalysis results than before. As a result, we present integral attacks on 24-round SIMON32, 24-round SIMON48/72, and 25-round SIMON48/96. In terms of the number of attacked rounds, our attack on SIMON32 is better than any previously known attacks, and our attacks on SIMON48 are the same as the best attacks.

  4. Test Structures For Bumpy Integrated Circuits

    Science.gov (United States)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  5. Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary

    Directory of Open Access Journals (Sweden)

    Fitkevich Maxim

    2016-01-01

    Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.

  6. Development and verification test of integral reactor major components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Kim, Y. W.; Kim, J. H. and others

    1999-03-01

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability.

  7. Development and verification test of integral reactor major components

    International Nuclear Information System (INIS)

    Kim, J. I.; Kim, Y. W.; Kim, J. H. and others

    1999-03-01

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability

  8. Molecular dynamics simulation of impact test

    International Nuclear Information System (INIS)

    Akahoshi, Y.; Schmauder, S.; Ludwig, M.

    1998-01-01

    This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)

  9. Molecular dynamics simulation of impact test

    Energy Technology Data Exchange (ETDEWEB)

    Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-11-01

    This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)

  10. The lie-algebraic structures and integrability of differential and differential-difference nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.; Blackmore, D.L.; Bogolubov, N.N. Jr.

    2007-05-01

    The infinite-dimensional operator Lie algebras of the related integrable nonlocal differential-difference dynamical systems are treated as their hidden symmetries. As a result of their dimerization the Lax type representations for both local differential-difference equations and nonlocal ones are obtained. An alternative approach to the Lie-algebraic interpretation of the integrable local differential-difference systems is also proposed. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the centrally extended Lie algebra of integro-differential operators with matrix-valued coefficients coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is obtained by means of a specially constructed Baecklund transformation. The Hamiltonian description for the corresponding set of additional symmetry hierarchies is represented. The relation of these hierarchies with Lax type integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax type linearizations is analyzed. The Lie-algebraic structures, related with centrally extended current operator Lie algebras are discussed with respect to constructing new nonlinear integrable dynamical systems on functional manifolds and super-manifolds. Special Poisson structures and related with them factorized integrable operator dynamical systems having interesting applications in modern mathematical physics, quantum computing mathematics and other fields are constructed. The previous purely computational results are explained within the approach developed. (author)

  11. Integrated vehicle dynamics control using State Dependent Riccati Equations

    NARCIS (Netherlands)

    Bonsen, B.; Mansvelders, R.; Vermeer, E.

    2010-01-01

    In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this

  12. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Laboratory (INL), Idaho Falls, ID (United States); O' Brien, James E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); McKellar, Michael G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial

  13. UAS-NAS Integrated Human in the Loop: Test Environment Report

    Science.gov (United States)

    Murphy, Jim; Otto, Neil; Jovic, Srba

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research was broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of the Test Infrastructure theme was to enable development and validation of airspace integration procedures and performance standards, including the execution of integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project developed an adaptable, scalable, and schedulable relevant test environment incorporating live, virtual, and constructive elements capable of validating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project planned to conduct three integrated events: a Human-in-the-Loop simulation and two Flight Test series that integrated key concepts, technologies and/or procedures in a relevant air traffic environment. Each of

  14. Optimal integration and test plans for software releases of lithographic systems

    NARCIS (Netherlands)

    Boumen, R.; Jong, de I.S.M.; Mortel - Fronczak, van de J.M.; Rooda, J.E.

    2007-01-01

    This paper describes a method to determine the optimal integration and test plan for embedded systems software releases. The method consists of four steps: 1)describe the integration and test problem in an integration and test model which is introduced in this paper, 2) determine possible test

  15. Dynamic fracture toughness testing of structural steels

    International Nuclear Information System (INIS)

    Debel, C.P.

    1978-01-01

    Two candidate test methods aimed at producing materials properties of interest in connection with crack arrest assessments are currently under evaluation. These methods and the significance of the results are described. The quasi-static as well as the dynamic fracture toughness of a plain C-Mn steel in the as-quenched and tempered condition have been examined at temperatures between -115 0 C and the ambient temperature. Wedge-loaded duplex DCB-specimens were used in dynamic tests. The crack extension velocity was measured using a surface deposited grid and a registration circuit based on TTL-electronics. The toughness transition-temperature at quasi-static loading rate is found to be low; but during dynamic crack-extension a substantial shift of the transition-region to higher temperatures is produced, and fast fracture was obtained even at ambient temperature. Even though the dynamic fracture toughness Ksub(ID) increases with temperature, it decreases with increasing crack-extension velocity at a given temperature and the rate of decrease with respect to crack-extension velocity seems to be independent of temperature. Ksub(ID) appears to be insensitive to heat treatments. Test results indicate insufficient load-train stiffness, and problems due to crack branching were encountered. (author)

  16. The Integrated Use of Enterprise and System Dynamics Modelling Techniques in Support of Business Decisions

    Directory of Open Access Journals (Sweden)

    K. Agyapong-Kodua

    2012-01-01

    Full Text Available Enterprise modelling techniques support business process (reengineering by capturing existing processes and based on perceived outputs, support the design of future process models capable of meeting enterprise requirements. System dynamics modelling tools on the other hand are used extensively for policy analysis and modelling aspects of dynamics which impact on businesses. In this paper, the use of enterprise and system dynamics modelling techniques has been integrated to facilitate qualitative and quantitative reasoning about the structures and behaviours of processes and resource systems used by a Manufacturing Enterprise during the production of composite bearings. The case study testing reported has led to the specification of a new modelling methodology for analysing and managing dynamics and complexities in production systems. This methodology is based on a systematic transformation process, which synergises the use of a selection of public domain enterprise modelling, causal loop and continuous simulation modelling techniques. The success of the modelling process defined relies on the creation of useful CIMOSA process models which are then converted to causal loops. The causal loop models are then structured and translated to equivalent dynamic simulation models using the proprietary continuous simulation modelling tool iThink.

  17. Integrated 6-DOF Orbit-Attitude Dynamical Modeling and Control Using Geometric Mechanics

    Directory of Open Access Journals (Sweden)

    Ling Jiang

    2017-01-01

    Full Text Available The integrated 6-DOF orbit-attitude dynamical modeling and control have shown great importance in various missions, for example, formation flying and proximity operations. The integrated approach yields better performances than the separate one in terms of accuracy, efficiency, and agility. One challenge in the integrated approach is to find a unified representation for the 6-DOF motion with configuration space SE(3. Recently, exponential coordinates of SE(3 have been used in dynamics and control of the 6-DOF motion, however, only on the kinematical level. In this paper, we will improve the current method by adopting exponential coordinates on the dynamical level, by giving the relation between the second-order derivative of exponential coordinates and spacecraft’s accelerations. In this way, the 6-DOF motion in terms of exponential coordinates can be written as a second-order system with a quite compact form, to which a broader range of control theories, such as higher-order sliding modes, can be applied. For a demonstration purpose, a simple asymptotic tracking control law with almost global convergence is designed. Finally, the integrated modeling and control are applied to the body-fixed hovering over an asteroid and verified by a simulation, in which absolute motions of the spacecraft and asteroid are simulated separately.

  18. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  19. Full scale dynamic tests of Atucha II NPP

    International Nuclear Information System (INIS)

    Konno, T.; Alvarez, L.M.; Ceballos, M.A.; Prato, C.A.; Uchiyama, S.; Godoy, A.R.

    1995-01-01

    This paper summarizes the main results of a series of dynamic tests of the reactor building of Atucha II NPP performed to determine the dynamic properties of its massive structure deeply embedded in Quaternary soil deposits. Tests were performed under two different types of loading conditions: Steady state harmonic loads imposed by mechanical exciters and impulsive loads induced by dropping a weight on the ground surface in the vicinity. Natural frequencies and mode shapes were identified and the associated modal damping ratios were experimentally determined. Numerical analyses of the reactor building-foundation system by two different F.E. models were performed. One of them, based on an axisymmetric representation of the soil-structure system, was used to simulate the steady state vibration tests and to calculate the dynamic stiffness of the foundation slab and soil layers for comparison with those experimentally obtained. The other, a 3-D F.E. model of the superstructure, was used to assess the natural frequencies and mode shapes obtained from the tests, representing dynamic stiffness of the foundation with stiffness coefficients derived both from the tests and from the axisymmetric F.E. model. Good agreement of the natural frequencies given by two types of tests was generally found, with the largest difference between them in the fundamental frequency of the building. Estimates of modal damping derived from the tests showed significant differences depending on the technique used to calculate them. For the fundamental mode damping was found to be 23-42 %, gradually decreasing with frequency to 2-4 % for around 10 Hz. (author)

  20. Full scale dynamic tests of Atucha II NPP

    International Nuclear Information System (INIS)

    Prato, C.A.; Ceballos, M.A.; Konno, T.; Uchiyama, S.; Alvarez, L.M.; Godoy, A.R.

    1998-01-01

    This paper summarizes the main results of a series of dynamic tests of the reactor building of Atucha II NPP performed to determine the dynamic properties of its massive structure deeply embedded in quaternary soil deposits. Tests were performed under two different types of loading conditions: steady state harmonic loads imposed by mechanical exciters and impulsive loads induced by dropping a weight on the ground surface in the vicinity. Natural frequencies and mode shapes were identified and the associated modal damping ratios were experimentally determined. Numerical analyses of the reactor building-foundation system by two different F.E. models were performed. One of them, based on an axisymmetric representation of the soil-structure system, was used to simulate the steady state vibration tests and to calculate the dynamic stiffness of the foundation slab and soil layers for comparison with those experimentally obtained. The other, a 3-D F.E. model of the superstructure, was used to assess the natural frequencies and mode shapes obtained from the tests, representing dynamic stiffness of the foundation with stiffness coefficients derived both from the tests and from the axisymmetric F.E. model. Good agreement of the natural frequencies given by two types of tests were generally found, with the largest difference between them in the fundamental frequency of the building. Estimates of modal damping derived from the tests showed significant differences depending on the technique used to calculate them. For the fundamental mode, damping was found to be 23-42%, gradually decreasing with frequency to 2-4% for ∝10 Hz. (orig.)

  1. On the Complete Integrability of Nonlinear Dynamical Systems on Discrete Manifolds within the Gradient-Holonomic Approach

    International Nuclear Information System (INIS)

    Prykarpatsky, Yarema A.; Bogolubov, Nikolai N. Jr.; Prykarpatsky, Anatoliy K.; Samoylenko, Valeriy H.

    2010-12-01

    A gradient-holonomic approach for the Lax type integrability analysis of differential-discrete dynamical systems is devised. The asymptotical solutions to the related Lax equation are studied and the related gradient identity is stated. The integrability of a discrete nonlinear Schroedinger type dynamical system is treated in detail. The integrability of a generalized Riemann type discrete hydrodynamical system is discussed. (author)

  2. Dynamic testing of MFTF containment-vessel structural system

    International Nuclear Information System (INIS)

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-01-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters

  3. Conservative fourth-order time integration of non-linear dynamic systems

    DEFF Research Database (Denmark)

    Krenk, Steen

    2015-01-01

    An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration time increment, and then evaluating...... the resulting time integrals of the inertia and stiffness terms via integration by parts. This process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space differential equations. The resulting discrete form of the state-space equations...... is a direct fourth-order accurate representation of the original differential equations. This fourth-order form is energy conserving for systems with force potential in the form of a quartic polynomial in the displacement components. Energy conservation for a force potential of general form is obtained...

  4. Combination of dynamic and integral methods for generating reproducible functional CBF images

    International Nuclear Information System (INIS)

    Lammertsma, A.A.; Cunningham, V.J.; Deiber, M.P.; Heather, J.D.; Bloomfield, P.M.; Nutt, J.; Frackowiak, R.S.; Jones, T.

    1990-01-01

    A new method to measure regional CBF is presented, applying both dynamic and integral analyses to a dynamic sequence of positron emission tomographic scans collected during and following the administration of H2(15)O (inhalation of C15O2). The dynamic analysis is used to correct continuously monitored arterial whole-blood activity for delay and dispersion relative to tissue scans. An integral analysis including corrections for this delay and dispersion is then used to calculate CBF on a pixel-by-pixel basis. Normal values and reproducibility over a 2-h period are presented, together with the results of validation and simulation studies. The results indicate that the single-tissue compartment model adequately describes the distribution of H2(15)O in the brain, without recourse to postulating a nonexchanging water pool

  5. Puzzling with potential: dynamic testing of analogical reasoning in children

    OpenAIRE

    Stevenson, Claire Elisabeth

    2012-01-01

    Assessment procedures are frequent in children's school careers; however, measuring potential for learning has remained a puzzle. Dynamic testing is a method to assess cognitive potential that includes training in the assessment process. The goal of this thesis project was to develop a new dynamic test of analogical reasoning for school children. The main aims were to (1) investigate factors that influence children’s differences in performance and change during dynamic testing and (2) examine...

  6. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems

    International Nuclear Information System (INIS)

    Liu Chunliang; Xie Xi; Chen Yinbao

    1991-01-01

    The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation

  7. Simulation of sensory integration dysfunction in autism with dynamic neural fields model

    NARCIS (Netherlands)

    Chonnaparamutt, W.; Barakova, E.I.; Rutkowski, L.; Taseusiewicz, R.

    2008-01-01

    This paper applies dynamic neural fields model [1,23,7] to multimodal interaction of sensory cues obtained from a mobile robot, and shows the impact of different temporal aspects of the integration to the precision of movements. We speculate that temporally uncoordinated sensory integration might be

  8. Plan for dynamic testing of NFS tank and vault

    International Nuclear Information System (INIS)

    1977-12-01

    (Nuclear Fuel Services) dynamic testing methodologies are described including the determination of resonant frequencies, mode shapes and the associated structural damping. The application of dynamic testing to the determination of the eigenparameters of the neutralized waste tanks 8D-2 and 8D-1 investigated and recommendations made

  9. Market Integration Dynamics and Asymptotic Price Convergence in Distribution

    NARCIS (Netherlands)

    A. García-Hiernaux (Alfredo); D.E. Guerrero (David); M.J. McAleer (Michael)

    2013-01-01

    textabstractIn this paper we analyse the market integration process of the relative price distribution, develop a model to analyze market integration, and present a formal test of increasing market integration. We distinguish between the economic concepts of price convergence in mean and in

  10. Double light-cone dynamics establish thermal states in integrable 1D Bose gases

    Science.gov (United States)

    Langen, T.; Schweigler, T.; Demler, E.; Schmiedmayer, J.

    2018-02-01

    We theoretically investigate the non-equilibrium dynamics in a quenched pair of one-dimensional Bose gases with density imbalance. We describe the system using its low-energy effective theory, the Luttinger liquid model. In this framework the system shows strictly integrable relaxation dynamics via dephasing of its approximate many-body eigenstates. In the balanced case, this leads to the well-known light-cone-like establishment of a prethermalized state, which can be described by a generalized Gibbs ensemble. In the imbalanced case the integrable dephasing leads to a state that, counter-intuitively, closely resembles a thermal equilibrium state. The approach to this state is characterized by two separate light-cone dynamics with distinct characteristic velocities. This behavior is a result of the fact that in the imbalanced case observables are not aligned with the conserved quantities of the integrable system. We discuss a concrete experimental realization to study this effect using matterwave interferometry and many-body revivals on an atom chip.

  11. The dynamics of multimodal integration: The averaging diffusion model.

    Science.gov (United States)

    Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James

    2017-12-01

    We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.

  12. Best Practices: Power Quality and Integrated Testing at JSC

    Science.gov (United States)

    Davis, Lydia

    2018-01-01

    This presentation discusses Best Practices for Power Quality and Integrated Testing at JSC in regards to electrical systems. These high-level charts include mostly generic information; however, a specific issue is discussed involving flight hardware that could have been discovered prior to flight with an integrated test.

  13. A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach for contaminated sites management

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yan; Wen, Jing-ya; Li, Xiao-li; Wang, Da-zhou; Li, Yu, E-mail: liyuxx8@hotmail.com

    2013-10-15

    Highlights: • Using interval mathematics to describe spatial and temporal variability and parameter uncertainty. • Using fuzzy theory to quantify variability of environmental guideline values. • Using probabilistic approach to integrate interval concentrations and fuzzy environmental guideline. • Establishment of dynamic multimedia environmental integrated risk assessment framework. -- Abstract: A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach was developed for contaminated sites management. The contaminant concentrations were simulated by a validated interval dynamic multimedia fugacity model, and different guideline values for the same contaminant were represented as a fuzzy environmental guideline. Then, the probability of violating environmental guideline (Pv) can be determined by comparison between the modeled concentrations and the fuzzy environmental guideline, and the constructed relationship between the Pvs and environmental risk levels was used to assess the environmental risk level. The developed approach was applied to assess the integrated environmental risk at a case study site in China, simulated from 1985 to 2020. Four scenarios were analyzed, including “residential land” and “industrial land” environmental guidelines under “strict” and “loose” strictness. It was found that PAH concentrations will increase steadily over time, with soil found to be the dominant sink. Source emission in soil was the leading input and atmospheric sedimentation was the dominant transfer process. The integrated environmental risks primarily resulted from petroleum spills and coke ovens, while the soil environmental risks came from coal combustion. The developed approach offers an effective tool for quantifying variability and uncertainty in the dynamic multimedia integrated environmental risk assessment and the contaminated site management.

  14. A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach for contaminated sites management

    International Nuclear Information System (INIS)

    Hu, Yan; Wen, Jing-ya; Li, Xiao-li; Wang, Da-zhou; Li, Yu

    2013-01-01

    Highlights: • Using interval mathematics to describe spatial and temporal variability and parameter uncertainty. • Using fuzzy theory to quantify variability of environmental guideline values. • Using probabilistic approach to integrate interval concentrations and fuzzy environmental guideline. • Establishment of dynamic multimedia environmental integrated risk assessment framework. -- Abstract: A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach was developed for contaminated sites management. The contaminant concentrations were simulated by a validated interval dynamic multimedia fugacity model, and different guideline values for the same contaminant were represented as a fuzzy environmental guideline. Then, the probability of violating environmental guideline (Pv) can be determined by comparison between the modeled concentrations and the fuzzy environmental guideline, and the constructed relationship between the Pvs and environmental risk levels was used to assess the environmental risk level. The developed approach was applied to assess the integrated environmental risk at a case study site in China, simulated from 1985 to 2020. Four scenarios were analyzed, including “residential land” and “industrial land” environmental guidelines under “strict” and “loose” strictness. It was found that PAH concentrations will increase steadily over time, with soil found to be the dominant sink. Source emission in soil was the leading input and atmospheric sedimentation was the dominant transfer process. The integrated environmental risks primarily resulted from petroleum spills and coke ovens, while the soil environmental risks came from coal combustion. The developed approach offers an effective tool for quantifying variability and uncertainty in the dynamic multimedia integrated environmental risk assessment and the contaminated site management

  15. Market Integration Dynamics and Asymptotic Price Convergence in Distribution

    NARCIS (Netherlands)

    A. García-Hiernaux (Alfredo); D.E. Guerrero (David); M.J. McAleer (Michael)

    2015-01-01

    textabstractThis paper analyzes the market integration process of nominal prices, develops a model to analyze market integration, and presents a test of increasing market integration. A distinction is made between the economic concepts of price conver- gence in mean and variance. When both types of

  16. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay.

    Science.gov (United States)

    Liu, Dong; Sun, Changzheng; Xiong, Bing; Luo, Yi

    2014-03-10

    We report rich nonlinear dynamics in integrated coupled lasers with ultra-short coupling delay. Mutually stable locking, period-1 oscillation, frequency locking, quasi-periodicity and chaos are observed experimentally. The dynamic behaviors are reproduced numerically by solving coupled delay differential equations that take the variation of both frequency detuning and coupling phase into account. Moreover, it is pointed out that the round-trip frequency is not involved in the above nonlinear dynamical behaviors. Instead, the relationship between the frequency detuning Δν and the relaxation oscillation frequency νr under mutual injection are found to be critical for the various observed dynamics in mutually coupled lasers with very short delay.

  17. Structural integrity evaluation of FTL in-pool piping

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y

    1998-05-01

    HANARO fuel test loop will be equipped in HANARO to obtain the development betterment of advanced fuel and materials through the irradiation test. The object of this study is to evaluate the structural integrity of FTL in-pool piping by investigating a dynamic analysis of the loop containing a postulated rupture section. The method to perform the dynamic analysis and structural integrity evaluation caused by the pipe whip in water environment can be a reference for a similar structural integrity evaluation. (author). 7 refs., 39 tabs., 34 figs.

  18. Multistability in an electrically actuated carbon nanotube: A dynamical integrity perspective

    KAUST Repository

    Ruzziconi, Laura

    2013-07-12

    This study deals with a slacked carbon nanotube, which is electrostatically and electrodynamically actuated. After introducing a reduced-order model, we investigate the overall scenario of the device response when both the frequency and the electrodynamic voltage are varied. Extensive numerical simulations are performed. The nanostructure exhibits several competing attractors with different characteristics. We examine the multistability in detail, based on numerical integration of the equation of motion in time, since it leads to a considerable versatility of behavior, which may be desirable in applications. Nevertheless, these results do not take into account the presence of disturbances, which are unavoidable under realistic conditions. To extend them to the practical case where disturbances exist, we develop a dynamical integrity analysis. This is performed via the combined use of several dynamical integrity tools. Analyzing the potential well, we observe that the device may be vulnerable to pull-in considerably before the theoretical inevitable escape. Focusing on the safe range, the main attractors are examined to investigate the practical probability to catch them and the practical disappearance of the main ones. Special attention is devoted to the practical final response, to detect where the safe jump to another attractor may be ensured and where instead dynamic pull-in may arise. We build the integrity charts, which are able to illustrate if and in which parameter range the theoretical predictions can be guaranteed in practice. They may be used to establish safety factors to effectively operate the device according to the desired outcome, depending on the expected disturbances. © 2013 Springer Science+Business Media Dordrecht.

  19. BWR Full Integral Simulation Test (FIST). Phase I test results

    International Nuclear Information System (INIS)

    Hwang, W.S.; Alamgir, M.; Sutherland, W.A.

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report

  20. High-precision numerical integration of equations in dynamics

    Science.gov (United States)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    An important requirement for the process of solving differential equations in Dynamics, such as the equations of the motion of celestial bodies and, in particular, the motion of cosmic robotic systems is high accuracy at large time intervals. One of effective tools for obtaining such solutions is the Taylor series method. In this connection, we note that it is very advantageous to reduce the given equations of Dynamics to systems with polynomial (in unknowns) right-hand sides. This allows us to obtain effective algorithms for finding the Taylor coefficients, a priori error estimates at each step of integration, and an optimal choice of the order of the approximation used. In the paper, these questions are discussed and appropriate algorithms are considered.

  1. An integrated ball projection technology for the study of dynamic interceptive actions.

    Science.gov (United States)

    Stone, J A; Panchuk, D; Davids, K; North, J S; Fairweather, I; Maynard, I W

    2014-12-01

    Dynamic interceptive actions, such as catching or hitting a ball, are important task vehicles for investigating the complex relationship between cognition, perception, and action in performance environments. Representative experimental designs have become more important recently, highlighting the need for research methods to ensure that the coupling of information and movement is faithfully maintained. However, retaining representative design while ensuring systematic control of experimental variables is challenging, due to the traditional tendency to employ methods that typically involve use of reductionist motor responses such as buttonpressing or micromovements. Here, we outline the methodology behind a custom-built, integrated ball projection technology that allows images of advanced visual information to be synchronized with ball projection. This integrated technology supports the controlled presentation of visual information to participants while they perform dynamic interceptive actions. We discuss theoretical ideas behind the integration of hardware and software, along with practical issues resolved in technological design, and emphasize how the system can be integrated with emerging developments such as mixed reality environments. We conclude by considering future developments and applications of the integrated projection technology for research in human movement behaviors.

  2. Regression testing Ajax applications : Coping with dynamism

    NARCIS (Netherlands)

    Roest, D.; Mesbah, A.; Van Deursen, A.

    2009-01-01

    Note: This paper is a pre-print of: Danny Roest, Ali Mesbah and Arie van Deursen. Regression Testing AJAX Applications: Coping with Dynamism. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST’10), Paris, France. IEEE Computer Society, 2010.

  3. Dynamic state estimation for distribution networks with renewable energy integration

    NARCIS (Netherlands)

    Nguyen, P.H.; Venayagamoorthy, G.K.; Kling, W.L.; Ribeiro, P.F.

    2013-01-01

    The massive integration of variable and unpredictable Renewable Energy Sources (RES) and new types of load consumptions increases the dynamic and uncertain nature of the electricity grid. Emerging interests have focused on improving the monitoring capabilities of network operators so that they can

  4. Dynamic tests for qualifying of national uranium hexafluoride

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de; Abreu Mendonca Schvartzman, M.M. de; Vasconcelos, M.C.R.L.

    1990-01-01

    The dynamic behaviour of the Brazilian uranium hexafluoride is analyzed in this paper, with regard to its radiolytic decomposition and to the action of catalysts on the reaction between UF 6 and H 2 . The process gas (UF 6 /H 2 ) was submitted in the laboratory of dynamic tests (DV-II) to similar conditions as those used in the enrichment plant presently being erected in Resende - RJ, 'First Cascade - FC'. The tests carried out have shown that the Brazilian UF 6 has the same dynamic behaviour of the German UF 6 . It does not contain either any catalyst of the reaction between UF 6 and H 2 which could render it inappropriate for use in commercial plants. (author) [pt

  5. Dynamic rock tests using split Hopkinson (Kolsky bar system – A review

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2015-02-01

    Full Text Available Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB and split Hopkinson tension bar (SHTB systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques. Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT, laser gap gauge (LGG, digital image correlation (DIC, Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests, dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity, and dynamic techniques for studying the influences of temperature and pore water.

  6. Spatial integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  7. Aviation Systems Test and Integration Lab (AvSTIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aviation Systems Test and Integration Laboratory offers an innovative approach to aviation system and subsystem testing by fully immersing aviation platforms in...

  8. The Predominance Of Integrative Tests Over Discrete Point Tests In Evaluating The Medical Students' General English Knowledge

    Directory of Open Access Journals (Sweden)

    maryam Heydarpour Meymeh

    2009-03-01

    Full Text Available Background and purpose: Multiple choice tests are the most common type of tests used in evaluating the general English knowledge of the students in most medical universities, however the efficacy of these tests are not examined precisely. Wecompare and examine the integrative tests and discrete point tests as measures of the English language knowledge of medical students.Methods: Three tests were given to 60 undergraduate physiotherapy and Audiology students in their second year of study (after passing their general English course. They were divided into 2 groups.The first test for both groups was an integrative test, writing. The second test was a multiple - choice test 0.(prepositions for group one and a multiple - choice test of tensesfor group two. The same items which were mostfi-equently used wrongly in thefirst test were used in the items of the second test. A third test, a TOEFL, was given to the subjects in order to estimate the correlation between this test and tests one and two.Results: The students performed better in the second test, discrete point test rather than the first which was an integrative test. The same grammatical mistakes in the composition were used correctly in the multiple choice tests by the students.Conclusion:Our findings show that student perform better in non-productive rather than productive test. Since being competent English language user is an expected outcome of university language courses it seems warranted to switch to integrative tests as a measure of English language competency.Keywords: INTEGRATIVE TESTS, ENGLISH LANGUAGE FOR MEDICINE, ACADEMIC ENGLISH

  9. Discriminating chaotic and stochastic dynamics through the permutation spectrum test

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, C. W., E-mail: Kulp@lycoming.edu [Department of Astronomy and Physics, Lycoming College, Williamsport, Pennsylvania 17701 (United States); Zunino, L., E-mail: lucianoz@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CONICET La Plata—CIC), C.C. 3, 1897 Gonnet (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata (Argentina)

    2014-09-01

    In this paper, we propose a new heuristic symbolic tool for unveiling chaotic and stochastic dynamics: the permutation spectrum test. Several numerical examples allow us to confirm the usefulness of the introduced methodology. Indeed, we show that it is robust in situations in which other techniques fail (intermittent chaos, hyperchaotic dynamics, stochastic linear and nonlinear correlated dynamics, and deterministic non-chaotic noise-driven dynamics). We illustrate the applicability and reliability of this pragmatic method by examining real complex time series from diverse scientific fields. Taking into account that the proposed test has the advantages of being conceptually simple and computationally fast, we think that it can be of practical utility as an alternative test for determinism.

  10. A semiautomated computer-interactive dynamic impact testing system

    International Nuclear Information System (INIS)

    Alexander, D.J.; Nanstad, R.K.; Corwin, W.R.; Hutton, J.T.

    1989-01-01

    A computer-assisted semiautomated system has been developed for testing a variety of specimen types under dynamic impact conditions. The primary use of this system is for the testing of Charpy specimens. Full-, half-, and third-size specimens have been tested, both in the lab and remotely in a hot cell for irradiated specimens. Specimens are loaded into a transfer device which moves the specimen into a chamber, where a hot air gun is used to heat the specimen, or cold nitrogen gas is used for cooling, as required. The specimen is then quickly transferred from the furnace to the anvils and then broken. This system incorporates an instrumented tup to determine the change in voltage during the fracture process. These data are analyzed by the computer system after the test is complete. The voltage-time trace is recorded with a digital oscilloscope, transferred to the computer, and analyzed. The analysis program incorporates several unique features. It interacts with the operator and identifies the maximum voltage during the test, the amount of rapid fracture during the test (if any), and the end of the fracture process. The program then calculates the area to maximum voltage and the total area under the voltage-time curve. The data acquisition and analysis part of the system can also be used to conduct other dynamic testing. Dynamic tear and precracked specimens can be tested with an instrumented tup and analyzed in a similar manner. 3 refs., 7 figs

  11. Dynamic stack testing and HiL simulation

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, G. [GRandalytics, Honolulu, HI (United States)

    2009-07-01

    The applications for fuel cell and stack deployment have changed rapidly over the years, from stationary backup supplies to highly dynamic automotive power systems. As a result, testing must keep up in order to ensure mature products of high quality. A new breed of stack test stations has been designed, based on a newly developed single cell, high dynamic hardware-in-the-loop (HiL) simulator in order to meet the growing demand of realistic fuel cell testing scenarios for aviation and automotive industries. The paper described and illustrated the test station architecture and outline of communication nodes. The paper also described the voltage monitor and presented schematics of voltage monitoring modules. The basic requirements of the architecture that were presented included low latency; flexible communication with simulation targets and other data input/output nodes; scalability to various stack sizes; and, safety and reliability. It was concluded that first tests with the voltage monitoring system not only confirmed the design, high throughput and signal quality, but also suggested another application, namely a stack impedance spectrometer for each individual cell. 1 ref., 3 figs.

  12. Test requirements for the integral effect test to simulate Korean PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time.

  13. Test requirements for the integral effect test to simulate Korean PWR plants

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K.

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time

  14. The flying classroom - a cost effective integrated approach to learning and teaching flight dynamics

    Science.gov (United States)

    Bromfield, Michael A.; Belberov, Aleksandar

    2017-11-01

    In the UK, the Royal Aeronautical Society recommends the inclusion of practical flight exercises for accredited undergraduate aerospace engineering programmes to enhance learning and student experience. The majority of academic institutions teaching aerospace in the UK separate the theory and practice of flight dynamics with students attending a series of lectures supplemented by an intensive one-day flight exercise. Performance and/or handling qualities flight tests are performed in a dedicated aircraft fitted with specialist equipment for the recording and presentation of flight data. This paper describes an innovative approach to better integrate theory and practice and the use of portable Commercial-off-The-Shelf (COTS) technologies to enable a range of standard, unmodified aircraft to be used. The integration of theory and practice has enriched learning and teaching, improved coursework grades and the student experience. The use of COTS and unmodified aircraft has reduced costs and enabled increased student participation.

  15. Task force for integral test of High Energy nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  16. Integrated dynamic modeling and management system mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.K.

    1994-12-28

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied.

  17. Dynamics on the group manifolds and path integral

    International Nuclear Information System (INIS)

    Marinov, M.S.; Terentyev, M.V.

    1979-01-01

    Classical and quantum dynamics onn the compact simple Lie group and on the sphere of arbitrary dimensionality are considered. The accuracy of the semiclassical approximation for Green functions is discussed. Various path integral representations of the Green functions are presented. The special features of these representations due to the compactness and curvature are analysed. Basic results of the theory of Lie algebras and Lie groups used in the main text are presented

  18. Integrated dynamic modeling and management system mission analysis

    International Nuclear Information System (INIS)

    Lee, A.K.

    1994-01-01

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied

  19. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  20. Analyzing the non-smooth dynamics induced by a split-path nonlinear integral controller

    NARCIS (Netherlands)

    Hunnekens, B.G.B.; van Loon, S.J.L.M.; van de Wouw, N.; Heemels, W.P.M.H.; Nijmeijer, H.; Ecker, Horst; Steindl, Alois; Jakubek, Stefan

    2014-01-01

    In this paper, we introduce a novel non-smooth integral controller, which aims at achieving a better transient response in terms of overshoot of a feedback controlled dynamical system. The resulting closed-loop system can be represented as a non-smooth system with different continuous dynamics being

  1. Exploring the dynamic and complex integration of sustainability performance measurement into product development

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; Morioka, S.; Pigosso, Daniela Cristina Antelmi

    2016-01-01

    In order to deal with the complex and dynamic nature of sustainability integration into the product development process, this research explore the use of a qualitative System Dynamics approach by using the causal loop diagram (CLD) tool. A literature analysis was followed by a case study, aiming ...

  2. NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration

    Science.gov (United States)

    Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.; hide

    2016-01-01

    NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.

  3. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice

    Science.gov (United States)

    Willatt, Michael J.; Ceriotti, Michele; Althorpe, Stuart C.

    2018-03-01

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  4. Exact solution for the quench dynamics of a nested integrable system

    Science.gov (United States)

    Mestyán, Márton; Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale

    2017-08-01

    Integrable models provide an exact description for a wide variety of physical phenomena. For example nested integrable systems contain different species of interacting particles with a rich phenomenology in their collective behavior, which is the origin of the unconventional phenomenon of spin-charge separation. So far, however, most of the theoretical work in the study of non-equilibrium dynamics of integrable systems has focussed on models with an elementary (i.e. not nested) Bethe ansatz. In this work we explicitly investigate quantum quenches in nested integrable systems, by generalizing the application of the quench action approach. Specifically, we consider the spin-1 Lai-Sutherland model, described, in the thermodynamic limit, by the theory of two different species of Bethe-ansatz particles, each one forming an infinite number of bound states. We focus on the situation where the quench dynamics starts from a simple matrix product state for which the overlaps with the eigenstates of the Hamiltonian are known. We fully characterize the post-quench steady state and perform several consistency checks for the validity of our results. Finally, we provide predictions for the propagation of entanglement and mutual information after the quench, which can be used as signature of the quasi-particle content of the model.

  5. The NIRspec assembly integration and test status

    Science.gov (United States)

    Wettemann, Thomas; Ehrenwinkler, Ralf; Johnson, Thomas E.; Maschmann, Marc; Mosner, Peter; te Plate, Maurice; Rödel, Andreas

    2017-11-01

    The Near-Infrared Spectrograph (NIRSpec) is one of the four instruments on the James Webb Space Telescope (JWST) scheduled for launch in 2018. NIRSpec has been manufactured and tested by an European industrial consortium led by Airbus Defence and Space and delivered to the European Space Agency (ESA) and NASA in September 2013. Since then it has successfully been integrated into the JWST Integrated Science Instrument Module (ISIM) and is currently in ISIM Cryo-Vacuum Test#2. Since however two of its most important assemblies, the Focal Plane Assembly (FPA) and the Micro-Shutter Assembly (MSA) need to be replaced by new units we will present the status of the instrument, the status of its new flight assemblies in manufacturing and testing and give an outlook on the planned exchange activities and the following instrument re-verification.

  6. Dynamic moduli and damping ratios of soil evaluated from pressuremeter test

    International Nuclear Information System (INIS)

    Yoshida, Yasuo; Ezashi, Yasuyuki; Kokusho, Takaji; Nishi, Yoshikazu

    1984-01-01

    Dynamic and static properties of soils are investigated using the newly developed equipment of in-situ test, which imposes dynamic repeated pressure on borehole wall at any depth covering a wide range of strain amplitude. This paper describes mainly the shear modulus and damping characteristics of soils obtained by using the equipment in several sites covering wide variety of soils. The test results are compared and with those obtained by other test methods such as the dynamic triaxial test, the simple shear test and the shear wave velocity test, and discussions are made with regard to their relation ships to each other, which demonstrates the efficiency of this in-situ test. (author)

  7. Integral leakage rate tests of containments

    International Nuclear Information System (INIS)

    Engel, M.; Siefart, E.; Walter, R.

    1978-01-01

    A method is presented for the integral leakage rate tests of containments. This method, used in conjunction with statistical methods, provides reliable information on the tightness of the containment. This method forms the basis of DIN 25436/KTA 3405. (orig.) [de

  8. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Anja, E-mail: hartmann@ipk-gatersleben.de [Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben (Germany); Schreiber, Falk [Monash University, Melbourne, VIC (Australia); Martin-Luther-University Halle-Wittenberg, Halle (Germany)

    2015-01-26

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM{sup 2} – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato.

  9. Evaluation of dynamic testing of as-built civil engineering structures

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    This paper summarizes an evaluation of dynamic tests performed on large as-built structures. The objectives and methods (excitation and data analysis) of tests are reviewed. The utility and limitations of dynamic testing in light of actual experience is discussed. Though low-level tests in themselves will not be useful for predicting structural response to strong ground motion, they are useful for verifying linear models and for clarifying physical phenomena related to soil-structure interaction

  10. Integrated Test and Evaluation (ITE) Flight Test Series 4

    Science.gov (United States)

    Marston, Michael

    2016-01-01

    The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.

  11. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, C. H.; Kim, Y. S.

    2007-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  12. DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology.

    Science.gov (United States)

    Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng

    2015-10-06

    Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, we present software implementing a three 'tier' design process: a high-level visual programming language is used to describe systems, a molecular compiler builds a DNA implementation and nucleotide sequences are generated and optimized. Additionally, our software includes tools for analysing and 'debugging' the designs in silico, and for importing/exporting designs to other commonly used software systems. The software we present is built on many existing pieces of software, but is integrated into a single package—accessible using a Web-based interface at http://molecular-systems.net/workbench. We hope that the deep integration between tools and the flexibility of this design process will lead to better experimental results, fewer experimental design iterations and the development of more complex DNA nanosystems. © 2015 The Authors.

  13. Iterative quantum-classical path integral with dynamically consistent state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Peter L.; Makri, Nancy [Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-01-28

    We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort.

  14. Testing can counteract proactive interference by integrating competing information

    Science.gov (United States)

    Wahlheim, Christopher N.

    2015-01-01

    Testing initially learned information before presenting new information has been shown to counteract the deleterious effects of proactive interference by segregating competing sources of information. The present experiments were conducted to demonstrate that testing can also have its effects in part by integrating competing information. Variations of classic A–B, A–D paired-associate learning paradigms were employed that included two lists of word pairs and a cued-recall test. Repeated pairs appeared in both lists (A–B, A–B), control pairs appeared in List 2 only (A–B, C–D), and changed pairs appeared with the same cue in both lists but with different responses (A–B, A–D). The critical manipulation was whether pairs were tested or restudied in an interpolated phase that occurred between Lists 1 and 2. On a final cued-recall test, participants recalled List 2 responses and then indicated when they recollected that responses had earlier changed between lists. The change recollection measure indexed the extent to which competing responses were integrated during List 2. Change was recollected more often for tested than for restudied pairs. Proactive facilitation was obtained in cued recall when change was recollected, whereas proactive interference was obtained when change was not recollected. These results provide evidence that testing counteracted proactive interference in part by making List 1 responses more accessible during List 2, thus promoting integration and increasing later recollection of change. These results have theoretical implications because they show that testing can counteract proactive interference by integrating or segregating competing information. PMID:25120241

  15. Testing can counteract proactive interference by integrating competing information.

    Science.gov (United States)

    Wahlheim, Christopher N

    2015-01-01

    Testing initially learned information before presenting new information has been shown to counteract the deleterious effects of proactive interference by segregating competing sources of information. The present experiments were conducted to demonstrate that testing can also have its effects in part by integrating competing information. Variations of classic A-B, A-D paired-associate learning paradigms were employed that included two lists of word pairs and a cued-recall test. Repeated pairs appeared in both lists (A-B, A-B), control pairs appeared in List 2 only (A-B, C-D), and changed pairs appeared with the same cue in both lists but with different responses (A-B, A-D). The critical manipulation was whether pairs were tested or restudied in an interpolated phase that occurred between Lists 1 and 2. On a final cued-recall test, participants recalled List 2 responses and then indicated when they recollected that responses had earlier changed between lists. The change recollection measure indexed the extent to which competing responses were integrated during List 2. Change was recollected more often for tested than for restudied pairs. Proactive facilitation was obtained in cued recall when change was recollected, whereas proactive interference was obtained when change was not recollected. These results provide evidence that testing counteracted proactive interference in part by making List 1 responses more accessible during List 2, thus promoting integration and increasing later recollection of change. These results have theoretical implications because they show that testing can counteract proactive interference by integrating or segregating competing information.

  16. A new method of testing pile using dynamic P-S-curve made by amplitude of wave train

    Science.gov (United States)

    Hu, Yi-Li; Xu, Jun; Duan, Yong-Kong; Xu, Zhao-Yong; Yang, Run-Hai; Zhao, Jin-Ming

    2004-11-01

    A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibration graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is discussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P( Q)- S curve.

  17. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc

    2004-01-01

    Solid foundations are integral important part of any structures. Obtaining accurate and timely information on the integrity of structural foundations is essential for project progress and success. Cross-hole sonic method has been widely accepted for quality assurance and quality control on projects with deep foundations, and to assess the integrity of other civil engineering structures. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the Cross-hole sonic method (CHM) was evaluated at Center for Nuclear Techniques, Hochiminh City (CNT). Background information on principle and general description of the method as is typically applied in the evaluation of deep foundations are also summarized. A suitable experimental model of the shaft foundations was prepared, where the artificial defects can be controlled for the Cross-hole sonic logging was conducted by measuring the propagation time of ultrasonic signals between two probes in vertical holes in a shaft. The purpose of the test program is to evaluate the ability of the cross-hole sonic method to identify the defects present in the experimental model, to evaluate the capabilities of the method and the equipped system Cs-97, to improve the presentation of test results to meet requirements for interpreting the quality of drilled shafts by processing the data of Cs-97. The cross-hole sonic testing program is describe. Summarizes the results and analysis of the cross-hole sonic logging are presented to highlight both the applicability and limitations of the method. The cross-hole sonic logging evaluation is a valuable non-destructive method in assessing the integrity of deep foundations. The cross-hole sonic logging tests successfully determined the location and extent of the built-in defects on experimental model shaft. Minimum sizes of defects can be detected were about ≥ 10 cm Cs-97. Effects of the directions, detectable sizes and natures of defects were studied. The apparent velocities

  18. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    Directory of Open Access Journals (Sweden)

    David Balduzzi

    2008-06-01

    Full Text Available This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks

  19. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    Science.gov (United States)

    Balduzzi, David; Tononi, Giulio

    2008-06-13

    This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i) phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii) phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii) phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv) In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks are optimized

  20. An integrated dynamic model for probabilistic risk assessments

    International Nuclear Information System (INIS)

    Hsueh, K.-S.; Wang Kong

    2004-01-01

    The purpose of this dissertation is to develop a simulation based accident sequence analysis program (ADS) for large scale dynamic accident sequence simulation. Human operators, front-line and support systems as well as plant thermal-hydraulic behavior are explicitly modeled as integrated active parts in the development of accident scenarios. To overcome the model size, the proposed methodology employs several techniques including use of 'initial state vector' which decouples time-dependent and time-independent factors, and a depth first integration method in which the computation memory demand increases in a linear order. The computer implementation of the method is capable of simulating up to 500 branch points in sequence development, models system failure during operation, allows for recovery from operator errors and hardware failures, and implements a simple model for operator system interactions. (author)

  1. In-process, non-destructive, dynamic testing of high-speed polymer composite rotors

    Science.gov (United States)

    Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas

    2015-03-01

    Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.

  2. Testing for significance of phase synchronisation dynamics in the EEG.

    Science.gov (United States)

    Daly, Ian; Sweeney-Reed, Catherine M; Nasuto, Slawomir J

    2013-06-01

    A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.

  3. Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion

    International Nuclear Information System (INIS)

    Braden, H W; Enolski, V Z; Fedorov, Yu N

    2013-01-01

    We present an algebraic geometrical and analytical description of the Goryachev case of rigid body motion. It belongs to a family of systems sharing the same properties: although completely integrable, they are not algebraically integrable, their solution is not meromorphic in the complex time and involves dynamics on the strata of the Jacobian varieties of trigonal curves. Although the strata of hyperelliptic Jacobians have already appeared in the literature in the context of some dynamical systems, the Goryachev case is the first example of an integrable system whose solution involves a more general curve. Several new features (and formulae) are encountered in the solution given in terms of sigma-functions of such a curve. (paper)

  4. Major Achievements and Prospect of the ATLAS Integral Effect Tests

    International Nuclear Information System (INIS)

    Choi, K.; Kim, Y.; Song, C.; Baek, W.

    2012-01-01

    A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe). Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line break tests, and steam line break tests. These tests contributed toward an understanding of the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing validation data for evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Major discoveries and lessons found in the past integral effect tests are summarized in this paper. As the demand for integral effect tests is on the rise due to the active national nuclear R and D program in Korea, the future prospects of the application of the ATLAS facility are also discussed.

  5. Improving the fidelity of electrically heated nuclear systems testing using simulated neutronic feedback

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Godfroy, Thomas J.; Webster, Kenny

    2010-01-01

    Nonnuclear test platforms and methodologies can be employed to reduce the overall cost, risk and complexity of testing nuclear systems while allowing one to evaluate the operation of an integrated nuclear system within a reasonable timeframe, providing valuable input to the overall system design. In a nonnuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard electric test techniques allow one to fully assess thermal, heat transfer, and stress related attributes of a given system, but these approaches fail to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and testing with nuclear fuel elements installed. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. This paper summarizes the results of initial system dynamic response testing for two electrically heated reactor concepts: a heat pipe-cooled reactor simulator with integrated heat exchanger and a gas-cooled reactor simulator with integrated Brayton power conversion system. Initial applications apply a simplified reactor kinetics model with either a single or an averaged measured state point. Preliminary results demonstrate the applicability of the dynamic test methodology to any reactor type, elucidating the variation in system response characteristics in different reactor concepts. These results suggest a need to further enhance the dynamic test approach by incorporating a more accurate model of the reactor dynamics and improved hardware instrumentation for better state estimation in application of the

  6. Economic testing of large integrated switching circuits - a challenge to the test engineer

    International Nuclear Information System (INIS)

    Kreinberg, W.

    1978-01-01

    With reference to large integrated switching circuits, one can use an incoming standard programme test or the customer's switching circuits. The author describes the development of suitable, extensive and economical test programmes. (orig.) [de

  7. Minimizing time for test in integrated circuit

    OpenAIRE

    Andonova, A. S.; Dimitrov, D. G.; Atanasova, N. G.

    2004-01-01

    The cost for testing integrated circuits represents a growing percentage of the total cost for their production. The former strictly depends on the length of the test session, and its reduction has been the target of many efforts in the past. This paper proposes a new method for reducing the test length by adopting a new architecture and exploiting an evolutionary optimisation algorithm. A prototype of the proposed approach was tested on 1SCAS standard benchmarks and theexperimental results s...

  8. CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Vogten, H., Martens, H., Nadolski, R., Tattersall, C., Rosmalen, van, P., Koper, R., (2006). CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability. Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (pp.

  9. Integrated built-in-test false and missed alarms reduction based on forward infinite impulse response & recurrent finite impulse response dynamic neural networks

    Science.gov (United States)

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2017-11-01

    Built-in tests (BITs) are widely used in mechanical systems to perform state identification, whereas the BIT false and missed alarms cause trouble to the operators or beneficiaries to make correct judgments. Artificial neural networks (ANN) are previously used for false and missed alarms identification, which has the features such as self-organizing and self-study. However, these ANN models generally do not incorporate the temporal effect of the bottom-level threshold comparison outputs and the historical temporal features are not fully considered. To improve the situation, this paper proposes a new integrated BIT design methodology by incorporating a novel type of dynamic neural networks (DNN) model. The new DNN model is termed as Forward IIR & Recurrent FIR DNN (FIRF-DNN), where its component neurons, network structures, and input/output relationships are discussed. The condition monitoring false and missed alarms reduction implementation scheme based on FIRF-DNN model is also illustrated, which is composed of three stages including model training, false and missed alarms detection, and false and missed alarms suppression. Finally, the proposed methodology is demonstrated in the application study and the experimental results are analyzed.

  10. Power, Avionics and Software - Phase 1.0:. [Subsystem Integration Test Report

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This report describes Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This report covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies to exchange messages and to perform audio testing of both inbound and outbound channels. This report describes each test performed, defines the test, the data, and provides conclusions and recommendations.

  11. Integration and test of the ATLAS Semiconductor Tracker

    CERN Document Server

    Pernegger, H

    2007-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment and is one of the major new silicon detector systems for LHC. The paper summarizes the system integration of the SCT from individual components to the completed tracker barrel and endcaps ready for installation in the pit. Particular attention will be given to the test results obtained during the different integration steps: from single barrels and disks to the final tests inside the ID before installation in the pit. The tests provided us with operational experience for a significant fraction of the full detector system and showed the very good performance of the final assembled detector.

  12. The Lagrangian and Hamiltonian Analysis of Integrable Infinite-Dimensional Dynamical Systems

    International Nuclear Information System (INIS)

    Bogolubov, Nikolai N. Jr.; Prykarpatsky, Yarema A.; Blackmorte, Denis; Prykarpatsky, Anatoliy K.

    2010-12-01

    The analytical description of Lagrangian and Hamiltonian formalisms naturally arising from the invariance structure of given nonlinear dynamical systems on the infinite- dimensional functional manifold is presented. The basic ideas used to formulate the canonical symplectic structure are borrowed from the Cartan's theory of differential systems on associated jet-manifolds. The symmetry structure reduced on the invariant submanifolds of critical points of some nonlocal Euler-Lagrange functional is described thoroughly for both differential and differential-discrete dynamical systems. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integral-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Backlund transformation. The connection of this hierarchy with integrable by Lax spatially two-dimensional systems is studied. (author)

  13. Dynamics of Timber Market Integration in Sweden

    Directory of Open Access Journals (Sweden)

    Vishal Chandr Jaunky

    2015-12-01

    Full Text Available This paper addresses the performance of the timber markets (Scots pine, Pinus silvestris L. and Norway spruce, Picea abies (L. Karst. by evaluating the order of market integration in three Swedish regions (Central, Northern, and Southern. Quarterly data of delivery prices are employed over the period 1999Q1–2012Q4. Various unit root and cointegration tests have been computed. The results indicate that the variables are integrated of first order and co-integrated, especially after controlling for structural breaks. This supports the law-of-one-price hypothesis (LOP. However, the effects of structural shocks on forestry are arguably significant and these are controlled for while performing a vector error-correction mechanism (VECM-based Granger-causality test. Bi-directional causality between the Northern and central markets is uncovered in the short-run. In the long-run, a similar causal effect is detected between Northern and Southern markets while the central market emerges as the price leader. Further investigation is carried out using variance decompositions and impulse response functions and these approaches also tend to confirm the existence of a single market well, as price interdependence between markets.

  14. SOCIAL INTEGRATION: TESTING ANTECEDENTS OF TIME SPENT ONLINE

    Directory of Open Access Journals (Sweden)

    Lily Suriani Mohd Arif

    2013-07-01

    Full Text Available The literature on the relationship of social integration and time spent onlineprovides conflicting evidence of the relationship of social integration with timespent online. The study identifies and highlightsthe controversy and attempts toclarify the relationship of social integration withtime spent online bydecomposing the construct social integration into its affective and behavioraldimensions . Thestudy tests antecedents and effects of time spent online in arandom sample of senior level undergraduate students at a public university inMalaysia. The findings indicated that while self-report measures of behavioralsocial integration did not predict time spent online, and, the affective socialintegration had an inverse relationship with time spent online.

  15. Dynamic simulation of a fuel cell hybrid vehicle during the federal test procedure-75 driving cycle

    International Nuclear Information System (INIS)

    Kang, Sanggyu; Min, Kyoungdoug

    2016-01-01

    Highlights: • Development of a FCHV dynamic model. • Integration of a PEMFC system dynamic model with the electric vehicle model. • Investigation of the dynamic behavior of the FCEV and PEMFC system during FTP-75. • Capturing the dynamic correlation among components in PEMFC system during FTP-75. - Abstract: The dynamic behavior of a proton exchange membrane fuel cell (PEMFC) system is a crucial factor to ensure the safe and effective operation of fuel cell hybrid vehicles (FCHVs). Specifically, water and thermal management are critical to stabilize the performance of the PEMFC during severe load changes. In the present study, the FCHV dynamic model is developed. The dynamic model of the PEMFC system developed by Matlab–Simulink® is integrated into the electric vehicle model embedded in the Amesim®. The dynamic model of the PEMFC system is composed of a PEMFC stack, an air feeding system, and a thermal management system (TMS). The component models of PEMFC, a shell-and-tube gas-to-gas membrane humidifier, and a heat exchanger are validated via a comparison with the experimental data. The FCHV model is simulated during a federal test procedure (FTP)-75 driving cycle. One system configuration and control strategy is adopted to attain optimal water and thermal management in the PEMFC system. The vehicle speed obtained from the FCHV model aptly tracks the target velocity profile of the FTP-75 cycle within an error of ±0.5%. The dynamic behavior and correlation of each component in the PEMFC system is investigated. The mass and heat transfer in the PEMFC, a humidifier, and a heat exchanger are resolved to determine the species concentration and the temperature more accurately with discretization in the flow’s perpendicular direction. Discretization in the flow parallel direction of humidifier and heat exchanger model makes it possible to capture the distribution of the characteristics. The present model can be used to attain the optimization of the system

  16. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    Energy Technology Data Exchange (ETDEWEB)

    Sergyeyev, Artur, E-mail: Artur.Sergyeyev@math.slu.cz [Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava (Czech Republic)

    2012-06-04

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  17. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    International Nuclear Information System (INIS)

    Sergyeyev, Artur

    2012-01-01

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  18. A Study on the Dynamic Analysis of the Nuclear Fuel Test Rig Using 1-Way Fluid-Structure Coupled Analysis

    International Nuclear Information System (INIS)

    Yang, Tae-Ho; Hong, Jin-Tae; Ahn, Sung-Ho; Joung, Chang-Young; Heo, Sung-Ho; Jang, Seo-Yun

    2015-01-01

    1-way fluid-structure coupled analysis is used to estimate the dynamic characteristic of the fuel test rig. the motion at the bottom of the test rig is confirmed. The maximum deformation of the test rig is 0.11 mm. The structural integrity of the test rig is performed by using the comparison with the Von-mises stress of the analysis and yield stress of the material. It is evaluated that the motion at the bottom of the test rig is able to cause other structural problem. Using the 2-way fluid-structural coupled analysis, the structural integrity of the test rig will be performed in further paper. The cooling water with specific flow rate was flowed in the nuclear fuel test rig. The structural integrity of the test rig was affected by the vibration. The fluid-induced vibration test had to be performed to obtain the amplitude of the vibration on the structure. Various test systems was developed. Flow-induced vibration and pressure drop experimental tester was developed in Korea Atomic Energy Research Institute. The vibration test with high fluid flow rate was difficult by the tester. To generate the nuclear fuel test environment, coolant flow simulation system was developed. The scaled nuclear fuel test was able to be performed by the simulation system. The mock-up model of the test rig was used in the simulation system. The mock-up model in the simulation system was manufactured with scaled down full model. In this paper, the fluid induced vibration characteristic of the full model in the nuclear fuel test is studied. The hydraulic pressure on the velocity of the fluid was calculated. The static structure analysis was performed by using the pressure. The structural integrity was assessed using the results of the analysis

  19. State estimation for integrated vehicle dynamics control

    NARCIS (Netherlands)

    Zuurbier, J.; Bremmer, P.

    2002-01-01

    This paper discusses a vehicle controller and a state estimator that was implemented and tested in a vehicle equipped with a combined braking and chassis control system to improve handling. The vehicle dynamics controller consists of a feed forward body roll compensation and a feedback stability

  20. Properties Important To Mixing For WTP Large Scale Integrated Testing

    International Nuclear Information System (INIS)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-01-01

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  1. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  2. Testing integrated sensors for cooperative remote monitoring

    International Nuclear Information System (INIS)

    Filby, E.E.; Smith, T.E.; Albano, R.K.; Andersen, M.K.; Lucero, R.L.; Tolk, K.M.; Andrews, N.S.

    1996-01-01

    The Modular Integrated Monitoring System (MIMS) program, with Sandia National Laboratory (SNL) as the lead lab, was devised to furnish sensors and integrated multi-sensor systems for cooperative remote monitoring. The Idaho National Engineering Laboratory (INEL), via the Center for Integrated Monitoring and Control (CIMC), provides realistic field tests of the sensors and sensor-integration approach for the MIMS, and for other similar programs. This has two important goals: it helps insure that these systems are truly read for use, and provides a platform so they can be demonstrated for potential users. A remote monitoring test/demonstration has been initiated at the Idaho Chemical Processing Plant (ICPP) to track the movement of spent nuclear fuel from one storage location to another, using a straddle carrier and shielded cask combination. Radiation monitors, motion sensors, videocameras, and other devices from several US Department of Energy (DOE) labs and commercial vendors were linked on the network. Currently, project personnel are collecting raw data from this large array of sensors, without trying to program any special network activities or other responses. These data will be used to determine which devices can actually provide useful information for a cooperative monitoring situation, versus those that may be redundant

  3. Runtime Testability in Dynamic Highly-Availability Component-based Systems

    NARCIS (Netherlands)

    Gonzalez, A.; Piel, E.; Gross, H.G.; Van Gemund, A.J.C.

    2010-01-01

    Runtime testing is emerging as the solution for the integration and assessment of highly dynamic, high availability software systems where traditional development-time integration testing cannot be performed. A prerequisite for runtime testing is the knowledge about to which extent the system can be

  4. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  5. Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics

    International Nuclear Information System (INIS)

    Yan, Yang; Yong-Liang, Yu; Bing-Gang, Tong; Guan-Hao, Wu

    2008-01-01

    We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming

  6. Exponential integrators in time-dependent density-functional calculations

    Science.gov (United States)

    Kidd, Daniel; Covington, Cody; Varga, Kálmán

    2017-12-01

    The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.

  7. Dynamic tests at the Outardes 3 dam

    International Nuclear Information System (INIS)

    Proulx, J.; Paultre, P.; Duron, Z.; Tai Mai Phat; Im, O.

    1992-01-01

    At the Outardes 3 gravity dam, part of the Manicouagan-Outardes hydroelectric complex in northeastern Quebec, forced vibration tests were carried out using an eccentric mass shaker attached to the dam crest at three different locations. Accelerations were measured along the crest and in the inspection galleries, and hydrodynamic pressures were measured along the upstream dam face and at various locations in the reservoir. The tests were designed to analyze the effects of gravity dam-reservoir interactions and to generate a data base for calibrating finite element models used in studying the dynamic behavior of gravity dams. Experimental results are presented in order to demonstrate the quality of the data obtained and the effectiveness of the experimental procedures. Modes of vibration were observed which corresponded to those obtained by finite element analysis. It is shown that techniques recently developed for dynamic tests on large dams can be successfully used on gravity dams. 3 refs., 6 figs

  8. Topical Knowledge in L2 Speaking Assessment: Comparing Independent and Integrated Speaking Test Tasks

    Science.gov (United States)

    Huang, Heng-Tsung Danny; Hung, Shao-Ting Alan; Plakans, Lia

    2018-01-01

    Integrated speaking test tasks (integrated tasks) provide reading and/or listening input to serve as the basis for test-takers to formulate their oral responses. This study examined the influence of topical knowledge on integrated speaking test performance and compared independent speaking test performance and integrated speaking test performance…

  9. Hybrid Approximate Dynamic Programming Approach for Dynamic Optimal Energy Flow in the Integrated Gas and Power Systems

    DEFF Research Database (Denmark)

    Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu

    2017-01-01

    This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...

  10. Options of system integrated environment modelling in the predicated dynamic cyberspace

    International Nuclear Information System (INIS)

    Janková, Martina; Dvořák, Jiří

    2015-01-01

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text

  11. Options of system integrated environment modelling in the predicated dynamic cyberspace

    Energy Technology Data Exchange (ETDEWEB)

    Janková, Martina; Dvořák, Jiří [Institute of Informatics, Faculty of Business and Management, Brno University of Technology, Brno (Czech Republic)

    2015-03-10

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.

  12. Role of quantitative and dynamic radioactive studies in renal testing

    International Nuclear Information System (INIS)

    Raynaud, C.

    1977-01-01

    Many dynamic and quantitative radioactive tests are at present used in studying renal function. Whether involving dynamic morphological tests such as sequential images, dynamic quantitative tests such as the renogram or quantitative static tests such as radioactive clearances, their effective and original contribution is rather unimportant. Only one provides original data, the Hg renal uptake test but it is generally avoided due to the radiation dose absorbed by the kidney in children. A study of the causes of this lack of effectiveness leads to the observation that such tests are not well adapted to the needs of kidneys specialists. They are for the most part based on replacing a 'cold' indicator by radioactive indicator and the advantages anticipated from using radionuclide are not evident. In fact, they are often cancelled by the shortcomings of external detection. For the future, it seems indispensable to abandon some traditional concepts which lead us to consider that the only exploitable renal function is represented by excretion. The kidney has other functions; one of the most interesting seems to be the function of uptake of heavy metals and toxic substances, a study of which is only possible using radionuclides. A new generation of radioactive tests based on a study of uptake and also on a study of other renal functions may provide dynamic or quantitative data which physician urgently need

  13. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  14. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  15. Integrated Virtual Environment Test Concepts and Objectives

    National Research Council Canada - National Science Library

    Tackett, Gregory

    2001-01-01

    ...), a series of integration and verification tests were conducted to provide development milestones for the simulation architecture and tools that would be needed for the full-up live/virtual field experiment...

  16. Structure-dynamic model verification calculation of PWR 5 tests

    International Nuclear Information System (INIS)

    Engel, R.

    1980-02-01

    Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de

  17. Melcor benchmarking against integral severe fuel damage tests

    Energy Technology Data Exchange (ETDEWEB)

    Madni, I.K. [Brookhaven National Lab., Upton, NY (United States)

    1995-09-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the U.S. Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC to provide independent assessment of MELCOR, and a very important part of this program is to benchmark MELCOR against experimental data from integral severe fuel damage tests and predictions of that data from more mechanistic codes such as SCDAP or SCDAP/RELAP5. Benchmarking analyses with MELCOR have been carried out at BNL for five integral severe fuel damage tests, namely, PBF SFD 1-1, SFD 14, and NRU FLHT-2, analyses, and their role in identifying areas of modeling strengths and weaknesses in MELCOR.

  18. Test results on the dynamic testing of expansion type concrete anchors

    International Nuclear Information System (INIS)

    Barron, B.; Rice, R.; Stephen, R.M.

    1974-12-01

    Tests were performed to determine the structural response of commercially available expansion type anchors for the FFTF when subjected to dynamic loadings similar to machine vibrations and earthquakes. The specimens were subjected to tension, shear, and combined shear-tension loads

  19. The improvement of dynamic universal testing machine for hot cell usages

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Lee, Key Soon; Park, Dae Kyu; Hong, Kwon Pyo; Choo, Yong Sun

    1998-01-01

    Dynamic universal testing machine(UTM) were developed for hot cell usages, which can perform tensile, compression, bending, fracture toughness and fatigue crack growth tests. In this report, technical reviews in the course of developing machine were described. Detailed subjects are as follows; 1. Outline of testing method using dynamic UTM 2. Detailed testing system organizations 3. Technical specification to develop machine 4. Setting up load string 5. Inspection and pre-commissioning tests on machine. (author). 14 figs

  20. Sensor integration and testing in an airborne environment

    Science.gov (United States)

    Ricks, Timothy P.; Streling, Julie T.; Williams, Kirk W.

    2005-11-01

    The U.S. Army Redstone Technical Test Center (RTTC) has been supporting captive flight testing of missile sensors and seekers since the 1980's. Successful integration and test of sensors in an airborne environment requires attention to a broad range of disciplines. Data collection requirements drive instrumentation and flight profile configurations, which along with cost and airframe performance factors influence the choice of test aircraft. Installation methods used for instrumentation must take into consideration environmental and airworthiness factors. In addition, integration of test equipment into the aircraft will require an airworthiness release; procedures vary between the government for military aircraft, and the Federal Aviation Administration (FAA) for the use of private, commercial, or experimental aircraft. Sensor mounting methods will depend on the type of sensor being used, both for sensor performance and crew safety concerns. Pilots will require navigation input to permit the execution of accurate and repeatable flight profiles. Some tests may require profiles that are not supported by standard navigation displays, requiring the use of custom hardware/software. Test locations must also be considered in their effect on successful data collection. Restricted airspace may also be required, depending on sensor emissions and flight profiles.

  1. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    Science.gov (United States)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  2. Integrating GIS and ABM to Explore Spatiotemporal Dynamics

    Science.gov (United States)

    Sun, M.; Jiang, Y.; Yang, C.

    2013-12-01

    Agent-based modeling as a methodology for the bottom-up exploration with the account of adaptive behavior and heterogeneity of system components can help discover the development and pattern of the complex social and environmental system. However, ABM is a computationally intensive process especially when the number of system components becomes large and the agent-agent/agent-environmental interaction is modeled very complex. Most of traditional ABM frameworks developed based on CPU do not have a satisfying computing capacity. To address the problem and as the emergence of advanced techniques, GPU computing with CUDA can provide powerful parallel structure to enable the complex simulation of spatiotemporal dynamics. In this study, we first develop a GPU-based ABM system. Secondly, in order to visualize the dynamics generated from the movement of agent and the change of agent/environmental attributes during the simulation, we integrate GIS into the ABM system. Advanced geovisualization technologies can be utilized for representing the spatiotemporal change events, such as proper 2D/3D maps with state-of-the-art symbols, space-time cube and multiple layers each of which presents pattern in one time-stamp, etc. Thirdly, visual analytics which include interactive tools (e.g. grouping, filtering, linking, etc.) is included in our ABM-GIS system to help users conduct real-time data exploration during the progress of simulation. Analysis like flow analysis and spatial cluster analysis can be integrated according to the geographical problem we want to explore.

  3. PASLINK and dynamic outdoor testing of building components

    NARCIS (Netherlands)

    Baker, P.H.; Dijk, H.A.L. van

    2008-01-01

    The PASLINK test facilities and analysis procedures aim to obtain the thermal and solar characteristics of building components under real dynamic outdoor conditions. Both the analysis and the test methodology have evolved since the start of the PASSYS Project in 1985. A programme of upgrading the

  4. Testing Fixture For Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, Robert; Shalkhauser, Kurt

    1989-01-01

    Testing fixture facilitates radio-frequency characterization of microwave and millimeter-wave integrated circuits. Includes base onto which two cosine-tapered ridge waveguide-to-microstrip transitions fastened. Length and profile of taper determined analytically to provide maximum bandwidth and minimum insertion loss. Each cosine taper provides transformation from high impedance of waveguide to characteristic impedance of microstrip. Used in conjunction with automatic network analyzer to provide user with deembedded scattering parameters of device under test. Operates from 26.5 to 40.0 GHz, but operation extends to much higher frequencies.

  5. Integrating atomistic molecular dynamics simulations, experiments and network analysis to study protein dynamics: strength in unity

    Directory of Open Access Journals (Sweden)

    Elena ePapaleo

    2015-05-01

    Full Text Available In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  6. Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Please, cite this publication as: Vogten, H., Martens, H., Nadolski, R., Tattersall, C., van Rosmalen, P., & Koper, R. (2006). Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration. Proceedings of International Workshop in Learning Networks

  7. An integral effect test facility of the SMART, SMART ITL

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Sik; Moon, Sang Ki; Kim, Yeon Sik; Cho, Seok; Choi, Ki Yong; Bae, Hwang; Kim, Dong Eok; Choi, Nam Hyun; Min, Kyoung Ho; Ko, Yung Joo; Shin, Yong Cheol; Park, Rae Joon; Lee, Won Jae; Song, Chul Hwa; Yi, Sung Jae [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    SMART (System integrated Modular Advanced ReacTor) is a 330 MWth integral pressurized water reactor (iPWR) developed by KAERI and had obtained standard design approval (SDA) from Korean regulatory authority on July 2012. In this SMART design main components including a pressurizer, reactor coolant pumps and steam generators are installed in a reactor pressure vessel without any large connecting pipes. As the LBLOCA scenario is inherently excluded, its safety systems could be simplified only to ensure the safety during the SBLOCA scenarios and the other system transients. An integral effect test loop for the SMART (SMART ITL), or called as FESTA, had been designed to simulate the integral thermal hydraulic behavior of the SMART. The objectives of the SMART ITL are to investigate and understand the integral performance of reactor systems and components and the thermal hydraulic phenomena occurred in the system during normal, abnormal and emergency conditions, and to verify the system safety during various design basis events of the SMART. The integral effect test data will also be used to validate the related thermal hydraulic models of the safety analysis code such as TASS/SMR S, which is used for performance and accident analysis of the SMART design. This paper introduces the scaling analysis and scientific design of the integral test facility of the SMART, SMART ITL and its scaling analysis results.

  8. Dynamically Integrating OSM Data into a Borderland Database

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhou

    2015-09-01

    Full Text Available Spatial data are fundamental for borderland analyses of geography, natural resources, demography, politics, economy, and culture. As the spatial data used in borderland research usually cover the borderland regions of several neighboring countries, it is difficult for anyone research institution of government to collect them. Volunteered Geographic Information (VGI is a highly successful method for acquiring timely and detailed global spatial data at a very low cost. Therefore, VGI is a reasonable source of borderland spatial data. OpenStreetMap (OSM is known as the most successful VGI resource. However, OSM's data model is far different from the traditional geographic information model. Thus, the OSM data must be converted in the scientist’s customized data model. Because the real world changes rapidly, the converted data must be updated incrementally. Therefore, this paper presents a method used to dynamically integrate OSM data into the borderland database. In this method, a basic transformation rule base is formed by comparing the OSM Map Feature description document and the destination model definitions. Using the basic rules, the main features can be automatically converted to the destination model. A human-computer interaction model transformation and a rule/automatic-remember mechanism are developed to interactively transfer the unusual features that cannot be transferred by the basic rules to the target model and to remember the reusable rules automatically. To keep the borderland database current, the global OsmChange daily diff file is used to extract the change-only information for the research region. To extract the changed objects in the region under study, the relationship between the changed object and the research region is analyzed considering the evolution of the involved objects. In addition, five rules are determined to select the objects and integrate the changed objects with multi-versions over time. The objects

  9. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.; Zinchuk, Jeffrey J.

    2008-01-01

    We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft

  10. Preparation and Integration of ALHAT Precision Landing Technology for Morpheus Flight Testing

    Science.gov (United States)

    Carson, John M., III; Robertson, Edward A.; Pierrottet, Diego F.; Roback, Vincent E.; Trawny, Nikolas; Devolites, Jennifer L.; Hart, Jeremy J.; Estes, Jay N.; Gaddis, Gregory S.

    2014-01-01

    The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.

  11. Alternative containment integrity test methods, an overview of possible techniques

    International Nuclear Information System (INIS)

    Spletzer, B.L.

    1986-01-01

    A study is being conducted to develop and analyze alternative methods for testing of containment integrity. The study is focused on techniques for continuously monitoring containment integrity to provide rapid detection of existing leaks, thus providing greater certainty of the integrity of the containment at any time. The study is also intended to develop techniques applicable to the currently required Type A integrated leakage rate tests. A brief discussion of the range of alternative methods currently being considered is presented. The methods include applicability to all major containment types, operating and shutdown plant conditions, and quantitative and qualitative leakage measurements. The techniques are analyzed in accordance with the current state of knowledge of each method. The bulk of the techniques discussed are in the conceptual stage, have not been tested in actual plant conditions, and are presented here as a possible future direction for evaluating containment integrity. Of the methods considered, no single method provides optimum performance for all containment types. Several methods are limited in the types of containment for which they are applicable. The results of the study to date indicate that techniques for continuous monitoring of containment integrity exist for many plants and may be implemented at modest cost

  12. Global format for energy-momentum based time integration in nonlinear dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2014-01-01

    A global format is developed for momentum and energy consistent time integration of second‐order dynamic systems with general nonlinear stiffness. The algorithm is formulated by integrating the state‐space equations of motion over the time increment. The internal force is first represented...... of mean value products at the element level or explicit use of a geometric stiffness matrix. An optional monotonic algorithmic damping, increasing with response frequency, is developed in terms of a single damping parameter. In the solution procedure, the velocity is eliminated and the nonlinear...

  13. Integration of dynamical data in a geostatistical model of reservoir; Integration des donnees dynamiques dans un modele geostatistique de reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Costa Reis, L.

    2001-01-01

    We have developed in this thesis a methodology of integrated characterization of heterogeneous reservoirs, from geologic modeling to history matching. This methodology is applied to the reservoir PBR, situated in Campos Basin, offshore Brazil, which has been producing since June 1979. This work is an extension of two other thesis concerning geologic and geostatistical modeling of the reservoir PBR from well data and seismic information. We extended the geostatistical litho-type model to the whole reservoir by using a particular approach of the non-stationary truncated Gaussian simulation method. This approach facilitated the application of the gradual deformation method to history matching. The main stages of the methodology for dynamic data integration in a geostatistical reservoir model are presented. We constructed a reservoir model and the initial difficulties in the history matching led us to modify some choices in the geological, geostatistical and flow models. These difficulties show the importance of dynamic data integration in reservoir modeling. The petrophysical property assignment within the litho-types was done by using well test data. We used an inversion procedure to evaluate the petrophysical parameters of the litho-types. The up-scaling is a necessary stage to reduce the flow simulation time. We compared several up-scaling methods and we show that the passage from the fine geostatistical model to the coarse flow model should be done very carefully. The choice of the fitting parameter depends on the objective of the study. In the case of the reservoir PBR, where water is injected in order to improve the oil recovery, the water rate of the producing wells is directly related to the reservoir heterogeneity. Thus, the water rate was chosen as the fitting parameter. We obtained significant improvements in the history matching of the reservoir PBR. First, by using a method we have proposed, called patchwork. This method allows us to built a coherent

  14. Safety and reliability of pressure components with special emphasis on the contribution of component and large specimen testing to structural integrity assessment methodology. Vol. 1 and 2

    International Nuclear Information System (INIS)

    1987-01-01

    The 51 papers of the 13. MPA-seminar contribute to structural integrity assessment methodology with special emphasis on the component and large specimen testing. 8 of the papers deal with fracture mechanics, 6 papers with dynamic loading, 13 papers with nondestructive testing, 2 papers with radiation embrittlement, 5 papers with pipe failure, 4 papers with components, 2 papers with thermal shock loading, 5 papers with the high temperature behaviour, 4 papers with the integrity of vessels and 3 papers with the integrity of welded joints. Especially also the fracture behaviour of steel material is verificated. All papers are separately indexed and analysed for the database. (DG) [de

  15. Integrated control of lateral and vertical vehicle dynamics based on multi-agent system

    Science.gov (United States)

    Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia

    2014-03-01

    The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.

  16. Integration test of ITER full-scale vacuum vessel sector

    International Nuclear Information System (INIS)

    Nakahira, M.; Koizumi, K.; Oka, K.

    2001-01-01

    The full-scale Sector Model Project, which was initiated in 1995 as one of the Large Seven R and D Projects, completed all R and D activities planned in the ITER-EDA period with the joint effort of the ITER Joint Central Team (JCT), the Japanese, the Russian Federation (RF) and the United States (US) Home Teams. The fabrication of a full-scale 18 toroidal sector, which is composed of two 9 sectors spliced at the port center, was successfully completed in September 1997 with the dimensional accuracy of ± 3 mm for the total height and total width. Both sectors were shipped to the test site in JAERI and the integration test was begun in October 1997. The integration test involves the adjustment of field joints, automatic Narrow Gap Tungsten Inert Gas (NG-TIG) welding of field joints with splice plates, and inspection of the joint by ultrasonic testing (UT), which are required for the initial assembly of ITER vacuum vessel. This first demonstration of field joint welding and performance test on the mechanical characteristics were completed in May 1998 and the all results obtained have satisfied the ITER design. In addition to these tests, the integration with the mid plane port extension fabricated by the Russian Home Team, and the cutting and re-welding test of field joints by using full-remotized welding and cutting system developed by the US Home Team, are planned as post EDA activities. (author)

  17. Integration test of ITER full-scale vacuum vessel sector

    International Nuclear Information System (INIS)

    Nakahira, M.; Koizumi, K.; Oka, K.

    1999-01-01

    The full-scale Sector Model Project, which was initiated in 1995 as one of the Large Seven ITER R and D Projects, completed all R and D activities planned in the ITER-EDA period with the joint effort of the ITER Joint Central Team (JCT), the Japanese, the Russian Federation (RF) and the United States (US) Home Teams. The fabrication of a full-scale 18 toroidal sector, which is composed of two 9 sectors spliced at the port center, was successfully completed in September 1997 with the dimensional accuracy of - 3 mm for the total height and total width. Both sectors were shipped to the test site in JAERI and the integration test was begun in October 1997. The integration test involves the adjustment of field joints, automatic Narrow Gap Tungsten Inert Gas (NG-TIG) welding of field joints with splice plates, and inspection of the joint by ultrasonic testing (UT), which are required for the initial assembly of ITER vacuum vessel. This first demonstration of field joint welding and performance test on the mechanical characteristics were completed in May 1998 and the all results obtained have satisfied the ITER design. In addition to these tests, the integration with the mid plane port extension fabricated by the Russian Home Team, and the cutting and re-welding test of field joints by using full-remotized welding and cutting system developed by the US Home Team, are planned as post EDA activities. (author)

  18. Making System Dynamics Cool? Using Hot Testing & Teaching Cases

    NARCIS (Netherlands)

    Pruyt, E.

    2009-01-01

    This paper deals with the use of ‘hot’ real-world cases for both testing and teaching purposes such as in the Introductory System Dynamics course at Delft University of Technology in the Netherlands. The paper starts with a brief overview of the System Dynamics curriculum. Then the problem-oriented

  19. Chaos in integrate-and-fire dynamical systems

    International Nuclear Information System (INIS)

    Coombes, S.

    2000-01-01

    Integrate-and-fire (IF) mechanisms are often studied within the context of neural dynamics. From a mathematical perspective they represent a minimal yet biologically realistic model of a spiking neuron. The non-smooth nature of the dynamics leads to extremely rich spike train behavior capable of explaining a variety of biological phenomenon including phase-locked states, mode-locking, bursting and pattern formation. The conditions under which chaotic spike trains may be generated in synaptically interacting networks of neural oscillators is an important open question. Using techniques originally introduced for the study of impact oscillators we develop the notion of a Liapunov exponent for IF systems. In the strong coupling regime a network may undergo a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. Away from the bifurcation point these invariant circles may break up. We establish numerically that in this case the largest IF Liapunov exponent becomes positive. Hence, one route to chaos in networks of synaptically coupled IF neurons is via the breakup of invariant circles

  20. Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz

    Science.gov (United States)

    Vanicat, Matthieu

    2018-04-01

    We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.

  1. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    Science.gov (United States)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  2. A Runtime Testability Metric for Dynamic High-Availability Component-based Systems

    NARCIS (Netherlands)

    Gonzales-Sanchez, A.; Piel, E.A.B.; Gross, H.G.; Van Gemund, A.J.C.

    2011-01-01

    Runtime testing is emerging as the solution for the integration and assessment of highly dynamic, high availability software systems where traditional development-time integration testing cannot be performed. A prerequisite for runtime testing is the knowledge about to which extent the system can be

  3. An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response

    KAUST Repository

    Ruzziconi, Laura

    2013-02-20

    In this study we deal with a microelectromechanical system (MEMS) and develop a dynamical integrity analysis to interpret and predict the experimental response. The device consists of a clamped-clamped polysilicon microbeam, which is electrostatically and electrodynamically actuated. It has non-negligible imperfections, which are a typical consequence of the microfabrication process. A single-mode reduced-order model is derived and extensive numerical simulations are performed in a neighborhood of the first symmetric natural frequency, via frequency response diagrams and behavior chart. The typical softening behavior is observed and the overall scenario is explored, when both the frequency and the electrodynamic voltage are varied. We show that simulations based on direct numerical integration of the equation of motion in time yield satisfactory agreement with the experimental data. Nevertheless, these theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because these theoretical curves represent the ideal limit case where disturbances are absent, which never occurs under realistic conditions. A reliable prediction of the actual (and not only theoretical) range of existence of each attractor is essential in applications. To overcome this discrepancy and extend the results to the practical case where disturbances exist, a dynamical integrity analysis is developed. After introducing dynamical integrity concepts, integrity profiles and integrity charts are drawn. They are able to describe if each attractor is robust enough to tolerate the disturbances. Moreover, they detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable, i.e. they provide valuable information to operate the device in safe conditions according to the desired outcome and depending on the expected disturbances

  4. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    International Nuclear Information System (INIS)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok

    2009-01-01

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data

  5. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data.

  6. Glovebox characterization and barrier integrity testing using fluorescent powder

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents a method for characterizing the spread of contamination and testing the barrier integrity of a new glovebox during material transfer operations and glove change-outs using fluorescent powder. Argonne National Laboratory-West has performed this test on several new gloveboxes prior to putting them into service. The test is performed after the glovebox has been leak tested and all systems have been verified to be operational. The purpose of the test is to show that bag-in/bag-out operations and glove change-outs can be accomplished without spreading the actual contaminated material to non-contaminated areas. The characterization test also provides information as to where contamination might be expected to build-up during actual operations. The fluorescent powder is used because it is easily detectable using an ultra-violet light and disperses in a similar fashion to radioactive material. The characterization and barrier integrity test of a glovebox using fluorescent powder provides a visual method of determining areas of potential contamination accumulation and helps evaluate the ability to perform clean transfer operations and glove change-outs

  7. Rocket Testing and Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando; Schmalzel, John

    2005-01-01

    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.

  8. Exactly integrable two-dimensional dynamical systems related with supersymmetric algebras

    International Nuclear Information System (INIS)

    Leznov, A.N.

    1983-01-01

    A wide class of exactly integrable dynamical systems in two-dimensional space related with superalgebras, which generalize supersymmetric Liouville equation, is constructed. The equations can be interpretated as nonlinearly interacting Bose and Fermi fields belonging within classical limit to even and odd parts of the Grassman space. Explicit expressions for the solutions of the constructed systems are obtained on the basis of standard perturbation theory

  9. Analysis of Semiscale Mod-1 integral test with asymmetrical break (Test S-29-1)

    International Nuclear Information System (INIS)

    Langerman, M.A.

    1977-03-01

    Selected experimental data obtained from Semiscale Mod-1 cold leg break Test S-29-1 and results obtained from analytical codes are analyzed. This test was the first integral blowdown reflood test conducted with the Mod-1 system and was a special test designed specifically to evaluate the sensitivity of the early Mod-1 core thermal response (0 to 5 sec after rupture) to the magnitude and direction of the core flow. To achieve this specific objective in Test S-29-1, the vessel side break area was reduced to approximately one-half the scaled break area associated with a 200 percent cold leg break test. The reduction in break area significantly reduced the core flow reversal that took place immediately after rupture and resulted in periods of positive core flow in the early portion of the test. The results obtained from this test are compared with results obtained from a 200 percent cold leg break test and the effect of core flow on early core thermal response is evaluated. Since Test S-29-1 was the first integral blowdown reflood test conducted with the Mod-1 system, data are also presented through the reflood stage of the test and the results are analyzed. The test data and the core thermal response calculated with the RELAP4 code are also compared

  10. Integrated leak rate test of the FFTF [Fast Flux Test Facility] containment vessel

    International Nuclear Information System (INIS)

    Grygiel, M.L.; Davis, R.H.; Polzin, D.L.; Yule, W.D.

    1987-04-01

    The third integrated leak rate test (ILRT) performed at the Fast Flux Test Facility (FFTF) demonstrated that effective leak rate measurements could be obtained at a pressure of 2 psig. In addition, innovative data reduction methods demonstrated the ability to accurately account for diurnal variations in containment pressure and temperature. Further development of methods used in this test indicate significant savings in the time and effort required to perform an ILRT on Liquid Metal Reactor Systems with consequent reduction in test costs

  11. Efficient stochastic thermostatting of path integral molecular dynamics.

    Science.gov (United States)

    Ceriotti, Michele; Parrinello, Michele; Markland, Thomas E; Manolopoulos, David E

    2010-09-28

    The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.

  12. MWTF jumper connector integral seal block development and leak testing

    International Nuclear Information System (INIS)

    Ruff, E.S.; Jordan, S.R.

    1995-01-01

    In fiscal year 1993, tests of an o-ring/tetraseal retainer designed to replace a gasket-type seal used in PUREX-type process jumper connectors encouraged the design of an improved seal block. This new seal block combines several parts into one unitized component called an integral seal block. This report summarizes development and leak testing of the new integral seal block. The integral seal block uses a standard o-ring nested in a groove to accomplish leak tightness. This seal block eliminates the need to machine acme threads into the lower skirt casting and seal retainers, eliminates tolerance stack-up, reduces parts inventory, and eliminates an unnecessary leak path in the jumper connector assembly. This report also includes test data on various types of o-ring materials subjected to heat and pressure. Materials tested included Viton, Kalrez, and fluorosilicone, with some incidental data on teflon coated silicone o-rings. Test experience clearly demonstrates the need to test each seal material for temperature and pressure in its intended application. Some materials advertised as being open-quotes betterclose quotes at higher temperatures did not perform up to expectations. Inspection of the fluorosilicone and Kalrez seals after thermal testing indicates that they are much more susceptible to heat softening than Viton

  13. Experimental test of static and dynamic characteristics of tilting-pad thrust bearings

    Directory of Open Access Journals (Sweden)

    Annan Guo

    2015-07-01

    Full Text Available The axial vibration in turbine machine has attracted more and more interest. Tilting-pad thrust bearings are widely used in turbine machines to support the axial load. The dynamic properties generated by oil film of the thrust pad have important effects on the axial vibration of the rotor-bearing system. It is necessary to develop the method to test the dynamic characteristics of thrust bearings. A new rig has been developed. The facility allows a complete set of bearing operating parameters to be measured. Parameters measured include oil temperatures, oil-film thickness, and pressure. The static load and dynamic load can be added on the thrust bearing in the vertical direction at the same time. The relative and absolute displacement vibrations of the test experimental bearing with the changes of dynamic force are measured, and the dynamic characteristics of the test bearing are obtained. The experimental results show clearly that the operating conditions influence largely on the pad static and dynamic characteristics.

  14. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation

    Science.gov (United States)

    2012-07-01

    Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham...attomole- zeptomole range. Internal dilution curves insure a high-dynamic calibration range. DU -26 8L DU -26 6L DU -29 5R DU -22 9.2 L DU...3: Nanobiosensor technology is translated to test for pathway deregulation in RPFNA cytology obtained from 10 high-risk women with cytological

  15. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  16. X-ray testing for short-time dynamic applications

    International Nuclear Information System (INIS)

    Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried

    2017-01-01

    For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.

  17. Identifying High Academic Potential in Australian Aboriginal Children Using Dynamic Testing

    Science.gov (United States)

    Chaffey, Graham W.; Bailey, Stan B.; Vine, Ken W.

    2015-01-01

    The primary purpose of this study was to determine the effectiveness of dynamic testing as a method for identifying high academic potential in Australian Aboriginal children. The 79 participating Aboriginal children were drawn from Years 3-5 in rural schools in northern New South Wales. The dynamic testing method used in this study involved a…

  18. Retrieval process development and enhancements: Hydraulic test bed integrated testing. Fiscal year 1995 technology development summary report

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Smalley, J.T.; Tucker, J.C.

    1996-02-01

    The Retrieval Process Development and Enhancements Program is sponsored by the U.S. Department of Energy (DOE) Office of Science and Technology to investigate waste dislodging and conveyance processes suitable for the retrieval of high-level radioactive waste. This program, represented by industry, national laboratories, and academia, is testing the performance of a technology of high-pressure waterjet dislodging and pneumatic conveyance integrated as a scarifier as a means of retrieval of waste inside waste storage tanks. Waste stimulants have been designed to challenge this retrieval process, and this technology has been shown to mobilize and convey the waste stimulants, at target retrieval rates while operating within the space envelope and the dynamic loading constraints of postulated deployment systems. The approach has been demonstrated to be versatile in dislodging and conveying a broad range of waste forms, from hard wastes to soft sludge wastes, through the use of simple and reliable in-tank components

  19. Comparison of two integration methods for dynamic causal modeling of electrophysiological data.

    Science.gov (United States)

    Lemaréchal, Jean-Didier; George, Nathalie; David, Olivier

    2018-06-01

    Dynamic causal modeling (DCM) is a methodological approach to study effective connectivity among brain regions. Based on a set of observations and a biophysical model of brain interactions, DCM uses a Bayesian framework to estimate the posterior distribution of the free parameters of the model (e.g. modulation of connectivity) and infer architectural properties of the most plausible model (i.e. model selection). When modeling electrophysiological event-related responses, the estimation of the model relies on the integration of the system of delay differential equations (DDEs) that describe the dynamics of the system. In this technical note, we compared two numerical schemes for the integration of DDEs. The first, and standard, scheme approximates the DDEs (more precisely, the state of the system, with respect to conduction delays among brain regions) using ordinary differential equations (ODEs) and solves it with a fixed step size. The second scheme uses a dedicated DDEs solver with adaptive step sizes to control error, making it theoretically more accurate. To highlight the effects of the approximation used by the first integration scheme in regard to parameter estimation and Bayesian model selection, we performed simulations of local field potentials using first, a simple model comprising 2 regions and second, a more complex model comprising 6 regions. In these simulations, the second integration scheme served as the standard to which the first one was compared. Then, the performances of the two integration schemes were directly compared by fitting a public mismatch negativity EEG dataset with different models. The simulations revealed that the use of the standard DCM integration scheme was acceptable for Bayesian model selection but underestimated the connectivity parameters and did not allow an accurate estimation of conduction delays. Fitting to empirical data showed that the models systematically obtained an increased accuracy when using the second

  20. Investigating the effects of maximal anaerobic fatigue on dynamic postural control using the Y-Balance Test.

    Science.gov (United States)

    Johnston, William; Dolan, Kara; Reid, Niamh; Coughlan, Garrett F; Caulfield, Brian

    2018-01-01

    The Y Balance Test is one of the most commonly used dynamic balance assessments, providing an insight into the integration of the sensorimotor subsystems. In recent times, there has been an increase in interest surrounding it's use in various clinical populations demonstrating alterations in motor function. Therefore, it is important to examine the effect physiological influences such as fatigue play in dynamic postural control, and establish a timeframe for its recovery. Descriptive laboratory study. Twenty male and female (age 23.75±4.79years, height 174.12±8.45cm, mass 69.32±8.76kg) partaking in competitive sport, completed the Y Balance Test protocol at 0, 10 and 20min, prior to a modified 60s Wingate fatiguing protocol. Post-fatigue assessments were then completed at 0, 10 and 20 min post-fatiguing intervention. Intraclass correlation coefficients demonstrated excellent intra-session reliability (0.976-0.982) across the three pre-fatigue YBT tests. Post-hoc paired sample t-tests demonstrated that all three reach directions demonstrated statistically significant differences between pre-fatigue and the first post-fatigue measurement (anterior; p=0.019, posteromedial; p=0.019 & posterolateral; p=0.003). The anterior reach direction returned to pre-fatigue levels within 10min (p=0.632). The posteromedial reach direction returned to pre-fatigue levels within 20min (p=0.236), while the posterolateral direction maintained a statistically significant difference at 20min (p=0.023). Maximal anaerobic fatigue has a negative effect on normalised Y balance test scores in all three directions. Following the fatiguing protocol, dynamic postural control returns to pre-fatigue levels for the anterior (20min). Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Automated Testing Techniques for Event-Driven and Dynamically Typed Software Applications

    DEFF Research Database (Denmark)

    Adamsen, Christoffer Quist

    techniques to address each of the challenges. We present a new methodology that extends the error detection capabilities of existing, manually written Android test suites. In the context of JavaScript web applications, we present practical race detectors for detecting AJAX and initialization races......, and a technique that can prevent event race errors by restricting the nondeterminism. Finally, we present a notion of test completeness for dynamic languages, along with a hybrid static/dynamic analysis framework that approximates test completeness, and demonstrate the usefulness of test completeness facts...

  2. Comparison of Three Different Methods for Pile Integrity Testing on a Cylindrical Homogeneous Polyamide Specimen

    Science.gov (United States)

    Lugovtsova, Y. D.; Soldatov, A. I.

    2016-01-01

    Three different methods for pile integrity testing are proposed to compare on a cylindrical homogeneous polyamide specimen. The methods are low strain pile integrity testing, multichannel pile integrity testing and testing with a shaker system. Since the low strain pile integrity testing is well-established and standardized method, the results from it are used as a reference for other two methods.

  3. Integrating non-animal test information into an adaptive testing strategy - skin sensitization proof of concept case.

    Science.gov (United States)

    Jaworska, Joanna; Harol, Artsiom; Kern, Petra S; Gerberick, G Frank

    2011-01-01

    There is an urgent need to develop data integration and testing strategy frameworks allowing interpretation of results from animal alternative test batteries. To this end, we developed a Bayesian Network Integrated Testing Strategy (BN ITS) with the goal to estimate skin sensitization hazard as a test case of previously developed concepts (Jaworska et al., 2010). The BN ITS combines in silico, in chemico, and in vitro data related to skin penetration, peptide reactivity, and dendritic cell activation, and guides testing strategy by Value of Information (VoI). The approach offers novel insights into testing strategies: there is no one best testing strategy, but the optimal sequence of tests depends on information at hand, and is chemical-specific. Thus, a single generic set of tests as a replacement strategy is unlikely to be most effective. BN ITS offers the possibility of evaluating the impact of generating additional data on the target information uncertainty reduction before testing is commenced.

  4. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  5. Development of an Integrated Nonlinear Aeroservoelastic Flight Dynamic Model of the NASA Generic Transport Model

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric

    2018-01-01

    This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..

  6. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry

    Science.gov (United States)

    Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun

    2018-06-01

    The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.

  7. Multiloop Integral System Test (MIST): MIST Facility Functional Specification

    International Nuclear Information System (INIS)

    Habib, T.F.; Koksal, C.G.; Moskal, T.E.; Rush, G.C.; Gloudemans, J.R.

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock ampersand Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs

  8. Development and comparison of integrated dynamics control systems with fuzzy logic control and sliding mode control

    International Nuclear Information System (INIS)

    Song, Jeong Hoon

    2013-01-01

    In this study, four integrated dynamics control (IDC) systems abbreviated as IDCB, IDCS, IDCF, and IDCR are developed, evaluated and compared. IDC systems were integrated with brake and steer control systems to enhance lateral stability and handling performance. To construct the IDC systems, a vehicle model with fourteen degrees of freedom, a fuzzy logic controller, and a sliding mode ABS controller were used. They were tested with various steering inputs when excessive full brake pressure or no brake pressure was applied on dry asphalt, wet asphalt, a snow-covered paved road, and a split-µ road. The results showed that an IDC-equipped vehicle improved lateral stability and controllability in every driving condition compared to an ABS-equipped vehicle. Under all road conditions, IDC controllers enabled the yaw rate to follow the reference yaw rate almost perfectly and reduced the body slip angle. On a split-µ road, IDCB, IDCS, IDCF, and IDCR vehicles drove straight ahead with only very small deviations.

  9. Built-In Data-Flow Integration Testing in Large-Scale Component-Based Systems

    Science.gov (United States)

    Piel, Éric; Gonzalez-Sanchez, Alberto; Gross, Hans-Gerhard

    Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from a previous one in the flow and sends output data to other components. This organisation expresses information flows adequately, and also favours decoupling between the components, leading to easier maintenance and quicker evolution of the system. Integration testing is a major means to ensure the quality of large systems. Their size and complexity, together with the fact that they are developed and maintained by several stake holders, make Built-In Testing (BIT) an attractive approach to manage their integration testing. However, so far no technique has been proposed that combines BIT and data-flow integration testing. We have introduced the notion of a virtual component in order to realize such a combination. It permits to define the behaviour of several components assembled to process a flow of data, using BIT. Test-cases are defined in a way that they are simple to write and flexible to adapt. We present two implementations of our proposed virtual component integration testing technique, and we extend our previous proposal to detect and handle errors in the definition by the user. The evaluation of the virtual component testing approach suggests that more issues can be detected in systems with data-flows than through other integration testing approaches.

  10. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane

    International Nuclear Information System (INIS)

    Liu, Jian; Zhang, Zhijun

    2016-01-01

    Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems

  11. Full-scale dynamic structural testing of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Da Rin, E.M.; Muzzi, F.P.

    1995-01-01

    Within the framework of the IAEA coordinated 'Benchmark Study for the seismic analysis and testing of WWER-type NPPs', in-situ dynamic structural testing activities have been performed at the Paks Nuclear Power Plant in Hungary. The specific objective of the investigation was to obtain experimental data on the actual dynamic structural behaviour of the plant's major constructions and equipment under normal operating conditions, for enabling a valid seismic safety review to be made. This paper gives a synthetic description of the conducted experiments and presents some results, regarding in particular the free-field excitations produced during the earthquake-simulation experiments and an experiment of the dynamic soil-structure interaction global effects at the base of the reactor containment structure. Moreover, a method which can be used for inferring dynamic structural characteristics from the recorded time-histories is briefly described and a simple illustrative example given. (author)

  12. 16 CFR 1511.5 - Structural integrity tests.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Structural integrity tests. 1511.5 Section 1511.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... lowest position in the cylinder. If the uppermost edge of the component or fragment is below the plane of...

  13. Parametric design and analysis framework with integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2014-01-01

    of building energy and indoor environment, are generally confined to late in the design process. Consequence based design is a framework intended for the early design stage. It involves interdisciplinary expertise that secures validity and quality assurance with a simulationist while sustaining autonomous...... control with the building designer. Consequence based design is defined by the specific use of integrated dynamic modeling, which includes the parametric capabilities of a scripting tool and building simulation features of a building performance simulation tool. The framework can lead to enhanced...

  14. Conceptual Design and Dynamics Testing and Modeling of a Mars Tumbleweed Rover

    Science.gov (United States)

    Calhoun Philip C.; Harris, Steven B.; Raiszadeh, Behzad; Zaleski, Kristina D.

    2005-01-01

    The NASA Langley Research Center has been developing a novel concept for a Mars planetary rover called the Mars Tumbleweed. This concept utilizes the wind to propel the rover along the Mars surface, bringing it the potential to cover vast distances not possible with current Mars rover technology. This vehicle, in its deployed configuration, must be large and lightweight to provide the ratio of drag force to rolling resistance necessary to initiate motion from rest on the Mars surface. One Tumbleweed design concept that satisfies these considerations is called the Eggbeater-Dandelion. This paper describes the basic design considerations and a proposed dynamics model of the concept for use in simulation studies. It includes a summary of rolling/bouncing dynamics tests that used videogrammetry to better understand, characterize, and validate the dynamics model assumptions, especially the effective rolling resistance in bouncing/rolling dynamic conditions. The dynamics test used cameras to capture the motion of 32 targets affixed to a test article s outer structure. Proper placement of the cameras and alignment of their respective fields of view provided adequate image resolution of multiple targets along the trajectory as the test article proceeded down the ramp. Image processing of the frames from multiple cameras was used to determine the target positions. Position data from a set of these test runs was compared with results of a three dimensional, flexible dynamics model. Model input parameters were adjusted to match the test data for runs conducted. This process presented herein provided the means to characterize the dynamics and validate the simulation of the Eggbeater-Dandelion concept. The simulation model was used to demonstrate full scale Tumbleweed motion from a stationary condition on a flat-sloped terrain using representative Mars environment parameters.

  15. Integration Tests of the Muon System

    CERN Multimedia

    Cerutti, F; Palestini, S

    A complex large-size prototype of the Muon system is installed in the test area H8B in Prévessin; the set-up includes chambers belonging to the three layers of the Barrel Spectrometer (on the right in Figure 1), and chambers belonging to one octant of the End Cap Spectrometer (center and left side of Figure 1). Figure 1: Set-up of the Muon spectrometer integration test. The installation accurately reproduces the geometry of regions of the ATLAS Muon Spectrometer, with the H8 beam-line crossing the detectors at positions/angles corresponding to particles with polar angle of 75 ± 4 and 15 ± 4 degrees, respectively for the Barrel and the End Cap. A comprehensive test program is being carried out with this set-up, ranging from tests of support frames (octant of the MDT BigWheel and of the SmallWheel) and of handling/installation of tracking chambers, to real-size tests of the alignment systems, together with accurate studies of performance and calibration of the precision chambers, and with develo...

  16. Social Group Dynamics and Patterns of Latin American Integration Processes

    Directory of Open Access Journals (Sweden)

    Sébastien Dubé

    2017-04-01

    Full Text Available This article proposes to incorporate social psychology elements with mainstream political science and international relations theories to help understand the contradictions related to the integration processes in Latin America. Through a theoretical analysis, it contributes to the challenge proposed by Dabène (2009 to explain the “resilience” of the Latin American regional integration process in spite of its “instability and crises.” Our main proposition calls for considering Latin America as a community and its regional organizations as “social groups.” In conclusion, three phenomena from the field of social psychology and particularly social group dynamics shed light on these contradictory patterns: the value of the group and the emotional bond, groupthink, and cognitive dissonance.

  17. Puzzling with potential : dynamic testing of analogical reasoning in children

    NARCIS (Netherlands)

    Stevenson, Claire Elisabeth

    2012-01-01

    Assessment procedures are frequent in children's school careers; however, measuring potential for learning has remained a puzzle. Dynamic testing is a method to assess cognitive potential that includes training in the assessment process. The goal of this thesis project was to develop a new dynamic

  18. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Baang, Dane; Park, Jae-Chang; Lee, Seung-Wook; Bae, Sung Won

    2014-01-01

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  19. Advanced WEC Dynamics & Controls FY16 Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bacelli, Giorgio [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Patterson, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A model-scale wave tank test was conducted in the interest of improving control systems design of wave energy converters (WECs). The success of most control strategies is based directly upon the availability of a reduced-order model with the ability to capture the dynamics of the system with sufficient accuracy. For this reason, the test described in this report, which is the first in a series of planned tests on WEC controls, focused on system identification (system ID) and model validation.

  20. Full-size solar dynamic heat receiver thermal-vacuum tests

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  1. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    Science.gov (United States)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  2. Thermal-Hydraulic Integral Effect Test with the ATLS for Investigation on CEDM Penetration Nozzle Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoungho; Seokcho; Park, Hyunsik; Choi, Namhyun; Park, Yusun; Kim, Jongrok; Bae, Byounguhn; Kim, Yeonsik; Choi, Kiyong; Song, Chulhwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this study, thermal-hydraulic integral effect test with the ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation) was performed for simulating a failure of CEDM penetration nozzle. The main objectives of the present test were not only to provide physical insight into the system response during a failure of CEDM penetration nozzle but also to establish an integral effect test database for the validation of the safety analysis codes. Furthermore, present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3. Thermal-hydraulic integral effect test with the ATLAS was performed for simulating a failure of CEDM penetration nozzle. Failure of two penetration nozzles of the CEDM in the APR1400 was simulated. Initial and boundary conditions were determined with respect to the reference conditions of the APR1400. However, with an aim of corresponding to the YGN-3 situation, the safety injection water was supplied via CLI mode. Compared to the cold leg break SBLOCA, the consequences of the event were milder in terms of a loop seal clearance, break flow rate, collapsed water level, and PCT. This could be mainly attributed to the small break flow rate in case of the failure in the RPV upper head. Present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3.

  3. Validation of RETRAN-03 by simulating a peach bottom turbine trip and boiloff at the full integral simulation test facility

    International Nuclear Information System (INIS)

    Westacott, J.L.; Peterson, C.E.

    1992-01-01

    This paper reports that the RETRAN-03 computer code is validated by simulating two tests that were performed at the Full Integral Simulation Test (FIST) facility. The RETRAN-03 results of a turbine trip (test 4PTT1) and failure to maintain water level at decay power (test T1QUV) are compared with the FIST test data. The RETRAN-03 analysis of test 4PTT1 is compared with a previous TRAC-BWR analysis of the test. Sensitivity to various model nodalizations and RETRAN-03 slip options are studied by comparing results of test T1QUV. The predicted thermal-hydraulic responses of both tests agree well with the test data. The pressure response of test 4PTT1 and the boiloff rate for test T1QUV are accurately predicted. Core uncovery time is found to be sensitive to the upper downcomer and upper plenum nodalization. The RETRAN-03 algebraic and dynamic slip options produce similar results for test T1QUV

  4. Nonlinear Dynamics: Integrability, Chaos and Patterns

    International Nuclear Information System (INIS)

    Grammaticos, B

    2004-01-01

    When the editorial office of Journal of Physics A: Mathematical and General of the Institute of Physics Publishing asked me to review a book on nonlinear dynamics I experienced an undeniable apprehension. Indeed, the domain is a rapidly expanding one and writing a book aiming at a certain degree of completeness looks like an almost impossible task. My uneasiness abated somewhat when I saw the names of the authors, two well-known specialists of the nonlinear domain, but it was only when I held the book in my hands that I felt really reassured. The book is not just a review of the recent (and less so) findings on nonlinear systems. It is also a textbook. The authors set out to provide a detailed, step by step, introduction to the domain of nonlinearity and its various subdomains: chaos, integrability and pattern formation (although this last topic is treated with far less detail than the other two). The public they have in mind is obviously that of university students, graduate or undergraduate, who are interested in nonlinear phenomena. I suspect that a non-negligible portion of readers will be people who have to teach topics which figure among those included in the book: they will find this monograph an excellent companion to their course. The book is written in a pedagogical way, with a profusion of examples, detailed explanations and clear diagrams. The point of view is that of a physicist, which to my eyes is a major advantage. The mathematical formulation remains simple and perfectly intelligible. Thus the reader is not bogged down by fancy mathematical formalism, which would have discouraged the less experienced ones. A host of exercises accompanies every chapter. This will give the novice the occasion to develop his/her problem-solving skills and acquire competence in the use of nonlinear techniques. Some exercises are quite straightforward, like 'verify the relation 14.81'. Others are less so, such as 'prepare a write-up on a) frequency-locking and b) devil

  5. Nonlinear Dynamics: Integrability, Chaos and Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Grammaticos, B [GMPIB, Universite Paris VII, Tour 24--14, 5e etage, Case 7021, 75251 Paris (France)

    2004-02-06

    When the editorial office of Journal of Physics A: Mathematical and General of the Institute of Physics Publishing asked me to review a book on nonlinear dynamics I experienced an undeniable apprehension. Indeed, the domain is a rapidly expanding one and writing a book aiming at a certain degree of completeness looks like an almost impossible task. My uneasiness abated somewhat when I saw the names of the authors, two well-known specialists of the nonlinear domain, but it was only when I held the book in my hands that I felt really reassured. The book is not just a review of the recent (and less so) findings on nonlinear systems. It is also a textbook. The authors set out to provide a detailed, step by step, introduction to the domain of nonlinearity and its various subdomains: chaos, integrability and pattern formation (although this last topic is treated with far less detail than the other two). The public they have in mind is obviously that of university students, graduate or undergraduate, who are interested in nonlinear phenomena. I suspect that a non-negligible portion of readers will be people who have to teach topics which figure among those included in the book: they will find this monograph an excellent companion to their course. The book is written in a pedagogical way, with a profusion of examples, detailed explanations and clear diagrams. The point of view is that of a physicist, which to my eyes is a major advantage. The mathematical formulation remains simple and perfectly intelligible. Thus the reader is not bogged down by fancy mathematical formalism, which would have discouraged the less experienced ones. A host of exercises accompanies every chapter. This will give the novice the occasion to develop his/her problem-solving skills and acquire competence in the use of nonlinear techniques. Some exercises are quite straightforward, like 'verify the relation 14.81'. Others are less so, such as 'prepare a write-up on a) frequency

  6. A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Rai, Ajit; Zio, Enrico

    2016-01-01

    The challenge of Risk-Informed Safety Margin Characterization (RISMC) is to develop a methodology for estimating system safety margins in the presence of stochastic and epistemic uncertainties affecting the system dynamic behavior. This is useful to support decision-making for licensing purposes. In the present work, safety margin uncertainties are handled by Order Statistics (OS) (with both Bracketing and Coverage approaches) to jointly estimate percentiles of the distributions of the safety parameter and of the time required for it to reach these percentiles values during its dynamic evolution. The novelty of the proposed approach consists in the integration of dynamic aspects (i.e., timing of events) into the definition of a dynamic safety margin for a probabilistic Quantification of Margin and Uncertainties (QMU). The system here considered for demonstration purposes is the Lead–Bismuth Eutectic- eXperimental Accelerator Driven System (LBE-XADS). - Highlights: • We integrate dynamic aspects into the definition of a safety margins. • We consider stochastic and epistemic uncertainties affecting the system dynamics. • Uncertainties are handled by Order Statistics (OS). • We estimate the system grace time during accidental scenarios. • We apply the approach to an LBE-XADS accidental scenario.

  7. Reactor benchmarks and integral data testing and feedback into ENDF/B-VI

    International Nuclear Information System (INIS)

    McKnight, R.D.; Williams, M.L.

    1992-01-01

    The role of integral data testing and its feedback into the ENDF/B evaluated nuclear data files are reviewed. The use of the CSEWG reactor benchmarks in the data testing process is discussed and selected results based on ENDF/B Version VI data are presented. Finally, recommendations are given to improve the implementation in future integral data testing of ENDF/B

  8. Fracture toughness calculation using dynamic testing

    International Nuclear Information System (INIS)

    Perosanz, F. J.; Serrano, M.; Martinez, C.; Lapena, J.

    1998-01-01

    The most critical component of a Nuclear Power Station is the Reactor Pressure Vessel (RPV), due to safety and integrity requirements. The RPV is subjected to neutron radiation and this phenomenon lead to microstructural changes in the material and modifications in the mechanical properties. Due to this effects, it is necessary to assess the structural integrity of the RPV along the operational life through surveillance programs. The main objective of this surveillance programs is to determine the fracture toughness of the material. At present this objective is reached combining direct measures and prediction techniques. In this work, direct measures of fracture toughness using instrumented Charpy V impact testing are present using a CIEMAT development on analysis of results. (Author) 6 refs

  9. Analysis on working pressure selection of ACME integral test facility

    International Nuclear Information System (INIS)

    Chen Lian; Chang Huajian; Li Yuquan; Ye Zishen; Qin Benke

    2011-01-01

    An integral effects test facility, advanced core cooling mechanism experiment facility (ACME) was designed to verify the performance of the passive safety system and validate its safety analysis codes of a pressurized water reactor power plant. Three test facilities for AP1000 design were introduced and review was given. The problems resulted from the different working pressures of its test facilities were analyzed. Then a detailed description was presented on the working pressure selection of ACME facility as well as its characteristics. And the approach of establishing desired testing initial condition was discussed. The selected 9.3 MPa working pressure covered almost all important passive safety system enables the ACME to simulate the LOCAs with the same pressure and property similitude as the prototype. It's expected that the ACME design would be an advanced core cooling integral test facility design. (authors)

  10. Estimating and quantifying the impact of using models for integration and testing

    NARCIS (Netherlands)

    Braspenning, N.C.W.M.; Boumen, R.; Mortel - Fronczak, van de J.M.; Rooda, J.E.

    2011-01-01

    Industrial trends show that the lead time and costs of integrating and testing high-tech multi-disciplinary systems are becoming critical factors for commercial success. In our research, we developed a method for early, model-based integration and testing to reduce this criticality. Although its

  11. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  12. An integrated service excellence model for military test and ...

    African Journals Online (AJOL)

    The purpose of this article is to introduce an Integrated Service Excellence Model (ISEM) for empowering the leadership core of the capital-intensive military test and evaluation facilities to provide strategic military test and evaluation services and to continuously improve service excellence by ensuring that all activities ...

  13. Making System Dynamics Cool IV : Teaching & Testing with Cases & Quizzes

    NARCIS (Netherlands)

    Pruyt, E.

    2012-01-01

    This follow-up paper presents cases and multiple choice questions for teaching and testing System Dynamics modeling. These cases and multiple choice questions were developed and used between January 2012 and April 2012 a large System Dynamics course (250+ 2nd year BSc and 40+ MSc students per year)

  14. Making System Dynamics Cool III : New Hot Teaching & Testing Cases

    NARCIS (Netherlands)

    Pruyt, E.

    2011-01-01

    This follow-up paper presents seven actual cases for testing and teaching System Dynamics developed and used between January 2010 and January 2011 for one of the largest System Dynamics courses (250+ students per year) at Delft University of Technology in the Netherlands. The cases presented in this

  15. Bayesian integration of position and orientation cues in perception of biological and non-biological dynamic forms

    Directory of Open Access Journals (Sweden)

    Steven Matthew Thurman

    2014-02-01

    Full Text Available Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic

  16. Integral transform solutions of dynamic response of a clamped–clamped pipe conveying fluid

    International Nuclear Information System (INIS)

    Gu Jijun; An Chen; Duan Menglan; Levi, Carlos; Su Jian

    2013-01-01

    Highlights: ► Dynamic response of pipe conveying fluid was studied numerically. ► The generalized integral transform technique (GITT) was applied. ► Numerical solutions with automatic global accuracy control were obtained. ► Excellent convergence behavior was shown. ► Modal separation analysis was carried out and the influence of mass ratio was analyzed. - Abstract: Analysis of dynamic response of pipe conveying fluid is an important aspect in nuclear power plant design. In the present paper, dynamic response of a clamped–clamped pipe conveying fluid was solved by the generalized integral transform technique (GITT). The governing partial differential equation was transformed into a set of second-order ordinary differential equations which is then numerically solved by making use of the subroutine DIVPAG from IMSL Library. A thorough convergence analysis was performed to yield sets of reference results of the transverse deflection at different time and spanwise position. We found good agreement between the computed natural frequencies at mode 1–3 and those obtained by previous theoretical study. Besides, modal separation analysis was carried out and the influence of mass ratio on deflection and natural frequencies was qualitatively and quantitatively assessed.

  17. Developing a Test Collection for the Evaluation of Integrated Search

    DEFF Research Database (Denmark)

    Lykke, Marianne; Larsen, Birger; Lund, Haakon

    2010-01-01

    he poster discusses the characteristics needed in an information retrieval (IR) test collection to facilitate the evaluation of integrated search, i.e. search across a range of different sources but with one search box and one ranked result list, and describes and analyses a new test collection c...... assessments. The test collection may be used for systems- as well as user-oriented evaluation.......he poster discusses the characteristics needed in an information retrieval (IR) test collection to facilitate the evaluation of integrated search, i.e. search across a range of different sources but with one search box and one ranked result list, and describes and analyses a new test collection...... constructed for this purpose. The test collection consists of approx. 18,000 monographic records, 160,000 papers and journal articles in PDF and 275,000 abstracts with a varied set of metadata and vocabularies from the physics domain, 65 topics based on real work tasks and corresponding graded relevance...

  18. On a non-local gas dynamics like integrable hierarchy

    International Nuclear Information System (INIS)

    Brunelli, Jose Carlos; Das, Ashok

    2004-01-01

    We study a new hierarchy of equations derived from the system of isentropic gas dynamics equations where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained. (author)

  19. Australian national networked tele-test facility for integrated systems

    Science.gov (United States)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  20. Dynamic fracture analysis of a transverse wedge-loaded compact specimen

    International Nuclear Information System (INIS)

    Urabe, Yoshio; Funada, Tatsuo; Hojo, Kiminobu; Baba, Kinji

    1986-01-01

    The J-integral method cannot be applied to the elastic plastic dynamic crack propagation, because unloading and inertia force may take place. From this point of view dynamic elastic plastic scheme using J-integral is developed. Using this dynamic finite element program an MRL type specimen is analyzed. As the result, the property of path-independence of the J-integral under the existence of inertia force and unloading is confirmed. Dynamic effects are considerably small in the MRL type specimen. Also the influence of plastic zone on the crack arrest toughness is shown. Finally the present result is compared with the request of ASTM 2nd round robin test program for crack arrest toughness. (orig.)

  1. Optimal Control via Integrating the Dynamics of Magnetorheological Dampers and Structures

    Directory of Open Access Journals (Sweden)

    Amir Fayezioghani

    2015-03-01

    Full Text Available Magnetorheological (MR dampers have the advantage of being tuned by low voltages. This has attracted many researchers to develop semi-active control of structures in theory and practice. Most of the control strategies first obtain the desired forces of dampers without taking their dynamics into consideration and then determine the input voltages according to those forces. As a result, these strategies may face situations where the desired forces cannot be produced by the dampers. In this article, by integrating the equations of the dynamics of MR dampers and the structural motion, and solving them in one set, a more concise semi-active optimal control strategy is presented, so as to bypass the aforementioned drawback. Next, a strong database that can be utilized to form a controller for more realistic implementations is produced. As an illustrative example, the optimal voltages of the dampers of a six-storey shear building are obtained under the scaled El-Centro earthquake and used to train a set of integrated analysis-adaptive neuro-fuzzy inference systems (ANFISs as a controller. Results show that the overall performance of the proposed strategy is higher than most of the other conventional methods.

  2. Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference.

    Science.gov (United States)

    Siegelmann, Hava T; Holzman, Lars E

    2010-09-01

    One of the brain's most basic functions is integrating sensory data from diverse sources. This ability causes us to question whether the neural system is computationally capable of intelligently integrating data, not only when sources have known, fixed relative dependencies but also when it must determine such relative weightings based on dynamic conditions, and then use these learned weightings to accurately infer information about the world. We suggest that the brain is, in fact, fully capable of computing this parallel task in a single network and describe a neural inspired circuit with this property. Our implementation suggests the possibility that evidence learning requires a more complex organization of the network than was previously assumed, where neurons have different specialties, whose emergence brings the desired adaptivity seen in human online inference.

  3. DYNAMIC TRENDS OF WAGE IN UKRAINE: PROSPECTS OF EUROPEAN INTEGRATION

    Directory of Open Access Journals (Sweden)

    Ganna KATARANCHUK

    2016-07-01

    Full Text Available We analyze the main trends of the national economy and the dynamics of wages in Ukraine and other postsocialist countries in terms of the prospects of Ukraine's integration into the European economic and social space. The estimation of the impact of the wage indices for the welfare of citizens. The basic factors of Ukraine’s backlog in terms of wages from other countries and the possibilities and prospects of solving this problem are determined

  4. Seamless variation of isometric and anisometric dynamical integrity measures in basins's erosion

    Science.gov (United States)

    Belardinelli, P.; Lenci, S.; Rega, G.

    2018-03-01

    Anisometric integrity measures defined as improvement and generalization of two existing measures (LIM, local integrity measure, and IF, integrity factor) of the extent and compactness of basins of attraction are introduced. Non-equidistant measures make it possible to account for inhomogeneous sensitivities of the state space variables to perturbations, thus permitting a more confident and targeted identification of the safe regions. All four measures are used for a global dynamics analysis of the twin-well Duffing oscillator, which is performed by considering a nearly continuous variation of a governing control parameter, thanks to the use of parallel computation allowing reasonable CPU time. This improves literature results based on finite (and commonly large) variations of the parameter, due to computational constraints. The seamless evolution of key integrity measures highlights the fine aspects of the erosion of the safe domain with respect to the increasing forcing amplitude.

  5. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  6. Integral data testing of JENDL-3.2 for fusion reactor and shielding applications

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1995-01-01

    Integral data testing of JENDL-3.2 is being performed in the activities of two working groups of the Japanese Nuclear Data Committee. The continuous and group-wise libraries prepared from JENDL-3.2 are planned to be tested by the working groups. In this paper, the continuous library FSXLIB-J3R2 processed from JENDL-3.2 for MCNP was tested for fission and fusion neutrons using data of integral experiments and compared to the results of JENDL-3.1. The results of integral data testing of JENDL-3.2 for fusion and shielding application are reviewed. (author)

  7. Internationalisation of construction business and e-commerce: Innovation, integration and dynamic capabilities

    Directory of Open Access Journals (Sweden)

    Thayaparan Gajendran

    2013-06-01

    Full Text Available Despite the role of internet and web based applications in delivering competitive advantage through e-business process is widely acknowledged, little is done by way of research to use the dynamic capability framework, in exploring the role of ecommerce in the construction business internationalisation. The aim of this paper is to present a literature based theoretical exploration using dynamic capability view to discuss internationalising construction businesses through electronic commerce (e-commerce platforms. This paper contextualises the opportunities for internationalising construction, using a mix of supply chain paradigms, embedded with e-commerce platforms. The paper concludes by identifying the potential of dynamic capabilities of a firm, exploiting the innovation and integration potential of different e-business systems, in contributing to the internationalisation of construction businesses. It proposes that contracting firms with developed dynamic capabilities, has the potential to exploit e-commerce platforms to channel upstream activities to an international destination, and also offers the firm’s products/services to international markets.

  8. Metro-access integrated network based on optical OFDMA with dynamic sub-carrier allocation and power distribution.

    Science.gov (United States)

    Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian

    2013-01-28

    We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.

  9. Standard test method for dynamic tear testing of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This test method covers the dynamic tear (DT) test using specimens that are 3/16 in. to 5/8 in. (5 mm to 16 mm) inclusive in thickness. 1.2 This test method is applicable to materials with a minimum thickness of 3/16 in. (5 mm). 1.3 The pressed-knife procedure described for sharpening the notch tip generally limits this test method to materials with a hardness level less than 36 HRC. Note 1—The designation 36 HRC is a Rockwell hardness number of 36 on Rockwell C scale as defined in Test Methods E 18. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Reactor building integrity testing: A novel approach at Gentilly 2 - principles and methodology

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1991-01-01

    In 1987, Hydro-Quebec embarked on an ambitious development program to provide the Gentilly 2 nuclear power station with an effective, yet practical reactor building Integrity Test. The Gentilly 2 Integrity Test employs an innovative approach based on the reference volume concept. It is identified as the Temperature Compensation Method (TCM) System. This configuration has been demonstrated at both high and low test pressure and has achieved extraordinary precision in the leak rate measurement. The Gentilly 2 design allows the Integrity Test to be performed at a nominal 3 kPa(g) test pressure during an (11) hour period with the reactor at full power. The reactor building Pressure Test by comparison, is typically performed at high pressure 124 kPa(g)) in a 7 day window during an annual outage. The Integrity Test was developed with the goal of demonstrating containment availability. Specifically it was purported to detect a leak or hole in the 'bottled-up' reactor building greater in magnitude than an equivalent pipe of 25 mm diameter. However it is considered feasible that the high precision of the Gentilly 2 TCM System Integrity Test and a stable reactor building leak characteristic will constitute sufficient grounds for the reduction of the Pressure Test frequency. It is noted that only the TCM System has, to this date, allowed a relevant determination of the reactor building leak rate at a nominal test pressure of 3 kPa(g). Classical method tests at low pressure have lead to inconclusive results due to the high lack of precision

  11. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  12. Integrated circuit test-port architecture and method and apparatus of test-port generation

    Science.gov (United States)

    Teifel, John

    2016-04-12

    A method and apparatus are provided for generating RTL code for a test-port interface of an integrated circuit. In an embodiment, a test-port table is provided as input data. A computer automatically parses the test-port table into data structures and analyzes it to determine input, output, local, and output-enable port names. The computer generates address-detect and test-enable logic constructed from combinational functions. The computer generates one-hot multiplexer logic for at least some of the output ports. The one-hot multiplexer logic for each port is generated so as to enable the port to toggle between data signals and test signals. The computer then completes the generation of the RTL code.

  13. Smart integrated containment leakage rate test system using wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hwan; Lee, Sang Yong; Kim, Jung Sun; Kim, Gun Soo; Kim, Jong Myeong; Ahn, Jong Han [Research and Development Center, Ulsan (Korea, Republic of)

    2012-10-15

    Integrated Leakage Rate Test (ILRT) is the important test the confidentiality and integrity of the containment building, which is the last barrier when Design basis accidents (DBA) of Nuclear Power plant occur. Since the result of this test is the basis to guarantee the safety of nuclear power plants, the test process, test procedure, and the test equipment are required to have high reliability. The test devices previously used have been products of VOLUMERTRICS and GRAFTEL of USA. These devices have been inconvenient to calibrate and use. Thus improved devices needed to be developed to remove the inconveniences, to verify the safety of Korean nuclear power plants with Korea's own technology, and to secure core technology. A new leak test system was developed by domestic technology for that purpose and needed to be verified. In this paper, technical details of the newly developed easy to use and highly reliable measuring test device, which is in operation at the nuclear power plant sites, will be introduced. State of art technology was applied to the device to address the shortcomings of previous US made devices and the difficulties to use on site.

  14. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    Science.gov (United States)

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  15. Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures

    Science.gov (United States)

    Bellingham, Alyssa

    electroluminescence that occur where the conductive fibers contact the EL fibers. A passive matrix addressing scheme was used to apply a voltage to each pixel individually, creating a display capable of dynamically communicating information. Optical measurements of the intensity and color of emitted light were used to quantify the performance of the display and compare it to state-of-the-art display technologies. The charge-voltage (Q-V) electrical characterization technique is used to gain information about the ACPEL fiber device operation, and mechanical tests were performed to determine the effect everyday wear and tear would have on the performance of the display. The presented textile display structure and method of producing fibers with individual sections of electroluminescence addresses the shortcomings in existing textile display technology and provides a route to directly integrated communicative textiles for applications ranging from biomedical research and monitoring to fashion. An extensive discussion of the materials and methods of production needed to scale this textile display technology and incorporate it into wearable applications is presented.

  16. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  17. Simulation of IST Turbomachinery Power-Neutral Tests with the ANL Plant Dynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-13

    The validation of the Plant Dynamics Code (PDC) developed at Argonne National Laboratory (ANL) for the steady-state and transient analysis of supercritical carbon dioxide (sCO2) systems has been continued with new test data from the Naval Nuclear Laboratory (operated by Bechtel Marine Propulsion Corporation) Integrated System Test (IST). Although data from three runs were provided to ANL, only two of the data sets were analyzed and described in this report. The common feature of these tests is the power-neutral operation of the turbine-compressor shaft, where no external power through the alternator was provided during the tests. Instead, the shaft speed was allowed to change dictated by the power balance between the turbine, the compressor, and the power losses in the shaft. The new test data turned out to be important for code validation for several reasons. First, the power-neutral operation of the shaft allows validation of the shaft dynamics equations in asynchronous mode, when the shaft is disconnected from the grid. Second, the shaft speed control with the compressor recirculation (CR) valve not only allows for testing the code control logic itself, but it also serves as a good test for validation of both the compressor surge control and the turbine bypass control actions, since the effect of the CR action on the loop conditions is similar for both of these controls. Third, the varying compressor-inlet temperature change test allows validation of the transient response of the precooler, a shell-and-tube heat exchanger. The first transient simulation of the compressor-inlet temperature variation Test 64661 showed a much slower calculated response of the precooler in the calculations than the test data. Further investigation revealed an error in calculating the heat exchanger tube mass for the PDC dynamic equations that resulted in a slower change in the tube wall temperature than measured. The transient calculations for both tests were done in two steps. The

  18. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  19. Generic 12-Bus Test System for Wind Power Integration Studies

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Altin, Müfit; Göksu, Ömer

    2012-01-01

    , inertial response, frequency control, damping of electromechanical oscillations, balanced and unbalanced fault management, etc. Hence, the power system components: conventional power plants with controls, transmission lines, transformers and loads should be represented accurately to achieve realistic power......High wind power penetration levels into power systems requires an appropriate power system model when assessing impact on the overall system stability. The model should capture the wide range of dynamics related to the wind integration studies, such as voltage control, synchronizing power control...... system characteristics. Additionally, the power system model should be simple and computationally manageable in order to simulate multiple scenarios with different control parameters in a reasonable time. In this paper, a generic power system model is presented in order to comprehend the wind integration...

  20. Full scale dynamic testing of Kozloduy NPP unit 5 structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1999-01-01

    As described in this report, the Kozloduy NPP western site has been subjected to low level earthquake-like ground shaking - through appropriately devised underground explosions - and the resulting dynamic response of the NPP reactor Unit 5 important structures appropriately measured and digitally recorded. In-situ free-field response was measured concurrently more than 100 m aside the main structures of interest. The collected experimental data provide reference information on the actual dynamic characteristics of the Kozloduy NPPs main structures, as well as give some useful indications on the dynamic soil-structure interaction effects for the case of low level excitation. Performing the present full-scale dynamic structural testing activities took advantage of the experience gained by ISMES during similar tests, lately performed in Italy and abroad (in particular, at the Paks NPP in 1994). The IAEA promoted dynamic testing of the Kozloduy NPP Unit 5 by means of pertinently designed buried explosion-induced ground motions which has provided a large amount of data on the dynamic structural response of its major structures. In the present report, the conducted investigation is described and the acquired digital data presented. A series of preliminary analyses were undertaken for examining in detail the ground excitation levels that were produced by these weak earthquake simulation experiments, as well as for inferring some structural characteristics and behaviour information from the collected data. These analyses ascertained the high quality of the collected digital data. Presumably due to soil-structure dynamic interaction effects, reduced excitation levels were observed at the reactor building foundation raft level with respect to the concurrent free-field ground motions. measured at a 140 m distance from the reactor building centre. Further more detailed and systematic analyses are worthwhile to be performed for extracting more complete information about the

  1. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  2. Power functional theory for the dynamic test particle limit

    International Nuclear Information System (INIS)

    Brader, Joseph M; Schmidt, Matthias

    2015-01-01

    For classical Brownian systems both in and out of equilibrium we extend the power functional formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different types of particles. We apply the framework to develop an exact dynamical test particle theory for the self and distinct parts of the van Hove function, which characterize tagged and collective particle motion. The memory functions that induce non-Markovian dynamics are related to functional derivatives of the excess (over ideal) free power dissipation functional. The method offers an alternative to the recently found nonequilibrium Ornstein–Zernike relation for dynamic pair correlation functions. (paper)

  3. Integrating human behaviour dynamics into flood disaster risk assessment

    Science.gov (United States)

    Aerts, J. C. J. H.; Botzen, W. J.; Clarke, K. C.; Cutter, S. L.; Hall, J. W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H.

    2018-03-01

    The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.

  4. Integrating count and detection–nondetection data to model population dynamics

    Science.gov (United States)

    Zipkin, Elise F.; Rossman, Sam; Yackulic, Charles B.; Wiens, David; Thorson, James T.; Davis, Raymond J.; Grant, Evan H. Campbell

    2017-01-01

    There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture–recapture data from marked individuals with other data types into integrated population models. Yet, studies of species distributions and trends often rely on data from unmarked individuals across broad scales where local abundance and environmental variables may vary. We present a modeling framework for integrating detection–nondetection and count data into a single analysis to estimate population dynamics, abundance, and individual detection probabilities during sampling. Our dynamic population model assumes that site-specific abundance can change over time according to survival of individuals and gains through reproduction and immigration. The observation process for each data type is modeled by assuming that every individual present at a site has an equal probability of being detected during sampling processes. We examine our modeling approach through a series of simulations illustrating the relative value of count vs. detection–nondetection data under a variety of parameter values and survey configurations. We also provide an empirical example of the model by combining long-term detection–nondetection data (1995–2014) with newly collected count data (2015–2016) from a growing population of Barred Owl (Strix varia) in the Pacific Northwest to examine the factors influencing population abundance over time. Our model provides a foundation for incorporating unmarked data within a single framework, even in cases where sampling processes yield different detection probabilities. This approach will be useful for survey design and to researchers interested in incorporating historical or citizen science data into analyses focused on understanding how demographic rates drive population abundance.

  5. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  6. Alternating Dynamics of Segregation and Integration in Human EEG Functional Networks During Working-memory Task.

    Science.gov (United States)

    Zippo, Antonio G; Della Rosa, Pasquale A; Castiglioni, Isabella; Biella, Gabriele E M

    2018-02-10

    Brain functional networks show high variability in short time windows but mechanisms governing these transient dynamics remain unknown. In this work, we studied the temporal evolution of functional brain networks involved in a working memory (WM) task while recording high-density electroencephalography (EEG) in human normal subjects. We found that functional brain networks showed an initial phase characterized by an increase of the functional segregation index followed by a second phase where the functional segregation faded after the prevailing the functional integration. Notably, wrong trials were associated with different or disrupted sequences of the segregation-integration profiles and measures of network centrality and modularity were able to identify crucial aspects of the oscillatory network dynamics. Additionally, computational investigations further supported the experimental results. The brain functional organization may respond to the information processing demand of a WM task following a 2-step atomic scheme wherein segregation and integration alternately dominate the functional configurations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Design and first integral test of MUSE facility in ALPHA program

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-sun; Yamano, Norihiro; Maruyama, Yu; Moriyama, Kiyofumi; Kudo, Tamotsu; Yang, Yanhua; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Vapor explosion (Steam explosion or energetic Fuel-Coolant Interaction) is a phenomenon in which a hot liquid rapidly releases its internal energy into a surrounding colder and more volatile liquid when these liquids come into a sudden contact. This rapid energy release leads to rapid vapor production within a timescale short compared to vapor expansion causes local pressurization similar to an explosion and eventually threatens the surroundings by dynamic pressures and the subsequent expansion. It has been recognized that the energetics of vapor explosions strongly depend on the initial mixing geometry established by the contact of hot and cold liquids. Therefore, a new program has been initiated to investigate the energetics of vapor explosions in various contact geometries; i.e., pouring, stratified, coolant and melt injection modes in a facility which is able to measure the energy conversion ratio and eventually to provide data to evaluate the mechanistic analytical models. In the report, this new facility, called MUSE (MUlti-configuration in Steam Explosions), and the results of the first integral test are described in detail. (author)

  8. Feasibility and willingness-to-pay for integrated community-based tuberculosis testing

    Directory of Open Access Journals (Sweden)

    Vickery Carter

    2011-11-01

    Full Text Available Abstract Background Community-based screening for TB, combined with HIV and syphilis testing, faces a number of barriers. One significant barrier is the value that target communities place on such screening. Methods Integrated testing for TB, HIV, and syphilis was performed in neighborhoods identified using geographic information systems-based disease mapping. TB testing included skin testing and interferon gamma release assays. Subjects completed a survey describing disease risk factors, healthcare access, healthcare utilization, and willingness to pay for integrated testing. Results Behavioral and social risk factors among the 113 subjects were prevalent (71% prior incarceration, 27% prior or current crack cocaine use, 35% homelessness, and only 38% had a regular healthcare provider. The initial 24 subjects reported that they would be willing to pay a median $20 (IQR: 0-100 for HIV testing and $10 (IQR: 0-100 for TB testing when the question was asked in an open-ended fashion, but when the question was changed to a multiple-choice format, the next 89 subjects reported that they would pay a median $5 for testing, and 23% reported that they would either not pay anything to get tested or would need to be paid $5 to get tested for TB, HIV, or syphilis. Among persons who received tuberculin skin testing, only 14/78 (18% participants returned to have their skin tests read. Only 14/109 (13% persons who underwent HIV testing returned to receive their HIV results. Conclusion The relatively high-risk persons screened in this community outreach study placed low value on testing. Reported willingness to pay for such testing, while low, likely overestimated the true willingness to pay. Successful TB, HIV, and syphilis integrated testing programs in high risk populations will likely require one-visit diagnostic testing and incentives.

  9. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    Science.gov (United States)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  10. Dynamic fracture testing of ferritic steels using direct current potential drop method

    International Nuclear Information System (INIS)

    Oh, Y. J.; Kim, J. H.; Hwang, I. S.; Park, Y. W.

    2000-01-01

    To apply leak-before-break (LBB) concept to nuclear pipes, the dynamic strain aging of low carbon steel materials has to be considered. For this goal, the J-R tests are needed over a range of temperatures and loading rates, including rapid dynamic loading conditions. In dynamic J-R tests, the unloading compliance method can not be applied and usually the direct current potential drop (DCPD) method has been used. But, even the DCPD method was known to have the problem in defining the crack initiation point due to a potential peak arising in early part of loading of ferromagnetic materials. In this study, potential peaks characteristics were investigated for SA106Gr.C piping steels, and the definition of crack initiation point was made by back tracking from final physical crack length, and it was proposed that this technique could be applied to DCPD method in dynamic loading J-R test

  11. Integration test effort in SAP R/3 systems

    NARCIS (Netherlands)

    Griend, van de P.A.; Kusters, R.J.

    2012-01-01

    This paper describes an experimental approach towards the definition of a metric for integration test effort based on enterprise resource planning (ERP) system logs. By nature, ERP systems are complex. After implementing an ERP-system, it is typically subjected to many, and often concurrent,

  12. Integrated Human Test Facilities at NASA and the Role of Human Engineering

    Science.gov (United States)

    Tri, Terry O.

    2002-01-01

    Integrated human test facilities are a key component of NASA's Advanced Life Support Program (ALSP). Over the past several years, the ALSP has been developing such facilities to serve as a large-scale advanced life support and habitability test bed capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. These facilities-targeted for evaluation of hypogravity compatible life support and habitability systems to be developed for use on planetary surfaces-are currently in the development stage at the Johnson Space Center. These major test facilities are comprised of a set of interconnected chambers with a sealed internal environment, which will be outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support and habitability functions. This presentation provides a description of the proposed test "missions" to be supported by these integrated human test facilities, the overall system architecture of the facilities, the current development status of the facilities, and the role that human design has played in the development of the facilities.

  13. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  14. DO DYNAMIC NEURAL NETWORKS STAND A BETTER CHANCE IN FRACTIONALLY INTEGRATED PROCESS FORECASTING?

    Directory of Open Access Journals (Sweden)

    Majid Delavari

    2013-04-01

    Full Text Available The main purpose of the present study was to investigate the capabilities of two generations of models such as those based on dynamic neural network (e.g., Nonlinear Neural network Auto Regressive or NNAR model and a regressive (Auto Regressive Fractionally Integrated Moving Average model which is based on Fractional Integration Approach in forecasting daily data related to the return index of Tehran Stock Exchange (TSE. In order to compare these models under similar conditions, Mean Square Error (MSE and also Root Mean Square Error (RMSE were selected as criteria for the models’ simulated out-of-sample forecasting performance. Besides, fractal markets hypothesis was examined and according to the findings, fractal structure was confirmed to exist in the time series under investigation. Another finding of the study was that dynamic artificial neural network model had the best performance in out-of-sample forecasting based on the criteria introduced for calculating forecasting error in comparison with the ARFIMA model.

  15. Recent development in low-constraint fracture toughness testing for structural integrity assessment of pipelines

    Science.gov (United States)

    Kang, Jidong; Gianetto, James A.; Tyson, William R.

    2018-03-01

    Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edgenotched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.

  16. Multiloop integral system test (MIST): Final report, Inter-group comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Gloudemans, J.R.

    1989-07-01

    The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock and Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The individual tests are described in detail in Volumes 2 through 8 and Volume 11, and are summarized in Volume 1. Inter-group comparisons are addressed in this document, Volume 9. These comparisons are grouped as follows: mapping versus SBLOCA transients, SBLOCA, pump effects, and the effects of noncondensible gases. Appendix A provides an index and description of the microfiched plots for each test, which are enclosed with the corresponding Volumes 2 through 8. 147 figs., 5 tabs.

  17. Integrated Electrical and Thermal Grid Facility - Testing of Future Microgrid Technologies

    Directory of Open Access Journals (Sweden)

    Sundar Raj Thangavelu

    2015-09-01

    Full Text Available This paper describes the Experimental Power Grid Centre (EPGC microgrid test facility, which was developed to enable research, development and testing for a wide range of distributed generation and microgrid technologies. The EPGC microgrid facility comprises a integrated electrical and thermal grid with a flexible and configurable architecture, and includes various distributed energy resources and emulators, such as generators, renewable, energy storage technologies and programmable load banks. The integrated thermal grid provides an opportunity to harness waste heat produced by the generators for combined heat, power and cooling applications, and support research in optimization of combined electrical-thermal systems. Several case studies are presented to demonstrate the testing of different control and operation strategies for storage systems in grid-connected and islanded microgrids. One of the case studies also demonstrates an integrated thermal grid to convert waste heat to useful energy, which thus far resulted in a higher combined energy efficiency. Experiment results confirm that the facility enables testing and evaluation of grid technologies and practical problems that may not be apparent in a computer simulated environment.

  18. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  19. Co-integration Rank Testing under Conditional Heteroskedasticity

    DEFF Research Database (Denmark)

    Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert

    null distributions of the rank statistics coincide with those derived by previous authors who assume either i.i.d. or (strict and covariance) stationary martingale difference innovations. We then propose wild bootstrap implementations of the co-integrating rank tests and demonstrate that the associated...... bootstrap rank statistics replicate the first-order asymptotic null distributions of the rank statistics. We show the same is also true of the corresponding rank tests based on the i.i.d. bootstrap of Swensen (2006). The wild bootstrap, however, has the important property that, unlike the i.i.d. bootstrap......, it preserves in the re-sampled data the pattern of heteroskedasticity present in the original shocks. Consistent with this, numerical evidence sug- gests that, relative to tests based on the asymptotic critical values or the i.i.d. bootstrap, the wild bootstrap rank tests perform very well in small samples un...

  20. Integration and test plans for complex manufacturing systems

    NARCIS (Netherlands)

    Boumen, R.

    2007-01-01

    The integration and test phases that are part of the development and manufacturing of complex manufacturing systems are costly and time consuming. As time-to-market is becoming increasingly important, it is crucial to keep these phases as short as possible, whilemaintaining system quality. This is

  1. Natural circulation in an integral CANDU test facility

    International Nuclear Information System (INIS)

    Ingham, P.J.; Sanderson, T.V.; Luxat, J.C.; Melnyk, A.J.

    2000-01-01

    Over 70 single- and two-phase natural circulation experiments have been completed in the RD-14M facility, an integral CANDU thermalhydraulic test loop. This paper describes the RD-14M facility and provides an overview of the impact of key parameters on the results of natural circulation experiments. Particular emphasis will be on phenomena which led to heat up at high system inventories in a small subset of experiments. Clarification of misunderstandings in a recently published comparison of the effectiveness of natural circulation flows in RD-14M to integral facilities simulating other reactor geometries will also be provided. (author)

  2. Integration Test of the High Voltage Hall Accelerator System Components

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  3. Optimal Strategy for Integrated Dynamic Inventory Control and Supplier Selection in Unknown Environment via Stochastic Dynamic Programming

    International Nuclear Information System (INIS)

    Sutrisno; Widowati; Solikhin

    2016-01-01

    In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well. (paper)

  4. Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation

    Science.gov (United States)

    Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.

    2015-09-01

    The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.

  5. Optogenetic perturbations reveal the dynamics of an oculomotor integrator

    Directory of Open Access Journals (Sweden)

    Pedro J Goncalves

    2014-02-01

    Full Text Available Many neural systems can store short-term information in persistently firing neurons. Such persistent activity is believed to be maintained by recurrent feedback among neurons. This hypothesis has been fleshed out in detail for the oculomotor integrator (OI for which the so-called line attractor network model can explain a large set of observations. Here we show that there is a plethora of such models, distinguished by the relative strength of recurrent excitation and inhibition. In each model, the firing rates of the neurons relax towards the persistent activity states. The dynamics of relaxation can be quite different, however, and depend on the levels of recurrent excitation and inhibition. To identify the correct model, we directly measure these relaxation dynamics by performing optogenetic perturbations in the OI of zebrafish expressing halorhodopsin or channelrhodopsin. We show that instantaneous, inhibitory stimulations of the OI lead to persistent, centripetal eye position changes ipsilateral to the stimulation. Excitatory stimulations similarly cause centripetal eye position changes, yet only contralateral to the stimulation. These results show that the dynamics of the OI are organized around a central attractor state---the null position of the eyes---which stabilizes the system against random perturbations. Our results pose new constraints on the circuit connectivity of the system and provide new insights into the mechanisms underlying persistent activity.

  6. Test system design for Hardware-in-Loop evaluation of PEM fuel cells and auxiliaries

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, Guenter; Moore, Robert M. [Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI (United States)

    2006-07-14

    In order to evaluate the dynamic behavior of proton exchange membrane (PEM) fuel cells and their auxiliaries, the dynamic capability of the test system must exceed the dynamics of the fastest component within the fuel cell or auxiliary component under test. This criterion is even more critical when a simulated component of the fuel cell system (e.g., the fuel cell stack) is replaced by hardware and Hardware-in-Loop (HiL) methodology is employed. This paper describes the design of a very fast dynamic test system for fuel cell transient research and HiL evaluation. The integration of the real time target (which runs the simulation), the test stand PC (that controls the operation of the test stand), and the programmable logic controller (PLC), for safety and low-level control tasks, into one single integrated unit is successfully completed. (author)

  7. Full-scale Mark II CRT program: dynamic response evaluation test of pressure transducers

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Namatame, Ken; Takeshita, Isao; Shiba, Masayoshi

    1982-12-01

    A dynamic response evaluation test of pressure transducers was conducted in support of the JAERI Full-Scale Mark II CRT (Containment Response Test) Program. The test results indicated that certain of the cavity-type transducers used in the early blowdown test had undesirable response characteristics. The transducer mounting scheme was modified to avoid trapping of air bubbles in the pressure transmission tubing attached to the transducers. The dynamic response of the modified transducers was acceptable within the frequency range of 200 Hz. (author)

  8. Automatic integrated testing bench for tubes in translation

    International Nuclear Information System (INIS)

    Dufayet, J.P.; Perdijon, J.

    1976-01-01

    All the nondestructive tests required for receiving the cladding tubes intended for fast nuclear reactor are integrated on this bench: quality control by eddy currents and ultra-sounds, thickness and (inner and outer) diameter measurement. The linear displacement of the tube allows very high rates to be attained [fr

  9. 49 CFR 1546.409 - Integrity of screener tests.

    Science.gov (United States)

    2010-10-01

    ... security supervisor, or other screening supervisor. The employee must be familiar with the procedures for... Qualifications When the Foreign Air Carrier Conducts Screening § 1546.409 Integrity of screener tests. (a... than one foreign air carrier or foreign air carrier uses a screening location, TSA may authorize an...

  10. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control

    Science.gov (United States)

    Biewener, Andrew A.; Daley, Monica A.

    2009-01-01

    Summary By integrating studies of muscle function with analysis of whole body and limb dynamics, broader appreciation of neuromuscular function can be achieved. Ultimately, such studies need to address non-steady locomotor behaviors relevant to animals in their natural environments. When animals move slowly they likely rely on voluntary coordination of movement involving higher brain centers. However, when moving fast, their movements depend more strongly on responses controlled at more local levels. Our focus here is on control of fast-running locomotion. A key observation emerging from studies of steady level locomotion is that simple spring-mass dynamics, which help to economize energy expenditure, also apply to stabilization of unsteady running. Spring-mass dynamics apply to conditions that involve lateral impulsive perturbations, sudden changes in terrain height, and sudden changes in substrate stiffness or damping. Experimental investigation of unsteady locomotion is challenging, however, due to the variability inherent in such behaviors. Another emerging principle is that initial conditions associated with postural changes following a perturbation define different context-dependent stabilization responses. Distinct stabilization modes following a perturbation likely result from proximo-distal differences in limb muscle architecture, function and control strategy. Proximal muscles may be less sensitive to sudden perturbations and appear to operate, in such circumstances, under feed-forward control. In contrast, multiarticular distal muscles operate, via their tendons, to distribute energy among limb joints in a manner that also depends on the initial conditions of limb contact with the ground. Intrinsic properties of these distal muscle–tendon elements, in combination with limb and body dynamics, appear to provide rapid initial stabilizing mechanisms that are often consistent with spring-mass dynamics. These intrinsic mechanisms likely help to simplify the

  11. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  12. Integrating open-source software applications to build molecular dynamics systems.

    Science.gov (United States)

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  13. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  14. Integral test of JENDL fusion file

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Integral test of JENDL Fusion File (J-FF) is performed through analyses of available benchmark experiments. As a result, good agreement between the calculated results with J-FF and the measured data is observed as a whole. Thus, J-FF is qualified to be used for nuclear design of fusion reactors. Owing to the high quality evaluation of J-FF, cross section data in J-FF for many nuclides are recommended to be assigned as data in FENDL/E-2.0 in the IAEA Consultants` Meeting held at Karlsruhe, Germany, 24-28 June, 1996. (author)

  15. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.A.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States)

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  16. Integrated approach to monitor water dynamics with drones

    Science.gov (United States)

    Raymaekers, Dries; De Keukelaere, Liesbeth; Knaeps, Els; Strackx, Gert; Decrop, Boudewijn; Bollen, Mark

    2017-04-01

    Remote sensing has been used for more than 20 years to estimate water quality in the open ocean and study the evolution of vegetation on land. More recently big improvements have been made to extend these practices to coastal and inland waters, opening new monitoring opportunities, eg. monitoring the impact of dredging activities on the aquatic environment. While satellite sensors can provide complete coverage and historical information of the study area, they are limited in their temporal revisit time and spatial resolution. Therefore, deployment of drones can create an added value and in combination with satellite information increase insights in the dynamics and actors of coastal and aquatic systems. Drones have the advantages of monitoring at high spatial detail (cm scale), with high frequency and are flexible. One of the important water quality parameters is the suspended sediment concentration. However, retrieving sediment concentrations from unmanned systems is a challenging task. The sediment dynamics in the port of Breskens, the Netherlands, were investigated by combining information retrieved from different data sources: satellite, drone and in-situ data were collected, analysed and inserted in sediment models. As such, historical (satellite), near-real time (drone) and predictive (sediment models) information, integrated in a spatial data infrastructure, allow to perform data analysis and can support decision makers.

  17. Activity-Centred Tool Integration

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2003-01-01

    This paper is concerned with integration of heterogeneous tools for system development. We argue that such tools should support concrete activities (e.g., programming, unit testing, conducting workshops) in contrast to abstract concerns (e.g., analysis, design, implementation). A consequence of t...... of this is that tools — or components —that support activities well should be integrated in ad-hoc, dynamic, and heterogeneous ways. We present a peer-to-peer architecture for this based on type-based publish subscribe and give an example of its use....

  18. Direct comparison of unloading compliance and potential drop techniques in J-integral testing

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.

    1984-01-01

    Single-specimen J-integral testing is performed commonly with the unloading compliance technique. Use of modern instrumentation techniques and powerful desktop computers have made this technique a standard. However, this testing technique is slow and tedious, with the loading rate fixed at a slow quasi-static rate. For these reasons the dc potential drop technique was investigated for crack length measurement during a J-integral test. For direct comparison, both unloading compliance and potential drop were used simultaneously during a J-integral test. The results showed good agreement between the techniques. However, the potential drop technique showed an offset in crack length due to plastic blunting processes. Taking this offset into account, J/sub Ic/ values calculated by both techniques compared well

  19. Verification of experimental modal modeling using HDR (Heissdampfreaktor) dynamic test data

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1983-01-01

    Experimental modal modeling involves the determination of the modal parameters of the model of a structure from recorded input-output data from dynamic tests. Though commercial modal analysis algorithms are being widely used in many industries their ability to identify a set of reliable modal parameters of an as-built nuclear power plant structure has not been systematically verified. This paper describes the effort to verify MODAL-PLUS, a widely used modal analysis code, using recorded data from the dynamic tests performed on the reactor building of the Heissdampfreaktor, situated near Frankfurt, Federal Republic of Germany. In the series of dynamic tests on HDR in 1979, the reactor building was subjected to forced vibrations from different types and levels of dynamic excitations. Two sets of HDR containment building input-output data were chosen for MODAL-PLUS analyses. To reduce the influence of nonlinear behavior on the results, these sets were chosen so that the levels of excitation are relatively low and about the same in the two sets. The attempted verification was only partially successful in that only one modal model, with a limited range of validity, could be synthesized and in that the goodness of fit could be verified only in this limited range

  20. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2016-01-01

    Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.

  1. Safety measures for integrity test apparatus for IS process. Sulfuric acid decomposition section

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Kubo, Shinji; Iwatsuki, Jin; Onuki, Kaoru

    2013-07-01

    Hazardous substances such as sulfuric acid, sulfur dioxide and hydrogen iodide acid are employed in thermochemical Iodine-Sulfur (IS) process. It is necessary to take safety measure against workers and external environments to study experimentally on IS process. Presently we have been conducting to verify the soundness of main components made of engineering material in actual corrosive condition. An integrity test apparatus for the components of sulfuric acid decomposition was set up. We will use the hazardous substances such as sulfuric acid and sulfur dioxide and perform the experiment in pressurized condition in this integrity test. Safety measures for the test apparatus, operation and abnormal situation were considered prior to starting the test. This report summarized the consideration results for the safety measures on the integrity test apparatus for the components of sulfuric acid decomposition. (author)

  2. Read My Lips: Brain Dynamics Associated with Audiovisual Integration and Deviance Detection.

    Science.gov (United States)

    Tse, Chun-Yu; Gratton, Gabriele; Garnsey, Susan M; Novak, Michael A; Fabiani, Monica

    2015-09-01

    Information from different modalities is initially processed in different brain areas, yet real-world perception often requires the integration of multisensory signals into a single percept. An example is the McGurk effect, in which people viewing a speaker whose lip movements do not match the utterance perceive the spoken sounds incorrectly, hearing them as more similar to those signaled by the visual rather than the auditory input. This indicates that audiovisual integration is important for generating the phoneme percept. Here we asked when and where the audiovisual integration process occurs, providing spatial and temporal boundaries for the processes generating phoneme perception. Specifically, we wanted to separate audiovisual integration from other processes, such as simple deviance detection. Building on previous work employing ERPs, we used an oddball paradigm in which task-irrelevant audiovisually deviant stimuli were embedded in strings of non-deviant stimuli. We also recorded the event-related optical signal, an imaging method combining spatial and temporal resolution, to investigate the time course and neuroanatomical substrate of audiovisual integration. We found that audiovisual deviants elicit a short duration response in the middle/superior temporal gyrus, whereas audiovisual integration elicits a more extended response involving also inferior frontal and occipital regions. Interactions between audiovisual integration and deviance detection processes were observed in the posterior/superior temporal gyrus. These data suggest that dynamic interactions between inferior frontal cortex and sensory regions play a significant role in multimodal integration.

  3. Modeling dynamic acousto-elastic testing experiments: validation and perspectives.

    Science.gov (United States)

    Gliozzi, A S; Scalerandi, M

    2014-10-01

    Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.

  4. Integration of test modules in the main blanket and vacuum vessel design

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Kurasawa, Toshimasa; Sato, Satoshi; Furuya, Kazuyuki; Togami, Ikuhide; Hashimoto, Toshiyuki; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1995-07-01

    Typical test modules for water-cooled and helium-cooled ceramic breeder blankets have been designed, and their major design parameters are summarized. Among various candidates studied in Japan at present, BOT (Breeder Out of Tube) type of blanket is exemplified here. The integration scheme of the test module into ITER basic machine is also shown. Even with other type of blanket, the integration scheme won't be affected. The composition and space requirement of cooling and tritium recovery systems for the test module have also been studied. (author)

  5. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  6. Dynamic Performance Characteristic Tests of Real Scale Lead Rubber Bearing for the Evaluation of Performance Criteria

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung-Han; Choi, In-Kil

    2014-01-01

    Dynamic characteristic tests of full scale lead rubber bearing were performed for the evaluation of performance criteria of isolation system for nuclear power plants. For the dynamic test for a full scale rubber bearing, two 1500mm diameter lead rubber bearings were manufactured. The viewpoints of this dynamic test are determination of an ultimate shear strain level of lead rubber bearing, behavior of rubber bearing according to static and dynamic input motion, sinusoidal and random (earthquake) motion, and 1-dimentional and 2-dimensional input motion. In this study, seismic isolation device tests were performed for the evaluation of performance criteria of isolation system. Through this test, it can be recognized that in the case of considering a mechanical property test, dynamic and multi degree of loading conditions should be determined. But these differences should be examined how much affect to the global structural behavior

  7. Design and clinical pilot testing of the model-based dynamic insulin sensitivity and secretion test (DISST).

    Science.gov (United States)

    Lotz, Thomas F; Chase, J Geoffrey; McAuley, Kirsten A; Shaw, Geoffrey M; Docherty, Paul D; Berkeley, Juliet E; Williams, Sheila M; Hann, Christopher E; Mann, Jim I

    2010-11-01

    Insulin resistance is a significant risk factor in the pathogenesis of type 2 diabetes. This article presents pilot study results of the dynamic insulin sensitivity and secretion test (DISST), a high-resolution, low-intensity test to diagnose insulin sensitivity (IS) and characterize pancreatic insulin secretion in response to a (small) glucose challenge. This pilot study examines the effect of glucose and insulin dose on the DISST, and tests its repeatability. DISST tests were performed on 16 subjects randomly allocated to low (5 g glucose, 0.5 U insulin), medium (10 g glucose, 1 U insulin) and high dose (20 g glucose, 2 U insulin) protocols. Two or three tests were performed on each subject a few days apart. Average variability in IS between low and medium dose was 10.3% (p=.50) and between medium and high dose 6.0% (p=.87). Geometric mean variability between tests was 6.0% (multiplicative standard deviation (MSD) 4.9%). Geometric mean variability in first phase endogenous insulin response was 6.8% (MSD 2.2%). Results were most consistent in subjects with low IS. These findings suggest that DISST may be an easily performed dynamic test to quantify IS with high resolution, especially among those with reduced IS. © 2010 Diabetes Technology Society.

  8. Dynamic Object Oriented Requirements System (DOORS) System Test Plan

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    2000-01-01

    The U. S. Department of Energy, Office of River Protection (ORP) will use the Dynamic Object Oriented Requirements System (DOORS) as a tool to assist in identifying, capturing, and maintaining the necessary and sufficient set of requirements for accomplishing the ORP mission. By managing requirements as one integrated set, the ORP will be able to carry out its mission more efficiently and effectively. DOORS is a Commercial-Off-The-Shelf (COTS) requirements management tool. The tool has not been customized for the use of the PIO, at this time

  9. Variational Algorithms for Test Particle Trajectories

    Science.gov (United States)

    Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.

    2015-11-01

    The theory of variational integration provides a novel framework for constructing conservative numerical methods for magnetized test particle dynamics. The retention of conservation laws in the numerical time advance captures the correct qualitative behavior of the long time dynamics. For modeling the Lorentz force system, new variational integrators have been developed that are both symplectic and electromagnetically gauge invariant. For guiding center test particle dynamics, discretization of the phase-space action principle yields multistep variational algorithms, in general. Obtaining the desired long-term numerical fidelity requires mitigation of the multistep method's parasitic modes or applying a discretization scheme that possesses a discrete degeneracy to yield a one-step method. Dissipative effects may be modeled using Lagrange-D'Alembert variational principles. Numerical results will be presented using a new numerical platform that interfaces with popular equilibrium codes and utilizes parallel hardware to achieve reduced times to solution. This work was supported by DOE Contract DE-AC02-09CH11466.

  10. Integrated leak rate testing of the fast flux test facility reactor containment building

    International Nuclear Information System (INIS)

    James, E.B.; Farabee, O.A.; Bliss, R.J.

    1978-01-01

    The initial Integrated Leak Rate Test (ILRT) of the Fast Flux Test Facility containment building was performed from May 27 to June 2, 1978. The test was conducted in air with systems vented and with the containment recirculating coolers in operation. 10 psig and 5 psig tests were run using the absolute pressure test method. The measured leakage rates were .033% Vol/24 hr. and -.0015% Vol/24 hrs. respectively. Subsequent verification tests at both 10 psig and 5 psig proved that the test equipment was operating properly and it was sensitive enough to detect leaks at low pressures. This ILRT was performed at a lower pressure than any previous ILRT on a reactor containment structure in the United States. While the initial design requirements for ice condenser containments called for a part pressure test at 6 psig, the tests were waived due to the apparent statistical problems of data analysis and the repeatability of the data itself at such low pressure. In contrast to this belief, both the 5 and 10 psig ILRT's were performed in a successful manner at FFTF

  11. Default Mode Dynamics for Global Functional Integration.

    Science.gov (United States)

    Vatansever, Deniz; Menon, David K; Manktelow, Anne E; Sahakian, Barbara J; Stamatakis, Emmanuel A

    2015-11-18

    The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a comprehensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global information integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of healthy brain function, as they suggest a central role for the DMN in higher cognitive processing. The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential and memory-based processing. We provide robust evidence for this network's active contribution to working memory by revealing dynamic reconfiguration in its interactions with other networks

  12. Test processing integrated system (S.I.D.E.X.)

    International Nuclear Information System (INIS)

    Sabas, M.; Oules, H.; Badel, D.

    1969-01-01

    The Test Processing Integrated System is mostly composed of a CAE 9080 (equiv. S. D. S. 9300) computer which is equipped of a 100 000 samples/sec acquisition system. The System is designed for high speed data acquisition and data processing on environment tests, and also calculation of structural models. Such a digital appliance on data processing has many advantages compared to the conventional methods based on analog instruments. (author) [fr

  13. Testing for co-integration in vector autoregressions with non-stationary volatility

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, Robert M.

    2010-01-01

    cases. We show that the conventional rank statistics computed as in (Johansen, 1988) and (Johansen, 1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size...... and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identified inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, or to assume...

  14. Effects of Quantum Nuclear Delocalisation on NMR Parameters from Path Integral Molecular Dynamics

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Hodgkinson, P.

    2014-01-01

    Roč. 20, č. 8 (2014), s. 2201-2207 ISSN 0947-6539 Grant - others:Seventh Framework Programme of the European Union(XE) FP7-299242 People Institutional support: RVO:61388963 Keywords : density functional calculations * isotope effects * NMR spectroscopy * nuclear delocalisation * path integral molecular dynamics Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  15. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    Science.gov (United States)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  16. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe–Strogatz integrability

    International Nuclear Information System (INIS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-01-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations. (letter)

  17. Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach

    DEFF Research Database (Denmark)

    Monache, Davide Delle; Grassi, Stefano; Santucci de Magistris, Paolo

    Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based on the autocorrela......Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based...... on the autocorrelation function or the periodogram. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification that allows to disentangle the level shifts from the fractionally integrated component. The estimation is carried out on the basis of a state-space methodology...... and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts. Once the memory parameter is correctly estimated, we use the KPSS test for presence of level shift. The Monte Carlo simulations show how this approach produces unbiased estimates of the memory parameter...

  18. An Integrated Approach to Establish Validity and Reliability of Reading Tests

    Science.gov (United States)

    Razi, Salim

    2012-01-01

    This study presents the processes of developing and establishing reliability and validity of a reading test by administering an integrative approach as conventional reliability and validity measures superficially reveals the difficulty of a reading test. In this respect, analysing vocabulary frequency of the test is regarded as a more eligible way…

  19. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure

    Science.gov (United States)

    Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2013-10-01

    In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.

  20. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Animesh, E-mail: animesh@zedat.fu-berlin.de; Delle Site, Luigi, E-mail: dellesite@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Berlin (Germany)

    2015-09-07

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  1. Integrated Testlets: A New Form of Expert-Student Collaborative Testing

    Science.gov (United States)

    Shiell, Ralph C.; Slepkov, Aaron D.

    2015-01-01

    Integrated testlets are a new assessment tool that encompass the procedural benefits of multiple-choice testing, the pedagogical advantages of free-response-based tests, and the collaborative aspects of a viva voce or defence examination format. The result is a robust assessment tool that provides a significant formative aspect for students.…

  2. High sensitive quench detection method using an integrated test wire

    International Nuclear Information System (INIS)

    Fevrier, A.; Tavergnier, J.P.; Nithart, H.; Kiblaire, M.; Duchateau, J.L.

    1981-01-01

    A high sensitive quench detection method which works even in the presence of an external perturbing magnetic field is reported. The quench signal is obtained from the difference in voltages at the superconducting winding terminals and at the terminals at a secondary winding strongly coupled to the primary. The secondary winding could consist of a ''zero-current strand'' of the superconducting cable not connected to one of the winding terminals or an integrated normal test wire inside the superconducting cable. Experimental results on quench detection obtained by this method are described. It is shown that the integrated test wire method leads to efficient and sensitive quench detection, especially in the presence of an external perturbing magnetic field

  3. Thermal Vacuum Integrated System Test at B-2

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  4. Nuclear Dynamics of a Nearby Seyfert with NIRSpec Integral Field Spectroscopy

    Science.gov (United States)

    Bentz, Misty; Batiste, M.; Onken, C.; Roberts, C.; Valluri, M.; Vasiliev, E.

    2017-11-01

    Integral field spectroscopy has become an invaluable tool for investigating the physical conditions and dynamics deep inside galaxy nuclei. The integral field spectrograph on JWST provides some crucial advantages over those on AO- assisted ground-based telescopes like Gemini and VLT. In particular, JWST will provide a stable and diffraction limited point spread function (PSF) with no seeing halo, and the background will be significantly reduced resulting in shorter exposure times to achieve a benchmark signal-to-noise ratio, even for late-type galaxies that have shallower central cusps and fainter central surface brightnesses, and for which the exposure times required from the ground may be prohibitive. We are particularly interested in comparing black hole masses derived from the modeling of nuclear stellar dynamics to masses derived from reverberation mapping in the same galaxies. With this Early Release Science proposal, we request a small investment of time to clearly demonstrate JWST's capabilities in spatial and spectral resolution relative to the stringent technical requirements for direct black hole mass measurements. The technically demanding nature of the requisite measurements will allow us to explore the limits of what is possible to achieve with the NIRSpec IFU, thus providing technical guidance for a wide range of studies that seek to probe the physics of black hole feeding and feedback and their links to galaxy and black hole co-evolution.

  5. Integration of HIV testing in tuberculosis drug resistance surveillance in Kazakhstan and Kenya

    NARCIS (Netherlands)

    Klinkenberg, E.; van den Hof, S.; Tursynbayeva, A.; Kipruto, H.; Wahogo, J.; Pak, S.; Kutwa, A.; L'Herminez, R.

    2012-01-01

    In Kenya and Kazakhstan, integration of human immunodeficiency virus (HIV) testing results into the routine surveillance of multidrug-resistant tuberculosis (MDR-TB) proved feasible and useful. The integration process improved overall data quality and data validation capacity, and integrated data

  6. Dynamic tests and adaptive control of a bottoming organic Rankine cycle of IC engine using swash-plate expander

    International Nuclear Information System (INIS)

    Torregrosa, A.; Galindo, J.; Dolz, V.; Royo-Pascual, L.; Haller, R.; Melis, J.

    2016-01-01

    Highlights: • An experimental testing of a bottoming Rankine Cycle is presented and applied to a 2 l turbocharged gasoline engine. • Both stationary and transient tests were performed, including the NEDC cycle. • Indicated diagrams of the swash-plate expander during these transients were presented and analyzed. - Abstract: This paper deals with the experimental testing of a bottoming Organic Rankine Cycle (ORC) integrate in a 2 l turbocharged gasoline engine using ethanol as working fluid. The main components of the cycle are a boiler, a condenser, a pump and a swash-plate expander. Both steady and transient tests were performed in three engine operating points to understand the behavior and inertia of the system. Pressure-Volume diagram during these transients were presented and analyzed. Operating parameters of the expander, such as expander speed and boiler power, were shifted. The objective of these tests is to understand the inertia of the system and to have a robust control in all the possible transient tests. New European Driving Cycle was tested with and without the expander because it is supposed to represent the typical usage of a car in Europe. It was used to validate the control of the ORC in realistic dynamic conditions of the engine. The importance of each parameter was analyzed by fixing all the parameters, changing each time one specific value. The main result of this paper is that using a slightly simple and robust control based on adaptive PIDs, the two dynamic effects of an ORC could be taken into account, i.e. high inertia effects (boiler and condenser) and low inertia effects (pump and volumetric expander).

  7. Demand response with locational dynamic pricing to support the integration of renewables

    International Nuclear Information System (INIS)

    Dupont, B.; De Jonghe, C.; Olmos, L.; Belmans, R.

    2014-01-01

    Electricity production from centralised and decentralised renewable energy resources in Europe is gaining significance, resulting in operational challenges in the electricity system. Although these challenges add to the locational and time dependency of the underlying cost of operating the system, this variability in time and location is not reflected in residential tariff schemes. Consequently, residential users are not incentivised to react to varying system conditions and to help the integration of renewable energy resources. Therefore, this paper provides a theoretical framework for designing a locational dynamic pricing scheme. This can be used to assess existing tariff structures for consumption and injection, and can serve as a theoretical background for developing new tariff schemes. Starting from the underlying costs, this paper shows that the potential for locational dynamic pricing depends on the locational and time dependency of its cost drivers. When converting costs into tariffs, the tariff design should be determined. This includes the advance notice of sending tariffs to users, and the length of price blocks and price patterns. This tariff design should find a balance between tariff principles related to costs, practicality and social acceptability on the one hand, and the resulting demand response incentive on the other. - Highlights: • The integration of renewables affects the locational and time dependency of costs. • Locational dynamic pricing reflects cost variability and allows demand response. • A theoretical framework for designing and assessing tariff schemes is proposed. • Tariff variability depends on the locational and time dependency of its cost drivers. • The tariff design should consider the resulting demand response incentive

  8. A method of integration of atomistic simulations and continuum mechanics by collecting of dynamical systems with dimensional reduction

    International Nuclear Information System (INIS)

    Kaczmarek, J.

    2002-01-01

    Elementary processes responsible for phenomena in material are frequently related to scale close to atomic one. Therefore atomistic simulations are important for material sciences. On the other hand continuum mechanics is widely applied in mechanics of materials. It seems inevitable that both methods will gradually integrate. A multiscale method of integration of these approaches called collection of dynamical systems with dimensional reduction is introduced in this work. The dimensional reduction procedure realizes transition between various scale models from an elementary dynamical system (EDS) to a reduced dynamical system (RDS). Mappings which transform variables and forces, skeletal dynamical system (SDS) and a set of approximation and identification methods are main components of this procedure. The skeletal dynamical system is a set of dynamical systems parameterized by some constants and has variables related to the dimensionally reduced model. These constants are identified with the aid of solutions of the elementary dynamical system. As a result we obtain a dimensionally reduced dynamical system which describes phenomena in an averaged way in comparison with the EDS. Concept of integration of atomistic simulations with continuum mechanics consists in using a dynamical system describing evolution of atoms as an elementary dynamical system. Then, we introduce a continuum skeletal dynamical system within the dimensional reduction procedure. In order to construct such a system we have to modify a continuum mechanics formulation to some degree. Namely, we formalize scale of averaging for continuum theory and as a result we consider continuum with finite-dimensional fields only. Then, realization of dimensional reduction is possible. A numerical example of realization of the dimensional reduction procedure is shown. We consider a one dimensional chain of atoms interacting by Lennard-Jones potential. Evolution of this system is described by an elementary

  9. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  10. Making System Dynamics Cool II : New Hot Teaching and Testing Cases of Increasing Complexity

    NARCIS (Netherlands)

    Pruyt, E.

    2010-01-01

    This follow-up paper presents several actual cases for testing and teaching System Dynamics. The cases were developed between April 2009 and January 2010 for the Introductory System Dynamics courses at Delft University of Technology in the Netherlands. They can be used for teaching and testing

  11. Integrated Sachs-Wolfe effect versus redshift test for the cosmological parameters

    Science.gov (United States)

    Kantowski, R.; Chen, B.; Dai, X.

    2015-04-01

    We describe a method using the integrated Sachs-Wolfe (ISW) effect caused by individual inhomogeneities to determine the cosmological parameters H0, Ωm , and ΩΛ, etc. This ISW-redshift test requires detailed knowledge of the internal kinematics of a set of individual density perturbations, e.g., galaxy clusters and/or cosmic voids, in particular their density and velocity profiles, and their mass accretion rates. It assumes the density perturbations are isolated and embedded (equivalently compensated) and makes use of the newly found relation between the ISW temperature perturbation of the cosmic microwave background (CMB) and the Fermat potential of the lens. Given measurements of the amplitudes of the temperature variations in the CMB caused by such clusters or voids at various redshifts and estimates of their angular sizes or masses, one can constrain the cosmological parameters. More realistically, the converse is more likely, i.e., if the background cosmology is sufficiently constrained, measurement of ISW profiles of clusters and voids (e.g., hot and cold spots and rings) can constrain dynamical properties of the dark matter, including accretion, associated with such lenses and thus constrain the evolution of these objects with redshift.

  12. Testing relativity with solar system dynamics

    Science.gov (United States)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.

  13. Full-Scale Dynamic Testing of Dolosse to Destruction

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    1981-01-01

    It is well known that the relative dynamic strength of unreinforced slender concrete units decreases as the size increases. Big units can resist relatively smaller movements than small units. When model tests of cover layer stability are performed the determination of the damage criterion....... The set up and the procedure of the tests, which simulate the impact from rocking of the units and from concrete pieces that are thrown against the units, are designed to make a comparison between the behaviour of units of different sizes possible. The test method is described and proposed as a standard...... exists. Different ways of improving the strength of the units are discussed on the basis of the results from tests with different types of concrete. The tests included an investigation of the influence of reinforcement, and of different types of concrete and surface cracks on the strength of the units....

  14. Summary of calculations of dynamic response characteristics and design stress of the 1/5 scale PSE torus

    International Nuclear Information System (INIS)

    Arthur, D.

    1977-01-01

    The Lawrence Livermore Laboratory is currently involved in a 1/5 scale testing program on the Mark I BWR pressure suppression system. A key element of the test setup is a pressure vessel that is a 90 0 sector of a torus. Proper performance of the 90 0 torus depends on its structural integrity and structural dynamic characteristics. It must sustain the internal pressurization of the planned tests, and its dynamic response to the transient test loads should be minimal. If the structural vibrations are too great, interpretation of important load cell and pressure transducer data will be difficult. The purpose of the report is to bring together under one cover calculations pertaining to the structural dynamic characteristics and structural integrity of 90 0 torus. The report is divided into the following sections: (1) system description in which the torus and associated hardware are briefly described; (2) structural dynamics in which calculations of natural frequency and dynamic response are presented; and (3) structural integrity in which stress calculations for design purposes are presented; and an appendix which contains an LLL internal report comparing the expected load cell response for a three and four-point supported torus

  15. Integrated socio-environmental modelling: A test case in coastal Bangladesh

    Science.gov (United States)

    Lazar, Attila

    2013-04-01

    Delta regions are vulnerable with their populations and ecosystems facing multiple threats in the coming decades through extremes of poverty, environmental and ecological stress and land degradation. External and internal processes initiate these threats/changes and results in for example water quality and health risk issues, declining agricultural productivity and sediment starvation all of which directly affecting the local population. The ESPA funded "Assessing Health, Livelihoods, Ecosystem Services and Poverty Alleviation In Populous Deltas" project (2012-16) aims to provide policy makers with the knowledge and tools to enable them to evaluate the effects of policy decisions on people's livelihoods. It considers coastal Bangladesh in the Ganges-Brahmaputra-Meghna Delta: one of the world's most dynamic and significant deltas. This is being done by a multidisciplinary and multinational team of policy analysts, social and natural scientists and engineers using a participatory, holistic approach to formally evaluate ecosystem services and poverty in the context of the wide range of changes that are occurring. An integrated model with relevant feedbacks is being developed to explore options for management strategies and policy formulation for ecosystem services, livelihoods and health in coastal Bangladesh. This requires the continuous engagement with stakeholders through the following steps: (1) system characterisation, (2) research question definition, (3) data and model identification, (4) model validation and (5) model application. This presentation will focus on the first three steps. Field-based social science and governance related research are on the way. The bio-physical models have been selected and some are already set up for the study area. These allow preliminary conceptualisation of the elements and linkages of the deltaic socio-environmental system and thus the preliminary structure of the integrated model. This presentation describes these steps

  16. Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems

    Science.gov (United States)

    Demina, Maria V.

    2018-05-01

    The general structure of irreducible invariant algebraic curves for a polynomial dynamical system in C2 is found. Necessary conditions for existence of exponential factors related to an invariant algebraic curve are derived. As a consequence, all the cases when the classical force-free Duffing and Duffing-van der Pol oscillators possess Liouvillian first integrals are obtained. New exact solutions for the force-free Duffing-van der Pol system are constructed.

  17. Dynamic PMU Compliance Test under C37.118.1aTM-2014

    DEFF Research Database (Denmark)

    Ghiga, Radu; Wu, Qiuwei; Martin, K.

    2015-01-01

    This paper presents a flexible testing methodology and the dynamic compliance of PMUs as per the new C37.118.1a amendment published in 2014. The test platform consists of test signal generator, a Doble F6150 amplifier, PMUs under test, and a PMU test result analysis kit. The Doble amplifier is used...

  18. Accelerating the convergence of path integral dynamics with a generalized Langevin equation

    Science.gov (United States)

    Ceriotti, Michele; Manolopoulos, David E.; Parrinello, Michele

    2011-02-01

    The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.

  19. Accelerating the convergence of path integral dynamics with a generalized Langevin equation.

    Science.gov (United States)

    Ceriotti, Michele; Manolopoulos, David E; Parrinello, Michele

    2011-02-28

    The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.

  20. Development and Testing of an Integrated Rotating Dynamometer Based on Fiber Bragg Grating for Four-Component Cutting Force Measurement.

    Science.gov (United States)

    Liu, Mingyao; Bing, Junjun; Xiao, Li; Yun, Kang; Wan, Liang

    2018-04-18

    Cutting force measurement is of great importance in machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this work, a novel integrated rotating dynamometer based on fiber Bragg grating (FBG) was designed, constructed, and tested to measure four-component cutting force. The dynamometer consists of FBGs that are pasted on the newly designed elastic structure which is then mounted on the rotating spindle. The elastic structure is designed as two mutual-perpendicular semi-octagonal rings. The signals of the FBGs are transmitted to FBG interrogator via fiber optic rotary joints and optical fiber, and the wavelength values are displayed on a computer. In order to determine the static and dynamic characteristics, many tests have been done. The results show that it is suitable for measuring cutting force.

  1. A seal analyzer for testing container integrity

    International Nuclear Information System (INIS)

    McDaniel, P.; Jenkins, C.

    1988-01-01

    This paper reports on the development of laboratory and production seal analyzer that offers a rapid, nondestructive method of assuring the seal integrity of virtually any type of single or double sealed container. The system can test a broad range of metal cans, drums and trays, membrane-lidded vessels, flexible pouches, aerosol containers, and glass or metal containers with twist-top lids that are used in the chemical/pesticide (hazardous materials/waste), beverage, food, medical and pharmaceutical industries

  2. Combined approach to reduced duration integrated leakage rate testing

    International Nuclear Information System (INIS)

    Galanti, P.J.

    1987-01-01

    Even though primary reactor containment allowable leakage rates are expressed in weight percent per day of contained air, engineers have been attempting to define acceptable methods to test in < 24 h as long as these tests have been performed. The reasons to reduce testing duration are obvious, because time not generating electricity is time not generating revenue for the utilities. The latest proposed revision to 10CFR50 Appendix J, concerning integrated leakage rate testing (ILRTs), was supplemented with a draft regulatory guide proposing yet another method. This paper proposes a method that includes elements of currently accepted concepts for short duration testing with a standard statistical check for criteria acceptance. Following presentation of the method, several cases are presented showing the results of these combined criteria

  3. Structural testing of the technology integration box beam

    Science.gov (United States)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  4. Dynamic Testing : Measuring Inductive Reasoning in Children With Developmental Disabilities and Mild Cognitive Impairments

    NARCIS (Netherlands)

    Stevenson, C.E.; Resing, W.C.M.; Bosma, T.

    2012-01-01

    The main aim of this study was to evaluate the use of dynamic testing based on a graduated prompts techniques training in a clinical educational setting. We examined the question of whether it would be possible to administer a four session dynamic test to a specific group of children with complex

  5. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  6. Testing of tunnel support: dynamic load testing of rock support containment systems (eg wire mesh).

    CSIR Research Space (South Africa)

    Ortlepp, WD

    1997-07-01

    Full Text Available The objective of this project was to determine the performance characteristics of containment elements of tunnel support in common use in South African mines under dynamic loading. The magnitude of the energy levels in this testing had...

  7. Nonlinear dynamics and chaotic phenomena an introduction

    CERN Document Server

    Shivamoggi, Bhimsen K

    2014-01-01

    This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics  -- integrable systems, Poincaré maps, chaos, fractals and strange attractors. The Baker’s transformation, the logistic map and Lorenz system are discussed in detail in view of their central place in the subject. There is a detailed discussion of solitons centered around the Korteweg-deVries equation in view of its central place in integrable systems. Then, there is a discussion of the Painlevé property of nonlinear differential equations which seems to provide a test of integrability. Finally, there is a detailed discussion of the application of fractals and multi-fractals to fully-developed turbulence -- a problem whose understanding has been considerably enriched by the application of the concepts and methods of modern nonlinear dynamics. On the application side, there is a special...

  8. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    Science.gov (United States)

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance

    Science.gov (United States)

    Rivera, Jose A.; Florance, James R.

    2000-01-01

    The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.

  10. Automated X-ray television complex for testing large dynamic objects

    International Nuclear Information System (INIS)

    Gusev, E.A.; Luk'yanenko, Eh.A.; Chelnokov, V.B.; Kuleshov, V.K.; Alkhimov, Yu.V.

    1992-01-01

    An automated X-ray television complex on the base of matrix gas-dischage large-area (2.1x1.0 m) converter for testing large cargoes and containers, as well as for inductrial article diagnostics is described. The complex pulsed operation with the 512 kbytes television digital memory unit provides for testing dynamic objects under minimal doses (20-100 μR)

  11. A stochastic approach for quantifying immigrant integration: the Spanish test case

    Science.gov (United States)

    Agliari, Elena; Barra, Adriano; Contucci, Pierluigi; Sandell, Richard; Vernia, Cecilia

    2014-10-01

    We apply stochastic process theory to the analysis of immigrant integration. Using a unique and detailed data set from Spain, we study the relationship between local immigrant density and two social and two economic immigration quantifiers for the period 1999-2010. As opposed to the classic time-series approach, by letting immigrant density play the role of ‘time’ and the quantifier the role of ‘space,’ it becomes possible to analyse the behavior of the quantifiers by means of continuous time random walks. Two classes of results are then obtained. First, we show that social integration quantifiers evolve following diffusion law, while the evolution of economic quantifiers exhibits ballistic dynamics. Second, we make predictions of best- and worst-case scenarios taking into account large local fluctuations. Our stochastic process approach to integration lends itself to interesting forecasting scenarios which, in the hands of policy makers, have the potential to improve political responses to integration problems. For instance, estimating the standard first-passage time and maximum-span walk reveals local differences in integration performance for different immigration scenarios. Thus, by recognizing the importance of local fluctuations around national means, this research constitutes an important tool to assess the impact of immigration phenomena on municipal budgets and to set up solid multi-ethnic plans at the municipal level as immigration pressures build.

  12. A stochastic approach for quantifying immigrant integration: the Spanish test case

    International Nuclear Information System (INIS)

    Agliari, Elena; Barra, Adriano; Contucci, Pierluigi; Sandell, Richard; Vernia, Cecilia

    2014-01-01

    We apply stochastic process theory to the analysis of immigrant integration. Using a unique and detailed data set from Spain, we study the relationship between local immigrant density and two social and two economic immigration quantifiers for the period 1999–2010. As opposed to the classic time-series approach, by letting immigrant density play the role of ‘time’ and the quantifier the role of ‘space,’ it becomes possible to analyse the behavior of the quantifiers by means of continuous time random walks. Two classes of results are then obtained. First, we show that social integration quantifiers evolve following diffusion law, while the evolution of economic quantifiers exhibits ballistic dynamics. Second, we make predictions of best- and worst-case scenarios taking into account large local fluctuations. Our stochastic process approach to integration lends itself to interesting forecasting scenarios which, in the hands of policy makers, have the potential to improve political responses to integration problems. For instance, estimating the standard first-passage time and maximum-span walk reveals local differences in integration performance for different immigration scenarios. Thus, by recognizing the importance of local fluctuations around national means, this research constitutes an important tool to assess the impact of immigration phenomena on municipal budgets and to set up solid multi-ethnic plans at the municipal level as immigration pressures build. (paper)

  13. The Rapid Integration and Test Environment - A Process for Achieving Software Test Acceptance

    OpenAIRE

    Jack, Rick

    2010-01-01

    Proceedings Paper (for Acquisition Research Program) Approved for public release; distribution unlimited. The Rapid Integration and Test Environment (RITE) initiative, implemented by the Program Executive Office, Command, Control, Communications, Computers and Intelligence, Command and Control Program Office (PMW-150), was born of necessity. Existing processes for requirements definition and management, as well as those for software development, did not consistently deliver high-qualit...

  14. Explanatory Item Response Modeling of Children's Change on a Dynamic Test of Analogical Reasoning

    Science.gov (United States)

    Stevenson, Claire E.; Hickendorff, Marian; Resing, Wilma C. M.; Heiser, Willem J.; de Boeck, Paul A. L.

    2013-01-01

    Dynamic testing is an assessment method in which training is incorporated into the procedure with the aim of gauging cognitive potential. Large individual differences are present in children's ability to profit from training in analogical reasoning. The aim of this experiment was to investigate sources of these differences on a dynamic test of…

  15. Non-destructive vacuum decay method for pre-filled syringe closure integrity testing compared with dye ingress testing and high-voltage leak detection.

    Science.gov (United States)

    Simonetti, Andrea; Amari, Filippo

    2015-01-01

    In reaction to the limitations of the traditional sterility test methods, in 2008, the U.S. Food and Drug Administration issued the guidance "Container and Closure System Integrity Testing in Lieu of Sterility Testing as a Component of the Stability Protocol for Sterile Products" encouraging sterile drug manufacturers to use properly validated physical methods, apart from conventional microbial challenge testing, to confirm container closure integrity as part of the stability protocol. The case study presented in this article investigated the capability of four container closure integrity testing methods to detect simulated defects of different sizes and types on glass syringes, prefilled both with drug product intended for parenteral administration and sterile water. The drug product was a flu vaccine (Agrippal, Novartis Vaccines, Siena, Italy). Vacuum decay, pharmacopoeial dye ingress test, Novartis specific dye ingress test, and high-voltage leak detection were, in succession, the methods involved in the comparative studies. The case study execution was preceded by the preparation of two independent sets of reference prefilled syringes, classified, respectively, as examples of conforming to closure integrity requirements (negative controls) and as defective (positive controls). Positive controls were, in turn, split in six groups, three of with holes laser-drilled through the prefilled syringe glass barrel, while the other three with capillary tubes embedded in the prefilled syringe plunger. These reference populations were then investigated by means of validated equipment used for container closure integrity testing of prefilled syringe commercial production; data were collected and analyzed to determine the detection rate and the percentage of false results. Results showed that the vacuum decay method had the highest performance in terms of detection sensitivity and also ensured the best reliability and repeatability of measurements. An innovative technical

  16. Integrated leak rate test results of JOYO reactor containment vessel

    International Nuclear Information System (INIS)

    Tamura, M.; Endo, J.

    1982-02-01

    Integrated leak rate tests of JOYO after the reactor coolant system had been filled with sodium have been performed two times since 1978 (February 1978 and December 1979). The tests were conducted with the in-containment sodium systems, primary argon cover gas system and air conditioning systems operating. Both the absolute pressure method and the reference chamber method were employed during the test. The results of both tests confirmed the functioning of the containment vessel, and leak rate limits were satisfied. In Addition, the adequancy of the test instrumentation system and the test method was demonstrated. Finally the plant conditions required to maintain reasonable accuracy for the leak rate testing of LMFBR were established. In this paper, the test conditions and the test results are described. (author)

  17. Integrated radiobioecological monitoring of Semipalatinsk test site: general approach

    International Nuclear Information System (INIS)

    Sejsebaev, A.T.; Shenal', K.; Bakhtin, M.M.; Kadyrova, N.Zh.

    2001-01-01

    This paper presents major research directions and general methodology for establishment of an integrated radio-bio-ecological monitoring system at the territory of the former Semipalatinsk nuclear test site. Also, it briefly provides the first results of monitoring the natural plant and animal populations at STS. (author)

  18. A numerical integration approach suitable for simulating PWR dynamics using a microcomputer system

    International Nuclear Information System (INIS)

    Zhiwei, L.; Kerlin, T.W.

    1983-01-01

    It is attractive to use microcomputer systems to simulate nuclear power plant dynamics for the purpose of teaching and/or control system design. An analysis and a comparison of feasibility of existing numerical integration methods have been made. The criteria for choosing the integration step using various numerical integration methods including the matrix exponential method are derived. In order to speed up the simulation, an approach is presented using the Newton recursion calculus which can avoid convergence limitations in choosing the integration step size. The accuracy consideration will dominate the integration step limited. The advantages of this method have been demonstrated through a case study using CBM model 8032 microcomputer to simulate a reduced order linear PWR model under various perturbations. It has been proven theoretically and practically that the Runge-Kutta method and Adams-Moulton method are not feasible. The matrix exponential method is good at accuracy and fairly good at speed. The Newton recursion method can save 3/4 to 4/5 time compared to the matrix exponential method with reasonable accuracy. Vertical Barhis method can be expanded to deal with nonlinear nuclear power plant models and higher order models as well

  19. Dynamic integration of remote cloud resources into local computing clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fleig, Georg; Erli, Guenther; Giffels, Manuel; Hauth, Thomas; Quast, Guenter; Schnepf, Matthias [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (Germany)

    2016-07-01

    In modern high-energy physics (HEP) experiments enormous amounts of data are analyzed and simulated. Traditionally dedicated HEP computing centers are built or extended to meet this steadily increasing demand for computing resources. Nowadays it is more reasonable and more flexible to utilize computing power at remote data centers providing regular cloud services to users as they can be operated in a more efficient manner. This approach uses virtualization and allows the HEP community to run virtual machines containing a dedicated operating system and transparent access to the required software stack on almost any cloud site. The dynamic management of virtual machines depending on the demand for computing power is essential for cost efficient operation and sharing of resources with other communities. For this purpose the EKP developed the on-demand cloud manager ROCED for dynamic instantiation and integration of virtualized worker nodes into the institute's computing cluster. This contribution will report on the concept of our cloud manager and the implementation utilizing a remote OpenStack cloud site and a shared HPC center (bwForCluster located in Freiburg).

  20. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all

  1. Static and Dynamic Handgrip Strength Endurance: Test-Retest Reproducibility.

    Science.gov (United States)

    Gerodimos, Vassilis; Karatrantou, Konstantina; Psychou, Dimitra; Vasilopoulou, Theodora; Zafeiridis, Andreas

    2017-03-01

    This study investigated the reliability of static and dynamic handgrip strength endurance using different protocols and indicators for the assessment of strength endurance. Forty young, healthy men and women (age, 18-22 years) performed 2 handgrip strength endurance protocols: a static protocol (sustained submaximal contraction at 50% of maximal voluntary contraction) and a dynamic one (8, 10, and 12 maximal repetitions). The participants executed each protocol twice to assess the test-retest reproducibility. Total work and total time were used as indicators of strength endurance in the static protocol; the strength recorded at each maximal repetition, the percentage change, and fatigue index were used as indicators of strength endurance in the dynamic protocol. The static protocol showed high reliability irrespective of sex and hand for total time and work. The 12-repetition dynamic protocol exhibited moderate-high reliability for repeated maximal repetitions and percentage change; the 8- and 10-repetition protocols demonstrated lower reliability irrespective of sex and hand. The fatigue index was not a reliable indicator for the assessment of dynamic handgrip endurance. Static handgrip endurance can be measured reliably using the total time and total work as indicators of strength endurance. For the evaluation of dynamic handgrip endurance, the 12-repetition protocol is recommended, using the repeated maximal repetitions and percentage change as indicators of strength endurance. Practitioners should consider the static (50% maximal voluntary contraction) and dynamic (12 repeated maximal repetitions) protocols as reliable for the assessment of handgrip strength endurance. The evaluation of static endurance in conjunction with dynamic endurance would provide more complete information about hand function. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Mutual Information Based Dynamic Integration of Multiple Feature Streams for Robust Real-Time LVCSR

    Science.gov (United States)

    Sato, Shoei; Kobayashi, Akio; Onoe, Kazuo; Homma, Shinichi; Imai, Toru; Takagi, Tohru; Kobayashi, Tetsunori

    We present a novel method of integrating the likelihoods of multiple feature streams, representing different acoustic aspects, for robust speech recognition. The integration algorithm dynamically calculates a frame-wise stream weight so that a higher weight is given to a stream that is robust to a variety of noisy environments or speaking styles. Such a robust stream is expected to show discriminative ability. A conventional method proposed for the recognition of spoken digits calculates the weights front the entropy of the whole set of HMM states. This paper extends the dynamic weighting to a real-time large-vocabulary continuous speech recognition (LVCSR) system. The proposed weight is calculated in real-time from mutual information between an input stream and active HMM states in a searchs pace without an additional likelihood calculation. Furthermore, the mutual information takes the width of the search space into account by calculating the marginal entropy from the number of active states. In this paper, we integrate three features that are extracted through auditory filters by taking into account the human auditory system's ability to extract amplitude and frequency modulations. Due to this, features representing energy, amplitude drift, and resonant frequency drifts, are integrated. These features are expected to provide complementary clues for speech recognition. Speech recognition experiments on field reports and spontaneous commentary from Japanese broadcast news showed that the proposed method reduced error words by 9.2% in field reports and 4.7% in spontaneous commentaries relative to the best result obtained from a single stream.

  3. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  4. Improving basic math skills through integrated dynamic representation strategies.

    Science.gov (United States)

    González-Castro, Paloma; Cueli, Marisol; Cabeza, Lourdes; Álvarez-García, David; Rodríguez, Celestino

    2014-01-01

    In this paper, we analyze the effectiveness of the Integrated Dynamic Representation strategy (IDR) to develop basic math skills. The study involved 72 students, aged between 6 and 8 years. We compared the development of informal basic skills (numbers, comparison, informal calculation, and informal concepts) and formal (conventionalisms, number facts, formal calculus, and formal concepts) in an experimental group (n = 35) where we applied the IDR strategy and in a Control group (n = 37) in order to identify the impact of the procedure. The experimental group improved significantly in all variables except for number facts and formal calculus. It can therefore be concluded that IDR favors the development of the skills more closely related to applied mathematics than those related to automatic mathematics and mental arithmetic.

  5. Price transmission and market integration: a test of the central ...

    African Journals Online (AJOL)

    Price transmission and market integration: a test of the central market ... cassava production but to improvements in marketing efficiency of the traditional food market ... Improvements in road network and other communication infrastructure will ...

  6. EPICS - MDSplus integration in the ITER Neutral Beam Test Facility

    International Nuclear Information System (INIS)

    Luchetta, Adriano; Manduchi, Gabriele; Barbalace, Antonio; Soppelsa, Anton; Taliercio, Cesare

    2011-01-01

    SPIDER, the ITER-size ion-source test bed in the ITER Neutral Beam Test Facility, is a fusion device requiring a complex central system to provide control and data acquisition, referred to as CODAS. The CODAS software architecture will rely on EPICS and MDSplus, two open-source, collaborative software frameworks, targeted at control and data acquisition, respectively. EPICS has been selected as ITER CODAC middleware and, as the final deliverable of the Neutral Beam Test Facility is the procurement of the ITER Heating Neutral Beam Injector, we decided to adopt this ITER technology. MDSplus is a software package for data management, supporting advanced concepts, such as platform and underlying hardware independence, self description data, and data driven model. The combined use of EPICS and MDSplus is not new in fusion, but their level of integration will be new in SPIDER, achieved by a more refined data access layer. The paper presents the integration software to use effectively EPICS and MDSplus, including the definition of appropriate EPICS records to interact with MDSplus. The MDSplus and EPICS archive concepts are also compared on the basis of performance tests and data streaming is investigated by ad-hoc measurements.

  7. TEST BIAS--VALIDITY OF THE SCHOLASTIC APTITUDE TEST FOR NEGRO AND WHITE STUDENTS IN INTEGRATED COLLEGES.

    Science.gov (United States)

    CLEARY, T. ANNE

    FOR THIS RESEARCH, A TEST WAS SAID TO BE BIASED FOR MEMBERS OF A SUBGROUP OF THE POPULATION IF, IN THE PREDICTION OF A CRITERION FOR WHICH THE TEST WAS DESIGNED, CONSISTENT NONZERO ERRORS OF PREDICTION ARE MADE FOR MEMBERS OF THE SUBGROUP. SAMPLES OF NEGRO AND WHITE STUDENTS FROM THREE INTEGRATED COLLEGES WERE STUDIED. IN THE TWO EASTERN COLLEGES,…

  8. Dynamic modelling of a forward osmosis-nanofiltration integrated process for treating hazardous wastewater.

    Science.gov (United States)

    Pal, Parimal; Das, Pallabi; Chakrabortty, Sankha; Thakura, Ritwik

    2016-11-01

    Dynamic modelling and simulation of a nanofiltration-forward osmosis integrated complete system was done along with economic evaluation to pave the way for scale up of such a system for treating hazardous pharmaceutical wastes. The system operated in a closed loop not only protects surface water from the onslaught of hazardous industrial wastewater but also saves on cost of fresh water by turning wastewater recyclable at affordable price. The success of dynamic modelling in capturing the relevant transport phenomena is well reflected in high overall correlation coefficient value (R 2  > 0.98), low relative error (osmosis loop at a reasonably high flux of 56-58 l per square meter per hour.

  9. A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble

    International Nuclear Information System (INIS)

    Tuckerman, Mark E; Alejandre, Jose; Lopez-Rendon, Roberto; Jochim, Andrea L; Martyna, Glenn J

    2006-01-01

    The constant-pressure, constant-temperature (NPT) molecular dynamics approach is re-examined from the viewpoint of deriving a new measure-preserving reversible geometric integrator for the equations of motion. The underlying concepts of non-Hamiltonian phase-space analysis, measure-preserving integrators and the symplectic property for Hamiltonian systems are briefly reviewed. In addition, current measure-preserving schemes for the constant-volume, constant-temperature ensemble are also reviewed. A new geometric integrator for the NPT method is presented, is shown to preserve the correct phase-space volume element and is demonstrated to perform well in realistic examples. Finally, a multiple time-step version of the integrator is presented for treating systems with motion on several time scales

  10. Multifrequency Excitation Method for Rapid and Accurate Dynamic Test of Micromachined Gyroscope Chips

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2014-10-01

    Full Text Available A novel multifrequency excitation (MFE method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  11. Formulations by surface integral equations for numerical simulation of non-destructive testing by eddy currents

    International Nuclear Information System (INIS)

    Vigneron, Audrey

    2015-01-01

    The thesis addresses the numerical simulation of non-destructive testing (NDT) using eddy currents, and more precisely the computation of induced electromagnetic fields by a transmitter sensor in a healthy part. This calculation is the first step of the modeling of a complete control process in the CIVA software platform developed at CEA LIST. Currently, models integrated in CIVA are restricted to canonical (modal computation) or axially-symmetric geometries. The need for more diverse and complex configurations requires the introduction of new numerical modeling tools. In practice the sensor may be composed of elements with different shapes and physical properties. The inspected parts are conductive and may contain dielectric or magnetic elements. Due to the cohabitation of different materials in one configuration, different regimes (static, quasi-static or dynamic) may coexist. Under the assumption of linear, isotropic and piecewise homogeneous material properties, the surface integral equation (SIE) approach allows to reduce a volume-based problem to an equivalent surface-based problem. However, the usual SIE formulations for the Maxwell's problem generally suffer from numerical noise in asymptotic situations, and especially at low frequencies. The objective of this study is to determine a version that is stable for a range of physical parameters typical of eddy-current NDT applications. In this context, a block-iterative scheme based on a physical decomposition is proposed for the computation of primary fields. This scheme is accurate and well-conditioned. An asymptotic study of the integral Maxwell's problem at low frequencies is also performed, allowing to establish the eddy-current integral problem as an asymptotic case of the corresponding Maxwell problem. (author) [fr

  12. Integrated verification and testing system (IVTS) for HAL/S programs

    Science.gov (United States)

    Senn, E. H.; Ames, K. R.; Smith, K. A.

    1983-01-01

    The IVTS is a large software system designed to support user-controlled verification analysis and testing activities for programs written in the HAL/S language. The system is composed of a user interface and user command language, analysis tools and an organized data base of host system files. The analysis tools are of four major types: (1) static analysis, (2) symbolic execution, (3) dynamic analysis (testing), and (4) documentation enhancement. The IVTS requires a split HAL/S compiler, divided at the natural separation point between the parser/lexical analyzer phase and the target machine code generator phase. The IVTS uses the internal program form (HALMAT) between these two phases as primary input for the analysis tools. The dynamic analysis component requires some way to 'execute' the object HAL/S program. The execution medium may be an interpretive simulation or an actual host or target machine.

  13. Successful Integration of Hepatitis C Virus Point-of-Care Tests into the Denver Metro Health Clinic

    Directory of Open Access Journals (Sweden)

    A. Jewett

    2013-01-01

    Full Text Available Background. The Centers for Disease Control and Prevention (CDC recommends testing and linkage to care for persons most likely infected with hepatitis C virus (HCV, including persons with human immunodeficiency virus. We explored facilitators and barriers to integrating HCV point-of-care (POC testing into standard operations at an urban STD clinic. Methods. The OraQuick HCV rapid antibody test was integrated at the Denver Metro Health Clinic (DMHC. All clients with at least one risk factor were offered the POC test. Research staff conducted interviews with clients (three HCV positive and nine HCV negative. Focus groups were conducted with triage staff, providers, and linkage-to-care counselors. Results. Clients were pleased with the ease of use and rapid return of results from the HCV POC test. Integrating the test into this setting required more time but was not overly burdensome. While counseling messages were clear to staff, clients retained little knowledge of hepatitis C infection or factors related to risk. Barriers to integrating the HCV POC test into clinic operations were loss to follow-up and access to care. Conclusion. DMHC successfully integrated HCV POC testing and piloted a HCV linkage-to-care program. Providing testing opportunities at STD clinics could increase identification of persons with HCV infection.

  14. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  15. Small Payload Launch Integrated Testing Services (SPLITS) - SPSDL

    Science.gov (United States)

    Plotner, Benjamin

    2013-01-01

    My experience working on the Small Payload Launch Integrated Testing Services project has been both educational and rewarding. I have been given the opportunity to work on and experiment with a number of exciting projects and initiatives, each offering different challenges and opportunities for teamwork and collaboration. One of my assignments is to aid in the design and construction of a small-scale two stage rocket as part of a Rocket University initiative. My duties include programming a microcontroller to control the various sensors on the rocket as well as process and transmit data. Additionally, I am writing a graphical user interface application for the ground station that will receive the transmitted data from the rocket and display the information on screen along with a 3D rendering displaying the rocket orientation. Another project I am working on is to design and develop the avionics that will be used to control a high altitude balloon flight that will test a sensor called a Micro Dosimeter that will measure the total ionizing dose absorbed by electrical components during a flight. This includes assembling and soldering the various sensors and components, programming a microcontroller to input and process data from the Micro Dosimeter, and transmitting the data down to a ground station as well as save the data to an on-board SD card. Additionally, I am aiding in the setup and development of ITOS (Integrated Test and Operations System) capability in the SPSDL (Spaceport Processing System Development Lab).

  16. A novel test rig to investigate under-platform damper dynamics

    Science.gov (United States)

    Botto, Daniele; Umer, Muhammad

    2018-02-01

    In the field of turbomachinery, vibration amplitude is often reduced by dissipating the kinetic energy of the blades with devices that utilize dry friction. Under-platform dampers, for example, are often placed in the underside of two consecutive turbine blades. Dampers are kept in contact with the under-platform of the respective blades by means of the centrifugal force. If the damper is well designed, vibration of blades instigate a relative motion between the under-platform and the damper. A friction force, that is a non-conservative force, arises in the contact and partly dissipates the vibration energy. Several contact models are available in the literature to simulate the contact between the damper and the under-platform. However, the actual dynamics of the blade-damper interaction have not fully understood yet. Several test rigs have been previously developed to experimentally investigate the performance of under-platform dampers. The majority of these experimental setups aim to evaluate the overall damper efficiency in terms of reduction in response amplitude of the blade for a given exciting force that simulates the aerodynamic loads. Unfortunately, the experimental data acquired on the blade dynamics do not provide enough information to understand the damper dynamics. Therefore, the uncertainty on the damper behavior remains a big issue. In this work, a novel experimental test rig has been developed to extensively investigate the damper dynamic behavior. A single replaceable blade is clamped in the rig with a specific clamping device. With this device the blade root is pressed against a groove machined in the test rig. The pushing force is controllable and measurable, to better simulate the actual centrifugal load acting on the blade. Two dampers, one on each side of the blade, are in contact with the blade under-platforms and with platforms on force measuring supports. These supports have been specifically designed to measure the contact forces on the

  17. Implementation of a variable-step integration technique for nonlinear structural dynamic analysis

    International Nuclear Information System (INIS)

    Underwood, P.; Park, K.C.

    1977-01-01

    The paper presents the implementation of a recently developed unconditionally stable implicit time integration method into a production computer code for the transient response analysis of nonlinear structural dynamic systems. The time integrator is packaged with two significant features; a variable step size that is automatically determined and this is accomplished without additional matrix refactorizations. The equations of motion solved by the time integrator must be cast in the pseudo-force form, and this provides the mechanism for controlling the step size. Step size control is accomplished by extrapolating the pseudo-force to the next time (the predicted pseudo-force), then performing the integration step and then recomputing the pseudo-force based on the current solution (the correct pseudo-force); from this data an error norm is constructed, the value of which determines the step size for the next step. To avoid refactoring the required matrix with each step size change a matrix scaling technique is employed, which allows step sizes to change by a factor of 100 without refactoring. If during a computer run the integrator determines it can run with a step size larger than 100 times the original minimum step size, the matrix is refactored to take advantage of the larger step size. The strategy for effecting these features are discussed in detail. (Auth.)

  18. Dynamic magnetic particle actuation for integrated lab-on-chip biosensing

    NARCIS (Netherlands)

    Jong, de A.M.; Reenen, van A.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for in-vitro diagnostic testing. We study the use of magnetic particles actuated by magnetic fields to perform different microfluidic handling steps of an integrated

  19. Path integral centroid molecular dynamics simulations of semiinfinite slab and bulk liquid of para-hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, Kenichi [Nara Women`s Univ., Nara (Japan). Dept. of Chemistry

    1998-10-01

    It has been unsuccessful to solve a set of time-dependent Schroedinger equations numerically for many-body quantum systems which involve, e.g., a number of hydrogen molecules, protons, and excess electrons at a low temperature, where quantum effect evidently appears. This undesirable situation is fatal for the investigation of real low-temperature chemical systems because they are essentially composed of many quantum degrees of freedom. However, if we use a new technique called `path integral centroid molecular dynamics (CMD) simulation` proposed by Cao and Voth in 1994, the real-time semi-classical dynamics of many degrees of freedom can be computed by utilizing the techniques already developed in the traditional classical molecular dynamics (MD) simulations. Therefore, the CMD simulation is expected to be very powerful tool for the quantum dynamics studies or real substances. (J.P.N.)

  20. Testing periodically integrated autoregressive models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)

    1997-01-01

    textabstractPeriodically integrated time series require a periodic differencing filter to remove the stochastic trend. A non-periodic integrated time series needs the first-difference filter for similar reasons. When the changing seasonal fluctuations for the non-periodic integrated series can be

  1. DISPLACE: a dynamic, individual-based model for spatial fishing planning and effort displacement: Integrating underlying fish population models

    DEFF Research Database (Denmark)

    Bastardie, Francois; Nielsen, J. Rasmus; Miethe, Tanja

    or to the alteration of individual fishing patterns. We demonstrate that integrating the spatial activity of vessels and local fish stock abundance dynamics allow for interactions and more realistic predictions of fishermen behaviour, revenues and stock abundance......We previously developed a spatially explicit, individual-based model (IBM) evaluating the bio-economic efficiency of fishing vessel movements between regions according to the catching and targeting of different species based on the most recent high resolution spatial fishery data. The main purpose...... was to test the effects of alternative fishing effort allocation scenarios related to fuel consumption, energy efficiency (value per litre of fuel), sustainable fish stock harvesting, and profitability of the fisheries. The assumption here was constant underlying resource availability. Now, an advanced...

  2. Prototype testing and analysis of a novel internal combustion linear generator integrated power system

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhaoping; Chang, Siqin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2010-04-15

    A novel four-stroke free-piston engine equipped with a linear electric generator (namely internal combustion linear generator integrated power system) is proposed in this paper to achieve efficient energy conversion from fuel to electricity. Unique features of the novel power system are presented and their effects on the continuous running are discussed, along with potential advantages and disadvantages compared to conventional engines. A single cylinder, gasoline and spark ignition prototype is fabricated with reference to the geometric and control parameters of an existing conventional four-stroke engine. Stable running of the prototype is realized, and a 2.2 kW average output power with the generating efficiency of 32% has been obtained up to now. The feasibility and performance of the proposed design are verified. Detailed testing results from the continuous running prototype are analyzed in this paper for giving insight into the performance and dynamic behaviors of the novel power system. (author)

  3. Constraint Embedding for Vehicle Suspension Dynamics

    Directory of Open Access Journals (Sweden)

    Jain Abhinandan

    2016-06-01

    Full Text Available The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

  4. Models test on dynamic structure-structure interaction of nuclear power plant buildings

    International Nuclear Information System (INIS)

    Kitada, Y.; Hirotani, T.

    1999-01-01

    A reactor building of an NPP (nuclear power plant) is generally constructed closely adjacent to a turbine building and other buildings such as the auxiliary building, and in increasing numbers of NPPs, multiple plants are being planned and constructed closely on a single site. In these situations, adjacent buildings are considered to influence each other through the soil during earthquakes and to exhibit dynamic behaviour different from that of separate buildings, because those buildings in NPP are generally heavy and massive. The dynamic interaction between buildings during earthquake through the soil is termed here as 'dynamic cross interaction (DCI)'. In order to comprehend DCI appropriately, forced vibration tests and earthquake observation are needed using closely constructed building models. Standing on this background, Nuclear Power Engineering Corporation (NUPEC) had planned the project to investigate the DCI effect in 1993 after the preceding SSI (soil-structure interaction) investigation project, 'model tests on embedment effect of reactor building'. The project consists of field and laboratory tests. The field test is being carried out using three different building construction conditions, e.g. a single reactor building to be used for the comparison purposes as for a reference, two same reactor buildings used to evaluate pure DCI effects, and two different buildings, reactor and turbine building models to evaluate DCI effects under the actual plant conditions. Forced vibration tests and earthquake observations are planned in the field test. The laboratory test is planned to evaluate basic characteristics of the DCI effects using simple soil model made of silicon rubber and structure models made of aluminum. In this test, forced vibration tests and shaking table tests are planned. The project was started in April 1994 and will be completed in March 2002. This paper describes an outline and the summary of the current status of this project. (orig.)

  5. Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data.

    Science.gov (United States)

    Gong, Wuming; Koyano-Nakagawa, Naoko; Li, Tongbin; Garry, Daniel J

    2015-03-07

    Decoding the temporal control of gene expression patterns is key to the understanding of the complex mechanisms that govern developmental decisions during heart development. High-throughput methods have been employed to systematically study the dynamic and coordinated nature of cardiac differentiation at the global level with multiple dimensions. Therefore, there is a pressing need to develop a systems approach to integrate these data from individual studies and infer the dynamic regulatory networks in an unbiased fashion. We developed a two-step strategy to integrate data from (1) temporal RNA-seq, (2) temporal histone modification ChIP-seq, (3) transcription factor (TF) ChIP-seq and (4) gene perturbation experiments to reconstruct the dynamic network during heart development. First, we trained a logistic regression model to predict the probability (LR score) of any base being bound by 543 TFs with known positional weight matrices. Second, four dimensions of data were combined using a time-varying dynamic Bayesian network model to infer the dynamic networks at four developmental stages in the mouse [mouse embryonic stem cells (ESCs), mesoderm (MES), cardiac progenitors (CP) and cardiomyocytes (CM)]. Our method not only infers the time-varying networks between different stages of heart development, but it also identifies the TF binding sites associated with promoter or enhancers of downstream genes. The LR scores of experimentally verified ESCs and heart enhancers were significantly higher than random regions (p network inference model identified a region with an elevated LR score approximately -9400 bp upstream of the transcriptional start site of Nkx2-5, which overlapped with a previously reported enhancer region (-9435 to -8922 bp). TFs such as Tead1, Gata4, Msx2, and Tgif1 were predicted to bind to this region and participate in the regulation of Nkx2-5 gene expression. Our model also predicted the key regulatory networks for the ESC-MES, MES-CP and CP

  6. Neural dynamics of audiovisual speech integration under variable listening conditions: an individual participant analysis.

    Science.gov (United States)

    Altieri, Nicholas; Wenger, Michael J

    2013-01-01

    Speech perception engages both auditory and visual modalities. Limitations of traditional accuracy-only approaches in the investigation of audiovisual speech perception have motivated the use of new methodologies. In an audiovisual speech identification task, we utilized capacity (Townsend and Nozawa, 1995), a dynamic measure of efficiency, to quantify audiovisual integration. Capacity was used to compare RT distributions from audiovisual trials to RT distributions from auditory-only and visual-only trials across three listening conditions: clear auditory signal, S/N ratio of -12 dB, and S/N ratio of -18 dB. The purpose was to obtain EEG recordings in conjunction with capacity to investigate how a late ERP co-varies with integration efficiency. Results showed efficient audiovisual integration for low auditory S/N ratios, but inefficient audiovisual integration when the auditory signal was clear. The ERP analyses showed evidence for greater audiovisual amplitude compared to the unisensory signals for lower auditory S/N ratios (higher capacity/efficiency) compared to the high S/N ratio (low capacity/inefficient integration). The data are consistent with an interactive framework of integration, where auditory recognition is influenced by speech-reading as a function of signal clarity.

  7. Near-Surface Engineered Environmental Barrier Integrity

    International Nuclear Information System (INIS)

    Piet, S.J.; Breckenridge, R.P.

    2002-01-01

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined

  8. The scheme optimization and management innovation for the first containment integrated in-service test of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Haiwei; Yang Gang

    2014-01-01

    The containment integrated test is a large-scale, high risk and very difficult test in pressurized water reactor nuclear power plants. By simulating peak pressure inside the containment in DESIGN-BASIS accident conditions, measuring the total leakage rate of the containment with the peak pressure, and implementing the structure inspection test on several pressure levels, the containment's performance can be verified. Containment integrated test is an important witness point supervised by NNSA. The test results crucially decide the reactor to be started or not. The containment integrated test in 301 overhaul is the first in-service test of Unit 3. By the experience of the same 6 former tests in Qinshan Second Nuclear Power Plant and the feedback from other plants, the test scheme get more scientific and the organization management more standardized. This article discusses the containment integrated test in 301 overhaul and summarizes the experience to provide some references for the following containment integrated tests in the future. (authors)

  9. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  10. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won

    2014-01-01

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  11. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface.

  12. Ontological Analysis of Integrated Process Models: testing hypotheses

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    2001-11-01

    Full Text Available Integrated process modeling is achieving prominence in helping to document and manage business administration and IT processes in organizations. The ARIS framework is a popular example for a framework of integrated process modeling not least because it underlies the 800 or more reference models embedded in the world's most popular ERP package, SAP R/3. This paper demonstrates the usefulness of the Bunge-Wand-Weber (BWW representation model for evaluating modeling grammars such as those constituting ARIS. It reports some initial insights gained from pilot testing Green and Rosemann's (2000 evaluative propositions. Even when considering all five views of ARIS, modelers have problems representing business rules, the scope and boundary of systems, and decomposing models. However, even though it is completely ontologically redundant, users still find the function view useful in modeling.

  13. C.O.D. toughness testing of medium strength steel as a preliminary development for single specimen J integral toughness tests of SA533-B steel

    International Nuclear Information System (INIS)

    Dean, P.; Tait, R.B.; Garrett, G.G.

    1981-10-01

    The primary purpose of this project is to set up a test facility and to develop the necessary expertise to enable reliable elasto-plastic fracture toughness tests to be performed. Initially, tests are to be conducted on material similar to that used in the Koeberg pressure vessel walls, with the ultimate goal of performing single specimen J integral tests on the pressure vessel steel itself to determine through-thickness toughness variations. The project will comprise a number of stages, each one necessary for the development of the techniques used in J integral testing. These include: (i) development of an appropriate specimen design, of suitable size and shape that is applicable to both crack opening displacement (C.O.D.) and J integral tests; (ii) development, testing and calibration of the necessary associated mechanical and electrical equipment (e.g. clip gauge, amplifiers, interface unit, etc.), with (iii) an estimation of the probable errors and noise levels with a view to their elimantion, leading to (iv) perfection of the sensitivity and reproducibility of, firstly, the multiple specimen C.O.D. technique and, secondly, the multiple specimen J integral techniques. (v) Based on the above techniques, development of the single specimen J integral test method incorporating development of a computerised testing procedure. All the above procedure is to be conducted on similar, but non-Koeberg pressure vessel material ('ROQ Tough'). (vi) Finally, development and testing of both multiple specimen and single specimen J integral tests on actual SA533B material and an investigation of the through thickness toughness and fatigue crack propagation behaviour

  14. Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics.

    Science.gov (United States)

    Chi, Albert; Curi, Sebastian; Clayton, Kevin; Luciano, David; Klauber, Kameron; Alexander-Katz, Alfredo; D'hers, Sebastian; Elman, Noel M

    2014-08-01

    Rapid Reconstitution Packages (RRPs) are portable platforms that integrate microfluidics for rapid reconstitution of lyophilized drugs. Rapid reconstitution of lyophilized drugs using standard vials and syringes is an error-prone process. RRPs were designed using computational fluid dynamics (CFD) techniques to optimize fluidic structures for rapid mixing and integrating physical properties of targeted drugs and diluents. Devices were manufactured using stereo lithography 3D printing for micrometer structural precision and rapid prototyping. Tissue plasminogen activator (tPA) was selected as the initial model drug to test the RRPs as it is unstable in solution. tPA is a thrombolytic drug, stored in lyophilized form, required in emergency settings for which rapid reconstitution is of critical importance. RRP performance and drug stability were evaluated by high-performance liquid chromatography (HPLC) to characterize release kinetics. In addition, enzyme-linked immunosorbent assays (ELISAs) were performed to test for drug activity after the RRPs were exposed to various controlled temperature conditions. Experimental results showed that RRPs provided effective reconstitution of tPA that strongly correlated with CFD results. Simulation and experimental results show that release kinetics can be adjusted by tuning the device structural dimensions and diluent drug physical parameters. The design of RRPs can be tailored for a number of applications by taking into account physical parameters of the active pharmaceutical ingredients (APIs), excipients, and diluents. RRPs are portable platforms that can be utilized for reconstitution of emergency drugs in time-critical therapies.

  15. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  16. Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs

    International Nuclear Information System (INIS)

    Nwulu, Nnamdi I.; Xia, Xiaohua

    2015-01-01

    Highlights: • In this work, a game theory based DR program is integrated into the DEED problem. • Objectives are to minimize fuel and emissions costs and maximize the DR benefit. • Optimal generator output, customer load and customer incentive are determined. • Developed model is tested with two different scenarios. • Model provides superior results than independent optimization of DR or DEED. - Abstract: The dynamic economic emission dispatch (DEED) of electric power generation is a multi-objective mathematical optimization problem with two objective functions. The first objective is to minimize all the fuel costs of the generators in the power system, whilst the second objective seeks to minimize the emissions cost. Both objective functions are subject to constraints such as load demand constraint, ramp rate constraint, amongst other constraints. In this work, we integrate a game theory based demand response program into the DEED problem. The game theory based demand response program determines the optimal hourly incentive to be offered to customers who sign up for load curtailment. The game theory model has in built mechanisms to ensure that the incentive offered the customers is greater than the cost of interruption while simultaneously being beneficial to the utility. The combined DEED and game theoretic demand response model presented in this work, minimizes fuel and emissions costs and simultaneously determines the optimal incentive and load curtailment customers have to perform for maximal power system relief. The developed model is tested on two test systems with industrial customers and obtained results indicate the practical benefits of the proposed model

  17. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests.

    Science.gov (United States)

    Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F

    2010-09-01

    This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (Pductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  18. Highly focused ion beams in integrated circuit testing

    International Nuclear Information System (INIS)

    Horn, K.M.; Dodd, P.E.; Doyle, B.L.

    1996-01-01

    The nuclear microprobe has proven to be a useful tool in radiation testing of integrated circuits. This paper reviews single event upset (SEU) and ion beam induced charge collection (IBICC) imaging techniques, with special attention to damage-dependent effects. Comparisons of IBICC measurements with three-dimensional charge transport simulations of charge collection are then presented for isolated p-channel field effect transistors under conducting and non-conducting bias conditions

  19. A Study of Critical Flowrate in the Integral Effect Test Facilities

    International Nuclear Information System (INIS)

    Kim, Yeongsik; Ryu, Sunguk; Cho, Seok; Yi, Sungjae; Park, Hyunsik

    2014-01-01

    In earlier studies, most of the information available in the literature was either for a saturated two-phase flow or a sub-cooled water flow at medium pressure conditions, e. g., up to about 7.0 MPa. The choking is regarded as a condition of maximum possible discharge through a given orifice and/or nozzle exit area. A critical flow rate can be achieved at a choking under the given thermo-hydraulic conditions. The critical flow phenomena were studied extensively in both single-phase and two-phase systems because of its importance in the LOCA analyses of light water reactors and in the design of other engineering areas. Park suggested a modified correlation for predicting the critical flow for sub-cooled water through a nozzle. Recently, Park et al. performed an experimental study on a two-phase critical flow with a noncondensable gas at high pressure conditions. Various experiments of critical flow using sub-cooled water were performed for a modeling of break simulators in thermohydraulic integral effect test facilities for light water reactors, e. g., an advanced power reactor 1400MWe (APR1400) and a system-integrated modular advanced reactor (SMART). For the design of break simulators of SBLOCA scenarios, the aspect ratio (L/D) is considered to be a key parameter to determine the shape of a break simulator. In this paper, an investigation of critical flow phenomena was performed especially on break simulators for LOCA scenarios in the integral effect test facilities of KAERI, such as ATLAS and FESTA. In this study, various studies on the critical flow models for sub-cooled and/or saturated water were reviewed. For a comparison among the models for the selected test data, discussions of the comparisons on the effect of the diameters, predictions of critical flow models, and break simulators for SBLOCA in the integral effect test facilities were presented

  20. A Study of Critical Flowrate in the Integral Effect Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongsik; Ryu, Sunguk; Cho, Seok; Yi, Sungjae; Park, Hyunsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In earlier studies, most of the information available in the literature was either for a saturated two-phase flow or a sub-cooled water flow at medium pressure conditions, e. g., up to about 7.0 MPa. The choking is regarded as a condition of maximum possible discharge through a given orifice and/or nozzle exit area. A critical flow rate can be achieved at a choking under the given thermo-hydraulic conditions. The critical flow phenomena were studied extensively in both single-phase and two-phase systems because of its importance in the LOCA analyses of light water reactors and in the design of other engineering areas. Park suggested a modified correlation for predicting the critical flow for sub-cooled water through a nozzle. Recently, Park et al. performed an experimental study on a two-phase critical flow with a noncondensable gas at high pressure conditions. Various experiments of critical flow using sub-cooled water were performed for a modeling of break simulators in thermohydraulic integral effect test facilities for light water reactors, e. g., an advanced power reactor 1400MWe (APR1400) and a system-integrated modular advanced reactor (SMART). For the design of break simulators of SBLOCA scenarios, the aspect ratio (L/D) is considered to be a key parameter to determine the shape of a break simulator. In this paper, an investigation of critical flow phenomena was performed especially on break simulators for LOCA scenarios in the integral effect test facilities of KAERI, such as ATLAS and FESTA. In this study, various studies on the critical flow models for sub-cooled and/or saturated water were reviewed. For a comparison among the models for the selected test data, discussions of the comparisons on the effect of the diameters, predictions of critical flow models, and break simulators for SBLOCA in the integral effect test facilities were presented.