WorldWideScience

Sample records for integrated dna analysis

  1. Multi-color fluorescent DNA analysis in an integrated optofluidic lab-on-a-chip

    OpenAIRE

    Dongre, C.; van Weerd, J.; van Weeghel, R.; Martinez-Vazquez, R.; Osellame, R.; Cerullo, G.; Besselink, G.A.J.; van den Vlekkert, H.H.; Hoekstra, Hugo; Pollnau, Markus

    2010-01-01

    Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. By employing tiny lab-on-a-chip devices for such DNA analysis, integrated DNA sequencing and genetic diagnostics have become feasible. However, such diagnostic chips typically lack integrated sensing capability. We address this issue by combining microfluidic capillary electrophoresis with laser-induced fluorescence detection resulting in optofluidic integration towards an...

  2. Multi-color fluorescent DNA analysis in an integrated optofluidic lab-on-a-chip

    NARCIS (Netherlands)

    Dongre, C.; van Weerd, J.; van Weeghel, R.; Martinez-Vazquez, R.; Osellame, R.; Cerullo, G.; Besselink, G.A.J.; van den Vlekkert, H.H.; Hoekstra, Hugo; Pollnau, Markus

    Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. By employing tiny lab-on-a-chip devices for such DNA analysis, integrated DNA sequencing and genetic diagnostics have become feasible. However, such diagnostic chips typically

  3. Multi-color fluorescent DNA analysis in an integrated optofluidic lab on a chip

    OpenAIRE

    Dongre, C.

    2010-01-01

    Abstract: Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. Furthermore by employing tiny lab-on-a-chip device, integrated DNA sequencing and genetic diagnostics have become feasible. We present the combination of capillary electrophoresis with laser-induced fluorescence for optofluidic integration toward an on-chip bio-analysis tool. Integrated optical fluorescence excitation allows for a high spatial resolution (12 μm) ...

  4. RADIA: RNA and DNA integrated analysis for somatic mutation detection.

    Directory of Open Access Journals (Sweden)

    Amie J Radenbaugh

    Full Text Available The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis, a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual's DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84% and very high precision (98% and 99% for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA.

  5. Retroviral DNA Integration

    Science.gov (United States)

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  6. Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility.

    Science.gov (United States)

    Vrljicak, Pavle; Tao, Shijie; Varshney, Gaurav K; Quach, Helen Ngoc Bao; Joshi, Adita; LaFave, Matthew C; Burgess, Shawn M; Sampath, Karuna

    2016-04-07

    DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence the integration of heterologous DNA in genomes, and have implications for targeted genome engineering. Copyright © 2016 Vrljicak et al.

  7. Vertically integrated analysis of human DNA. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, M.

    1997-10-01

    This project has been oriented toward improving the vertical integration of the sequential steps associated with the large-scale analysis of human DNA. The central focus has been on an approach to the preparation of {open_quotes}sequence-ready{close_quotes} maps, which is referred to as multiple-complete-digest (MCD) mapping, primarily directed at cosmid clones. MCD mapping relies on simple experimental steps, supported by advanced image-analysis and map-assembly software, to produce extremely accurate restriction-site and clone-overlap maps. We believe that MCD mapping is one of the few high-resolution mapping systems that has the potential for high-level automation. Successful automation of this process would be a landmark event in genome analysis. Once other higher organisms, paving the way for cost-effective sequencing of these genomes. Critically, MCD mapping has the potential to provide built-in quality control for sequencing accuracy and to make possible a highly integrated end product even if there are large numbers of discontinuities in the actual sequence.

  8. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration.

    Science.gov (United States)

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-06-01

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. DR-Integrator: a new analytic tool for integrating DNA copy number and gene expression data.

    Science.gov (United States)

    Salari, Keyan; Tibshirani, Robert; Pollack, Jonathan R

    2010-02-01

    DNA copy number alterations (CNA) frequently underlie gene expression changes by increasing or decreasing gene dosage. However, only a subset of genes with altered dosage exhibit concordant changes in gene expression. This subset is likely to be enriched for oncogenes and tumor suppressor genes, and can be identified by integrating these two layers of genome-scale data. We introduce DNA/RNA-Integrator (DR-Integrator), a statistical software tool to perform integrative analyses on paired DNA copy number and gene expression data. DR-Integrator identifies genes with significant correlations between DNA copy number and gene expression, and implements a supervised analysis that captures genes with significant alterations in both DNA copy number and gene expression between two sample classes. DR-Integrator is freely available for non-commercial use from the Pollack Lab at http://pollacklab.stanford.edu/ and can be downloaded as a plug-in application to Microsoft Excel and as a package for the R statistical computing environment. The R package is available under the name 'DRI' at http://cran.r-project.org/. An example analysis using DR-Integrator is included as supplemental material. Supplementary data are available at Bioinformatics online.

  10. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Bekim Sadikovic

    Full Text Available Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.

  11. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.

    Science.gov (United States)

    Moon, Myungjin; Nakai, Kenta

    2018-04-01

    Currently, cancer biomarker discovery is one of the important research topics worldwide. In particular, detecting significant genes related to cancer is an important task for early diagnosis and treatment of cancer. Conventional studies mostly focus on genes that are differentially expressed in different states of cancer; however, noise in gene expression datasets and insufficient information in limited datasets impede precise analysis of novel candidate biomarkers. In this study, we propose an integrative analysis of gene expression and DNA methylation using normalization and unsupervised feature extractions to identify candidate biomarkers of cancer using renal cell carcinoma RNA-seq datasets. Gene expression and DNA methylation datasets are normalized by Box-Cox transformation and integrated into a one-dimensional dataset that retains the major characteristics of the original datasets by unsupervised feature extraction methods, and differentially expressed genes are selected from the integrated dataset. Use of the integrated dataset demonstrated improved performance as compared with conventional approaches that utilize gene expression or DNA methylation datasets alone. Validation based on the literature showed that a considerable number of top-ranked genes from the integrated dataset have known relationships with cancer, implying that novel candidate biomarkers can also be acquired from the proposed analysis method. Furthermore, we expect that the proposed method can be expanded for applications involving various types of multi-omics datasets.

  12. Retroviral DNA Integration Directed by HIV Integration Protein in Vitro

    Science.gov (United States)

    Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert

    1990-09-01

    Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.

  13. An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver

    Directory of Open Access Journals (Sweden)

    Xie Linglin

    2011-12-01

    Full Text Available Abstract Background Many groups, including our own, have proposed the use of DNA methylation profiles as biomarkers for various disease states. While much research has been done identifying DNA methylation signatures in cancer vs. normal etc., we still lack sufficient knowledge of the role that differential methylation plays during normal cellular differentiation and tissue specification. We also need thorough, genome level studies to determine the meaning of methylation of individual CpG dinucleotides in terms of gene expression. Results In this study, we have used (insert statistical method here to compile unique DNA methylation signatures from normal human heart, lung, and kidney using the Illumina Infinium 27 K methylation arraysand compared those to gene expression by RNA sequencing. We have identified unique signatures of global DNA methylation for human heart, kidney and liver, and showed that DNA methylation data can be used to correctly classify various tissues. It indicates that DNA methylation reflects tissue specificity and may play an important role in tissue differentiation. The integrative analysis of methylation and RNA-Seq data showed that gene methylation and its transcriptional levels were comprehensively correlated. The location of methylation markers in terms of distance to transcription start site and CpG island showed no effects on the regulation of gene expression by DNA methylation in normal tissues. Conclusions This study showed that an integrative analysis of methylation array and RNA-Seq data can be utilized to discover the global regulation of gene expression by DNA methylation and suggests that DNA methylation plays an important role in normal tissue differentiation via modulation of gene expression.

  14. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack

    Directory of Open Access Journals (Sweden)

    Hensel Goetz

    2012-09-01

    Full Text Available Abstract Background While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Results Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT and a synthetic green fluorescent protein gene (gfp. Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. Conclusions The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants.

  15. Analysis of T-DNA/Host-Plant DNA Junction Sequences in Single-Copy Transgenic Barley Lines

    Directory of Open Access Journals (Sweden)

    Joanne G. Bartlett

    2014-01-01

    Full Text Available Sequencing across the junction between an integrated transfer DNA (T-DNA and a host plant genome provides two important pieces of information. The junctions themselves provide information regarding the proportion of T-DNA which has integrated into the host plant genome, whilst the transgene flanking sequences can be used to study the local genetic environment of the integrated transgene. In addition, this information is important in the safety assessment of GM crops and essential for GM traceability. In this study, a detailed analysis was carried out on the right-border T-DNA junction sequences of single-copy independent transgenic barley lines. T-DNA truncations at the right-border were found to be relatively common and affected 33.3% of the lines. In addition, 14.3% of lines had rearranged construct sequence after the right border break-point. An in depth analysis of the host-plant flanking sequences revealed that a significant proportion of the T-DNAs integrated into or close to known repetitive elements. However, this integration into repetitive DNA did not have a negative effect on transgene expression.

  16. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    Science.gov (United States)

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  17. Opto-electronic DNA chip-based integrated card for clinical diagnostics.

    Science.gov (United States)

    Marchand, Gilles; Broyer, Patrick; Lanet, Véronique; Delattre, Cyril; Foucault, Frédéric; Menou, Lionel; Calvas, Bernard; Roller, Denis; Ginot, Frédéric; Campagnolo, Raymond; Mallard, Frédéric

    2008-02-01

    Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip or lab-on-card systems. DNA chips, which provide multiparametric data, are privileged tools for genomic analysis. However, automation of molecular biology protocol and use of these DNA chips in fully integrated systems remains a great challenge. Simplicity of chip and/or card/instrument interfaces is amongst the most critical issues to be addressed. Indeed, current detection systems for DNA chip reading are often complex, expensive, bulky and even limited in terms of sensitivity or accuracy. Furthermore, for liquid handling in the lab-on-cards, many devices use complex and bulky systems, either to directly manipulate fluids, or to ensure pneumatic or mechanical control of integrated valves. All these drawbacks prevent or limit the use of DNA-chip-based integrated systems, for point-of-care testing or as a routine diagnostics tool. We present here a DNA-chip-based protocol integration on a plastic card for clinical diagnostics applications including: (1) an opto-electronic DNA-chip, (2) fluid handling using electrically activated embedded pyrotechnic microvalves with closing/opening functions. We demonstrate both fluidic and electric packaging of the optoelectronic DNA chip without major alteration of its electronical and biological functionalities, and fluid control using novel electrically activable pyrotechnic microvalves. Finally, we suggest a complete design of a card dedicated to automation of a complex biological protocol with a fully electrical fluid handling and DNA chip reading.

  18. An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database

    Directory of Open Access Journals (Sweden)

    But Paul

    2010-06-01

    Full Text Available Abstract Background Thousands of plants and animals possess pharmacological properties and there is an increased interest in using these materials for therapy and health maintenance. Efficacies of the application is critically dependent on the use of genuine materials. For time to time, life-threatening poisoning is found because toxic adulterant or substitute is administered. DNA barcoding provides a definitive means of authentication and for conducting molecular systematics studies. Owing to the reduced cost in DNA authentication, the volume of the DNA barcodes produced for medicinal materials is on the rise and necessitates the development of an integrated DNA database. Description We have developed an integrated DNA barcode multimedia information platform- Medicinal Materials DNA Barcode Database (MMDBD for data retrieval and similarity search. MMDBD contains over 1000 species of medicinal materials listed in the Chinese Pharmacopoeia and American Herbal Pharmacopoeia. MMDBD also contains useful information of the medicinal material, including resources, adulterant information, medical parts, photographs, primers used for obtaining the barcodes and key references. MMDBD can be accessed at http://www.cuhk.edu.hk/icm/mmdbd.htm. Conclusions This work provides a centralized medicinal materials DNA barcode database and bioinformatics tools for data storage, analysis and exchange for promoting the identification of medicinal materials. MMDBD has the largest collection of DNA barcodes of medicinal materials and is a useful resource for researchers in conservation, systematic study, forensic and herbal industry.

  19. Damaging the Integrated HIV Proviral DNA with TALENs.

    Directory of Open Access Journals (Sweden)

    Christy L Strong

    Full Text Available HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs to target a highly conserved sequence in the transactivation response element (TAR of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.

  20. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.

    Science.gov (United States)

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred; Llosa, Matxalen

    2017-06-15

    Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site

  1. Quantitative analysis of plasma cell-free DNA and its DNA integrity in patients with metastatic prostate cancer using ALU sequence

    International Nuclear Information System (INIS)

    Fawzy, A.; Sweify, K.M.; Nofal, N.; El-Fayoumy, H.M.

    2016-01-01

    Background: Prostate cancer (PC) is the most common cancer affecting men, it accounts for 29% of all male cancer and 11% of all male cancer related death. DNA is normally released from an apoptotic source which generates small fragments of cell-free DNA, whereas cancer patients have cell-free circulating DNA that originated from necrosis, autophagy, or mitotic catastrophe, which produce large fragments. Aim of work: Differentiate the cell free DNA levels (cfDNA) and its integrity in prostate cancer patients and control group composed of benign prostate hyperplasia (BPH) and healthy persons. Methodology: cf-DNA levels were quantified by real-time PCR amplification in prostate cancer patients ( n = 50), (BPH) benign prostate hyperplasia ( n = 25) and healthy controls ( n = 30) using two sets of ALU gene (product size of 115 bp and 247-bp) and its integrity was calculated as a ratio of qPCR results of 247 bp ALU over 115 bp ALU. Results: Highly significant levels of cf-DNA and its integrity in PC patients compared to BPH. Twenty-eight (56%) patients with prostate cancer had bone metastasis. ALU115 qpcr is superior to the other markers in discriminating metastatic patients with a sensitivity of 96.4% and a specificity of 86.4% and (AUC = 0.981) Conclusion: ALU115 qpcr could be used as a valuable biomarker helping in identifying high risk patients, indicating early spread of tumor cells as a potential seed for future metastases

  2. Multi-color fluorescent DNA analysis in an integrated optofluidic lab on a chip

    NARCIS (Netherlands)

    Dongre, C.

    2010-01-01

    Abstract: Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. Furthermore by employing tiny lab-on-a-chip device, integrated DNA sequencing and genetic diagnostics have become feasible. We present the combination of capillary

  3. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    Science.gov (United States)

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample

  4. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits.

    Science.gov (United States)

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2016-08-22

    Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter-gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vitrification of neat semen alters sperm parameters and DNA integrity.

    Science.gov (United States)

    Khalili, Mohammad Ali; Adib, Maryam; Halvaei, Iman; Nabi, Ali

    2014-05-06

    Our aim was to evaluate the effect of neat semen vitrification on human sperm vital parameters and DNA integrity in men with normal and abnormal sperm parameters. Semen samples were 17 normozoospermic samples and 17 specimens with abnormal sperm parameters. Semen analysis was performed according to World Health Organization (WHO) criteria. Then, the smear was provided from each sample and fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Vitrification of neat semen was done by plunging cryoloops directly into liquid nitrogen and preserved for 7 days. The samples were warmed and re-evaluated for sperm parameters as well as DNA integrity. Besides, the correlation between sperm parameters and DNA fragmentation was assessed pre- and post vitrification. Cryopreserved spermatozoa showed significant decrease in sperm motility, viability and normal morphology after thawing in both normal and abnormal semen. Also, the rate of sperm DNA fragmentation was significantly higher after vitrification compared to fresh samples in normal (24.76 ± 5.03 and 16.41 ± 4.53, P = .002) and abnormal (34.29 ± 10.02 and 23.5 ± 8.31, P < .0001), respectively. There was negative correlation between sperm motility and sperm DNA integrity in both groups after vitrification. Vitrification of neat ejaculates has negative impact on sperm parameters as well as DNA integrity, particularly among abnormal semen subjects. It is, therefore, recommend to process semen samples and vitrify the sperm pellets.

  6. Investigation of DNA Integration into Reproductive Organs Following Intramuscular Injection of DNA in Mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Vahedi

    2012-10-01

    Full Text Available Background: DNA immunization with plasmid DNA encoding bacterial, viral, parasitic, and tumor antigens has been reported to trigger protective immunity. The use of plasmid DNA vaccinations against many diseases has produced promising results in animal and human clinical trials; however, safety concerns about the use of DNA vaccines exist, such as the possibility of integration into the host genome, and elicitation of adverse immune responses. Methods: In this study, we examined the potential integration and bio-distribution of pcDNA3.1+PA, a new vaccine candidate with GenBank accession # EF550208, encoding the PA63 gene, in reproductive organs of mice; ovaries and uterus in female, and testis in male. Animals of both sexes were injected intramuscularly with pcDNA3.1+PA. Host genome integration and tissue distribution were examined using PCR and RT-PCR two times monthly for six months. Results: RT-PCR confirmed that pcDNA3.1+PA was not integrated into the host genome and did not enter reproductive organs. Conclusions: This finding has important implications for the use of pcDNA3.1+PA plasmid as a vaccine and opens new perspectives in the DNA vaccine area.

  7. HBV DNA Integration: Molecular Mechanisms and Clinical Implications

    Science.gov (United States)

    Tu, Thomas; Budzinska, Magdalena A.; Shackel, Nicholas A.; Urban, Stephan

    2017-01-01

    Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies. PMID:28394272

  8. Incidence of genome structure, DNA asymmetry, and cell physiology on T-DNA integration in chromosomes of the phytopathogenic fungus Leptosphaeria maculans.

    Science.gov (United States)

    Bourras, Salim; Meyer, Michel; Grandaubert, Jonathan; Lapalu, Nicolas; Fudal, Isabelle; Linglin, Juliette; Ollivier, Benedicte; Blaise, Françoise; Balesdent, Marie-Hélène; Rouxel, Thierry

    2012-08-01

    The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens-mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.

  9. Microfluidic Devices for Forensic DNA Analysis: A Review.

    Science.gov (United States)

    Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han

    2016-08-05

    Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10-20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.

  10. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

    Science.gov (United States)

    Ghedira, Rim; De Buck, Sylvie; Van Ex, Frédéric; Angenon, Geert; Depicker, Ann

    2013-12-01

    T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.

  11. Cell kinetics, DNA integrity, differentiation, and lipid fingerprinting analysis of rabbit adipose-derived stem cells.

    Science.gov (United States)

    Barretto, Letícia Siqueira de Sá; Lessio, Camila; Sawaki e Nakamura, Ahy Natally; Lo Turco, Edson Guimarães; da Silva, Camila Gonzaga; Zambon, João Paulo; Gozzo, Fábio César; Pilau, Eduardo Jorge; de Almeida, Fernando Gonçalves

    2014-10-01

    Human adipose tissue has been described as a potential alternative reservoir for stem cells. Although studies have been performed in rabbits using autologous adipose-derived stem cells (ADSC), these cells have not been well characterized. The primary objectives of this study were to demonstrate the presence of adipose-derived stem cells isolated from rabbit inguinal fat pads and to characterize them through osteogenic and adipogenic in vitro differentiation and lipid fingerprinting analysis. The secondary objective was to evaluate cell behavior through growth kinetics, cell viability, and DNA integrity. Rabbit ADSCs were isolated to determine the in vitro growth kinetics and cell viability. DNA integrity was assessed by an alkaline Comet assay in passages 0 and 5. The osteogenic differentiation was evaluated by Von Kossa, and Alizarin Red S staining and adipogenic differentiation were assessed by Oil Red O staining. Lipid fingerprinting analyses of control, adipogenic, and osteogenic differentiated cells were performed by MALDI-TOF/MS. We demonstrate that rabbit ADSC have a constant growth rate at the early passages, with increased DNA fragmentation at or after passage 5. Rabbit ADSC viability was similar in passages 2 and 5 (90.7% and 86.6%, respectively), but there was a tendency to decreased cellular growth rate after passage 3. The ADSC were characterized by the expression of surface markers such as CD29 (67.4%) and CD44 (89.4%), using CD 45 (0.77%) as a negative control. ADSC from rabbits were successfully isolated form the inguinal region. These cells were capable to differentiate into osteogenic and adipogenic tissue when they were placed in inductive media. After each passage, there was a trend towards decreased cell growth. On the other hand, DNA fragmentation increased at each passage. ADSC had a different lipid profile when placed in control, adipogenic, or osteogenic media.

  12. A Micro Polymerase Chain Reaction Module for Integrated and Portable DNA Analysis Systems

    Directory of Open Access Journals (Sweden)

    Elisa Morganti

    2011-01-01

    Full Text Available This work deals with the design, fabrication, and thermal characterization of a disposable miniaturized Polymerase Chain Reaction (PCR module that will be integrated in a portable and fast DNA analysis system. It is composed of two independent parts: a silicon substrate with embedded heater and thermometers and a PDMS (PolyDiMethylSiloxane chamber reactor as disposable element; the contact between the two parts is assured by a mechanical clamping obtained using a Plastic Leaded Chip Carrier (PLCC. This PLCC is also useful, avoid the PCR mix evaporation during the thermal cycles. Finite Element Analysis was used to evaluate the thermal requirements of the device. The thermal behaviour of the device was characterized revealing that the temperature can be controlled with a precision of ±0.5°C. Different concentrations of carbon nanopowder were mixed to the PDMS curing agent in order to increase the PDMS thermal conductivity and so the temperature control accuracy.

  13. EFFECT OF SHORT-TERM ART INTERRUPTION ON LEVELS OF INTEGRATED HIV DNA.

    Science.gov (United States)

    Strongin, Zachary; Sharaf, Radwa; VanBelzen, D Jake; Jacobson, Jeffrey M; Connick, Elizabeth; Volberding, Paul; Skiest, Daniel J; Gandhi, Rajesh T; Kuritzkes, Daniel R; O'Doherty, Una; Li, Jonathan Z

    2018-03-28

    Analytic treatment interruption (ATI) studies are required to evaluate strategies aimed at achieving ART-free HIV remission, but the impact of ATI on the viral reservoir remains unclear. We validated a DNA size selection-based assay for measuring levels of integrated HIV DNA and applied it to assess the effects of short-term ATI on the HIV reservoir. Samples from participants from four AIDS Clinical Trials Group (ACTG) ATI studies were assayed for integrated HIV DNA levels. Cryopreserved PBMCs were obtained for 12 participants with available samples pre-ATI and approximately 6 months after ART resumption. Four participants also had samples available during the ATI. The median duration of ATI was 12 weeks. Validation of the HIV Integrated DNA size-Exclusion (HIDE) assay was performed using samples spiked with unintegrated HIV DNA, HIV-infected cell lines, and participant PBMCs. The HIDE assay eliminated 99% of unintegrated HIV DNA species and strongly correlated with the established Alu- gag assay. For the majority of individuals, integrated DNA levels increased during ATI and subsequently declined upon ART resumption. There was no significant difference in levels of integrated HIV DNA between the pre- and post-ATI time points, with the median ratio of post:pre-ATI HIV DNA levels of 0.95. Using a new integrated HIV DNA assay, we found minimal change in the levels of integrated HIV DNA in participants who underwent an ATI followed by 6 months of ART. This suggests that short-term ATI can be conducted without a significant impact on levels of integrated proviral DNA in the peripheral blood. IMPORTANCE Interventions aimed at achieving sustained antiretroviral therapy (ART)-free HIV remission require treatment interruption trials to assess their efficacy. However, these trials are accompanied by safety concerns related to the expansion of the viral reservoir. We validated an assay that uses an automated DNA size-selection platform for quantifying levels of integrated

  14. Identification of pathogenic genes related to rheumatoid arthritis through integrated analysis of DNA methylation and gene expression profiling.

    Science.gov (United States)

    Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie

    2017-11-15

    The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.

  15. Hepatitis B virus DNA integration and transactivation of cellular genes

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Chronic hepatitis B virus (HBV infection is etiologically related to human hepatocellular carcinoma (HCC. Most HCCs contain integrated HBV DNA in hepatocyte, suggesting that the integration may be involved in carcinogenesis. Available data on the integrants from human hepatocellular carcinomas seem to represent primary integrants as well as the products of secondary rearrangements. By means of structural analyses of the possible primary integrants, it has been observed that the replication intermediates of the viral genome are the preferred substrates for integration. The integrated HBV DNA and the target cellular DNA are invariably associated with deletions, possibly reflecting the substrate for, and the mechanism of, the integration reaction. The host DNA sequences as well as the target site of integration in chromosomes are selected randomly suggesting that HBV DNA integration should bring about random mutagenic effects. Analysis of the samples recovered from hepatocellular carcinomas show that the integrated HBV DNA can mediate secondary rearrangements of chromosomes, such as translocations, inversions, deletions and (possibly amplifications. The integration of HBV DNA into the host genome occurs at early steps of clonal tumor expansion. The integration has been shown in a number of cases to affect a variety of cancer-related genes and to exert insertional mutagenesis. However, in contrast to the woodchuck model, in which specific HBV-DNA integration is detectable in most cases, insertional activation or inactivation of cellular genes appears to be a rare event in man. The discovery of transactivating functions exerted by HBx and truncated HBs(urface proteins supports the notion that these could be relevant to hepatocarcinogenesis as these transactivator sequences have been found in a large number of HCC tumors or hepatoma-derived cell lines. The HBx

  16. Effects of different extenders on DNA integrity of boar spermatozoa following freezing-thawing.

    Science.gov (United States)

    Hu, Jian-hong; Li, Qing-wang; Jiang, Zhong-liang; Li, Wen-ye

    2008-12-01

    The sperm-rich fraction, collected from eight mature Yorkshire boars, was frozen in an extender containing 9% LDL (w/v), 100mM trehalose, or 20% yolk (v/v), respectively. Sperm DNA integrity was assessed using the single-cell gel electrophoresis (SCGE). Other sperm quality characteristics such as motility, acrosome and membrane integrity were also monitored. The results showed that freezing-thawing caused an increase in sperm DNA fragmentation, and extender containing 9% LDL could significantly protect sperm DNA integrity (Pextender containing 100mM trehalose and 20% yolk (v/v). No significant difference in damaged DNA was detected between frozen and unfrozen semen samples for extender of 9% LDL and 100mM trehalose, but cryopreservation could increase the degree of DNA damage (Pboar sperm DNA damage and protecting DNA integrity. It can be suggested that evaluation of sperm DNA integrity, coupled with correlative and basic characteristics such as motility, acrosome integrity and membrane integrity, may aid in determining the quality of frozen boar semen.

  17. Integration of hepatitis B virus DNA in chromosome-specific satellite sequences

    International Nuclear Information System (INIS)

    Shaul, Y.; Garcia, P.D.; Schonberg, S.; Rutter, W.J.

    1986-01-01

    The authors previously reported the cloning and detailed analysis of the integrated hepatitis B virus sequences in a human hepatoma cell line. They report here the integration of at least one of hepatitis B virus at human satellite DNA sequences. The majority of the cellular sequences identified by this satellite were organized as a multimeric composition of a 0.6-kilobase EcoRI fragment. This clone hybridized in situ almost exclusively to the centromeric heterochromatin of chromosomes 1 and 16 and to a lower extent to chromosome 2 and to the heterochromatic region of the Y chromosome. The immediate flanking host sequence appeared as a hierarchy of repeating units which were almost identical to a previously reported human satellite III DNA sequence

  18. Agrobacterium May Delay Plant Nonhomologous End-Joining DNA Repair via XRCC4 to Favor T-DNA Integration[W

    Science.gov (United States)

    Vaghchhipawala, Zarir E.; Vasudevan, Balaji; Lee, Seonghee; Morsy, Mustafa R.; Mysore, Kirankumar S.

    2012-01-01

    Agrobacterium tumefaciens is a soilborne pathogen that causes crown gall disease in many dicotyledonous plants by transfer of a portion of its tumor-inducing plasmid (T-DNA) into the plant genome. Several plant factors that play a role in Agrobacterium attachment to plant cells and transport of T-DNA to the nucleus have been identified, but the T-DNA integration step during transformation is poorly understood and has been proposed to occur via nonhomologous end-joining (NHEJ)–mediated double-strand DNA break (DSB) repair. Here, we report a negative role of X-RAY CROSS COMPLEMENTATION GROUP4 (XRCC4), one of the key proteins required for NHEJ, in Agrobacterium T-DNA integration. Downregulation of XRCC4 in Arabidopsis and Nicotiana benthamiana increased stable transformation due to increased T-DNA integration. Overexpression of XRCC4 in Arabidopsis decreased stable transformation due to decreased T-DNA integration. Interestingly, XRCC4 directly interacted with Agrobacterium protein VirE2 in a yeast two-hybrid system and in planta. VirE2-expressing Arabidopsis plants were more susceptible to the DNA damaging chemical bleomycin and showed increased stable transformation. We hypothesize that VirE2 titrates or excludes active XRCC4 protein available for DSB repair, thus delaying the closure of DSBs in the chromosome, providing greater opportunity for T-DNA to integrate. PMID:23064322

  19. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    Science.gov (United States)

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  20. Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites.

    Science.gov (United States)

    Yao, Jia-Long; Tomes, Sumathi; Gleave, Andrew P

    2013-05-01

    Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 μg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 μg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 μg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.

  1. Conformational Analysis of DNA Repair Intermediates by Time-Resolved Fluorescence Spectroscopy

    OpenAIRE

    Lin, Su; Horning, David P.; Szostak, Jack W.; Chaput, John C.

    2009-01-01

    DNA repair enzymes are essential for maintaining the integrity of the DNA sequence. Unfortunately, very little is known about how these enzymes recognize damaged regions along the helix. Structural analysis of cellular repair enzymes bound to DNA reveals that these enzymes are able to recognize DNA in a variety of conformations. However, the prevalence of these deformations in the absence of enzymes remains unclear, as small populations of DNA conformations are often difficult to detect by NM...

  2. Maintenance of host DNA integrity in field-preserved mosquito (Diptera: Culicidae) blood meals for identification by DNA barcoding.

    Science.gov (United States)

    Reeves, Lawrence E; Holderman, Chris J; Gillett-Kaufman, Jennifer L; Kawahara, Akito Y; Kaufman, Phillip E

    2016-09-15

    Determination of the interactions between hematophagous arthropods and their hosts is a necessary component to understanding the transmission dynamics of arthropod-vectored pathogens. Current molecular methods to identify hosts of blood-fed arthropods require the preservation of host DNA to serve as an amplification template. During transportation to the laboratory and storage prior to molecular analysis, genetic samples need to be protected from nucleases, and the degradation effects of hydrolysis, oxidation and radiation. Preservation of host DNA contained in field-collected blood-fed specimens has an additional caveat: suspension of the degradative effects of arthropod digestion on host DNA. Unless effective preservation methods are implemented promptly after blood-fed specimens are collected, host DNA will continue to degrade. Preservation methods vary in their efficacy, and need to be selected based on the logistical constraints of the research program. We compared four preservation methods (cold storage at -20 °C, desiccation, ethanol storage of intact mosquito specimens and crushed specimens on filter paper) for field storage of host DNA from blood-fed mosquitoes across a range of storage and post-feeding time periods. The efficacy of these techniques in maintaining host DNA integrity was evaluated using a polymerase chain reaction (PCR) to detect the presence of a sufficient concentration of intact host DNA templates for blood meal analysis. We applied a logistic regression model to assess the effects of preservation method, storage time and post-feeding time on the binomial response variable, amplification success. Preservation method, storage time and post-feeding time all significantly impacted PCR amplification success. Filter papers and, to a lesser extent, 95 % ethanol, were the most effective methods for the maintenance of host DNA templates. Amplification success of host DNA preserved in cold storage at -20 °C and desiccation was poor. Our data

  3. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  4. Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices.

    Science.gov (United States)

    Fraiture, Marie-Alice; Herman, Philippe; Lefèvre, Loic; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2015-08-14

    In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system. First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix.

  5. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  6. Lentivector Integration Sites in Ependymal Cells From a Model of Metachromatic Leukodystrophy: Non-B DNA as a New Factor Influencing Integration

    Science.gov (United States)

    McAllister, Robert G; Liu, Jiahui; Woods, Matthew W; Tom, Sean K; Rupar, C Anthony; Barr, Stephen D

    2014-01-01

    The blood–brain barrier controls the passage of molecules from the blood into the central nervous system (CNS) and is a major challenge for treatment of neurological diseases. Metachromatic leukodystrophy is a neurodegenerative lysosomal storage disease caused by loss of arylsulfatase A (ARSA) activity. Gene therapy via intraventricular injection of a lentiviral vector is a potential approach to rapidly and permanently deliver therapeutic levels of ARSA to the CNS. We present the distribution of integration sites of a lentiviral vector encoding human ARSA (LV-ARSA) in murine brain choroid plexus and ependymal cells, administered via a single intracranial injection into the CNS. LV-ARSA did not exhibit a strong preference for integration in or near actively transcribed genes, but exhibited a strong preference for integration in or near satellite DNA. We identified several genomic hotspots for LV-ARSA integration and identified a consensus target site sequence characterized by two G-quadruplex-forming motifs flanking the integration site. In addition, our analysis identified several other non-B DNA motifs as new factors that potentially influence lentivirus integration, including human immunodeficiency virus type-1 in human cells. Together, our data demonstrate a clinically favorable integration site profile in the murine brain and identify non-B DNA as a potential new host factor that influences lentiviral integration in murine and human cells. PMID:25158091

  7. Integrated genetic analysis microsystems

    International Nuclear Information System (INIS)

    Lagally, Eric T; Mathies, Richard A

    2004-01-01

    With the completion of the Human Genome Project and the ongoing DNA sequencing of the genomes of other animals, bacteria, plants and others, a wealth of new information about the genetic composition of organisms has become available. However, as the demand for sequence information grows, so does the workload required both to generate this sequence and to use it for targeted genetic analysis. Microfabricated genetic analysis systems are well poised to assist in the collection and use of these data through increased analysis speed, lower analysis cost and higher parallelism leading to increased assay throughput. In addition, such integrated microsystems may point the way to targeted genetic experiments on single cells and in other areas that are otherwise very difficult. Concomitant with these advantages, such systems, when fully integrated, should be capable of forming portable systems for high-speed in situ analyses, enabling a new standard in disciplines such as clinical chemistry, forensics, biowarfare detection and epidemiology. This review will discuss the various technologies available for genetic analysis on the microscale, and efforts to integrate them to form fully functional robust analysis devices. (topical review)

  8. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika

    2012-01-01

    in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present...... in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial......Q helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity....

  9. Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity

    Directory of Open Access Journals (Sweden)

    Tahereh Rahiminia

    2017-08-01

    Conclusion: Sperm in Vapour was healthier in terms of DNA, chromatin and acrosome integrity. In contrast of higher motility and normal morphology; DNA, chromatin and acrosome integrity were decreased in Vit. However, these findings were more acceptable in SSV or Vapour.

  10. A Single-Molecule Barcoding System using Nanoslits for DNA Analysis

    Science.gov (United States)

    Jo, Kyubong; Schramm, Timothy M.; Schwartz, David C.

    Single DNA molecule approaches are playing an increasingly central role in the analytical genomic sciences because single molecule techniques intrinsically provide individualized measurements of selected molecules, free from the constraints of bulk techniques, which blindly average noise and mask the presence of minor analyte components. Accordingly, a principal challenge that must be addressed by all single molecule approaches aimed at genome analysis is how to immobilize and manipulate DNA molecules for measurements that foster construction of large, biologically relevant data sets. For meeting this challenge, this chapter discusses an integrated approach for microfabricated and nanofabricated devices for the manipulation of elongated DNA molecules within nanoscale geometries. Ideally, large DNA coils stretch via nanoconfinement when channel dimensions are within tens of nanometers. Importantly, stretched, often immobilized, DNA molecules spanning hundreds of kilobase pairs are required by all analytical platforms working with large genomic substrates because imaging techniques acquire sequence information from molecules that normally exist in free solution as unrevealing random coils resembling floppy balls of yarn. However, nanoscale devices fabricated with sufficiently small dimensions fostering molecular stretching make these devices impractical because of the requirement of exotic fabrication technologies, costly materials, and poor operational efficiencies. In this chapter, such problems are addressed by discussion of a new approach to DNA presentation and analysis that establishes scaleable nanoconfinement conditions through reduction of ionic strength; stiffening DNA molecules thus enabling their arraying for analysis using easily fabricated devices that can also be mass produced. This new approach to DNA nanoconfinement is complemented by the development of a novel labeling scheme for reliable marking of individual molecules with fluorochrome labels

  11. DNA-Enabled Integrated Molecular Systems for Computation and Sensing

    Science.gov (United States)

    2014-05-21

    Computational devices can be chemically conjugated to different strands of DNA that are then self-assembled according to strict Watson − Crick binding rules... DNA -Enabled Integrated Molecular Systems for Computation and Sensing Craig LaBoda,† Heather Duschl,† and Chris L. Dwyer*,†,‡ †Department of...guided folding of DNA , inspired by nature, allows designs to manipulate molecular-scale processes unlike any other material system. Thus, DNA can be

  12. GenomeCAT: a versatile tool for the analysis and integrative visualization of DNA copy number variants.

    Science.gov (United States)

    Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard

    2017-01-06

    The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of

  13. A patch-clamp ASIC for nanopore-based DNA analysis.

    Science.gov (United States)

    Kim, Jungsuk; Maitra, Raj; Pedrotti, Kenneth D; Dunbar, William B

    2013-06-01

    In this paper, a fully integrated high-sensitivity patch-clamp system is proposed for single-molecule deoxyribonucleic acid (DNA) analysis using a nanopore sensor. This system is composed of two main blocks for amplification and compensation. The amplification block is composed of three stages: 1) a headstage, 2) a voltage-gain difference amplifier, and 3) a track-and-hold circuit, that amplify a minute ionic current variation sensed by the nanopore while the compensation block avoids the headstage saturation caused by the input parasitic capacitances during sensing. By employing design techniques novel for this application, such as an instrumentation--amplifier topology and a compensation switch, we minimize the deleterious effects of the input-offset voltage and the input parasitic capacitances while attaining hardware simplicity. This system is fabricated in a 0.35 μm 4M2P CMOS process and is demonstrated using an α-hemolysin protein nanopore for detection of individual molecules of single-stranded DNA that pass through the 1.5 nm-diameter pore. In future work, the refined system will functionalize single and multiple solid-state nanopores formed in integrated microfluidic devices for advanced DNA analysis, in scientific and diagnostic applications.

  14. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA.

    Science.gov (United States)

    Zelensky, Alex N; Schimmel, Joost; Kool, Hanneke; Kanaar, Roland; Tijsterman, Marcel

    2017-07-07

    Off-target or random integration of exogenous DNA hampers precise genomic engineering and presents a safety risk in clinical gene therapy strategies. Genetic definition of random integration has been lacking for decades. Here, we show that the A-family DNA polymerase θ (Pol θ) promotes random integration, while canonical non-homologous DNA end joining plays a secondary role; cells double deficient for polymerase θ and canonical non-homologous DNA end joining are devoid of any integration events, demonstrating that these two mechanisms define random integration. In contrast, homologous recombination is not reduced in these cells and gene targeting is improved to 100% efficiency. Such complete reversal of integration outcome, from predominately random integration to exclusively gene targeting, provides a rational way forward to improve the efficacy and safety of DNA delivery and gene correction approaches.Random off-target integration events can impair precise gene targeting and poses a safety risk for gene therapy. Here the authors show that repression of polymerase θ and classical non-homologous recombination eliminates random integration.

  15. UPDG: Utilities package for data analysis of Pooled DNA GWAS

    Directory of Open Access Journals (Sweden)

    Ho Daniel WH

    2012-01-01

    Full Text Available Abstract Background Despite being a well-established strategy for cost reduction in disease gene mapping, pooled DNA association study is much less popular than the individual DNA approach. This situation is especially true for pooled DNA genomewide association study (GWAS, for which very few computer resources have been developed for its data analysis. This motivates the development of UPDG (Utilities package for data analysis of Pooled DNA GWAS. Results UPDG represents a generalized framework for data analysis of pooled DNA GWAS with the integration of Unix/Linux shell operations, Perl programs and R scripts. With the input of raw intensity data from GWAS, UPDG performs the following tasks in a stepwise manner: raw data manipulation, correction for allelic preferential amplification, normalization, nested analysis of variance for genetic association testing, and summarization of analysis results. Detailed instructions, procedures and commands are provided in the comprehensive user manual describing the whole process from preliminary preparation of software installation to final outcome acquisition. An example dataset (input files and sample output files is also included in the package so that users can easily familiarize themselves with the data file formats, working procedures and expected output. Therefore, UPDG is especially useful for users with some computer knowledge, but without a sophisticated programming background. Conclusions UPDG provides a free, simple and platform-independent one-stop service to scientists working on pooled DNA GWAS data analysis, but with less advanced programming knowledge. It is our vision and mission to reduce the hindrance for performing data analysis of pooled DNA GWAS through our contribution of UPDG. More importantly, we hope to promote the popularity of pooled DNA GWAS, which is a very useful research strategy.

  16. DNA methylation results depend on DNA integrity – role of post mortem interval

    Directory of Open Access Journals (Sweden)

    Mathias eRhein

    2015-05-01

    Full Text Available Major questions of neurological and psychiatric mechanisms involve the brain functions on a molecular level and cannot be easily addressed due to limitations in access to tissue samples. Post mortem studies are able to partly bridge the gap between brain tissue research retrieved from animal trials and the information derived from peripheral analysis (e.g. measurements in blood cells in patients. Here, we wanted to know how fast DNA degradation is progressing under controlled conditions in order to define thresholds for tissue quality to be used in respective trials. Our focus was on the applicability of partly degraded samples for bisulfite sequencing and the determination of simple means to define cut-off values.After opening the brain cavity, we kept two consecutive pig skulls at ambient temperature (19-21°C and removed cortex tissue up to a post mortem interval (PMI of 120h. We calculated the percentage of degradation on DNA gel electrophoresis of brain DNA to estimate quality and relate this estimation spectrum to the quality of human post-mortem control samples. Functional DNA quality was investigated by bisulfite sequencing of two functionally relevant genes for either the serotonin receptor 5 (SLC6A4 or aldehyde dehydrogenase 2 (ALDH2.Testing our approach in a heterogeneous collective of human blood and brain samples, we demonstrate integrity of measurement quality below the threshold of 72h PMI.While sequencing technically worked for all timepoints irrespective of conceivable DNA degradation, there is a good correlation between variance of methylation to degradation levels documented in the gel (R2=0.4311, p=0.0392 for advancing post mortem intervals (PMI. This otherwise elusive phenomenon is an important prerequisite for the interpretation and evaluation of samples prior to in-depth processing via an affordable and easy assay to estimate identical sample quality and thereby comparable methylation measurements.

  17. Measurement of DNA integrity in marine gastropods as biomarker of genotoxicity

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Vashistha, D.; Gupta, N.; Malik, K.; Gaitonde, D.C.S.

    to identify the hot spot of pollution due to genotoxic compounds, the DNA damage was measured in terms of the loss of DNA integrity in marine gastropods due to the occurrence of DNA strand breaks following the technique of time dependent partially alkaline...

  18. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity.

    Science.gov (United States)

    Maettner, R; Sterzik, K; Isachenko, V; Strehler, E; Rahimi, G; Alabart, J L; Sánchez, R; Mallmann, P; Isachenko, E

    2014-06-01

    The aim of this work is to establish the relationship between the morphology of Intracytoplasmic Morphologically Selected Sperm Injection (IMSI)-selected spermatozoa and their DNA integrity. The 45 ejaculates were randomly distributed into three treatment groups: normozoospermic, oligoasthenozoospermic and oligoasthenotheratozoospermic samples. The evaluation of DNA integrity was performed using the sperm chromatin dispersion test. It was established that DNA integrity of spermatozoa is strongly dependent on ejaculate quality (P count of spermatozoa with nonfragmented DNA in normozoospermic samples was high and independent from IMSI-morphological classes (Class 1 versus Class 3, respectively) (P > 0.1). With decreased ejaculate quality, the percentage of spermatozoa with nonfragmented DNA decreased significantly (P < 0.05) independent from morphological class. Nevertheless, the rate of IMSI-selected spermatozoa with fragmented DNA within of Class 1 in normozoospermic (Group 1), in oligoasthenozoospermic (Group 2) and in oligoasthenotheratozoospermic (Group 3) samples was 21.1%, 31.8% and 54.1%, respectively. In conclusion, there is a direct relationship between morphological parameters of spermatozoa and their DNA integrity. However, the IMSI technique alone is not enough for the selection of spermatozoa with intact nuclei. © 2013 Blackwell Verlag GmbH.

  19. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.

    Science.gov (United States)

    Hernández-Neuta, Iván; Pereiro, Iago; Ahlford, Annika; Ferraro, Davide; Zhang, Qiongdi; Viovy, Jean-Louis; Descroix, Stéphanie; Nilsson, Mats

    2018-04-15

    Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120μL of DNA dilution at flow rates ranging from 1 to 5μL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Trans-activation function of a 3' truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    International Nuclear Information System (INIS)

    Takada, Shinako; Koike, Katsuro

    1990-01-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3' end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product

  1. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.

    Directory of Open Access Journals (Sweden)

    Rick S Mitchell

    2004-08-01

    Full Text Available The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV, avian sarcoma-leukosis virus (ASLV, and murine leukemia virus (MLV. Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection.

  2. Detection of Hepatocyte Clones Containing Integrated Hepatitis B Virus DNA Using Inverse Nested PCR.

    Science.gov (United States)

    Tu, Thomas; Jilbert, Allison R

    2017-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC), leading to ~600,000 deaths per year worldwide. Many of the steps that occur during progression from the normal liver to cirrhosis and/or HCC are unknown. Integration of HBV DNA into random sites in the host cell genome occurs as a by-product of the HBV replication cycle and forms a unique junction between virus and cellular DNA. Analyses of integrated HBV DNA have revealed that HCCs are clonal and imply that they develop from the transformation of hepatocytes, the only liver cell known to be infected by HBV. Integrated HBV DNA has also been shown, at least in some tumors, to cause insertional mutagenesis in cancer driver genes, which may facilitate the development of HCC. Studies of HBV DNA integration in the histologically normal liver have provided additional insight into HBV-associated liver disease, suggesting that hepatocytes with a survival or growth advantage undergo high levels of clonal expansion even in the absence of oncogenic transformation. Here we describe inverse nested PCR (invPCR), a highly sensitive method that allows detection, sequencing, and enumeration of virus-cell DNA junctions formed by the integration of HBV DNA. The invPCR protocol is composed of two major steps: inversion of the virus-cell DNA junction and single-molecule nested PCR. The invPCR method is highly specific and inexpensive and can be tailored to DNA extracted from large or small amounts of liver. This procedure also allows detection of genome-wide random integration of any known DNA sequence and is therefore a useful technique for molecular biology, virology, and genetic research.

  3. Penalized differential pathway analysis of integrative oncogenomics studies.

    Science.gov (United States)

    van Wieringen, Wessel N; van de Wiel, Mark A

    2014-04-01

    Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature.

  4. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    Science.gov (United States)

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  5. Enhancing yeast transcription analysis through integration of heterogeneous data

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Nielsen, Jens

    2004-01-01

    of Saccharomyces cerevisiae whole genome transcription data. A special focus is on the quantitative aspects of normalisation and mathematical modelling approaches, since they are expected to play an increasing role in future DNA microarray analysis studies. Data analysis is exemplified with cluster analysis......DNA microarray technology enables the simultaneous measurement of the transcript level of thousands of genes. Primary analysis can be done with basic statistical tools and cluster analysis, but effective and in depth analysis of the vast amount of transcription data requires integration with data...... from several heterogeneous data Sources, such as upstream promoter sequences, genome-scale metabolic models, annotation databases and other experimental data. In this review, we discuss how experimental design, normalisation, heterogeneous data and mathematical modelling can enhance analysis...

  6. Hepatitis B virus DNA integration in hepatocellular carcinoma after interferon-induced disappearance of hepatitis C virus.

    Science.gov (United States)

    Tamori, Akihiro; Nishiguchi, Shuhei; Shiomi, Susumu; Hayashi, Takehiro; Kobayashi, Sawako; Habu, Daiki; Takeda, Tadashi; Seki, Shuichi; Hirohashi, Kazuhiro; Tanaka, Hiromu; Kubo, Shoji

    2005-08-01

    Hepatocellular carcinoma (HCC) has been reported in patients in whom hepatitis C virus (HCV) was eliminated by interferon (IFN) therapy. We examined the pathogenesis of HCC in patients with sustained viral response. Operable HCC developed in 7 of 342 patients cured of HCV infection by IFN monotherapy. No patient abused alcohol or had diabetes mellitus or obesity. Resected specimens of HCC were histologically evaluated. DNA extracted from HCC was examined by polymerase chain reaction (PCR) to locate hepatitis B virus (HBV) DNA. HBV integration sites in human genome were identified by cassette-ligation-mediated PCR. HBV DNA was not amplified in serum samples from any of the seven patients with HCC and was found in liver in four patients. In the latter four patients, HBV DNA was integrated into the human genome of HCC. In two of these patients, covalently closed circular HBV (cccHBV) was also detected. The patients with HBV DNA integration were free of HCV for more than 3 yr. In two of the three patients without HBV DNA integration, the surrounding liver showed cirrhosis. The liver of HCC with HBV DNA integration had not progressed to cirrhosis. Three of the four tumors with HBV integration had one integration site each, located at chromosomes 11q12, 11q22-23, and 22q11, respectively. The other tumor had two integration sites, situated at chromosomes 11q13 and 14q32. At chromosome 11q12, HBV DNA was integrated into protein-coding genome, the function of which remains unclear. Integrated HBV DNA may play a role in hepatocarcinogenesis after the clearance of HCV by IFN treatment.

  7. A multi-landing pad DNA integration platform for mammalian cell engineering

    Science.gov (United States)

    Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron

    2018-01-01

    Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873

  8. Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca.

    Science.gov (United States)

    Oosumi, Teruko; Ruiz-Rojas, Juan Jairo; Veilleux, Richard E; Dickerman, Allan; Shulaev, Vladimir

    2010-09-01

    Reverse genetics is used for functional genomics research in model plants. To establish a model system for the systematic reverse genetics research in the Rosaceae family, we analyzed genomic DNA flanking the T-DNA insertions in 191 transgenic plants of the diploid strawberry, Fragaria vesca. One hundred and seventy-six T-DNA flanking sequences were amplified from the right border (RB) and 37 from the left border (LB) by thermal asymmetric interlaced PCR. Analysis of the T-DNA nick positions revealed that T-DNA was most frequently nicked at the cleavage sites. Analysis of 11 T-DNA integration sites indicated that T-DNA was integrated into the F. vesca genome by illegitimate recombination, as reported in other model plants: Arabidopsis, rice and tobacco. First, deletion of DNA was found at T-DNA integration target sites in all transgenic plants tested. Second, microsimilarities of a few base pairs between the left and/or right ends of the T-DNA and genomic sites were found in all transgenic plants tested. Finally, filler DNA was identified in four break-points. Out of 191 transgenic plants, T-DNA flanking sequences of 79 plants (41%) showed significant similarity to genes, elements or proteins of other plant species and 67 (35%) of the sequences are still unknown strawberry gene fragments. T-DNA flanking sequences of 126 plants (66%) showed homology to plant ESTs. This is the first report of T-DNA integration in a sizeable population of a rosaceous species. We have shown in this paper that T-DNA integration in strawberry is not random but directed by sequence microsimilarities in the host genome.

  9. T-DNA integration patterns in transgenic maize lines mediated by ...

    African Journals Online (AJOL)

    These results demonstrate that cleavage occurs not only during the T-DNA borders but also inside or outside the borders. The border sequences and some inside sequences can be deleted, and filler sequences can be inserted. Illegitimate recombination is a major pattern of T-DNA integration, while some hot spots and ...

  10. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction.

    Science.gov (United States)

    Ririe, K M; Rasmussen, R P; Wittwer, C T

    1997-02-15

    A microvolume fluorometer integrated with a thermal cycler was used to acquire DNA melting curves during polymerase chain reaction by fluorescence monitoring of the double-stranded DNA specific dye SYBR Green I. Plotting fluorescence as a function of temperature as the thermal cycler heats through the dissociation temperature of the product gives a DNA melting curve. The shape and position of this DNA melting curve are functions of the GC/AT ratio, length, and sequence and can be used to differentiate amplification products separated by less than 2 degrees C in melting temperature. Desired products can be distinguished from undesirable products, in many cases eliminating the need for gel electrophoresis. Analysis of melting curves can extend the dynamic range of initial template quantification when amplification is monitored with double-stranded DNA specific dyes. Complete amplification and analysis of products can be performed in less than 15 min.

  11. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas

    International Nuclear Information System (INIS)

    Sriram, Krishna B; Courtney, Deborah; Yang, Ian A; Bowman, Rayleen V; Fong, Kwun M; Relan, Vandana; Clarke, Belinda E; Duhig, Edwina E; Windsor, Morgan N; Matar, Kevin S; Naidoo, Rishendran; Passmore, Linda; McCaul, Elizabeth

    2012-01-01

    The diagnosis of malignant pleural effusions (MPE) is often clinically challenging, especially if the cytology is negative for malignancy. DNA integrity index has been reported to be a marker of malignancy. The aim of this study was to evaluate the utility of pleural fluid DNA integrity index in the diagnosis of MPE. We studied 75 pleural fluid and matched serum samples from consecutive subjects. Pleural fluid and serum ALU DNA repeats [115bp, 247bp and 247bp/115bp ratio (DNA integrity index)] were assessed by real-time quantitative PCR. Pleural fluid and serum mesothelin levels were quantified using ELISA. Based on clinico-pathological evaluation, 52 subjects had MPE (including 16 mesotheliomas) and 23 had benign effusions. Pleural fluid DNA integrity index was higher in MPE compared with benign effusions (1.2 vs. 0.8; p<0.001). Cytology had a sensitivity of 55% in diagnosing MPE. If cytology and pleural fluid DNA integrity index were considered together, they exhibited 81% sensitivity and 87% specificity in distinguishing benign and malignant effusions. In cytology-negative pleural effusions (35 MPE and 28 benign effusions), elevated pleural fluid DNA integrity index had an 81% positive predictive value in detecting MPEs. In the detection of mesothelioma, at a specificity of 90%, pleural fluid DNA integrity index had similar sensitivity to pleural fluid and serum mesothelin (75% each respectively). Pleural fluid DNA integrity index is a promising diagnostic biomarker for identification of MPEs, including mesothelioma. This biomarker may be particularly useful in cases of MPE where pleural aspirate cytology is negative, and could guide the decision to undertake more invasive definitive testing. A prospective validation study is being undertaken to validate our findings and test the clinical utility of this biomarker for altering clinical practice

  12. An integrated system for genetic analysis

    Directory of Open Access Journals (Sweden)

    Duan Xiao

    2006-04-01

    Full Text Available Abstract Background Large-scale genetic mapping projects require data management systems that can handle complex phenotypes and detect and correct high-throughput genotyping errors, yet are easy to use. Description We have developed an Integrated Genotyping System (IGS to meet this need. IGS securely stores, edits and analyses genotype and phenotype data. It stores information about DNA samples, plates, primers, markers and genotypes generated by a genotyping laboratory. Data are structured so that statistical genetic analysis of both case-control and pedigree data is straightforward. Conclusion IGS can model complex phenotypes and contain genotypes from whole genome association studies. The database makes it possible to integrate genetic analysis with data curation. The IGS web site http://bioinformatics.well.ox.ac.uk/project-igs.shtml contains further information.

  13. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics.

    Science.gov (United States)

    De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos

    2014-06-01

    Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.

  14. Plasma cell-free DNA and its DNA integrity as biomarker to distinguish prostate cancer from benign prostatic hyperplasia in patients with increased serum prostate-specific antigen.

    Science.gov (United States)

    Feng, Jiang; Gang, Feng; Li, Xiao; Jin, Tang; Houbao, Huang; Yu, Cao; Guorong, Li

    2013-08-01

    To investigate whether plasma cell-free DNA (cfDNA) or its integrity could differentiate prostate cancer from benign prostate hyperplasia (BPH) in patients with serum prostate-specific antigen (PSA) ≥ 4 ng/ml. Ninety-six patients with prostate cancer and 112 patients with BPH were enrolled. cfDNA levels in plasma before prostate biopsy were quantified by real-time PCR amplification of ALU gene (product size of 115 bp), and quantitative ratio of ALU (247 bp) to ALU (115 bp) reflected the integrity of cfDNA. In patients with serum PSA ≥ 4 ng/ml, there were significant differences in plasma cfDNA or its integrity between the patients with prostate cancer (19.74 ± 4.43, 0.34 ± 0.05) and patients with BPH (7.36 ± 1.58, 0.19 ± 0.03; P Prostate cancer could be differentiated with a sensitivity of 73.2 % and a specificity of 72.7 % by cfDNA (AUC = 0.864). The integrity of cfDNA had a sensitivity of 81.7 % and a specificity of 78.8 % for the distinguishing prostate cancer from BPH (AUC = 0.910). cfDNA and its integrity could be applied to differentiate prostate cancer from BPH in patients with serum PSA ≥ 4 ng/ml.

  15. Retroviral DNA integration: viral and cellular determinants of target-site selection.

    Directory of Open Access Journals (Sweden)

    Mary K Lewinski

    2006-06-01

    Full Text Available Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV integrates preferentially within active transcription units, whereas murine leukemia virus (MLV integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN coding region into HIV (to make HIVmIN caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I-hypersensitive sites (i.e., +/- 1 kb, and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins.

  16. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via NTCP-dependent uptake of enveloped virus particles.

    Science.gov (United States)

    Tu, Thomas; Budzinska, Magdalena A; Vondran, Florian W R; Shackel, Nicholas A; Urban, Stephan

    2018-02-07

    Chronic infection by the Hepatitis B Virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (cccDNA), integration of HBV DNA into the host cell genome is regularly observed in the liver of infected patients. While reported as a pro-oncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well-understood, chiefly due to the lack of in vitro infection models that have detectable integration events. Here, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10000 cells, with the most consistent detection in Huh7-NTCP cells. Integration rate remained stable between 3 and 9 days post-infection. HBV DNA integration was efficiently blocked by treatment with 200nM of the HBV entry inhibitor Myrcludex B, but not with 10μM Tenofovir, 100U Interferon alpha, or 1μM of the capsid assembly inhibitor GLS4. This suggests integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration. Importance Hepatitis B Virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer

  17. Meta-Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression and Epigenetics

    Directory of Open Access Journals (Sweden)

    Janet M. Doolittle-Hall

    2015-11-01

    Full Text Available Oncoviruses cause tremendous global cancer burden. For several DNA tumor viruses, human genome integration is consistently associated with cancer development. However, genomic features associated with tumor viral integration are poorly understood. We sought to define genomic determinants for 1897 loci prone to hosting human papillomavirus (HPV, hepatitis B virus (HBV or Merkel cell polyomavirus (MCPyV. These were compared to HIV, whose enzyme-mediated integration is well understood. A comprehensive catalog of integration sites was constructed from the literature and experimentally-determined HPV integration sites. Features were scored in eight categories (genes, expression, open chromatin, histone modifications, methylation, protein binding, chromatin segmentation and repeats and compared to random loci. Random forest models determined loci classification and feature selection. HPV and HBV integrants were not fragile site associated. MCPyV preferred integration near sensory perception genes. Unique signatures of integration-associated predictive genomic features were detected. Importantly, repeats, actively-transcribed regions and histone modifications were common tumor viral integration signatures.

  18. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    Science.gov (United States)

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  19. Traumatic stress and accelerated DNA methylation age: A meta-analysis.

    Science.gov (United States)

    Wolf, Erika J; Maniates, Hannah; Nugent, Nicole; Maihofer, Adam X; Armstrong, Don; Ratanatharathorn, Andrew; Ashley-Koch, Allison E; Garrett, Melanie; Kimbrel, Nathan A; Lori, Adriana; Va Mid-Atlantic Mirecc Workgroup; Aiello, Allison E; Baker, Dewleen G; Beckham, Jean C; Boks, Marco P; Galea, Sandro; Geuze, Elbert; Hauser, Michael A; Kessler, Ronald C; Koenen, Karestan C; Miller, Mark W; Ressler, Kerry J; Risbrough, Victoria; Rutten, Bart P F; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Uddin, Monica; Smith, Alicia K; Nievergelt, Caroline M; Logue, Mark W

    2018-06-01

    Recent studies examining the association between posttraumatic stress disorder (PTSD) and accelerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age, have yielded mixed results. We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in association with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (combined N = 2186). Associations between demographic and cellular variables and accelerated DNA methylation age were also examined, as was the moderating influence of demographic variables. Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma exposure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced significant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps = 0.028 and 0.016, respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated with accelerated DNA methylation age (all ps age. There was no evidence of moderation of the trauma or PTSD variables by demographic factors. Results suggest that traumatic stress is associated with advanced epigenetic age and raise the possibility that cells integral to immune system maintenance and responsivity play a role in this. This study highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated DNA methylation age and the importance of furthering our understanding of the neurobiological and health consequences of PTSD. Published by Elsevier Ltd.

  20. Role of marine pollutants in impairment of DNA integrity.

    Digital Repository Service at National Institute of Oceanography (India)

    Sarker, S.; Sarkar, A.

    In this article, we present an overview on the role of marine pollutants in impairment of DNA integrity in marine gastropods exposed to xenobiotics released from various sources into the coastal ecosystem. We provide an insight into the impact...

  1. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    NARCIS (Netherlands)

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D'Elia, D.; Montalvo, A.; Pinto, B.; de Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces

  2. Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity.

    Science.gov (United States)

    Rahiminia, Tahereh; Hosseini, Akram; Anvari, Morteza; Ghasemi-Esmailabad, Saeed; Talebi, Ali Reza

    2017-08-01

    Presence of vitrification method in sperm freezing and the introduction of solid surface vitrification beside rapid freezing in vapour, opens an easy and safe way to help infertility centres. While the effects of cryopreservation on motility, morphology and viability of sperm are documented, the question of the probable alteration of sperm DNA, chromatin and acrosome integrity after freezing and thawing procedures in different methods is still controversial. Normal sample were collected according to WHO strict criteria. Sperm suspensions were mixed 1:1 with 0.5 M sucrose and divided into four equal aliquots for freezing: fresh, nitrogen direct immersion vitrification (Vit), solid surface vitrification (SSV) and in vapour (Vapour). Sperm suspensions were transferred into a 0.25 ml sterile plastic. Then straw was inserted inside the 0.5 ml straw. For thawing, the straws were immersed in a 42 °C water bath. Beside the sperm parameters, we assessed the acrosome reaction by double staining, chromatin integrity by toluidine blue (Tb) and chromomycin A3 (CMA3) and DNA integrity by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) respectively. In progressive motility, the highest rate occurred in Vit (39.9 ± 13.3). Moreover, the lowest rate of immotile sperm was in Vit (32.7 ± 16.3). In normal morphology, the group Vit was similar to the fresh, while SSV and Vapour were significantly different from the fresh. The percentage of acrosome-reacted sperms was more in Vit (81.3 ± 10.2) than the fresh group. TUNEL+ results showed that DNA fragmentation was significantly increased in Vit (p-value = 0.025). While in SSV and Vapour results were comparable to fresh. There was a significant correlation between TUNEL+ and normal morphology, TB, CMA3 and presence of intact acrosome. Sperm in Vapour was healthier in terms of DNA, chromatin and acrosome integrity. In contrast of higher motility and normal morphology; DNA, chromatin and acrosome

  3. DNA barcoding and traditional taxonomy: an integrated approach for biodiversity conservation.

    Science.gov (United States)

    Sheth, Bhavisha P; Thaker, Vrinda S

    2017-07-01

    Biological diversity is depleting at an alarming rate. Additionally, a vast amount of biodiversity still remains undiscovered. Taxonomy has been serving the purpose of describing, naming, and classifying species for more than 250 years. DNA taxonomy and barcoding have accelerated the rate of this process, thereby providing a tool for conservation practice. DNA barcoding and traditional taxonomy have their own inherent merits and demerits. The synergistic use of both methods, in the form of integrative taxonomy, has the potential to contribute to biodiversity conservation in a pragmatic timeframe and overcome their individual drawbacks. In this review, we discuss the basics of both these methods of biological identification (traditional taxonomy and DNA barcoding), the technical advances in integrative taxonomy, and future trends. We also present a comprehensive compilation of published examples of integrative taxonomy that refer to nine topics within biodiversity conservation. Morphological and molecular species limits were observed to be congruent in ∼41% of the 58 source studies. The majority of the studies highlighted the description of cryptic diversity through the use of molecular data, whereas research areas like endemism, biological invasion, and threatened species were less discussed in the literature.

  4. Development and validation of an integrated DNA walking strategy to detect GMO expressing cry genes.

    Science.gov (United States)

    Fraiture, Marie-Alice; Vandamme, Julie; Herman, Philippe; Roosens, Nancy H C

    2018-06-27

    Recently, an integrated DNA walking strategy has been proposed to prove the presence of GMO via the characterisation of sequences of interest, including their transgene flanking regions and the unnatural associations of elements in their transgenic cassettes. To this end, the p35S, tNOS and t35S pCAMBIA elements have been selected as key targets, allowing the coverage of most of GMO, EU authorized or not. In the present study, a bidirectional DNA walking method anchored on the CryAb/c genes is proposed with the aim to cover additional GMO and additional sequences of interest. The performance of the proposed bidirectional DNA walking method anchored on the CryAb/c genes has been evaluated in a first time for its feasibility using several GM events possessing these CryAb/c genes. Afterwards, its sensitivity has been investigated through low concentrations of targets (as low as 20 HGE). In addition, to illustrate its applicability, the entire workflow has been tested on a sample mimicking food/feed matrices analysed in GMO routine analysis. Given the successful assessment of its performance, the present bidirectional DNA walking method anchored on the CryAb/c genes can easily be implemented in GMO routine analysis by the enforcement laboratories and allows completing the entire DNA walking strategy in targeting an additional transgenic element frequently found in GMO.

  5. [Impact of sperm DNA and acrosome integrity and acrosome reaction rate on outcomes of rescue intracytoplasmic sperm injection].

    Science.gov (United States)

    He, Yongzhi; Li, Dawen; Cheng, Junping; Huo, Zhongchao; Huang, Hongyi; Xiao, Xin

    2016-01-01

    Objective To explore the effects of sperm DNA integrity rate, acrosome integrity rate and acrosome reaction rate on the outcomes of rescue intracytoplasmic sperm injection (ICSI). This retrospective analysis was conducted among 97 infertile couples receiving rescue ICSI due to failure of in vitro fertilization procedures in our Reproductive Medicine Center. Of these 97 women, 41 had clinical pregnancy and 56 did not, and the effects of sperm DNA integrity rate (estimated by DNA fragmentation index, DFI), acrosome integrity rate and acrosome reaction rate on rescue ICSI outcomes were analyzed. No significant difference was found in paternal age, testosterone value, testicular volume, FSH, female patient' age or the number of eggs retrieved between the two groups (P>0.05), but the infertility years was significantly shorter in the pregnancy group than in the non-pregnancy group (Prate and cleavage rate were similar between the two groups (P>0.05), but the good embryo rate was significantly higher in the pregnancy group (Preaction rate did not differ significantly between the two groups (P>0.05), but the acrosome integrity rate was significantly higher in the pregnancy group (Prate, acrosome integrity or acrosome reaction rate were not correlated with the fertilization rate, cleavage rate or good embryo rate (P>0.05). The pregnancy rate, twin and single fetus rates were 42.3%, 10.3% and 32.0% in this cohort after recue ICSI, respectively. Rescue ICSI is an effective treatment after failed in vitro fertilization procedure, and sperm acrosome integrity rate is associated with the outcome of rescue ICSI.

  6. Flow cytometry application in the assessment of sperm DNA integrity of men with asthenozoospermia.

    Directory of Open Access Journals (Sweden)

    A Brodowska

    2008-04-01

    Full Text Available Sperm genomic integrity and ultrastructural features of ejaculated spermatozoa contributing to the assessment of gamete fertility potential in patients with asthenozoospermia are discussed. The proportion of TUNEL-positive cells was significantly higher in the semen of patients with low sperm motility (n=40; p<0.01 as compared to men with normal sperm motility (n=54. Sperm DNA fragmentation negatively correlated (n=94 with sperm motility, sperm concentration, and integrity of the sperm cellular membrane (HOS-test. Two categories of patients were distinguished: (1 patients (23 out of 94 subjects with < or = 4% of TUNEL-positive cells and (2 patients (71 subjects with 4% of TUNEL-positive cells. A significant difference was noted in the sperm motility and HOS-test results between patients from both groups. Large numbers of immature spermatozoa with extensive cytoplasmic retention, ultrastructural chromatin and midpiece abnormalities, and conglomerates containing sperm fragments were present more frequently in the semen of asthenozoospermic subjects with >4% of TUNEL-positive sperm cells. Low sperm motility seems to be accompanied by serious defects of gamete chromatin expressed as diminished sperm genomic integrity and abnormal DNA condensation and by defects of sperm midpiece. These abnormalities may reflect developmental failure during the spermatogenic remodeling process. The DNA fragmentation test may be considered as an additional assay for the evaluation of spermatozoa beside standard analysis and taken together with electron microscopy may help to determine the actual number of "healthy" spermatozoa thereby playing an important role during diagnosis and treatment of male infertility.

  7. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference.

    Directory of Open Access Journals (Sweden)

    Geoffrey R Bennett

    Full Text Available Host base excision repair (BER proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1 and mutY homolog (MYH as well as DNA polymerase beta (Polβ. While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polβ null cell lines complemented with active site point mutants of Polβ. A DNA synthesis defective mutant, but not a 5'dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggested Polβ DNA synthesis activity is not necessary while 5'dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.

  8. DMINDA: an integrated web server for DNA motif identification and analyses.

    Science.gov (United States)

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-07-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-07-14

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.

  10. Integrating DNA barcode data and taxonomic practice: determination, discovery, and description.

    Science.gov (United States)

    Goldstein, Paul Z; DeSalle, Rob

    2011-02-01

    DNA barcodes, like traditional sources of taxonomic information, are potentially powerful heuristics in the identification of described species but require mindful analytical interpretation. The role of DNA barcoding in generating hypotheses of new taxa in need of formal taxonomic treatment is discussed, and it is emphasized that the recursive process of character evaluation is both necessary and best served by understanding the empirical mechanics of the discovery process. These undertakings carry enormous ramifications not only for the translation of DNA sequence data into taxonomic information but also for our comprehension of the magnitude of species diversity and its disappearance. This paper examines the potential strengths and pitfalls of integrating DNA sequence data, specifically in the form of DNA barcodes as they are currently generated and analyzed, with taxonomic practice.

  11. Fractals in DNA sequence analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)

    2002-01-01

    Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.

  12. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Rajkumar, Arun Stephen; Zhang, Jie

    2015-01-01

    , we present a method for marker-free multiloci integration of in vivo assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful in vivo assembly and chromosomal integration of DNA parts. We call our...

  13. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth.

    Directory of Open Access Journals (Sweden)

    Maja Kiselinova

    2016-03-01

    Full Text Available The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4-2.6 between time point 1 and 2; and median of 31 days (IQR: 28-36 between time point 2 and 3. Patients were median of 6 years (IQR: 3-12 on ART, and plasma viral load (<50 copies/ml was suppressed for median of 4 years (IQR: 2-8. Total HIV-1 DNA, unspliced (us and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85, us HIV-1 RNA (p = 0.029, R² = 0.40, and VOA (p = 0.041, R2 = 0.44. Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54. The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1. Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the

  14. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    Science.gov (United States)

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  15. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    DEFF Research Database (Denmark)

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude

    2017-01-01

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahep...

  16. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  17. DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology.

    Science.gov (United States)

    Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng

    2015-10-06

    Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, we present software implementing a three 'tier' design process: a high-level visual programming language is used to describe systems, a molecular compiler builds a DNA implementation and nucleotide sequences are generated and optimized. Additionally, our software includes tools for analysing and 'debugging' the designs in silico, and for importing/exporting designs to other commonly used software systems. The software we present is built on many existing pieces of software, but is integrated into a single package—accessible using a Web-based interface at http://molecular-systems.net/workbench. We hope that the deep integration between tools and the flexibility of this design process will lead to better experimental results, fewer experimental design iterations and the development of more complex DNA nanosystems. © 2015 The Authors.

  18. Optimized integration of T-DNA in the taxol-producing fungus ...

    African Journals Online (AJOL)

    We previously reported a taxol-producing fungus Pestalotiopsis malicola. There, we described the transformation of the fungus mediated by Agrobacterium tumefaciens. T-DNA carrying the selection marker was transferred into the fungus and randomly integrated into the genome as shown by Southern blotting.

  19. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio

    2016-01-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples. PMID:27158753

  20. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    Science.gov (United States)

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along

  1. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity.

    Science.gov (United States)

    Wang, Yi-Xin; Wang, Peng; Feng, Wei; Liu, Chong; Yang, Pan; Chen, Ying-Jun; Sun, Li; Sun, Yang; Yue, Jing; Gu, Long-Jie; Zeng, Qiang; Lu, Wen-Qing

    2017-05-01

    This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all P trend <0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Construction of an integrated database to support genomic sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  3. DNA Delivery and Genomic Integration into Mammalian Target Cells through Type IV A and B Secretion Systems of Human Pathogens

    Directory of Open Access Journals (Sweden)

    Dolores L. Guzmán-Herrador

    2017-08-01

    Full Text Available We explore the potential of bacterial secretion systems as tools for genomic modification of human cells. We previously showed that foreign DNA can be introduced into human cells through the Type IV A secretion system of the human pathogen Bartonella henselae. Moreover, the DNA is delivered covalently attached to the conjugative relaxase TrwC, which promotes its integration into the recipient genome. In this work, we report that this tool can be adapted to other target cells by using different relaxases and secretion systems. The promiscuous relaxase MobA from plasmid RSF1010 can be used to deliver DNA into human cells with higher efficiency than TrwC. MobA also promotes DNA integration, albeit at lower rates than TrwC. Notably, we report that DNA transfer to human cells can also take place through the Type IV secretion system of two intracellular human pathogens, Legionella pneumophila and Coxiella burnetii, which code for a distantly related Dot/Icm Type IV B secretion system. This suggests that DNA transfer could be an intrinsic ability of this family of secretion systems, expanding the range of target human cells. Further analysis of the DNA transfer process showed that recruitment of MobA by Dot/Icm was dependent on the IcmSW chaperone, which may explain the higher DNA transfer rates obtained. Finally, we observed that the presence of MobA negatively affected the intracellular replication of C. burnetii, suggesting an interference with Dot/Icm translocation of virulence factors.

  4. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis.

    Directory of Open Access Journals (Sweden)

    Sara F Jastrebski

    Full Text Available The liver plays a central role in metabolism and is important in maintaining homeostasis throughout the body. This study integrated transcriptomic and metabolomic data to understand how the liver responds under chronic heat stress. Chickens from a rapidly growing broiler line were heat stressed for 8 hours per day for one week and liver samples were collected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible for cell cycle regulation, DNA replication, and DNA repair along with immune function. Integrating the metabolome and transcriptome data highlighted multiple pathways affected by heat stress including glucose, amino acid, and lipid metabolism along with glutathione production and beta-oxidation.

  5. A multilevel Lab on chip platform for DNA analysis.

    Science.gov (United States)

    Marasso, Simone Luigi; Giuri, Eros; Canavese, Giancarlo; Castagna, Riccardo; Quaglio, Marzia; Ferrante, Ivan; Perrone, Denis; Cocuzza, Matteo

    2011-02-01

    Lab-on-chips (LOCs) are critical systems that have been introduced to speed up and reduce the cost of traditional, laborious and extensive analyses in biological and biomedical fields. These ambitious and challenging issues ask for multi-disciplinary competences that range from engineering to biology. Starting from the aim to integrate microarray technology and microfluidic devices, a complex multilevel analysis platform has been designed, fabricated and tested (All rights reserved-IT Patent number TO2009A000915). This LOC successfully manages to interface microfluidic channels with standard DNA microarray glass slides, in order to implement a complete biological protocol. Typical Micro Electro Mechanical Systems (MEMS) materials and process technologies were employed. A silicon/glass microfluidic chip and a Polydimethylsiloxane (PDMS) reaction chamber were fabricated and interfaced with a standard microarray glass slide. In order to have a high disposable system all micro-elements were passive and an external apparatus provided fluidic driving and thermal control. The major microfluidic and handling problems were investigated and innovative solutions were found. Finally, an entirely automated DNA hybridization protocol was successfully tested with a significant reduction in analysis time and reagent consumption with respect to a conventional protocol.

  6. Use of mariner transposases for one-step delivery and integration of DNA in prokaryotes and eukaryotes by transfection.

    Science.gov (United States)

    Trubitsyna, Maryia; Michlewski, Gracjan; Finnegan, David J; Elfick, Alistair; Rosser, Susan J; Richardson, Julia M; French, Christopher E

    2017-06-02

    Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposase:DNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The amount and integrity of mtDNA in maize decline with development.

    Science.gov (United States)

    Oldenburg, Delene J; Kumar, Rachana A; Bendich, Arnold J

    2013-02-01

    In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.

  8. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    Science.gov (United States)

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  9. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    Science.gov (United States)

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  10. Direct immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Dufva, Martin

    2012-01-01

    that simple UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on many different types of plastics without any surface modification. On average, five- and fourfold improvement in immobilization and hybridization efficiency have been achieved compared to surface......DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption...... of reagents, and increased system integration. Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate...

  11. Theory and Application of DNA Histogram Analysis.

    Science.gov (United States)

    Bagwell, Charles Bruce

    The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…

  12. A new structural framework for integrating replication protein A into DNA processing machinery

    Energy Technology Data Exchange (ETDEWEB)

    Brosey, Chris; Yan, Chunli; Tsutakawa, Susan; Heller, William; Rambo, Robert; Tainer, John; Ivanov, Ivaylo; Chazin, Walter

    2013-01-17

    By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA's DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA's DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.

  13. Bovine and equine forensic DNA analysis

    NARCIS (Netherlands)

    van de Goor, L.H.P.

    2011-01-01

    Animal forensic DNA analysis is being used for human criminal investigations (e.g traces from cats and dogs), wildlife management, breeding and food safety. The most common DNA markers used for such forensic casework are short tandem repeats (STR). Rules and guidelines concerning quality assurance

  14. Polymorphism and mutation analysis of genomic DNA on cancer

    International Nuclear Information System (INIS)

    Ohta, Tsutomu

    2003-01-01

    DNA repair is a universal process in living cells that maintains the structural integrity of chromosomal DNA molecules in face of damage. A deficiency in DNA damage repair is associated with an increased cancer risk by increasing a mutation frequency of cancer-related genes. Variation in DNA repair capacity may be genetically determined. Therefore, we searched single-nucleotide polymorphisms (SNPs) in major DNA repair genes. This led to the finding of 600 SNPs and mutations including many novel SNPs in Japanese population. Case-control studies to explore the contribution of the SNPs in DNA repair genes to the risk of lung cancer revealed that five SNPs are associated with lung carcinogenesis. One of these SNPs is found in RAD54L gene, which is involved in double-strand DNA repair. We analyzed and reported activities of Rad54L protein with SNP and mutations. (authors)

  15. Penalized differential pathway analysis of integrative oncogenomics studies

    NARCIS (Netherlands)

    van Wieringen, W.N.; van de Wiel, M.A.

    2014-01-01

    Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving

  16. TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus.

    Science.gov (United States)

    Wu, Yong; Gao, Tieli; Wang, Xiaolin; Hu, Youjin; Hu, Xuyun; Hu, Zhiqing; Pang, Jialun; Li, Zhuo; Xue, Jinfeng; Feng, Mai; Wu, Lingqian; Liang, Desheng

    2014-03-28

    Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding.

    Directory of Open Access Journals (Sweden)

    Jonghyun Park

    2010-11-01

    Full Text Available DNA binding by MutL homologs (MLH/PMS during mismatch repair (MMR has been considered based on biochemical and genetic studies. Bulk studies with MutL and its yeast homologs Mlh1-Pms1 have suggested an integral role for a single-stranded DNA (ssDNA binding activity during MMR. We have developed single-molecule Förster resonance energy transfer (smFRET and a single-molecule DNA flow-extension assays to examine MutL interaction with ssDNA in real time. The smFRET assay allowed us to observe MutL-ssDNA association and dissociation. We determined that MutL-ssDNA binding required ATP and was the greatest at ionic strength below 25 mM (K(D = 29 nM while it dramatically decreases above 100 mM (K(D>2 µM. Single-molecule DNA flow-extension analysis suggests that multiple MutL proteins may bind ssDNA at low ionic strength but this activity does not enhance stability at elevated ionic strengths. These studies are consistent with the conclusion that a stable MutL-ssDNA interaction is unlikely to occur at physiological salt eliminating a number of MMR models. However, the activity may infer some related dynamic DNA transaction process during MMR.

  18. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yonghua [Iowa State Univ., Ames, IA (United States)

    2000-01-01

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  19. Integrating DNA-based data into bioassessments improves our understanding of species distributions and species habitat relationships

    Science.gov (United States)

    The integration of DNA-based identification methods into bioassessments could result in more accurate representations of species distributions and species-habitat relationships. DNA-based approaches may be particularly informative for tracking the distributions of rare and/or inv...

  20. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.

    Science.gov (United States)

    Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J

    2017-01-25

    The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in

  1. FBIS: A regional DNA barcode archival & analysis system for Indian fishes

    Science.gov (United States)

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. Availability The database is available for free at http://mail.nbfgr.res.in/fbis/ PMID:22715304

  2. Food Fish Identification from DNA Extraction through Sequence Analysis

    Science.gov (United States)

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  3. GenFlow: generic flow for integration, management and analysis of molecular biology data

    Directory of Open Access Journals (Sweden)

    Marcio Katsumi Oikawa

    2004-01-01

    Full Text Available A large number of DNA sequencing projects all over the world have yielded a fantastic amount of data, whose analysis is, currently, a big challenge for computational biology. The limiting step in this task is the integration of large volumes of data stored in highly heterogeneous repositories of genomic and cDNA sequences, as well as gene expression results. Solving this problem requires automated analytical tools to optimize operations and efficiently generate knowledge. This paper presents an information flow model , called GenFlow, that can tackle this analytical task.

  4. Demethylation of host-cell DNA at the site of avian retrovirus integration

    Czech Academy of Sciences Publication Activity Database

    Hejnar, Jiří; Elleder, Daniel; Hájková, P.; Walter, J.; Blažková, Jana; Svoboda, Jan

    2003-01-01

    Roč. 2003, č. 311 (2003), s. 641-648 ISSN 0006-291X Institutional research plan: CEZ:AV0Z5052915 Keywords : DNA methylation and demethylation * integration of retroviruses * gene silencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.836, year: 2003

  5. DNA mimic proteins: functions, structures, and bioinformatic analysis.

    Science.gov (United States)

    Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-05-13

    DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.

  6. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  7. LINKAGE ANALYSIS BY 2-DIMENSIONAL DNA TYPING

    NARCIS (Netherlands)

    MEERMAN, GJT; MULLAART, E; VANDERMEULEN, MA; DENDAAS, JHG; MOROLLI, B; UITTERLINDEN, AG; VIJG, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core

  8. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core

  9. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine) binding with DNA.

    Science.gov (United States)

    Johnson, Irudayam Maria; Prakash, Halan; Prathiba, Jeyaguru; Raghunathan, Raghavachary; Malathi, Raghunathan

    2012-01-01

    Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+) and during helix-coil transitions of DNA by temperature (T(m)) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3) M(-1), DNA-theobromine = 1.1×10(3) M(-1), and DNA-Caffeine = 3.8×10(3) M(-1). On the other hand T(m)/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg(2+), methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+). The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.

  10. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine binding with DNA.

    Directory of Open Access Journals (Sweden)

    Irudayam Maria Johnson

    Full Text Available Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+ and during helix-coil transitions of DNA by temperature (T(m or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3 M(-1, DNA-theobromine = 1.1×10(3 M(-1, and DNA-Caffeine = 3.8×10(3 M(-1. On the other hand T(m/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C and phosphate group through hydrogen bond (H-bond interaction. In the presence of Mg(2+, methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+. The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.

  11. Molecular DNA Analysis in Forensic Identification.

    Science.gov (United States)

    Dumache, Raluca; Ciocan, Veronica; Muresan, Camelia; Enache, Alexandra

    2016-01-01

    Serological and biochemical identification methods used in forensics have several major disadvantages, such as: long time in processing biological sample and lack of sensitivity and specificity. In the last 30 years, DNA molecular analysis has become an important tool in forensic investigations. DNA profiling is based on the short tandem repeats (STR) and aids in human identification from biological samples. Forensic genetics, can provide information on the events which occurred at the crime scene or to supplement other methods of forensic identification. Currently, the methods used in identification are based on polymerase chain reaction (PCR) analyses. This method analyses the autosomal STRs, the Y-chromosome, and the mitochondrial DNA. Correlation of biological samples present at the crime scene with identification, selection, and the probative value factor is therefore the first aspect to be taken into consideration in the forensic genetic analysis. In the last decade, because of the advances in the field of molecular biology, new biomarkers such as: microRNAs (miR), messenger RNA (mRNA), and DNA methylation have been studied and proposed to be used in the forensic identifications of body fluids.

  12. Early and late effects of Ibuprofen on mouse sperm parameters, chromatin condensation, and DNA integrity in mice.

    Science.gov (United States)

    Roodbari, Fatemeh; Abedi, Nahid; Talebi, Ali Reza

    2015-11-01

    There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12), normal dosage of ibuprofen (group II, n=12) and high dosage (group III, n=12). Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham's F10 media. Sperm samples were analyzed for parameters (motility, morphology and count), DNA integrity (SCD test) and chromatin condensation (chromomycin A3 and Aniline blue staining). After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (Psperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7) and the percentage of immature spermatozoa (AB(+) and CMA3(+)) was higher in group III (77.5±0.7 and 49.5±6.3 respectively) than other groups. After 105 days, the AB(+) spermatozoa were increased in both normal dose and high dose groups. Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.

  13. Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Stine H Kresse

    Full Text Available BACKGROUND: Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. PRINCIPAL FINDINGS: The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression using a recurrence threshold of 6/19 (>30% cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2'-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. CONCLUSIONS: Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between

  14. Image cytometry: nuclear and chromosomal DNA quantification.

    Science.gov (United States)

    Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo; Abreu, Isabella Santiago

    2011-01-01

    Image cytometry (ICM) associates microscopy, digital image and software technologies, and has been particularly useful in spatial and densitometric cytological analyses, such as DNA ploidy and DNA content measurements. Basically, ICM integrates methodologies of optical microscopy calibration, standard density filters, digital CCD camera, and image analysis softwares for quantitative applications. Apart from all system calibration and setup, cytological protocols must provide good slide preparations for efficient and reliable ICM analysis. In this chapter, procedures for ICM applications employed in our laboratory are described. Protocols shown here for human DNA ploidy determination and quantification of nuclear and chromosomal DNA content in plants could be used as described, or adapted for other studies.

  15. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    OpenAIRE

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated ...

  16. Combining Electro-Osmotic Flow and FTA® Paper for DNA Analysis on Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Ryan Wimbles

    2016-07-01

    Full Text Available FTA® paper can be used to protect a variety of biological samples prior to analysis, facilitating ease-of-transport to laboratories or long-term archive storage. The use of FTA® paper as a solid phase eradicates the need to elute the nucleic acids from the matrix prior to DNA amplification, enabling both DNA purification and polymerase chain reaction (PCR-based DNA amplification to be performed in a single chamber on the microfluidic device. A disc of FTA® paper, containing a biological sample, was placed within the microfluidic device on top of wax-encapsulated DNA amplification reagents. The disc containing the biological sample was then cleaned up using Tris-EDTA (TE buffer, which was passed over the disc, via electro-osmotic flow, in order to remove any potential inhibitors of downstream processes. DNA amplification was successfully performed (from buccal cells, whole blood and semen using a Peltier thermal cycling system, whereupon the stored PCR reagents were released during the initial denaturing step due to the wax barrier melting between the FTA® disc and PCR reagents. Such a system offers advantages in terms of a simple sample introduction interface and the ability to process archived samples in an integrated microfluidic environment with minimal risk of contamination.

  17. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  18. Nucleophosmin is required for DNA integrity and p19Arf protein stability

    DEFF Research Database (Denmark)

    Colombo, Emanuela; Bonetti, Paola; Lazzerini Denchi, Eros

    2005-01-01

    , such as mutated Ras or overexpressed Myc. In the absence of NPM, Arf protein is excluded from nucleoli and is markedly less stable. Our data demonstrate that NPM regulates DNA integrity and, through Arf, inhibits cell proliferation and are consistent with a putative tumor-suppressive function of NPM....

  19. MRX protects fork integrity at protein–DNA barriers, and its absence causes checkpoint activation dependent on chromatin context

    DEFF Research Database (Denmark)

    Bentsen, Iben Bach; Nielsen, Ida; Lisby, Michael

    2013-01-01

    location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the r...

  20. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  1. Early and late effects of Ibuprofen on mouse sperm parameters, chromatin condensation, and DNA integrity in mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Roodbari

    2015-11-01

    Full Text Available Background: There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. Objective: To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. Materials and Methods: In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12, normal dosage of ibuprofen (group II, n=12 and high dosage (group III, n=12. Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham’s F10 media. Sperm samples were analyzed for parameters (motility, morphology and count, DNA integrity (SCD test and chromatin condensation (chromomycin A3 and Aniline blue staining. Results: After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (P<0.05. However, after 70 days, the rate of sperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7 and the percentage of immature spermatozoa (AB+ and CMA3+ was higher in group III (77.5±0.7 and 49.5±6.3 respectively than other groups. After 105 days, the AB+ spermatozoa were increased in both normal dose and high dose groups. Conclusion: Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.

  2. Exogenous DNA internalisation by sperm cells is improved by combining lipofection and restriction enzyme mediated integration.

    Science.gov (United States)

    Churchil, R R; Gupta, J; Singh, A; Sharma, D

    2011-06-01

    1. Three types of exogenous DNA inserts, i.e. complete linearised pVIVO2-GFP/LacZ vector (9620 bp), the LacZ gene (5317 bp) and the GFP gene (2152 bp) were used to transfect chicken spermatozoa through simple incubation of sperm cells with insert. 2. PCR assay, Dot Blot hybridisation and Southern hybridisation showed the successful internalisation of exogenous DNA by chicken sperm cells. 3. Lipofection and Restriction Enzyme Mediated Integration (REMI) were used to improve the rate of internalisation of exogenous DNA by sperm cells. 4. Results from dot blot as well as Southern hybridisation were semi-quantified and improved exogenous DNA uptake by sperm cells through lipofection and REMI. Stronger signals were observed from hybridisation of LacZ as well as GFP specific probe with the DNA from lipofected exogenous DNA transfected sperm DNA in comparison with those transfected with nude exogenous DNA.

  3. A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology.

    Science.gov (United States)

    Ustek, Duran; Sirma, Sema; Gumus, Ergun; Arikan, Muzaffer; Cakiris, Aris; Abaci, Neslihan; Mathew, Jaicy; Emrence, Zeliha; Azakli, Hulya; Cosan, Fulya; Cakar, Atilla; Parlak, Mahmut; Kursun, Olcay

    2012-10-01

    One application of next-generation sequencing (NGS) is the targeted resequencing of interested genes which has not been used in viral integration site analysis of gene therapy applications. Here, we combined targeted sequence capture array and next generation sequencing to address the whole genome profiling of viral integration sites. Human 293T and K562 cells were transduced with a HIV-1 derived vector. A custom made DNA probe sets targeted pLVTHM vector used to capture lentiviral vector/human genome junctions. The captured DNA was sequenced using GS FLX platform. Seven thousand four hundred and eighty four human genome sequences flanking the long terminal repeats (LTR) of pLVTHM fragment sequences matched with an identity of at least 98% and minimum 50 bp criteria in both cells. In total, 203 unique integration sites were identified. The integrations in both cell lines were totally distant from the CpG islands and from the transcription start sites and preferentially located in introns. A comparison between the two cell lines showed that the lentiviral-transduced DNA does not have the same preferred regions in the two different cell lines. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Novel approach to integrated DNA adductomics for the assessment of in vitro and in vivo environmental exposures.

    Science.gov (United States)

    Chang, Yuan-Jhe; Cooke, Marcus S; Hu, Chiung-Wen; Chao, Mu-Rong

    2018-06-25

    Adductomics is expected to be useful in the characterization of the exposome, which is a new paradigm for studying the sum of environmental causes of diseases. DNA adductomics is emerging as a powerful method for detecting DNA adducts, but reliable assays for its widespread, routine use are currently lacking. We propose a novel integrated strategy for the establishment of a DNA adductomic approach, using liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS), operating in constant neutral loss scan mode, screening for both known and unknown DNA adducts in a single injection. The LC-QqQ-MS/MS was optimized using a representative sample of 23 modified 2'-deoxyribonucleosides reflecting a range of biologically relevant DNA lesions. Six internal standards (ISTDs) were evaluated for their ability to normalize, and hence correct, possible variation in peak intensities arising from matrix effects, and the quantities of DNA injected. The results revealed that, with appropriate ISTDs adjustment, any bias can be dramatically reduced from 370 to 8.4%. Identification of the informative DNA adducts was achieved by triggering fragmentation spectra of target ions. The LC-QqQ-MS/MS method was successfully applied to in vitro and in vivo studies to screen for DNA adducts formed following representative environmental exposures: methyl methanesulfonate (MMS) and five N-nitrosamines. Interestingly, five new DNA adducts, induced by MMS, were discovered using our adductomic approach-an added strength. The proposed integrated strategy provides a path forward for DNA adductomics to become a standard method to discover differences in DNA adduct fingerprints between populations exposed to genotoxins, and facilitate the field of exposomics.

  5. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis

    Science.gov (United States)

    Down, Thomas A.; Rakyan, Vardhman K.; Turner, Daniel J.; Flicek, Paul; Li, Heng; Kulesha, Eugene; Gräf, Stefan; Johnson, Nathan; Herrero, Javier; Tomazou, Eleni M.; Thorne, Natalie P.; Bäckdahl, Liselotte; Herberth, Marlis; Howe, Kevin L.; Jackson, David K.; Miretti, Marcos M.; Marioni, John C.; Birney, Ewan; Hubbard, Tim J. P.; Durbin, Richard; Tavaré, Simon; Beck, Stephan

    2009-01-01

    DNA methylation is an indispensible epigenetic modification of mammalian genomes. Consequently there is great interest in strategies for genome-wide/whole-genome DNA methylation analysis, and immunoprecipitation-based methods have proven to be a powerful option. Such methods are rapidly shifting the bottleneck from data generation to data analysis, necessitating the development of better analytical tools. Until now, a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling has been the inability to estimate absolute methylation levels. Here we report the development of a novel cross-platform algorithm – Bayesian Tool for Methylation Analysis (Batman) – for analyzing Methylated DNA Immunoprecipitation (MeDIP) profiles generated using arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). The latter is an approach we have developed to elucidate the first high-resolution whole-genome DNA methylation profile (DNA methylome) of any mammalian genome. MeDIP-seq/MeDIP-chip combined with Batman represent robust, quantitative, and cost-effective functional genomic strategies for elucidating the function of DNA methylation. PMID:18612301

  6. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  7. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    Energy Technology Data Exchange (ETDEWEB)

    Zuo Guifu; Wan Yizao; Meng Xianguang [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhao Qing [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China); Ren Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Jia Shiru [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, 29, 13th Street, TEDA, Tianjin 300457 (China); Wang Jiehua, E-mail: gfzuo@tju.edu.cn [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China)

    2011-04-15

    Research highlights: {yields} A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. {yields} Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. {yields} The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  8. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    International Nuclear Information System (INIS)

    Zuo Guifu; Wan Yizao; Meng Xianguang; Zhao Qing; Ren Kaijing; Jia Shiru; Wang Jiehua

    2011-01-01

    Research highlights: → A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. → Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. → The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  9. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients.

    Science.gov (United States)

    Gual-Frau, Josep; Abad, Carlos; Amengual, María J; Hannaoui, Naim; Checa, Miguel A; Ribas-Maynou, Jordi; Lozano, Iris; Nikolaou, Alexandros; Benet, Jordi; García-Peiró, Agustín; Prats, Juan

    2015-09-01

    Infertile males with varicocele have the highest percentage of sperm cells with damaged DNA, compared to other infertile groups. Antioxidant treatment is known to enhance the integrity of sperm DNA; however, there are no data on the effects in varicocele patients. We thus investigated the potential benefits of antioxidant treatment specifically in grade I varicocele males. Twenty infertile patients with grade I varicocele were given multivitamins (1500 mg L-Carnitine, 60 mg vitamin C, 20 mg coenzyme Q10, 10 mg vitamin E, 200 μg vitamin B9, 1 μg vitamin B12, 10 mg zinc, 50 μg selenium) daily for three months. Semen parameters including total sperm count, concentration, progressive motility, vitality, and morphology were determined before and after treatment. In addition, sperm DNA fragmentation and the amount of highly degraded sperm cells were analyzed by Sperm Chromatin Dispersion. After treatment, patients showed an average relative reduction of 22.1% in sperm DNA fragmentation (p = 0.02) and had 31.3% fewer highly degraded sperm cells (p = 0.07). Total numbers of sperm cells were increased (p = 0.04), but other semen parameters were unaffected. These data suggest that sperm DNA integrity in grade I varicocele patients may be improved by oral antioxidant treatment.

  10. Laser desorption mass spectrometry for high-throughput DNA analysis and its applications

    Science.gov (United States)

    Chen, C. H. Winston; Golovlev, Valeri V.; Taranenko, N. I.; Allman, S. L.; Isola, Narayana R.; Potter, N. T.; Matteson, K. J.; Chang, Linus Y.

    1999-05-01

    Laser desorption mass spectrometry (LDMS) has been developed for DNA sequencing, disease diagnosis, and DNA fingerprinting for forensic applications. With LDMS, the speed of DNA analysis can be much faster than conventional gel electrophoresis. No dye or radioactive tagging to DNA segments for detection is needed. LDMS is emerging as a new alternative technology for DNA analysis.

  11. A trans-activator function is generated by integration of hepatitis B virus preS/S sequences in human hepatocellular carcinoma DNA

    International Nuclear Information System (INIS)

    Caselmann, W.H.; Meyer, M.; Kekule, A.S.; Lauer, U.; Hofschneider, P.H.; Koshy, R.

    1990-01-01

    The X gene of wild-type hepatitis B virus or integrated DNA has recently been shown to stimulate transcription of a variety of enhancers and promoters. To further delineate the viral sequences responsible for trans-activation in hepatomas, the authors cloned the single hepatitis B virus insert from human hepatocellular carcinoma DNA M1. The plasmid pM1 contains 2004 base of hepatitis B virus DNA subtype adr, including truncated preS/S sequences and the enhancer element. The X promoter and 422 nucleotides of the X coding region are present. The entire preC/C gene is deleted. In transient cotransfection assays using Chang liver cells (CCL 13), pM1 DNA exerts a 6- to 10-fold trans-activating effect on the expression of the pSV2CAT reporter plasmid. The transactivation occurs by stimulation of transcription and is dependent on the simian virus 40 enhancer in the reporter plasmid. Deletion analysis of pM1 subclones reveals that the transactivator is encoded by preS/S and not by X sequences. A frameshift mutation within the preS2 open reading frame shows that this portion is indispensable for the trans-activating function. Initiation of transcription has been mapped to the S1 promoter. A comparable trans-activating effect is also observed with cloned wild-type hepatitis B virus sequences similarly truncated. These results show that a transcriptional trans-activator function not present in the intact gene is generated by 3' truncation of integrated hepatitis B virus DNA preS/S sequences

  12. A potential new diagnostic tool to aid DNA analysis from heat compromised bone using colorimetry: A preliminary study.

    Science.gov (United States)

    Fredericks, Jamie D; Ringrose, Trevor J; Dicken, Anthony; Williams, Anna; Bennett, Phil

    2015-03-01

    Extracting viable DNA from many forensic sample types can be very challenging, as environmental conditions may be far from optimal with regard to DNA preservation. Consequently, skeletal tissue can often be an invaluable source of DNA. The bone matrix provides a hardened material that encapsulates DNA, acting as a barrier to environmental insults that would otherwise be detrimental to its integrity. However, like all forensic samples, DNA in bone can still become degraded in extreme conditions, such as intense heat. Extracting DNA from bone can be laborious and time-consuming. Thus, a lot of time and money can be wasted processing samples that do not ultimately yield viable DNA. We describe the use of colorimetry as a novel diagnostic tool that can assist DNA analysis from heat-treated bone. This study focuses on characterizing changes in the material and physical properties of heated bone, and their correlation with digitally measured color variation. The results demonstrate that the color of bone, which serves as an indicator of the chemical processes that have occurred, can be correlated with the success or failure of subsequent DNA amplification. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  14. The practical analysis of food: the development of Sakalar quantification table of DNA (SQT-DNA).

    Science.gov (United States)

    Sakalar, Ergün

    2013-11-15

    Practical and highly sensitive Sakalar quantification table of DNA (SQT-DNA) has been developed for the detection% of species-specific DNA amount in food products. Cycle threshold (Ct) data were obtained from multiple curves of real-time qPCR. The statistical analysis was done to estimate the concentration of standard dilutions. Amplicon concentrations versus each Ct value were assessed by the predictions of targets at known concentrations. SQT-DNA was prepared by using the percentage versus each Ct values. The applicability of SQT-DNA to commercial foods was proved by using sausages containing varying ratios of beef, chicken, and soybean. The results showed that SQT-DNA can be used to directly quantify food DNA by a single PCR without the need to construct a standart curve in parallel with the samples every time the experiment is performed, and also quantification by SQT-DNA is as reliable as standard curve quantification for a wide range of DNA concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  16. Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China

    Science.gov (United States)

    Zhou, Hong; Zhang, Zhinan; Chen, Haiyan; Sun, Renhua; Wang, Hui; Guo, Lei; Pan, Haijian

    2010-07-01

    In this study, we integrated a DNA barcoding project with an ecological survey on intertidal polychaete communities and investigated the utility of CO1 gene sequence as a DNA barcode for the classification of the intertidal polychaetes. Using 16S rDNA as a complementary marker and combining morphological and ecological characterization, some of dominant and common polychaete species from Chinese coasts were assessed for their taxonomic status. We obtained 22 haplotype gene sequences of 13 taxa, including 10 CO1 sequences and 12 16S rDNA sequences. Based on intra- and inter-specific distances, we built phylogenetic trees using the neighbor-joining method. Our study suggested that the mitochondrial CO1 gene was a valid DNA barcoding marker for species identification in polychaetes, but other genes, such as 16S rDNA, could be used as a complementary genetic marker. For more accurate species identification and effective testing of species hypothesis, DNA barcoding should be incorporated with morphological, ecological, biogeographical, and phylogenetic information. The application of DNA barcoding and molecular identification in the ecological survey on the intertidal polychaete communities demonstrated the feasibility of integrating DNA taxonomy and ecology.

  17. Super DNAging-New insights into DNA integrity, genome stability and telomeres in the oldest old.

    Science.gov (United States)

    Franzke, Bernhard; Neubauer, Oliver; Wagner, Karl-Heinz

    2015-01-01

    Reductions in DNA integrity, genome stability, and telomere length are strongly associated with the aging process, age-related diseases as well as the age-related loss of muscle mass. However, in people reaching an age far beyond their statistical life expectancy the prevalence of diseases, such as cancer, cardiovascular disease, diabetes or dementia, is much lower compared to "averagely" aged humans. These inverse observations in nonagenarians (90-99 years), centenarians (100-109 years) and super-centenarians (110 years and older) require a closer look into dynamics underlying DNA damage within the oldest old of our society. Available data indicate improved DNA repair and antioxidant defense mechanisms in "super old" humans, which are comparable with much younger cohorts. Partly as a result of these enhanced endogenous repair and protective mechanisms, the oldest old humans appear to cope better with risk factors for DNA damage over their lifetime compared to subjects whose lifespan coincides with the statistical life expectancy. This model is supported by study results demonstrating superior chromosomal stability, telomere dynamics and DNA integrity in "successful agers". There is also compelling evidence suggesting that life-style related factors including regular physical activity, a well-balanced diet and minimized psycho-social stress can reduce DNA damage and improve chromosomal stability. The most conclusive picture that emerges from reviewing the literature is that reaching "super old" age appears to be primarily determined by hereditary/genetic factors, while a healthy lifestyle additionally contributes to achieving the individual maximum lifespan in humans. More research is required in this rapidly growing population of super old people. In particular, there is need for more comprehensive investigations including short- and long-term lifestyle interventions as well as investigations focusing on the mechanisms causing DNA damage, mutations, and telomere

  18. Accelerated DNA Methylation Age: Associations with PTSD and Neural Integrity

    Science.gov (United States)

    Wolf, Erika J.; Logue, Mark W.; Hayes, Jasmeet P.; Sadeh, Naomi; Schichman, Steven A.; Stone, Annjanette; Salat, David H.; Milberg, William; McGlinchey, Regina; Miller, Mark W.

    2015-01-01

    Background Accumulating evidence suggests that post traumatic stress disorder (PTSD) may accelerate cellular aging and lead to premature morbidity and neurocognitive decline. Methods This study evaluated associations between PTSD and DNA methylation (DNAm) age using recently developed algorithms of cellular age by Horvath (2013) and Hannum et al. (2013). These estimates reflect accelerated aging when they exceed chronological age. We also examined if accelerated cellular age manifested in degraded neural integrity, indexed via diffusion tensor imaging. Results Among 281 male and female veterans of the conflicts in Iraq and Afghanistan, DNAm age was strongly related to chronological age (rs ~.88). Lifetime PTSD severity was associated with Hannum DNAm age estimates residualized for chronological age (β = .13, p= .032). Advanced DNAm age was associated with reduced integrity in the genu of the corpus callosum (β = −.17, p= .009) and indirectly linked to poorer working memory performance via this region (indirect β = − .05, p= .029). Horvath DNAm age estimates were not associated with PTSD or neural integrity. Conclusions Results provide novel support for PTSD-related accelerated aging in DNAm and extend the evidence base of known DNAm age correlates to the domains of neural integrity and cognition. PMID:26447678

  19. Epigenome-wide association study of DNA methylation in narcolepsy: an integrated genetic and epigenetic approach.

    Science.gov (United States)

    Shimada, Mihoko; Miyagawa, Taku; Toyoda, Hiromi; Tokunaga, Katsushi; Honda, Makoto

    2018-04-01

    Narcolepsy with cataplexy, which is a hypersomnia characterized by excessive daytime sleepiness and cataplexy, is a multifactorial disease caused by both genetic and environmental factors. Several genetic factors including HLA-DQB1*06:02 have been identified; however, the disease etiology is still unclear. Epigenetic modifications, such as DNA methylation, have been suggested to play an important role in the pathogenesis of complex diseases. Here, we examined DNA methylation profiles of blood samples from narcolepsy and healthy control individuals and performed an epigenome-wide association study (EWAS) to investigate methylation loci associated with narcolepsy. Moreover, data from the EWAS and a previously performed narcolepsy genome-wide association study were integrated to search for methylation loci with causal links to the disease. We found that (1) genes annotated to the top-ranked differentially methylated positions (DMPs) in narcolepsy were associated with pathways of hormone secretion and monocarboxylic acid metabolism. (2) Top-ranked narcolepsy-associated DMPs were significantly more abundant in non-CpG island regions and more than 95 per cent of such sites were hypomethylated in narcolepsy patients. (3) The integrative analysis identified the CCR3 region where both a single methylation site and multiple single-nucleotide polymorphisms were found to be associated with the disease as a candidate region responsible for narcolepsy. The findings of this study suggest the importance of future replication studies, using methylation technologies with wider genome coverage and/or larger number of samples, to confirm and expand on these results.

  20. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparisons with Other Methods

    International Nuclear Information System (INIS)

    Wu, Liyou; Yi, T.Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-01-01

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site (Hanford Reach of the Columbia River (HRCR), 11 strains), Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  1. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  2. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  3. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  4. Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta.

    Directory of Open Access Journals (Sweden)

    Tianjiao Chu

    Full Text Available A small number of recent reports have suggested that altered placental DNA methylation may be associated with early onset preeclampsia. It is important that further studies be undertaken to confirm and develop these findings. We therefore undertook a systematic analysis of DNA methylation patterns in placental tissue from 24 women with preeclampsia and 24 with uncomplicated pregnancy outcome.We analyzed the DNA methylation status of approximately 27,000 CpG sites in placental tissues in a massively parallel fashion using an oligonucleotide microarray. Follow up analysis of DNA methylation at specific CpG loci was performed using the Epityper MassArray approach and high-throughput bisulfite sequencing.Preeclampsia-specific DNA methylation changes were identified in placental tissue samples irrespective of gestational age of delivery. In addition, we identified a group of CpG sites within specific gene sequences that were only altered in early onset-preeclampsia (EOPET although these DNA methylation changes did not correlate with altered mRNA transcription. We found evidence that fetal gender influences DNA methylation at autosomal loci but could find no clear association between DNA methylation and gestational age.Preeclampsia is associated with altered placental DNA methylation. Fetal gender should be carefully considered during the design of future studies in which placental DNA is analyzed at the level of DNA methylation. Further large-scale analyses of preeclampsia-associated DNA methylation are necessary.

  5. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.

    Science.gov (United States)

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S

    2014-10-01

    DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Alkaline Extraction of DNA from Pathogenic Fungi for PCR-RFLP Analysis

    OpenAIRE

    Matsumoto, Masaru; Mishima, Shinobu; Matsuyama, Nobuaki; 松元, 賢; 松山, 宣明

    1997-01-01

    For the preparation of DNA samples from fungal mycelia alkaline extraction method was applied and assessed its usefulness for PCR-RFLP analysis. Using alkaline treatment protocols, 18S ribosomal DNAs (rDNA) derived from fungal genomic DNA of Pyricularia oryzae, P. zingiberi, Rhizoctonia solani and R. oryzae were PCR-amplified and digested with Hha I, Msp I and Hae ill. RFLP analysis with HhaI showed the divergent polymorphism between genus Pyricularia and Rhizoctonia. The alkaline DNA extract...

  7. Integrated Sensing Using DNA Nanoarchitectures

    Science.gov (United States)

    2014-05-20

    Norton. Thiolated Dendrimers as Multi-Point Binding Headgroups for DNA Immobilization on Gold, Langmuir, (10 2011): 0. doi: 10.1021/la202444s...flat mica surface, the structure is planar (it is conformal, lacking rigidity as a 2 nm thick polymer sheet. The simulated structure is shown in...Morris, John R., and Norton, Michael L.; Thiolated Dendrimers as Multi-Point Binding Headgroups for DNA Immobilization on Gold, Langmuir, 27(20

  8. DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering.

    Science.gov (United States)

    Haddad, Yazan; Dostalova, Simona; Kudr, Jiri; Zitka, Ondrej; Heger, Zbynek; Adam, Vojtech

    2017-11-09

    Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.

  9. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    Science.gov (United States)

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  10. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication

    Directory of Open Access Journals (Sweden)

    Yasushi Shiomi

    2017-01-01

    Full Text Available During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA, acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  11. Analysis of the role of PCNA-DNA contacts during clamp loading

    Directory of Open Access Journals (Sweden)

    Goedken Eric R

    2010-01-01

    Full Text Available Abstract Background Sliding clamps, such as Proliferating Cell Nuclear Antigen (PCNA in eukaryotes, are ring-shaped protein complexes that encircle DNA and enable highly processive DNA replication by serving as docking sites for DNA polymerases. In an ATP-dependent reaction, clamp loader complexes, such as the Replication Factor-C (RFC complex in eukaryotes, open the clamp and load it around primer-template DNA. Results We built a model of RFC bound to PCNA and DNA based on existing crystal structures of clamp loaders. This model suggests that DNA would enter the clamp at an angle during clamp loading, thereby interacting with positively charged residues in the center of PCNA. We show that simultaneous mutation of Lys 20, Lys 77, Arg 80, and Arg 149, which interact with DNA in the RFC-PCNA-DNA model, compromises the ability of yeast PCNA to stimulate the DNA-dependent ATPase activity of RFC when the DNA is long enough to extend through the clamp. Fluorescence anisotropy binding experiments show that the inability of the mutant clamp proteins to stimulate RFC ATPase activity is likely caused by reduction in the affinity of the RFC-PCNA complex for DNA. We obtained several crystal forms of yeast PCNA-DNA complexes, measuring X-ray diffraction data to 3.0 Å resolution for one such complex. The resulting electron density maps show that DNA is bound in a tilted orientation relative to PCNA, but makes different contacts than those implicated in clamp loading. Because of apparent partial disorder in the DNA, we restricted refinement of the DNA to a rigid body model. This result contrasts with previous analysis of a bacterial clamp bound to DNA, where the DNA was well resolved. Conclusion Mutational analysis of PCNA suggests that positively charged residues in the center of the clamp create a binding surface that makes contact with DNA. Disruption of this positive surface, which had not previously been implicated in clamp loading function, reduces RFC

  12. Toxicogenomic markers for corticosteroid treatment in beef cattle: integrated analysis of transcriptomic data.

    Science.gov (United States)

    Pegolo, Sara; Di Camillo, Barbara; Montesissa, Clara; Cannizzo, Francesca Tiziana; Biolatti, Bartolomeo; Bargelloni, Luca

    2015-03-01

    In the present work, an integrated analysis was performed on DNA-microarray data of bovine muscle samples belonging to controls, animals treated with various growth promoters (GPs) and unknown commercial samples. The aim was identify a robust gene expression signature of corticosteroid treatment for the classification of commercial samples, despite the effects of biological variation and other confounding factors. DNA-Microarray data from 5 different batches of bovine skeletal muscle samples were analyzed (146 samples). After preprocessing, expression data from animals treated with corticosteroids and controls from the different batches (89 samples) were used to train a Support Vector Machines (SVMs) classifier. The optimal number of gene probes chosen by our classification framework was 73. The SVMs with linear kernel built on these 73 biomarker genes was predicted to perform on novel samples with a high classification accuracy (Matthew's correlation coefficient equal to 0.77) and an average percentage of false positive and false negative equal to 5% and 6%, respectively. Concluding, a relatively small set of genes was able to discriminate between controls and corticosteroid-treated animals, despite different breeds, animal ages, and combination of GPs. The results are extremely promising, suggesting that integrated analysis provides robust transcriptomic signatures for GP abuse. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Correlative analysis on the relationship between PMI and DNA degradation of cell nucleus in human different tissues.

    Science.gov (United States)

    Shu, Xiji; Liu, Yaling; Ren, Liang; He, Fanggang; Zhou, Hongyan; Liu, Lijiang; Liu, Liang

    2005-01-01

    To determining the postmortem interval (PMI) through quantitative analysis of the DNA degradation of cell nucleus in human brain and spleen by using image analysis technique (IAT). The brain and spleen tissues from 32 cadavers with known PMI were collected, subjected to cell smear every 1 h within the first 5-36 h after death, stained by Feulgen-Van's staining, Three indices reflecting DNA in brain cells (astrocytes) and splenic lymphocytes, including integral optical density (IOD), average optical density (AOD), average gray (AG) were measured by employing the mage analysis instrument. The results showed that IOD and AOD declined and AG increased with the prolongation of dead time within 5-36 h. A correlation between the PMI and gray parameters (IOD, AOD and AG) was identified and the corresponding regression equation was obtained. The parameters (IOD, AOD and AG) were proved to be effective quantitative indicators for accurate estimation of PMI within 5-36 h after death.

  14. [The future of forensic DNA analysis for criminal justice].

    Science.gov (United States)

    Laurent, François-Xavier; Vibrac, Geoffrey; Rubio, Aurélien; Thévenot, Marie-Thérèse; Pène, Laurent

    2017-11-01

    In the criminal framework, the analysis of approximately 20 DNA microsatellites enables the establishment of a genetic profile with a high statistical power of discrimination. This technique gives us the possibility to establish or exclude a match between a biological trace detected at a crime scene and a suspect whose DNA was collected via an oral swab. However, conventional techniques do tend to complexify the interpretation of complex DNA samples, such as degraded DNA and mixture DNA. The aim of this review is to highlight the powerness of new forensic DNA methods (including high-throughput sequencing or single-cell sequencing) to facilitate the interpretation of the expert with full compliance with existing french legislation. © 2017 médecine/sciences – Inserm.

  15. Detection of Adult Green Sturgeon Using Environmental DNA Analysis.

    Directory of Open Access Journals (Sweden)

    Paul S Bergman

    Full Text Available Environmental DNA (eDNA is an emerging sampling method that has been used successfully for detection of rare aquatic species. The Identification of sampling tools that are less stressful for target organisms has become increasingly important for rare and endangered species. A decline in abundance of the Southern Distinct Population Segment (DPS of North American Green Sturgeon located in California's Central Valley has led to its listing as Threatened under the Federal Endangered Species Act in 2006. While visual surveys of spawning Green Sturgeon in the Central Valley are effective at monitoring fish densities in concentrated pool habitats, results do not scale well to the watershed level, providing limited spatial and temporal context. Unlike most traditional survey methods, environmental DNA analysis provides a relatively quick, inexpensive tool that could efficiently monitor the presence and distribution of aquatic species. We positively identified Green Sturgeon DNA at two locations of known presence in the Sacramento River, proving that eDNA can be effective for monitoring the presence of adult sturgeon. While further study is needed to understand uncertainties of the sampling method, our study represents the first documented detection of Green Sturgeon eDNA, indicating that eDNA analysis could provide a new tool for monitoring Green Sturgeon distribution in the Central Valley, complimenting traditional on-going survey methods.

  16. Comprehensive mapping of the human papillomavirus (HPV) DNA integration sites in cervical carcinomas by HPV capture technology.

    Science.gov (United States)

    Liu, Ying; Lu, Zheming; Xu, Ruiping; Ke, Yang

    2016-02-02

    Integration of human papillomavirus (HPV) DNA into the host genome can be a driver mutation in cervical carcinoma. Identification of HPV integration at base resolution has been a longstanding technical challenge, largely due to sensitivity masking by HPV in episomes or concatenated forms. The aim was to enhance the understanding of the precise localization of HPV integration sites using an innovative strategy. Using HPV capture technology combined with next generation sequencing, HPV prevalence and the exact integration sites of the HPV DNA in 47 primary cervical cancer samples and 2 cell lines were investigated. A total of 117 unique HPV integration sites were identified, including HPV16 (n = 101), HPV18 (n = 7), and HPV58 (n = 9). We observed that the HPV16 integration sites were broadly located across the whole viral genome. In addition, either single or multiple integration events could occur frequently for HPV16, ranging from 1 to 19 per sample. The viral integration sites were distributed across almost all the chromosomes, except chromosome 22. All the cervical cancer cases harboring more than four HPV16 integration sites showed clinical diagnosis of stage III carcinoma. A significant enrichment of overlapping nucleotides shared between the human genome and HPV genome at integration breakpoints was observed, indicating that it may play an important role in the HPV integration process. The results expand on knowledge from previous findings on HPV16 and HPV18 integration sites and allow a better understanding of the molecular basis of the pathogenesis of cervical carcinoma.

  17. Effect of different procedures of ejaculate collection, extenders and packages on DNA integrity of boar spermatozoa following freezing-thawing.

    Science.gov (United States)

    Fraser, L; Strzezek, J

    2007-06-01

    Whole ejaculate or sperm-rich fraction, collected from four sexually mature boars, was frozen in an extender containing lactose-hen egg yolk with glycerol (lactose-HEY-G) or extender containing lactose, lyophilized lipoprotein fractions isolated from ostrich egg yolk and glycerol (lactose-LPFo-G), and Orvus Es Paste, respectively. The sperm samples were also frozen in a standard boar semen extender (Kortowo-3), without the addition of cryoprotective substances. Sperm DNA integrity was assessed using a modified neutral comet assay. Sperm characteristics such as motility, plasma membrane integrity (SYBR-14/PI), mitochondrial function (rhodamine 123) and acrosome integrity were monitored. Freezing-thawing caused a significant increase (Pextender type. Sperm DNA fragmentation was significantly lower (Pextender exhibited lower (Pboar semen.

  18. XplorSeq: a software environment for integrated management and phylogenetic analysis of metagenomic sequence data.

    Science.gov (United States)

    Frank, Daniel N

    2008-10-07

    Advances in automated DNA sequencing technology have accelerated the generation of metagenomic DNA sequences, especially environmental ribosomal RNA gene (rDNA) sequences. As the scale of rDNA-based studies of microbial ecology has expanded, need has arisen for software that is capable of managing, annotating, and analyzing the plethora of diverse data accumulated in these projects. XplorSeq is a software package that facilitates the compilation, management and phylogenetic analysis of DNA sequences. XplorSeq was developed for, but is not limited to, high-throughput analysis of environmental rRNA gene sequences. XplorSeq integrates and extends several commonly used UNIX-based analysis tools by use of a Macintosh OS-X-based graphical user interface (GUI). Through this GUI, users may perform basic sequence import and assembly steps (base-calling, vector/primer trimming, contig assembly), perform BLAST (Basic Local Alignment and Search Tool; 123) searches of NCBI and local databases, create multiple sequence alignments, build phylogenetic trees, assemble Operational Taxonomic Units, estimate biodiversity indices, and summarize data in a variety of formats. Furthermore, sequences may be annotated with user-specified meta-data, which then can be used to sort data and organize analyses and reports. A document-based architecture permits parallel analysis of sequence data from multiple clones or amplicons, with sequences and other data stored in a single file. XplorSeq should benefit researchers who are engaged in analyses of environmental sequence data, especially those with little experience using bioinformatics software. Although XplorSeq was developed for management of rDNA sequence data, it can be applied to most any sequencing project. The application is available free of charge for non-commercial use at http://vent.colorado.edu/phyloware.

  19. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  20. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    Science.gov (United States)

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  1. Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs. The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology.

  2. The use of comet assay to assess DNA integrity of boar spermatozoa following liquid preservation at 5 degrees C and 16 degrees C.

    Directory of Open Access Journals (Sweden)

    J Strzezek

    2004-03-01

    Full Text Available The comet assay, under neutral conditions, allows the assessment of DNA integrity influenced by sperm ageing, which is manifested in DNA double-strand breaks. Here, we attempted to use a modified neutral comet assay test (single-cell gel electrophoresis, to our knowledge for the first time, to assess DNA integrity of boar spermatozoa during liquid storage for 96 h at 5 degrees C and 16 degrees C. In this comet assay protocol we used 2% beta-mercaptoethanol prior to the lysis procedure, to aid in removing nuclear proteins. Ejaculates from 3 boars (designated A, C and G were diluted with a standard semen extender, Kortowo-3 (K-3, which was supplemented with lipoprotein fractions extracted from hen egg yolk (LPFh or ostrich egg yolk (LPFo. Irrespective of the extender type, the percentage of comet-detected spermatozoa with damaged DNA increased gradually during prolonged storage at 5 degrees C and 16 degrees C. Spermatozoa stored in K-3 extender exhibited elevated levels of DNA damage at both storage temperatures. Significant differences in DNA damage among the boars were more pronounced during storage in LPF-based extenders at 5 degrees C: spermatozoa of boars A and G were less susceptible to DNA damage. The percent of tail DNA in comets was lower in LPF-based extenders, and there were individual variations among the boars. We observed that changes in DNA integrity were dependent on the extender type and storage temperature. A higher level of DNA instability was observed in K-3 extended semen compared with K-3/LPFh or K-3/LPFo extended semen during storage at 5 degrees C. No significant difference in the level of DNA damage between K-3/LPFh and K-3/LPFo was observed. It seems that a long-term storage can affect genomic integrity of boar spermatozoa. The modified neutral comet assay can be used to detect low levels of DNA damage in boar spermatozoa during liquid preservation. Therefore, screening for sperm DNA damage may be used as an additional

  3. The use of comet assay to assess DNA integrity of boar spermatozoa following liquid preservation at 5 degrees C and 16 degrees C.

    Science.gov (United States)

    Fraser, L; Strzezek, J

    2004-01-01

    The comet assay, under neutral conditions, allows the assessment of DNA integrity influenced by sperm ageing, which is manifested in DNA double-strand breaks. Here, we attempted to use a modified neutral comet assay test (single-cell gel electrophoresis), to our knowledge for the first time, to assess DNA integrity of boar spermatozoa during liquid storage for 96 h at 5 degrees C and 16 degrees C. In this comet assay protocol we used 2% beta-mercaptoethanol prior to the lysis procedure, to aid in removing nuclear proteins. Ejaculates from 3 boars (designated A, C and G) were diluted with a standard semen extender, Kortowo-3 (K-3), which was supplemented with lipoprotein fractions extracted from hen egg yolk (LPFh) or ostrich egg yolk (LPFo). Irrespective of the extender type, the percentage of comet-detected spermatozoa with damaged DNA increased gradually during prolonged storage at 5 degrees C and 16 degrees C. Spermatozoa stored in K-3 extender exhibited elevated levels of DNA damage at both storage temperatures. Significant differences in DNA damage among the boars were more pronounced during storage in LPF-based extenders at 5 degrees C: spermatozoa of boars A and G were less susceptible to DNA damage. The percent of tail DNA in comets was lower in LPF-based extenders, and there were individual variations among the boars. We observed that changes in DNA integrity were dependent on the extender type and storage temperature. A higher level of DNA instability was observed in K-3 extended semen compared with K-3/LPFh or K-3/LPFo extended semen during storage at 5 degrees C. No significant difference in the level of DNA damage between K-3/LPFh and K-3/LPFo was observed. It seems that a long-term storage can affect genomic integrity of boar spermatozoa. The modified neutral comet assay can be used to detect low levels of DNA damage in boar spermatozoa during liquid preservation. Therefore, screening for sperm DNA damage may be used as an additional test of sperm

  4. Linear Association Between Cellular DNA and Epstein-Barr Virus DNA in a Human Lymphoblastoid Cell Line

    Science.gov (United States)

    Adams, Alice; Lindahl, Tomas; Klein, George

    1973-01-01

    High-molecular-weight DNA from cell line Raji (derived from Burkitt's lymphoma), which contains 50-60 copies of Epstein-Barr virus DNA per cell, was fractionated in neutral solution by several cycles of CsCl gradient centrifugation in fixed-angle rotors. Under the fractionation conditions used, intact Epstein-Barr virus DNA from virus particles can be separated from the less-dense cellular DNA. In contrast, a large proportion of the intrinsic Epstein-Barr virus DNA component of Raji cells remains associated with cellular DNA, as determined by nucleic acid hybridization. This interaction, which is resistant to Pronase and phenol treatment, is not the result of aggregation. When the molecular weight of Raji DNA is reduced by hydrodynamic shear, the amount of virus DNA associated with cell DNA decreases. However, some virus DNA still remains bound to fragments of cellular DNA after shearing. The association is completely destroyed in alkaline solution. Molecular weight analysis of Raji DNA after denaturation showed that the alkali-induced release of Epstein-Barr virus DNA was specific and not the result of random single-strand breaks. These data indicate that Epstein-Barr virus DNA is linearly integrated into Raji cell DNA by alkali-labile bonds. PMID:4355371

  5. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.

    Science.gov (United States)

    Adam, Salomé; Dabin, Juliette; Chevallier, Odile; Leroy, Olivier; Baldeyron, Céline; Corpet, Armelle; Lomonte, Patrick; Renaud, Olivier; Almouzni, Geneviève; Polo, Sophie E

    2016-10-06

    Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    International Nuclear Information System (INIS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Zenhausern, Frederic; Rivera, Andrew; Birdsell, Dawn N; Wagner, David M

    2015-01-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30–100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis. (paper)

  7. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    Science.gov (United States)

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  8. Sperm DNA Integrity Assessment: A New Tool in Diagnosis and Treatment of Fertility

    Directory of Open Access Journals (Sweden)

    Mona Bungum

    2012-01-01

    Full Text Available Infertility affects 15% of all couples. Although male infertility factors with reduced semen quality are contributing to about half of all involuntary childlessness, the value of standard semen parameters in prediction of fertility in vivo and choice of proper method for assisted reproduction is limited. In the search for better markers of male fertility, during the last 10 years, assessment of sperm DNA integrity has emerged as a strong new biomarker of semen quality that may have the potential to discriminate between infertile and fertile men. Sperm DNA Fragmentation Index (DFI as assessed by the flow cytometric Sperm Chromatin Structure Assay (SCSA can be used for evaluation of sperm chromatin integrity. The biological background for abnormal DFI is not completely known, but clinical data show that DFI above 30% is associated with very low chance for achieving pregnancy in natural way or by insemination, but not in vitro. Already when the DFI is above 20%, the chance of natural pregnancy may be reduced, despite other sperm parameters being normal. Thus this method may explain a significant proportion of cases of unexplained infertility and can be beneficial in counselling involuntary childless couples need of in vitro fertilisation.

  9. Dualities in the analysis of phage DNA packaging motors

    Science.gov (United States)

    Serwer, Philip; Jiang, Wen

    2012-01-01

    The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research. PMID:23532204

  10. Genomic analysis of murine DNA-dependent protein kinase

    International Nuclear Information System (INIS)

    Fujimori, A.; Abe, M.

    2003-01-01

    Full text: The gene of catalytic subunit of DNA dependent protein kinase is responsible gene for SCID mice. The molecules play a critical role in non-homologous end joining including the V(D)J recombination. Contribution of the molecules to the difference of radiosensitivity and the susceptibility to cancer has been suggested. Here we show the entire nucleotide sequence of approximately 193 kbp and 84 kbp genomic regions encoding the entire DNA-PKcs gene in the mouse and chicken respectively. Retroposon was found in the intron 51 of mouse genomic DNA-PKcs gene but in human and chicken. Comparative analysis of these two species strongly suggested that only two genes, DNA-PKcs and MCM4, exist in the region of both species. Several conserved sequences and cis elements, however, were predicted. Recently, the orthologous region for the human DNA-PKcs locus was completed. The results of further comparative study will be discussed

  11. Bidirectional Retroviral Integration Site PCR Methodology and Quantitative Data Analysis Workflow.

    Science.gov (United States)

    Suryawanshi, Gajendra W; Xu, Song; Xie, Yiming; Chou, Tom; Kim, Namshin; Chen, Irvin S Y; Kim, Sanggu

    2017-06-14

    Integration Site (IS) assays are a critical component of the study of retroviral integration sites and their biological significance. In recent retroviral gene therapy studies, IS assays, in combination with next-generation sequencing, have been used as a cell-tracking tool to characterize clonal stem cell populations sharing the same IS. For the accurate comparison of repopulating stem cell clones within and across different samples, the detection sensitivity, data reproducibility, and high-throughput capacity of the assay are among the most important assay qualities. This work provides a detailed protocol and data analysis workflow for bidirectional IS analysis. The bidirectional assay can simultaneously sequence both upstream and downstream vector-host junctions. Compared to conventional unidirectional IS sequencing approaches, the bidirectional approach significantly improves IS detection rates and the characterization of integration events at both ends of the target DNA. The data analysis pipeline described here accurately identifies and enumerates identical IS sequences through multiple steps of comparison that map IS sequences onto the reference genome and determine sequencing errors. Using an optimized assay procedure, we have recently published the detailed repopulation patterns of thousands of Hematopoietic Stem Cell (HSC) clones following transplant in rhesus macaques, demonstrating for the first time the precise time point of HSC repopulation and the functional heterogeneity of HSCs in the primate system. The following protocol describes the step-by-step experimental procedure and data analysis workflow that accurately identifies and quantifies identical IS sequences.

  12. A Spatio-Temporal Analysis of Mitochondrial DNA Haplogroup I

    Directory of Open Access Journals (Sweden)

    Revesz Peter Z.

    2016-01-01

    Full Text Available The recent recovery of ancient DNA from a growing number of human samples shows that mitochondrial DNA haplogroup I was introduced to Europe after the end of the Last Glacial Maximum. This paper provides a spatio-temporal analysis of the various subhaplogroups of mitochondrial DNA I. The study suggests that haplogroup I diversified into haplogroups I1, I2’3, I4 and I5 at specific regions in Eurasia and then spread southward to Crete and Egypt.

  13. DNA analysis by single molecule stretching in nanofluidic biochips

    DEFF Research Database (Denmark)

    Abad, E.; Juarros, A.; Retolaza, A.

    2011-01-01

    Imprint Lithography (NIL) technology combined with a conventional anodic bonding of the silicon base and Pyrex cover. Using this chip, we have performed single molecule imaging on a bench-top fluorescent microscope system. Lambda phage DNA was used as a model sample to characterize the chip. Single molecules of λ-DNA......Stretching single DNA molecules by confinement in nanofluidic channels has attracted a great interest during the last few years as a DNA analysis tool. We have designed and fabricated a sealed micro/nanofluidic device for DNA stretching applications, based on the use of the high throughput Nano...... stained with the fluorescent dye YOYO-1 were stretched in the nanochannel array and the experimental results were analysed to determine the extension factor of the DNA in the chip and the geometrical average of the nanochannel inner diameter. The determination of the extension ratio of the chip provides...

  14. Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2012-01-01

    Full Text Available In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.

  15. EVALUATION OF DNA INTEGRITY USING TUNEL AND COMET ASSAY IN HUMAN SEMEN: IMMEDIATE- VERSUS DELAYED-FREEZING

    Science.gov (United States)

    EVALUATION OF DNA INTEGRITY USING TUNEL AND COMET ASSAY IN HUMAN SEMEN: IMMEDIATE- VERSUS DELAYED-FREEZING K. Young,* L. Xun,* S. Rothmann,? S. Perreault, ? W. Robbins**University of California, Los Angeles, Los Angeles, California; ?Fertility Solutions Inc., Cleveland, ...

  16. Biological Evidence Management for DNA Analysis in Cases of Sexual Assault

    Science.gov (United States)

    Magalhães, Teresa; Dinis-Oliveira, Ricardo Jorge; Silva, Benedita; Corte-Real, Francisco; Nuno Vieira, Duarte

    2015-01-01

    Biological evidence with forensic interest may be found in several cases of assault, being particularly relevant if sexually related. Sexual assault cases are characterized by low rates of disclosure, reporting, prosecution, and conviction. Biological evidence is sometimes the only way to prove the occurrence of sexual contact and to identify the perpetrator. The major focus of this review is to propose practical approaches and guidelines to help health, forensic, and law enforcement professionals to deal with biological evidence for DNA analysis. Attention should be devoted to avoiding contamination, degradation, and loss of biological evidence, as well as respecting specific measures to properly handle evidence (i.e., selection, collection, packing, sealing, labeling, storage, preservation, transport, and guarantee of the chain custody). Biological evidence must be carefully managed since the relevance of any finding in Forensic Genetics is determined, in the first instance, by the integrity and quantity of the samples submitted for analysis. PMID:26587562

  17. Biological Evidence Management for DNA Analysis in Cases of Sexual Assault

    Directory of Open Access Journals (Sweden)

    Teresa Magalhães

    2015-01-01

    Full Text Available Biological evidence with forensic interest may be found in several cases of assault, being particularly relevant if sexually related. Sexual assault cases are characterized by low rates of disclosure, reporting, prosecution, and conviction. Biological evidence is sometimes the only way to prove the occurrence of sexual contact and to identify the perpetrator. The major focus of this review is to propose practical approaches and guidelines to help health, forensic, and law enforcement professionals to deal with biological evidence for DNA analysis. Attention should be devoted to avoiding contamination, degradation, and loss of biological evidence, as well as respecting specific measures to properly handle evidence (i.e., selection, collection, packing, sealing, labeling, storage, preservation, transport, and guarantee of the chain custody. Biological evidence must be carefully managed since the relevance of any finding in Forensic Genetics is determined, in the first instance, by the integrity and quantity of the samples submitted for analysis.

  18. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    Science.gov (United States)

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  19. Y-STR analysis on DNA mixture samples--results of a collaborative project of the ENFSI DNA Working Group

    DEFF Research Database (Denmark)

    Parson, Walther; Niederstätter, Harald; Lindinger, Alexandra

    2008-01-01

    The ENFSI (European Network of Forensic Science Institutes) DNA Working Group undertook a collaborative project on Y-STR typing of DNA mixture samples that were centrally prepared and thoroughly tested prior to the shipment. Four commercial Y-STR typing kits (Y-Filer, Applied Biosystems, Foster C...... a laboratory-specific optimization process is indicated to reach a comparable sensitivity for the analysis of minute amounts of DNA....

  20. DNA pattern recognition using canonical correlation algorithm.

    Science.gov (United States)

    Sarkar, B K; Chakraborty, Chiranjib

    2015-10-01

    We performed canonical correlation analysis as an unsupervised statistical tool to describe related views of the same semantic object for identifying patterns. A pattern recognition technique based on canonical correlation analysis (CCA) was proposed for finding required genetic code in the DNA sequence. Two related but different objects were considered: one was a particular pattern, and other was test DNA sequence. CCA found correlations between two observations of the same semantic pattern and test sequence. It is concluded that the relationship possesses maximum value in the position where the pattern exists. As a case study, the potential of CCA was demonstrated on the sequence found from HIV-1 preferred integration sites. The subsequences on the left and right flanking from the integration site were considered as the two views, and statistically significant relationships were established between these two views to elucidate the viral preference as an important factor for the correlation.

  1. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS. While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.

  2. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-01-01

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  3. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India); Challapalli, Srinivas [Department of Radiotherapy, Kasturba Medical College, Mangalore (India); Chandraguthi, Shrinidhi Gururajarao [Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal (India); Jain, Navya; Krishnamurthy, Hanumanthappa [National Centre for Biological Sciences, Bangalore (India); Kumar, Pratap [Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal (India); Adiga, Satish Kumar, E-mail: satish.adiga@manipal.edu [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India)

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  4. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  5. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  6. Use of FTA® classic cards for epigenetic analysis of sperm DNA.

    Science.gov (United States)

    Serra, Olga; Frazzi, Raffaele; Perotti, Alessio; Barusi, Lorenzo; Buschini, Annamaria

    2018-02-01

    FTA® technologies provide the most reliable method for DNA extraction. Although FTA technologies have been widely used for genetic analysis, there is no literature on their use for epigenetic analysis yet. We present for the first time, a simple method for quantitative methylation assessment based on sperm cells stored on Whatman FTA classic cards. Specifically, elution of seminal DNA from FTA classic cards was successfully tested with an elution buffer and an incubation step in a thermocycler. The eluted DNA was bisulfite converted, amplified by PCR, and a region of interest was pyrosequenced.

  7. Individual capacity for DNA repair and maintenance of genomic integrity: a fertile ground for studies in the field of assisted reproduction

    Directory of Open Access Journals (Sweden)

    Radoslava Vazharova

    2016-05-01

    Full Text Available Many factors may affect the chances for successful pregnancy, especially at a later age. Fertility evaluations including genetic analysis are recommended to couples that have not achieved pregnancy within 6–12 months of unprotected intercourse. This review discusses some of the common polymorphisms in genes coding for proteins functioning in DNA damage identification and repair and maintenance of genomic integrity that may affect the chances of success in natural conception as well as in assisted reproduction (AR. Common polymorphisms in genes coding for proteins functioning in DNA damage identification and repair and maintenance of genomic integrity may affect the chances of success in assisted reproduction as well as in natural conception. The effects of carriership of different alleles of key genes of DNA repair may have differential effects in men and women and at different ages, suggesting complex interactions with the mechanisms controlling cell and tissue aging and programmed cell death. Future studies in the field are needed in order to elucidate the genotype–phenotype relationships and to translate the knowledge about individual repair capacity and maintenance of genomic integrity to potential clinical applications. Abbreviations: aCGH: microarray-based comparative genomic hybridization; AR: assisted reproduction; ATM: ataxia-telangiectasia mutated; ATP: adenosine triphosphate; BER: base excision repair; BFE: basic fertility evaluation; DMSO: dimethyl sulfoxide; FSH: follicle-stimulating hormone; GNRHR: gonadotropin-releasing hormone receptor; HMG: high-mobility group; ICSI: intracytoplasmic sperm injection; IUI: intrauterine insemination; IVF: in vitro fertilization; LH: luteinizing hormone; LIF: leukaemia inhibitory factor; MTR: methionine synthase; MTRR: methionine synthase reductase; NGS: next-generation sequencing; NER: nucleotide excision repair; NHEJ: non-homologous end joining; PAH: polycyclic aromatic hydrocarbons; PCOS

  8. Cell-Free DNA in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Spindler, Karen-Lise G; Boysen, Anders K; Pallisgård, Niels; Johansen, Julia S; Tabernero, Josep; Sørensen, Morten M; Jensen, Benny V; Hansen, Torben F; Sefrioui, David; Andersen, Rikke F; Brandslund, Ivan; Jakobsen, Anders

    2017-09-01

    Circulating DNA can be detected and quantified in the blood of cancer patients and used for detection of tumor-specific genetic alterations. The clinical utility has been intensively investigated for the past 10 years. The majority of reports focus on analyzing the clinical potential of tumor-specific mutations, whereas the use of total cell-free DNA (cfDNA) quantification is somehow controversial and sparsely described in the literature, but holds important clinical information in itself. The purpose of the present report was to present a systematic review and meta-analysis of the prognostic value of total cfDNA in patients with metastatic colorectal cancer (mCRC) treated with chemotherapy. In addition, we report on the overall performance of cfDNA as source for KRAS mutation detection. A systematic literature search of PubMed and Embase was performed by two independent investigators. Eligibility criteria were (a) total cfDNA analysis, (b) mCRC, and (c) prognostic value during palliative treatment. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed, and meta-analysis applied on both aggregate data extraction and individual patients' data. Ten eligible cohorts were identified, including a total of 1,076 patients. Seven studies used quantitative polymerase chain reaction methods, two BEAMing [beads, emulsification, amplification, and magnetics] technology, and one study digital droplet polymerase chain reaction. The baseline levels of cfDNA was similar in the presented studies, and all studies reported a clear prognostic value in favor of patients with lowest levels of baseline cfDNA. A meta-analysis revealed a combined estimate of favorable overall survival hazard ratio (HR) in patients with levels below the median cfDNA (HR = 2.39, 95% confidence interval 2.03-2.82, p  meta-analysis. Reliable prognostic markers could help to guide patients and treating physicians regarding the relevance and choice of

  9. Analysis of DNA interactions using single-molecule force spectroscopy.

    Science.gov (United States)

    Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert

    2013-06-01

    Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.

  10. The impact of gypsum mine water: A case study on morphology and DNA integrity in the freshwater invertebrate, Gammarus balcanicus

    International Nuclear Information System (INIS)

    Ternjej, Ivančica; Mihaljević, Zlatko; Ivković, Marija; Previšić, Ana; Stanković, Igor; Maldini, Krešimir; Želježić, Davor; Kopjar, Nevenka

    2014-01-01

    The aim of our study was to investigate how exposure to heavy metal-rich waters from gypsum mining affects the morphology and levels of primary DNA damage in Gammarus balcanicus. Chemical analysis revealed increased concentrations of metals in water and sediment collected at a site impacted by gypsum mine wastewaters. The specimens also showed elevated total tissue metal levels when compared with the organisms collected at the reference site. The most prominent increase was observed for strontium, followed by iron, nickel, vanadium, aluminium, and manganese. The major pathway of entry for these toxic substances was through the degraded exoskeleton as a consequence of excessive strontium input (unbalanced calcium/strontium ratio) and altered permeability. Disturbed exoskeleton integrity was observed only in individuals collected downstream of the gypsum mine, which was confirmed by electron microscopy. Levels of primary DNA damage were evaluated using the alkaline comet assay in the haemolymph of the specimens. - Highlights: • Our findings suggest toxic potential of gypsum mine wastewaters. • The Gammarus specimens showed elevated total tissue metal levels. • Strontium uptake disturbed exoskeleton integrity. • Corrupted cuticle altered permeability to other toxic substances. • Combined effects of all contaminants caused genotoxicity. - Gypsum mine wastewaters have genotoxic potential and affect the gammarid exoskeleton morphology and biochemistry associated with a high strontium uptake

  11. Human papilloma viruses and cervical tumours: mapping of integration sites and analysis of adjacent cellular sequences

    International Nuclear Information System (INIS)

    Klimov, Eugene; Vinokourova, Svetlana; Moisjak, Elena; Rakhmanaliev, Elian; Kobseva, Vera; Laimins, Laimonis; Kisseljov, Fjodor; Sulimova, Galina

    2002-01-01

    In cervical tumours the integration of human papilloma viruses (HPV) transcripts often results in the generation of transcripts that consist of hybrids of viral and cellular sequences. Mapping data using a variety of techniques has demonstrated that HPV integration occurred without obvious specificity into human genome. However, these techniques could not demonstrate whether integration resulted in the generation of transcripts encoding viral or viral-cellular sequences. The aim of this work was to map the integration sites of HPV DNA and to analyse the adjacent cellular sequences. Amplification of the INTs was done by the APOT technique. The APOT products were sequenced according to standard protocols. The analysis of the sequences was performed using BLASTN program and public databases. To localise the INTs PCR-based screening of GeneBridge4-RH-panel was used. Twelve cellular sequences adjacent to integrated HPV16 (INT markers) expressed in squamous cell cervical carcinomas were isolated. For 11 INT markers homologous human genomic sequences were readily identified and 9 of these showed significant homologies to known genes/ESTs. Using the known locations of homologous cDNAs and the RH-mapping techniques, mapping studies showed that the INTs are distributed among different human chromosomes for each tumour sample and are located in regions with the high levels of expression. Integration of HPV genomes occurs into the different human chromosomes but into regions that contain highly transcribed genes. One interpretation of these studies is that integration of HPV occurs into decondensed regions, which are more accessible for integration of foreign DNA

  12. Coincident In Vitro Analysis of DNA-PK-Dependent and -Independent Nonhomologous End Joining

    Directory of Open Access Journals (Sweden)

    Cynthia L. Hendrickson

    2010-01-01

    Full Text Available In mammalian cells, DNA double-strand breaks (DSBs are primarily repaired by nonhomologous end joining (NHEJ. The current model suggests that the Ku 70/80 heterodimer binds to DSB ends and recruits DNA-PKcs to form the active DNA-dependent protein kinase, DNA-PK. Subsequently, XRCC4, DNA ligase IV, XLF and most likely, other unidentified components participate in the final DSB ligation step. Therefore, DNA-PK plays a key role in NHEJ due to its structural and regulatory functions that mediate DSB end joining. However, recent studies show that additional DNA-PK-independent NHEJ pathways also exist. Unfortunately, the presence of DNA-PKcs appears to inhibit DNA-PK-independent NHEJ, and in vitro analysis of DNA-PK-independent NHEJ in the presence of the DNA-PKcs protein remains problematic. We have developed an in vitro assay that is preferentially active for DNA-PK-independent DSB repair based solely on its reaction conditions, facilitating coincident differential biochemical analysis of the two pathways. The results indicate the biochemically distinct nature of the end-joining mechanisms represented by the DNA-PK-dependent and -independent NHEJ assays as well as functional differences between the two pathways.

  13. DNA transformations of Candida tropicalis with replicating and integrative vectors.

    Science.gov (United States)

    Sanglard, D; Fiechter, A

    1992-12-01

    The alkane-assimilating yeast Candida tropicalis was used as a host for DNA transformations. A stable ade2 mutant (Ha900) obtained by UV-mutagenesis was used as a recipient for different vectors carrying selectable markers. A first vector, pMK16, that was developed for the transformation of C. albicans and carries an ADE2 gene marker and a Candida autonomously replicating sequence (CARS) element promoting autonomous replication, was compatible for transforming Ha900. Two transformant types were observed: (i) pink transformants which easily lose pMK16 under non-selective growth conditions; (ii) white transformants, in which the same plasmid exhibited a higher mitotic stability. In both cases pMK16 could be rescued from these cells in Escherichia coli. A second vector, pADE2, containing the isolated C. tropicalis ADE2, gene, was used to transform Ha900. This vector integrated in the yeast genome at homologous sites of the ade2 locus. Different integration types were observed at one or both ade2 alleles in single or in tandem repeats.

  14. A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects.

    Science.gov (United States)

    Schlipalius, D I; Waldron, J; Carroll, B J; Collins, P J; Ebert, P R

    2001-12-01

    Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability in three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced approximately 50 scoreable polymorphic DNA markers, between individuals of three independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from individual DNA samples that had been combined to create the bulked samples.

  15. An Optimized DNA Analysis Workflow for the Sampling, Extraction, and Concentration of DNA obtained from Archived Latent Fingerprints.

    Science.gov (United States)

    Solomon, April D; Hytinen, Madison E; McClain, Aryn M; Miller, Marilyn T; Dawson Cruz, Tracey

    2018-01-01

    DNA profiles have been obtained from fingerprints, but there is limited knowledge regarding DNA analysis from archived latent fingerprints-touch DNA "sandwiched" between adhesive and paper. Thus, this study sought to comparatively analyze a variety of collection and analytical methods in an effort to seek an optimized workflow for this specific sample type. Untreated and treated archived latent fingerprints were utilized to compare different biological sampling techniques, swab diluents, DNA extraction systems, DNA concentration practices, and post-amplification purification methods. Archived latent fingerprints disassembled and sampled via direct cutting, followed by DNA extracted using the QIAamp® DNA Investigator Kit, and concentration with Centri-Sep™ columns increased the odds of obtaining an STR profile. Using the recommended DNA workflow, 9 of the 10 samples provided STR profiles, which included 7-100% of the expected STR alleles and two full profiles. Thus, with carefully selected procedures, archived latent fingerprints can be a viable DNA source for criminal investigations including cold/postconviction cases. © 2017 American Academy of Forensic Sciences.

  16. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    Science.gov (United States)

    Scarbrough, Peter M; Weber, Rachel Palmieri; Iversen, Edwin S; Brhane, Yonathan; Amos, Christopher I; Kraft, Peter; Hung, Rayjean J; Sellers, Thomas A; Witte, John S; Pharoah, Paul; Henderson, Brian E; Gruber, Stephen B; Hunter, David J; Garber, Judy E; Joshi, Amit D; McDonnell, Kevin; Easton, Doug F; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A; Schildkraut, Joellen M

    2016-01-01

    DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. We identified three susceptibility DNA repair genes, RAD51B (P cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. ©2015 American Association for Cancer Research.

  17. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  18. High-resolution DNA content analysis of microbiopsy samples in oral lichen planus.

    Science.gov (United States)

    Pentenero, M; Monticone, M; Marino, R; Aiello, C; Marchitto, G; Malacarne, D; Giaretti, W; Gandolfo, S; Castagnola, P

    2017-04-01

    DNA aneuploidy has been reported to be a predictor of poor prognosis in both premalignant and malignant lesions. In oral lichen planus (OLP), this hypothesis remains to be proved. This study aimed to determine the rate of occurrence of DNA aneuploidy in patients with OLP by high-resolution DNA flow cytometry. Patients with OLP were consecutively enrolled. Tissue samples were subdivided for formalin fixation and routine histological assessment and for immediate storage at -20°C for later DNA ploidy analysis, which was performed by DAPI staining of the extracted nuclei and excitation with a UV lamp. The DNA aneuploid sublines were characterized by the DNA Index. A DNA aneuploid status was observed in two of 77 patients with OLP (2.6%). When considering the clinical aspect of the OLP lesions, both DNA aneuploid cases had a reticular clinical aspect. DNA aneuploidy is an uncommon event in OLP and less frequent compared to other non-dysplastic and non-OLP oral potentially malignant disorders. The extremely low rate of DNA aneuploidy could represent an occasional finding or reflect the low rate of malignant transformation observed in patients with OLP even if the real prognostic value of DNA ploidy analysis in patients with OLP remains to be confirmed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Quantitative analysis of the flexibility effect of cisplatin on circular DNA

    Science.gov (United States)

    Ji, Chao; Zhang, Lingyun; Wang, Peng-Ye

    2013-10-01

    We study the effects of cisplatin on the circular configuration of DNA using atomic force microscopy (AFM) and observe that the DNA gradually transforms to a complex configuration with an intersection and interwound structures from a circlelike structure. An algorithm is developed to extract the configuration profiles of circular DNA from AFM images and the radius of gyration is used to describe the flexibility of circular DNA. The quantitative analysis of the circular DNA demonstrates that the radius of gyration gradually decreases and two processes on the change of flexibility of circular DNA are found as the cisplatin concentration increases. Furthermore, a model is proposed and discussed to explain the mechanism for understanding the complicated interaction between DNA and cisplatin.

  20. Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity

    NARCIS (Netherlands)

    Buck, H. M.; Koole, L. H.; van Genderen, M. H.; Smit, L.; Geelen, J. L.; Jurriaans, S.; Goudsmit, J.

    1990-01-01

    Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human

  1. Study of HIV-1 subtypes in serodiscordant couples attending an integrated counselling and testing centre in Mumbai using heteroduplex mobility analysis and DNA sequencing

    Directory of Open Access Journals (Sweden)

    Mehta P

    2010-01-01

    Full Text Available Aims: To determine the prevalent subtypes of HIV-1 in serodiscordant couples. Setting: Integrated Counselling and Testing Centre (ICTC, Department of Microbiology. Study Design: Prospective pilot study. Participants: Thirty HIV-1 serodiscordant couples. Inclusion Criteria: a Documentation of HIV-1 infection in one partner and seronegative status in the other, current history of continued unprotected sexual activity within the partnership, demonstration that they have been in a partnership for at least 1 year and are not currently on highly active antiretroviral therapy HAART; b willingness of both partners to provide written informed consent including consent to continued couple counselling for 3 months. Materials and Methods: HIV-1 subtyping was carried out by heteroduplex mobility analysis (HMA by amplifying env region; and DNA sequencing by amplifying gag region. Results: HIV-1 env gene was amplified successfully in 10/30 samples; gag gene, in 25/30 samples; and both env and gag gene were amplified successfully in 5/30 samples. HIV-1 subtype C was detected from 21 samples; subtype B, from 7; and subtype A, from 2. Sample from 1 positive partner was detected as subtype C by env HMA and subtype B by gag sequencing. Conclusion: HIV-1 subtype C was found to be the predominant subtype of HIV-1 in serodiscordant couples attending our ICTC, followed by HIV-1 subtype B and HIV-1 subtype A, respectively. DNA sequencing was found to be the most reliable method for determining the subtypes of HIV-1.

  2. DNA Trojan Horses: Self-Assembled Floxuridine-Containing DNA Polyhedra for Cancer Therapy.

    Science.gov (United States)

    Mou, Quanbing; Ma, Yuan; Pan, Gaifang; Xue, Bai; Yan, Deyue; Zhang, Chuan; Zhu, Xinyuan

    2017-10-02

    Based on their structural similarity to natural nucleobases, nucleoside analogue therapeutics were integrated into DNA strands through conventional solid-phase synthesis. By elaborately designing their sequences, floxuridine-integrated DNA strands were synthesized and self-assembled into well-defined DNA polyhedra with definite drug-loading ratios as well as tunable size and morphology. As a novel drug delivery system, these drug-containing DNA polyhedra could ideally mimic the Trojan Horse to deliver chemotherapeutics into tumor cells and fight against cancer. Both in vitro and in vivo results demonstrate that the DNA Trojan horse with buckyball architecture exhibits superior anticancer capability over the free drug and other formulations. With precise control over the drug-loading ratio and structure of the nanocarriers, the DNA Trojan horse may play an important role in anticancer treatment and exhibit great potential in translational nanomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  4. Systematic analysis of DEMETER-like DNA glycosylase genes shows lineage-specific Smi-miR7972 involved in SmDML1 regulation in Salvia miltiorrhiza.

    Science.gov (United States)

    Li, Jiang; Li, Caili; Lu, Shanfa

    2018-05-08

    DEMETER-like DNA glycosylases (DMLs) initiate the base excision repair-dependent DNA demethylation to regulate a wide range of biological processes in plants. Six putative SmDML genes, termed SmDML1-SmDML6, were identified from the genome of S. miltiorrhiza, an emerging model plant for Traditional Chinese Medicine (TCM) studies. Integrated analysis of gene structures, sequence features, conserved domains and motifs, phylogenetic analysis and differential expression showed the conservation and divergence of SmDMLs. SmDML1, SmDML2 and SmDML4 were significantly down-regulated by the treatment of 5Aza-dC, a general DNA methylation inhibitor, suggesting involvement of SmDMLs in genome DNA methylation change. SmDML1 was predicted and experimentally validated to be target of Smi-miR7972. Computational analysis of forty whole genome sequences and almost all of RNA-seq data from Lamiids revealed that MIR7972s were only distributed in some plants of the three orders, including Lamiales, Solanales and Boraginales, and the number of MIR7972 genes varied among species. It suggests that MIR7972 genes underwent expansion and loss during the evolution of some Lamiids species. Phylogenetic analysis of MIR7972s showed closer evolutionary relationships between MIR7972s in Boraginales and Solanales in comparison with Lamiales. These results provide a valuable resource for elucidating DNA demethylation mechanism in S. miltiorrhiza.

  5. DNA adducts and cancer risk in prospective studies: a pooled analysis and a meta-analysis

    DEFF Research Database (Denmark)

    Veglia, Fabrizio; Loft, Steffen; Matullo, Giuseppe

    2008-01-01

    in which bulky DNA adducts have been measured in blood samples collected from healthy subjects (N = 1947; average follow-up 51-137 months). In addition, we have performed a meta-analysis by identifying all articles on the same subject published up to the end of 2006, including case-control studies......). The association was evident only in current smokers and was absent in former smokers. Also the meta-analysis, which included both lung and bladder cancers, showed a statistically significant association in current smokers, whereas the results in never smokers were equivocal; in former smokers, no association......Bulky DNA adducts are biomarkers of exposure to aromatic compounds and of the ability of the individual to metabolically activate carcinogens and to repair DNA damage. Their ability to predict cancer onset is uncertain. We have performed a pooled analysis of three prospective studies on cancer risk...

  6. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  7. Genome-wide DNA methylation analysis in jejunum of Sus scrofa with intrauterine growth restriction.

    Science.gov (United States)

    Hu, Yue; Hu, Liang; Gong, Desheng; Lu, Hanlin; Xuan, Yue; Wang, Ru; Wu, De; Chen, Daiwen; Zhang, Keying; Gao, Fei; Che, Lianqiang

    2018-02-01

    Intrauterine growth restriction (IUGR) may elicit a series of postnatal body developmental and metabolic diseases due to their impaired growth and development in the mammalian embryo/fetus during pregnancy. In the present study, we hypothesized that IUGR may lead to abnormally regulated DNA methylation in the intestine, causing intestinal dysfunctions. We applied reduced representation bisulfite sequencing (RRBS) technology to study the jejunum tissues from four newborn IUGR piglets and their normal body weight (NBW) littermates. The results revealed extensively regional DNA methylation changes between IUGR/NBW pairs from different gilts, affecting dozens of genes. Hiseq-based bisulfite sequencing PCR (Hiseq-BSP) was used for validations of 19 genes with epigenetic abnormality, confirming three genes (AIFM1, MTMR1, and TWIST2) in extra samples. Furthermore, integrated analysis of these 19 genes with proteome data indicated that there were three main genes (BCAP31, IRAK1, and AIFM1) interacting with important immunity- or metabolism-related proteins, which could explain the potential intestinal dysfunctions of IUGR piglets. We conclude that IUGR can lead to disparate DNA methylation in the intestine and these changes may affect several important biological processes such as cell apoptosis, cell differentiation, and immunity, which provides more clues linking IUGR and its long-term complications.

  8. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus

  9. Analysis of the mycoplasma genome by recombinant DNA technology

    DEFF Research Database (Denmark)

    Christiansen, C; Frydenberg, Jane; Christiansen, G

    1984-01-01

    A library of DNA fragments from Mycoplasma sp. strain PG50 has been made in the vector pBR325. Analysis in Escherichia coli minicells of randomly picked clones from this library demonstrated that many plasmids can promote synthesis of mycoplasma protein in the E. coli genetic background. Screening....... The DNA sequence of 16S rRNA and the surrounding control regions has been determined....

  10. Adelie penguin population diet monitoring by analysis of food DNA in scats.

    Directory of Open Access Journals (Sweden)

    Simon N Jarman

    Full Text Available The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  11. Integral parametrization of the Kinetics of Crosslink production in plasmid DNA as a function of 8-methoxypsoralen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Vidania, R. de; Paramio, J. M.; Bauluz, C.

    1986-07-01

    In this paper we present results of crosslink production in pBR322 DNA along a wide range of 8-methoxypsoralen (8-MOP) concentration. Experimental data were obtained as DNA renaturation percentages, from the shift in hyperchromicity after a temperature-dependent denaturation-renaturation process. the experimental results showed a three-stage profile when represented as a function of the natural logarithms of 8-MOP concentration. an integral parametrization which allows a simultaneous fit of the three observed stages is presented here. the theoretical values of crosslink production determined from the fit are useful to asses the genotoxicity of psoralen-induced crosslinks in plasmid DNA. (Author) 24 refs.

  12. Integral parametrization of the Kinetics of Crosslink production in plasmid DNA as a function of 8-methoxypsoralen concentration

    International Nuclear Information System (INIS)

    Vidania, R. de; Paramio, J. M.; Bauluz, C.

    1986-01-01

    In this paper we present results of crosslink production in pBR322 DNA along a wide range of 8-methoxypsoralen (8-MOP) concentration. Experimental data were obtained as DNA renaturation percentages, from the shift in hyperchromicity after a temperature-dependent denaturation-renaturation process. the experimental results showed a three-stage profile when represented as a function of the natural logarithms of 8-MOP concentration. an integral parametrization which allows a simultaneous fit of the three observed stages is presented here. the theoretical values of crosslink production determined from the fit are useful to asses the genotoxicity of psoralen-induced crosslinks in plasmid DNA. (Author) 24 refs

  13. Analisis heteroplasmy DNA mitokondria pulpa gigi pada identifikasi personal forensik (Heteroplasmy analysis of dental pulp mitochondrial DNA in forensic personal identification

    Directory of Open Access Journals (Sweden)

    Ardyni Febri K

    2013-09-01

    Full Text Available Background: Mitochondrial DNA (mtDNA sequence analysis of the hypervariable control region has been shown to be an effective tool for personal identification. The high copy and maternal mode of inheritance make mtDNA analysis particularly useful when old samples or degradation of biological samples prohibits the detection of nuclear DNA analysis. Dental pulp is covered with hard tissue such as dentin and enamel. It is highly capable of protecting the DNA and thus is extremely useful. One of the diasadvantages of mitochondrial DNA is heteroplasmy. Heteroplasmy is the presence of a mixture of more than one type of an organellar genome within a cell or individual. It can lead to ambiguity in forensic personal identification. Due to that, the evidence of heteroplasmy in dental pulp is needed. Purpose: The study was aimed to determine the heteroplasmy occurance of mitocondrial DNA in dental pulp. Methods: Blood and teeth samples were taken from 6 persons, each samples was extracted with DNAzol. DNA samples were amplified with PCR and sequencing to analyze the nucleotide sequences polymorphism of the hypervariable region 1 in mtDNA and compared with revised Cambridge Reference Sequence (rCRS. results: The dental pulp and blood nucleotide sequence of hypervariable region 1 mitochondrial DNA showed polymorphism when compared with rCRS and heteroplasmy when compared between dental pulp with blood. Conclusion: The study showed that heteroplasmy was found in mithocondrial DNA from dental pulp.latar belakang: Analisis sekuens DNA mitokondria (mtDNA regio kontrol hypervariable telah terbukti menjadi alat efektif untuk identifikasi personal. Kopi DNA yang banyak dan pewarisan maternal membuat analisis mtDNA sangat berguna ketika sampel lama atau sampel biologis yang terdegradasi menghambat deteksi analisis DNA inti. Pulpa gigi terlindung jaringan keras seperti dentin dan enamel. Hal ini membuat pulpa mampu melindungi DNA dan dengan demikian sangat berguna

  14. An integrated strategy combining DNA walking and NGS to detect GMOs.

    Science.gov (United States)

    Fraiture, Marie-Alice; Herman, Philippe; Papazova, Nina; De Loose, Marc; Deforce, Dieter; Ruttink, Tom; Roosens, Nancy H

    2017-10-01

    Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Integrative Analysis of Omics Big Data.

    Science.gov (United States)

    Yu, Xiang-Tian; Zeng, Tao

    2018-01-01

    The diversity and huge omics data take biology and biomedicine research and application into a big data era, just like that popular in human society a decade ago. They are opening a new challenge from horizontal data ensemble (e.g., the similar types of data collected from different labs or companies) to vertical data ensemble (e.g., the different types of data collected for a group of person with match information), which requires the integrative analysis in biology and biomedicine and also asks for emergent development of data integration to address the great changes from previous population-guided to newly individual-guided investigations.Data integration is an effective concept to solve the complex problem or understand the complicate system. Several benchmark studies have revealed the heterogeneity and trade-off that existed in the analysis of omics data. Integrative analysis can combine and investigate many datasets in a cost-effective reproducible way. Current integration approaches on biological data have two modes: one is "bottom-up integration" mode with follow-up manual integration, and the other one is "top-down integration" mode with follow-up in silico integration.This paper will firstly summarize the combinatory analysis approaches to give candidate protocol on biological experiment design for effectively integrative study on genomics and then survey the data fusion approaches to give helpful instruction on computational model development for biological significance detection, which have also provided newly data resources and analysis tools to support the precision medicine dependent on the big biomedical data. Finally, the problems and future directions are highlighted for integrative analysis of omics big data.

  16. Assessment of Hepatitis B Virus DNA Stability in Serum by the Chiron Quantiplex Branched-DNA Assay

    Science.gov (United States)

    Krajden, Mel; Comanor, Lorraine; Rifkin, Oretta; Grigoriew, Anna; Minor, James M.; Kapke, Gordon F.

    1998-01-01

    Quantification of hepatitis B virus (HBV) DNA in serum is used to establish eligibility for treatment and to monitor therapeutic response. With the trend toward centralized testing, defining the conditions that preserve sample integrity is of paramount importance. We therefore evaluated the stability of HBV DNA in 26 previously frozen (PF) and 5 fresh, never previously frozen serum specimens. PF specimens, covering a 3-log10 HBV DNA dynamic range, were thawed and stored at −70, 4, 23, 37, and 45°C (±1.5°C) for 0, 24, 72, and 120 h (±2 h) and were refrozen at −70°C prior to testing. Five fresh specimens were split into two groups. Both group FG1 and group FG2 specimens were handled as described above; however, group FG1 specimens were subsequently maintained at 4°C and were never frozen prior to testing. Linear regression analysis of PF specimens demonstrated no significant HBV DNA degradation at ≤4°C over 5 days; however, HBV DNA levels decreased by 1.8, 3.4, and 20% per day at 23, 37, and 45°C, respectively. Three independent statistical methods confirmed that the probability of specimen failure, defined as a loss of 20% or more of HBV DNA and/or coagulation of serum, was lowest at ≤4°C and increased with temperature. Because only 10 to 20% of individual patient specimens demonstrated losses of HBV DNA of ≥20% at 23 or 37°C, sufficient numbers of serum specimens must be evaluated to determine overall statistical trends. In conclusion, HBV DNA integrity in separated serum specimens is preserved for at least 5 days when the specimens are stored at −70 or 4°C. PMID:9466745

  17. Quantitative analysis of gene-specific DNA damage in human spermatozoa

    International Nuclear Information System (INIS)

    Sawyer, Dennis E.; Mercer, Belinda G.; Wiklendt, Agnieszka M.; Aitken, R. John

    2003-01-01

    Recent studies have suggested that human spermatozoa are highly susceptible to DNA damage induced by oxidative stress. However, a detailed analysis of the precise nature of this damage and the extent to which it affects the mitochondrial and nuclear genomes has not been reported. To induce DNA damage, human spermatozoa were treated in vitro with hydrogen peroxide (H 2 O 2 ; 0-5 mM) or iron (as Fe(II)SO 4 , 0-500 μM). Quantitative PCR (QPCR) was used to measure DNA damage in individual nuclear genes (hprt, β-pol and β-globin) and mitochondrial DNA. Single strand breaks were also assessed by alkaline gel electrophoresis. H 2 O 2 was found to be genotoxic toward spermatozoa at concentrations as high as 1.25 mM, but DNA damage was not detected in these cells with lower concentrations of H 2 O 2 . The mitochondrial genome of human spermatozoa was significantly (P 2 O 2 -induced DNA damage than the nuclear genome. However, both nDNA and mtDNA in human spermatozoa were significantly (P<0.001) more resistant to damage than DNA from a variety of cell lines of germ cell and myoblastoid origin. Interestingly, significant DNA damage was also not detected in human spermatozoa treated with iron. These studies report, for the first time, quantitative measurements of DNA damage in specific genes of male germ cells, and challenge the commonly held belief that human spermatozoa are particularly vulnerable to DNA damage

  18. Comparison of commercially-available preservatives for maintaining the integrity of bacterial DNA in human milk.

    Science.gov (United States)

    Lackey, Kimberly A; Williams, Janet E; Price, William J; Carrothers, Janae M; Brooker, Sarah L; Shafii, Bahman; McGuire, Mark A; McGuire, Michelle K

    2017-10-01

    Inhibiting changes to bacteria in human milk between sample collection and analysis is necessary for unbiased characterization of the milk microbiome. Although cold storage is considered optimal, alternative preservation is sometimes necessary. The objective of this study was to compare the effectiveness of several commercially-available preservatives with regard to maintaining bacterial DNA in human milk for delayed microbiome analysis. Specifically, we compared Life Technologies' RNAlater® stabilization solution, Biomatrica's DNAgard® Saliva, Advanced Instruments' Broad Spectrum Microtabs II™, and Norgen Biotek Corporation's Milk DNA Preservation and Isolation Kit. Aliquots of 8 pools of human milk were treated with each preservative. DNA was extracted immediately and at 1, 2, 4, and 6wk, during which time milk was held at 37°C. The V1-V3 region of the bacterial 16S rRNA gene was amplified and sequenced. Changes in bacterial community structure and diversity over time were evaluated. Comparable to other studies, the most abundant genera were Streptococcus (33.3%), Staphylococcus (14.0%), Dyella (6.3%), Pseudomonas (3.0%), Veillonella (2.5%), Hafnia (2.0%), Prevotella (1.7%), Rhodococcus (1.6%), and Granulicatella (1.4%). Overall, use of Norgen's Milk DNA Preservation and Isolation Kit best maintained the consistency of the bacterial community structure. Total DNA, diversity, and evenness metrics were also highest in samples preserved with this method. When collecting human milk for bacterial community analysis in field conditions where cold storage is not available, our results suggest that Norgen's Milk DNA Preservation and Isolation Kit may be a useful method, at least for a period of 2weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Science.gov (United States)

    Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039

  20. Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer.

    Science.gov (United States)

    McLeod, Sarah M; Burrus, Vincent; Waldor, Matthew K

    2006-08-01

    The requirement for host factors in the transmission of integrative and conjugative elements (ICEs) has not been extensively explored. Here we tested whether integration host factor (IHF) or Fis, two host-encoded nucleoid proteins, are required for transfer of SXT, a Vibrio cholerae-derived ICE that can be transmitted to many gram-negative species. Fis did not influence the transfer of SXT to or from V. cholerae. In contrast, IHF proved to be required for V. cholerae to act as an SXT donor. In the absence of IHF, V. cholerae displayed a modest defect for serving as an SXT recipient. Surprisingly, SXT integration into or excision from the V. cholerae chromosome, which requires an SXT-encoded integrase related to lambda integrase, did not require IHF. Therefore, the defect in SXT transmission in the V. cholerae IHF mutant is probably not related to IHF's ability to promote DNA recombination. The V. cholerae IHF mutant was also highly impaired as a donor of RP4, a broad-host-range conjugative plasmid. Thus, the V. cholerae IHF mutant appears to have a general defect in conjugation. Escherichia coli IHF mutants were not impaired as donors or recipients of SXT or RP4, indicating that IHF is a V. cholerae-specific conjugation factor.

  1. Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Directory of Open Access Journals (Sweden)

    Tadashi Imanishi

    2004-06-01

    Full Text Available The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/. It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs, identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA

  2. Detection of dopamine in dopaminergic cell using nanoparticles-based barcode DNA analysis.

    Science.gov (United States)

    An, Jeung Hee; Kim, Tae-Hyung; Oh, Byung-Keun; Choi, Jeong Woo

    2012-01-01

    Nanotechnology-based bio-barcode-amplification analysis may be an innovative approach to dopamine detection. In this study, we evaluated the efficacy of this bio-barcode DNA method in detecting dopamine from dopaminergic cells. Herein, a combination DNA barcode and bead-based immunoassay for neurotransmitter detection with PCR-like sensitivity is described. This method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA, and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated in order to remove the conjugated barcode DNA. The DNA barcodes were then identified via PCR analysis. The dopamine concentration in dopaminergic cells can be readily and rapidly detected via the bio-barcode assay method. The bio-barcode assay method is, therefore, a rapid and high-throughput screening tool for the detection of neurotransmitters such as dopamine.

  3. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    Science.gov (United States)

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. X-ray induced degradation of DNA in Aspergillus nidulans cells comparative analysis of UV- and X-ray induced DNA degradation

    International Nuclear Information System (INIS)

    Zinchenko, V.V.; Babykin, M.M.

    1980-01-01

    Irradiating cells of Aspergillus nidulans of the wild type in the logarythmical growth phase with X-rays leads to a certain retention in DNA synthesis. This period is characterized by an insignificant fermentative DNA degradation connected with a process of its repair. There is no direct dependence between the radiation dose and the level of DNA degradation. The investigation of X-ray induced DNA degradation in a number of UVS-mutants permits to show the existence of two branches of DNA degradation - dependent and independent of the exogenic energy source. The dependence of DNA degradation on albumen synthesis prior to irradiation and after it, is demonstrated. It is supposed that the level of X-ray induced DNA degradation is determined by two albumen systems, one of which initiates degradation and the other terminates it. The comparative analysis of UV and X-ray induced DNA degradation is carried out

  5. FBI's DNA analysis program

    Science.gov (United States)

    Brown, John R.

    1994-03-01

    Forensic DNA profiling technology is a significant law enforcement tool due to its superior discriminating power. Applying the principles of population genetics to the DNA profile obtained in violent crime investigations results in low frequency of occurrence estimates for the DNA profile. These estimates often range from a frequency of occurrence of 1 in 50 unrelated individuals to 1 in a million unrelated individuals or even smaller. It is this power to discriminate among individuals in the population that has propelled forensic DNA technology to the forefront of forensic testing in violent crime cases. Not only is the technology extremely powerful in including or excluding a criminal suspect as the perpetrator, but it also gives rise to the potential of identifying criminal suspects in cases where the investigators of unknown suspect cases have exhausted all other available leads.

  6. Diagnosis of becker muscular dystrophy: Results of Re-analysis of DNA samples.

    Science.gov (United States)

    Straathof, Chiara S M; Van Heusden, Dave; Ippel, Pieternella F; Post, Jan G; Voermans, Nicol C; De Visser, Marianne; Brusse, Esther; Van Den Bergen, Janneke C; Van Der Kooi, Anneke J; Verschuuren, Jan J G M; Ginjaar, Hendrika B

    2016-01-01

    The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. All requests for DNA analysis of the DMD gene in probands with suspected BMD were re-evaluated. If the phenotype was compatible with BMD, and no deletions or duplications were detected, DNA samples were screened for small mutations. In 79 of 185 referrals, no mutation was found. Analysis could be performed on 31 DNA samples. Seven different mutations, including 3 novel ones, were found. Long-term clinical follow-up is described. Refining DNA analysis in previously undiagnosed cases can identify mutations in the DMD gene and provide genetic diagnosis of BMD. A delayed diagnosis can still be valuable for the proband or the relatives of BMD patients. © 2015 Wiley Periodicals, Inc.

  7. Cluster analysis of Helicobacter pylori genomic DNA fingerprints suggests gastroduodenal disease-specific associations.

    Science.gov (United States)

    Go, M F; Chan, K Y; Versalovic, J; Koeuth, T; Graham, D Y; Lupski, J R

    1995-07-01

    Helicobacter pylori infection is now accepted as the most common cause of chronic active gastritis and peptic ulcer disease. The etiologies of many infectious diseases have been attributed to specific or clonal strains of bacterial pathogens. Polymerase chain reaction (PCR) amplification of DNA between repetitive DNA sequences, REP elements (REP-PCR), has been utilized to generate DNA fingerprints to examine similarity among strains within a bacterial species. Genomic DNA from H. pylori isolates obtained from 70 individuals (39 duodenal ulcers and 31 simple gastritis) was PCR-amplified using consensus probes to repetitive DNA elements. The H. pylori DNA fingerprints were analyzed for similarity and correlated with disease presentation using the NTSYS-pc computer program. Each H. pylori strain had a distinct DNA fingerprint except for two pairs. Single-colony DNA fingerprints of H. pylori from the same patient were identical, suggesting that each patient harbors a single strain. Computer-assisted cluster analysis of the REP-PCR DNA fingerprints showed two large clusters of isolates, one associated with simple gastritis and the other with duodenal ulcer disease. Cluster analysis of REP-PCR DNA fingerprints of H. pylori strains suggests that duodenal ulcer isolates, as a group, are more similar to one another and different from gastritis isolates. These results suggest that disease-specific strains may exist.

  8. The derivative assay--an analysis of two fast components of DNA rejoining kinetics

    International Nuclear Information System (INIS)

    Sandstroem, B.E.

    1989-01-01

    The DNA rejoining kinetics of human U-118 MG cells were studied after gamma-irradiation with 4 Gy. The analysis of the sealing rate of the induced DNA strand breaks was made with a modification of the DNA unwinding technique. The modification meant that rather than just monitoring the number of existing breaks at each time of analysis, the velocity, at which the rejoining process proceeded, was determined. Two apparent first-order components of single-strand break repair could be identified during the 25 min of analysis. The half-times for the two components were 1.9 and 16 min, respectively

  9. Influence of environmentally relevant concentrations of vinclozolin on quality, DNA integrity, and antioxidant responses of sterlet Acipenser ruthenus spermatozoa.

    Science.gov (United States)

    Gazo, Ievgeniia; Linhartova, Pavla; Shaliutina, Anna; Hulak, Martin

    2013-04-25

    The effects of vinclozolin (VIN), an anti-androgenic fungicide, on quality, oxidative stress, DNA integrity, and ATP level of sterlet (Acipenser ruthenus) spermatozoa were investigated in vitro. Fish spermatozoa were incubated with different concentrations of vinclozolin (0.5, 2, 10, 15, 20 and 50 μg/l) for 2 h. A dose-dependent reduction in spermatozoa motility and velocity was observed at concentrations of 2-50 μg/l. A dramatic increase in DNA fragmentation was recorded at concentrations 10 μg/l and above. After 2 h exposure at higher test concentrations (10-50 μg/l), oxidative stress was apparent, as reflected by significantly higher levels of protein and lipid oxidation and significantly greater superoxide dismutase activity. Intracellular ATP content of spermatozoa decreased with increasing concentrations of VIN. The results demonstrated that VIN can induce reactive oxygen species stress in fish spermatozoa, which could impair the sperm quality, DNA integrity, ATP content, and the antioxidant defense system. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device.

    Science.gov (United States)

    Shaw, Kirsty J; Joyce, Domino A; Docker, Peter T; Dyer, Charlotte E; Greenway, Gillian M; Greenman, John; Haswell, Stephen J

    2011-02-07

    Integrated DNA extraction and amplification have been carried out in a microfluidic device using electro-osmotic pumping (EOP) for fluidic control. All the necessary reagents for performing both DNA extraction and polymerase chain reaction (PCR) amplification were pre-loaded into the microfluidic device following encapsulation in agarose gel. Buccal cells were collected using OmniSwabs [Whatman™, UK] and manually added to a chaotropic binding/lysis solution pre-loaded into the microfluidic device. The released DNA was then adsorbed onto a silica monolith contained within the DNA extraction chamber and the microfluidic device sealed using polymer electrodes. The washing and elution steps for DNA extraction were carried out using EOP, resulting in transfer of the eluted DNA into the PCR chamber. Thermal cycling, achieved using a Peltier element, resulted in amplification of the Amelogenin locus as confirmed using conventional capillary gel electrophoresis. It was demonstrated that the PCR reagents could be stored in the microfluidic device for at least 8 weeks at 4 °C with no significant loss of activity. Such methodology lends itself to the production of 'ready-to-use' microfluidic devices containing all the necessary reagents for sample processing, with many obvious applications in forensics and clinical medicine.

  11. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    Science.gov (United States)

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S. L.; Cheung, Yee-Wai; Kinghorn, Andrew B.; Dirkzwager, Roderick M.; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A.; Heddle, Jonathan G.

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology. PMID:26891622

  12. Multilocus DNA fingerprinting in paternity analysis: a Chilean experience

    Directory of Open Access Journals (Sweden)

    Cifuentes O. Lucía

    2000-01-01

    Full Text Available DNA polymorphism is very useful in paternity analysis. The present paper describes paternity studies done using DNA profiles obtained with the (CAC5 probe. All of the subjects studied were involved in nonjudicial cases of paternity. Genomic DNA digested with HaeIII was run on agarose gels and hybridized in the gel with the (CAC5 probe labeled with 32P. The mean number of bands larger than the 4.3 kb per individual was 16.1. The mean proportion of bands shared among unrelated individuals was 0.08 and the mean number of test bands was 7.1. This corresponded to an exclusion probability greater than 0.999999. Paternity was excluded in 34.5% of the cases. The mutation frequency estimated from non-excluded cases was 0.01143 bands per child. In these cases, the paternity was confirmed by a locus-specific analysis of eight independent PCR-based loci. The paternity index was computed in all non-excluded cases. It can be concluded that this method is a powerful and inexpensive alternative to solve paternity doubts.

  13. Comparative analysis of the end-joining activity of several DNA ligases.

    Directory of Open Access Journals (Sweden)

    Robert J Bauer

    Full Text Available DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DNA ligases (phage T3, T4, and T7 DNA ligases, Paramecium bursaria chlorella virus 1 (PBCV1 DNA ligase, human DNA ligase 3, and Escherichia coli DNA ligase were tested for their ability to ligate DNA fragments with several difficult to ligate end structures (blunt-ended termini, 3'- and 5'- single base overhangs, and 5'-two base overhangs. This analysis revealed that T4 DNA ligase, the most common enzyme utilized for in vitro ligation, had its greatest activity on blunt- and 2-base overhangs, and poorest on 5'-single base overhangs. Other ligases had different substrate specificity: T3 DNA ligase ligated only blunt ends well; PBCV1 DNA ligase joined 3'-single base overhangs and 2-base overhangs effectively with little blunt or 5'- single base overhang activity; and human ligase 3 had highest activity on blunt ends and 5'-single base overhangs. There is no correlation of activity among ligases on blunt DNA ends with their activity on single base overhangs. In addition, DNA binding domains (Sso7d, hLig3 zinc finger, and T4 DNA ligase N-terminal domain were fused to PBCV1 DNA ligase to explore whether modified binding to DNA would lead to greater activity on these difficult to ligate substrates. These engineered ligases showed both an increased binding affinity for DNA and increased activity, but did not alter the relative substrate preferences of PBCV1 DNA ligase, indicating active site structure plays a role in determining substrate preference.

  14. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE

    Directory of Open Access Journals (Sweden)

    Ile Kristina E

    2003-07-01

    Full Text Available Abstract Background The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray and compared it with regular microarray. Results When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. Conclusion ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.

  15. Perinatal hepatitis B virus detection by hepatitis B virus-DNA analysis.

    OpenAIRE

    De Virgiliis, S; Frau, F; Sanna, G; Turco, M P; Figus, A L; Cornacchia, G; Cao, A

    1985-01-01

    Maternal transmission of hepatitis B virus infection in relation to the hepatitis B e antigen/antibody system and serum hepatitis B virus-DNA were evaluated. Results indicate that hepatitis B virus-DNA analysis can identify hepatitis B serum antigen positive mothers who may transmit infection to their offspring.

  16. Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.

  17. Network clustering coefficient approach to DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Guenther J.L. [Universidade Federal do Rio Grande do Sul-Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2040/90035-003 Porto Alegre (Brazil); Departamento de Fisica e Quimica da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul (Brazil); Lemke, Ney [Programa Interdisciplinar em Computacao Aplicada, Unisinos, Av. Unisinos, 950, 93022-000 Sao Leopoldo, RS (Brazil); Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Campus Universitario, 59072 970 Natal, RN (Brazil)]. E-mail: corso@dfte.ufrn.br

    2006-05-15

    In this work we propose an alternative DNA sequence analysis tool based on graph theoretical concepts. The methodology investigates the path topology of an organism genome through a triplet network. In this network, triplets in DNA sequence are vertices and two vertices are connected if they occur juxtaposed on the genome. We characterize this network topology by measuring the clustering coefficient. We test our methodology against two main bias: the guanine-cytosine (GC) content and 3-bp (base pairs) periodicity of DNA sequence. We perform the test constructing random networks with variable GC content and imposed 3-bp periodicity. A test group of some organisms is constructed and we investigate the methodology in the light of the constructed random networks. We conclude that the clustering coefficient is a valuable tool since it gives information that is not trivially contained in 3-bp periodicity neither in the variable GC content.

  18. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    Science.gov (United States)

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a

  19. Integrative omics analysis. A study based on Plasmodium falciparum mRNA and protein data.

    Science.gov (United States)

    Tomescu, Oana A; Mattanovich, Diethard; Thallinger, Gerhard G

    2014-01-01

    Technological improvements have shifted the focus from data generation to data analysis. The availability of large amounts of data from transcriptomics, protemics and metabolomics experiments raise new questions concerning suitable integrative analysis methods. We compare three integrative analysis techniques (co-inertia analysis, generalized singular value decomposition and integrative biclustering) by applying them to gene and protein abundance data from the six life cycle stages of Plasmodium falciparum. Co-inertia analysis is an analysis method used to visualize and explore gene and protein data. The generalized singular value decomposition has shown its potential in the analysis of two transcriptome data sets. Integrative Biclustering applies biclustering to gene and protein data. Using CIA, we visualize the six life cycle stages of Plasmodium falciparum, as well as GO terms in a 2D plane and interpret the spatial configuration. With GSVD, we decompose the transcriptomic and proteomic data sets into matrices with biologically meaningful interpretations and explore the processes captured by the data sets. IBC identifies groups of genes, proteins, GO Terms and life cycle stages of Plasmodium falciparum. We show method-specific results as well as a network view of the life cycle stages based on the results common to all three methods. Additionally, by combining the results of the three methods, we create a three-fold validated network of life cycle stage specific GO terms: Sporozoites are associated with transcription and transport; merozoites with entry into host cell as well as biosynthetic and metabolic processes; rings with oxidation-reduction processes; trophozoites with glycolysis and energy production; schizonts with antigenic variation and immune response; gametocyctes with DNA packaging and mitochondrial transport. Furthermore, the network connectivity underlines the separation of the intraerythrocytic cycle from the gametocyte and sporozoite stages

  20. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNA (λ mtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  1. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  2. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    Science.gov (United States)

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  3. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    Science.gov (United States)

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    Science.gov (United States)

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  5. [Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].

    Science.gov (United States)

    Bartošík, M; Ondroušková, E

    Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.

  6. Global DNA Methylation in the Chestnut Blight Fungus Cryphonectria parasitica and Genome-Wide Changes in DNA Methylation Accompanied with Sectorization

    Directory of Open Access Journals (Sweden)

    Kum-Kang So

    2018-02-01

    Full Text Available Mutation in CpBck1, an ortholog of the cell wall integrity mitogen-activated protein kinase kinase kinase (MAPKKK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica resulted in a sporadic sectorization as culture proceeded. The progeny from the sectored area maintained the characteristics of the sector, showing a massive morphogenetic change, including robust mycelial growth without differentiation. Epigenetic changes were investigated as the genetic mechanism underlying this sectorization. Quantification of DNA methylation and whole-genome bisulfite sequencing revealed genome-wide DNA methylation of the wild-type at each nucleotide level and changes in DNA methylation of the sectored progeny. Compared to the wild-type, the sectored progeny exhibited marked genome-wide DNA hypomethylation but increased methylation sites. Expression analysis of two DNA methyltransferases, including two representative types of DNA methyltransferase (DNMTase, demonstrated that both were significantly down-regulated in the sectored progeny. However, functional analysis using mutant phenotypes of corresponding DNMTases demonstrated that a mutant of CpDmt1, an ortholog of RID of Neurospora crassa, resulted in the sectored phenotype but the CpDmt2 mutant did not, suggesting that the genetic basis of fungal sectorization is more complex. The present study revealed that a mutation in a signaling pathway component resulted in sectorization accompanied with changes in genome-wide DNA methylation, which suggests that this signal transduction pathway is important for epigenetic control of sectorization via regulation of genes involved in DNA methylation.

  7. Interface Layering Phenomena in Capacitance Detection of DNA with Biochips

    Directory of Open Access Journals (Sweden)

    Sandro Carrara

    2007-02-01

    Full Text Available Reliable DNA detection is of great importance for the development of the Lab-on-chip technology. The effort of the most recent projects on this field is to integrate all necessary operations, such as sample preparation (mixing, PCR amplification together with the sensor user for DNA detection. Among the different ways to sense the DNA hybridization, fluorescence based detection has been favored by the market. However, fluorescence based approaches require that the DNA targets are labeled by means of chromophores. As an alternative label-free DNA detection method, capacitance detection was recently proposed by different authors. While this effect has been successfully demonstrated by several groups, the model used for data analysis is far too simple to describe the real behavior of a DNA sensor. The aim of the present paper is to propose a different electrochemical model to describe DNA capacitance detection.

  8. A combined method for DNA analysis and radiocarbon dating from a single sample.

    Science.gov (United States)

    Korlević, Petra; Talamo, Sahra; Meyer, Matthias

    2018-03-07

    Current protocols for ancient DNA and radiocarbon analysis of ancient bones and teeth call for multiple destructive samplings of a given specimen, thereby increasing the extent of undesirable damage to precious archaeological material. Here we present a method that makes it possible to obtain both ancient DNA sequences and radiocarbon dates from the same sample material. This is achieved by releasing DNA from the bone matrix through incubation with either EDTA or phosphate buffer prior to complete demineralization and collagen extraction utilizing the acid-base-acid-gelatinization and ultrafiltration procedure established in most radiocarbon dating laboratories. Using a set of 12 bones of different ages and preservation conditions we demonstrate that on average 89% of the DNA can be released from sample powder with minimal, or 38% without any, detectable collagen loss. We also detect no skews in radiocarbon dates compared to untreated samples. Given the different material demands for radiocarbon dating (500 mg of bone/dentine) and DNA analysis (10-100 mg), combined DNA and collagen extraction not only streamlines the sampling process but also drastically increases the amount of DNA that can be recovered from limited sample material.

  9. Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing

    Science.gov (United States)

    2010-01-01

    DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research addresses how the...Acid dsDNA double stranded DNA MOSAIC Mobile Stream Processing Cluster PCR Polymerase Chain Reaction RAM Random Access Memory ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ...are 5′→3′ and strands with strikethrough are 3′→5′. A dsDNA duplex formed between a strand and its reverse complement is called a

  10. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    Science.gov (United States)

    2010-03-01

    that the hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research...ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ... Watson - Crick (WC) duplex, e.g., TCGCA TCGCA . Note that non-WC duplexes can form and such a formation is called a cross-hybridization. Cross

  11. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    Science.gov (United States)

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  12. OPTSDNA: Performance evaluation of an efficient distributed bioinformatics system for DNA sequence analysis.

    Science.gov (United States)

    Khan, Mohammad Ibrahim; Sheel, Chotan

    2013-01-01

    Storage of sequence data is a big concern as the amount of data generated is exponential in nature at several locations. Therefore, there is a need to develop techniques to store data using compression algorithm. Here we describe optimal storage algorithm (OPTSDNA) for storing large amount of DNA sequences of varying length. This paper provides performance analysis of optimal storage algorithm (OPTSDNA) of a distributed bioinformatics computing system for analysis of DNA sequences. OPTSDNA algorithm is used for storing various sizes of DNA sequences into database. DNA sequences of different lengths were stored by using this algorithm. These input DNA sequences are varied in size from very small to very large. Storage size is calculated by this algorithm. Response time is also calculated in this work. The efficiency and performance of the algorithm is high (in size calculation with percentage) when compared with other known with sequential approach.

  13. GenePublisher: automated analysis of DNA microarray data

    DEFF Research Database (Denmark)

    Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, T.

    2003-01-01

    GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with aspecification of the data. The server performs normalization...

  14. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10-11 M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  15. Mechanisms of dealing with DNA damage in terminally differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, P. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, E., E-mail: eugenia.dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2010-03-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  16. Mechanisms of dealing with DNA damage in terminally differentiated cells

    International Nuclear Information System (INIS)

    Fortini, P.; Dogliotti, E.

    2010-01-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  17. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic

  18. Laser desorption mass spectrometry for fast DNA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Ch`ang, L.Y.; Taranenko, N.I.; Allman, S.L.; Tang, K.; Matteson, K.J.

    1995-09-01

    During the past few years, major effort has been directed toward developing mass spectrometry to measure biopolymers because of the great potential benefit to biomedical research. Hellenkamp and his co-workers were the first to report that large polypeptide molecules can be ionized and detected without significant fragmentation when a greater number of nicotinic acid molecules are used as a matrix. This method is now well known as matrix-assisted laser desorption/ionization (MALDI). Since then, various groups have reported measurements of very large proteins by MALDI. Reliable protein analysis by MALDI is more or less well established. However, the application of MALDI to nucleic acids analysis has been found to be much more difficult. Most research on the measurement of nucleic acid by MALDI were stimulated by the Human Genome Project. Up to now, the only method for reliable routine analysis of nucleic acid is gel electrophoresis. Different sizes of nucleic acids can be separated in gel medium when a high electric field is applied to the gel. However, the time needed to separate different sizes of DNA segments usually takes from several minutes to several hours. If MALDI can be successfully used for nucleic acids analysis, the analysis time can be reduced to less than I millisecond. In addition, no tagging with radioactive materials or chemical dyes is needed. In this work, we will review recent progress related to MALDI for DNA analysis.

  19. DNA replication is an integral part of the mouse oocyte's reprogramming machinery.

    Directory of Open Access Journals (Sweden)

    Bingyuan Wang

    Full Text Available Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24-36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1 and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle.

  20. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  1. Identification and DNA fingerprinting of Legionella strains by randomly amplified polymorphic DNA analysis.

    OpenAIRE

    Bansal, N S; McDonell, F

    1997-01-01

    The randomly amplified polymorphic DNA (RAPD) technique was used in the development of a fingerprinting (typing) and identification protocol for Legionella strains. Twenty decamer random oligonucleotide primers were screened for their discriminatory abilities. Two candidate primers were selected. By using a combination of these primers, RAPD analysis allowed for the differentiation between all different species, between the serogroups, and further differentiation between subtypes of the same ...

  2. Evaluation of impairment of DNA in marine gastropod, Morula granulata as a biomarker of marine pollution.

    Science.gov (United States)

    Sarkar, A; Bhagat, Jacky; Sarker, Subhodeep

    2014-08-01

    The impairment of DNA in marine gastropod Morula granulata was evaluated in terms of the loss of DNA integrity in the species as a measure of the impact of genotoxic contaminants prevalent in the marine environment along the coast of Goa, India. The extent of DNA damage occurred in the marine gastropods collected from different sampling sites such as Arambol, Anjuna, Sinquerim, Dona Paula, Bogmalo, Hollant, Velsao, Betul and Palolem along the coast of Goa was measured following the technique of partial alkaline unwinding as well as comet assays. The highest DNA integrity was observed at Arambol (F, 0.75), identified as the reference site, whereas the lowest DNA integrity at Hollant (F, 0.33) situated between the two most contaminated sites at Bogmalo and Velsao. The impact of genotoxic contaminants on marine gastropods was pronounced by their low DNA integrity at Sinquerim (F, 0.40) followed by Betul (F, 0.47), Velsao (F, 0.51), Anjuna (F, 0.54), Bogmalo (F, 0.55), Dona Paula (F, 0.67) and Palolem (F, 0.70). The extent of DNA damage occurred in M. granulata due to ecotoxicological impact of the prevailing marine pollutants along the coast of Goa was further substantiated by comet assay and expressed in terms of %head-DNA, %tail DNA, tail length and Olive tail moment. The single cell gel electrophoresis of M. granulata clearly showed relatively higher olive tail moment in the marine gastropod from the contaminated sites, Anjuna, Hollant, Velsao and Betul. The variation in the mean %head DNA at different sampling sites clearly indicated that the extent of DNA damage in marine gastropod increases with the increase in the levels of contamination at different sampling sites along the coast. The stepwise multiple regression analysis of the water quality parameters showed significant correlation between the variation in DNA integrity and PAH in combination with NO3, salinity and PO4 (R¯(2), 0.90). The measurement of DNA integrity in M. granulata thus provides an early

  3. Development of an efficient fungal DNA extraction method to be used in random amplified polymorphic DNA-PCR analysis to differentiate cyclopiazonic acid mold producers.

    Science.gov (United States)

    Sánchez, Beatriz; Rodríguez, Mar; Casado, Eva M; Martín, Alberto; Córdoba, Juan J

    2008-12-01

    A variety of previously established mechanical and chemical treatments to achieve fungal cell lysis combined with a semiautomatic system operated by a vacuum pump were tested to obtain DNA extract to be directly used in randomly amplified polymorphic DNA (RAPD)-PCR to differentiate cyclopiazonic acid-producing and -nonproducing mold strains. A DNA extraction method that includes digestion with proteinase K and lyticase prior to using a mortar and pestle grinding and a semiautomatic vacuum system yielded DNA of high quality in all the fungal strains and species tested, at concentrations ranging from 17 to 89 ng/microl in 150 microl of the final DNA extract. Two microliters of DNA extracted with this method was directly used for RAPD-PCR using primer (GACA)4. Reproducible RAPD fingerprints showing high differences between producer and nonproducer strains were observed. These differences in the RAPD patterns did not differentiate all the strains tested in clusters by cyclopiazonic acid production but may be very useful to distinguish cyclopiazonic acid producer strains from nonproducer strains by a simple RAPD analysis. Thus, the DNA extracts obtained could be used directly without previous purification and quantification for RAPD analysis to differentiate cyclopiazonic acid producer from nonproducer mold strains. This combined analysis could be adaptable to other toxigenic fungal species to enable differentiation of toxigenic and non-toxigenic molds, a procedure of great interest in food safety.

  4. Fiscal 2000 report on result of the full-length cDNA structure analysis; 2000 nendo kanzen cho cDNA kozo kaiseki seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper explains the results of research on full-length cDNA structure analysis for the period from April, 2000 to March, 2001. The outline of human genome sequence was published in June, 2000. In Japan, human gene analysis was such that, as the basic technology of the bio industry, a millennium project was decided in the budget of fiscal 2000. The full-length cDNA structure analysis is the core of the project. The libraries of cDNA were prepared using full-length and more than 4-5kbp-long cDNAs by oligo-capping method. It began from determining partial sequence data at end cDNA, and then, with new clones selected therefrom, full-length human cDNA sequence data were determined. The partial sequence data determined by fiscal 2000 were 1,035,000 clones while the full-length sequence data were 12,144 clones. The sequence data obtained were analyzed by homology search and translated into amino acid coding sequences, with predictions conducted on protein functions. A clustering method was examined that selects new clones from partial sequences. Database was constructed on gene expression profiles and disease-related gene sequence data. (NEDO)

  5. The effects of pyridaben pesticide on the DNA integrity of sperms and early in vitro embryonic development in mice

    Directory of Open Access Journals (Sweden)

    Ghodrat Ebadi Manas

    2013-01-01

    Full Text Available Background: Pyridaben, a pyridazinone derivative, is a new acaricide and insecticide for control of mites and some insects such as white flies, aphids and thrips. Objective: This study was designed to elucidate how pyridaben can affect the sperms' morphological parameters, its DNA integrity, and to estimate the effect of various quantities of pyridaben on in vitro fertilization rate. Materials and Methods: In this study, 80 adult male Balb/C strain mice were used. Animals were divided into control and two test groups. Control group received distilled water. The test group was divided into two subgroups, viz, high dose (212 mg/kg/day and low dose (53 mg/kg/day and they received the pyridaben, orally for duration of 45 days. The spermatozoa were obtained from caudae epididymides on day 45 in all groups. Sperm viability, protamin compression (nuclear maturity, DNA double-strand breaks, and in vitro fertilizing (IVF ability were examined. Results: The pyridaben treatment provoked a significant decrease in sperm population and viability in epididymides. The data obtained from this experiment revealed that, the pyridaben brings about negative impact on the sperm maturation and DNA integrity in a time-dependent manner, which consequently caused a significant (p<0.05 reduction in IVF capability. Embryo developing arrest was significantly (p<0.05 higher in treated than the control group. Conclusion: Theses results confirmed that, the pyridaben is able to induce DNA damage and chromatin abnormalities in spermatozoa which were evident by low IVF rate.

  6. The future of forensic DNA analysis

    Science.gov (United States)

    Butler, John M.

    2015-01-01

    The author's thoughts and opinions on where the field of forensic DNA testing is headed for the next decade are provided in the context of where the field has come over the past 30 years. Similar to the Olympic motto of ‘faster, higher, stronger’, forensic DNA protocols can be expected to become more rapid and sensitive and provide stronger investigative potential. New short tandem repeat (STR) loci have expanded the core set of genetic markers used for human identification in Europe and the USA. Rapid DNA testing is on the verge of enabling new applications. Next-generation sequencing has the potential to provide greater depth of coverage for information on STR alleles. Familial DNA searching has expanded capabilities of DNA databases in parts of the world where it is allowed. Challenges and opportunities that will impact the future of forensic DNA are explored including the need for education and training to improve interpretation of complex DNA profiles. PMID:26101278

  7. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    Science.gov (United States)

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Adélie penguin population diet monitoring by analysis of food DNA in scats.

    Science.gov (United States)

    Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  9. Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples.

    Science.gov (United States)

    Westen, Antoinette A; Matai, Anuska S; Laros, Jeroen F J; Meiland, Hugo C; Jasper, Mandy; de Leeuw, Wiljo J F; de Knijff, Peter; Sijen, Titia

    2009-09-01

    For the analysis of degraded DNA in disaster victim identification (DVI) and criminal investigations, single nucleotide polymorphisms (SNPs) have been recognized as promising markers mainly because they can be analyzed in short sized amplicons. Most SNPs are bi-allelic and are thereby ineffective to detect mixtures, which may lead to incorrect genotyping. We developed an algorithm to find non-binary (i.e. tri-allelic or tetra-allelic) SNPs in the NCBI dbSNP database. We selected 31 potential tri-allelic SNPs with a minor allele frequency of at least 10%. The tri-allelic nature was confirmed for 15 SNPs residing on 14 different chromosomes. Multiplex SNaPshot assays were developed, and the allele frequencies of 16 SNPs were determined among 153 Dutch and 111 Netherlands Antilles reference samples. Using these multiplex SNP assays, the presence of a mixture of two DNA samples in a ratio up to 1:8 could be recognized reliably. Furthermore, we compared the genotyping efficiency of the tri-allelic SNP markers and short tandem repeat (STR) markers by analyzing artificially degraded DNA and DNA from 30 approximately 500-year-old bone and molar samples. In both types of degraded DNA samples, the larger sized STR amplicons failed to amplify whereas the tri-allelic SNP markers still provided valuable information. In conclusion, tri-allelic SNP markers are suited for the analysis of degraded DNA and enable the detection of a second DNA source in a sample.

  10. Genetic variation and DNA markers in forensic analysis

    African Journals Online (AJOL)

    SAM

    2014-07-30

    Jul 30, 2014 ... Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License. 4.0 International ... (mtDNA) is today a routine method of analysis of biological ... A promising approach in this context seems to be .... 1985; Armour et al., 1996). ...... management.

  11. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism

    International Nuclear Information System (INIS)

    Umezu, K.; Sugawara, N.; Chen, C.; Haber, J.E.; Kolodner, R.D.

    1998-01-01

    Replication protein A (RPA) is a single-stranded DNA-binding protein identified as an essential factor for SV40 DNA replication in vitro. To understand the in vivo functions of RPA, we mutagenized the Saccharomyces cerevisiae RFA1 gene and identified 19 ultraviolet light (UV) irradiation- and methyl methane sulfonate (MMS)-sensitive mutants and 5 temperature-sensitive mutants. The UV- and MMS-sensitive mutants showed up to 10 4 to 10 5 times increased sensitivity to these agents. Some of the UV- and MMSsensitive mutants were killed by an HO-induced double-strand break atMAT. Physical analysis of recombination in one UV- and MMS-sensitive rfa1 mutant demonstrated that it was defective for mating type switching and single-strand annealing recombination. Two temperature-sensitive mutants were characterized in detail, and at the restrictive temperature were found to have an arrest phenotype and DNA content indicative of incomplete DNA replication. DNA sequence analysis indicated that most of the mutations altered amino acids that were conserved between yeast, human, and Xenopus RPA1. Taken together, we conclude that RPA1 has multiple roles in vivo and functions in DNA replication, repair, and recombination, like the single-stranded DNA-binding proteins of bacteria and phages. (author)

  12. Expression analysis of a ''Cucurbita'' cDNA encoding endonuclease

    International Nuclear Information System (INIS)

    Szopa, J.

    1995-01-01

    The nuclear matrices of plant cell nuclei display intrinsic nuclease activity which consists in nicking supercoiled DNA. A cDNA encoding a 32 kDa endonuclease has been cloned and sequenced. The nucleotide and deduced amino-acid sequences show high homology to known 14-3-3-protein sequences from other sources. The amino-acid sequence shows agreement with consensus sequences for potential phosphorylation by protein kinase A and C and for calcium, lipid and membrane-binding sites. The nucleotide-binding site is also present within the conserved part of the sequence. By Northern blot analysis, the differential expression of the corresponding mRNA was detected; it was the strongest in sink tissues. The endonuclease activity found on DNA-polyacrylamide gel electrophoresis coincided with mRNA content and was the highest in tuber. (author). 22 refs, 6 figs

  13. Parvovirus B19 integration into human CD36+ erythroid progenitor cells.

    Science.gov (United States)

    Janovitz, Tyler; Wong, Susan; Young, Neal S; Oliveira, Thiago; Falck-Pedersen, Erik

    2017-11-01

    The pathogenic autonomous human parvovirus B19 (B19V) productively infects erythroid progenitor cells (EPCs). Functional similarities between B19V nonstructural protein (NS1), a DNA binding endonuclease, and the Rep proteins of Adeno-Associated Virus (AAV) led us to hypothesize that NS1 may facilitate targeted nicking of the human genome and B19 vDNA integration. We adapted an integration capture sequencing protocol (IC-Seq) to screen B19V infected human CD36+ EPCs for viral integrants, and discovered 40,000 unique B19V integration events distributed throughout the human genome. Computational analysis of integration patterns revealed strong correlations with gene intronic regions, H3K9me3 sites, and the identification of 41 base pair consensus sequence with an octanucleotide core motif. The octanucleotide core has homology to a single region of B19V, adjacent to the P6 promoter TATA box. We present the first direct evidence that B19V infection of erythroid progenitor cells disrupts the human genome and facilitates viral DNA integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Barcoded DNA-tag reporters for multiplex cis-regulatory analysis.

    Directory of Open Access Journals (Sweden)

    Jongmin Nam

    Full Text Available Cis-regulatory DNA sequences causally mediate patterns of gene expression, but efficient experimental analysis of these control systems has remained challenging. Here we develop a new version of "barcoded" DNA-tag reporters, "Nanotags" that permit simultaneous quantitative analysis of up to 130 distinct cis-regulatory modules (CRMs. The activities of these reporters are measured in single experiments by the NanoString RNA counting method and other quantitative procedures. We demonstrate the efficiency of the Nanotag method by simultaneously measuring hourly temporal activities of 126 CRMs from 46 genes in the developing sea urchin embryo, otherwise a virtually impossible task. Nanotags are also used in gene perturbation experiments to reveal cis-regulatory responses of many CRMs at once. Nanotag methodology can be applied to many research areas, ranging from gene regulatory networks to functional and evolutionary genomics.

  15. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  16. Comparison of the electrophoretic method with the sedimentation method for the analysis of DNA strand breaks

    International Nuclear Information System (INIS)

    Yamamoto, Osamu; Ogawa, Masaaki; Hoshi, Masaharu

    1982-01-01

    Application of electrophoresis to the analysis of DNA strand breaks was studied comparing with the sedimentation analysis. A BRL gel electrophoresis system (Type V16) was used for this study. Calf thymus DNA (1 mg/ml) irradiated with 60 Co gamma-rays in SSC solution was applied to both the electrophoretic analysis and the sedimentation analysis. Lamda phage DNA and its fragments were employed as the standard size molecules. In a range from 1 k base pairs to 6 k base pairs in length for double stranded DNA or from 2 k bases to 12 k bases for single stranded DNA, the calculated average molecular weight from the electrophoresis coincided with that from the sedimentation. Number of single strand breaks and double strand breaks were 1.34 x 10 11 breaks/mg/rad (G = 0.215) and 0.48 x 10 5 breaks/mg/rad 2 , respectively. (author)

  17. About DNA databasing and investigative genetic analysis of externally visible characteristics: A public survey.

    Science.gov (United States)

    Zieger, Martin; Utz, Silvia

    2015-07-01

    During the last decade, DNA profiling and the use of DNA databases have become two of the most employed instruments of police investigations. This very rapid establishment of forensic genetics is yet far from being complete. In the last few years novel types of analyses have been presented to describe phenotypically a possible perpetrator. We conducted the present study among German speaking Swiss residents for two main reasons: firstly, we aimed at getting an impression of the public awareness and acceptance of the Swiss DNA database and the perception of a hypothetical DNA database containing all Swiss residents. Secondly, we wanted to get a broader picture of how people that are not working in the field of forensic genetics think about legal permission to establish phenotypic descriptions of alleged criminals by genetic means. Even though a significant number of study participants did not even know about the existence of the Swiss DNA database, its acceptance appears to be very high. Generally our results suggest that the current forensic use of DNA profiling is considered highly trustworthy. However, the acceptance of a hypothetical universal database would be only as low as about 30% among the 284 respondents to our study, mostly because people are concerned about the security of their genetic data, their privacy or a possible risk of abuse of such a database. Concerning the genetic analysis of externally visible characteristics and biogeographical ancestry, we discover a high degree of acceptance. The acceptance decreases slightly when precise characteristics are presented to the participants in detail. About half of the respondents would be in favor of the moderate use of physical traits analyses only for serious crimes threatening life, health or sexual integrity. The possible risk of discrimination and reinforcement of racism, as discussed by scholars from anthropology, bioethics, law, philosophy and sociology, is mentioned less frequently by the study

  18. Site-specific integration of CAR gene into Jurkat T cells with a linear close-ended AAV-based DNA vector for CAR-T engineering.

    Science.gov (United States)

    Zhang, Yun; Liu, Xiaomei; Zhang, Jinju; Zhang, Chun

    2016-09-01

    To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins. AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed "CELiD" DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with "CELiD" DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %. The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.

  19. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    Science.gov (United States)

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  20. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    Science.gov (United States)

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  1. Problems in mathematical analysis III integration

    CERN Document Server

    Kaczor, W J

    2003-01-01

    We learn by doing. We learn mathematics by doing problems. This is the third volume of Problems in Mathematical Analysis. The topic here is integration for real functions of one real variable. The first chapter is devoted to the Riemann and the Riemann-Stieltjes integrals. Chapter 2 deals with Lebesgue measure and integration. The authors include some famous, and some not so famous, integral inequalities related to Riemann integration. Many of the problems for Lebesgue integration concern convergence theorems and the interchange of limits and integrals. The book closes with a section on Fourier series, with a concentration on Fourier coefficients of functions from particular classes and on basic theorems for convergence of Fourier series. The book is primarily geared toward students in analysis, as a study aid, for problem-solving seminars, or for tutorials. It is also an excellent resource for instructors who wish to incorporate problems into their lectures. Solutions for the problems are provided in the boo...

  2. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Science.gov (United States)

    Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca

    2015-01-01

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  3. Structural Analysis of DNA Interactions with Magnesium Ion Studied by Raman Spectroscopy

    OpenAIRE

    S. Ponkumar; P. Duraisamy; N. Iyandurai

    2011-01-01

    Problem statement: In the present study, FT Raman spectroscopy had been used to extend our knowledge about Magnesium ion - DNA interactions at various volume ratios (1:50, 1:20, 1:10 and 1:5). Approach: The analysis of FT Raman data supported the existence of structural specificities in the interaction and also the stability of DNA secondary structure. Results: Results from the Raman spectra clearly indicate that the interaction of Magnesium ion with DNA is mainly through the phosphate groups...

  4. Bisulfite-Based DNA Methylation Analysis from Recent and Archived Formalin-Fixed, Paraffin Embedded Colorectal Tissue Samples.

    Science.gov (United States)

    Kalmár, Alexandra; Péterfia, Bálint; Hollósi, Péter; Wichmann, Barnabás; Bodor, András; Patai, Árpád V; Schöller, Andrea; Krenács, Tibor; Tulassay, Zsolt; Molnár, Béla

    2015-09-01

    We aimed to test the applicability of formalin-fixed and paraffin-embedded (FFPE) tissue samples for gene specific DNA methylation analysis after using two commercially available DNA isolation kits. Genomic DNA was isolated from 5 colorectal adenocarcinomas and 5 normal adjacent tissues from "recent", collected within 6 months, and "archived", collected more than 5 years ago, FFPE tissues using either High Pure FFPET DNA Isolation kit or QIAamp DNA FFPE Tissue kit. DNA methylation analysis of MAL, SFRP1 and SFRP2 genes, known to be hypermethylated in CRC, was performed using methylation-sensitive high resolution melting (MS-HRM) analysis and sequencing. QIAamp (Q) method resulted in slightly higher recovery in archived (HP: 1.22 ± 3.18 μg DNA; Q: 3.00 ± 4.04 μg DNA) and significantly (p < 0.05) higher recovery in recent samples compared to High Pure method (HP) (HP: 4.10 ± 2.91 μg DNA; Q: 11.51 ± 7.50 μg DNA). Both OD260/280 and OD260/230 ratios were lower, but still high in the High Pure isolated archived and recent samples compared to those isolated with QIAamp. Identical DNA methylation patterns were detected for all 3 genes tested by MS-HRM with both isolation kits in the recent group. However, despite of higher DNA recovery in QIAamp slightly more reproducible methylation results were obtained from High Pure isolated archived samples. Sequencing confirmed DNA hypermethylation in CRCs. In conclusion, reproducible DNA methylation patterns were obtained from recent samples using both isolation kits. However, long term storage may affect the reliability of the results leading to moderate differences between the efficiency of isolation kits.

  5. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  6. Norrie disease. Diagnosis of a simplex case by DNA analysis.

    Science.gov (United States)

    Chynn, E W; Walton, D S; Hahn, L B; Dryja, T P

    1996-09-01

    Norrie disease is a rare, X-linked recessive disorder characterized by congenital blindness due to malformed retinas. We describe a simplex patient who had leukokoria and whose clinical diagnosis was confirmed only after molecular genetics analysis. DNA analysis was also used to determine the carrier status of relatives of the proband.

  7. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  8. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures.

    Science.gov (United States)

    Ahmadi, Yasaman; De Llano, Elisa; Barišić, Ivan

    2018-04-26

    DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the

  9. Methylation Integration (Mint) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    A comprehensive software pipeline and set of Galaxy tools/workflows for integrative analysis of genome-wide DNA methylation and hydroxymethylation data. Data types can be either bisulfite sequencing and/or pull-down methods.

  10. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    Science.gov (United States)

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.

  11. Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization.

    Science.gov (United States)

    Martins, Diogo; Wei, Xi; Levicky, Rastislav; Song, Yong-Ak

    2016-04-05

    We describe a microfluidic concentration device to accelerate the surface hybridization reaction between DNA and morpholinos (MOs) for enhanced detection. The microfluidic concentrator comprises a single polydimethylsiloxane (PDMS) microchannel onto which an ion-selective layer of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) was directly printed and then reversibly surface bonded onto a morpholino microarray for hybridization. Using this electrokinetic trapping concentrator, we could achieve a maximum concentration factor of ∼800 for DNA and a limit of detection of 10 nM within 15 min. In terms of the detection speed, it enabled faster hybridization by around 10-fold when compared to conventional diffusion-based hybridization. A significant advantage of our approach is that the fabrication of the microfluidic concentrator is completely decoupled from the microarray; by eliminating the need to deposit an ion-selective layer on the microarray surface prior to device integration, interfacing between both modules, the PDMS chip for electrokinetic concentration and the substrate for DNA sensing are easier and applicable to any microarray platform. Furthermore, this fabrication strategy facilitates a multiplexing of concentrators. We have demonstrated the proof-of-concept for multiplexing by building a device with 5 parallel concentrators connected to a single inlet/outlet and applying it to parallel concentration and hybridization. Such device yielded similar concentration and hybridization efficiency compared to that of a single-channel device without adding any complexity to the fabrication and setup. These results demonstrate that our concentrator concept can be applied to the development of a highly multiplexed concentrator-enhanced microarray detection system for either genetic analysis or other diagnostic assays.

  12. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification.

    Science.gov (United States)

    Liu, Jie; Milne, Richard I; Möller, Michael; Zhu, Guang-Fu; Ye, Lin-Jiang; Luo, Ya-Huang; Yang, Jun-Bo; Wambulwa, Moses Cheloti; Wang, Chun-Neng; Li, De-Zhu; Gao, Lian-Ming

    2018-05-22

    Rapid and accurate identification of endangered species is a critical component of bio-surveillance and conservation management, and potentially policing illegal trades. However, this is often not possible using traditional taxonomy, especially where only small or pre-processed parts of plants are available. Reliable identification can be achieved via a comprehensive DNA barcode reference library, accompanied by precise distribution data. However, these require extensive sampling at spatial and taxonomic scales, which has rarely been achieved for cosmopolitan taxa. Here we construct a comprehensive DNA barcode reference library, and generate distribution maps using species distribution modeling (SDM), for all 15 Taxus species worldwide. We find that trnL-trnF is the ideal barcode for Taxus: it can distinguish all Taxus species, and in combination with ITS identify hybrids. Among five analysis methods tested, NJ was the most effective. Among 4151 individuals screened for trnL-trnF, 73 haplotypes were detected, all species-specific and some population private. Taxonomical, geographical and genetic dimensions of sampling strategy were all found to affect the comprehensiveness of the resulting DNA barcode library. Maps from SDM showed that most species had allopatric distributions, except three in the Sino-Himalayan region. Using the barcode library and distribution map data, two unknown forensic samples were identified to species (and in one case, population) level, and another was determined as a putative interspecific hybrid. This integrated species identification system for Taxus can be used for bio-surveillance, conservation management and to monitor and prosecute illegal trade. Similar identification systems are recommended for other IUCN- and -CITES listed taxa. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Stwl modifies chromatin compaction and is required to maintain DNA integrity in the presence of perturbed DNA replication

    NARCIS (Netherlands)

    Yi, X.; Vries, de H.I.; Siudeja, K.; Rana, A.; Lemstra, W.; Brunsting, J.F.; Kok, R.J.M.; Smulders, Y.M.; Schaefer, M.; Dijk, F.; Shang, Y.F.; Eggen, B.J.L.; Kampinga, H.H.; Sibon, O.C.M.

    2009-01-01

    Hydroxyurea, a well-known DNA replication inhibitor, induces cell cycle arrest and intact checkpoint functions are required to survive DNA replication stress induced by this genotoxic agent. Perturbed DNA synthesis also results in elevated levels of DNA damage. It is unclear how organisms prevent

  14. Stwl Modifies Chromatin Compaction and Is Required to Maintain DNA Integrity in the Presence of Perturbed DNA Replication

    NARCIS (Netherlands)

    Yi, Xia; Vries, Hilda I. de; Siudeja, Katarzyna; Rana, Anil; Lemstra, Willy; Brunsting, Jeanette F.; Kok, Rob M.; Smulders, Yvo M.; Schaefer, Matthias; Dijk, Freark; Shang, Yongfeng; Eggen, Bart J.L.; Kampinga, Harm H.; Sibon, Ody C.M.

    Hydroxyurea, a well-known DNA replication inhibitor, induces cell cycle arrest and intact checkpoint functions are required to survive DNA replication stress induced by this genotoxic agent. Perturbed DNA synthesis also results in elevated levels of DNA damage. It is unclear how organisms prevent

  15. Nanopore Analysis of the 5-Guanidinohydantoin to Iminoallantoin Isomerization in Duplex DNA.

    Science.gov (United States)

    Zeng, Tao; Fleming, Aaron M; Ding, Yun; Ren, Hang; White, Henry S; Burrows, Cynthia J

    2018-04-06

    In DNA, guanine oxidation yields diastereomers of 5-guanidinohydantoin (Gh) as one of the major products. In nucleosides and single-stranded DNA, Gh is in a pH-dependent equilibrium with its constitutional isomer iminoallantoin (Ia). Herein, the isomerization reaction between Gh and Ia was monitored in duplex DNA using a protein nanopore by measuring the ionic current when duplex DNA interacts with the pore under an electrophoretic force. Monitoring current levels in this single-molecule method proved to be superior for analysis of population distributions in an equilibrating mixture of four isomers in duplex DNA as a function of pH. The results identified Gh as a major isomer observed when base paired with A, C, or G at pH 6.4-8.4, and Ia was a minor isomer of the reaction mixture that was only observed when the pH was >7.4 in the duplex DNA context. The present results suggest that Gh will be the dominant isomer in duplex DNA under physiological conditions regardless of the base-pairing partner in the duplex.

  16. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Directory of Open Access Journals (Sweden)

    Soichi Inagaki

    Full Text Available Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  17. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  18. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Kaeser, Cynthia Jeanne [Michigan State Univ., East Lansing, MI (United States)

    2017-07-21

    formulations of two different food-grade sugars (maltodextrin and erythritol) to humidity as high as 66% had no significant effect on the DNA label’s degradation or the particle’s aerodynamic diameter, confirming particle stability under such conditions. In summary, confirmation of the DNATrax particles’ size and label integrity under variable conditions combined with experiment multiplexing and high resolution sampling provides a powerful experimental design for modeling aerosol transport through occupied indoor and outdoor locations.

  19. Multiplex Ligation-Dependent Probe Amplification Technique for Copy Number Analysis on Small Amounts of DNA Material

    DEFF Research Database (Denmark)

    Sørensen, Karina; Andersen, Paal; Larsen, Lars

    2008-01-01

    The multiplex ligation-dependent probe amplification (MLPA) technique is a sensitive technique for relative quantification of up to 50 different nucleic acid sequences in a single reaction, and the technique is routinely used for copy number analysis in various syndromes and diseases. The aim...... of the study was to exploit the potential of MLPA when the DNA material is limited. The DNA concentration required in standard MLPA analysis is not attainable from dried blood spot samples (DBSS) often used in neonatal screening programs. A novel design of MLPA probes has been developed to permit for MLPA...... analysis on small amounts of DNA. Six patients with congenital adrenal hyperplasia (CAH) were used in this study. DNA was extracted from both whole blood and DBSS and subjected to MLPA analysis using normal and modified probes. Results were analyzed using GeneMarker and manual Excel analysis. A total...

  20. Programmable motion of DNA origami mechanisms.

    Science.gov (United States)

    Marras, Alexander E; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E

    2015-01-20

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.

  1. Programmable motion of DNA origami mechanisms

    Science.gov (United States)

    Marras, Alexander E.; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E.

    2015-01-01

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach. PMID:25561550

  2. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  3. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application......Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...

  4. Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos

    OpenAIRE

    MORRILL, Benson H.; COX, Lindsay; WARD, Anika; HEYWOOD, Sierra; PRATHER, Randall S.; ISOM, S. Clay

    2013-01-01

    Abstract The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx plat...

  5. Integrated Radiation Analysis and Design Tools

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Radiation Analysis and Design Tools (IRADT) Project develops and maintains an integrated tool set that collects the current best practices, databases,...

  6. Quantitative Analysis of the Mutagenic Potential of 1-Aminopyrene-DNA Adduct Bypass Catalyzed by Y-Family DNA Polymerases

    Science.gov (United States)

    Sherrer, Shanen M.; Taggart, David J.; Pack, Lindsey R.; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2012-01-01

    N- (deoxyguanosin-8-yl)-1-aminopyrene (dGAP) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dGAP induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dGAP lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dGAP, we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dGAP. Opposite dGAP and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dGAP. Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dGAP bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dGAP bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolkk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dGAP in humans. PMID:22917544

  7. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.

    Science.gov (United States)

    Brat, Daniel J; Verhaak, Roel G W; Aldape, Kenneth D; Yung, W K Alfred; Salama, Sofie R; Cooper, Lee A D; Rheinbay, Esther; Miller, C Ryan; Vitucci, Mark; Morozova, Olena; Robertson, A Gordon; Noushmehr, Houtan; Laird, Peter W; Cherniack, Andrew D; Akbani, Rehan; Huse, Jason T; Ciriello, Giovanni; Poisson, Laila M; Barnholtz-Sloan, Jill S; Berger, Mitchel S; Brennan, Cameron; Colen, Rivka R; Colman, Howard; Flanders, Adam E; Giannini, Caterina; Grifford, Mia; Iavarone, Antonio; Jain, Rajan; Joseph, Isaac; Kim, Jaegil; Kasaian, Katayoon; Mikkelsen, Tom; Murray, Bradley A; O'Neill, Brian Patrick; Pachter, Lior; Parsons, Donald W; Sougnez, Carrie; Sulman, Erik P; Vandenberg, Scott R; Van Meir, Erwin G; von Deimling, Andreas; Zhang, Hailei; Crain, Daniel; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron; Bowen, Jay; Dicostanzo, Katie; Gastier-Foster, Julie; Leraas, Kristen M; Lichtenberg, Tara M; Pierson, Christopher R; Ramirez, Nilsa C; Taylor, Cynthia; Weaver, Stephanie; Wise, Lisa; Zmuda, Erik; Davidsen, Tanja; Demchok, John A; Eley, Greg; Ferguson, Martin L; Hutter, Carolyn M; Mills Shaw, Kenna R; Ozenberger, Bradley A; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Jensen, Mark A; Liu, Jia; Pihl, Todd; Raman, Rohini; Wan, Yunhu; Wu, Ye; Ally, Adrian; Auman, J Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B; Beroukhim, Rameen; Bootwalla, Moiz S; Bowlby, Reanne; Bristow, Christopher A; Brooks, Denise; Butterfield, Yaron; Carlsen, Rebecca; Carter, Scott; Chin, Lynda; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Clarke, Amanda; Coetzee, Simon G; Dhalla, Noreen; Fennell, Tim; Fisher, Sheila; Gabriel, Stacey; Getz, Gad; Gibbs, Richard; Guin, Ranabir; Hadjipanayis, Angela; Hayes, D Neil; Hinoue, Toshinori; Hoadley, Katherine; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven; Jones, Corbin D; Kucherlapati, Raju; Lai, Phillip H; Lander, Eric; Lee, Semin; Lichtenstein, Lee; Ma, Yussanne; Maglinte, Dennis T; Mahadeshwar, Harshad S; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew L; Mieczkowski, Piotr A; Moore, Richard A; Mose, Lisle E; Mungall, Andrew J; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J; Parker, Joel S; Perou, Charles M; Protopopov, Alexei; Ren, Xiaojia; Roach, Jeffrey; Sabedot, Thaís S; Schein, Jacqueline; Schumacher, Steven E; Seidman, Jonathan G; Seth, Sahil; Shen, Hui; Simons, Janae V; Sipahimalani, Payal; Soloway, Matthew G; Song, Xingzhi; Sun, Huandong; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Thiessen, Nina; Triche, Timothy; Van Den Berg, David J; Veluvolu, Umadevi; Waring, Scot; Weisenberger, Daniel J; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Xu, Andrew W; Yang, Lixing; Zack, Travis I; Zhang, Jianhua; Aksoy, B Arman; Arachchi, Harindra; Benz, Chris; Bernard, Brady; Carlin, Daniel; Cho, Juok; DiCara, Daniel; Frazer, Scott; Fuller, Gregory N; Gao, JianJiong; Gehlenborg, Nils; Haussler, David; Heiman, David I; Iype, Lisa; Jacobsen, Anders; Ju, Zhenlin; Katzman, Sol; Kim, Hoon; Knijnenburg, Theo; Kreisberg, Richard Bailey; Lawrence, Michael S; Lee, William; Leinonen, Kalle; Lin, Pei; Ling, Shiyun; Liu, Wenbin; Liu, Yingchun; Liu, Yuexin; Lu, Yiling; Mills, Gordon; Ng, Sam; Noble, Michael S; Paull, Evan; Rao, Arvind; Reynolds, Sheila; Saksena, Gordon; Sanborn, Zack; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Shen, Ronglai; Shmulevich, Ilya; Sinha, Rileen; Stuart, Josh; Sumer, S Onur; Sun, Yichao; Tasman, Natalie; Taylor, Barry S; Voet, Doug; Weinhold, Nils; Weinstein, John N; Yang, Da; Yoshihara, Kosuke; Zheng, Siyuan; Zhang, Wei; Zou, Lihua; Abel, Ty; Sadeghi, Sara; Cohen, Mark L; Eschbacher, Jenny; Hattab, Eyas M; Raghunathan, Aditya; Schniederjan, Matthew J; Aziz, Dina; Barnett, Gene; Barrett, Wendi; Bigner, Darell D; Boice, Lori; Brewer, Cathy; Calatozzolo, Chiara; Campos, Benito; Carlotti, Carlos Gilberto; Chan, Timothy A; Cuppini, Lucia; Curley, Erin; Cuzzubbo, Stefania; Devine, Karen; DiMeco, Francesco; Duell, Rebecca; Elder, J Bradley; Fehrenbach, Ashley; Finocchiaro, Gaetano; Friedman, William; Fulop, Jordonna; Gardner, Johanna; Hermes, Beth; Herold-Mende, Christel; Jungk, Christine; Kendler, Ady; Lehman, Norman L; Lipp, Eric; Liu, Ouida; Mandt, Randy; McGraw, Mary; Mclendon, Roger; McPherson, Christopher; Neder, Luciano; Nguyen, Phuong; Noss, Ardene; Nunziata, Raffaele; Ostrom, Quinn T; Palmer, Cheryl; Perin, Alessandro; Pollo, Bianca; Potapov, Alexander; Potapova, Olga; Rathmell, W Kimryn; Rotin, Daniil; Scarpace, Lisa; Schilero, Cathy; Senecal, Kelly; Shimmel, Kristen; Shurkhay, Vsevolod; Sifri, Suzanne; Singh, Rosy; Sloan, Andrew E; Smolenski, Kathy; Staugaitis, Susan M; Steele, Ruth; Thorne, Leigh; Tirapelli, Daniela P C; Unterberg, Andreas; Vallurupalli, Mahitha; Wang, Yun; Warnick, Ronald; Williams, Felicia; Wolinsky, Yingli; Bell, Sue; Rosenberg, Mara; Stewart, Chip; Huang, Franklin; Grimsby, Jonna L; Radenbaugh, Amie J; Zhang, Jianan

    2015-06-25

    Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most

  8. A lncRNA to repair DNA

    DEFF Research Database (Denmark)

    Lukas, Jiri; Altmeyer, Matthias

    2015-01-01

    Long non-coding RNAs (lncRNAs) have emerged as regulators of various biological processes, but to which extent lncRNAs play a role in genome integrity maintenance is not well understood. In this issue of EMBO Reports, Sharma et al [1] identify the DNA damage-induced lncRNA DDSR1 as an integral...... player of the DNA damage response (DDR). DDSR1 has both an early role by modulating repair pathway choices, and a later function when it regulates gene expression. Sharma et al [1] thus uncover a dual role for a hitherto uncharacterized lncRNA during the cellular response to DNA damage....

  9. Circulating Tumor DNA Analysis for Liver Cancers and Its Usefulness as a Liquid BiopsySummary

    Directory of Open Access Journals (Sweden)

    Atsushi Ono

    2015-09-01

    Full Text Available Background & Aims: Circulating tumor DNA (ctDNA carrying tumor-specific sequence alterations has been found in the cell-free fraction of blood. Liver cancer tumor specimens are difficult to obtain, and noninvasive methods are required to assess cancer progression and characterize underlying genomic features. Methods: We analyzed 46 patients with hepatocellular carcinoma who underwent hepatectomy or liver transplantation and for whom whole-genome sequencing data was available. We designed personalized assays targeting somatic rearrangements of each tumor to quantify serum ctDNA. Exome sequencing was performed using cell-free DNA paired primary tumor tissue DNA from a patient with recurrent liver cancer after transcatheter arterial chemoembolization (TACE. Results: We successfully detected ctDNA from 100 μL of serum samples in 7 of the 46 patients before surgery, increasing with disease progression. The cumulative incidence of recurrence and extrahepatic metastasis in the ctDNA-positive group were statistically significantly worse than in the ctDNA-negative group (P = .0102 and .0386, respectively. Multivariate analysis identified ctDNA (OR 6.10; 95% CI, 1.11–33.33, P = .038 as an independent predictor of microscopic vascular invasion of the portal vein (VP. We identified 45 nonsynonymous somatic mutations in cell-free DNA after TACE and 71 nonsynonymous somatic mutations in primary tumor tissue by exome sequencing. We identified 25 common mutations in both samples, and 83% of mutations identified in the primary tumor could be detected in the cell-free DNA. Conclusions: The presence of ctDNA reflects tumor progression, and detection of ctDNA can predict VP and recurrence, especially extrahepatic metastasis within 2 years. Our study demonstrated the usefulness of ctDNA detection and sequencing analysis of cell-free DNA for personalized treatment of liver cancer. Keywords: Circulating Tumor DNA, Exome Sequencing, Hepatocellular

  10. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene® fixed samples compared to restored FFPE DNA

    DEFF Research Database (Denmark)

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte

    2014-01-01

    Chip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better......Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies......, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap...

  11. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2013-03-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.

  12. DNA hybridization sensing for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dapra, Johannes; Brøgger, Anna Line

    2013-01-01

    are rearrangements between two chromosome arms that results in two derivative chromosomes having a mixed DNA sequence. The current detection method is a Fluorescent In situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the DNA sequences of two chromosomes involved...... in the translocation (Kwasny et al., 2012). We have developed a new double hybridization assay that allows for sorting of the DNA chromosomal fragments into separate compartment, moreover allowing for detection of the translocation. To detect the translocation it is necessary to determine that the two DNA sequences...... forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The first example of the translocation detection was presented on lab-on-a-disc using fluorescently labeled DNA fragments, representing the derivative chromosome (Brøgger et al., 2012). To allow...

  13. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  14. Evaluation of impairment of DNA integrity in marine gastropods (Cronia contracta) as a biomarker of genotoxic contaminants in coastal water around Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Gaitonde, D.C.S.; Sarkar, Amit; Vashistha, D.; DeSilva, C.; Dalal, S.G.

    was evaluated in terms of the loss of DNA integrity (expressed as the value of 'I') in marine snails with respect to those from the reference site (Palolem) over a period from April 2004 to May 2005 using the technique of alkaline unwinding assay. The DNA...

  15. The Potential of Cosmetic Applicators as a Source of DNA for Forensic Analysis.

    Science.gov (United States)

    Adamowicz, Michael S; Labonte, Renáe D; Schienman, John E

    2015-07-01

    Personal products, such as toothbrushes, have been used as both known reference and evidentiary samples for forensic DNA analysis. This study examined the viability of a broad selection of cosmetic applicators for use as targets for human DNA extraction and short tandem repeat (STR) analysis using standard polymerase chain reaction (PCR) conditions. Applicator types included eyeliner smudgers, pencils and crayons, eye shadow sponges, mascara wands, concealer wands, face makeup sponges, pads and brushes, lipsticks and balms, and lip gloss wands. The quantity and quality of DNA extracted from each type of applicator were examined by assessing the number of loci successfully amplified and the peak balance of the heterozygous alleles in each full STR profile. While degraded DNA, stochastic amplification, and PCR inhibition were observed for some items, full STR profiles were developed for 14 of 76 applicators. The face makeup sponge applicators yielded the highest proportional number of full STR profiles (4/7). © 2015 American Academy of Forensic Sciences.

  16. Enhanced low-template DNA analysis conditions and investigation of allele dropout patterns.

    Science.gov (United States)

    Hedell, Ronny; Dufva, Charlotte; Ansell, Ricky; Mostad, Petter; Hedman, Johannes

    2015-01-01

    Forensic DNA analysis applying PCR enables profiling of minute biological samples. Enhanced analysis conditions can be applied to further push the limit of detection, coming with the risk of visualising artefacts and allele imbalances. We have evaluated the consecutive increase of PCR cycles from 30 to 35 to investigate the limitations of low-template (LT) DNA analysis, applying the short tandem repeat (STR) analysis kit PowerPlex ESX 16. Mock crime scene DNA extracts of four different quantities (from around 8-84 pg) were tested. All PCR products were analysed using 5, 10 and 20 capillary electrophoresis (CE) injection seconds. Bayesian models describing allele dropout patterns, allele peak heights and heterozygote balance were developed to assess the overall improvements in EPG quality with altered PCR/CE settings. The models were also used to evaluate the impact of amplicon length, STR marker and fluorescent label on the risk for allele dropout. The allele dropout probability decreased for each PCR cycle increment from 30 to 33 PCR cycles. Irrespective of DNA amount, the dropout probability was not affected by further increasing the number of PCR cycles. For the 42 and 84 pg samples, mainly complete DNA profiles were generated applying 32 PCR cycles. For the 8 and 17 pg samples, the allele dropouts decreased from 100% using 30 cycles to about 75% and 20%, respectively. The results for 33, 34 and 35 PCR cycles indicated that heterozygote balance and stutter ratio were mainly affected by DNA amount, and not directly by PCR cycle number and CE injection settings. We found 32 and 33 PCR cycles with 10 CE injection seconds to be optimal, as 34 and 35 PCR cycles did not improve allele detection and also included CE saturation problems. We find allele dropout probability differences between several STR markers. Markers labelled with the fluorescent dyes CXR-ET (red in electropherogram) and TMR-ET (shown as black) generally have higher dropout risks compared with those

  17. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage

    DEFF Research Database (Denmark)

    Lafuente-Barquero, Juan; Luke-Glaser, Sarah; Graf, Marco

    2017-01-01

    of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids...

  18. The Vehicle Integrated Performance Analysis Experience: Reconnecting With Technical Integration

    Science.gov (United States)

    McGhee, D. S.

    2006-01-01

    Very early in the Space Launch Initiative program, a small team of engineers at MSFC proposed a process for performing system-level assessments of a launch vehicle. Aimed primarily at providing insight and making NASA a smart buyer, the Vehicle Integrated Performance Analysis (VIPA) team was created. The difference between the VIPA effort and previous integration attempts is that VIPA a process using experienced people from various disciplines, which focuses them on a technically integrated assessment. The foundations of VIPA s process are described. The VIPA team also recognized the need to target early detailed analysis toward identifying significant systems issues. This process is driven by the T-model for technical integration. VIPA s approach to performing system-level technical integration is discussed in detail. The VIPA process significantly enhances the development and monitoring of realizable project requirements. VIPA s assessment validates the concept s stated performance, identifies significant issues either with the concept or the requirements, and then reintegrates these issues to determine impacts. This process is discussed along with a description of how it may be integrated into a program s insight and review process. The VIPA process has gained favor with both engineering and project organizations for being responsive and insightful

  19. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    Science.gov (United States)

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Extraction of DNA from Forensic Biological Samples for Genotyping.

    Science.gov (United States)

    Stray, J E; Liu, J Y; Brevnov, M G; Shewale, J G

    2010-07-01

    Biological forensic samples constitute evidence with probative organic matter. Evidence believed to contain DNA is typically processed for extraction and purification of its nucleic acid content. Forensic DNA samples are composed of two things, a tissue and the substrate it resides on. Compositionally, a sample may contain almost anything and for each, the type, integrity, and content of both tissue and substrate will vary, as will the contaminant levels. This fact makes the success of extraction one of the most unpredictable steps in genotypic analysis. The development of robust genotyping systems and analysis platforms for short tandem repeat (STR) and mitochondrial DNA sequencing and the acceptance of results generated by these methods in the court system, resulted in a high demand for DNA testing. The increasing variety of sample submissions created a need to isolate DNA from forensic samples that may be compromised or contain low levels of biological material. In the past decade, several robust chemistries and isolation methods have been developed to safely and reliably recover DNA from a wide array of sample types in high yield and free of PCR inhibitors. In addition, high-throughput automated workflows have been developed to meet the demand for processing increasing numbers of samples. This review summarizes a number of the most widely adopted methods and the best practices for DNA isolation from forensic biological samples, including manual, semiautomated, and fully automated platforms. Copyright © 2010 Central Police University.

  1. An Integrated Approach for RNA-seq Data Normalization.

    Science.gov (United States)

    Yang, Shengping; Mercante, Donald E; Zhang, Kun; Fang, Zhide

    2016-01-01

    DNA copy number alteration is common in many cancers. Studies have shown that insertion or deletion of DNA sequences can directly alter gene expression, and significant correlation exists between DNA copy number and gene expression. Data normalization is a critical step in the analysis of gene expression generated by RNA-seq technology. Successful normalization reduces/removes unwanted nonbiological variations in the data, while keeping meaningful information intact. However, as far as we know, no attempt has been made to adjust for the variation due to DNA copy number changes in RNA-seq data normalization. In this article, we propose an integrated approach for RNA-seq data normalization. Comparisons show that the proposed normalization can improve power for downstream differentially expressed gene detection and generate more biologically meaningful results in gene profiling. In addition, our findings show that due to the effects of copy number changes, some housekeeping genes are not always suitable internal controls for studying gene expression. Using information from DNA copy number, integrated approach is successful in reducing noises due to both biological and nonbiological causes in RNA-seq data, thus increasing the accuracy of gene profiling.

  2. Droplet-based microscale colorimetric biosensor for multiplexed DNA analysis via a graphene nanoprobe

    International Nuclear Information System (INIS)

    Xiang Xia; Luo Ming; Shi Liyang; Ji Xinghu; He Zhike

    2012-01-01

    Graphical abstract: With a microvalve manipulate technique combined with droplet platform, a microscale fluorescence-based colorimetric sensor for multiplexed DNA analysis is developed via a graphene nanoprobe. Highlights: ► A quantitative detection for multiplexed DNA is first realized on droplet platform. ► The DNA detection is relied on a simple fluorescence-based colorimetric method. ► GO is served as a quencher for two different DNA fluorescent probes. ► This present work provides a rapid, sensitive, visual and convenient detection tool for droplet biosensor. - Abstract: The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10 −8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.

  3. Identity of the xerophilic species Aspergillus penicillioides: Integrated analysis of the genotypic and phenotypic characters.

    Science.gov (United States)

    Tamura, Miki; Kawasaki, Hiroko; Sugiyama, Junta

    1999-02-01

    We examined the identity of Aspergillus penicillioides, the typical xerophilic and strictly anamorphic species, using an integrated analysis of the genotypic and phenotypic characters. Our experimental methods on two genotypic characters, i.e., DNA base composition using the HPLC method and DNA relatedness using the nitrocellulose filter hybridization technique between A. flavus, A. oryzae, and their close relations revealed a good agreement with the values by buoyant density (for DNA base composition) and spectrophotometric determination (for DNA relatedness) reported by Kurtzman et al. in 1986. On the basis of these comparisons, we examined DNA base composition and DNA relatedness of six selected strains of A. penicillioides, including IFO 8155 (originally described as A. vitricola), one strain of A. restrictus, and the respective strains from Eurotium amstelodami, E. repens, and E. rubrum. As a result, five strains within A. penicillioides, including the neotype strain NRRL 4548, had G+C contents of 46 to 49 mol%, whereas IFO 8155 had 50 mol%. A. restrictus had 52 mol%, and three Eurotium species ranged from 46 to 49 mol%. The DNA relatedness between A. penicillioides (five strains), except for IFO 8155, exhibited values greater than 70%, but the DNA complementarity between four strains and IFO 8155 in A. penicillioides revealed values of less than 40%. DNA relatedness values between three species of Eurotium were 65 to 72%. We determined 18S, 5.8S, and ITS rDNA sequences as other genotypic characters from A. penicillioides (six strains), A. restrictus, and related teleomorphic species of Eurotium. In three phylogenetic trees inferred from these sequences, five strains of A. penicillioides, including the neotype strain, were closely related to each other, whereas IFO 8155 was distantly related and grouped with other xerophilic species. Our results have suggested that A. penicillioides typified by NRRL 4548 and A. penicillioides IFO 8155 (ex holotype of A

  4. Cohort analysis of a single nucleotide polymorphism on DNA chips.

    Science.gov (United States)

    Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F

    2004-11-15

    A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.

  5. Single molecule measurements of DNA helicase activity with magnetic tweezers and t-test based step-finding analysis

    Science.gov (United States)

    Seol, Yeonee; Strub, Marie-Paule; Neuman, Keir C.

    2016-01-01

    Magnetic tweezers is a versatile and easy to implement single-molecule technique that has become increasingly prevalent in the study of nucleic acid based molecular motors. Here, we provide a description of the magnetic tweezers instrument and guidelines for measuring and analyzing DNA helicase activity. Along with experimental methods, we describe a robust method of single-molecule trajectory analysis based on the Student’s t-test that accommodates continuous transitions in addition to the discrete transitions assumed in most widely employed analysis routines. To illustrate the single-molecule unwinding assay and the analysis routine, we provide DNA unwinding measurements of Escherichia coli RecQ helicase under a variety of conditions (Na+, ATP, temperature, and DNA substrate geometry). These examples reveal that DNA unwinding measurements under various conditions can aid in elucidating the unwinding mechanism of DNA helicase but also emphasize that environmental effects on DNA helicase activity must be considered in relation to in vivo activity and mechanism. PMID:27131595

  6. Integrating DNA barcodes and morphology for species delimitation in the Corynoneura group (Diptera: Chironomidae: Orthocladiinae).

    Science.gov (United States)

    Silva, F L; Wiedenbrug, S

    2014-02-01

    In this study, we use DNA barcodes for species delimitation to solve taxonomic conflicts in 86 specimens of 14 species belonging to the Corynoneura group (Diptera: Chironomidae: Orthocladiinae), from the Atlantic Forest, Brazil. Molecular analysis of cytochrome c-oxidase subunit I (COI) gene sequences supported 14 cohesive species groups, of which two similar groups were subsequently associated with morphological variation at the pupal stage. Eleven species previously described based on morphological criteria were linked to DNA markers. Furthermore, there is the possibility that there may be cryptic species within the Corynoneura group, since one group of species presented internal grouping, although no morphological divergence was observed. Our results support DNA-barcoding as an excellent tool for species delimitation in groups where taxonomy by means of morphology is difficult or even impossible.

  7. The detection of great crested newts year round via environmental DNA analysis.

    Science.gov (United States)

    Rees, Helen C; Baker, Claire A; Gardner, David S; Maddison, Ben C; Gough, Kevin C

    2017-07-26

    Analysis of environmental DNA (eDNA) is a method that has been used for the detection of various species within water bodies. The great crested newt (Triturus cristatus) has a short eDNA survey season (mid-April to June). Here we investigate whether this season could be extended into other months using the current methodology as stipulated by Natural England. Here we present data to show that in monthly water samples taken from two ponds (March 2014-February 2015) we were able to detect great crested newt DNA in all months in at least one of the ponds. Similar levels of great crested newt eDNA (i.e. highly positive identification) were detected through the months of March-August, suggesting it may be possible to extend the current survey window. In order to determine how applicable these observations are for ponds throughout the rest of the UK, further work in multiple other ponds over multiple seasons is suggested. Nevertheless, the current work clearly demonstrates, in two ponds, the efficacy and reproducibility of eDNA detection for determining the presence of great crested newts.

  8. Diagnostic markers of urothelial cancer based on DNA methylation analysis

    International Nuclear Information System (INIS)

    Chihara, Yoshitomo; Hirao, Yoshihiko; Kanai, Yae; Fujimoto, Hiroyuki; Sugano, Kokichi; Kawashima, Kiyotaka; Liang, Gangning; Jones, Peter A; Fujimoto, Kiyohide; Kuniyasu, Hiroki

    2013-01-01

    Early detection and risk assessment are crucial for treating urothelial cancer (UC), which is characterized by a high recurrence rate, and necessitates frequent and invasive monitoring. We aimed to establish diagnostic markers for UC based on DNA methylation. In this multi-center study, three independent sample sets were prepared. First, DNA methylation levels at CpG loci were measured in the training sets (tumor samples from 91 UC patients, corresponding normal-appearing tissue from these patients, and 12 normal tissues from age-matched bladder cancer-free patients) using the Illumina Golden Gate methylation assay to identify differentially methylated loci. Next, these methylated loci were validated by quantitative DNA methylation by pyrosequencing, using another cohort of tissue samples (Tissue validation set). Lastly, methylation of these markers was analyzed in the independent urine samples (Urine validation set). ROC analysis was performed to evaluate the diagnostic accuracy of these 12 selected markers. Of the 1303 CpG sites, 158 were hyper ethylated and 356 were hypo ethylated in tumor tissues compared to normal tissues. In the panel analysis, 12 loci showed remarkable alterations between tumor and normal samples, with 94.3% sensitivity and 97.8% specificity. Similarly, corresponding normal tissue could be distinguished from normal tissues with 76.0% sensitivity and 100% specificity. Furthermore, the diagnostic accuracy for UC of these markers determined in urine samples was high, with 100% sensitivity and 100% specificity. Based on these preliminary findings, diagnostic markers based on differential DNA methylation at specific loci can be useful for non-invasive and reliable detection of UC and epigenetic field defect

  9. Clonal heterogeneity of small-cell anaplastic carcinoma of the lung demonstrated by flow-cytometric DNA analysis

    DEFF Research Database (Denmark)

    Vindeløv, L L; Hansen, H H; Christensen, I J

    1980-01-01

    Flow-cytometric DNA analysis yields information on ploidy and proliferative characteristics of a cell population. The analysis was implemented on small-cell anaplastic carcinoma of the lung using a rapid detergent technique for the preparation of fine-needle aspirates for DNA determination and a ...

  10. Effects of storage temperature on the quantity and integrity of genomic DNA extracted from mice tissues: A comparison of recovery methods

    Directory of Open Access Journals (Sweden)

    Huda H. Al-Griw

    2017-08-01

    Full Text Available Efficient extraction of genomic DNA (gDNA from biological materials found in harsh environments is the first step for successful forensic DNA profiling. This study aimed to evaluate two methods for DNA recovery from animal tissues (livers, muscles, focusing on the best storage temperature for DNA yield in term of quality, quantity, and integrity for use in several downstream molecular techniques. Six male Swiss albino mice were sacrificed, liver and muscle tissues (n=32 were then harvested and stored for one week in different temperatures, -20C, 4C, 25C and 40C. The conditioned animal tissues were used for DNA extraction by Chelex-100 method or NucleoSpin Blood and Tissue kit. The extracted gDNA was visualized on 1.5% agarose gel electrophoresis to determine the quality of gDNA and analysed spectrophotometrically to determine the DNA concentration and the purity. Both methods, Chelex-100 and NucleoSpin Blood and Tissue kit found to be appropriate for yielding high quantity of gDNA, with the Chelex100 method yielding a greater quantity (P < 0.045 than the kit. At -20C, 4C, and 25C temperatures, the concentration of DNA yield was numerically lower than at 40C. The NucleoSpin Blood and Tissue kit produced a higher (P=0.031 purity product than the Chelex-100 method, particularly for muscle tissues. The Chelex-100 method is cheap, fast, effective, and is a crucial tool for yielding DNA from animal tissues (livers, muscles exposed to harsh environment with little limitations.

  11. Residual DNA analysis in biologics development: review of measurement and quantitation technologies and future directions.

    Science.gov (United States)

    Wang, Xing; Morgan, Donna M; Wang, Gan; Mozier, Ned M

    2012-02-01

    Residual DNA (rDNA) is comprised of deoxyribonucleic acid (DNA) fragments and longer length molecules originating from the host organism that may be present in samples from recombinant biological processes. Although similar in basic structural base pair units, rDNA may exist in different sizes and physical forms. Interest in measuring rDNA in recombinant products is based primarily on demonstration of effective purification during manufacturing, but also on some hypothetical concerns that, in rare cases, depending on the host expression system, some DNA sequences may be potentially infectious or oncogenic (e.g., HIV virus and the Ras oncogene, respectively). Recent studies suggest that a sequence known as long interspersed nucleotide element-1 (LINE-1), widely distributed in the mammalian genome, is active as a retrotransposon that can be transcribed to RNA, reverse-transcribed into DNA and inserts into a new site in genome. This integration process could potentially disrupt critical gene functions or induce tumorigenesis in mammals. Genomic DNA from microbial sources, on the other hand, could add to risk of immunogenicity to the target recombinant protein being expressed, due to the high CpG content and unmethylated DNA sequence. For these and other reasons, it is necessary for manufacturers to show clearance of DNA throughout production processes and to confirm low levels in the final drug substance using an appropriately specific and quantitative analytical method. The heterogeneity of potential rDNA sequences that might be makes the testing of all potential analytes challenging. The most common methodology for rDNA quantitation used currently is real-time polymerase chain reaction (RT-PCR), a robust and proven technology. Like most rDNA quantitation methods, the specificity of RT-PCR is limited by the sequences to which the primers are directed. To address this, primase-based whole genome amplification is introduced herein. This paper will review the recent

  12. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    Science.gov (United States)

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  13. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  14. Correlation of the UV-induced mutational spectra and the DNA damage distribution of the human HPRT gene: Automating the analysis

    International Nuclear Information System (INIS)

    Kotturi, G.; Erfle, H.; Koop, B.F.; Boer, J.G. de; Glickman, B.W.

    1994-01-01

    Automated DNA sequencers can be readily adapted for various types of sequence-based nucleic acid analysis: more recently it was determined the distribution of UV photoproducts in the E. coli laci gene using techniques developed for automated fluorescence-based analysis. We have been working to improve the automated approach of damage distribution. Our current method is more rigorous. We have new software that integrates the area under the individual peaks, rather than measuring the height of the curve. In addition, we now employ an internal standard. The analysis can also be partially automated. Detection limits for both major types of UV-photoproducts (cyclobutane dimers and pyrimidine (6-4) pyrimidone photoproducts) are reported. The UV-induced damage distribution in the hprt gene is compared to the mutational spectra in human and rodents cells

  15. SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Waaqo Daddacha

    2017-08-01

    Full Text Available DNA double-strand break (DSB repair by homologous recombination (HR is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.

  16. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Directory of Open Access Journals (Sweden)

    Sasha J Rose

    Full Text Available Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH. In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain and MAH 104 (reference strain were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  17. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay

    Science.gov (United States)

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence. PMID:27031831

  18. Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors.

    Directory of Open Access Journals (Sweden)

    Hua Wan

    Full Text Available TAL (transcriptional activator-like effectors (TALEs are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA, the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL. The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.

  19. Use of a D17Z1 oligonucleotide probe for human DNA quantitation prior to PCR analysis of polymorphic DNA markers

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S.; Alavaren, M.; Varlaro, J. [Roche Molecular Systems, Alameda, CA (United States)] [and others

    1994-09-01

    The alpha-satellite DNA locus D17Z1 contains primate-specific sequences which are repeated several hundred times per chromosome 17. A probe that was designed to hybridize to a subset of the D17Z1 sequence can be used for very sensitive and specific quantitation of human DNA. Sample human genomic DNA is immobilized on nylon membrane using a slot blot apparatus, and then hybridized with a biotinylated D17Z1 oligonucleotide probe. The subsequent binding of streptavidin-horseradish peroxidase to the bound probe allows for either calorimetric (TMB) or chemiluminescent (ECL) detection. Signals obtained for sample DNAs are then compared to the signals obtained for a series of human DNA standards. For either detection method, forty samples can be quantitated in less than two hours, with a sensitivity of 150 pg. As little as 20 pg of DNA can be quantitated when using chemiluminescent detection with longer film exposures. PCR analysis of several VNTR and STR markers has indicated that optimal typing results are generally obtained within a relatively narrow range of input DNA quantities. Too much input DNA can lead to PCR artifacts such as preferential amplification of smaller alleles, non-specific amplification products, and exaggeration of the DNA synthesis slippage products that are seen with STR markers. Careful quantitation of human genomic DNA prior to PCR can avoid or minimize these problems and ultimately give cleaner, more unambiguous PCR results.

  20. Order and correlations in genomic DNA sequences. The spectral approach

    International Nuclear Information System (INIS)

    Lobzin, Vasilii V; Chechetkin, Vladimir R

    2000-01-01

    The structural analysis of genomic DNA sequences is discussed in the framework of the spectral approach, which is sufficiently universal due to the reciprocal correspondence and mutual complementarity of Fourier transform length scales. The spectral characteristics of random sequences of the same nucleotide composition possess the property of self-averaging for relatively short sequences of length M≥100-300. Comparison with the characteristics of random sequences determines the statistical significance of the structural features observed. Apart from traditional applications to the search for hidden periodicities, spectral methods are also efficient in studying mutual correlations in DNA sequences. By combining spectra for structure factors and correlation functions, not only integral correlations can be estimated but also their origin identified. Using the structural spectral entropy approach, the regularity of a sequence can be quantitatively assessed. A brief introduction to the problem is also presented and other major methods of DNA sequence analysis described. (reviews of topical problems)

  1. Analysis of a FANCE Splice Isoform in Regard to DNA Repair.

    Science.gov (United States)

    Bouffard, Frédérick; Plourde, Karine; Bélanger, Simon; Ouellette, Geneviève; Labrie, Yvan; Durocher, Francine

    2015-09-25

    The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients.

    Science.gov (United States)

    Lyko, Frank; Stach, Dirk; Brenner, Axel; Stilgenbauer, Stephan; Döhner, Hartmut; Wirtz, Michaela; Wiessler, Manfred; Schmitz, Oliver J

    2004-06-01

    Changes in the genomic DNA methylation level have been found to be closely associated with tumorigenesis. In order to analyze the relation of aberrant DNA methylation to clinical and biological risk factors, we have determined the cytosine methylation level of 81 patients diagnosed with chronic lymphocytic leukemia (CLL). The analysis was based on DNA hydrolysis followed by derivatization of the 2'-desoxyribonucleoside-3'-monophosphates with BODIPY FL EDA. Derivatives were separated by micellar electrokinetic chromatography, and laser-induced fluorescence was used for detection. We analyzed potential correlations between DNA methylation levels and numerous patient parameters, including clinical observations and biological data. As a result, we observed a significant correlation with the immunoglobulin variable heavy chain gene (VH) mutation status. This factor has been repeatedly proposed as a reliable prognostic marker for CLL, which suggests that the methylation level might be a valuable factor in determining the prognostic outcome of CLL. We are now in the process of refining our method to broaden its application potential. In this context, we show here that the oxidation of the fluorescence marker in the samples and the evaporation of methanol in the electrolytes can be prevented by a film of paraffin oil. In summary, our results thus establish capillary electrophoresis as a valuable tool for analyzing the DNA methylation status of clinical samples.

  3. DNA analysis in the case of Kaspar Hauser.

    Science.gov (United States)

    Weichhold, G M; Bark, J E; Korte, W; Eisenmenger, W; Sullivan, K M

    1998-01-01

    In 1828 a mysterious young man appeared in Nürnberg, Germany, who was barely able to speak or walk but could write down his name, Kaspar Hauser. He quickly became the centre of social interest but also the victim of intrigue. His appearance, his origin and assassination in 1833 were, and still are, the source of much debate. The most widely accepted theory postulates that Kaspar Hauser was the son of Grand Duke Carl von Baden and his wife Stephanie de Beauharnais, an adopted daughter of Napoleon Bonaparte. To check this theory, DNA analysis was performed on the clothes most likely worn by Kaspar Hauser when he was stabbed on December 14th, 1833. A suitable bloodstain from the underpants was divided and analysed independently by the Institute of Legal Medicine, University of Munich (ILM) and the Forensic Science Service Laboratory, Birmingham (FSS). Mitochondrial DNA (mtDNA) was sequenced from the bloodstain and from blood samples obtained from two living maternal relatives of Stephanie de Beauharnais. The sequence from the bloodstained clothing differed from the sequence found in both reference blood samples at seven confirmed positions. This proves that the bloodstain does not originate from a son of Stephanie de Beauharnais. Thus, it is becoming clear that Kaspar Hauser was not the Prince of Baden.

  4. DNA-based watermarks using the DNA-Crypt algorithm

    Directory of Open Access Journals (Sweden)

    Barnekow Angelika

    2007-05-01

    Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  5. DNA-based watermarks using the DNA-Crypt algorithm.

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  6. DNA-based watermarks using the DNA-Crypt algorithm

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  7. Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota.

    Science.gov (United States)

    Tian, Lingyang; Sato, Takuichi; Niwa, Kousuke; Kawase, Mitsuo; Tanner, Anne C R; Takahashi, Nobuhiro

    2014-01-01

    A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases.

  8. Rapid and Sensitive PCR-Dipstick DNA Chromatography for Multiplex Analysis of the Oral Microbiota

    Directory of Open Access Journals (Sweden)

    Lingyang Tian

    2014-01-01

    Full Text Available A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases.

  9. Integral data analysis for resonance parameters determination

    International Nuclear Information System (INIS)

    Larson, N.M.; Leal, L.C.; Derrien, H.

    1997-09-01

    Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications

  10. Sperm DNA damage in relation to lipid peroxidation following freezing-thawing of boar semen

    OpenAIRE

    Fraser, L.; Strzeżek, J.; Wasilewska, K.; Pareek, C.S.

    2017-01-01

    This study investigated the relationships between lipid peroxidation (LPO) and sperm DNA damage following freezing-thawing of boar semen in different extenders. The comet assay was used to measure the extent of sperm DNA damage in a cryoprotectant-free extender or in cryoprotectant-based extenders after single and repeated freezing and thawing. As well as an analysis of sperm motion characteristics, mitochondrial function, membrane integrity, and lipid peroxidation (LPO) were assessed simulta...

  11. Meta-Analysis of Mitochondrial DNA Variation in the Iberian Peninsula.

    Directory of Open Access Journals (Sweden)

    Ruth Barral-Arca

    Full Text Available The Iberian Peninsula has been the focus of attention of numerous studies dealing with mitochondrial DNA (mtDNA variation, most of them targeting the control region segment. In the present study we sequenced the control region of 3,024 Spanish individuals from areas where available data were still limited. We also compiled mtDNA haplotypes from the literature involving 4,588 sequences and 28 population groups or small regions. We meta-analyzed all these data in order to shed further light on patterns of geographic variation, taking advantage of the large sample size and geographic coverage, in contrast with the atomized sampling strategy of previous work. The results indicate that the main mtDNA haplogroups show primarily clinal geographic patterns across the Iberian geography, roughly along a North-South axis. Haplogroup HV0 (where haplogroup U is nested is more prevalent in the Franco Cantabrian region, in good agreement with previous findings that identified this area as a climate refuge during the Last Glacial Maximum (LGM, prior to a subsequent demographic re-expansion towards Central Europe and the Mediterranean. Typical sub-Saharan and North African lineages are slightly more prevalent in South Iberia, although at low frequencies; this pattern has been shaped mainly by the transatlantic slave trade and the Arab invasion of the Iberian Peninsula. The results also indicate that summary statistics that aim to measure molecular variation, or AMOVA, have limited sensitivity to detect population substructure, in contrast to patterns revealed by phylogeographic analysis. Overall, the results suggest that mtDNA variation in Iberia is substantially stratified. These patterns might be relevant in biomedical studies given that stratification is a common cause of false positives in case-control mtDNA association studies, and should be also considered when weighting the DNA evidence in forensic casework, which is strongly dependent on haplotype

  12. Meta-Analysis of Mitochondrial DNA Variation in the Iberian Peninsula.

    Science.gov (United States)

    Barral-Arca, Ruth; Pischedda, Sara; Gómez-Carballa, Alberto; Pastoriza, Ana; Mosquera-Miguel, Ana; López-Soto, Manuel; Martinón-Torres, Federico; Álvarez-Iglesias, Vanesa; Salas, Antonio

    2016-01-01

    The Iberian Peninsula has been the focus of attention of numerous studies dealing with mitochondrial DNA (mtDNA) variation, most of them targeting the control region segment. In the present study we sequenced the control region of 3,024 Spanish individuals from areas where available data were still limited. We also compiled mtDNA haplotypes from the literature involving 4,588 sequences and 28 population groups or small regions. We meta-analyzed all these data in order to shed further light on patterns of geographic variation, taking advantage of the large sample size and geographic coverage, in contrast with the atomized sampling strategy of previous work. The results indicate that the main mtDNA haplogroups show primarily clinal geographic patterns across the Iberian geography, roughly along a North-South axis. Haplogroup HV0 (where haplogroup U is nested) is more prevalent in the Franco Cantabrian region, in good agreement with previous findings that identified this area as a climate refuge during the Last Glacial Maximum (LGM), prior to a subsequent demographic re-expansion towards Central Europe and the Mediterranean. Typical sub-Saharan and North African lineages are slightly more prevalent in South Iberia, although at low frequencies; this pattern has been shaped mainly by the transatlantic slave trade and the Arab invasion of the Iberian Peninsula. The results also indicate that summary statistics that aim to measure molecular variation, or AMOVA, have limited sensitivity to detect population substructure, in contrast to patterns revealed by phylogeographic analysis. Overall, the results suggest that mtDNA variation in Iberia is substantially stratified. These patterns might be relevant in biomedical studies given that stratification is a common cause of false positives in case-control mtDNA association studies, and should be also considered when weighting the DNA evidence in forensic casework, which is strongly dependent on haplotype frequencies.

  13. Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences

    DEFF Research Database (Denmark)

    Svitashev, S.; Bryngelsson, T.; Vershinin, A.

    1994-01-01

    A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. In situ hybridization experiments showed dispersed organization of the sequences...

  14. Methyl-Analyzer--whole genome DNA methylation profiling.

    Science.gov (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G

    2011-08-15

    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. fgh3@columbia.edu Supplementary data are available at Bioinformatics online.

  15. The immobilization of GOX in slides for comet sssay provides a useful tool for investigation of the efficiency of the cellular DNA-integrity protecting system of the target cells.

    Directory of Open Access Journals (Sweden)

    Nikolay Petrovich Sirota

    2015-06-01

    Variation of DNA damage was evaluated by measuring changes of DNA amount of tails of the DNA-comets (%TDNA within digital images of the DNA-comets. Reliability of the differences between the control and experimental data was estimated using Student’s t-test. At first we optimized concentration of the ROS –generating system components (GOX and glucose. For this purpose we analyzed the influence of different concentration of GOX and glucose on the level of hydrogen peroxide induced DNA damage. We observed the non linear dependence between the increase of the concentration of glucose (Fig.1 or GOX (data not shown and DNA damage. Prolongation of the incubation time of the slides with glucose also resulted in the increase of the DNA damage (Fig. 2. In the second part of the work we studied the response of the DNA-integrity defense system of human whole blood leukocytes to the hydrogen peroxide using newly established GOX – glucose ROS-generating approach. We measured level of DNA damage immediately after the 5 minute treatment period and after the incubation of treated cells in PBS without glucose for 30 minutes. The results are present in the Table 1. In conclusion we would like to summarize that in present work we have shown successful application of agarose-gel immobilized GOX – glucose ROS-generating system for inducing DNA damage and studying DNA-integrity defense system in mammalian cells. We suppose that this approach will be useful for measurement of the intracellular antioxidant systems efficiency and for many other applications for DNA damage studies.

  16. AN IMAGE-ANALYSIS TECHNIQUE FOR DETECTION OF RADIATION-INDUCED DNA FRAGMENTATION AFTER CHEF ELECTROPHORESIS

    NARCIS (Netherlands)

    ROSEMANN, M; KANON, B; KONINGS, AWT; KAMPINGA, HH

    CHEF-electrophoresis was used as a technique to detect radiation-induced DNA breakage with special emphasis to biological relevant X-ray doses (0-10 Gy). Fluorescence detection of DNA-fragments using a sensitive image analysis system was directly compared with conventional scintillation counting of

  17. DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Tewfik Ahmed H

    2006-01-01

    Full Text Available Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.

  18. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    Directory of Open Access Journals (Sweden)

    Elisa Mentegari

    2016-08-01

    Full Text Available DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  19. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    Science.gov (United States)

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  20. Impact of estrogenic compounds on DNA integrity in human spermatozoa: Evidence for cross-linking and redox cycling activities

    International Nuclear Information System (INIS)

    Bennetts, L.E.; De Iuliis, G.N.; Nixon, B.; Kime, M.; Zelski, K.; McVicar, C.M.; Lewis, S.E.; Aitken, R.J.

    2008-01-01

    A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contribution to DNA damage in the male germ line, the factors responsible for creating this stress have not been elucidated. One group of compounds that are thought to be active in this context are the estrogens, either generated as a result of the endogenous metabolism of androgens within the male reproductive tract or gaining access to the latter as a consequence of environmental exposure. In this study, a wide variety of estrogenic compounds were assessed for their direct effects on human spermatozoa in vitro. DNA integrity was assessed using the Comet and TUNEL assays, lesion frequencies were quantified by QPCR using targets within the mitochondrial and nuclear (β-globin) genomes, DNA adducts were characterized by mass spectrometry and redox activity was monitored using dihydroethidium (DHE) as the probe. Of the estrogenic and estrogen analogue compounds evaluated, catechol estrogens, quercetin, diethylstilbestrol and pyrocatechol stimulated intense redox activity while genistein was only active at the highest doses tested. Other estrogens and estrogen analogues, such as 17β-estradiol, nonylphenol, bisphenol A and 2,3-dihydroxynaphthalene were inactive. Estrogen-induced redox activity was associated with a dramatic loss of motility and, in the case of 2-hydroxyestradiol, the induction of significant DNA fragmentation. Mass spectrometry also indicated that catechol estrogens were capable of forming dimers that can cross-link the densely packed DNA strands in sperm chromatin, impairing nuclear decondensation. These results highlight the potential importance of estrogenic compounds in creating oxidative stress and DNA damage in the male germ line and suggest that further exploration of these compounds in the aetiology of male

  1. Impact of estrogenic compounds on DNA integrity in human spermatozoa: Evidence for cross-linking and redox cycling activities

    Energy Technology Data Exchange (ETDEWEB)

    Bennetts, L.E.; De Iuliis, G.N.; Nixon, B.; Kime, M.; Zelski, K. [ARC Centre of Excellence in Biotechnology and Development and Discipline of Biological Sciences, University of Newcastle, NSW (Australia); McVicar, C.M.; Lewis, S.E. [Obstetrics and Gynaecology, Queen' s University, Belfast (United Kingdom); Aitken, R.J. [ARC Centre of Excellence in Biotechnology and Development and Discipline of Biological Sciences, University of Newcastle, NSW (Australia)], E-mail: jaitken@mail.newcastle.edu.au

    2008-05-10

    A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contribution to DNA damage in the male germ line, the factors responsible for creating this stress have not been elucidated. One group of compounds that are thought to be active in this context are the estrogens, either generated as a result of the endogenous metabolism of androgens within the male reproductive tract or gaining access to the latter as a consequence of environmental exposure. In this study, a wide variety of estrogenic compounds were assessed for their direct effects on human spermatozoa in vitro. DNA integrity was assessed using the Comet and TUNEL assays, lesion frequencies were quantified by QPCR using targets within the mitochondrial and nuclear ({beta}-globin) genomes, DNA adducts were characterized by mass spectrometry and redox activity was monitored using dihydroethidium (DHE) as the probe. Of the estrogenic and estrogen analogue compounds evaluated, catechol estrogens, quercetin, diethylstilbestrol and pyrocatechol stimulated intense redox activity while genistein was only active at the highest doses tested. Other estrogens and estrogen analogues, such as 17{beta}-estradiol, nonylphenol, bisphenol A and 2,3-dihydroxynaphthalene were inactive. Estrogen-induced redox activity was associated with a dramatic loss of motility and, in the case of 2-hydroxyestradiol, the induction of significant DNA fragmentation. Mass spectrometry also indicated that catechol estrogens were capable of forming dimers that can cross-link the densely packed DNA strands in sperm chromatin, impairing nuclear decondensation. These results highlight the potential importance of estrogenic compounds in creating oxidative stress and DNA damage in the male germ line and suggest that further exploration of these compounds in the aetiology of

  2. Comparison of two commercial DNA extraction kits for the analysis of nasopharyngeal bacterial communities

    Directory of Open Access Journals (Sweden)

    Keith A. Crandall

    2016-04-01

    Full Text Available Characterization of microbial communities via next-generation sequencing (NGS requires an extraction ofmicrobial DNA. Methodological differences in DNA extraction protocols may bias results and complicate inter-study comparisons. Here we compare the effect of two commonly used commercial kits (Norgen and Qiagenfor the extraction of total DNA on estimatingnasopharyngeal microbiome diversity. The nasopharynxis a reservoir for pathogens associated with respiratory illnesses and a key player in understandingairway microbial dynamics. Total DNA from nasal washes corresponding to 30 asthmatic children was extracted using theQiagenQIAamp DNA and NorgenRNA/DNA Purification kits and analyzed via IlluminaMiSeq16S rRNA V4 ampliconsequencing. The Norgen samples included more sequence reads and OTUs per sample than the Qiagen samples, but OTU counts per sample varied proportionallybetween groups (r = 0.732.Microbial profiles varied slightly between sample pairs, but alpha- and beta-diversity indices (PCoAand clustering showed highsimilarity between Norgen and Qiagenmicrobiomes. Moreover, no significant differences in community structure (PERMANOVA and adonis tests and taxa proportions (Kruskal-Wallis test were observed betweenkits. Finally, aProcrustes analysis also showed low dissimilarity (M2 = 0.173; P< 0.001 between the PCoAs of the two DNA extraction kits. Contrary to what has been observed in previous studies comparing DNA extraction methods, our 16S NGS analysis of nasopharyngeal washes did not reveal significant differences in community composition or structure between kits. Our findingssuggest congruence between column-based chromatography kits and supportthe comparison of microbiomeprofilesacross nasopharyngeal metataxonomic studies.

  3. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    Science.gov (United States)

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  4. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    Science.gov (United States)

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  5. Photocleavable DNA Barcoding Antibodies for Multiplexed Protein Analysis in Single Cells.

    Science.gov (United States)

    Ullal, Adeeti V; Weissleder, Ralph

    2015-01-01

    We describe a DNA-barcoded antibody sensing technique for single cell protein analysis in which the barcodes are photocleaved and digitally detected without amplification steps (Ullal et al., Sci Transl Med 6:219, 2014). After photocleaving the unique ~70 mer DNA barcodes we use a fluorescent hybridization technology for detection, similar to what is commonly done for nucleic acid readouts. This protocol offers a simple method for multiplexed protein detection using 100+ antibodies and can be performed on clinical samples as well as single cells.

  6. MSP-HTPrimer: a high-throughput primer design tool to improve assay design for DNA methylation analysis in epigenetics.

    Science.gov (United States)

    Pandey, Ram Vinay; Pulverer, Walter; Kallmeyer, Rainer; Beikircher, Gabriel; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Bisulfite (BS) conversion-based and methylation-sensitive restriction enzyme (MSRE)-based PCR methods have been the most commonly used techniques for locus-specific DNA methylation analysis. However, both methods have advantages and limitations. Thus, an integrated approach would be extremely useful to quantify the DNA methylation status successfully with great sensitivity and specificity. Designing specific and optimized primers for target regions is the most critical and challenging step in obtaining the adequate DNA methylation results using PCR-based methods. Currently, no integrated, optimized, and high-throughput methylation-specific primer design software methods are available for both BS- and MSRE-based methods. Therefore an integrated, powerful, and easy-to-use methylation-specific primer design pipeline with great accuracy and success rate will be very useful. We have developed a new web-based pipeline, called MSP-HTPrimer, to design primers pairs for MSP, BSP, pyrosequencing, COBRA, and MSRE assays on both genomic strands. First, our pipeline converts all target sequences into bisulfite-treated templates for both forward and reverse strand and designs all possible primer pairs, followed by filtering for single nucleotide polymorphisms (SNPs) and known repeat regions. Next, each primer pairs are annotated with the upstream and downstream RefSeq genes, CpG island, and cut sites (for COBRA and MSRE). Finally, MSP-HTPrimer selects specific primers from both strands based on custom and user-defined hierarchical selection criteria. MSP-HTPrimer produces a primer pair summary output table in TXT and HTML format for display and UCSC custom tracks for resulting primer pairs in GTF format. MSP-HTPrimer is an integrated, web-based, and high-throughput pipeline and has no limitation on the number and size of target sequences and designs MSP, BSP, pyrosequencing, COBRA, and MSRE assays. It is the only pipeline, which automatically designs primers on both genomic

  7. Different responses to muon implantation in single- and double-stranded DNA

    International Nuclear Information System (INIS)

    Hubbard, Penny L.; Tani, Akiko; Oganesyan, Vasily S.; Butt, Julea N.; Cottrell, Stephen P.; Jayasooriya, Upali A.

    2006-01-01

    A model-free analysis of the longitudinal muon spin relaxation of muons implanted into single- and double-stranded DNA samples is reported. These samples show distinctly different responses to implanted muons with discontinuities of the integrated asymmetries at temperatures where these molecules are likely to have onset of molecular and electron dynamics

  8. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    Science.gov (United States)

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  9. [Quality of DNA from archival pathological samples of gallbladder cancer].

    Science.gov (United States)

    Roa, Iván; de Toro, Gonzalo; Sánchez, Tamara; Slater, Jeannie; Ziegler, Anne Marie; Game, Anakaren; Arellano, Leonardo; Schalper, Kurt; de Aretxabala, Xabier

    2013-12-01

    The quality of the archival samples stored at pathology services could be a limiting factor for molecular biology studies. To determine the quality of DNA extracted from gallbladder cancer samples at different institutions. One hundred ninety four samples coming from five medical centers in Chile, were analyzed. DNA extraction was quantified determining genomic DNA concentration. The integrity of DNA was determined by polymerase chain reaction amplification of different length fragments of a constitutive gene (β-globin products of 110, 268 and 501 base pairs). The mean DNA concentration obtained in 194 gallbladder cancer samples was 48 ± 43.1 ng/µl. In 22% of samples, no amplification was achieved despite obtaining a mean DNA concentration of 58.3 ng/ul. In 81, 67 and 22% of samples, a DNA amplification of at least 110, 268 or 501 base pairs was obtained, respectively. No differences in DNA concentration according to the source of the samples were demonstrated. However, there were marked differences in DNA integrity among participating centers. Samples from public hospitals were of lower quality than those from private clinics. Despite some limitations, in 80% of cases, the integrity of DNA in archival samples from pathology services in our country would allow the use of molecular biology techniques.

  10. Real analysis measure theory, integration, and Hilbert spaces

    CERN Document Server

    Stein, Elias M

    2005-01-01

    Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After

  11. Developmental validation of the Quantifiler(®) HP and Trio Kits for human DNA quantification in forensic samples.

    Science.gov (United States)

    Holt, Allison; Wootton, Sharon Chao; Mulero, Julio J; Brzoska, Pius M; Langit, Emanuel; Green, Robert L

    2016-03-01

    The quantification of human genomic DNA is a necessary first step in the DNA casework sample analysis workflow. DNA quantification determines optimal sample input amounts for subsequent STR (short tandem repeat) genotyping procedures, as well as being a useful screening tool to identify samples most likely to provide probative genotypic evidence. To better mesh with the capabilities of newest-generation STR analysis assays, the Quantifiler(®) HP and Quantifiler(®) Trio DNA Quantification Kits were designed for greater detection sensitivity and more robust performance with samples that contain PCR inhibitors or degraded DNA. The new DNA quantification kits use multiplex TaqMan(®) assay-based fluorescent probe technology to simultaneously quantify up to three human genomic targets, allowing samples to be assessed for total human DNA, male contributor (i.e., Y-chromosome) DNA, as well as a determination of DNA degradation state. The Quantifiler HP and Trio Kits use multiple-copy loci to allow for significantly improved sensitivity compared to earlier-generation kits that employ single-copy target loci. The kits' improved performance provides better predictive ability for results with downstream, newest-generation STR assays, and their shortened time-to-result allows more efficient integration into the forensic casework analysis workflow. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas

    DEFF Research Database (Denmark)

    Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo

    2017-01-01

    and positive correlation, respectively. Genes showing negative correlation underlined FGF and retinoic acid signaling as critical canonical pathways disrupted by DNA methylation in PTC. BRAF mutation was detected in 68% (28 of 41) of the tumors, which presented a higher level of demethylation (95...

  13. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  14. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R.

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and 'point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted

  15. Incorporating DNA sequencing into current prenatal screening practice for Down's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas J Wald

    Full Text Available BACKGROUND: Prenatal screening for Down's syndrome is performed using biochemical and ultrasound markers measured in early pregnancy such as the Integrated test using first and second trimester markers. Recently, DNA sequencing methods have been introduced on free DNA in maternal plasma, yielding a high screening performance. These methods are expensive and there is a test failure rate. We determined the screening performance of merging the Integrated test with the newer DNA techniques in a protocol that substantially reduces the cost compared with universal DNA testing and still achieves high screening performance with no test failures. METHODS: Published data were used to model screening performance of a protocol in which all women receive the first stage of the Integrated test at about 11 weeks of pregnancy. On the basis of this higher risk women have reflex DNA testing and lower risk women as well as those with a failed DNA test complete the Integrated test at about 15 weeks. RESULTS: The overall detection rate was 95% with a 0.1% false-positive rate if 20% of women were selected to receive DNA testing. If all women had DNA testing the detection rate would be 3 to 4 percentage points higher with a false-positive rate 30 times greater if women with failed tests were treated as positive and offered a diagnostic amniocentesis, or 3 times greater if they had a second trimester screening test (Quadruple test and treated as positive only if this were positive. The cost per women screened would be about one-fifth, compared with universal DNA testing, if the DNA test were 20 times the cost of the Integrated test. CONCLUSION: The proposed screening protocol achieves a high screening performance without programme test failures and at a substantially lower cost than offering all women DNA testing.

  16. Laser-induced heating integrated with a microfluidic platform for real-time DNA replication and detection

    Science.gov (United States)

    Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin

    2016-08-01

    This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.

  17. A preliminary analysis of the DNA and diet of the extinct Beothuk: a systematic approach to ancient human DNA

    DEFF Research Database (Denmark)

    Kuch, Melanie; Gröcke, Darren R; Knyf, Martin C

    2007-01-01

    , which fall within haplogroups X and C, consistent with Northeastern Native populations today. In addition we have sexed the male using a novel-sexing assay and confirmed the authenticity of his Y chromosome with the presence of the Native American specific Y-QM3 single nucleotide polymorphism (SNP......). This is the first ancient nuclear SNP typed from a Native population in the Americas. In addition, using the same teeth we conducted a stable isotopes analysis of collagen and dentine to show that both individuals relied on marine sources (fresh and salt water fish, seals) with no hierarchy seen between them......, Nonosabasut) were of admixed (European-Native American) descent. We also analyzed patterns of DNA damage in the clones of authentic mtDNA sequences; there is no tendency for DNA damage to occur preferentially at previously defined mutational hotspots, suggesting that such mutational hotspots...

  18. Cloning of the PYR3 gene of Ustilago maydis and its use in DNA transformation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, G.R.; Taylor, S.Y. (National Institute for Medical Research, London (England))

    1988-12-01

    The Ustilago maydis PYR3 gene encoding dihydroorotase activity was cloned by direct complementation of Escherichia coli pyrC mutations. PYR3 transformants of E. coli pyrC mutants expressed homologous transcripts of a variety of sizes and regained dihydroorotase activity. PYR3 also complemented Saccharomyces cerevisiae ura4 mutations, and again multiple transcripts were expressed in transformants, and enzyme activity was regained. A 1.25-kilobase poly(rA)+ PYR3 transcript was detected in U. maydis itself. Linear DNA carrying the PYR3 gene transformed a U. maydis pyr3-1 pyrimidine auxotroph to prototrophy. Hybridization analysis revealed that three different types of transformants could be generated, depending on the structure of the transforming DNA used. The first type involved exchange of chromosomal mutant gene sequences with the cloned wild-type plasmid sequences. A second type had integrated linear transforming DNA at the chromosomal PYR3 locus, probably via a single crossover event. The third type had integrated transforming DNA sequences at multiple sites in the U. maydis genome. In the last two types, tandemly reiterated copies of the transforming DNA were found to have been integrated. All three types had lost the sensitivity of the parental pyr3-1 mutant to UV irradiation. They had also regained dihydroorotase activity, although its level did not correlate with the PYR3 gene copy number.

  19. Whole Blood PCR Amplification with Pfu DNA Polymerase and Its Application in Single-Nucleotide Polymorphism Analysis.

    Science.gov (United States)

    Liu, Er-Ping; Wang, Yan; He, Xiao-Hui; Guan, Jun-Jie; Wang, Jin; Qin, Zheng-Hong; Sun, Wan-Ping

    2015-11-01

    Point-of-care genetic analysis may require polymerase chain reaction (PCR) to be carried out on whole blood. However, human blood contains natural inhibitors of PCR such as hemoglobin, immunoglobulin G, lactoferrin, and proteases, as well as anticoagulant agents, including EDTA and heparin that can reduce whole blood PCR efficiency. Our purpose was to develop a highly specific, direct whole blood single-nucleotide polymorphism (SNP) analysis method based on allele-specific (AS) PCR that is mediated by Pfu DNA polymerase and phosphorothioate-modified AS primers. At high Mg(2+) concentrations, Pfu DNA polymerase efficiently amplified genomic DNA in a reaction solution containing up to 14% whole blood. Among the three anticoagulants tested, Pfu DNA polymerase showed the highest activity with sodium citrate. Meanwhile, Triton X-100 and betaine inhibited Pfu DNA polymerase activity in whole blood PCR, whereas trehalose had virtually no effect. These findings provided for the development of a low-cost, simple, and fast direct whole blood genotyping method that uses Pfu DNA polymerase combined with phosphorothioate AS primers for CYP2C9*3 and VKORC1(-1639) loci. With its high DNA amplification efficiency and tolerance of various blood conditions, Pfu DNA polymerase can be used in clinical laboratories to analyze SNPs in whole blood samples.

  20. Semantic web for integrated network analysis in biomedicine.

    Science.gov (United States)

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  1. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    Science.gov (United States)

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  2. Determining the authenticity of athlete urine in doping control by DNA analysis.

    Science.gov (United States)

    Devesse, Laurence; Syndercombe Court, Denise; Cowan, David

    2015-10-01

    The integrity of urine samples collected from athletes for doping control is essential. The authenticity of samples may be contested, leading to the need for a robust sample identification method. DNA typing using short tandem repeats (STR) can be used for identification purposes, but its application to cellular DNA in urine has so far been limited. Here, a reliable and accurate method is reported for the successful identification of urine samples, using reduced final extraction volumes and the STR multiplex kit, Promega® PowerPlex ESI 17, with capillary electrophoretic characterisation of the alleles. Full DNA profiles were obtained for all samples (n = 20) stored for less than 2 days at 4 °C. The effect of different storage conditions on yield of cellular DNA and probability of obtaining a full profile were also investigated. Storage for 21 days at 4 °C resulted in allelic drop-out in some samples, but the random match probabilities obtained demonstrate the high power of discrimination achieved through targeting a large number of STRs. The best solution for long-term storage was centrifugation and removal of supernatant prior to freezing at -20 °C. The method is robust enough for incorporation into current anti-doping protocols, and was successfully applied to 44 athlete samples for anti-doping testing with 100% concordant typing. Copyright © 2015 John Wiley & Sons, Ltd.

  3. STR analysis of artificially degraded DNA-results of a collaborative European exercise

    DEFF Research Database (Denmark)

    Schneider, Peter M; Bender, Klaus; Mayr, Wolfgang R

    2004-01-01

    Degradation of human DNA extracted from forensic stains is, in most cases, the result of a natural process due to the exposure of the stain samples to the environment. Experiences with degraded DNA from casework samples show that every sample may exhibit different properties in this respect......, and that it is difficult to systematically assess the performance of routinely used typing systems for the analysis of degraded DNA samples. Using a batch of artificially degraded DNA with an average fragment size of approx. 200 bp a collaborative exercise was carried out among 38 forensic laboratories from 17 European...... countries. The results were assessed according to correct allele detection, peak height and balance as well as the occurrence of artefacts. A number of common problems were identified based on these results such as strong peak imbalance in heterozygous genotypes for the larger short tandem repeat (STR...

  4. RNA/DNA co-analysis from blood stains--Results of a second collaborative EDNAP exercise

    DEFF Research Database (Denmark)

    Haas, C.; Hanson, E.; Anjos, M.J.

    2012-01-01

    A second collaborative exercise on RNA/DNA co-analysis for body fluid identification and STR profiling was organized by the European DNA Profiling Group (EDNAP). Six human blood stains, two blood dilution series (5-0.001 [mu]l blood) and, optionally, bona fide or mock casework samples of human or...

  5. Evaluation and In-House Validation of Five DNA Extraction Methods for PCR-based STR Analysis of Bloodstained Denims

    Directory of Open Access Journals (Sweden)

    Henry Perdigon

    2004-06-01

    Full Text Available One type of crime scene evidence commonly submitted for analysis is bloodstain on denim. However, chemicals (e.g., indigo used to produce denim materials may co-purify with DNA and hence, affect subsequent DNA analysis. The present study compared five methods (e.g., standard organic, organic with hydrogen peroxide (H2O2, modified FTA™, organic/Chelex®-Centricon®, and QIAamp® DNA Mini Kit-based procedures for the isolation of blood DNA from denim. A Short Tandem Repeat (STR-based analysis across two to nine STR markers, namely, HUMvWA, HUMTH01, D8S306, HUMFES/FPS, HUMDHFRP2, HUMF13A01, HUMFGA, HUMTPOX, and HUMCSF1PO, was used to evaluate successful amplification of blood DNA extracted from light indigo, dark indigo, indigo-sulfur, pure indigo, sulfur-top, and sulfur-bottom denim materials. The results of the present study support the utility of organic/Chelex®-Centricon® and QIAamp® Kit procedures in extracting PCR-amplifiable DNA from five different types of denim materials for STR analysis. Furthermore, a solid-based method using FTA™ classic cards was modified to provide a simple, rapid, safe, and cost-effective procedure for extracting blood DNA from light, dark indigo and pure indigo denim materials. However, DNA eluted from bloodstained sulfur-dyed denims (e.g., sulfur-top and sulfur-bottom using FTA™ procedure was not readily amplifiable.

  6. Karyotype analysis, DNA content and molecular screening in Lippia alba (Verbenaceae

    Directory of Open Access Journals (Sweden)

    Patrícia M.O. Pierre

    2011-09-01

    Full Text Available Cytogenetic analyses, of pollen viability, nuclear DNA content and RAPD markers were employed to study three chemotypes of Lippia alba (Mill. (Verbenaceae in order to understand the genetic variation among them. Different ploidy levels and mixoploid individuals were observed. This work comprises the first report of different chromosome numbers (cytotypes in L. alba. The chromosome numbers of La2-carvone and La3-linalool chemotypes suggested that they are polyploids. Flow cytometric analysis showed an increase of nuclear DNA content that was not directly proportional to ploidy level variation. A cluster analysis based on RAPD markers revealed that La3-linalool shares genetic markers with La1-citral and La2-carvone. The analysis showed that the majority of genetic variation of La3-linalool could be a consequence of ixoploidy. ur data indicates that sexual reproduction aong those three chemotypes is unlikely and suggests the beginning of reproductive isolation. The results demonstrated that chromosome analysis, nuclear DNA content estimation and RAPD markers constitute excellent tools for detecting genetic variation among L. alba chemotypes.Análises citogenéticas, de viabilidade do pólen, do conteúdo de DNA nuclear e marcadores RAPD foram empregadas no estudo de três quimiotipos de Lippia alba (Mill. (Verbenaceae visando contribuir para o entendimento da variação genética entre os mesmos. Diferentes níveis de ploidia e indivíduos mixoploides foram observados. Este trabalho compreende o primeiro relato de diferentes números cromossômicos (citótipos em L. alba. Os números cromossômicos dos quimiotipos La2-carvona e La3-linalol sugere que eles seja poliploides. A análise da citometria de fluxo mostrou um aumento do conteúdo de DNA nuclear que não foi diretamente proporcional à variação no nível de ploidia. A análise de agrupamento baseada nos marcadores RAPD demonstrou que La3-linalol compartilha marcadores genéticos com La1

  7. Single cells for forensic DNA analysis--from evidence material to test tube.

    Science.gov (United States)

    Brück, Simon; Evers, Heidrun; Heidorn, Frank; Müller, Ute; Kilper, Roland; Verhoff, Marcel A

    2011-01-01

    The purpose of this project was to develop a method that, while providing morphological quality control, allows single cells to be obtained from the surfaces of various evidence materials and be made available for DNA analysis in cases where only small amounts of cell material are present or where only mixed traces are found. With the SteREO Lumar.V12 stereomicroscope and UV unit from Zeiss, it was possible to detect and assess single epithelial cells on the surfaces of various objects (e.g., glass, plastic, metal). A digitally operated micromanipulator developed by aura optik was used to lift a single cell from the surface of evidence material and to transfer it to a conventional PCR tube or to an AmpliGrid(®) from Advalytix. The actual lifting of the cells was performed with microglobes that acted as carriers. The microglobes were held with microtweezers and were transferred to the DNA analysis receptacles along with the adhering cells. In a next step, the PCR can be carried out in this receptacle without removing the microglobe. Our method allows a single cell to be isolated directly from evidence material and be made available for forensic DNA analysis. © 2010 American Academy of Forensic Sciences.

  8. Advanced Concept Architecture Design and Integrated Analysis (ACADIA)

    Science.gov (United States)

    2017-11-03

    1 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) Submitted to the National Institute of Aerospace (NIA) on...Research Report 20161001 - 20161030 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) W911NF-16-2-0229 8504Cedric Justin, Youngjun

  9. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex

    DEFF Research Database (Denmark)

    Géli, Vincent; Lisby, Michael

    2015-01-01

    and colleagues shows that also physiological threats to genome integrity such as DNA secondary structure-forming triplet repeat sequences relocalize to the NPC during DNA replication. Mutants that fail to reposition the triplet repeat locus to the NPC cause repeat instability. Here, we review the types of DNA...... lesions that relocalize to the NPC, the putative mechanisms of relocalization, and the types of recombinational repair that are stimulated by the NPC, and present a model for NPC-facilitated repair....

  10. Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation

    DEFF Research Database (Denmark)

    Wilcks, Andrea; van Hoek, A.H.A.M.; Joosten, R.G.

    2004-01-01

    This study aimed to evaluate the possibility of DNA sequences from genetically modified plants to persist in the gastrointestinal (GI) tract. PCR analysis and transformation assays were used to study DNA persistence and integrity in various ex vivo and in vivo systems using gnotobiotic rats. DNA......, plasmid DNA could be recovered throughout the GI tract when intestinal samples were taken up to 5 h after feeding rats with plasmid. Furthermore, DNA isolated from these intestinal samples was able to transform electro-competent Escherichia coli, showing that the plasmid was still biologically active....... The results indicate that ingested DNA may persist in the GI tract and consequently may be present for uptake by intestinal bacteria....

  11. Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data

    OpenAIRE

    Excoffier, L.; Smouse, P. E.; Quattro, J. M.

    1992-01-01

    We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as φ-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivisi...

  12. Fast DNA analysis by laser mass spectrometry for human genome analysis

    International Nuclear Information System (INIS)

    Tang, K.; Taranenko, N. I.; Allman, S. L.; Chang, L. Y.; Chen, C. H.

    1995-01-01

    Fast DNA sequencing by laser mass spectrometry is possible if the following 3 criteria are met: (1) Size of DNA fragment should be greater than 300 nucleotides. (2) Enough sensitivity to detect DNA produce from polymerases chain reactins (PCR). (3) Higher resolution of mass spectr. So far, the firt 2 criteria are met: If the resolution can be significantly improve, fast DNA sequencing by laser mass spectrometry weil be a reality in the near feature

  13. Construction and analysis of experimental DNA vaccines against megalocytivirus.

    Science.gov (United States)

    Zhang, Min; Hu, Yong-Hua; Xiao, Zhi-Zhong; Sun, Yun; Sun, Li

    2012-11-01

    Iridoviruses are large double-stranded DNA viruses with icosahedral capsid. The Iridoviridae family contains five genera, one of which is Megalocytivirus. Megalocytivirus has emerged in recent years as an important pathogen to a wide range of marine and freshwater fish. In this study, we aimed at developing effective genetic vaccines against megalocytivirus affecting farmed fish in China. For this purpose, we constructed seven DNA vaccines based on seven genes of rock bream iridovirus isolate 1 from China (RBIV-C1), a megalocytivirus with a host range that includes Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The protective potentials of these vaccines were examined in a turbot model. The results showed that after vaccination via intramuscular injection, the vaccine plasmids were distributed in spleen, kidney, muscle, and liver, and transcription of the vaccine genes and production of the vaccine proteins were detected in these tissues. Following challenge with a lethal-dose of RBIV-C1, fish vaccinated with four of the seven DNA vaccines exhibited significantly higher levels of survival compared to control fish. Of these four protective DNA vaccines, pCN86, which is a plasmid that expresses an 86-residue viral protein, induced the highest protection. Immunological analysis showed that pCN86 was able to (i) stimulate the respiratory burst of head kidney macrophages at 14 d, 21 d, and 28 d post-vaccination, (ii) upregulate the expression of immune relevant genes involved in innate and adaptive immunity, and (iii) induce production of serum antibodies that, when incubated with RBIV-C1 before infection, significantly reduced viral loads in kidney and spleen following viral infection of turbot. Taken together, these results indicate that pCN86 is an effective DNA vaccine that may be used in the control of megalocytivirus-associated diseases in aquaculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.

    Science.gov (United States)

    Brown, William M

    2015-12-01

    Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where

  15. DNA stable-isotope probing (DNA-SIP).

    Science.gov (United States)

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  16. Cytometric analysis of mammalian sperm for induced morphologic and DNA content errors

    International Nuclear Information System (INIS)

    Pinkel, D.

    1983-01-01

    Some flow-cytometric and image analysis procedures under development for quantitative analysis of sperm morphology are reviewed. The results of flow-cytometric DNA-content measurements on sperm from radiation exposed mice are also summarized, the results related to the available cytological information, and their potential dosimetric sensitivity discussed

  17. Meta-analysis of the predictive value of DNA aneuploidy in malignant transformation of oral potentially malignant disorders.

    Science.gov (United States)

    Alaizari, Nader A; Sperandio, Marcelo; Odell, Edward W; Peruzzo, Daiane; Al-Maweri, Sadeq A

    2018-02-01

    DNA aneuploidy is an imbalance of chromosomal DNA content that has been highlighted as a predictor of biological behavior and risk of malignant transformation. To date, DNA aneuploidy in oral potentially malignant diseases (OPMD) has been shown to correlate strongly with severe dysplasia and high-risk lesions that appeared non-dysplastic can be identified by ploidy analysis. Nevertheless, the prognostic value of DNA aneuploidy in predicting malignant transformation of OPMD remains to be validated. The aim of this meta-analysis was to assess the role of DNA aneuploidy in predicting malignant transformation in OPMD. The questions addressed were (i) Is DNA aneuploidy a useful marker to predict malignant transformation in OPMD? (ii) Is DNA diploidy a useful negative marker of malignant transformation in OPMD? These questions were addressed using the PECO method. Five studies assessing aneuploidy as a risk marker of malignant change were pooled into the meta-analysis. Aneuploidy was found to be associated with a 3.12-fold increased risk to progress into cancer (RR=3.12, 95% CI 1.86-5.24). Based on the five studies meta-analyzed, "no malignant progression" was more likely to occur in DNA diploid OPMD by 82% when compared to aneuploidy (RR=0.18, 95% CI 0.08-0.41). In conclusion, aneuploidy is a useful marker of malignant transformation in OPMD, although a diploid result should be interpreted with caution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine

    2017-01-01

    Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro...... extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure......, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine...

  19. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C.; Grzeschik, K.H.

    1988-01-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  20. Maintaining Breast Cancer Specimen Integrity and Individual or Simultaneous Extraction of Quality DNA, RNA, and Proteins from Allprotect-Stabilized and Nonstabilized Tissue Samples

    LENUS (Irish Health Repository)

    Mee, Blanaid C.

    2011-12-29

    The Saint James\\'s Hospital Biobank was established in 2008, to develop a high-quality breast tissue BioResource, as a part of the breast cancer clinical care pathway. The aims of this work were: (1) to ascertain the quality of RNA, DNA, and protein in biobanked carcinomas and normal breast tissues, (2) to assess the efficacy of AllPrep® (Qiagen) in isolating RNA, DNA, and protein simultaneously, (3) to compare AllPrep with RNEasy® and QIAamp® (both Qiagen), and (4) to examine the effectiveness of Allprotect® (Qiagen), a new tissue stabilization medium in preserving DNA, RNA, and proteins. One hundred eleven frozen samples of carcinoma and normal breast tissue were analyzed. Tumor and normal tissue morphology were confirmed by frozen sections. Tissue type, tissue treatment (Allprotect vs. no Allprotect), extraction kit, and nucleic acid quantification were analyzed by utilizing a 4 factorial design (SPSS PASW 18 Statistics Software®). QIAamp (DNA isolation), AllPrep (DNA, RNA, and Protein isolation), and RNeasy (RNA isolation) kits were assessed and compared. Mean DNA yield and A260\\/280 values using QIAamp were 33.2 ng\\/μL and 1.86, respectively, and using AllPrep were 23.2 ng\\/μL and 1.94. Mean RNA yield and RNA Integrity Number (RIN) values with RNeasy were 73.4 ng\\/μL and 8.16, respectively, and with AllPrep were 74.8 ng\\/μL and 7.92. Allprotect-treated tissues produced higher RIN values of borderline significance (P=0.055). No discernible loss of RNA stability was detected after 6 h incubation of stabilized or nonstabilized tissues at room temperature or 4°C or in 9 freeze-thaw cycles. Allprotect requires further detailed evaluation, but we consider AllPrep to be an excellent option for the simultaneous extraction of RNA, DNA, and protein from tumor and normal breast tissues. The essential presampling procedures that maintain the diagnostic integrity of pathology specimens do not appear to compromise the quality of molecular isolates.

  1. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    Science.gov (United States)

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  2. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  3. Nucleotide sequence analysis of regions of adenovirus 5 DNA containing the origins of DNA replication

    International Nuclear Information System (INIS)

    Steenbergh, P.H.

    1979-01-01

    The purpose of the investigations described is the determination of nucleotide sequences at the molecular ends of the linear adenovirus type 5 DNA. Knowledge of the primary structure at the termini of this DNA molecule is of particular interest in the study of the mechanism of replication of adenovirus DNA. The initiation- and termination sites of adenovirus DNA replication are located at the ends of the DNA molecule. (Auth.)

  4. Viral-Cellular DNA Junctions as Molecular Markers for Assessing Intra-Tumor Heterogeneity in Cervical Cancer and for the Detection of Circulating Tumor DNA

    Directory of Open Access Journals (Sweden)

    Katrin Carow

    2017-09-01

    Full Text Available The development of cervical cancer is frequently accompanied by the integration of human papillomaviruses (HPV DNA into the host genome. Viral-cellular junction sequences, which arise in consequence, are highly tumor specific. By using these fragments as markers for tumor cell origin, we examined cervical cancer clonality in the context of intra-tumor heterogeneity. Moreover, we assessed the potential of these fragments as molecular tumor markers and analyzed their suitability for the detection of circulating tumor DNA in sera of cervical cancer patients. For intra-tumor heterogeneity analyses tumors of 8 patients with up to 5 integration sites per tumor were included. Tumor islands were micro-dissected from cryosections of several tissue blocks representing different regions of the tumor. Each micro-dissected tumor area served as template for a single junction-specific PCR. For the detection of circulating tumor-DNA (ctDNA junction-specific PCR-assays were applied to sera of 21 patients. Samples were collected preoperatively and during the course of disease. In 7 of 8 tumors the integration site(s were shown to be homogenously distributed throughout different tumor regions. Only one tumor displayed intra-tumor heterogeneity. In 5 of 21 analyzed preoperative serum samples we specifically detected junction fragments. Junction-based detection of ctDNA was significantly associated with reduced recurrence-free survival. Our study provides evidence that HPV-DNA integration is as an early step in cervical carcinogenesis. Clonality with respect to HPV integration opens new perspectives for the application of viral-cellular junction sites as molecular biomarkers in a clinical setting such as disease monitoring.

  5. Analysis of DNA methylation in various swine tissues.

    Directory of Open Access Journals (Sweden)

    Chun Yang

    Full Text Available DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively.In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.

  6. Chromatin remodeling in the UV-induced DNA damage response

    NARCIS (Netherlands)

    Ö.Z. Aydin (Özge)

    2014-01-01

    markdownabstract__Abstract__ DNA damage interferes with transcription and replication, causing cell death, chromosomal aberrations or mutations, eventually leading to aging and tumorigenesis (Hoeijmakers, 2009). The integrity of DNA is protected by a network of DNA repair and associated

  7. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  8. The ΦBT1 large serine recombinase catalyzes DNA integration at pseudo-attB sites in the genus Nocardia

    Directory of Open Access Journals (Sweden)

    Marion Herisse

    2018-05-01

    Full Text Available Plasmid vectors based on bacteriophage integrases are important tools in molecular microbiology for the introduction of foreign DNA, especially into bacterial species where other systems for genetic manipulation are limited. Site specific integrases catalyze recombination between phage and bacterial attachment sites (attP and attB, respectively and the best studied integrases in the actinomycetes are the serine integrases from the Streptomyces bacteriophages ΦC31 and ΦBT1. As this reaction is unidirectional and highly stable, vectors containing phage integrase systems have been used in a number of genetic engineering applications. Plasmids bearing the ΦBT1 integrase have been used to introduce DNA into Streptomyces and Amycolatopsis strains; however, they have not been widely studied in other actinobacterial genera. Here, we show that vectors based on ΦBT1 integrase can stably integrate into the chromosomes of a range of Nocardia species, and that this integration occurs despite the absence of canonical attB sites in these genomes. Furthermore, we show that a ΦBT1 integrase-based vector can insert at multiple pseudo-attB sites within a single strain and we determine the sequence of a pseudo-attB motif. These data suggest that ΦBT1 integrase-based vectors can be used to readily and semi-randomly introduce foreign DNA into the genomes of a range of Nocardia species. However, the precise site of insertion will likely require empirical determination in each species to avoid unexpected off-target effects.

  9. Contribution of the C-terminal tri-lysine regions of human immunodeficiency virus type 1 integrase for efficient reverse transcription and viral DNA nuclear import

    Directory of Open Access Journals (Sweden)

    Fowke Keith R

    2005-10-01

    Full Text Available Abstract Background In addition to mediating the integration process, HIV-1 integrase (IN has also been implicated in different steps during viral life cycle including reverse transcription and viral DNA nuclear import. Although the karyophilic property of HIV-1 IN has been well demonstrated using a variety of experimental approaches, the definition of domain(s and/or motif(s within the protein that mediate viral DNA nuclear import and its mechanism are still disputed and controversial. In this study, we performed mutagenic analyses to investigate the contribution of different regions in the C-terminal domain of HIV-1 IN to protein nuclear localization as well as their effects on virus infection. Results Our analysis showed that replacing lysine residues in two highly conserved tri-lysine regions, which are located within previously described Region C (235WKGPAKLLWKGEGAVV and sequence Q (211KELQKQITK in the C-terminal domain of HIV-1 IN, impaired protein nuclear accumulation, while mutations for RK263,4 had no significant effect. Analysis of their effects on viral infection in a VSV-G pseudotyped RT/IN trans-complemented HIV-1 single cycle replication system revealed that all three C-terminal mutant viruses (KK215,9AA, KK240,4AE and RK263,4AA exhibited more severe defect of induction of β-Gal positive cells and luciferase activity than an IN class 1 mutant D64E in HeLa-CD4-CCR5-β-Gal cells, and in dividing as well as non-dividing C8166 T cells, suggesting that some viral defects are occurring prior to viral integration. Furthermore, by analyzing viral DNA synthesis and the nucleus-associated viral DNA level, the results clearly showed that, although all three C-terminal mutants inhibited viral reverse transcription to different extents, the KK240,4AE mutant exhibited most profound effect on this step, whereas KK215,9AA significantly impaired viral DNA nuclear import. In addition, our analysis could not detect viral DNA integration in each C

  10. Nanopore sensors for DNA analysis

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Venkatesan, B.M.; Shim, Jeong

    2012-01-01

    Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene-based, and functionali......Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene...

  11. DNA:DNA hybridization studies on the pink-pigmented facultative methylotrophs.

    Science.gov (United States)

    Hood, D W; Dow, C S; Green, P N

    1987-03-01

    The genomic relatedness among 36 strains of pink-pigmented facultatively methylotrophic bacteria (PPFMs) was estimated by determination of DNA base composition and by DNA:DNA hybridization studies. A reproducible hybridization system was developed for the rapid analysis of multiple DNA samples. Results indicated that the PPFMs comprise four major and several minor homology groups, and that they should remain grouped in a single genus, Methylobacterium.

  12. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  13. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  14. Recurrence plot analysis of DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zuobing [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: wuzb@lnm.imech.ac.cn

    2004-11-15

    Recurrence plot technique of DNA sequences is established on metric representation and employed to analyze correlation structure of nucleotide strings. It is found that, in the transference of nucleotide strings, a human DNA fragment has a major correlation distance, but a yeast chromosome's correlation distance has a constant increasing.

  15. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    Science.gov (United States)

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  16. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Theo A. Knijnenburg

    2018-04-01

    Full Text Available Summary: DNA damage repair (DDR pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. : Knijnenburg et al. present The Cancer Genome Atlas (TCGA Pan-Cancer analysis of DNA damage repair (DDR deficiency in cancer. They use integrative genomic and molecular analyses to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level alterations with genome-wide measures of genome instability and impaired function, and demonstrate the prognostic utility of DDR deficiency scores. Keywords: The Cancer Genome Atlas PanCanAtlas project, DNA damage repair, somatic mutations, somatic copy-number alterations, epigenetic silencing, DNA damage footprints, mutational signatures, integrative statistical analysis, protein structure analysis

  17. DNA Repair Network Analysis Reveals Shieldin as a Key Regulator of NHEJ and PARP Inhibitor Sensitivity

    DEFF Research Database (Denmark)

    Gupta, Rajat; Somyajit, Kumar; Narita, Takeo

    2018-01-01

    Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expres...... and the evolution of antibody CSR in higher vertebrates....

  18. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants.

    Science.gov (United States)

    Meyer, P; Heidmann, I

    1994-05-25

    We analysed de novo DNA methylation occurring in plants obtained from the transgenic petunia line R101-17. This line contains one copy of the maize A1 gene that leads to the production of brick-red pelargonidin pigment in the flowers. Due to its integration into an unmethylated genomic region the A1 transgene is hypomethylated and transcriptionally active. Several epigenetic variants of line 17 were selected that exhibit characteristic and somatically stable pigmentation patterns, displaying fully coloured, marbled or colourless flowers. Analysis of the DNA methylation patterns revealed that the decrease in pigmentation among the epigenetic variants was correlated with an increase in methylation, specifically of the transgene DNA. No change in methylation of the hypomethylated integration region could be detected. A similar increase in methylation, specifically in the transgene region, was also observed among progeny of R101-17del, a deletion derivative of R101-17 that no longer produces pelargonidin pigments due to a deletion in the A1 coding region. Again de novo methylation is specifically directed to the transgene, while the hypomethylated character of neighbouring regions is not affected. Possible mechanisms for transgene-specific methylation and its consequences for long-term use of transgenic material are discussed.

  19. Analysis of Cellular DNA Content by Flow Cytometry.

    Science.gov (United States)

    Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong

    2017-11-01

    Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  20. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  1. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    Science.gov (United States)

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  2. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  3. Cost benefit analysis of power plant database integration

    International Nuclear Information System (INIS)

    Wilber, B.E.; Cimento, A.; Stuart, R.

    1988-01-01

    A cost benefit analysis of plant wide data integration allows utility management to evaluate integration and automation benefits from an economic perspective. With this evaluation, the utility can determine both the quantitative and qualitative savings that can be expected from data integration. The cost benefit analysis is then a planning tool which helps the utility to develop a focused long term implementation strategy that will yield significant near term benefits. This paper presents a flexible cost benefit analysis methodology which is both simple to use and yields accurate, verifiable results. Included in this paper is a list of parameters to consider, a procedure for performing the cost savings analysis, and samples of this procedure when applied to a utility. A case study is presented involving a specific utility where this procedure was applied. Their uses of the cost-benefit analysis are also described

  4. Recovery of DNA for forensic analysis from lip cosmetics.

    Science.gov (United States)

    Webb, L G; Egan, S E; Turbett, G R

    2001-11-01

    To obtain a reference DNA profile from a missing person, we analyzed a variety of personal effects, including two lip cosmetics, both of which gave full DNA profiles. Further investigations were undertaken to explore this previously unreported source of DNA. We have tested a range of brands and types of lip cosmetics. Our studies have revealed that lip cosmetics are an excellent source of DNA, with almost 80% of samples giving a result. However, artifacts are frequently observed in the DNA profiles when Chelex is used for the DNA extraction and additional DNA purification procedures are required to ensure that an accurate DNA profile is obtained.

  5. Googling DNA sequences on the World Wide Web.

    Science.gov (United States)

    Hajibabaei, Mehrdad; Singer, Gregory A C

    2009-11-10

    New web-based technologies provide an excellent opportunity for sharing and accessing information and using web as a platform for interaction and collaboration. Although several specialized tools are available for analyzing DNA sequence information, conventional web-based tools have not been utilized for bioinformatics applications. We have developed a novel algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by using popular web-based methods such as Google. We developed an alignment independent character based algorithm based on dividing a sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by conventional search tools such as freely available Google Desktop Search. We implemented our algorithm in two exemplar packages. We developed pre and post-processing software to provide customized input and output services, respectively. Our analysis of all publicly available DNA barcode sequences shows a high accuracy as well as rapid results. Our method makes use of conventional web-based technologies for specialized genetic data. It provides a robust and efficient solution for sequence search on the web. The integration of our search method for large-scale sequence libraries such as DNA barcodes provides an excellent web-based tool for accessing this information and linking it to other available categories of information on the web.

  6. Integration of Design and Control through Model Analysis

    DEFF Research Database (Denmark)

    Russel, Boris Mariboe; Henriksen, Jens Peter; Jørgensen, Sten Bay

    2002-01-01

    A systematic computer aided analysis of the process model is proposed as a pre-solution step for integration of design and control problems. The process model equations are classified in terms of balance equations, constitutive equations and conditional equations. Analysis of the phenomena models...... (structure selection) issues for the integrated problems are considered. (C) 2002 Elsevier Science Ltd. All rights reserved....... representing the constitutive equations identify the relationships between the important process and design variables, which help to understand, define and address some of the issues related to integration of design and control. Furthermore, the analysis is able to identify a set of process (control) variables...

  7. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  8. DNA methylation analysis from saliva samples for epidemiological studies.

    Science.gov (United States)

    Nishitani, Shota; Parets, Sasha E; Haas, Brian W; Smith, Alicia K

    2018-06-18

    Saliva is a non-invasive, easily accessible tissue, which is regularly collected in large epidemiological studies to examine genetic questions. Recently, it is becoming more common to use saliva to assess DNA methylation. However, DNA extracted from saliva is a mixture of both bacterial and human DNA derived from epithelial and immune cells in the mouth. Thus, there are unique challenges to using salivary DNA in methylation studies that can influence data quality. This study assesses: (1) quantification of human DNA after extraction; (2) delineation of human and bacterial DNA; (3) bisulfite conversion (BSC); (4) quantification of BSC DNA; (5) PCR amplification of BSC DNA from saliva and; (6) quantitation of DNA methylation with a targeted assay. The framework proposed will allow saliva samples to be more widely used in targeted epigenetic studies.

  9. Enhancement of Pathologist's Routine Practice: Reuse of DNA Extracted from Immunostained Formalin-fixed Paraffin-embedded (FFPE) Slides in Downstream Molecular Analysis of Cancer.

    Science.gov (United States)

    Al-Attas, Asmaa; Assidi, Mourad; Al-Maghrabi, Jaudah; Dallol, Ashraf; Schulten, Hans-Juergen; Abu-Elmagd, Muhammad; Chaudhary, Adeel; Abuzenadah, Adel; Budowle, Bruce; Buhmeida, Abdelbaset; Al-Qahtani, Mohammed

    To date, the conventional formalin-fixed, paraffin-embedded (FFPE) technique is the gold-standard for preserving histomorphology. Once FFPE tissues are stained, slides are routinely archived along with their blocks at biobanks/hospitals. However, the reuse of fixed and stained biospecimens as DNA source is not a common routine practice worldwide and, thus, indicates the need of studies to investigate the feasibility of extracting DNA from already immunohistochemistry (IHC) FFPE-stained slides and its possible reuse in subsequent downstream molecular analyses. FFPE IHC slides from colorectal cancer (CRC) patients were prepared and stored in the CEGMR Biobank. The workflow consists of digitalization of IHC stained slide's image, removing the slide cover-slip, crude dissection and DNA extraction. Following DNA quality assessment, mutation analysis of CTNNB1 and methylation profile of CDH1 were performed. High-quality DNA was obtained allowing 60% concordance between CDH1 methylation and membranous E-cadherin expression pattern. Clean CTNNB1 DNA chromatograms with evenly-spaced peaks were observed. This study is a proof of concept to recycle and reuse DNA from IHC stained slides with suitable concentration and integrity for further downstream molecular applications. These findings will enhance the pathologists' knowledge, attitudes and practices (KAP) towards the use of these biospecimens and support the implementation of this approach in clinical pathology practice. Therefore, the scientific community will benefit from the largest comprehensive database of human fully annotated FFPE biospecimens already available at their disposal in order to demystify the complexity and the heterogeneity of many challenging diseases and foster the transition towards precision medicine. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  10. Flow cytometric DNA analysis of ducks accumulating 137Cs on a reactor reservoir

    International Nuclear Information System (INIS)

    George, L.S.; Dallas, C.E.; Brisbin, I.L. Jr.; Evans, D.L.

    1991-01-01

    The objective of this study was to detect red blood cell (rbc) DNA abnormalities in male, game-farm mallard ducks as they ranged freely and accumulated 137Cs (radiocesium) from an abandoned nuclear reactor cooling reservoir. Prior to release, the ducks were tamed to enable recapture at will. Flow cytometric measurements conducted at intervals during the first year of exposure yielded cell cycle percentages of DNA (G0/G1, S, G2 + M phases) of rbc, as well as coefficients of variation (CV) in the G0/G1 phase. DNA histograms of exposed ducks were compared with two sets of controls which were maintained 30 and 150 miles from the study site. 137Cs live wholebody burdens were also measured in these animals in a parallel kinetics study, and an approximate steady-state equilibrium was attained after about 8 months. DNA histograms from 2 of the 14 contaminated ducks revealed DNA aneuploid-like patterns after 9 months exposure. These two ducks were removed from the experiment at this time, and when sampled again 1 month later, one continued to exhibit DNA aneuploidy. None of the control DNA histograms demonstrated DNA aneuploid-like patterns. There were no significant differences in cell cycle percentages at any time point between control and exposed animals. A significant increase in CV was observed at 9 months exposure, but after removal of the two ducks with DNA aneuploidy, no significant difference was detected in the group monitored after 12 months exposure. An increased variation in the DNA and DNA aneuploidy could, therefore, be detected in duck rbc using flow cytometric analysis, with the onset of these effects being related to the attainment of maximal levels of 137Cs body burdens in the exposed animals

  11. A multiplex microplatform for the detection of multiple DNA methylation events using gold-DNA affinity.

    Science.gov (United States)

    Sina, Abu Ali Ibn; Foster, Matthew Thomas; Korbie, Darren; Carrascosa, Laura G; Shiddiky, Muhammad J A; Gao, Jing; Dey, Shuvashis; Trau, Matt

    2017-10-07

    We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg μl -1 of DNA with no sequencing requirement.

  12. Additional deleterious effects of alcohol consumption on sperm parameters and DNA integrity in diabetic mice.

    Science.gov (United States)

    Pourentezari, M; Talebi, A R; Mangoli, E; Anvari, M; Rahimipour, M

    2016-06-01

    The aim of this study was to survey the impact of alcohol consumption on sperm parameters and DNA integrity in experimentally induced diabetic mice. A total of 32 adult male mice were divided into four groups: mice of group 1 served as control fed on basal diet, group 2 received streptozotocin (STZ) (200 mg kg(-1) , single dose, intraperitoneal) and basal diet, group 3 received alcohol (10 mg kg(-1) , water soluble) and basal diet, and group 4 received STZ and alcohol for 35 days. The cauda epididymidis of each mouse was dissected and placed in 1 ml of pre-warm Ham's F10 culture medium for 30 min. The swim-out spermatozoa were analysed for count, motility, morphology and viability. Sperm chromatin quality was evaluated with aniline blue, toluidine blue, acridine orange and chromomycin A3 staining. The results showed that all sperm parameters had significant differences (P sperm chromatin was assessed with cytochemical tests. There were significant differences (P sperm parameters and chromatin quality. In addition, alcohol consumption in diabetic mice can intensify sperm chromatin/DNA damage. © 2015 Blackwell Verlag GmbH.

  13. DNA flow cytometric analysis in variable types of hydropic placentas

    Directory of Open Access Journals (Sweden)

    Fatemeh Atabaki pasdar

    2015-05-01

    Full Text Available Background: Differential diagnosis between complete hydatidiform mole, partial hydatidiform mole and hydropic abortion, known as hydropic placentas is still a challenge for pathologists but it is very important for patient management. Objective: We analyzed the nuclear DNA content of various types of hydropic placentas by flowcytometry. Materials and Methods: DNA ploidy analysis was performed in 20 non-molar (hydropic and non-hydropic spontaneous abortions and 20 molar (complete and partial moles, formalin-fixed, paraffin-embedded tissue samples by flow cytometry. The criteria for selection were based on the histopathologic diagnosis. Results: Of 10 cases histologically diagnosed as complete hydatiform mole, 9 cases yielded diploid histograms, and 1 case was tetraploid. Of 10 partial hydatidiform moles, 8 were triploid and 2 were diploid. All of 20 cases diagnosed as spontaneous abortions (hydropic and non-hydropic yielded diploid histograms. Conclusion: These findings signify the importance of the combined use of conventional histology and ploidy analysis in the differential diagnosis of complete hydatidiform mole, partial hydatidiform mole and hydropic abortion.

  14. Good quality Vitis RNA obtained from an adapted DNA isolation protocol

    Directory of Open Access Journals (Sweden)

    Isabel Baiges

    2003-03-01

    Full Text Available Grapevine is a woody plant, whose high carbohydrate and phenolic compound contents usually interferes with nucleic acid isolation. After we tried several protocols for isolating RNA from the Vitis rootstock Richter- 110 (R-110 with little or no success, we adapted a method reported to be satisfactory for grapevine DNA isolation, to extract RNA. With slight protocol modifications, we succeeded to obtain polysaccharide- and phenolic-free RNA preparations from all vegetative tissues, without excessive sample handling. RNA isolated by the reported method permitted to obtain highly pure mRNA (messenger RNA to construct a cDNA (complementary DNA library and allowed gene transcription analysis by reverse Northern, which guarantees RNA integrity. This method may also be suitable for other plant species with high polysaccharide or phenolic contents.

  15. GEOGRAPHIC DISTRIBUTION OF MOLECULAR VARIANCE WITHIN THE BLUE MARLIN (MAKAIRA NIGRICANS): A HIERARCHICAL ANALYSIS OF ALLOZYME, SINGLE-COPY NUCLEAR DNA, AND MITOCHONDRIAL DNA MARKERS.

    Science.gov (United States)

    Buonaccorsi, Vincent P; Reece, Kimberly S; Morgan, Lee W; Graves, John E

    1999-04-01

    This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θ O ) ranged from 0.00 to 0.15, with a mean of 0.08. The θ O values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θ O = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04-0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates. © 1999 The Society for the Study of Evolution.

  16. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    Science.gov (United States)

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  17. DNA analysis in perpetrator identification of terrorism-related disaster: suicide bombing of the Australian Embassy in Jakarta 2004.

    Science.gov (United States)

    Sudoyo, Herawati; Widodo, Putut T; Suryadi, Helena; Lie, Yuliana S; Safari, Dodi; Widjajanto, Agung; Kadarmo, D Aji; Hidayat, Soegeng; Marzuki, Sangkot

    2008-06-01

    We report the strategy that we employed to identify the perpetrator of a suicide car bombing in front of the Australian Embassy in Jakarta, Indonesia, on 9 September 2004. The bomb was so massive that only small tissue pieces of the perpetrator could be recovered, preventing conventional approach to the identification of the bomber, necessitating the introduction of DNA analysis as the primary means for perpetrator identification. Crime scene investigation revealed the trajectory of the bomb blast, which was used to guide the collection of charred tissue fragments of the perpetrator. Mitochondrial DNA analysis was first conducted on 17 tissue fragments, recovered over large areas of the trajectory to, (a) confirm that they are of a common source, i.e. the perpetrator, and thus (b) establish the mtDNA HV1 sequence profile of the perpetrator. The mtDNA of the perpetrator matches that of a maternally related family member of one of four suspects. Standard autosomal STR analysis confirmed the identification. This case is of interest as an illustration of a successful application of DNA analysis as the primary means of disaster perpetrator identification.

  18. Cytological study of DNA content and nuclear morphometric analysis for aid in the diagnosis of high-grade dysplasia within oral leukoplakia.

    Science.gov (United States)

    Yang, Xi; Xiao, Xuan; Wu, Wenyan; Shen, Xuemin; Zhou, Zengtong; Liu, Wei; Shi, Linjun

    2017-09-01

    To quantitatively examine the DNA content and nuclear morphometric status of oral leukoplakia (OL) and investigate its association with the degree of dysplasia in a cytologic study. Oral cytobrush biopsy was carried out to obtain exfoliative epithelial cells from lesions before scalpel biopsy at the same location in a blinded series of 70 patients with OL. Analysis of nuclear morphometry and DNA content status using image cytometry was performed with oral smears stained with the Feulgen-thionin method. Nuclear morphometric analysis revealed significant differences in DNA content amount, DNA index, nuclear area, nuclear radius, nuclear intensity, sphericity, entropy, and fractal dimension (all P content analysis identified 34 patients with OL (48.6%) with DNA content abnormality. Nonhomogeneous lesion (P = .018) and high-grade dysplasia (P = .008) were significantly associated with abnormal DNA content. Importantly, the positive correlation between the degree of oral dysplasia and DNA content status was significant (P = .004, correlation coefficient = 0.342). Cytology analysis of DNA content and nuclear morphometric status using image cytometry may support their use as a screening and monitoring tool for OL progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hybrid Origins of Citrus Varieties Inferred from DNA Marker Analysis of Nuclear and Organelle Genomes

    Science.gov (United States)

    Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu

    2016-01-01

    Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy–Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies. PMID:27902727

  20. International Space Station Configuration Analysis and Integration

    Science.gov (United States)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  1. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    Science.gov (United States)

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Signalign: An Ontology of DNA as Signal for Comparative Gene Structure Prediction Using Information-Coding-and-Processing Techniques.

    Science.gov (United States)

    Yu, Ning; Guo, Xuan; Gu, Feng; Pan, Yi

    2016-03-01

    Conventional character-analysis-based techniques in genome analysis manifest three main shortcomings-inefficiency, inflexibility, and incompatibility. In our previous research, a general framework, called DNA As X was proposed for character-analysis-free techniques to overcome these shortcomings, where X is the intermediates, such as digit, code, signal, vector, tree, graph network, and so on. In this paper, we further implement an ontology of DNA As Signal, by designing a tool named Signalign for comparative gene structure analysis, in which DNA sequences are converted into signal series, processed by modified method of dynamic time warping and measured by signal-to-noise ratio (SNR). The ontology of DNA As Signal integrates the principles and concepts of other disciplines including information coding theory and signal processing into sequence analysis and processing. Comparing with conventional character-analysis-based methods, Signalign can not only have the equivalent or superior performance, but also enrich the tools and the knowledge library of computational biology by extending the domain from character/string to diverse areas. The evaluation results validate the success of the character-analysis-free technique for improved performances in comparative gene structure prediction.

  3. Optimization of DNA extraction for RAPD and ISSR analysis of Arbutus unedo L. Leaves.

    Science.gov (United States)

    Sá, Olga; Pereira, José Alberto; Baptista, Paula

    2011-01-01

    Genetic analysis of plants relies on high yields of pure DNA. For the strawberry tree (Arbutus unedo) this represents a great challenge since leaves can accumulate large amounts of polysaccharides, polyphenols and secondary metabolites, which co-purify with DNA. For this specie, standard protocols do not produce efficient yields of high-quality amplifiable DNA. Here, we present for the first time an improved leaf-tissue protocol, based on the standard cetyl trimethyl ammonium bromide protocol, which yields large amounts of high-quality amplifiable DNA. Key steps in the optimized protocol are the addition of antioxidant compounds-namely polyvinyl pyrrolidone (PVP), 1,4-dithiothreitol (DTT) and 2-mercaptoethanol, in the extraction buffer; the increasing of CTAB (3%, w/v) and sodium chloride (2M) concentration; and an extraction with organic solvents (phenol and chloroform) with the incubation of samples on ice. Increasing the temperature for cell lyses to 70 °C also improved both DNA quality and yield. The yield of DNA extracted was 200.0 ± 78.0 μg/μL and the purity, evaluated by the ratio A(260)/A(280), was 1.80 ± 0.021, indicative of minimal levels of contaminating metabolites. The quality of the DNA isolated was confirmed by random amplification polymorphism DNA and by inter-simple sequence repeat amplification, proving that the DNA can be amplified via PCR.

  4. Optimization of DNA Extraction for RAPD and ISSR Analysis of Arbutus unedo L. Leaves

    Directory of Open Access Journals (Sweden)

    Paula Baptista

    2011-06-01

    Full Text Available Genetic analysis of plants relies on high yields of pure DNA. For the strawberry tree (Arbutus unedo this represents a great challenge since leaves can accumulate large amounts of polysaccharides, polyphenols and secondary metabolites, which co-purify with DNA. For this specie, standard protocols do not produce efficient yields of high-quality amplifiable DNA. Here, we present for the first time an improved leaf-tissue protocol, based on the standard cetyl trimethyl ammonium bromide protocol, which yields large amounts of high-quality amplifiable DNA. Key steps in the optimized protocol are the addition of antioxidant compounds—namely polyvinyl pyrrolidone (PVP, 1,4-dithiothreitol (DTT and 2-mercaptoethanol, in the extraction buffer; the increasing of CTAB (3%, w/v and sodium chloride (2M concentration; and an extraction with organic solvents (phenol and chloroform with the incubation of samples on ice. Increasing the temperature for cell lyses to 70 °C also improved both DNA quality and yield. The yield of DNA extracted was 200.0 ± 78.0 µg/µL and the purity, evaluated by the ratio A260/A280, was 1.80 ± 0.021, indicative of minimal levels of contaminating metabolites. The quality of the DNA isolated was confirmed by random amplification polymorphism DNA and by inter-simple sequence repeat amplification, proving that the DNA can be amplified via PCR.

  5. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  6. Overcoming barriers to integrating economic analysis into risk assessment.

    Science.gov (United States)

    Hoffmann, Sandra

    2011-09-01

    Regulatory risk analysis is designed to provide decisionmakers with a clearer understanding of how policies are likely to affect risk. The systems that produce risk are biological, physical, and social and economic. As a result, risk analysis is an inherently interdisciplinary task. Yet in practice, risk analysis has been interdisciplinary in only limited ways. Risk analysis could provide more accurate assessments of risk if there were better integration of economics and other social sciences into risk assessment itself. This essay examines how discussions about risk analysis policy have influenced the roles of various disciplines in risk analysis. It explores ways in which integrated bio/physical-economic modeling could contribute to more accurate assessments of risk. It reviews examples of the kind of integrated economics-bio/physical modeling that could be used to enhance risk assessment. The essay ends with a discussion of institutional barriers to greater integration of economic modeling into risk assessment and provides suggestions on how these might be overcome. © 2011 Society for Risk Analysis.

  7. Integrating fire management analysis into land management planning

    Science.gov (United States)

    Thomas J. Mills

    1983-01-01

    The analysis of alternative fire management programs should be integrated into the land and resource management planning process, but a single fire management analysis model cannot meet all planning needs. Therefore, a set of simulation models that are analytically separate from integrated land management planning models are required. The design of four levels of fire...

  8. Integrating neural network technology and noise analysis

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Oak Ridge National Lab., TN

    1995-01-01

    The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)

  9. Cloning and sequence analysis of cDNA coding for rat nucleolar protein C23

    International Nuclear Information System (INIS)

    Ghaffari, S.H.; Olson, M.O.J.

    1986-01-01

    Using synthetic oligonucleotides as primers and probes, the authors have isolated and sequenced cDNA clones encoding protein C23, a putative nucleolus organizer protein. Poly(A + ) RNA was isolated from rat Novikoff hepatoma cells and enriched in C23 mRNA by sucrose density gradient ultracentrifugation. Two deoxyoligonuleotides, a 48- and a 27-mer, were synthesized on the basis of amino acid sequence from the C-terminal half of protein C23 and cDNA sequence data from CHO cell protein. The 48-mer was used a primer for synthesis of cDNA which was then inserted into plasmid pUC9. Transformed bacterial colonies were screened by hybridization with 32 P labeled 27-mer. Two clones among 5000 gave a strong positive signal. Plasmid DNAs from these clones were purified and characterized by blotting and nucleotide sequence analysis. The length of C23 mRNA was estimated to be 3200 bases in a northern blot analysis. The sequence of a 267 b.p. insert shows high homology with the CHO cDNA with only 9 nucleotide differences and an identical amino acid sequence. These studies indicate that this region of the protein is highly conserved

  10. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin

    Directory of Open Access Journals (Sweden)

    Mayra Eduardoff

    2017-09-01

    Full Text Available The analysis of mitochondrial DNA (mtDNA has proven useful in forensic genetics and ancient DNA (aDNA studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR is commonly sequenced using established Sanger-type Sequencing (STS protocols involving fragment sizes down to approximately 150 base pairs (bp. Recent developments include Massively Parallel Sequencing (MPS of (multiplex PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less, and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples, and tested challenging forensic samples (n = 2 as well as compromised solid tissue samples (n = 15 up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS

  11. Automatic analysis of flow cytometric DNA histograms from irradiated mouse male germ cells

    International Nuclear Information System (INIS)

    Lampariello, F.; Mauro, F.; Uccelli, R.; Spano, M.

    1989-01-01

    An automatic procedure for recovering the DNA content distribution of mouse irradiated testis cells from flow cytometric histograms is presented. First, a suitable mathematical model is developed, to represent the pattern of DNA content and fluorescence distribution in the sample. Then a parameter estimation procedure, based on the maximum likelihood approach, is constructed by means of an optimization technique. This procedure has been applied to a set of DNA histograms relative to different doses of 0.4-MeV neutrons and to different time intervals after irradiation. In each case, a good agreement between the measured histograms and the corresponding fits has been obtained. The results indicate that the proposed method for the quantitative analysis of germ cell DNA histograms can be usefully applied to the study of the cytotoxic and mutagenic action of agents of toxicological interest such as ionizing radiations.18 references

  12. Analysis of cellular and extracellular DNA in fingerprints

    Energy Technology Data Exchange (ETDEWEB)

    Button, Julie M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-09

    It has been previously shown that DNA can be recovered from latent fingerprints left on various surfaces [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. However, the source of the DNA, extracellular versus cellular origin, is difficult to determine. If the DNA is cellular, it is believed to belong to skin cells while extracellular DNA is believed to originate from body fluids such as sweat [D. J. Daly et. al, Forensic Sci. Int. Genet. 6, 41-46 (2012); V. V. Vlassov et. al, BioEssays 29, 654-667 (2007)]. The origin of the DNA in fingerprints has implications for processing and interpretation of forensic evidence. The determination of the origin of DNA in fingerprints is further complicated by the fact that the DNA in fingerprints tends to be at a very low quantity [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. This study examined fingerprints from five volunteers left on sterilized glass slides and plastic pens. Three fingerprints were left on each glass slide (thumb, index, and middle fingers) while the pens were held as if one was writing with them. The DNA was collected from the objects using the wet swabbing technique (TE buffer). Following collection, the cellular and extracellular components of each sample were separated using centrifugation and an acoustofluidics system. Centrifugation is still the primary separation technique utilized in forensics laboratories, while acoustic focusing uses sound waves to focus large particles (cells) into low pressure nodes, separating them from the rest of the sample matrix. After separation, all samples were quantified using real-time quantitative PCR (qPCR). The overall trend is that there is more DNA in the extracellular fractions than cellular fractions for both centrifugation and acoustofluidic processing. Additionally, more DNA was generally collected from the pen samples than the samples left on glass slides.

  13. Origin of choriocarcinoma in previous molar pregnancy proved by DNA analysis

    International Nuclear Information System (INIS)

    Vojtassak, J.; Repiska, V.; Konecna, B.; Zajac, V.; Korbel, M.; Danihel, L.

    1996-01-01

    A 17-year old woman had in a short time period (seven months) a very exciting reproduction history. Molar pregnancy in December 1993, choriocarcinoma in January 1994 and induced abortion in June 1994. DNA analysis proved the origin of the choriocarcinoma in the previous molar pregnancy. (author)

  14. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    Science.gov (United States)

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  15. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct.

    Science.gov (United States)

    Leclercq, L; Laurent, C; De Pauw, E

    1997-05-15

    A method was developed for the analysis of 7-(2-hydroxyethyl)guanine (7HEG), the major DNA adduct formed after exposure to ethylene oxide (EO). The method is based on DNA neutral thermal hydrolysis, adduct micro-concentration, and final characterization and quantification by HPLC coupled to single-ion monitoring electrospray mass spectrometry (HPLC/SIR-ESMS). The method was found to be selective, sensitive, and easy to handle with no need for enzymatic digestion or previous sample derivatization. Detection limit was found to be close to 1 fmol of adduct injected (10(-10) M), thus allowing the detection of approximately three modified bases on 10(8) intact nucleotides in blood sample analysis. Quantification results are shown for 7HEG after calf thymus DNA and blood exposure to various doses of EO, in both cases obtaining clear dose-response relationships.

  17. Development of data analysis tool for combat system integration

    Directory of Open Access Journals (Sweden)

    Seung-Chun Shin

    2013-03-01

    Full Text Available System integration is an important element for the construction of naval combat ships. In particular, because impeccable combat system integration together with the sensors and weapons can ensure the combat capability and survivability of the ship, the integrated performance of the combat system should be verified and validated whether or not it fulfills the requirements of the end user. In order to conduct systematic verification and validation, a data analysis tool is requisite. This paper suggests the Data Extraction, Recording and Analysis Tool (DERAT for the data analysis of the integrated performance of the combat system, including the functional definition, architecture and effectiveness of the DERAT by presenting the test results.

  18. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.

    Science.gov (United States)

    Kielar, Charlotte; Xin, Yang; Shen, Boxuan; Kostiainen, Mauri A; Grundmeier, Guido; Linko, Veikko; Keller, Adrian

    2018-05-25

    DNA origami have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Here, we investigate DNA origami stability in low-Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+-DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure-dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low-μM range. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.).

    Science.gov (United States)

    Čížková, Jana; Hřibová, Eva; Humplíková, Lenka; Christelová, Pavla; Suchánková, Pavla; Doležel, Jaroslav

    2013-01-01

    Satellite DNA sequences consist of tandemly arranged repetitive units up to thousands nucleotides long in head-to-tail orientation. The evolutionary processes by which satellites arise and evolve include unequal crossing over, gene conversion, transposition and extra chromosomal circular DNA formation. Large blocks of satellite DNA are often observed in heterochromatic regions of chromosomes and are a typical component of centromeric and telomeric regions. Satellite-rich loci may show specific banding patterns and facilitate chromosome identification and analysis of structural chromosome changes. Unlike many other genomes, nuclear genomes of banana (Musa spp.) are poor in satellite DNA and the information on this class of DNA remains limited. The banana cultivars are seed sterile clones originating mostly from natural intra-specific crosses within M. acuminata (A genome) and inter-specific crosses between M. acuminata and M. balbisiana (B genome). Previous studies revealed the closely related nature of the A and B genomes, including similarities in repetitive DNA. In this study we focused on two main banana DNA satellites, which were previously identified in silico. Their genomic organization and molecular diversity was analyzed in a set of nineteen Musa accessions, including representatives of A, B and S (M. schizocarpa) genomes and their inter-specific hybrids. The two DNA satellites showed a high level of sequence conservation within, and a high homology between Musa species. FISH with probes for the satellite DNA sequences, rRNA genes and a single-copy BAC clone 2G17 resulted in characteristic chromosome banding patterns in M. acuminata and M. balbisiana which may aid in determining genomic constitution in interspecific hybrids. In addition to improving the knowledge on Musa satellite DNA, our study increases the number of cytogenetic markers and the number of individual chromosomes, which can be identified in Musa.

  20. Lower sperm DNA fragmentation after r-FSH administration in functional hypogonadotropic hypogonadism.

    Science.gov (United States)

    Ruvolo, Giovanni; Roccheri, Maria Carmela; Brucculeri, Anna Maria; Longobardi, Salvatore; Cittadini, Ettore; Bosco, Liana

    2013-04-01

    An observational clinical and molecular study was designed to evaluate the effects of the administration of recombinant human FSH on sperm DNA fragmentation in men with a non-classical form of hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia. In the study were included 53 men with a non-classical form of hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia. In all patients, sperm DNA fragmentation index (DFI), assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) in situ DNA nick end-labelling (TUNEL) assay, was evaluated before starting the treatment with 150 IU of recombinant human FSH, given three times a week for at least 3 months. Patients' semen analysis and DNA fragmentation index were re-evaluated after the 3-month treatment period. After recombinant human FSH therapy, we did not find any differences in terms of sperm count, motility and morphology. The average DNA fragmentation index was significantly reduced (21.15 vs 15.2, p15 %), while no significant variation occurred in the patients with DFI values ≤ 15 %. Recombinant human FSH administration improves sperm DNA integrity in hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia men with DNA fragmentation index value >15 % .

  1. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus.

    Directory of Open Access Journals (Sweden)

    Christopher G Bell

    2010-11-01

    Full Text Available Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D, focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip and absolute methylation values were estimated using a Bayesian algorithm (BATMAN. Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10(-4, permutation p = 1.0×10(-3. Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10(-7. Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM, encapsulates a Highly Conserved Non-Coding Element (HCNE that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases.

  2. Integration of the Reconfigurable Self-Healing eDNA Architecture in an Embedded System

    DEFF Research Database (Denmark)

    Boesen, Michael Reibel; Keymeulen, Didier; Madsen, Jan

    2011-01-01

    In this work we describe the first real world case study for the self-healing eDNA (electronic DNA) architecture by implementing the control and data processing of a Fourier Transform Spectrometer (FTS) on an eDNA prototype. For this purpose the eDNA prototype has been ported from a Xilinx Virtex 5...

  3. Repair of abasic sites in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, Grigory L.; Sleeth, Kate M.; Dianova, Irina I.; Allinson, Sarah L

    2003-10-29

    Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase {beta} adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase {delta}/{epsilon} and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase {delta}/{epsilon} is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.

  4. Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences.

    Science.gov (United States)

    Kim, W J; Ji, Y; Choi, G; Kang, Y M; Yang, S; Moon, B C

    2016-08-05

    This study was performed to identify and analyze the phylogenetic relationship among four herbaceous species of the genus Paeonia, P. lactiflora, P. japonica, P. veitchii, and P. suffruticosa, using DNA barcodes. These four species, which are commonly used in traditional medicine as Paeoniae Radix and Moutan Radicis Cortex, are pharmaceutically defined in different ways in the national pharmacopoeias in Korea, Japan, and China. To authenticate the different species used in these medicines, we evaluated rDNA-internal transcribed spacers (ITS), matK and rbcL regions, which provide information capable of effectively distinguishing each species from one another. Seventeen samples were collected from different geographic regions in Korea and China, and DNA barcode regions were amplified using universal primers. Comparative analyses of these DNA barcode sequences revealed species-specific nucleotide sequences capable of discriminating the four Paeonia species. Among the entire sequences of three barcodes, marker nucleotides were identified at three positions in P. lactiflora, eleven in P. japonica, five in P. veitchii, and 25 in P. suffruticosa. Phylogenetic analyses also revealed four distinct clusters showing homogeneous clades with high resolution at the species level. The results demonstrate that the analysis of these three DNA barcode sequences is a reliable method for identifying the four Paeonia species and can be used to authenticate Paeoniae Radix and Moutan Radicis Cortex at the species level. Furthermore, based on the assessment of amplicon sizes, inter/intra-specific distances, marker nucleotides, and phylogenetic analysis, rDNA-ITS was the most suitable DNA barcode for identification of these species.

  5. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    Science.gov (United States)

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.

  6. Toward a DNA taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae using a mixed Yule-coalescent analysis of mitochondrial and nuclear DNA.

    Directory of Open Access Journals (Sweden)

    Laurent Vuataz

    Full Text Available Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1 marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe.

  7. A microfluidic DNA library preparation platform for next-generation sequencing.

    Science.gov (United States)

    Kim, Hanyoup; Jebrail, Mais J; Sinha, Anupama; Bent, Zachary W; Solberg, Owen D; Williams, Kelly P; Langevin, Stanley A; Renzi, Ronald F; Van De Vreugde, James L; Meagher, Robert J; Schoeniger, Joseph S; Lane, Todd W; Branda, Steven S; Bartsch, Michael S; Patel, Kamlesh D

    2013-01-01

    Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  8. A microfluidic DNA library preparation platform for next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Hanyoup Kim

    Full Text Available Next-generation sequencing (NGS is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM. The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  9. Qualitative and quantitative assessment of single fingerprints in forensic DNA analysis.

    Science.gov (United States)

    Ostojic, Lana; Klempner, Stacey A; Patel, Rosni A; Mitchell, Adele A; Axler-DiPerte, Grace L; Wurmbach, Elisa

    2014-11-01

    Fingerprints and touched items are important sources of DNA for STR profiling, since this evidence can be recovered in a wide variety of criminal offenses. However, there are some fundamental difficulties in working with these samples, including variability in quantity and quality of extracted DNA. In this study, we collected and analyzed over 700 fingerprints. We compared a commercially available extraction protocol (Zygem) to two methods developed in our laboratory, a simple one-tube protocol and a high sensitivity protocol (HighSens) that includes additional steps to concentrate and purify the DNA. The amplification protocols tested were AmpFLSTR® Identifiler® using either 28 or 31 amplification cycles, and Identifiler® Plus using 32 amplification cycles. We found that the HighSens and Zygem extraction methods were significantly better in their DNA yields than the one-tube method. Identifiler® Plus increased the quality of the STR profiles for the one-tube extraction significantly. However, this effect could not be verified for the other extraction methods. Furthermore, microscopic analysis of single fingerprints revealed that some individuals tended to shed more material than others onto glass slides. However, a dense deposition of skin flakes did not strongly correlate with a high quality STR profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analysis Method for Integrating Components of Product

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Ho [Inzest Co. Ltd, Seoul (Korea, Republic of); Lee, Kun Sang [Kookmin Univ., Seoul (Korea, Republic of)

    2017-04-15

    This paper presents some of the methods used to incorporate the parts constituting a product. A new relation function concept and its structure are introduced to analyze the relationships of component parts. This relation function has three types of information, which can be used to establish a relation function structure. The relation function structure of the analysis criteria was established to analyze and present the data. The priority components determined by the analysis criteria can be integrated. The analysis criteria were divided based on their number and orientation, as well as their direct or indirect characteristic feature. This paper presents a design algorithm for component integration. This algorithm was applied to actual products, and the components inside the product were integrated. Therefore, the proposed algorithm was used to conduct research to improve the brake discs for bicycles. As a result, an improved product similar to the related function structure was actually created.

  11. Analysis Method for Integrating Components of Product

    International Nuclear Information System (INIS)

    Choi, Jun Ho; Lee, Kun Sang

    2017-01-01

    This paper presents some of the methods used to incorporate the parts constituting a product. A new relation function concept and its structure are introduced to analyze the relationships of component parts. This relation function has three types of information, which can be used to establish a relation function structure. The relation function structure of the analysis criteria was established to analyze and present the data. The priority components determined by the analysis criteria can be integrated. The analysis criteria were divided based on their number and orientation, as well as their direct or indirect characteristic feature. This paper presents a design algorithm for component integration. This algorithm was applied to actual products, and the components inside the product were integrated. Therefore, the proposed algorithm was used to conduct research to improve the brake discs for bicycles. As a result, an improved product similar to the related function structure was actually created.

  12. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  13. Evaluation of methods to improve the extraction and recovery of DNA from cotton swabs for forensic analysis.

    Science.gov (United States)

    Adamowicz, Michael S; Stasulli, Dominique M; Sobestanovich, Emily M; Bille, Todd W

    2014-01-01

    Samples for forensic DNA analysis are often collected from a wide variety of objects using cotton or nylon tipped swabs. Testing has shown that significant quantities of DNA are retained on the swab, however, and subsequently lost. When processing evidentiary samples, the recovery of the maximum amount of available DNA is critical, potentially dictating whether a usable profile can be derived from a piece of evidence or not. The QIAamp DNA Investigator extraction kit was used with its recommended protocol for swabs (one hour incubation at 56°C) as a baseline. Results indicate that over 50% of the recoverable DNA may be retained on the cotton swab tip, or otherwise lost, for both blood and buccal cell samples when using this protocol. The protocol's incubation time and temperature were altered, as was incubating while shaking or stationary to test for increases in recovery efficiency. An additional step was then tested that included periodic re-suspension of the swab tip in the extraction buffer during incubation. Aliquots of liquid blood or a buccal cell suspension were deposited and dried on cotton swabs and compared with swab-less controls. The concentration of DNA in each extract was quantified and STR analysis was performed to assess the quality of the extracted DNA. Stationary incubations and those performed at 65°C did not result in significant gains in DNA yield. Samples incubated for 24 hours yielded less DNA. Increased yields were observed with three and 18 hour incubation periods. Increases in DNA yields were also observed using a swab re-suspension method for both cell types. The swab re-suspension method yielded an average two-fold increase in recovered DNA yield with buccal cells and an average three-fold increase with blood cells. These findings demonstrate that more of the DNA collected on swabs can be recovered with specific protocol alterations.

  14. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  15. Establishment of Cre-mediated HBV recombinant cccDNA (rcccDNA) cell line for cccDNA biology and antiviral screening assays.

    Science.gov (United States)

    Wu, Min; Li, Jin; Yue, Lei; Bai, Lu; Li, Yaming; Chen, Jieliang; Zhang, Xiaonan; Yuan, Zhenghong

    2018-04-01

    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  17. A soluble RecN homologue provides means for biochemical and genetic analysis of DNA double-strand break repair in Escherichia coli.

    Science.gov (United States)

    Grove, Jane I; Wood, Stuart R; Briggs, Geoffrey S; Oldham, Neil J; Lloyd, Robert G

    2009-12-03

    RecN is a highly conserved, SMC-like protein in bacteria. It plays an important role in the repair of DNA double-strand breaks and is therefore a key factor in maintaining genome integrity. The insolubility of Escherichia coli RecN has limited efforts to unravel its function. We overcame this limitation by replacing the resident coding sequence with that of Haemophilus influenzae RecN. The heterologous construct expresses Haemophilus RecN from the SOS-inducible E. coli promoter. The hybrid gene is fully functional, promoting survival after I-SceI induced DNA breakage, gamma irradiation or exposure to mitomycin C as effectively as the native gene, indicating that the repair activity is conserved between these two species. H. influenzae RecN is quite soluble, even when expressed at high levels, and is readily purified. Its analysis by ionisation-mass spectrometry, gel filtration and glutaraldehyde crosslinking indicates that it is probably a dimer under physiological conditions, although a higher multimer cannot be excluded. The purified protein displays a weak ATPase activity that is essential for its DNA repair function in vivo. However, no DNA-binding activity was detected, which contrasts with RecN from Bacillus subtilis. RecN proteins from Aquifex aeolicus and Bacteriodes fragilis also proved soluble. Neither binds DNA, but the Aquifex RecN has weak ATPase activity. Our findings support studies indicating that RecN, and the SOS response in general, behave differently in E. coli and B. subtilis. The hybrid recN reported provides new opportunities to study the genetics and biochemistry of how RecN operates in E. coli.

  18. DNA microarray data and contextual analysis of correlation graphs

    Directory of Open Access Journals (Sweden)

    Hingamp Pascal

    2003-04-01

    Full Text Available Abstract Background DNA microarrays are used to produce large sets of expression measurements from which specific biological information is sought. Their analysis requires efficient and reliable algorithms for dimensional reduction, classification and annotation. Results We study networks of co-expressed genes obtained from DNA microarray experiments. The mathematical concept of curvature on graphs is used to group genes or samples into clusters to which relevant gene or sample annotations are automatically assigned. Application to publicly available yeast and human lymphoma data demonstrates the reliability of the method in spite of its simplicity, especially with respect to the small number of parameters involved. Conclusions We provide a method for automatically determining relevant gene clusters among the many genes monitored with microarrays. The automatic annotations and the graphical interface improve the readability of the data. A C++ implementation, called Trixy, is available from http://tagc.univ-mrs.fr/bioinformatics/trixy.html.

  19. Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics

    Science.gov (United States)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We compare the statistical properties of coding and noncoding regions in eukaryotic and viral DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic sequences. The data set comprises all 30 sequences of length above 50 000 base pairs in GenBank Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2 Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the statistical properties of noncoding regions appear to be closer to those observed in natural languages than those of coding regions. In particular, (i) a n-tuple Zipf analysis of noncoding regions reveals a regime close to power-law behavior while the coding regions show logarithmic behavior over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for viral DNA, the difference between the statistical properties of coding and noncoding regions is not pronounced and therefore the results of the analyses of the investigated sequences are less conclusive. After noting the intrinsic limitations of the n-gram redundancy analysis, we also briefly discuss the failure of the zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the existence of a "language" in noncoding DNA.

  20. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria

    Science.gov (United States)

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-01-01

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance. PMID:27436903