WorldWideScience

Sample records for integrate high-order spherical

  1. High-order perturbations of a spherical collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David; Martin-Garcia, Jose M.; Sperhake, Ulrich; Kokkotas, Kostas D.

    2010-01-01

    A formalism to deal with high-order perturbations of a general spherical background was developed in earlier work [D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 74, 044039 (2006); D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 76, 024004 (2007)]. In this paper, we apply it to the particular case of a perfect fluid background. We have expressed the perturbations of the energy-momentum tensor at any order in terms of the perturbed fluid's pressure, density, and velocity. In general, these expressions are not linear and have sources depending on lower-order perturbations. For the second-order case we make the explicit decomposition of these sources in tensor spherical harmonics. Then, a general procedure is given to evolve the perturbative equations of motions of the perfect fluid for any value of the harmonic label. Finally, with the problem of a spherical collapsing star in mind, we discuss the high-order perturbative matching conditions across a timelike surface, in particular, the surface separating the perfect fluid interior from the exterior vacuum.

  2. Transformation between surface spherical harmonic expansion of arbitrary high degree and order and double Fourier series on sphere

    Science.gov (United States)

    Fukushima, Toshio

    2018-02-01

    In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the 4 π fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as 2^{30} {≈ } 10^9. The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.

  3. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  4. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  5. Electromagnetic cloaking in higher order spherical cloaks

    Science.gov (United States)

    Sidhwa, H. H.; Aiyar, R. P. R. C.; Kulkarni, S. V.

    2017-06-01

    The inception of transformation optics has led to the realisation of the invisibility devices for various applications, one of which is spherical cloaking. In this paper, a formulation for a higher-order spherical cloak has been proposed to reduce its physical thickness significantly by introducing a nonlinear relation between the original and transformed coordinate systems and it has been verified using the ray tracing approach. Analysis has been carried out to observe the anomalies in the variation of refractive index for higher order cloaks indicating the presence of poles in the relevant equations. Furthermore, a higher-order spherical cloak with predefined values of the material characteristics on its inner and outer surfaces has been designed for practical application.

  6. Application of the iterative probe correction technique for a high-order probe in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav

    2006-01-01

    An iterative probe-correction technique for spherical near-field antenna measurements is examined. This technique has previously been shown to be well-suited for non-ideal first-order probes. In this paper, its performance in the case of a high-order probe (a dual-ridged horn) is examined....

  7. Spherical harmonics and integration in superspace

    International Nuclear Information System (INIS)

    Bie, H de; Sommen, F

    2007-01-01

    In this paper, the classical theory of spherical harmonics in R m is extended to superspace using techniques from Clifford analysis. After defining a super-Laplace operator and studying some basic properties of polynomial null-solutions of this operator, a new type of integration over the supersphere is introduced by exploiting the formal equivalence with an old result of Pizzetti. This integral is then used to prove orthogonality of spherical harmonics of different degree, Green-like theorems and also an extension of the important Funk-Hecke theorem to superspace. Finally, this integration over the supersphere is used to define an integral over the whole superspace, and it is proven that this is equivalent with the Berezin integral, thus providing a more sound definition of the Berezin integral

  8. Periphony-Lattice Mixed-Order Ambisonic Scheme for Spherical Microphone Arrays

    DEFF Research Database (Denmark)

    Chang, Jiho; Marschall, Marton

    2018-01-01

    to performance that is independent of the incident direction of the sound waves. On the other hand, mixed-order ambisonic (MOA) schemes that select an appropriate subset of spherical harmonics can improve the performance for horizontal directions at the expense of other directions. This paper proposes an MOA......Most methods for sound field reconstruction and spherical beamforming with spherical microphone arrays are mathematically based on the spherical harmonics expansion. In many cases, this expansion is truncated at a certain order as in higher order ambisonics (HOA). This truncation leads...

  9. Integrals of products of spherical functions

    International Nuclear Information System (INIS)

    Veverka, O.

    1975-01-01

    Various branches of mathematical physics use integral formulas of the products of spherical functions. In quantum mechanics and in transport theory the integrals ∫sub((4π))dΩ vectorYsub(s)sup(t)(Ω vector)Ysub(l)sup(k)(Ω vector)Ysub(n)sup(m)(Ω vector), ∫sub(-1)sup(1)dμPsub(s)sup(t)(μ)Psub(l)sup(k)(μ)Psub(n)sup(m)(μ), ∫sub(-1)sup(1)dμPsub(s)(μ)Psub(l)(μ)Psub(n)(μ) are generally applied, where Ysub(α)sup(β)(Ω vector) are spherical harmonics, Psub(α)sup(β)(μ) are associated Legendre functions, and Psub(α)(μ) are Legendre polynomials. In the paper, the general procedure of calculating the integrals of the products of any combination of spherical functions is given. The procedure is referred to in a report on the boundary conditions for the cylindrical geometry in neutron transport theory for both the outer and inner cylindrical boundaries. (author)

  10. On the truncation of the azimuthal mode spectrum of high-order probes in probe-corrected spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Laitinen, Tommi

    2011-01-01

    Azimuthal mode (m mode) truncation of a high-order probe pattern in probe-corrected spherical near-field antenna measurements is studied in this paper. The results of this paper provide rules for appropriate and sufficient m-mode truncation for non-ideal first-order probes and odd-order probes wi...

  11. High-order conservative discretizations for some cases of the rigid body motion

    International Nuclear Information System (INIS)

    Kozlov, Roman

    2008-01-01

    Modified vector fields can be used to construct high-order structure-preserving numerical integrators for ordinary differential equations. In the present Letter we consider high-order integrators based on the implicit midpoint rule, which conserve quadratic first integrals. It is shown that these integrators are particularly suitable for the rigid body motion with an additional quadratic first integral. In this case high-order integrators preserve all four first integrals of motion. The approach is illustrated on the Lagrange top (a rotationally symmetric rigid body with a fixed point on the symmetry axis). The equations of motion are considered in the space fixed frame because in this frame Lagrange top admits a neat description. The Lagrange top motion includes the spherical pendulum and the planar pendulum, which swings in a vertical plane, as particular cases

  12. Errors of first-order probe correction for higher-order probes in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy

    2004-01-01

    An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....

  13. Spherical and plane integral operators for PDEs construction, analysis, and applications

    CERN Document Server

    Sabelfeld, Karl K

    2013-01-01

    The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.

  14. A generalization for the infinite integral over three spherical Bessel functions

    International Nuclear Information System (INIS)

    Mehrem, R; Hohenegger, A

    2010-01-01

    A new formula is derived that generalizes an earlier result for the infinite integral over three spherical Bessel functions. The analytical result involves a finite sum over associated Legendre functions, P m l (x) of degree l and order m. The sum allows for the values of |m| that are greater than l. A generalization for the associated Legendre functions to allow for any rational m for a specific l is also shown.

  15. Numerical evaluation of integrals containing a spherical Bessel function by product integration

    International Nuclear Information System (INIS)

    Lehman, D.R.; Parke, W.C.; Maximon, L.C.

    1981-01-01

    A method is developed for numerical evaluation of integrals with k-integration range from 0 to infinity that contain a spherical Bessel function j/sub l/(kr) explicitly. The required quadrature weights are easily calculated and the rate of convergence is rapid: only a relatively small number of quadrature points is needed: for an accurate evaluation even when r is large. The quadrature rule is obtained by the method of product integration. With the abscissas chosen to be those of Clenshaw--Curtis and the Chebyshev polynomials as the interpolating polynomials, quadrature weights are obtained that depend on the spherical Bessel function. An inhomogenous recurrence relation is derived from which the weights can be calculated without accumulation of roundoff error. The procedure is summarized as an easily implementable algorithm. Questions of convergence are discussed and the rate of convergence demonstrated for several test integrals. Alternative procedures are given for generating the integration weights and an error analysis of the method is presented

  16. Cartilage microindentation using cylindrical and spherical optical fiber indenters with integrated Bragg gratings as force sensors

    Science.gov (United States)

    Marchi, G.; Canti, O.; Baier, V.; Micallef, W.; Hartmann, B.; Alberton, P.; Aszodi, A.; Clausen-Schaumann, H.; Roths, J.

    2018-02-01

    Fiber optic microindentation sensors that have the potential to be integrated into arthroscopic instruments and to allow localizing degraded articular cartilage are presented in this paper. The indenters consist of optical fibers with integrated Bragg gratings as force sensors. In a basic configuration, the tip of the fiber optic indenter consists of a cleaved fiber end, forming a cylindrical flat punch indenter geometry. When using this indenter geometry, high stresses at the edges of the cylinder are present, which can disrupt the tissue structure. This is avoided with an improved version of the indenter. A spherical indenter tip that is formed by melting the end of the glass fiber. The spherical fiber tip shows the additional advantage of strongly reducing reflections from the fiber end. This allows a reduction of the length of the fiber optic sensor element from 65 mm of the flat punch type to 27 mm of the spherical punch. In order to compare the performance of both indenter types, in vitro stress-relaxation indentation experiments were performed on bovine articular cartilage with both indenter types, to assess biomechanical properties of bovine articular cartilage. For indentation depths between 60 μm and 300 μm, the measurements with both indenter types agreed very well with each other. This shows that both indenter geometries are suitable for microindentation measuremnts . The spherical indenter however has the additional advantage that it minimizes the risk to damage the surface of the tissue and has less than half dimensions than the flat indenter.

  17. Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels

    Science.gov (United States)

    Deng, Xiao-Le; Shen, Wen-Bin

    2018-04-01

    Proper understanding of how the Earth's mass distributions and redistributions influence the Earth's gravity field-related functionals is crucial for numerous applications in geodesy, geophysics and related geosciences. Calculations of the gravitational curvatures (GC) have been proposed in geodesy in recent years. In view of future satellite missions, the sixth-order developments of the gradients are becoming requisite. In this paper, a set of 3D integral GC formulas of a tesseroid mass body have been provided by spherical integral kernels in the spatial domain. Based on the Taylor series expansion approach, the numerical expressions of the 3D GC formulas are provided up to sixth order. Moreover, numerical experiments demonstrate the correctness of the 3D Taylor series approach for the GC formulas with order as high as sixth order. Analogous to other gravitational effects (e.g., gravitational potential, gravity vector, gravity gradient tensor), numerically it is found that there exist the very-near-area problem and polar singularity problem in the GC east-east-radial, north-north-radial and radial-radial-radial components in spatial domain, and compared to the other gravitational effects, the relative approximation errors of the GC components are larger due to not only the influence of the geocentric distance but also the influence of the latitude. This study shows that the magnitude of each term for the nonzero GC functionals by a grid resolution 15^' } } × 15^' }} at GOCE satellite height can reach of about 10^{-16} m^{-1} s2 for zero order, 10^{-24 } or 10^{-23} m^{-1} s2 for second order, 10^{-29} m^{-1} s2 for fourth order and 10^{-35} or 10^{-34} m^{-1} s2 for sixth order, respectively.

  18. Metrics for performance assessment of mixed-order Ambisonics spherical microphone arrays

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Marschall, Marton

    2012-01-01

    Mixed-order Ambisonics (MOA) combines planar (2D) higher order Ambisonics (HOA) with lower order periphonic (3D) Ambisonics. MOA encoding from spherical microphone arrays has the potential to provide versatile recordings that can be played back using 2D, 3D or mixed systems. A procedure to generate...

  19. Non-integrability of time-dependent spherically symmetric Yang-Mills equations

    Energy Technology Data Exchange (ETDEWEB)

    Matinyan, S G; Prokhorenko, E B; Savvidy, G K

    1988-03-07

    The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. It is shown that the motion of this system is ergodic, while the system itself is non-integrable, i.e. manifests dynamical chaos.

  20. Use of the upper radial order modes in spherical superconducting cavities

    International Nuclear Information System (INIS)

    Reuss, J.

    1975-04-01

    Spherical cavities resonating on a high g radial order mode are considered. The ratio of the maximum magnetic field inside the cavity to the maximum field on the wall is proportional to g. The proportion coefficient is given for the TEsub(g10); TEsub(g20), TMsub(g10), and TMsub(g20) modes. That corresponds to an energy concentration at the center. Owing to this property the superconducting cavities might be used to produce strong H.F. magnetic fields (larger than 10 Teslas) [fr

  1. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe; Ghaffari-Miab, Mohsen; Andriulli, Francesco P.; Cools, Kristof; Michielssen,

    2013-01-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  2. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe

    2013-05-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  3. Venus spherical harmonic gravity model to degree and order 60

    Science.gov (United States)

    Konopliv, Alex S.; Sjogren, William L.

    1994-01-01

    The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.

  4. Non-integrability of time-dependent spherically symmetric Yang-Mills equations

    International Nuclear Information System (INIS)

    Matinyan, S.G.; Prokhorenko, E.V.; Savvidy, G.K.

    1986-01-01

    The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. The phase space of this system is shown to have no quasi-periodic motion specific for integrable systems. In particular, the well-known Wu-Yang static solution is unstable, so its vicinity in phase is the stochasticity region

  5. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online.

  6. Spherically symmetric solutions of general second-order gravity

    International Nuclear Information System (INIS)

    Whitt, B.

    1988-01-01

    The general second-order gravity theory, whose Lagrangian includes higher powers of the curvature, is considered in arbitrary dimensions. It is shown that spherically symmetric solutions are static, except in certain, special, unphysical cases. Spherically symmetric solutions are found and classified. Each theory's solutions fall into a number of distinct branches, which may represent finite space with two singular boundaries, or an asymptotically either flat or (anti--)de Sitter space with one singular boundary. A theory may contain at most one branch of solutions in which all singularities are hidden by event horizons. Such horizons generally emit Hawking radiation, though in certain cases the horizon may have zero temperature. Black holes do not necessarily radiate away all their mass: they may terminate in a zero-temperature black hole, a naked singularity, or a hot black hole in equilibrium with a ''cosmological'' event horizon. The thermodynamics of black-hole solutions is discussed; entropy is found to be an increasing function of horizon area, and the first law is shown to hold

  7. Spherically Symmetric Gravitational Collapse of a Dust Cloud in Third-Order Lovelock Gravity

    Science.gov (United States)

    Zhou, Kang; Yang, Zhan-Ying; Zou, De-Cheng; Yue, Rui-Hong

    We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.

  8. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators

    Science.gov (United States)

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581

  9. From the second gradient operator and second class of integral theorems to Gaussian or spherical mapping invariants

    Institute of Scientific and Technical Information of China (English)

    YIN Ya-jun; WU Ji-ye; HUANG Ke-zhi; FAN Qin-shan

    2008-01-01

    By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussed.

  10. Self-assembled highly ordered ethane-bridged periodic mesoporous organosilica and its application in HPLC.

    Science.gov (United States)

    Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang

    2011-09-01

    Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spherical Model Integrating Academic Competence with Social Adjustment and Psychopathology.

    Science.gov (United States)

    Schaefer, Earl S.; And Others

    This study replicates and elaborates a three-dimensional, spherical model that integrates research findings concerning social and emotional behavior, psychopathology, and academic competence. Kindergarten teachers completed an extensive set of rating scales on 100 children, including the Classroom Behavior Inventory and the Child Adaptive Behavior…

  12. INTEGRATION OF THE ROTATION OF AN EARTH-LIKE BODY AS A PERTURBED SPHERICAL ROTOR

    International Nuclear Information System (INIS)

    Ferrer, Sebastian; Lara, Martin

    2010-01-01

    For rigid bodies close to a sphere, we propose an analytical solution that is free from elliptic integrals and functions, and can be fundamental for application to perturbed problems. After reordering the Hamiltonian as a perturbed spherical rotor, the Lie-series solution is generated up to an arbitrary order. Using the inertia parameters of different solar system bodies, the comparison of the approximate series solution with the exact analytical one shows that the precision reached with relatively low orders is at the same level of the observational accuracy for the Earth and Mars. Thus, for instance, the periodic errors of the mathematical solution are confined to the microarcsecond level with a simple second-order truncation for the Earth. On the contrary, higher orders are required for the mathematical solution to reach a precision at the expected level of accuracy of proposed new theories for the rotational dynamics of the Moon.

  13. Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration

    International Nuclear Information System (INIS)

    Brown, Peter N.; Shumaker, Dana E.; Woodward, Carol S.

    2005-01-01

    We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton-Krylov nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time integration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated opacities and highly nonlinear fusion source terms

  14. High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function

    International Nuclear Information System (INIS)

    Zhao Hongxia; Ma Shanjun

    2008-01-01

    In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.

  15. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods.

    Science.gov (United States)

    Li, Xiaofan; Nie, Qing

    2009-07-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.

  16. Spherical Bessel transform via exponential sum approximation of spherical Bessel function

    Science.gov (United States)

    Ikeno, Hidekazu

    2018-02-01

    A new algorithm for numerical evaluation of spherical Bessel transform is proposed in this paper. In this method, the spherical Bessel function is approximately represented as an exponential sum with complex parameters. This is obtained by expressing an integral representation of spherical Bessel function in complex plane, and discretizing contour integrals along steepest descent paths and a contour path parallel to real axis using numerical quadrature rule with the double-exponential transformation. The number of terms in the expression is reduced using the modified balanced truncation method. The residual part of integrand is also expanded by exponential functions using Prony-like method. The spherical Bessel transform can be evaluated analytically on arbitrary points in half-open interval.

  17. A new high precision energy-preserving integrator for system of oscillatory second-order differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin, E-mail: wangbinmaths@gmail.com [Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093 (China); Wu, Xinyuan, E-mail: xywu@nju.edu.cn [Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093 (China)

    2012-03-05

    This Letter proposes a new high precision energy-preserving integrator for system of oscillatory second-order differential equations q{sup ″}(t)+Mq(t)=f(q(t)) with a symmetric and positive semi-definite matrix M and f(q)=−∇U(q). The system is equivalent to a separable Hamiltonian system with Hamiltonian H(p,q)=1/2 p{sup T}p+1/2 q{sup T}Mq+U(q). The properties of the new energy-preserving integrator are analyzed. The well-known Fermi–Pasta–Ulam problem is performed numerically to show that the new integrator preserves the energy integral with higher accuracy than Average Vector Field (AVF) method and an energy-preserving collocation method. -- Highlights: ► A novel high order energy-preserving integrator AAVF-GL is proposed. ► The important properties of the new integrator AAVF-GL are shown. ► Numerical experiment is carried out compared with AVF method etc. appeared recently.

  18. Integrated predictive modeling simulations of the Mega-Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Nguyen, Canh N.; Bateman, Glenn; Kritz, Arnold H.; Akers, Robert; Byrom, Calum; Sykes, Alan

    2002-01-01

    Integrated predictive modeling simulations are carried out using the BALDUR transport code [Singer et al., Comput. Phys. Commun. 49, 275 (1982)] for high confinement mode (H-mode) and low confinement mode (L-mode) discharges in the Mega-Amp Spherical Tokamak (MAST) [Sykes et al., Phys. Plasmas 8, 2101 (2001)]. Simulation results, obtained using either the Multi-Mode transport model (MMM95) or, alternatively, the mixed-Bohm/gyro-Bohm transport model, are compared with experimental data. In addition to the anomalous transport, neoclassical transport is included in the simulations and the ion thermal diffusivity in the inner third of the plasma is found to be predominantly neoclassical. The sawtooth oscillations in the simulations radially spread the neutral beam injection heating profiles across a broad sawtooth mixing region. The broad sawtooth oscillations also flatten the central temperature and electron density profiles. Simulation results for the electron temperature and density profiles are compared with experimental data to test the applicability of these models and the BALDUR integrated modeling code in the limit of low aspect ratio toroidal plasmas

  19. Integral solution for the spherically symmetric Fokker-Planck equation

    International Nuclear Information System (INIS)

    Donoso, J.M.; Soler, M.

    1993-01-01

    We propose an integral method to deal with the spherically symmetric non-linear Fokker-Planck equation appearing in plasma physics. A probability transition expression is obtained, which takes into account the proper domain for the radial velocity component. The analytical and computational results are new, and the time evolution is completely satisfactory. The main achievement of the method is conservation of both the initial norm and energy for unlimited times, which has not been attained in the differential approach to the problem. (orig.)

  20. Gravitational settling of a highly concentrated system of solid spherical particles

    Science.gov (United States)

    Arkhipov, V. A.; Usanina, A. S.

    2017-09-01

    In the present paper, we report on the results of an experimental study of the process of gravity sedimentation of a cloud of monodispersed solid spherical particles with initial volume concentration C > 0.03, which was performed in a wide range of Reynolds numbers. An analytical estimate of the settling regimes of spherical particle clouds is presented. A new method for creating a spherical particle cloud with a high concentration of particles is proposed. A qualitative picture of the settling process of a highly concentrated particle cloud under gravity is revealed. A criterial dependence for the drag coefficient of a sedimenting spherical particle cloud as an entity is obtained.

  1. High-order nonlinear susceptibilities of He

    International Nuclear Information System (INIS)

    Liu, W.C.; Clark, C.W.

    1996-01-01

    High-order nonlinear optical response of noble gases to intense laser radiation is of considerable experimental interest, but is difficult to measure or calculate accurately. The authors have begun a set of calculations of frequency-dependent nonlinear susceptibilities of He 1s, within the framework of Rayleigh=Schroedinger perturbation theory at lowest applicable order, with the goal of providing critically evaluated atomic data for modelling high harmonic generation processes. The atomic Hamiltonian is decomposed in term of Hylleraas coordinates and spherical harmonics using the formalism of Ponte and Shakeshaft, and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively. A combination of Hylleraas and Frankowski basis functions is used; the compact Hylleraas basis provides a highly accurate representation of the ground state wavefunction, whereas the diffuse Frankowski basis functions efficiently reproduce the correct asymptotic structure of the perturbed orbitals

  2. One- and two-center ETF-integrals of first order in relativistic calculation of NMR parameters

    Science.gov (United States)

    Slevinsky, R. M.; Temga, T.; Mouattamid, M.; Safouhi, H.

    2010-06-01

    The present work focuses on the analytical and numerical developments of first-order integrals involved in the relativistic calculation of the shielding tensor using exponential-type functions as a basis set of atomic orbitals. For the analytical development, we use the Fourier integral transformation and practical properties of spherical harmonics and the Rayleigh expansion of the plane wavefunctions. The Fourier transforms of the operators were derived in previous work and they are used for analytical development. In both the one- and two-center integrals, Cauchy's residue theorem is used in the final developments of the analytical expressions, which are shown to be accurate to machine precision.

  3. One- and two-center ETF-integrals of first order in relativistic calculation of NMR parameters

    Energy Technology Data Exchange (ETDEWEB)

    Slevinsky, R M; Temga, T; Mouattamid, M; Safouhi, H, E-mail: hassan.safouhi@ualberta.c [Mathematical Section, Campus Saint-Jean, University of Alberta, 8406, 91 Street, Edmonton, Alberta T6C 4G9 (Canada)

    2010-06-04

    The present work focuses on the analytical and numerical developments of first-order integrals involved in the relativistic calculation of the shielding tensor using exponential-type functions as a basis set of atomic orbitals. For the analytical development, we use the Fourier integral transformation and practical properties of spherical harmonics and the Rayleigh expansion of the plane wavefunctions. The Fourier transforms of the operators were derived in previous work and they are used for analytical development. In both the one- and two-center integrals, Cauchy's residue theorem is used in the final developments of the analytical expressions, which are shown to be accurate to machine precision.

  4. Second-order spherical optoelectronic detector for 3D multi-particles wave emission and propagation in space time domains

    Science.gov (United States)

    Romano, Francesco; Cimmino, Rosario F.

    2017-09-01

    This paper concerns a feasibility study on a 2nd order spherical, or three-dimensional, angular momentum and linear momentum detector for photonic radiation applications. It has been developed in order to obtain a paraxial approximation of physical events observed under Coulomb gauge condition, which is essential to compute both the longitudinal and transverse rotational components of the observed 3-D vortex field, generally neglected by conventional detection systems under current usage. Since light and laser beams are neither full transversal or rotational phenomena, to measure directly and in the same time both the energy, mainly not-rotational, related to the relevant part of the linear momentum and the potential solenoidal energy (vortex), related to the angular momentum, 2nd order spherical, or 3-D, detector techniques are required. In addition, direct 2nd order measure techniques enable development of TEM + DEM [17] studies, therefore allowing for monochromatic complex wave detection with a paraxial accuracy in the relativistic time-space domain. Light and optic or Electromagnetic 2nd order 3-D AnM energy may usefully be used in tre-dimensional optical TEM, noTEM, DEM vortex or laser communications The paper illustrates an innovative quadratic order 3-D spherical model detector applied to directly measure a light source power spectrum and compares the performances of this innovative technique with those obtained with a traditional 1st order system. Results from a number of test experiments conducted in cooperation with INAF Observatories of ArcetriFlorence and Medicina-Bologna (Italy), and focused on telescopic observations of the inter-stellar electromagnetic radiations, are also summarized. The innovative quadratic-order spherical detector turns out to be optimal for optical and/or radio telescopes application, optical and optoelectronic sensors development and gravitational wave 2nd order detectors implementation. Although the proposed method is very

  5. Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements

    International Nuclear Information System (INIS)

    Surya Mohan, P.; Tarvainen, Tanja; Schweiger, Martin; Pulkkinen, Aki; Arridge, Simon R.

    2011-01-01

    Highlights: → We developed a variable order global basis scheme to solve light transport in 3D. → Based on finite elements, the method can be applied to a wide class of geometries. → It is computationally cheap when compared to the fixed order scheme. → Comparisons with local basis method and other models demonstrate its accuracy. → Addresses problems encountered n modeling of light transport in human brain. - Abstract: We propose the P N approximation based on a finite element framework for solving the radiative transport equation with optical tomography as the primary application area. The key idea is to employ a variable order spherical harmonic expansion for angular discretization based on the proximity to the source and the local scattering coefficient. The proposed scheme is shown to be computationally efficient compared to employing homogeneously high orders of expansion everywhere in the domain. In addition the numerical method is shown to accurately describe the void regions encountered in the forward modeling of real-life specimens such as infant brains. The accuracy of the method is demonstrated over three model problems where the P N approximation is compared against Monte Carlo simulations and other state-of-the-art methods.

  6. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods

    OpenAIRE

    Li, Xiaofan; Nie, Qing

    2009-01-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...

  7. Mixed-Degree Spherical Simplex-Radial Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Shiyuan Wang

    2017-01-01

    Full Text Available Conventional low degree spherical simplex-radial cubature Kalman filters often generate low filtering accuracy or even diverge for handling highly nonlinear systems. The high-degree Kalman filters can improve filtering accuracy at the cost of increasing computational complexity; nevertheless their stability will be influenced by the negative weights existing in the high-dimensional systems. To efficiently improve filtering accuracy and stability, a novel mixed-degree spherical simplex-radial cubature Kalman filter (MSSRCKF is proposed in this paper. The accuracy analysis shows that the true posterior mean and covariance calculated by the proposed MSSRCKF can agree accurately with the third-order moment and the second-order moment, respectively. Simulation results show that, in comparison with the conventional spherical simplex-radial cubature Kalman filters that are based on the same degrees, the proposed MSSRCKF can perform superior results from the aspects of filtering accuracy and computational complexity.

  8. Spherical Bessel functions jsub(n) and ysub(n) of integer order and real argument

    International Nuclear Information System (INIS)

    Ardill, R.W.B.; Moriarty, K.J.M.

    1978-01-01

    The spherical Bessel function appears in a variety of physical applications, and especially in phase shift analysis. The package SPHBES contains a subroutine to calculate jsub(n)(x) and ysub(n)(x) for any integer order n and real argument x. The functions jsub(n)(x) and ysub(n)(x) are produced simultaneously and efficiently. (Auth.)

  9. Computation of higher spherical harmonics moments of the angular flux for neutron transport problems in spherical geometry

    International Nuclear Information System (INIS)

    Sahni, D.C.; Sharma, A.

    2000-01-01

    The integral form of one-speed, spherically symmetric neutron transport equation with isotropic scattering is considered. Two standard problems are solved using normal mode expansion technique. The expansion coefficients are obtained by solving their singular integral equations. It is shown that these expansion coefficients provide a representation of all spherical harmonics moments of the angular flux as a superposition of Bessel functions. It is seen that large errors occur in the computation of higher moments unless we take certain precautions. The reasons for this phenomenon are explained. They throw some light on the failure of spherical harmonics method in treating spherical geometry problems as observed by Aronsson

  10. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  11. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Clarisse, J.M.

    2007-01-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  12. Measurement of Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... at the centerline of the jet are carried out for mass loadings of 0.5, 1, 1.6 and particle sizes 880μm, 1350μm, 1820μm for spherical particles. For each non-spherical shape only a single size and loading are considered. The turbulence modulation of the carrier phase is found to highly dependent on the turbulence......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...

  13. Machine remaining useful life prediction: An integrated adaptive neuro-fuzzy and high-order particle filtering approach

    Science.gov (United States)

    Chen, Chaochao; Vachtsevanos, George; Orchard, Marcos E.

    2012-04-01

    Machine prognosis can be considered as the generation of long-term predictions that describe the evolution in time of a fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem so that timely maintenance can be performed to avoid catastrophic failures. This paper proposes an integrated RUL prediction method using adaptive neuro-fuzzy inference systems (ANFIS) and high-order particle filtering, which forecasts the time evolution of the fault indicator and estimates the probability density function (pdf) of RUL. The ANFIS is trained and integrated in a high-order particle filter as a model describing the fault progression. The high-order particle filter is used to estimate the current state and carry out p-step-ahead predictions via a set of particles. These predictions are used to estimate the RUL pdf. The performance of the proposed method is evaluated via the real-world data from a seeded fault test for a UH-60 helicopter planetary gear plate. The results demonstrate that it outperforms both the conventional ANFIS predictor and the particle-filter-based predictor where the fault growth model is a first-order model that is trained via the ANFIS.

  14. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    International Nuclear Information System (INIS)

    Aoi, Y; Tominaga, T

    2013-01-01

    Titanium dioxide (TiO 2 ) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  15. Progress in octahedral spherical hohlraum study

    Directory of Open Access Journals (Sweden)

    Ke Lan

    2016-01-01

    Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.

  16. The preparation of high-adsorption, spherical, hexagonal boron nitride by template method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2014-11-15

    Highlights: • The high-adsorption, spherical, hexagonal boron nitride powders were prepared. • The influence mechanism of template content on the micro-morphology and adsorption was explored. • At appropriate synthesis temperature, higher adsorption mesoporous spheres h-BN began to form. - Abstract: This research used low-cost boric acid and borax as a source of boron, urea as a nitrogen source, dodecyl-trimethyl ammonium chloride (DTAC) as a template, and thus prepared different micro-morphology hexagonal boron nitride powders under a flowing ammonia atmosphere at different nitriding temperatures. The effects of the template content and nitriding temperature on the micro-morphology of hexagonal boron nitride were studied and the formation mechanism analysed. The influences of the template content and nitriding temperature on adsorption performance were also explored. The results showed that at a nitriding temperature of 675 °C, the micro-morphologies of h-BN powder were orderly, inhomogeneous spherical, uniform spherical, beam, and pie-like with increasing template content. The micro-morphology was inhomogeneous spherical at a DTAC dose of 7.5%. The micro-morphology was uniform spherical at a DTAC dose of 10%. At a DTAC dose of 12%, the micro-morphology was a mixture of beam and pie-like shapes. At a certain template content (DTAC at 10%) and at lower nitriding temperatures (625 °C and 650 °C), spherical shell structures with surface subsidence began to form. The porous spheres would appear at a nitriding temperature of 675 °C, and the ball diameter thus formed was approximately 500–600 nm. The ball diameter was about 600–700 nm when the nitriding temperature was 700 °C. At a nitriding temperature of 725 °C, the ball diameter was between 800 and 1000 nm and sintering necking started to form. When the relative pressure was higher, previously closed pores opened and connected with the outside world: the adsorption then increased significantly. The

  17. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology.

    Science.gov (United States)

    Koeva, Mila; Luleva, Mila; Maldjanski, Plamen

    2017-04-11

    Development and virtual representation of 3D models of Cultural Heritage (CH) objects has triggered great interest over the past decade. The main reason for this is the rapid development in the fields of photogrammetry and remote sensing, laser scanning, and computer vision. The advantages of using 3D models for restoration, preservation, and documentation of valuable historical and architectural objects have been numerously demonstrated by scientists in the field. Moreover, 3D model visualization in virtual reality has been recognized as an efficient, fast, and easy way of representing a variety of objects worldwide for present-day users, who have stringent requirements and high expectations. However, the main focus of recent research is the visual, geometric, and textural characteristics of a single concrete object, while integration of large numbers of models with additional information-such as historical overview, detailed description, and location-are missing. Such integrated information can be beneficial, not only for tourism but also for accurate documentation. For that reason, we demonstrate in this paper an integration of high-resolution spherical panoramas, a variety of maps, GNSS, sound, video, and text information for representation of numerous cultural heritage objects. These are then displayed in a web-based portal with an intuitive interface. The users have the opportunity to choose freely from the provided information, and decide for themselves what is interesting to visit. Based on the created web application, we provide suggestions and guidelines for similar studies. We selected objects, which are located in Bulgaria-a country with thousands of years of history and cultural heritage dating back to ancient civilizations. The methods used in this research are applicable for any type of spherical or cylindrical images and can be easily followed and applied in various domains. After a visual and metric assessment of the panoramas and the evaluation of

  18. The impact of the transient uptake flux on bioaccumulation : Linear adsorption and first-order internalisation coupled with spherical semi-infinite mass transport

    NARCIS (Netherlands)

    Galceran, J.; Monné, J.; Puy, J.; Leeuwen, van H.P.

    2004-01-01

    The uptake of a chemical species (such as an organic molecule or a toxic metal ion) by an organism is modelled considering linear pre-adsorption followed by a first-order internalisation. The active biosurface is supposed to be spherical or semi-spherical and the mass transport in the medium is

  19. Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI.

    Science.gov (United States)

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2013-09-23

    We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

  20. Studies of spherical inertial-electrostatic confinement

    International Nuclear Information System (INIS)

    Miley, G.H.

    1992-01-01

    Theoretical and experimental results from studies of Spherical Inertial-Electrostatic Confinement (SIEC) are presented. This principle of IEC involves the confinement by multiple potential wells created by ion injection into a spherical device containing biased grids. A semitransparent cathode accelerates ions, generating a spherical ion-beam flow which converges at the center of the spherical volume, creating a space charge (potential well) region. An electron flow is created by the core (virtual anode) region, forming in turn a virtual cathode. Ions trapped inside this well oscillate back and forth until they fuse or degrade in energy. Such multiple wells with virtual anodes and cathodes, have been called ''Poissors'' following the original work by Farnsworth and by Hirsch. Fusion within the core occurs by reactions between non-Maxwellian beam-beam type ions. This has the potential for achieving a high power density and also for burning both D-T and advanced fuels. If successful, such a device would be attractive for a variety of high power density applications, e.g., space power or as a neutron source based on D-D or D-T operation. Simulations of recent SIEC experiments have been carried out using the XL-code, to solve Poisson's equation, self-consistently with the collisionless Vlasov equation in spherical geometry for several current species and grid parameters. The potential profile predictions are reasonably consistent with experimental results. Potential well measurements used a collimated proton detector. Results indicate that an ∼ 15-kV virtual anode, at least one centimeter in radius, was formed in a spherical device with a cathode potential of 30 kV using an ion current of ∼ 30 mA. Analysis indicates D + densities on the order of 10 9 cm -3 , and D 2 + densities on the order of 10 10 cm -3 . Steady-state D-D neutron emission of about 10 6 n/sec is observed

  1. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  2. Mixed problem with integral boundary condition for a high order mixed type partial differential equation

    OpenAIRE

    M. Denche; A. L. Marhoune

    2003-01-01

    In this paper, we study a mixed problem with integral boundary conditions for a high order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on energy inequality, and on the density of the range of the operator generated by the considered problem.

  3. On the evaluation of the integral over the product of two spherical Bessel functions

    International Nuclear Information System (INIS)

    Maximon, L.C.

    1991-01-01

    The integral I l,l' (k,k')=∫ ∞ 0 j l (kr)j l' (k'r)r 2 dr, in which the spherical Bessel functions j l (kr) are the radial eigenfunctions of the three-dimensional wave equation in spherical coordinates, is evaluated in terms of distributions, in particular, step functions and delta functions. It will be shown that the behavior of I l,l' is very different in the cases l-l' even (0, ±2, ±4, ...) and l-l' odd (±1, ±3, ...). For l-l' even it is expressed in terms of the delta function, step functions, and Legendre polynomials. For l-l' odd it is expressed in terms of Legendre functions of the second kind and step functions; no delta functions appear

  4. Progress Towards High Performance, Steady-state Spherical Torus

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D.S.; Diem, S.J.; Doerner, R.; Efthimion, P.C.; Ferron, J.R.; Fonck, R.J.; Fredrickson, E.D.; Garstka, G.D.; Gates, D.A.; Gray, T.; Grisham, L.R.; Heidbrink, W.; Hill, K.W.; Hoffman, D.; Jarboe, T.R.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kessel, C.; Kim, J.H.; Kissick, M.W.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Lee, K.; Lee, S.G.; Lewicki, B.T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T.K.; Mazzucato, E.; Medley, S.S.; Menard, J.; Mueller, D.; Nelson, B.A.; Neumeyer, C.; Nishino, N.; Ostrander, C.N.; Pacella, D.; Paoletti, F.; Park, H.K.; Park, W.; Paul, S.F.; Peng, Y.-K. M.; Phillips, C.K.; Pinsker, R.; Probert, P.H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A.L.; Rosenberg, A.; Ryan, P.M.; Sabbagh, S.A.; Schaffer, M.; Schooff, R.J.; Seraydarian, R.; Skinner, C.H.; Sontag, A.C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D.W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K.L.; Unterberg, E.A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J.R.; Xu, X.; Zweben, S.J.; Akers, R.; Barry, R.E.; Beiersdorfer, P.; Bialek, J.M.; Blagojevic, B.; Bonoli, P.T.; Carter, M.D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R.J.; Hatcher, R.E.; Hawryluk, R.J.; Houlberg, W.; Harvey, R.; Jardin, S.C.; Hosea, J.C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L.L.; Levinton, F.M.; Luhmann, N.C.; Marsala, R.; Mastravito, D.; Menon, M.M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G.D.; Ram, A.K.; Rensink, M.; Rewoldt, G.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B.C.; Vero, R.; Wampler, W.R.; Wurden, G.A.

    2003-01-01

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted

  5. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  6. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

    International Nuclear Information System (INIS)

    Yasa, F.; Anli, F.; Guengoer, S.

    2007-01-01

    We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general

  7. Sixth- and eighth-order Hermite integrator for N-body simulations

    Science.gov (United States)

    Nitadori, Keigo; Makino, Junichiro

    2008-10-01

    We present sixth- and eighth-order Hermite integrators for astrophysical N-body simulations, which use the derivatives of accelerations up to second-order ( snap) and third-order ( crackle). These schemes do not require previous values for the corrector, and require only one previous value to construct the predictor. Thus, they are fairly easy to implement. The additional cost of the calculation of the higher-order derivatives is not very high. Even for the eighth-order scheme, the number of floating-point operations for force calculation is only about two times larger than that for traditional fourth-order Hermite scheme. The sixth-order scheme is better than the traditional fourth-order scheme for most cases. When the required accuracy is very high, the eighth-order one is the best. These high-order schemes have several practical advantages. For example, they allow a larger number of particles to be integrated in parallel than the fourth-order scheme does, resulting in higher execution efficiency in both general-purpose parallel computers and GRAPE systems.

  8. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    Science.gov (United States)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  9. Estimation of high orders of the perturbation theory in quantum mechanics

    International Nuclear Information System (INIS)

    Seznec, Reynald.

    1978-01-01

    First of all the simple case of an integral of one variable (zero-dimensional model) is examined to illustrate the methods and concepts used. A system n quantum oscillators 0(n) (spherical model) is then studied. A theory of perturbations around the saddle point dominating the functional integral is developed (theory of perturbations around the instanton). The fluctuation propagator is calculated explicitly. Some properties of the corresponding Feynman diagrams are also investigated. Methods are proposed to generalize the calculations to more complicated potentials. As an example of application the calculations of the first correction to the Lipatovian term are given for the spherical model [fr

  10. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    Science.gov (United States)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  11. How Spherical Is a Cube (Gravitationally)?

    Science.gov (United States)

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  12. Rapid automated superposition of shapes and macromolecular models using spherical harmonics.

    Science.gov (United States)

    Konarev, Petr V; Petoukhov, Maxim V; Svergun, Dmitri I

    2016-06-01

    A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented ( SUPALM ). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models ( e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [ J. Appl. Cryst. (2001 ▸), 34 , 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB . The spherical harmonics algorithm is best suited for low-resolution shape models, e.g . those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.

  13. A modular spherical harmonics approach to the neutron transport equation

    International Nuclear Information System (INIS)

    Inanc, F.; Rohach, A.F.

    1989-01-01

    A modular nodal method was developed for solving the neutron transport equation in 2-D xy coordinates. The spherical harmonic expansion was used for approximating the second-order even-parity form of the neutron transport equation. The boundary conditions of the spherical harmonics approximation were derived in a form to have forms analogous to the partial currents in the neutron diffusion equation. Relations were developed for generating both the second-order spherical harmonic equations and the boundary conditions in an automated computational algorithm. Nodes using different orders of the spherical harmonics approximation to the transport equation were interfaced through mixed-type boundary conditions. The determination of spherical harmonic orders implemented in the nodes were determined by the scheme in an automated manner. Results of the method compared favorably to benchmark problems. (author)

  14. A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Oscar P., E-mail: obruno@caltech.edu; Lintner, Stéphane K.

    2013-11-01

    We present a novel methodology for the numerical solution of problems of diffraction by infinitely thin screens in three-dimensional space. Our approach relies on new integral formulations as well as associated high-order quadrature rules. The new integral formulations involve weighted versions of the classical integral operators related to the thin-screen Dirichlet and Neumann problems as well as a generalization to the open-surface problem of the classical Calderón formulae. The high-order quadrature rules we introduce for these operators, in turn, resolve the multiple Green function and edge singularities (which occur at arbitrarily close distances from each other, and which include weakly singular as well as hypersingular kernels) and thus give rise to super-algebraically fast convergence as the discretization sizes are increased. When used in conjunction with Krylov-subspace linear algebra solvers such as GMRES, the resulting solvers produce results of high accuracy in small numbers of iterations for low and high frequencies alike. We demonstrate our methodology with a variety of numerical results for screen and aperture problems at high frequencies—including simulation of classical experiments such as the diffraction by a circular disc (featuring in particular the famous Poisson spot), evaluation of interference fringes resulting from diffraction across two nearby circular apertures, as well as solution of problems of scattering by more complex geometries consisting of multiple scatterers and cavities.

  15. On the motion of non-spherical particles at high Reynolds number

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    This paper contains a critical review of available methodology for dealing with the motion of non-spherical particles at higher Reynolds numbers in the Eulerian- Lagrangian methodology for dispersed flow. First, an account of the various attempts to classify the various shapes and the efforts...... motion it is necessary to account for the non-coincidence between the center of pressure and center of gravity which is a direct consequence of the inertial pressure forces associated with particles at high Reynolds number flow. Extensions for non-spherical particles at higher Reynolds numbers are far...

  16. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight...

  17. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Science.gov (United States)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  18. High order Poisson Solver for unbounded flows

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2015-01-01

    This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...

  19. Fishbone mode in high-β discharges of spherical tokamaks

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.

    2000-01-01

    Using Hamiltonian formalism, it has been shown that well-trapped energetic ions moving outwards consume the energy of MHD perturbations through the precessional resonance provided that the plasma pressure is sufficiently high. This supports the conclusion of recent publication that the fishbone mode is stabilized in high-β discharges of spherical tokamaks. It has also been found that the presence of the velocity anisotropy of energetic ions does not change this conclusion. (author)

  20. Double phi-Step theta-Scanning Technique for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi

    2008-01-01

    Probe-corrected spherical near-field antenna measurements with an arbitrary probe set certain requirements on an applicable scanning technique. The computational complexity of the general high-order probe correction technique for an arbitrary probe, that is based on the Phi scanning, is O(N4...... a specific double Phi-step thetas scanning technique for spherical near-field antenna measurements. This technique not only constitutes an alternative spherical scanning technique, but it also enables formulating an associated probe correction technique for arbitrary probes with the computational complexity...

  1. High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Skokos, Ch., E-mail: haris.skokos@uct.ac.za [Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Gerlach, E. [Lohrmann Observatory, Technical University Dresden, D-01062 Dresden (Germany); Bodyfelt, J.D., E-mail: J.Bodyfelt@massey.ac.nz [Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University, Albany, Private Bag 102904, North Shore City, Auckland 0745 (New Zealand); Papamikos, G. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Eggl, S. [IMCCE, Observatoire de Paris, 77 Avenue Denfert-Rochereau, F-75014 Paris (France)

    2014-05-01

    While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.

  2. High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Skokos, Ch.; Gerlach, E.; Bodyfelt, J.D.; Papamikos, G.; Eggl, S.

    2014-01-01

    While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.

  3. Dynamical evolution of space debris on high-elliptical orbits near high-order resonance zones

    Science.gov (United States)

    Kuznetsov, Eduard; Zakharova, Polina

    Orbital evolution of objects on Molniya-type orbits is considered near high-order resonance zones. Initial conditions correspond to high-elliptical orbits with the critical inclination 63.4 degrees. High-order resonances are analyzed. Resonance orders are more than 5 and less than 50. Frequencies of perturbations caused by the effect of sectorial and tesseral harmonics of the Earth's gravitational potential are linear combinations of the mean motion of a satellite, angular velocities of motion of the pericenter and node of its orbit, and the angular velocity of the Earth. Frequencies of perturbations were calculated by taking into account secular perturbations from the Earth oblateness, the Moon, the Sun, and a solar radiation pressure. Resonance splitting effect leads to three sub-resonances. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. We used "A Numerical Model of the Motion of Artificial Earth's Satellites", developed by the Research Institute of Applied Mathematics and Mechanics of the Tomsk State University. The model of disturbing forces taken into account the main perturbing factors: the gravitational field of the Earth, the attraction of the Moon and the Sun, the tides in the Earth’s body, the solar radiation pressure, taking into account the shadow of the Earth, the Poynting-Robertson effect, and the atmospheric drag. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris. The locations and sizes of resonance zones were refined from numerical simulation. The Poynting-Robertson effect results in a secular decrease in the semi-major axis of a spherically symmetrical satellite. In resonance regions the effect weakens slightly. Reliable estimates of secular perturbations of the semi-major axis were obtained from the numerical simulation. Under the Poynting-Robertson effect objects pass through the regions of high-order

  4. Spherical transceivers for ultrafast optical wireless communications

    Science.gov (United States)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  5. New method for determining the light travel time in static, spherically symmetric spacetimes. Calculation of the terms of order G3

    International Nuclear Information System (INIS)

    Linet, Bernard; Teyssandier, Pierre

    2013-01-01

    A new iterative method for calculating the travel time of a photon as a function of the spatial positions of the emitter and the receiver in the field of a static, spherically symmetric body is presented. The components of the metric are assumed to be expressible in power series in m/r, with m being half the Schwarzschild radius of the central body and r a radial coordinate. The procedure exclusively works for a light ray which may be described as a perturbation in powers of G of a Minkowskian null geodesic, with G being the Newtonian gravitational constant. It is shown that the expansion of the travel time of a photon along such a ray only involves elementary integrals whatever the order of approximation. An expansion of the impact parameter in power series of G is also obtained. The method is applied to explicitly calculate the perturbation expansions of the light travel time and the impact parameter up to the third order. The full expression yielding the terms of order G 3 is new. This expression confirms the existence of a third-order enhanced term when the emitter and the receiver are in conjunction relative to the central body. This term is shown to be necessary for determining the post-Newtonian parameter γ at a level of accuracy of 10 −8 with light rays grazing the Sun. (paper)

  6. A rigorous analysis of high-order electromagnetic invisibility cloaks

    International Nuclear Information System (INIS)

    Weder, Ricardo

    2008-01-01

    There is currently a great deal of interest in the invisibility cloaks recently proposed by Pendry et al that are based on the transformation approach. They obtained their results using first-order transformations. In recent papers, Hendi et al and Cai et al considered invisibility cloaks with high-order transformations. In this paper, we study high-order electromagnetic invisibility cloaks in transformation media obtained by high-order transformations from general anisotropic media. We consider the case where there is a finite number of spherical cloaks located in different points in space. We prove that for any incident plane wave, at any frequency, the scattered wave is identically zero. We also consider the scattering of finite-energy wave packets. We prove that the scattering matrix is the identity, i.e., that for any incoming wave packet the outgoing wave packet is the same as the incoming one. This proves that the invisibility cloaks cannot be detected in any scattering experiment with electromagnetic waves in high-order transformation media, and in particular in the first-order transformation media of Pendry et al. We also prove that the high-order invisibility cloaks, as well as the first-order ones, cloak passive and active devices. The cloaked objects completely decouple from the exterior. Actually, the cloaking outside is independent of what is inside the cloaked objects. The electromagnetic waves inside the cloaked objects cannot leave the concealed regions and vice versa, the electromagnetic waves outside the cloaked objects cannot go inside the concealed regions. As we prove our results for media that are obtained by transformation from general anisotropic materials, we prove that it is possible to cloak objects inside general crystals

  7. Generalized second-order Coulomb phase shift functions

    International Nuclear Information System (INIS)

    Rosendorff, S.

    1982-01-01

    Some specific properties and the evaluation of the generalized second-order Coulomb phase shift functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The dependence on the three momenta k 1 ,k-bar,k 2 , corresponding to the final, intermediate, and initial states is illustrated

  8. Friction factor for water flow through packed beds of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Kaluđerović-Radoičić Tatjana

    2017-01-01

    Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022

  9. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits

    International Nuclear Information System (INIS)

    Blanchet, Luc; Faye, Guillaume; Iyer, Bala R; Sinha, Siddhartha

    2008-01-01

    The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes

  10. Electronically Tunable Fully Integrated Fractional-Order Resonator

    KAUST Repository

    Tsirimokou, Georgia

    2017-03-20

    A fully integrated implementation of a parallel fractional-order resonator which employs together a fractional order capacitor and a fractional-order inductor is proposed in this paper. The design utilizes current-controlled Operational Transconductance Amplifiers as building blocks, designed and fabricated in AMS 0:35m CMOS process, and based on a second-order approximation of a fractional-order differentiator/ integrator magnitude optimized in the range 10Hz–700Hz. An attractive benefit of the proposed scheme is its electronic tuning capability.

  11. Electronically Tunable Fully Integrated Fractional-Order Resonator

    KAUST Repository

    Tsirimokou, Georgia; Psychalinos, Costas; Elwakil, Ahmed S.; Salama, Khaled N.

    2017-01-01

    A fully integrated implementation of a parallel fractional-order resonator which employs together a fractional order capacitor and a fractional-order inductor is proposed in this paper. The design utilizes current-controlled Operational Transconductance Amplifiers as building blocks, designed and fabricated in AMS 0:35m CMOS process, and based on a second-order approximation of a fractional-order differentiator/ integrator magnitude optimized in the range 10Hz–700Hz. An attractive benefit of the proposed scheme is its electronic tuning capability.

  12. High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems

    Science.gov (United States)

    Chin, Siu A.

    2015-03-01

    In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.

  13. Dynamics of a spherical minority game

    International Nuclear Information System (INIS)

    Galla, T; Coolen, A C C; Sherrington, D

    2003-01-01

    We present an exact dynamical solution of a spherical version of the batch minority game (MG) with random external information. The control parameters in this model are the ratio of the number of possible values for the public information over the number of agents, and the radius of the spherical constraint on the microscopic degrees of freedom. We find a phase diagram with three phases: two without anomalous response (an oscillating versus a frozen state) and a further frozen phase with divergent integrated response. In contrast to standard MG versions, we can also calculate the volatility exactly. Our study reveals similarities between the spherical and the conventional MG, but also intriguing differences. Numerical simulations confirm our analytical results

  14. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jiewu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China); Adeloju, Samuel B., E-mail: sam.adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China)

    2014-01-27

    Graphical abstract: -- Highlights: •Successfully synthesised highly-ordered gold nanowires array with an AAO template. •Fabricated an ultra-sensitive glucose nanobiosensor with the gold nanowires array. •Achieved sensitivity as high as 379.0 μA cm{sup −2} mM{sup −1} and detection limit as low as 50 nM. •Achieved excellent anti-interference with aid of Nafion membrane towards UA and AA. •Enabled successful detection and quantification of glucose in human blood serum. -- Abstract: A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO{sub x}) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA–BSA–GLA–GO{sub x} nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm{sup −2} mM{sup −1} for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5–6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples.

  15. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... with a magnetic loss tangent of 1 and relative permeability of 300 yield Q/e equal 65% of the Chu lower bound, with a simultaneous e of 71%....

  16. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    Science.gov (United States)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  17. Non-conformal contact mechanical characteristic analysis on spherical components

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-zhi, G.; Bin, H.; Zheng-ming, G.; Feng-mei, Y.; Jin, Q [The 2. Artillery Engineering Univ., Xi' an (China)

    2017-03-15

    Non-conformal spherical-contact mechanical problems is a three-dimensional coordination or similar to the coordination spherical contact. Due to the complexity of the problem of spherical-contact and difficulties of solving higher-order partial differential equations, problems of three-dimensional coordination or similar to the coordination spherical-contact is still no exact analytical method for solving. It is based on three-dimensional taper model is proposed a model based on the contour surface of the spherical contact and concluded of the formula of the contact pressure and constructed of finite element model by contact pressure distribution under the non-conformal spherical. The results shows spherical contact model can reflect non-conformal spherical-contacting mechanical problems more than taper-contacting model, and apply for the actual project.

  18. NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes

    Science.gov (United States)

    Caplan, R. M.

    2013-04-01

    We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time

  19. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  20. Stress concentration factors for integral and pad reinforced nozzles in spherical pressure vessels subjected to radial load and moment

    International Nuclear Information System (INIS)

    Soliman, S.F.; Gill, S.S.

    1979-01-01

    Charts are presented giving the elastic stress concentration factors in spherical pressure vessels with pad and integral reinforcement for radial branches subjected to radial load and moment. The effect of all the geometrical parameters is discussed, including the limitations of thin shell theory on the validity of the results. (author)

  1. Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high-order structure.

    Science.gov (United States)

    Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo

    2017-04-01

    Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.

  2. Photoionization and third-order susceptibility of a neutral donor in ZnS/InP/ZnSe core/shell spherical quantum dots

    International Nuclear Information System (INIS)

    Xie, Wenfang

    2014-01-01

    The optical properties of a neutral donor in a ZnS/InP/ZnSe core/shell spherical quantum dot have been investigated using the variational method and the compact density-matrix approach. Two parametric potential is chosen as a confinement potential for the shell. Considering the band structure of the system it is assumed that electron is localized in InP shell. It is assumed that the impurity is located in the center of quantum dot core (ZnS). The photoionization cross section as well as the third-order nonlinear optical susceptibility of third harmonic generation has been calculated. The results show that the photoionization and the third-order nonlinear optical susceptibility of a donor in a core/shell spherical quantum dot are strongly affected by the shell thickness. We found that small applied shell thickness will lead to a significant blue shift of the peak positions in the optical spectrum. This kind of structure gives an opportunity to tune and control the photoionization and the third-order nonlinear optical susceptibility of third harmonic generation of a donor impurity by changing the shell thickness

  3. Interaction of a spheromak-like compact toroid with a high beta spherical tokamak plasma

    International Nuclear Information System (INIS)

    Hwang, D.Q.; McLean, H.S.; Baker, K.L.; Evans, R.W.; Horton, R.D.; Terry, S.D.; Howard, S.; Schmidt, G.L.

    2000-01-01

    Recent experiments using accelerated spheromak-like compact toroids (SCTs) to fuel tokamak plasmas have quantified the penetration mechanism in the low beta regime; i.e. external magnetic field pressure dominates plasma thermal pressure. However, fusion reactor designs require high beta plasma and, more importantly, the proper plasma pressure profile. Here, the effect of the plasma pressure profile on SCT penetration, specifically, the effect of diamagnetism, is addressed. It is estimated that magnetic field pressure dominates penetration even up to 50% local beta. The combination of the diamagnetic effect on the toroidal magnetic field and the strong poloidal field at the outer major radius of a spherical tokamak will result in a diamagnetic well in the total magnetic field. Therefore, the spherical tokamak is a good candidate to test the potential trapping of an SCT in a high beta diamagnetic well. The diamagnetic effects of a high beta spherical tokamak discharge (low aspect ratio) are computed. To test the penetration of an SCT into such a diamagnetic well, experiments have been conducted of SCT injection into a vacuum field structure which simulates the diamagnetic field effect of a high beta tokamak. The diamagnetic field gradient length is substantially shorter than that of the toroidal field of the tokamak, and the results show that it can still improve the penetration of the SCT. Finally, analytic results have been used to estimate the effect of plasma pressure on penetration, and the effect of plasma pressure was found to be small in comparison with the magnetic field pressure. The penetration condition for a vacuum field only is reported. To study the diamagnetic effect in a high beta plasma, additional experiments need to be carried out on a high beta spherical tokamak. (author)

  4. ELSA- The European Levitated Spherical Actruator

    Science.gov (United States)

    Ruiz, M.; Serin, J.; Telteu-Nedelcu, D.; De La Vallee Poussin, H.; Onillon, E.; Rossini, L.

    2014-08-01

    The reaction sphere is a magnetic bearing spherical actuator consisting of a permanent magnet spherical rotor that can be accelerated in any direction. It consists of an 8-pole permanent magnet spherical rotor that is magnetically levitated and can be accelerated about any axis by a 20-pole stator with electromagnets. The spherical actuator is proposed as a potential alternative to traditional momentum exchange devices such as reaction wheels (RWs) or control moment gyroscopes (CMGs). This new actuator provides several benefits such as reduced mass and power supply allocated to the attitude and navigation unit, performance gain, and improved reliability due to the absence of mechanical bearings. The paper presents the work done on the levitated spherical actuator and more precisely the electrical drive including its control unit and power parts. An elegant breadboard is currently being manufactured within the frame of an FP7 project. This project also comprises a feasibility study to show the feasibility of integrating such a system on a flight platform and to identify all the challenges to be solved in terms of technology or components to be developed.

  5. A high-order method for the integration of the Galerkin semi-discretized nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Vargas, L.

    1988-01-01

    The numerical approximate solution of the space-time nuclear reactor kinetics equation is investigated using a finite-element discretization of the space variable and a high order integration scheme for the resulting semi-discretized parabolic equation. The Galerkin method with spatial piecewise polynomial Lagrange basis functions are used to obtained a continuous time semi-discretized form of the space-time reactor kinetics equation. A temporal discretization is then carried out with a numerical scheme based on the Iterated Defect Correction (IDC) method using piecewise quadratic polynomials or exponential functions. The kinetics equations are thus solved with in a general finite element framework with respect to space as well as time variables in which the order of convergence of the spatial and temporal discretizations is consistently high. A computer code GALFEM/IDC is developed, to implement the numerical schemes described above. This issued to solve a one space dimensional benchmark problem. The results of the numerical experiments confirm the theoretical arguments and show that the convergence is very fast and the overall procedure is quite efficient. This is due to the good asymptotic properties of the numerical scheme which is of third order in the time interval

  6. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection.

    Science.gov (United States)

    Cui, Jiewu; Adeloju, Samuel B; Wu, Yucheng

    2014-01-27

    A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO(x)) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA-BSA-GLA-GO(x) nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm(-2) mM(-1) for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5-6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    Science.gov (United States)

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  8. On high-order perturbative calculations at finite density

    CERN Document Server

    Ghisoiu, Ioan; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi

    2017-01-01

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes. Applications of these rules will be discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  9. Formal Solutions for Polarized Radiative Transfer. II. High-order Methods

    Energy Technology Data Exchange (ETDEWEB)

    Janett, Gioele; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)

    2017-08-20

    When integrating the radiative transfer equation for polarized light, the necessity of high-order numerical methods is well known. In fact, well-performing high-order formal solvers enable higher accuracy and the use of coarser spatial grids. Aiming to provide a clear comparison between formal solvers, this work presents different high-order numerical schemes and applies the systematic analysis proposed by Janett et al., emphasizing their advantages and drawbacks in terms of order of accuracy, stability, and computational cost.

  10. A symmetric integral identity for Bessel functions with applications to integral geometry

    Science.gov (United States)

    Salman, Yehonatan

    2017-12-01

    In the article of Kunyansky (Inverse Probl 23(1):373-383, 2007) a symmetric integral identity for Bessel functions of the first and second kind was proved in order to obtain an explicit inversion formula for the spherical mean transform where our data is given on the unit sphere in Rn . The aim of this paper is to prove an analogous symmetric integral identity in case where our data for the spherical mean transform is given on an ellipse E in R2 . For this, we will use the recent results obtained by Cohl and Volkmer (J Phys A Math Theor 45:355204, 2012) for the expansions into eigenfunctions of Bessel functions of the first and second kind in elliptical coordinates.

  11. Full-Wave Analysis of Microstrip Antennas in Three-Layered Spherical Media

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2013-01-01

    Full Text Available A model of three-layered spherical microstrip antenna has been analyzed based on Rao-Wilton-Glisson (RWG triangular basis functions using mixed potential integral equation (MPIE. Firstly, the model of antenna and the dyadic Green’s function in spherical microstrip antennas are given at the beginning of this paper. Then, due to the infinite series convergence problem, asymptotic extraction approach is presented to accelerate the Green’s functions convergence speed when source and field points are located in the same layer and different layers. The convergence speed can be accelerated observably by using this method. Finally, in order to simplify impedance matrix elements calculation at the junction of the probe and patch, a novel division fashion of pair of triangles is adopted in this paper. The input impedance result obtained shows the validity and effectiveness of the analysis method comparing with published data.

  12. Spherical gyroscopic moment stabilizer for attitude control of microsatellites

    Science.gov (United States)

    Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke

    2018-02-01

    This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.

  13. Time-dependent integral transport equation kernels, leakage rates and collision rates for plane and spherical geometry

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1987-01-01

    Time-dependent integral transport equation flux and current kernels for plane and spherical geometry are derived for homogeneous media. Using the multiple collision formalism, isotropic sources that are delta distributions in time are considered for four different problems. The plane geometry flux kernel is applied to a uniformly distributed source within an infinite medium and to a surface source in a semi-infinite medium. The spherical flux kernel is applied to a point source in an infinite medium and to a point source at the origin of a finite sphere. The time-dependent first-flight leakage rates corresponding to the existing steady state first-flight escape probabilities are computed by the Laplace transform technique assuming a delta distribution source in time. The case of a constant source emitting neutrons over a time interval, Δt, for a spatially uniform source is obtained for a slab and a sphere. Time-dependent first-flight leakage rates are also determined for the general two region spherical medium problem for isotropic sources with a delta distribution in time uniformly distributed throughout both the inner and outer regions. The time-dependent collision rates due to the uncollided neutrons are computed for a slab and a sphere using the time-dependent first-flight leakage rates and the time-dependent continuity equation. The case of a constant source emitting neutrons over a time interval, Δt, is also considered

  14. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  15. FFT-based high-performance spherical harmonic transformation

    Czech Academy of Sciences Publication Activity Database

    Gruber, Ch.; Novák, P.; Sebera, Josef

    2011-01-01

    Roč. 55, č. 3 (2011), s. 489-500 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z10030501 Keywords : 2-D Fourier expansion * geopotential * spherical harmonics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.700, year: 2011

  16. Path integral measure for first-order and metric gravities

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio; Zanelli, Jorge

    2003-01-01

    The equivalence between the path integrals for first-order gravity and the standard torsion-free, metric gravity in 3 + 1 dimensions is analysed. Starting with the path integral for first-order gravity, the correct measure for the path integral of the metric theory is obtained

  17. A fast algorithm for forward-modeling of gravitational fields in spherical coordinates with 3D Gauss-Legendre quadrature

    Science.gov (United States)

    Zhao, G.; Liu, J.; Chen, B.; Guo, R.; Chen, L.

    2017-12-01

    Forward modeling of gravitational fields at large-scale requires to consider the curvature of the Earth and to evaluate the Newton's volume integral in spherical coordinates. To acquire fast and accurate gravitational effects for subsurface structures, subsurface mass distribution is usually discretized into small spherical prisms (called tesseroids). The gravity fields of tesseroids are generally calculated numerically. One of the commonly used numerical methods is the 3D Gauss-Legendre quadrature (GLQ). However, the traditional GLQ integration suffers from low computational efficiency and relatively poor accuracy when the observation surface is close to the source region. We developed a fast and high accuracy 3D GLQ integration based on the equivalence of kernel matrix, adaptive discretization and parallelization using OpenMP. The equivalence of kernel matrix strategy increases efficiency and reduces memory consumption by calculating and storing the same matrix elements in each kernel matrix just one time. In this method, the adaptive discretization strategy is used to improve the accuracy. The numerical investigations show that the executing time of the proposed method is reduced by two orders of magnitude compared with the traditional method that without these optimized strategies. High accuracy results can also be guaranteed no matter how close the computation points to the source region. In addition, the algorithm dramatically reduces the memory requirement by N times compared with the traditional method, where N is the number of discretization of the source region in the longitudinal direction. It makes the large-scale gravity forward modeling and inversion with a fine discretization possible.

  18. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    International Nuclear Information System (INIS)

    Sadegjian, Rasou; Masouleh, Mehdi Tale

    2016-01-01

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time

  19. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    Energy Technology Data Exchange (ETDEWEB)

    Sadegjian, Rasou [Dept. of Electrical, Biomedical, and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, QazvinI (Iran, Islamic Republic of); Masouleh, Mehdi Tale [Human and Robot Interaction Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-11-15

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time.

  20. Error and symmetry analysis of Misner's algorithm for spherical harmonic decomposition on a cubic grid

    International Nuclear Information System (INIS)

    Fiske, David R

    2006-01-01

    Computing spherical harmonic decompositions is a ubiquitous technique that arises in a wide variety of disciplines and a large number of scientific codes. Because spherical harmonics are defined by integrals over spheres, however, one must perform some sort of interpolation in order to compute them when data are stored on a cubic lattice. Misner (2004 Class. Quantum Grav. 21 S243) presented a novel algorithm for computing the spherical harmonic components of data represented on a cubic grid, which has been found in real applications to be both efficient and robust to the presence of mesh refinement boundaries. At the same time, however, practical applications of the algorithm require knowledge of how the truncation errors of the algorithm depend on the various parameters in the algorithm. Based on analytic arguments and experience using the algorithm in real numerical simulations, I explore these dependences and provide a rule of thumb for choosing the parameters based on the truncation errors of the underlying data. I also demonstrate that symmetries in the spherical harmonics themselves allow for an even more efficient implementation of the algorithm than was suggested by Misner in his original paper

  1. Critical Perspectives of Pedagogical Approaches to Reversing the Order of Integration in Double Integrals

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-01-01

    This paper presents some critical perspectives regarding pedagogical approaches to the method of reversing the order of integration in double integrals from prevailing educational literature on multivariable calculus. First, we question the message found in popular textbooks that the traditional process of reversing the order of integration is…

  2. On high-order perturbative calculations at finite density

    Energy Technology Data Exchange (ETDEWEB)

    Ghişoiu, Ioan, E-mail: ioan.ghisoiu@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Gorda, Tyler, E-mail: tyler.gorda@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Kurkela, Aleksi, E-mail: aleksi.kurkela@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland); Faculty of Science and Technology, University of Stavanger, Stavanger (Norway); Romatschke, Paul, E-mail: paul.romatschke@colorado.edu [Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO (United States); Säppi, Matias, E-mail: matias.sappi@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Vuorinen, Aleksi, E-mail: aleksi.vuorinen@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland)

    2017-02-15

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — a result reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  3. The drag and lift of different non-spherical particles from low to high Re

    Science.gov (United States)

    Sanjeevi, Sathish K. P.; Padding, Johan

    2017-11-01

    The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient CD , ϕ at different incident angles ϕ for a wide range of Reynolds numbers (Re). We show that the sine-squared drag law CD , ϕ =CD , ϕ =0° +(CD , ϕ =90° -CD , ϕ =0°) sin2 ϕ holds up to large Reynolds numbers Re = 2000 . The sine-squared dependence of CD occurs at Stokes flow (very low Re) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high Re , and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher Re , for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient CL can provide a decent approximation, even at high Re , for elongated particles. Such a drag and lift law valid at high Re is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles. European Research Council (ERC) consolidator Grant scheme, Contract No. 615096 (NonSphereFlow).

  4. Critical perspectives of pedagogical approaches to reversing the order of integration in double integrals

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-11-01

    This paper presents some critical perspectives regarding pedagogical approaches to the method of reversing the order of integration in double integrals from prevailing educational literature on multivariable calculus. First, we question the message found in popular textbooks that the traditional process of reversing the order of integration is necessary when solving well-known problems. Second, we illustrate that the method of integration by parts can be directly applied to many of the classic pedagogical problems in the literature concerning double integrals, without taking the well-worn steps associated with reversing the order of integration. Third, we examine the benefits and limitations of such a method. In our conclusion, we advocate for integration by parts to be a part of the pedagogical conversation in the learning and teaching of double integral methods; and call for more debate around its use in the learning and teaching of other areas of mathematics. Finally, we emphasize the need for critical approaches in the pedagogy of mathematics more broadly.

  5. Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method

    Science.gov (United States)

    Kruglyakov, Mikhail; Kuvshinov, Alexey

    2018-05-01

    3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial detail still remains challenging from the computational point of view. We present a novel, efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage of the HOP basis allows us to decrease substantially the number of unknowns (preserving the same accuracy), with corresponding speed increase and memory saving.

  6. Spherical aberration and other higher-order aberrations in the human eye : from summary wave-front analysis data to optical variables relevant to visual perception

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c(4)(0) (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot

  7. An extended integrable fractional-order KP soliton hierarchy

    International Nuclear Information System (INIS)

    Li Li

    2011-01-01

    In this Letter, we consider the modified derivatives and integrals of fractional-order pseudo-differential operators. A sequence of Lax KP equations hierarchy and extended fractional KP (fKP) hierarchy are introduced, and the fKP hierarchy has Lax presentations with the extended Lax operators. In the case of the extension with the half-order pseudo-differential operators, a new integrable fKP hierarchy is obtained. A few particular examples of fractional order will be listed, together with their Lax pairs.

  8. An extended integrable fractional-order KP soliton hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li, E-mail: li07099@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2011-01-17

    In this Letter, we consider the modified derivatives and integrals of fractional-order pseudo-differential operators. A sequence of Lax KP equations hierarchy and extended fractional KP (fKP) hierarchy are introduced, and the fKP hierarchy has Lax presentations with the extended Lax operators. In the case of the extension with the half-order pseudo-differential operators, a new integrable fKP hierarchy is obtained. A few particular examples of fractional order will be listed, together with their Lax pairs.

  9. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

  10. High-energy, twelve-channel laser facility (DEFIN) for spherical irradiation of thermonuclear targets

    International Nuclear Information System (INIS)

    Basov, N.G.; Danilov, A.E.; Krokhin, O.N.; Kruglov, B.V.; Mikhailov, Yu.A.; Sklizkov, G.V.; Fedotov, S.I.; Fedorov, A.N.

    This paper describes a high-energy, twelve-channel laser facility (DELFIN) intended for high-temperature heating of thermonuclear targets with spherical symmetry. The facility includes a neodymium-glass laser with the ultimate radiation energy of 10 kJ, a pulse length of approximately 10 -10 to 10 -9 s, beam divergence of 5 x 10 -4 radians, a vacuum chamber in which laser radiation interacts with the plasma, and a system of diagnostic instrumentation for the observation of laser beam and plasma parameters. Described are the optical scheme and construction details of the laser facility. Presented is an analysis of focusing schemes for target irradiation and described is the focusing scheme of the DELFIN facility, which is capable of attaining a high degree of spherical symmetry in irradiating targets with maximum beam intensity at the target surface of approximately 10 15 W/cm 2 . This paper examines the most important problems connected with the physical investigations of thermonuclear laser plasma and the basic diagnostic problems involved in their solution

  11. Interactions between charged spherical macroions

    International Nuclear Information System (INIS)

    Stevens, M.J.; Falk, M.L.; Robbins, M.O.

    1996-01-01

    Monte Carlo (MC) simulations were used to study the screened interactions between charged spherical macroions surrounded by discrete counterions, and to test previous theories of screening. The simulations were performed in the primitive cell of the bcc lattice, and in the spherical Wigner endash Seitz cell that is commonly used in approximate calculations. We found that the Wigner endash Seitz approximation is valid even at high volume fractions φ and large macroion charges Z, because the macroion charge becomes strongly screened. Pressures calculated from Poisson endash Boltzmann theory and local density functional theory deviate from MC values as φ and Z increase, but continue to provide upper and lower bounds for the MC results. While Debye endash Hueckel (DH) theory fails badly when the bare charge is used, MC pressures can be fit with an effective DH charge, Z DH , that is nearly independent of volume fraction. As Z diverges, Z DH saturates at zψ max R m /λ, where z is the counterion charge, R m is the macroion radius, λ is the Bjerrum length, and ψ max is a constant of order 10. copyright 1996 American Institute of Physics

  12. Preserving spherical symmetry in axisymmetric coordinates for diffusion problems

    International Nuclear Information System (INIS)

    Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.

    2013-01-01

    Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)

  13. An integral nodal variational method for multigroup criticality calculations

    International Nuclear Information System (INIS)

    Lewis, E.E.; Tsoulfanidis, N.

    2003-01-01

    An integral formulation of the variational nodal method is presented and applied to a series of benchmark critically problems. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Either homogeneous or heterogeneous nodes may be employed. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the standard spherical harmonics expansion using the same spatial approximations. (author)

  14. From Spheric to Aspheric Solid Polymer Lenses: A Review

    Directory of Open Access Journals (Sweden)

    Kuo-Yung Hung

    2011-01-01

    Full Text Available This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2 mm, and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA, and cyclic olefin copolymer (COC. Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed.

  15. Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography—A case study for the Moon

    Science.gov (United States)

    Hirt, Christian; Kuhn, Michael

    2017-08-01

    Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are guaranteed to converge outside the Brillouin sphere enclosing all field-generating masses. Inside that sphere, the series may be convergent or may be divergent. The series convergence behavior is a highly unstable quantity that is little studied for high-resolution mass distributions. Here we shed light on the behavior of SH series expansions of the gravitational potential of the Moon. We present a set of systematic numerical experiments where the gravity field generated by the topographic masses is forward-modeled in spherical harmonics and with numerical integration techniques at various heights and different levels of resolution, increasing from harmonic degree 90 to 2160 ( 61 to 2.5 km scales). The numerical integration is free from any divergence issues and therefore suitable to reliably assess convergence versus divergence of the SH series. Our experiments provide unprecedented detailed insights into the divergence issue. We show that the SH gravity field of degree-180 topography is convergent anywhere in free space. When the resolution of the topographic mass model is increased to degree 360, divergence starts to affect very high degree gravity signals over regions deep inside the Brillouin sphere. For degree 2160 topography/gravity models, severe divergence (with several 1000 mGal amplitudes) prohibits accurate gravity modeling over most of the topography. As a key result, we formulate a new hypothesis to predict divergence: if the potential degree variances show a minimum, then the SH series expansions diverge somewhere inside the Brillouin sphere and modeling of the internal potential becomes relevant.

  16. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body

  17. Preparation of spherical fuel elements for HTR-PM in INET

    International Nuclear Information System (INIS)

    Xiangwen, Zhou; Zhenming, Lu; Jie, Zhang; Bing, Liu; Yanwen, Zou; Chunhe, Tang; Yaping, Tang

    2013-01-01

    Highlights: • Modifications and optimizations in the manufacture of spherical fuel elements (SFE) for HTR-PM are presented. • A newly developed overcoater exhibits good stability and high efficiency in the preparation of overcoated particles. • The optimized carbonization process reduces the process time from 70 h in the period of HTR-10 to 20 h. • Properties of the prepared SFE and matrix graphite balls meet the design specifications for HTR-PM. • In particular the mean free uranium fraction of 5 consecutive batches is only 8.7 × 10 −6 . -- Abstract: The spherical fuel elements were successfully manufactured in the period of HTR-10. In order to satisfy the mass production of fuel elements for HTR-PM, several measures have been taken in modifying and optimizing the manufacture process of fuel elements. The newly developed overcoater system and its corresponding parameters exhibited good stability and high efficiency in the preparation of overcoated particles. The optimized carbonization process could reduce the carbonization time from more than 70 h to 20 h and improve the manufacturing efficiency. Properties of the manufactured spherical fuel elements and matrix graphite balls met the design specifications for HTR-PM. The mean free uranium fraction of 5 consecutive batches was 8.7 × 10 −6 . The optimized fuel elements manufacturing process could meet the requirements of design specifications of spherical fuel elements for HTR-PM

  18. Electrically small circularly polarized spherical antenna with air core

    DEFF Research Database (Denmark)

    Kim, O. S.

    2013-01-01

    An electrically small circularly polarized self-resonant spherical antenna with air core is presented. The antenna is a modified multiarm spherical helix exciting TM10 and TE10 spherical modes with equal radiated power, and thus yielding perfect circular polarization over the entire far......-field sphere (except the polar regions, where the radiation is low). The self-resonance is achieved by exciting higher-order TM modes, which provide the necessary electric stored energy in the near-field, while contributing negligibly to the far-field radiation of the antenna. The antenna has electrical size...

  19. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    Science.gov (United States)

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  20. Fractional order differentiation by integration with Jacobi polynomials

    KAUST Repository

    Liu, Dayan

    2012-12-01

    The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.

  1. Fractional order differentiation by integration with Jacobi polynomials

    KAUST Repository

    Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid; Laleg-Kirati, Taous-Meriem

    2012-01-01

    The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.

  2. Experimental study on practicability of self-created spherical tokamak in coilless STPC-EX machine

    International Nuclear Information System (INIS)

    Sinman, S.

    2002-01-01

    The aim of this study is to recognize the physical basis of the alternative self organization mechanism occurred STPC-EX machine. The conventional diagnostic tools are used in this study and for photographic recording, open shutter integrated post-fogging method is preferred. The annular coaxial two plasma current sheets one within other at the same direction are created and flowed on the surface of floating conductive central rod. Consequently, spherical tokamak configurated by new creation mechanism of Dual Axial Z-Pinch. (DAZP) yields fairly high beta of 0.4-0.6 at self created spherical tokamak plasma. Sustainment time of DAZP is 5.6-6.3 mili second. (author)

  3. Investigation of spherical and concentric mechanism of compound droplets

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2016-07-01

    Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.

  4. Divertor impurity injection using high voltage arcs for impurity transport studies on the Mega Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Leggate, H. J.; Turner, M. M.; Lisgo, S. W.; Harrison, J. R.; Elmore, S.; Allan, S. Y.; Gaffka, R. C.; Stephen, R. C.

    2014-01-01

    The operation of next-generation fusion reactors will be significantly affected by impurity transport in the scrape-off layer (SOL). Current modelling efforts are restricted by a lack of detailed data on impurity transport in the SOL. In order to address this, a carbon injector has been designed and installed on the Mega Amp Spherical Tokamak (MAST). The injector creates short lived carbon plumes originating at the MAST divertor lasting less than 50 μs. High voltage capacitor banks are used to create a discharge across concentric carbon electrodes located in a probe mounted on the Divertor Science Facility in the MAST lower divertor. This results in a very short plume duration allowing observation of the evolution of the plume and precise localisation of the plume relative to the X-point on MAST. The emission from the carbon plume was imaged using fast visible cameras filtered in order to isolate the carbon II and carbon III emission lines centered around 514 nm and 465 nm

  5. A high-order Petrov-Galerkin method for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov

  6. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain

    Science.gov (United States)

    Kou, Na; Yu, Shixing; Li, Long

    2017-01-01

    A high-order Bessel vortex beam carrying orbital angular momentum (OAM) is generated by using multilayer amplitude-phase-modulated surfaces (APMSs) at 10 GHz. The APMS transmitarray is composed of four-layer conformal square-loop (FCSL) surfaces with both amplitude and phase modulation. The APMS can transform a quasi-spherical wave emitted from the feeding source into a pseudo non-diffractive high-order Bessel vortex beam with OAM. The APMS for a second-order Bessel beam carrying OAM in the n = 2 mode is designed, fabricated, and measured. Full-wave simulation and measurement results confirm that Bessel vortex beams with OAM can be effectively generated using the proposed APMS transmitarray.

  7. Spherical projections and liftings in geometric tomography

    DEFF Research Database (Denmark)

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....

  8. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Kim, Oleksiy S.

    2009-01-01

    The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms...... of spherical vector waves. The obtained quality factor agrees with that of Wheeler and Thal for vanishing free-space electric radius but holds also for larger radii and facilitates the optimal choice of permeability in the presence of the resonances....

  9. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  10. HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS

    Directory of Open Access Journals (Sweden)

    Jiameng Wu

    2018-01-01

    Full Text Available The infinite depth free surface Green function (GF and its high order derivatives for diffraction and radiation of water waves are considered. Especially second order derivatives are essential requirements in high-order panel method. In this paper, concerning the classical representation, composed of a semi-infinite integral involving a Bessel function and a Cauchy singularity, not only the GF and its first order derivatives but also second order derivatives are derived from four kinds of analytical series expansion and refined division of whole calculation domain. The approximations of special functions, particularly the hypergeometric function and the algorithmic applicability with different subdomains are implemented. As a result, the computation accuracy can reach 10-9 in whole domain compared with conventional methods based on direct numerical integration. Furthermore, numerical efficiency is almost equivalent to that with the classical method.

  11. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2013-01-01

    . The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....

  12. Finite element analysis of the neutron transport equation in spherical geometry

    International Nuclear Information System (INIS)

    Kim, Yong Ill; Kim, Jong Kyung; Suk, Soo Dong

    1992-01-01

    The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation. (Author)

  13. Reaction Order Ambiguity in Integrated Rate Plots

    Science.gov (United States)

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  14. On the advantage of the finite fourier transformation method for the solution of a multigroup transport equation by the spherical harmonics method

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1995-01-01

    A simple formulation to derive second order differential equations of the spherical harmonics method is described, and it is shown that there is difficulty in deriving finite difference equations for these differential equations at material interfaces, because the second order differential terms of higher order moments must be expressed by the values in a mesh box. On the other hand, it is shown that there is no such difficulty, if the author uses the finite Fourier transformation method, since the differential equations are transformed into integral equations and the differentiation corresponds simply to a multiplication by the transformation parameter. Solution can be obtained in the form of Fourier series without making use of the inversion integral

  15. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr; Cohen, David; Vilmart, Gilles; Zygalakis, Konstantinos C.

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration

  16. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2016-06-15

    Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.

  17. Generation of spherically symmetric metrics in f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Amirabi, Z.; Halilsoy, M.; Mazharimousavi, S.H. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2016-06-15

    In D-dimensional spherically symmetric f(R) gravity there are three unknown functions to be determined from the fourth order differential equations. It is shown that the system remarkably may be integrated to relate two functions through the third one to provide a reduction to second order equations accompanied with a large class of potential solutions. The third function, which acts as the generator of the process, is F(R) = (df(R))/(dR). We recall that our generating function has been employed as a scalar field with an accompanying self-interacting potential previously, which is entirely different from our approach. Reduction of f(R) theory into a system of equations seems to be efficient enough to generate a solution corresponding to each generating function. As particular examples, besides the known ones, we obtain new black hole solutions in any dimension D. We further extend our analysis to cover non-zero energy-momentum tensors. Global monopole and Maxwell sources are given as examples. (orig.)

  18. Buckling strength of spherical shells under combined loads

    International Nuclear Information System (INIS)

    Nagashima, H.; Kokubo, K.; Takayanagi, M.; Hayasaka, Y.; Kume, T.; Nagata, T.

    1995-01-01

    Many studies on buckling of cylindrical shells have been conducted, and many buckling evaluation equations have been proposed for actual plant designs; however, buckling of spherical shells under combined horizontal and vertical loads cannot be evaluated due to insufficient data. There is a particular lack of buckling data for spherical shells under lateral loads. To establish a method for estimating the buckling strength of spherical shells, we investigate the interactions between horizontal and vertical (compressive tensile) loads by conducting buckling tests. Applying several combinations of these loads in tests and using computer linear analysis, we obtain interaction curves. This study reports on the buckling tests conducted using spherical shell 1120 mm in dia., 0.7 mm thick and 696 mm high, which are shaped individually by press-forming and finally joined together by four meridional welds, using a specially made jig. Initial imperfections before testing and local deformations after each loading increment during testing are measured with special measuring equipment, and the interaction curve of horizontal and vertical loads and effect of imperfection on the buckling strength of spherical shells are obtained. Nonlinear FEM programs are developed using an 8-node isoparametric shell element and a four-node quadrilateral element of C 0 type with reduced integration based upon a Mindlin-Reissner theory which includes transverse shear. Actual initial imperfections are generally in irregular patterns. Thus, there may be several definitions of the equivalent magnitudes of initial imperfections related to buckling loads. Equivalent magnitudes have no practical meaning unless they can be obtained easily not only for small structures such as test shells but also for large actual structures. In the present study, we define the equivalent magnitude of initial imperfections as the maximum local ruggedness measured radially from a circular temperature having a radius equal

  19. An approach for spherical harmonic analysis of non-smooth data

    Science.gov (United States)

    Wang, Hansheng; Wu, Patrick; Wang, Zhiyong

    2006-12-01

    A method is proposed to evaluate the spherical harmonic coefficients of a global or regional, non-smooth, observable dataset sampled on an equiangular grid. The method is based on an integration strategy using new recursion relations. Because a bilinear function is used to interpolate points within the grid cells, this method is suitable for non-smooth data; the slope of the data may be piecewise continuous, with extreme changes at the boundaries. In order to validate the method, the coefficients of an axisymmetric model are computed, and compared with the derived analytical expressions. Numerical results show that this method is indeed reasonable for non-smooth models, and that the maximum degree for spherical harmonic analysis should be empirically determined by several factors including the model resolution and the degree of non-smoothness in the dataset, and it can be several times larger than the total number of latitudinal grid points. It is also shown that this method is appropriate for the approximate analysis of a smooth dataset. Moreover, this paper provides the program flowchart and an internet address where the FORTRAN code with program specifications are made available.

  20. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  1. Laplacian eigenmodes for spherical spaces

    International Nuclear Information System (INIS)

    Lachieze-Rey, M; Caillerie, S

    2005-01-01

    The possibility that our space is multi-rather than singly-connected has gained renewed interest after the discovery of the low power for the first multipoles of the CMB by WMAP. To test the possibility that our space is a multi-connected spherical space, it is necessary to know the eigenmodes of such spaces. Except for lens and prism space, and to some extent for dodecahedral space, this remains an open problem. Here we derive the eigenmodes of all spherical spaces. For dodecahedral space, the demonstration is much shorter, and the calculation method much simpler than before. We also apply our method to tetrahedric, octahedric and icosahedric spaces. This completes the knowledge of eigenmodes for spherical spaces, and opens the door to new observational tests of the cosmic topology. The vector space V k of the eigenfunctions of the Laplacian on the 3-sphere S 3 , corresponding to the same eigenvalue λ k = -k(k + 2), has dimension (k + 1) 2 . We show that the Wigner functions provide a basis for such a space. Using the properties of the latter, we express the behaviour of a general function of V k under an arbitrary rotation G of SO(4). This offers the possibility of selecting those functions of V k which remain invariant under G. Specifying G to be a generator of the holonomy group of a spherical space X, we give the expression of the vector space V x k of the eigenfunctions of X. We provide a method to calculate the eigenmodes up to an arbitrary order. As an illustration, we give the first modes for the spherical spaces mentioned

  2. Conservative fourth-order time integration of non-linear dynamic systems

    DEFF Research Database (Denmark)

    Krenk, Steen

    2015-01-01

    An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration time increment, and then evaluating...... the resulting time integrals of the inertia and stiffness terms via integration by parts. This process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space differential equations. The resulting discrete form of the state-space equations...... is a direct fourth-order accurate representation of the original differential equations. This fourth-order form is energy conserving for systems with force potential in the form of a quartic polynomial in the displacement components. Energy conservation for a force potential of general form is obtained...

  3. Spherical rhenium metal powder

    International Nuclear Information System (INIS)

    Leonhardt, T.; Moore, N.; Hamister, M.

    2001-01-01

    The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)

  4. A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening.

    Science.gov (United States)

    Neto, A I; Correia, C R; Oliveira, M B; Rial-Hermida, M I; Alvarez-Lorenzo, C; Reis, R L; Mano, J F

    2015-04-01

    We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.

  5. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    Science.gov (United States)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  6. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T.K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Pinsker, R.I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-01-01

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  7. Spherical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  8. Symmetry Reductions, Integrability and Solitary Wave Solutions to High-Order Modified Boussinesq Equations with Damping Term

    Science.gov (United States)

    Yan, Zhen-Ya; Xie, Fu-Ding; Zhang, Hong-Qing

    2001-07-01

    Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fermi-Pasta-Ulam model. As a result, several types of similarity reductions are obtained. It is easy to show that the nonlinear wave equation is not integrable under the sense of Ablowitz's conjecture from the reduction results obtained. In addition, kink-shaped solitary wave solutions, which are of important physical significance, are found for HMBEDT based on the obtained reduction equation. The project supported by National Natural Science Foundation of China under Grant No. 19572022, the National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119

  9. Cauchy-perturbative matching reexamined: Tests in spherical symmetry

    International Nuclear Information System (INIS)

    Zink, Burkhard; Pazos, Enrique; Diener, Peter; Tiglio, Manuel

    2006-01-01

    During the last few years progress has been made on several fronts making it possible to revisit Cauchy-perturbative matching (CPM) in numerical relativity in a more robust and accurate way. This paper is the first in a series where we plan to analyze CPM in the light of these new results. One of the new developments is an understanding of how to impose constraint-preserving boundary conditions (CPBC); though most of the related research has been driven by outer boundaries, one can use them for matching interface boundaries as well. Another front is related to numerically stable evolutions using multiple patches, which in the context of CPM allows the matching to be performed on a spherical surface, thus avoiding interpolations between Cartesian and spherical grids. One way of achieving stability for such schemes of arbitrary high order is through the use of penalty techniques and discrete derivatives satisfying summation by parts (SBP). Recently, new, very efficient and high-order accurate derivatives satisfying SBP and associated dissipation operators have been constructed. Here we start by testing all these techniques applied to CPM in a setting that is simple enough to study all the ingredients in great detail: Einstein's equations in spherical symmetry, describing a black hole coupled to a massless scalar field. We show that with the techniques described above, the errors introduced by Cauchy-perturbative matching are very small, and that very long-term and accurate CPM evolutions can be achieved. Our tests include the accretion and ring-down phase of a Schwarzschild black hole with CPM, where we find that the discrete evolution introduces, with a low spatial resolution of Δr=M/10, an error of 0.3% after an evolution time of 1,000,000M. For a black hole of solar mass, this corresponds to approximately 5s, and is therefore at the lower end of timescales discussed e.g. in the collapsar model of gamma-ray burst engines

  10. Determination of a basic set of Eigen-functions and of the corresponding norm in the case of the one-velocity integral differential Boltzmann equation in spherical geometry

    International Nuclear Information System (INIS)

    Lafore, P.

    1965-01-01

    The object of the present work is to draw up a basic set of orthogonal eigenfunctions; resolution of the one-velocity integral-differential Boltzmann equation; this in the case of a spherical geometry system. (author) [fr

  11. Spherical shock due to point explosion with varying energy

    Science.gov (United States)

    Singh, J. B.; Srivastava, S. K.

    1983-05-01

    The motion of a perfect gas behind a weak or strong spherical point-explosion shock wave in a nonuniform rest atmosphere is investigated analytically for the case of variable flow energy. The self-similar solutions derived are also adaptable to a uniform expanding piston. The solution is applied to the isothermal case, and the results of numerical integration are presented in graphs showing the density, velocity, and pressure distributions for different values of delta. The findings are considered significant for investigations of sonic booms, laser production of plasmas, high-altitude nuclear detonations, supernova explosions, and the sudden expansion of the solar corona, and for the laboratory production of high temperatures using shock waves.

  12. Structured Laguerre-Gaussian beams for mitigation of spherical aberration in tightly focused regimes

    Science.gov (United States)

    Haddadi, S.; Bouzid, O.; Fromager, M.; Hasnaoui, A.; Harfouche, A.; Cagniot, E.; Forbes, A.; Aït-Ameur, K.

    2018-04-01

    Many laser applications utilise a focused laser beam having a single-lobed intensity profile in the focal plane, ideally with the highest possible on-axis intensity. Conventionally, this is achieved with the lowest-order Laguerre-Gaussian mode (LG00), the Gaussian beam, in a tight focusing configuration. However, tight focusing often involves significant spherical aberration due to the high numerical aperture of the systems involved, thus degrading the focal quality. Here, we demonstrate that a high-order radial LG p0 mode can be tailored to meet and in some instances exceed the performance of the Gaussian. We achieve this by phase rectification of the mode using a simple binary diffractive optic. By way of example, we show that the focusing of a rectified LG50 beam is almost insensitive to a spherical aberration coefficient of over three wavelengths, in contrast with the usual Gaussian beam for which the intensity of the focal spot is reduced by a factor of two. This work paves the way towards enhanced focal spots using structured light.

  13. Hybrid High-Impact Pedagogies: Integrating Service-Learning with Three Other High-Impact Pedagogies

    Science.gov (United States)

    Bringle, Robert G.

    2017-01-01

    This article proposes enhancing student learning through civic engagement by considering the advantages of integrating service-learning with study away, research, and internships and pre-professional courses into first-order, second-order, and third-order hybrid high-impact pedagogies. Service-learning contributes numerous attributes to the other…

  14. Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-21

    In exact analogy with their electronic counterparts, photonic temporal integrators are fundamental building blocks for constructing all-optical circuits for ultrafast information processing and computing. In this work, we introduce a simple and general approach for realizing all-optical arbitrary-order temporal integrators. We demonstrate that the N(th) cumulative time integral of the complex field envelope of an input optical waveform can be obtained by simply propagating this waveform through a single uniform fiber/waveguide Bragg grating (BG) incorporating N pi-phase shifts along its axial profile. We derive here the design specifications of photonic integrators based on multiple-phase-shifted BGs. We show that the phase shifts in the BG structure can be arbitrarily located along the grating length provided that each uniform grating section (sections separated by the phase shifts) is sufficiently long so that its associated peak reflectivity reaches nearly 100%. The resulting designs are demonstrated by numerical simulations assuming all-fiber implementations. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible photo-induced fiber BG structures.

  15. High-power heating experiment of spherical tokamaks by use of plasma merging

    International Nuclear Information System (INIS)

    Ueda, Yoshinobu; Ono, Yasushi

    1999-01-01

    High-power heating of spherical tokamaks (STs) has been investigated experimentally by use of plasma merging effect. When two STs were coaxially collided, thermal energy of a colliding ST was injected into a target ST during short reconnection time (Alfven time). Though the thermal energy increment increased with decreasing plasma q value, thermal energy loss during the following relaxation, tended to be smaller with increasing q. The produced high-β STs had hallower current profiles and weaker paramagnetic toroidal field than those of single STs. Those heating properties indicate the plasma merging to be a promising initial heating method of ST plasmas. (author)

  16. Second-order domain derivative of normal-dependent boundary integrals

    KAUST Repository

    Balzer, Jonathan

    2010-03-17

    Numerous reconstruction tasks in (optical) surface metrology allow for a variational formulation. The occurring boundary integrals may be interpreted as shape functions. The paper is concerned with the second-order analysis of such functions. Shape Hessians of boundary integrals are considered difficult to find analytically because they correspond to third-order derivatives of an, in a sense equivalent, domain integral. We complement previous results by considering cost functions depending explicitly on the surface normal. The correctness and practicability of our calculations are verified in the context of a Newton-type shape reconstruction method. © 2010 Birkhäuser / Springer Basel AG.

  17. An integral for second-order multiple scattering perturbation theory

    International Nuclear Information System (INIS)

    Hoffman, G.G.

    1997-01-01

    This paper presents the closed form evaluation of a six-dimensional integral. The integral arises in the application to many-electron systems of a multiple scattering perturbation expansion at second order when formulated in fourier space. The resulting function can be used for the calculation of both the electron density and the effective one-electron potential in an SCF calculations. The closed form expression derived here greatly facilitates these calculations. In addition, the evaluated integral can be used for the computation of second-order corrections to the open-quotes optimized Thomas-Fermi theory.close quotes 10 refs., 2 figs

  18. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory.

    Science.gov (United States)

    Mitri, F G

    2010-03-01

    Acoustic scattering properties of ultrasound contrast agents are useful in extending existing or developing new techniques for biomedical imaging applications. A useful first step in this direction is to investigate the acoustic scattering of a new class of acoustic beams, known as helicoidal high-order Bessel beams, to improve the understanding of their scattering characteristics by an ultrasound contrast agent, which at present is very limited. The transverse acoustic scattering of a commercially available albuminoidal ultrasound contrast agent shell filled with air or a denser gas such as perfluoropropane and placed in a helicoidal Bessel beam of any order is examined numerically. The shell is assumed to possess an outer radius a=3.5 microns and a thickness of approximately 105 nm. Moduli of the total and resonance transverse acoustic scattering form functions are numerically evaluated in the bandwidth 0scattering of a helicoidal Bessel beam of order m1 so that the dynamics of contrast agents would be significantly altered. The main finding of the present theory is the suppression or enhancement for a particular resonance that may be used to advantage in imaging with ultrasound contrast agents for clinical applications. 2009 Elsevier B.V. All rights reserved.

  19. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  20. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  1. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin; Schade, Nicholas B.; Sun, Li; Fan, Jonathan A.; Bae, Doo Ri; Mariscal, Marcelo M.; Lee, Gaehang; Capasso, Federico; Sacanna, Stefano; Manoharan, Vinothan N.; Yi, Gi-Ra

    2013-01-01

    isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even

  2. Near integrability of kink lattice with higher order interactions

    Science.gov (United States)

    Jiang, Yun-Guo; Liu, Jia-Zhen; He, Song

    2017-11-01

    We make use of Manton’s analytical method to investigate the force between kinks and anti-kinks at large distances in 1+1 dimensional field theory. The related potential has infinite order corrections of exponential pattern, and the coefficients for each order are determined. These coefficients can also be obtained by solving the equation of the fluctuations around the vacuum. At the lowest order, the kink lattice represents the Toda lattice. With higher order correction terms, the kink lattice can represent one kind of generic Toda lattice. With only two sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is not integrable but is a near integrable system. We make use of Flaschka’s variables to study the Lax pair of the kink lattice. These Flaschka’s variables have interesting algebraic relations and non-integrability can be manifested. We also discuss the higher Hamiltonians for the deformed open Toda lattice, which has a similar result to the ordinary deformed Toda. Supported by Shandong Provincial Natural Science Foundation (ZR2014AQ007), National Natural Science Foundation of China (11403015, U1531105), S. He is supported by Max-Planck fellowship in Germany and National Natural Science Foundation of China (11305235)

  3. Ultrasoft x-ray imaging system for the National Spherical Torus Experiment

    Science.gov (United States)

    Stutman, D.; Finkenthal, M.; Soukhanovskii, V.; May, M. J.; Moos, H. W.; Kaita, R.

    1999-01-01

    A spectrally resolved ultrasoft x-ray imaging system, consisting of arrays of high resolution (the National Spherical Torus Experiment. Initially, three poloidal arrays of diodes filtered for C 1s-np emission will be implemented for fast tomographic imaging of the colder start-up plasmas. Later on, mirrors tuned to the C Lyα emission will be added in order to enable the arrays to "see" the periphery through the hot core and to study magnetohydrodynamic activity and impurity transport in this region. We also discuss possible core diagnostics, based on tomographic imaging of the Lyα emission from the plume of recombined, low Z impurity ions left by neutral beams or fueling pellets. The arrays can also be used for radiated power measurements and to map the distribution of high Z impurities injected for transport studies. The performance of the proposed system is illustrated with results from test channels on the CDX-U spherical torus at Princeton Plasma Physics Laboratory.

  4. Prediction of the thermal behavior of a particle spherical fuel element using GITT

    International Nuclear Information System (INIS)

    Pessoa, C.V.; Oliveira, Claudio L. de; Jian, Su

    2008-01-01

    In this work, the transient and steady state heat conduction in a spherical fuel element of a pebble-bed high temperature were studied. This pebble element is composed by a particulate region with spherical inclusions, the fuel UO 2 particles, dispersed in a graphite matrix. A convective heat transfer by helium occurs on the outer surface of the fuel element. The two-energy equation model for the case of pure conduction was applied to this particulate spherical element, generating two macroscopic temperatures, respectively, of the inclusions and of the matrix. The transient analysis was carried out by using the Generalized Integral Transform Technique (GITT) that requires low computational efforts and allows a fast evaluation of the two macroscopic transient temperatures of the particulate region. The solution by GITT leads to a system of ordinary differential equations with the unknown transformed potentials. The mechanical properties (thermal conductivity and specific heat) of the materials were supposed not to depend on the temperature and to be uniform in each region. (author)

  5. A calculation of dose distribution around 32P spherical sources and its clinical application

    International Nuclear Information System (INIS)

    Ohara, Ken; Tanaka, Yoshiaki; Nishizawa, Kunihide; Maekoshi, Hisashi

    1977-01-01

    In order to avoid the radiation hazard in radiation therapy of craniopharyngioma by using 32 P, it is helpful to prepare a detailed dose distribution in the vicinity of the source in the tissue. Valley's method is used for calculations. A problem of the method is pointed out and the method itself is refined numerically: it extends a region of xi where an approximate polynomial is available, and it determines an optimum degree of the polynomial as 9. Usefulness of the polynomial is examined by comparing with Berger's scaled absorbed dose distribution F(xi) and the Valley's result. The dose and dose rate distributions around uniformly distributed spherical sources are computed from the termwise integration of our polynomial of degree 9 over the range of xi from 0 to 1.7. The dose distributions calculated from the spherical surface to a point at 0.5 cm outside the source, are given, when the radii of sources are 0.5, 0.6, 0.7, 1.0, and 1.5 cm respectively. The therapeutic dose for a craniopharyngioma which has a spherically shaped cyst, and the absorbed dose to the normal tissue, (oculomotor nerve), are obtained from these dose rate distributions. (auth.)

  6. Spherical aberration correction with threefold symmetric line currents.

    Science.gov (United States)

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji; Takaoka, Akio; Munro, Eric

    2016-02-01

    It has been shown that N-fold symmetric line current (henceforth denoted as N-SYLC) produces 2N-pole magnetic fields. In this paper, a threefold symmetric line current (N3-SYLC in short) is proposed for correcting 3rd order spherical aberration of round lenses. N3-SYLC can be realized without using magnetic materials, which makes it free of the problems of hysteresis, inhomogeneity and saturation. We investigate theoretically the basic properties of an N3-SYLC configuration which can in principle be realized by simple wires. By optimizing the parameters of a system with beam energy of 5.5keV, the required excitation current for correcting 3rd order spherical aberration coefficient of 400 mm is less than 1AT, and the residual higher order aberrations can be kept sufficiently small to obtain beam size of less than 1 nm for initial slopes up to 5 mrad. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A Novel Sigma-Delta Modulator with Fractional-Order Digital Loop Integrator

    Directory of Open Access Journals (Sweden)

    Chi Xu

    2017-01-01

    Full Text Available This paper proposes using a fractional-order digital loop integrator to improve the robust stability of Sigma-Delta modulator, thus extending the integer-order Sigma-Delta modulator to a non-integer-order (fractional-order one in the Sigma-Delta ADC design field. The proposed fractional-order Sigma-Delta modulator has reasonable noise characteristics, dynamic range, and bandwidth; moreover the signal-to-noise ratio (SNR is improved remarkably. In particular, a 2nd-order digital loop integrator and a digital PIλDμ controller are combined to work as the fractional-order digital loop integrator, which is realized using FPGA; this will reduce the ASIC analog circuit layout design and chip testing difficulties. The parameters of the proposed fractional-order Sigma-Delta modulator are tuned by using swarm intelligent algorithm, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance. Simulation results are given and they demonstrate the efficiency of the proposed fractional-order Sigma-Delta modulator.

  8. Effects of Silicone Hydrogel Contact Lens Application on Corneal High-order Aberration and Visual Guality in Patients with Corneal Opacities

    Directory of Open Access Journals (Sweden)

    Sevda Aydın Kurna

    2012-03-01

    Full Text Available Pur po se: Evaluation of the corneal high-order aberrations and visual quality changes after application of silicone hydrogel contact lenses in patients with corneal opacities due to various etiologies. Ma te ri al and Met hod: Fifteen eyes of 13 patients with corneal opacities were included in the study. During the ophthalmologic examination before and after contact lens application, visual acuity was measured with Snellen acuity chart and contrast sensitivity - with Bailey-Lowie Charts in letters. Aberrations were measured with corneal aberrometer (NIDEK Magellan Mapper under a naturally dilated pupil. Spherical aberration, coma, trefoil, irregular astigmatism and total high-order root mean square (RMS values were recorded. Measurements were repeated with balafilcon A lenses (PureVision 2 HD, B&L on all patients. Re sults: Patient age varied between 23 and 50 years. Two eyes had subepithelial infiltrates due to adenoviral keratitis, 1 had nebulae due to previous infections or trauma, and 2 had Salzmann’s nodular degeneration. We observed a mean increase of 1 line in visual acuity and 5 letters in contrast sensitivity with contact lenses versus glasses in the patients. Mean RMS values of spherical aberration, irregular astigmatism and total high-order aberrations decreased significantly with contact lenses. Dis cus si on: Silicone hydrogel soft contact lenses may improve visual quality by decreasing the corneal aberrations in patients with corneal opacities. (Turk J Ophthalmol 2012; 42: 97-102

  9. Spherical sampling

    CERN Document Server

    Freeden, Willi; Schreiner, Michael

    2018-01-01

    This book presents, in a consistent and unified overview, results and developments in the field of today´s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.

  10. Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems

    KAUST Repository

    N U+02BC Doye, Ibrahima

    2018-02-13

    In this paper, we propose a robust fractional-order proportional-integral U+0028 FOPI U+0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities U+0028 LMIs U+0029 approach by using an indirect Lyapunov method. The proposed U+0028 FOPI U+0029 observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional U+0028 FOP U+0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.

  11. Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems

    KAUST Repository

    N U+02BC Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem

    2018-01-01

    In this paper, we propose a robust fractional-order proportional-integral U+0028 FOPI U+0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities U+0028 LMIs U+0029 approach by using an indirect Lyapunov method. The proposed U+0028 FOPI U+0029 observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional U+0028 FOP U+0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.

  12. The spherical harmonics method, 1 (general development of the theory)

    International Nuclear Information System (INIS)

    Mark, C.

    1957-02-01

    A method of obtaining approximate solutions of the transport equation is presented in a form applicable in principle to any geometry. The approximation will give good results in cases where the angular distribution is not very anisotropic. The basis of the approximation is to expand the density per unit solid angle Ψ(→/r, →/Ω) in spherical harmonic tensors formed from →/Ω the unit vector in the direction of velocity, and to break off the expansion. A differential equation whose degree increases with the order of the approximation is obtained for the total density Ψ (o) (r). This equation has the form where the numbers ν i depend on the order of the approximation and on the value of the parameter a of the medium, but not at all on the geometry. When the equation for the total density is an ordinary equation, we simulate the physical condition of continuity of Ψ(→/r, →/Ω) at a boundary in a multi-medium problem by requiring that the spherical harmonic moments of Ψ(→/r, →/Ω) which we retain be continuous; and this determines the constants in the solution for Ψ (o) (→/r. The form of the solution for the total density and the necessary moments in an approximation of general order is given explicitly for plane and spherical symmetry; and for cylindrical symmetry the solution is given for two low-order approximations. In a later report (CRT-338, Revised) the application of the method to several problems involving plane and spherical symmetry will be discussed in detail and the results of a number of examples already worked will also be given. (author)

  13. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  14. Spherical Hecke algebra in the Nekrasov-Shatashvili limit

    Energy Technology Data Exchange (ETDEWEB)

    Bourgine, Jean-Emile [Asia Pacific Center for Theoretical Physics (APCTP),Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2015-01-21

    The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of N=2 gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ϵ{sub 2}. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.

  15. Spherical tokamak power plant design issues

    International Nuclear Information System (INIS)

    Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.

    2000-01-01

    The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed

  16. Recent Progress on Spherical Torus Research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki [PPPL; Kaita, Robert [PPPL

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  17. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Gates, D.; Hosea, J.; Le Blanc, B.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Rosenberg, A.; Bonoli, P.; Mau, T.K.; Pinsker, R.I.; Raman, R.; Ryan, P.; Swain, D.; Wilgen, J.

    2003-01-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  18. Symmetry Classification of First Integrals for Scalar Linearizable Second-Order ODEs

    Directory of Open Access Journals (Sweden)

    K. S. Mahomed

    2012-01-01

    Full Text Available Symmetries of the fundamental first integrals for scalar second-order ordinary differential equations (ODEs which are linear or linearizable by point transformations have already been obtained. Firstly we show how one can determine the relationship between the symmetries and the first integrals of linear or linearizable scalar ODEs of order two. Secondly, a complete classification of point symmetries of first integrals of such linear ODEs is studied. As a consequence, we provide a counting theorem for the point symmetries of first integrals of scalar linearizable second-order ODEs. We show that there exists the 0-, 1-, 2-, or 3-point symmetry cases. It is shown that the maximal algebra case is unique.

  19. Stochastic B-series and order conditions for exponential integrators

    DEFF Research Database (Denmark)

    Arara, Alemayehu Adugna; Debrabant, Kristian; Kværnø, Anne

    2018-01-01

    We discuss stochastic differential equations with a stiff linear part and their approximation by stochastic exponential integrators. Representing the exact and approximate solutions using B-series and rooted trees, we derive the order conditions for stochastic exponential integrators. The resulting...

  20. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    Science.gov (United States)

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  1. Design and evaluation of a higher-order spherical microphone/ambisonic sound reproduction system for the acoustical assessment of concert halls

    Science.gov (United States)

    Clapp, Samuel W.

    Previous studies of the perception of concert hall acoustics have generally employed two methods for soliciting listeners' judgments. One method is to have listeners rate the sound in a hall while physically present in that hall. The other method is to make recordings of different halls and seat positions, and then recreate the environment for listeners in a laboratory setting via loudspeakers or headphones. In situ evaluations offer a completely faithful rendering of all aspects of the concert hall experience. However, many variables cannot be controlled and the short duration of auditory memory precludes an objective comparison of different spaces. Simulation studies allow for more control over various aspects of the evaluations, as well as A/B comparisons of different halls and seat positions. The drawback is that all simulation methods suffer from limitations in the accuracy of reproduction. If the accuracy of the simulation system is improved, then the advantages of the simulation method can be retained, while mitigating its disadvantages. Spherical microphone array technology has received growing interest in the acoustics community in recent years for many applications including beamforming, source localization, and other forms of three-dimensional sound field analysis. These arrays can decompose a measured sound field into its spherical harmonic components, the spherical harmonics being a set of spatial basis functions on the sphere that are derived from solving the wave equation in spherical coordinates. Ambisonics is a system for two- and three-dimensional spatialized sound that is based on recreating a sound field from its spherical harmonic components. Because of these shared mathematical underpinnings, ambisonics provides a natural way to present fully spatialized renderings of recordings made with a spherical microphone array. Many of the previously studied applications of spherical microphone arrays have used a narrow frequency range where the array

  2. Riemann-Liouville integrals of fractional order and extended KP hierarchy

    International Nuclear Information System (INIS)

    Kamata, Masaru; Nakamula, Atsushi

    2002-01-01

    An attempt to formulate the extensions of the KP hierarchy by introducing fractional-order pseudo-differential operators is given. In the case of the extension with the half-order pseudo-differential operators, a system analogous to the supersymmetric extensions of the KP hierarchy is obtained. Unlike the supersymmetric extensions, no Grassmannian variable appears in the hierarchy considered here. More general hierarchies constructed by the 1/Nth-order pseudo-differential operators, their integrability and the reduction procedure are also investigated. In addition to finding the new extensions of the KP hierarchy, a brief introduction to the Riemann-Liouville integral is provided to yield a candidate for the fractional-order pseudo-differential operators

  3. Characterization of Symmetry Properties of First Integrals for Submaximal Linearizable Third-Order ODEs

    Directory of Open Access Journals (Sweden)

    K. S. Mahomed

    2013-01-01

    Full Text Available The relationship between first integrals of submaximal linearizable third-order ordinary differential equations (ODEs and their symmetries is investigated. We obtain the classifying relations between the symmetries and the first integral for submaximal cases of linear third-order ODEs. It is known that the maximum Lie algebra of the first integral is achieved for the simplest equation and is four-dimensional. We show that for the other two classes they are not unique. We also obtain counting theorems of the symmetry properties of the first integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0, 1, 2, and 3 symmetries, and for the 4 symmetry class of linear third-order ODEs, they are 0, 1, and 2 symmetries, respectively. In the case of submaximal linear higher-order ODEs, we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals.

  4. The spherical harmonics method, 1 (general development of the theory)

    Energy Technology Data Exchange (ETDEWEB)

    Mark, C

    1957-02-15

    A method of obtaining approximate solutions of the transport equation is presented in a form applicable in principle to any geometry. The approximation will give good results in cases where the angular distribution is not very anisotropic. The basis of the approximation is to expand the density per unit solid angle {Psi}({yields}/r, {yields}/{Omega}) in spherical harmonic tensors formed from {yields}/{Omega} the unit vector in the direction of velocity, and to break off the expansion. A differential equation whose degree increases with the order of the approximation is obtained for the total density {Psi}{sup (o)}(r). This equation has the form where the numbers {nu}{sub i} depend on the order of the approximation and on the value of the parameter a of the medium, but not at all on the geometry. When the equation for the total density is an ordinary equation, we simulate the physical condition of continuity of {Psi}({yields}/r, {yields}/{Omega}) at a boundary in a multi-medium problem by requiring that the spherical harmonic moments of {Psi}({yields}/r, {yields}/{Omega}) which we retain be continuous; and this determines the constants in the solution for {Psi}{sup (o)}({yields}/r. The form of the solution for the total density and the necessary moments in an approximation of general order is given explicitly for plane and spherical symmetry; and for cylindrical symmetry the solution is given for two low-order approximations. In a later report (CRT-338, Revised) the application of the method to several problems involving plane and spherical symmetry will be discussed in detail and the results of a number of examples already worked will also be given. (author)

  5. Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-28

    © 2014 American Chemical Society. Conformal integration of semiconductor gain media is broadly important in on-chip optical communication technology. Here we deploy atomic layer deposition to create conformally deposited organohalide perovskites-an attractive semiconducting gain medium-with the goal of achieving coherent light emission on spherical optical cavities. We demonstrate the high quality of perovskite gain media fabricated with this method, achieving optical gain in the nanosecond pulse regime with a threshold for amplified spontaneous emission of 65 ± 8 μJ cm-2. Through variable stripe length measurements, we report a net modal gain of 125 ± 22 cm-1 and a gain bandwidth of 50 ± 14 meV. Leveraging the high quality of the gain medium, we conformally coat silica microspheres with perovskite to form whispering gallery mode optical cavities and achieve lasing.

  6. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  7. Integrating Work and Basic Values into the Spherical Model of Interests

    Science.gov (United States)

    Sodano, Sandro M.

    2011-01-01

    Two prominent models of values, one in work and the other in life, were examined as they each related to the dimensions underlying the Spherical Model of Interests (Tracey & Rounds, 1996) as measured by the Personal Globe Inventory (PGI; Tracey, 2002). The technique of external property vector fitting was utilized to plot the value constructs onto…

  8. Design innovations of the next-step spherical torus experiment and spherical torus development path

    International Nuclear Information System (INIS)

    Ono, M.; Kessel, C.; Peng, M.

    2003-01-01

    The spherical torus (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as ITER as it focuses toward the compact Component Test Facility (CTF) and higher toroidal beta regimes to improve the design of DEMO and a Power Plant. To support the ST development path, one option of a Next Step Spherical Torus (NSST) device is examined. NSST is a 'performance extension' (PE) stage ST with a plasma current of 5 - 10 MA, R = 1.5, B T ≤ 2.7 T with flexible physics capability to 1) Provide a sufficient physics basis for the design of the CTF, 2) Explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, 3) Contribute to the general plasma/fusion science of high β toroidal plasmas. The NSST facility is designed to utilize the TFTR site to minimize the cost and time required for the construction. (author)

  9. High-Order Quadratures for the Solution of Scattering Problems in Two Dimensions

    National Research Council Canada - National Science Library

    Duan, Ran; Rokhlin, Vladimir

    2008-01-01

    .... The scheme is based on the combination of high-order quadrature formulae, fast application of integral operators in Lippmann-Schwinger equations, and the stabilized biconjugate gradient method (BI-CGSTAB...

  10. A study on heat transfer characteristics of spherical and fibrous alumina nanofluids

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Lee, Gyoung-Ja; Rhee, Chang Kyu

    2012-01-01

    Highlights: ► Spherical and fibrous alumina nanoparticles were prepared by pulsed wire evaporation and hydrolysis methods. ► Fibrous alumina nanofluid exhibited higher thermal conductivity enhancement than spherical one due to entangled structure of nanofibers with high aspect-ratio. ► Decreasing rate of viscosity with temperature for fibrous alumina nanofluid was much larger than that for spherical one. - Abstract: Ethylene glycol based nanofluids containing spherical/fibrous alumina nanoparticles were synthesized by pulsed wire evaporation and hydrolysis methods. The crystallographic and morphological properties of the prepared nanoparticles were analyzed by X-ray diffraction, nitrogen gas adsorption and transmission electron microscopy. The average diameter of spherical alumina nanoparticles was about 80 nm and the alumina nanofibers exhibited a high aspect ratio (length/width). The viscosity and thermal conductivity of the spherical/fibrous alumina nanofluids were experimentally measured in the temperature range from 25 to 80 °C. For the fibrous alumina nanofluid, the increase of temperature raised thermal conductivity but lowered viscosity. On the other hand, for the spherical alumina nanofluid, both thermal conductivity and viscosity were decreased with increasing temperature. In particular, the fibrous alumina nanofluid exhibited a higher enhancement of thermal conductivity than the spherical one due to the well-connected structure between entangled nanofibers with high aspect ratio.

  11. Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2004-01-01

    An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...

  12. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  13. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism.

    Science.gov (United States)

    Al-Zeraid, Ferial M; Osuagwu, Uchechukwu L

    2016-03-22

    Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, -3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser-enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61% of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from -0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0

  14. Vibrational collective model for spheric even-even nuclei

    International Nuclear Information System (INIS)

    Cruz, M.T.F. da.

    1985-01-01

    A review is made on the evidences of collective motions in spherical even-even nuclei. The several multipole transitions occuring in such a nuclei are discussed. Some hypothesis which are necessary in order to build-up the model are presented. (L.C.) [pt

  15. First results of spherical GEMs

    CERN Document Server

    Pinto, Serge Duarte; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; van Stenis, Miranda; Taureg, Hans; Villa, Marco

    2010-01-01

    We developed a method to make GEM foils with a spherical geometry. Tests of this procedure and with the resulting spherical GEMs are presented. Together with a spherical drift electrode, a spherical conversion gap can be formed. This eliminates the parallax error for detection of x-rays, neutrons or UV photons when a gaseous converter is used. This parallax error limits the spatial resolution at wide scattering angles. Besides spherical GEMs, we have developed curved spacers to maintain accurate spacing, and a conical field cage to prevent edge distortion of the radial drift field up to the limit of the angular acceptance of the detector. With these components first tests are done in a setup with a spherical entrance window but a planar readout structure; results will be presented and discussed. A flat readout structure poses difficulties, however. Therefore we will show advanced plans to make a prototype of an entirely spherical double-GEM detector, including a spherical 2D readout structure. This detector w...

  16. Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yang, Min; Liu, Qi; Zhao, Hongsheng; Li, Ziqiang; Liu, Bing; Li, Xingdong; Meng, Fanyong

    2014-01-01

    As a core unit of HTGRs (high-temperature gas-cooled reactors), the quality of spherical fuel elements is directly related to the safety and reliability of HTGRs. In line with the design and performance requirements of the spherical fuel elements, no coated fuel particles are permitted to enter the fuel-free zone of a spherical fuel element. For fast and accurate detection of escaped coated fuel particles, X-ray DR (digital radiography) imaging with a step-by-step circular scanning trajectory was adopted for Chinese 10 MW HTGRs. The scanning parameters dominating the volume of the blind zones were optimized to ensure the missing detection of the escaped coated fuel particles is as low as possible. We proposed a dynamic calibration method for tracking the projection of the fuel-free zone accurately, instead of using a fuel-free zone mask of fixed size and position. After the projection data in the fuel-free zone were extracted, image and graphic processing methods were combined for automatic recognition of escaped coated fuel particles, and some practical inspection results were presented. - Highlights: • An X-ray DR imaging system for quality inspection of spherical fuel elements was introduced. • A method for optimizing the blind-zone-related scanning parameter was proposed. • A dynamic calibration method for tracking the fuel-free zone accurately was proposed. • Some inspection results of the disqualified spherical fuel elements with escaped coated fuel particles were presented

  17. The "Third"-Order Barrier for Technology-Integration Instruction: Implications for Teacher Education

    Science.gov (United States)

    Tsai, Chin-Chung; Chai, Ching Sing

    2012-01-01

    Technology integration is a major trend in contemporary education practice. When undertaking technology integration in classrooms, a first-order barrier and a second-order barrier, as proposed by Ertmer (1999), can hinder its implementation. The first-order barrier is external, such as lack of adequate access, time, training and institutional…

  18. Multipole expansion of acoustical Bessel beams with arbitrary order and location.

    Science.gov (United States)

    Gong, Zhixiong; Marston, Philip L; Li, Wei; Chai, Yingbin

    2017-06-01

    An exact solution of expansion coefficients for a T-matrix method interacting with acoustic scattering of arbitrary order Bessel beams from an obstacle of arbitrary location is derived analytically. Because of the failure of the addition theorem for spherical harmonics for expansion coefficients of helicoidal Bessel beams, an addition theorem for cylindrical Bessel functions is introduced. Meanwhile, an analytical expression for the integral of products including Bessel and associated Legendre functions is applied to eliminate the integration over the polar angle. Note that this multipole expansion may also benefit other scattering methods and expansions of incident waves, for instance, partial-wave series solutions.

  19. Market response to external events and interventions in spherical minority games

    International Nuclear Information System (INIS)

    Papadopoulos, P; Coolen, A C C

    2008-01-01

    We solve the dynamics of large spherical minority games (MG) in the presence of non-negligible time-dependent external contributions to the overall market bid. The latter represent the actions of market regulators or other major natural or political events that impact on the market. In contrast to non-spherical MGs, the spherical formulation allows one to derive closed dynamical order parameter equations in an explicit form and work out the market's response to such events fully analytically. We focus on a comparison between the response to stationary versus oscillating market interventions, and reveal profound and partially unexpected differences in terms of transition lines and the volatility

  20. A multi purpose 4 π counter spherical ionization chamber type

    International Nuclear Information System (INIS)

    Calin, Marian Romeo; Calin, Adrian Cantemir

    2004-01-01

    A pressurized ionization chamber detector able to measure radioactive sources in internal 2π or 4π geometry was built in order to characterize alpha and beta radioactive sources, i.e. to calibrate these sources by relative method and to test the behavior of gas mixtures in pressurized-gas radiation detectors. The detector we made is of spherical shape and works by collecting in a uniform electric field the ionization charges resulting from the interaction of ionizing radiation with gas in the sensitive volume of the chamber. An ionizing current proportional to the activity of the radioactive source to be measured is obtained. In this paper a gas counter with a spherical symmetry is described. This detector can work in a very satisfactory manner, either as a flow counter or as a ionization chamber reaching in the latter case a good α pulse height resolution, even with large emitting sources. Calculations are made in order to find the dependence of the pulse shape on the direction of emission of an α-particle by a point source in the chamber (finite track). A good agreement is found between these calculations and the experimental tests performed, which show that this dependence can be employed in high efficiency measurements of angular α-γ correlations. (authors)

  1. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.

    Science.gov (United States)

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-04-14

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.

  2. Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles

    International Nuclear Information System (INIS)

    Jr, R M Marinho; Magalhaes, N S; Aguiar, O D; Frajuca, C

    2002-01-01

    High-energy cosmic ray particles are expected to be a significant source of noise in resonant mass gravitational wave detectors close to the quantum limit. The spherical, fourth generation antennas have been designed to attain such a limit. In this work we will show how the energy of a cosmic ray particle interacting with such an antenna is distributed over its eigenmodes. We will then make some comments on the relevant consequences of such a distribution for gravitational wave detection

  3. Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles

    CERN Document Server

    Marinho, R M; Aguiar, O D; Frajuca, C

    2002-01-01

    High-energy cosmic ray particles are expected to be a significant source of noise in resonant mass gravitational wave detectors close to the quantum limit. The spherical, fourth generation antennas have been designed to attain such a limit. In this work we will show how the energy of a cosmic ray particle interacting with such an antenna is distributed over its eigenmodes. We will then make some comments on the relevant consequences of such a distribution for gravitational wave detection.

  4. The Integration Order of Vector Autoregressive Processes

    DEFF Research Database (Denmark)

    Franchi, Massimo

    We show that the order of integration of a vector autoregressive process is equal to the difference between the multiplicity of the unit root in the characteristic equation and the multiplicity of the unit root in the adjoint matrix polynomial. The equivalence with the standard I(1) and I(2...

  5. Numerov iteration method for second order integral-differential equation

    International Nuclear Information System (INIS)

    Zeng Fanan; Zhang Jiaju; Zhao Xuan

    1987-01-01

    In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics

  6. An electromagnetic spherical phased array thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Okress, E.C.

    1983-01-01

    Discussed are salient physics aspects of a microwave singly reentrant spherical periodic phased array of uniformally distributed identical coaxial radiation elements in an essentially simulated infinite array environment. The array is capable of maintaining coherence or phase control (to the limit of the order of 300 GHz) of its spherically converging electromagnetic transverse magnetic mode radiation field, for confinement (and heating) of thermonuclear plasma in steady-state or inertial thermonuclear fusion. The array also incorporates capability for coaxial directional coupler extraction of fusionpower. The radiation elements of the array are shielded against DT Thermonuclear plasma emissions (i.e., neutrons and bremsstrahlung) by either sufficiently (available) low less tangent and cooled, spherically concentric shield (e.g., Titanium oxide); or alternately by identical material dome windows mounted on each radiation element's aperture of the array. The pump microwave power required for thermonuclear fusion feasibility comprises an array of phase-locked available klystron amplifiers (comparable gyratron amplifiers remain to be developed)

  7. Evolution of the spherical clusters

    International Nuclear Information System (INIS)

    Surdin, V.G.

    1978-01-01

    The possible processes of the Galaxy spherical clusters formation and evolution are described on a popular level. The orbits of spherical cluster motion and their spatial velocities are determined. Given are the distrbutions of spherical cluster stars according to their velocities and the observed distribution of spherical clusters in the area of the Galaxy slow evolution. The dissipation and dynamic friction processes destructing clusters with the mass less than 10 4 of solar mass and bringing about the reduction of clusters in the Galaxy are considered. The paradox of forming mainly X-ray sources in spherical clusters is explained. The schematic image of possible ways of forming X-ray sources in spherical clusters is given

  8. Fundamentals of spherical array processing

    CERN Document Server

    Rafaely, Boaz

    2015-01-01

    This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications.   The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...

  9. Limit analysis of spherical pressure vessels with protruding nozzles and associated defects

    International Nuclear Information System (INIS)

    Goodall, I.W.; Miller, A.G.

    1981-04-01

    In order to assess the failure of a structure with a defect it is necessary to obtain both a linear elastic fracture solution and a limit analysis of the structure. In combination these solutions enable the analyst to assess structural integrity. This note deals with the second aspect and investigates the effect of a partial penetration defect on the ductile collapse load of a spherical pressure vessel with a protruding nozzle. A lower bound solution is obtained for defects of varying depth around the intersection of the sphere and the cylinder. Results are presented for a typical geometry and it is found that the solution may be simply represented by three different functions depending on the fractional ligament thickness. (author)

  10. Recovering functions from the spherical mean transform with data on an ellipse using eigenfunction expansion in elliptical coordinates

    Science.gov (United States)

    Salman, Yehonatan

    2017-09-01

    The aim of this paper is to introduce a new inversion procedure for recovering functions, defined on R2 , from the spherical mean transform, which integrates functions on a prescribed family Λ of circles, where Λ consists of circles whose centers belong to a given ellipse E on the plane. The method presented here follows the same procedure which was used by Norton (J Acoust Soc Am 67:1266-1273, 1980) for recovering functions in case where Λ consists of circles with centers on a circle. However, at some point we will have to modify the method in [24] by using expansion in elliptical coordinates, rather than spherical coordinates, in order to solve the more generalized elliptical case. We will rely on a recent result obtained by Cohl and Volkmer (J Phys A Math Theor 45:355204, 2012) for the eigenfunction expansion of the Bessel function in elliptical coordinates.

  11. High-order Div- and Quasi Curl-Conforming Basis Functions for Calderón Multiplicative Preconditioning of the EFIE

    KAUST Repository

    Valdes, Felipe; Andriulli, Francesco P.; Cools, Kristof; Michielssen, Eric

    2011-01-01

    A new high-order Calderón multiplicative preconditioner (HO-CMP) for the electric field integral equation (EFIE) is presented. In contrast to previous CMPs, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of high-order quasi curl-conforming basis functions. Like its predecessors, the HO-CMP can be seamlessly integrated into existing EFIE codes. Numerical results demonstrate that the linear systems of equations obtained using the proposed HO-CMP converge rapidly, regardless of the mesh density and of the order of the current expansion. © 2006 IEEE.

  12. High-order Div- and Quasi Curl-Conforming Basis Functions for Calderón Multiplicative Preconditioning of the EFIE

    KAUST Repository

    Valdes, Felipe

    2011-04-01

    A new high-order Calderón multiplicative preconditioner (HO-CMP) for the electric field integral equation (EFIE) is presented. In contrast to previous CMPs, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of high-order quasi curl-conforming basis functions. Like its predecessors, the HO-CMP can be seamlessly integrated into existing EFIE codes. Numerical results demonstrate that the linear systems of equations obtained using the proposed HO-CMP converge rapidly, regardless of the mesh density and of the order of the current expansion. © 2006 IEEE.

  13. Deterministic factor analysis: methods of integro-differentiation of non-integral order

    Directory of Open Access Journals (Sweden)

    Valentina V. Tarasova

    2016-12-01

    Full Text Available Objective to summarize the methods of deterministic factor economic analysis namely the differential calculus and the integral method. nbsp Methods mathematical methods for integrodifferentiation of nonintegral order the theory of derivatives and integrals of fractional nonintegral order. Results the basic concepts are formulated and the new methods are developed that take into account the memory and nonlocality effects in the quantitative description of the influence of individual factors on the change in the effective economic indicator. Two methods are proposed for integrodifferentiation of nonintegral order for the deterministic factor analysis of economic processes with memory and nonlocality. It is shown that the method of integrodifferentiation of nonintegral order can give more accurate results compared with standard methods method of differentiation using the first order derivatives and the integral method using the integration of the first order for a wide class of functions describing effective economic indicators. Scientific novelty the new methods of deterministic factor analysis are proposed the method of differential calculus of nonintegral order and the integral method of nonintegral order. Practical significance the basic concepts and formulas of the article can be used in scientific and analytical activity for factor analysis of economic processes. The proposed method for integrodifferentiation of nonintegral order extends the capabilities of the determined factorial economic analysis. The new quantitative method of deterministic factor analysis may become the beginning of quantitative studies of economic agents behavior with memory hereditarity and spatial nonlocality. The proposed methods of deterministic factor analysis can be used in the study of economic processes which follow the exponential law in which the indicators endogenous variables are power functions of the factors exogenous variables including the processes

  14. Examination of High-Torque Sandwich-Type Spherical Ultrasonic Motor Using with High-Power Multimode Annular Vibrating Stator

    Directory of Open Access Journals (Sweden)

    Ai Mizuno

    2018-02-01

    Full Text Available Spherical ultrasonic motors (SUSMs that can operate with multiple degrees of freedom (MDOF using only a single stator have high holding torque and high torque at low speed, which makes reduction gearing unnecessary. The simple structure of MDOF-SUSMs makes them useful as compact actuators, but their development is still insufficient for applications such as joints of humanoid robots and other systems that require MDOF and high torque. To increase the torque of a sandwich-type MDOF-SUSM, we have not only made the vibrating stator and spherical rotor larger but also improved the structure using three design concepts: (1 increasing the strength of all three vibration modes using multilayered piezoelectric actuators (MPAs embedded in the stator, (2 enhancing the rigidity of the friction driving portion of the stator for transmitting more vibration force to the friction-driven rotor surface, and (3 making the support mechanism more stable. An MDOF-SUSM prototype was tested, and the maximum torques of rotation around the X(Y-axis and Z-axis were measured as 1.48 N∙m and 2.05 N∙m, respectively. Moreover, the values for torque per unit weight of the stator were obtained as 0.87 N∙m/kg for the X(Y-axis and 1.20 N∙m/kg for the Z-axis. These are larger than values reported for any other sandwich-type MDOF-SUSM of which we are aware. Hence, the new design concepts were shown to be effective for increasing torque. In addition, we measured the transient response and calculated the load characteristics of rotation around the rotor’s three orthogonal axes.

  15. High-order harmonic propagation in gases within the discrete dipole approximation

    International Nuclear Information System (INIS)

    Hernandez-Garcia, C.; Perez-Hernandez, J. A.; Ramos, J.; Jarque, E. Conejero; Plaja, L.; Roso, L.

    2010-01-01

    We present an efficient approach for computing high-order harmonic propagation based on the discrete dipole approximation. In contrast with other approaches, our strategy is based on computing the total field as the superposition of the driving field with the field radiated by the elemental emitters of the sample. In this way we avoid the numerical integration of the wave equation, as Maxwell's equations have an analytical solution for an elementary (pointlike) emitter. The present strategy is valid for low-pressure gases interacting with strong fields near the saturation threshold (i.e., partially ionized), which is a common situation in the experiments of high-order harmonic generation. We use this tool to study the dependence of phase matching of high-order harmonics with the relative position between the beam focus and the gas jet.

  16. Multiplexed Simultaneous High Sensitivity Sensors with High-Order Mode Based on the Integration of Photonic Crystal 1 × 3 Beam Splitter and Three Different Single-Slot PCNCs.

    Science.gov (United States)

    Zhou, Jian; Huang, Lijun; Fu, Zhongyuan; Sun, Fujun; Tian, Huiping

    2016-07-07

    We simulated an efficient method for the sensor array of high-sensitivity single-slot photonic crystal nanobeam cavities (PCNCs) on a silicon platform. With the combination of a well-designed photonic crystal waveguide (PhCW) filter and an elaborate single-slot PCNC, a specific high-order resonant mode was filtered for sensing. A 1 × 3 beam splitter carefully established was implemented to split channels and integrate three sensors to realize microarrays. By applying the three-dimensional finite-difference-time-domain (3D-FDTD) method, the sensitivities calculated were S₁ = 492 nm/RIU, S₂ = 244 nm/RIU, and S₃ = 552 nm/RIU, respectively. To the best of our knowledge, this is the first multiplexing design in which each sensor cite features such a high sensitivity simultaneously.

  17. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory.

    Science.gov (United States)

    Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G

    2012-10-01

    Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.

  18. Non-Spherical Microcapsules for Increased Core Content Volume Delivery

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The goal of this project was to advance microencapsulation from the standard spherical microcapsule to a non-spherical, high-aspect ratio (HAR), elongated microcapsule. This was to be accomplished by developing reproducible methods of synthesizing or fabricating robust, non-spherical, HAR microcapsules. An additional goal of this project was to develop the techniques to the point where scale-up of these methods could be examined. Additionally, this project investigated ways to apply the microencapsulation techniques developed as part of this project to self-healing formulations.

  19. Spherical CNNs

    OpenAIRE

    Cohen, Taco S.; Geiger, Mario; Koehler, Jonas; Welling, Max

    2018-01-01

    Convolutional Neural Networks (CNNs) have become the method of choice for learning problems involving 2D planar images. However, a number of problems of recent interest have created a demand for models that can analyze spherical images. Examples include omnidirectional vision for drones, robots, and autonomous cars, molecular regression problems, and global weather and climate modelling. A naive application of convolutional networks to a planar projection of the spherical signal is destined t...

  20. photon-plasma: A modern high-order particle-in-cell code

    International Nuclear Information System (INIS)

    Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke

    2013-01-01

    We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks

  1. Improvement of high-fold gamma-ray data processing: the spherical gate method

    CERN Document Server

    Theisen, C; Stezowski, O; Vivien, J P

    1999-01-01

    A new method for optimizing the processing of events from a highly efficient large array gamma-ray detector is described in this article. The spherical gates technique, developed to project high-fold events, consists of optimizing n-dimensional gate shape as a function of peak width and shape of each detector. Formulas in closed form are proposed for determining the projected statistics from coincidence fold and peak shape and for estimating the increased quality of projected spectra. This procedure has been tested on high-fold, high statistics data sets including superdeformed cascades. Compared to the classical 'square-gate' technique, better peak-to-background ratios as well as a reduction in fluctuations are observed. A quality parameter is defined to characterize the optimal parameter set. This method leads roughly to a gain in spectral quality equivalent of one fold. It is also shown that the efficiency of the method increases with coincidence fold. This should be particularly suited for future higher-f...

  2. High-order fractional partial differential equation transform for molecular surface construction.

    Science.gov (United States)

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model

  3. Non-linear perturbations of a spherically collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David

    2009-01-01

    Linear perturbation theory has been a successful tool in General Relativity, and can be considered as complementary to full nonlinear simulations. Going to second and higher perturbative orders improves the approximation and offers a controlled way to analyze the nonlinearities of the theory, though the problem becomes much harder computationally. We present a systematic approach to the treatment of high order metric perturbations, focusing on the scenario of nonspherical perturbations of a dynamical spherical background. It is based on the combination of adapted geometrical variables and the use of efficient computer algebra techniques. After dealing with a number of theoretical issues, like the construction of gauge invariants, we apply the formalism to the particular case of a perfect fluid star surrounded by a vacuum exterior. We describe the regularization of the divergences of the perturbations at null infinity and the matching conditions through the surface of the star.

  4. Numerical relativity in spherical coordinates with the Einstein Toolkit

    Science.gov (United States)

    Mewes, Vassilios; Zlochower, Yosef; Campanelli, Manuela; Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-04-01

    Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are much better suited to take advantage of approximate symmetries in a number of astrophysical objects, including single stars, black holes, and accretion disks. While the appearance of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the coordinate singularities are handled analytically. This is possible with the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial quantities. In this paper we report on an implementation of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, originally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries. We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical grids rather than Cartesian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical relativity in spherical coordinates will become available to the entire numerical relativity community.

  5. High-order finite volume advection

    OpenAIRE

    Shaw, James

    2018-01-01

    The cubicFit advection scheme is limited to second-order convergence because it uses a polynomial reconstruction fitted to point values at cell centres. The highOrderFit advection scheme achieves higher than second order by calculating high-order moments over the mesh geometry.

  6. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    Science.gov (United States)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  7. Lateral Order and Self-Organized Morphology of Diblock Copolymer Micellar Films

    Directory of Open Access Journals (Sweden)

    Jiun-You Liou

    2018-05-01

    Full Text Available We report the lateral order and self-organized morphology of diblock copolymer polystyrene-block-poly(2-vinylpyridine, P(S-b-2VP, and micelles on silicon substrates (SiOx/Si. These micellar films were prepared by spin coating from polymer solutions of varied concentration of polymer in toluene onto SiOx/Si, and were investigated with grazing-incidence small-angle X-ray scattering (GISAXS and an atomic force microscope (AFM. With progressively increased surface coverage with increasing concentration, loosely packed spherical micelles, ribbon-like nanostructures, and a second layer of spherical micelles were obtained sequentially. Quantitative analysis and simulations of the micellar packing demonstrates that the spatial ordering of the loosely packed spherical micelles altered from short-range order to hexagonal order when the micellar coverage increased from small to moderate densities of the covered surface. At large densities, anisotropic fusion between spherical micelles caused the ribbon-like nanostructures to have a short-range spatial order; the ordering quality of the second layer was governed by the rugged surface of the underlying layer because the valleys between the ribbon-like nanostructures allowed for further deposition of spherical micelles.

  8. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  9. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  10. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  11. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  12. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    Science.gov (United States)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  13. Algebraic Properties of First Integrals for Scalar Linear Third-Order ODEs of Maximal Symmetry

    Directory of Open Access Journals (Sweden)

    K. S. Mahomed

    2013-01-01

    Full Text Available By use of the Lie symmetry group methods we analyze the relationship between the first integrals of the simplest linear third-order ordinary differential equations (ODEs and their point symmetries. It is well known that there are three classes of linear third-order ODEs for maximal cases of point symmetries which are 4, 5, and 7. The simplest scalar linear third-order equation has seven-point symmetries. We obtain the classifying relation between the symmetry and the first integral for the simplest equation. It is shown that the maximal Lie algebra of a first integral for the simplest equation y′′′=0 is unique and four-dimensional. Moreover, we show that the Lie algebra of the simplest linear third-order equation is generated by the symmetries of the two basic integrals. We also obtain counting theorems of the symmetry properties of the first integrals for such linear third-order ODEs. Furthermore, we provide insights into the manner in which one can generate the full Lie algebra of higher-order ODEs of maximal symmetry from two of their basic integrals.

  14. Multiplexed Simultaneous High Sensitivity Sensors with High-Order Mode Based on the Integration of Photonic Crystal 1 × 3 Beam Splitter and Three Different Single-Slot PCNCs

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-07-01

    Full Text Available We simulated an efficient method for the sensor array of high-sensitivity single-slot photonic crystal nanobeam cavities (PCNCs on a silicon platform. With the combination of a well-designed photonic crystal waveguide (PhCW filter and an elaborate single-slot PCNC, a specific high-order resonant mode was filtered for sensing. A 1 × 3 beam splitter carefully established was implemented to split channels and integrate three sensors to realize microarrays. By applying the three-dimensional finite-difference-time-domain (3D-FDTD method, the sensitivities calculated were S1 = 492 nm/RIU, S2 = 244 nm/RIU, and S3 = 552 nm/RIU, respectively. To the best of our knowledge, this is the first multiplexing design in which each sensor cite features such a high sensitivity simultaneously.

  15. Calculation of neutron flux and reactivity by perturbation theory at high order

    International Nuclear Information System (INIS)

    Silva, W.L.P. da; Silva, F.C. da; Thome Filho, Z.D.

    1982-01-01

    A high order pertubation theory is studied, independent of time, applied to integral parameter calculation of a nuclear reactor. A pertubative formulation, based on flux difference technique, which gives directy the reactivity and neutron flux up to the aproximation order required, is presented. As an application of the method, global pertubations represented by fuel temperature variations, are used. Tests were done aiming to verify the relevancy of the approximation order for several intensities of the pertubations considered. (E.G.) [pt

  16. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and

  17. Structural and Mechanical Hysteresis at the Order-Order Transition of Block Copolymer Micellar Crystals

    Directory of Open Access Journals (Sweden)

    Theresa A. LaFollette

    2011-01-01

    Full Text Available Concentrated solutions of a water-soluble block copolymer (PEO20-(PPO70-(PEO20 show a thermoreversible transition from a liquid to a gel. Over a range of concentration there also exists an order-order transition (OOT between cubically-packed spherical micelles and hexagonally-packed cylindrical micelles. This OOT displays a hysteresis between the heating and cooling transitions that is observed at both the macroscale through rheology and nanoscale through small angle neutron scattering (SANS. The hysteresis is caused by the persistence of the cubically-packed spherical micelle phase into the hexagonally-packed cylindrical micelle phase likely due to the hindered realignment of the spherical micelles into cylindrical micelles and then packing of the cylindrical micelles into a hexagonally-packed cylindrical micelle phase. This type of hysteresis must be fully characterized, and possibly avoided, for these block copolymer systems to be used as templates in nanocomposites.

  18. Worldwide complete spherical Bouguer and isostatic anomaly maps

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  19. Field Method for Integrating the First Order Differential Equation

    Institute of Scientific and Technical Information of China (English)

    JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

    2007-01-01

    An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

  20. E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Chen, Chenggang; Anderson, David P

    2007-01-01

    .... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...

  1. Optimal order and time-step criterion for Aarseth-type N-body integrators

    International Nuclear Information System (INIS)

    Makino, Junichiro

    1991-01-01

    How the selection of the time-step criterion and the order of the integrator change the efficiency of Aarseth-type N-body integrators is discussed. An alternative to Aarseth's scheme based on the direct calculation of the time derivative of the force using the Hermite interpolation is compared to Aarseth's scheme, which uses the Newton interpolation to construct the predictor and corrector. How the number of particles in the system changes the behavior of integrators is examined. The Hermite scheme allows a time step twice as large as that for the standard Aarseth scheme for the same accuracy. The calculation cost of the Hermite scheme per time step is roughly twice as much as that of the standard Aarseth scheme. The optimal order of the integrators depends on both the particle number and the accuracy required. The time-step criterion of the standard Aarseth scheme is found to be inapplicable to higher-order integrators, and a more uniformly reliable criterion is proposed. 18 refs

  2. Functionalized polymer-based spherical activated carbon for liquid and gas phase applications

    International Nuclear Information System (INIS)

    Schrage, Christian; Modrow, Antje; Fichtner, Sven; Giebelhausen, Jann Michael; Boehringer, Bertram

    2014-01-01

    Polymer-based spherical activated carbon (PBSAC) can be functionalized through the integration of reactive compounds. This offers new fields of applications for this adsorbent material. Impregnated PBSAC can be used as broadband sorbent material for respiratory protection, and for removal of certain metals from water, while the integration of nitrogen leads to a material suitable for the clean-up of gases. Functionalization through oxidation or integration of nitrogen atoms enables the concentration of valuable resources like uranium or gold.

  3. Surface charge method for molecular surfaces with curved areal elements I. Spherical triangles

    Science.gov (United States)

    Yu, Yi-Kuo

    2018-03-01

    Parametrizing a curved surface with flat triangles in electrostatics problems creates a diverging electric field. One way to avoid this is to have curved areal elements. However, charge density integration over curved patches appears difficult. This paper, dealing with spherical triangles, is the first in a series aiming to solve this problem. Here, we lay the ground work for employing curved patches for applying the surface charge method to electrostatics. We show analytically how one may control the accuracy by expanding in powers of the the arc length (multiplied by the curvature). To accommodate not extremely small curved areal elements, we have provided enough details to include higher order corrections that are needed for better accuracy when slightly larger surface elements are used.

  4. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    International Nuclear Information System (INIS)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg; Lin, Binhua; Meron, Mati

    2015-01-01

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles

  5. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Lin, Binhua, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati [Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637 (United States)

    2015-04-20

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  6. Integrable higher order deformations of Heisenberg supermagnetic model

    International Nuclear Information System (INIS)

    Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong

    2009-01-01

    The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S 2 =3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S 2 =S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.

  7. Integrated differential high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Farch, Kjartan

    2015-01-01

    In this paper an integrated differential high-voltage transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is designed and implemented in a 0.35 μm high-voltage process. Measurements are performed on the integrated circuit in order...... to assess its performance. The circuit generates pulses at differential voltage levels of 60V, 80V and 100 V, a frequency up to 5MHz and a measured driving strength of 1.75 V/ns with the CMUT connected. The total on-chip area occupied by the transmitting circuit is 0.18 mm2 and the power consumption...

  8. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  9. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.

    Science.gov (United States)

    Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad

    2017-11-30

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  10. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    Science.gov (United States)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.

  11. Spherical reconciliation for a continuous-variable quantum key distribution

    International Nuclear Information System (INIS)

    Lu Zhao; Shi Jian-Hong; Li Feng-Guang

    2017-01-01

    Information reconciliation is a significant step for a continuous-variable quantum key distribution (CV-QKD) system. We propose a reconciliation method that allows two authorized parties to extract a consistent and secure binary key in a CV-QKD protocol, which is based on Gaussian-modulated coherent states and homodyne detection. This method named spherical reconciliation is based on spherical quantization and non-binary low-density parity-check (LDPC) codes. With the suitable signal-to-noise ratio (SNR) and code rate of non-binary LDPC codes, spherical reconciliation algorithm has a high efficiency and can extend the transmission distance of CV-QKD. (paper)

  12. Spherical subsystem of galactic radiosources

    Energy Technology Data Exchange (ETDEWEB)

    Gorshkov, A G; Popov, M V [Moskovskij Gosudarstvennyj Univ. (USSR). Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' '

    1975-05-01

    The concentration of statistically complete sampling radiosources of the Ohiof scanning with plane spectra towards the Galaxy centre has been discovered. Quantitative calculations have showed that the sources form a spheric subsystem, which is close in parameters to such old formations in the Galaxy as globular clusters and the RRLsub(YR) type stars. The luminosity of the galaxy spheric subsystem object equals 10/sup 33/ erg/sec, the total number of objects being 7000. The existence of such a subsystem explains s the anomalously by low incline of statistics lgN-lgS in HF scanning PKS (..gamma..-2700Mgz) and the Michigan University scanning (..gamma..=8000Mgz) because the sources of galaxy spheric subsystem make up a considerable share in the total number of sources, especially at high frequencies (50% of sources with a flux greater than a unit of flux per 8000Mgz). It is very probable that the given subsystem consists of the representatives of one of the following class of objects: a) heat sources - the H2H regions with T=10/sup 40/K, Nsub(e)=10/sup 3/, l=1 ps b) supermass black holes with mass M/Mo approximately 10/sup 5/.

  13. High-intensification regions of gravitational lenses

    International Nuclear Information System (INIS)

    Benson, J.R.; Cooke, J.H.

    1979-01-01

    We examine the intensification, I, near the singular points in the object plane of an extended spherical gravitational lens. Geometrical optics predicts an infinite I for a point object located on a singularity. The function I, however, turns out to be integrable over the object plane. We make a detailed physical optics calculation for I. No singularities appear, and there are some interesting, marginally detectable diffraction phenomena. The two types of bright regions, the ''halo'' and the ''spike,'' behave very differently. Simple order-of-magnitude expressions give estimates for the brightness and duration of a high-intensification event

  14. Overlay control methodology comparison: field-by-field and high-order methods

    Science.gov (United States)

    Huang, Chun-Yen; Chiu, Chui-Fu; Wu, Wen-Bin; Shih, Chiang-Lin; Huang, Chin-Chou Kevin; Huang, Healthy; Choi, DongSub; Pierson, Bill; Robinson, John C.

    2012-03-01

    Overlay control in advanced integrated circuit (IC) manufacturing is becoming one of the leading lithographic challenges in the 3x and 2x nm process nodes. Production overlay control can no longer meet the stringent emerging requirements based on linear composite wafer and field models with sampling of 10 to 20 fields and 4 to 5 sites per field, which was the industry standard for many years. Methods that have emerged include overlay metrology in many or all fields, including the high order field model method called high order control (HOC), and field by field control (FxFc) methods also called correction per exposure. The HOC and FxFc methods were initially introduced as relatively infrequent scanner qualification activities meant to supplement linear production schemes. More recently, however, it is clear that production control is also requiring intense sampling, similar high order and FxFc methods. The added control benefits of high order and FxFc overlay methods need to be balanced with the increased metrology requirements, however, without putting material at risk. Of critical importance is the proper control of edge fields, which requires intensive sampling in order to minimize signatures. In this study we compare various methods of overlay control including the performance levels that can be achieved.

  15. Synthesis and characterization of spherical 2-diazo-4,6-dinitrophenol (DDNP)

    International Nuclear Information System (INIS)

    Yang Zongwei; Liu Yucun; Liu Dengcheng; Yan Liwei; Chen Ji

    2010-01-01

    Spherical 2-diazo-4,6-dinitrophenol (DDNP) with good flowability and controlled bulk density (0.65-0.95 g/cm 3 ) has been prepared at factory scale by the modified method using 4-methylphenol as crystal control ingredient. Results showed that the yield of product was increased by 5-10%, and the waste water was significantly decreased due to circulation use of waste water compared with traditional method. Synthesized spherical DDNP was characterized by IR, laser granularity measurement, SEM, HPLC and XRD. IR spectrum confirmed the structural features of spherical DDNP. The particle analysis revealed that the modified method could offer spherical DDNP with average particle size of 350 μm and high purity (>98.52%). The XRD peaks of spherical DDNP have similar diffraction angles as those of traditional DDNP. The DSC profile of spherical DDNP showed the exothermic decomposition in the temperature range of 161.2-188.5 deg. C. The product can be pressed at over 40 MPa without dead pressed phenomenon, and the minimum detonating charge of spherical DDNP was measured to be about 0.15 g. Furthermore, impact sensitivity test suggested that spherical DDNP is less sensitive than traditional DDNP.

  16. Four New Applications of Second-Order Generalized Integrator Quadrature Signal Generator

    DEFF Research Database (Denmark)

    Xin, Zhen; Zhao, Rende; Wang, Xiongfei

    2016-01-01

    The Second-Order Generalized Integrator (SOGI) was used as a building block for the SOGI-Quadrature-Signal Generator (SOGI-QSG) which has been widely used for grid synchronization, frequency estimation, and harmonic extraction over the past decade. This paper further investigates its integration...... and differentiation characteristics, with four new integrators and differentiators proposed. Theoretical analysis shows that the proposed SOGI-QSG based integration and differentiation methods can effectively overcome the drawbacks of the pure integrator and differentiator. The proposed four new methods...

  17. MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle non-sphericity

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2013-08-01

    Full Text Available The aim of this study is to theoretically investigate the sensitivity of the Multi-angle Imaging SpectroRadiometer (MISR operational (version 22 Dark Water retrieval algorithm to aerosol non-sphericity over the global oceans under actual observing conditions, accounting for current algorithm assumptions. Non-spherical (dust aerosol models, which were introduced in version 16 of the MISR aerosol product, improved the quality and coverage of retrievals in dusty regions. Due to the sensitivity of the retrieval to the presence of non-spherical aerosols, the MISR aerosol product has been successfully used to track the location and evolution of mineral dust plumes from the Sahara across the Atlantic, for example. However, the MISR global non-spherical aerosol optical depth (AOD fraction product has been found to have several climatological artifacts superimposed on valid detections of mineral dust, including high non-spherical fraction in the Southern Ocean and seasonally variable bands of high non-sphericity. In this paper we introduce a formal approach to examine the ability of the operational MISR Dark Water algorithm to distinguish among various spherical and non-spherical particles as a function of the variable MISR viewing geometry. We demonstrate the following under the criteria currently implemented: (1 Dark Water retrieval sensitivity to particle non-sphericity decreases for AOD below about 0.1 primarily due to an unnecessarily large lower bound imposed on the uncertainty in MISR observations at low light levels, and improves when this lower bound is removed; (2 Dark Water retrievals are able to distinguish between the spherical and non-spherical particles currently used for all MISR viewing geometries when the AOD exceeds 0.1; (3 the sensitivity of the MISR retrievals to aerosol non-sphericity varies in a complex way that depends on the sampling of the scattering phase function and the contribution from multiple scattering; and (4 non-sphericity

  18. Spherical loudspeaker array for local active control of sound.

    Science.gov (United States)

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  19. Spherical torus, compact fusion at low field

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1985-02-01

    A spherical torus is obtained by retaining only the indispensable components on the inboard side of a tokamak plasma, such as a cooled, normal conductor that carries current to produce a toroidal magnetic field. The resulting device features an exceptionally small aspect ratio (ranging from below 2 to about 1.3), a naturally elongated D-shaped plasma cross section, and ramp-up of the plasma current primarily by noninductive means. As a result of the favorable dependence of the tokamak plasma behavior to decreasing aspect ratio, a spherical torus is projected to have small size, high beta, and modest field. Assuming Mirnov confinement scaling, an ignition spherical torus at a field of 2 T features a major radius of 1.5 m, a minor radius of 1.0 m, a plasma current of 14 MA, comparable toroidal and poloidal field coil currents, an average beta of 24%, and a fusion power of 50 MW. At 2 T, a Q = 1 spherical torus will have a major radius of 0.8 m, a minor radius of 0.5 m, and a fusion power of a few megawatts

  20. Are Nanoparticles Spherical or Quasi-Spherical?

    Science.gov (United States)

    Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G

    2015-07-20

    The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Second-order domain derivative of normal-dependent boundary integrals

    KAUST Repository

    Balzer, Jonathan

    2010-01-01

    Numerous reconstruction tasks in (optical) surface metrology allow for a variational formulation. The occurring boundary integrals may be interpreted as shape functions. The paper is concerned with the second-order analysis of such functions. Shape

  2. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    Science.gov (United States)

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  3. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    Science.gov (United States)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  4. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  5. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  6. First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility

    Science.gov (United States)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xufei; Ren, Guoli; Cao, Hui; Li, Shu; Lan, Ke; Liu, Jie; Li, Yongsheng; Li, Sanwei; Guo, Liang; Liu, Yonggang; Yang, Dong; Jiang, Xiaohua; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Wang, Zhebin; Deng, Keli; Wang, Qiangqiang; Deng, Bo; Wang, Feng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Gu, Qianqian; He, Zhibing; Du, Kai; Deng, Xuewei; Zhou, Wei; Wang, Liquan; Huang, Xiaoxia; Wang, Yuancheng; Hu, Dongxia; Zheng, Kuixing; Zhu, Qihua; Ding, Yongkun

    2018-04-01

    The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M -band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.

  7. High resolution monochromatic X-ray imaging system based on spherically bent crystals

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C. M.; Seely, J.; Feldman, U.; Holland, G.

    1997-01-01

    We have developed a new X-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. The imaging system is used for plasma diagnostics of the main target and for characterization of potential backlighters. A spherically curved quartz crystal (2d=6.687 A, R=200 mm) is used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the X-ray optical system is 3-4 μm. Time resolved backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with 6-7 μm spatial resolution

  8. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  9. Second-Order Systems of ODEs Admitting Three-Dimensional Lie Algebras and Integrability

    Directory of Open Access Journals (Sweden)

    Muhammad Ayub

    2013-01-01

    the case of k≥3. We discuss the singular invariant representations of canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras. Furthermore, we give an integration procedure for canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras which comprises of two approaches, namely, division into four types I, II, III, and IV and that of integrability of the invariant representations. We prove that if a system of two second-order ODEs has a three-dimensional solvable Lie algebra, then, its general solution can be obtained from a partially linear, partially coupled or reduced invariantly represented system of equations. A natural extension of this result is provided for a system of two kth-order (k≥3 ODEs. We present illustrative examples of familiar integrable physical systems which admit three-dimensional Lie algebras such as the classical Kepler problem and the generalized Ermakov systems that give rise to closed trajectories.

  10. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam

    2014-01-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  11. Next-Step Spherical Torus Experiment and Spherical Torus Strategy in the Fusion Energy Development Path

    International Nuclear Information System (INIS)

    Ono, M.; Peng, M.; Kessel, C.; Neumeyer, C.; Schmidt, J.; Chrzanowski, J.; Darrow, D.; Grisham, L.; Heitzenroeder, P.; Jarboe, T.; Jun, C.; Kaye, S.; Menard, J.; Raman, R.; Stevenson, T.; Viola, M.; Wilson, J.; Woolley, R.; Zatz, I.

    2003-01-01

    A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction

  12. High-strength wrought magnesium alloy with dense nano-scale spherical precipitate

    Institute of Scientific and Technical Information of China (English)

    YU WenBin; CHEN ZhiQian; CHENG NanPu; GAN BingTai; HE Hong; LI XueLian; HU JinZhu

    2007-01-01

    This paper reported the influences of Yb addition on the precipitate and mechanical properties of wrought magnesium alloy ZK60. The ingots of ZK60-1.78Yb (wt%,0.26 at%) alloys were cast using permanent mould and extruded at 370℃. By means of TEM and HRTEM,it was observed that Yb affected the precipitate and precipitation of ZK60-1.78Yb alloys significantly. Dynamic precipitation occurred in the as-extruded alloy and spherical nano-scale precipitate with high density and homogeneity exhibited in the aged alloys. The precipitate particles were about 5-20 nm in diameter,10-30 nm in average space length. The tensile test results showed that the ZK60-1.78Yb alloy had excellent precipitation strengthening response with the maximum tensile strength 417.5 MPa at ambient temperature.

  13. Description of surface quadrupole oscillations of heated spherical nuclei in the Brownian-motion approximation

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1982-01-01

    The Brownian motion of a quadrupole quantum oscillator is considered as a model of surface quadrupole oscillations of heated spherical nuclei. The integrals of the motion related to energy and angular momentum conservation are constructed and the wave functions are obtained for states with definite values of these integrals of the motion in the phonon representation

  14. Charge conserving current deposition scheme for PIC simulations in modified spherical coordinates

    Science.gov (United States)

    Cruz, F.; Grismayer, T.; Fonseca, R. A.; Silva, L. O.

    2017-10-01

    Global models of pulsar magnetospheres have been actively pursued in recent years. Both macro and microscopic (PIC) descriptions have been used, showing that collective processes of e-e + plasmas dominate the global structure of pulsar magnetospheres. Since these systems are best described in spherical coordinates, the algorithms used in cartesian simulations must be generalized. A problem of particular interest is that of charge conservation in PIC simulations. The complex geometry and irregular grids used to improve the efficiency of these algorithms represent major challenges in the design of a charge conserving scheme. Here we present a new first-order current deposition scheme for a 2D axisymmetric, log-spaced radial grid, that rigorously conserves charge. We benchmark this scheme in different scenarios, by integrating it with a spherical Yee scheme and Boris/Vay pushers. The results show that charge is conserved to machine precision, making it unnecessary to correct the electric field to guarantee charge conservation. This scheme will be particularly important for future studies aiming to bridge the microscopic physical processes of e-e + plasma generation due to QED cascades, its self-consistent acceleration and radiative losses to the global dynamics of pulsar magnetospheres. Work supported by the European Research Council (InPairs ERC-2015-AdG 695088), FCT (Portugal) Grant PD/BD/114307/2016, and the Calouste Gulbenkian Foundation through the 2016 Scientific Research Stimulus Program.

  15. Isotropic non-white matter partial volume effects in constrained spherical deconvolution

    Directory of Open Access Journals (Sweden)

    Timo eRoine

    2014-03-01

    Full Text Available Diffusion-weighted (DW magnetic resonance imaging (MRI is a noninvasive imaging method, which can be used to investigate neural tracts in the white matter (WM of the brain. Significant partial volume effects (PVE are present in the DW signal due to relatively large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter (GM and cerebrospinal fluid (CSF, and by multiple nonparallel WM fiber populations. High angular resolution diffusion imaging (HARDI methods have been developed to correctly characterize complex WM fiber configurations, but to date, many of the HARDI methods do not account for non-WM PVEs. In this work, we investigated the isotropic PVEs caused by non-WM tissue in WM voxels on fiber orientations extracted with constrained spherical deconvolution (CSD. Experiments were performed on simulated and real DW-MRI data. In particular, simulations were performed to demonstrate the effects of varying the diffusion weightings, signal-to-noise ratios (SNR, fiber configurations, and tissue fractions.Our results show that the presence of non-WM tissue signal causes a decrease in the precision of the detected fiber orientations and an increase in the detection of false peaks in CSD. We estimated 35-50 % of WM voxels to be affected by non-WM PVEs. For HARDI sequences, which typically have a relatively high degree of diffusion weighting, these adverse effects are most pronounced in voxels with GM PVEs. The non-WM PVEs become severe with 50 % GM volume for maximum spherical harmonics orders of 8 and below, and already with 25 % GM volume for higher orders. In addition, a low diffusion weighting or SNR increases the effects. The non-WM PVEs may cause problems in connectomics, where reliable fiber tracking at the WM-GM interface is especially important. We suggest acquiring data with high diffusion-weighting 2500-3000 s/mm2, reasonable SNR (~30 and using lower SH orders in GM contaminated regions to minimize the non-WM PVEs

  16. Isotropic non-white matter partial volume effects in constrained spherical deconvolution.

    Science.gov (United States)

    Roine, Timo; Jeurissen, Ben; Perrone, Daniele; Aelterman, Jan; Leemans, Alexander; Philips, Wilfried; Sijbers, Jan

    2014-01-01

    Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non-invasive imaging method, which can be used to investigate neural tracts in the white matter (WM) of the brain. Significant partial volume effects (PVEs) are present in the DW signal due to relatively large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter (GM) and cerebrospinal fluid (CSF), and by multiple non-parallel WM fiber populations. High angular resolution diffusion imaging (HARDI) methods have been developed to correctly characterize complex WM fiber configurations, but to date, many of the HARDI methods do not account for non-WM PVEs. In this work, we investigated the isotropic PVEs caused by non-WM tissue in WM voxels on fiber orientations extracted with constrained spherical deconvolution (CSD). Experiments were performed on simulated and real DW-MRI data. In particular, simulations were performed to demonstrate the effects of varying the diffusion weightings, signal-to-noise ratios (SNRs), fiber configurations, and tissue fractions. Our results show that the presence of non-WM tissue signal causes a decrease in the precision of the detected fiber orientations and an increase in the detection of false peaks in CSD. We estimated 35-50% of WM voxels to be affected by non-WM PVEs. For HARDI sequences, which typically have a relatively high degree of diffusion weighting, these adverse effects are most pronounced in voxels with GM PVEs. The non-WM PVEs become severe with 50% GM volume for maximum spherical harmonics orders of 8 and below, and already with 25% GM volume for higher orders. In addition, a low diffusion weighting or SNR increases the effects. The non-WM PVEs may cause problems in connectomics, where reliable fiber tracking at the WM-GM interface is especially important. We suggest acquiring data with high diffusion-weighting 2500-3000 s/mm(2), reasonable SNR (~30) and using lower SH orders in GM contaminated regions to minimize the non-WM PVEs in CSD.

  17. Spherical sila- and germa-homoaromaticity.

    Science.gov (United States)

    Chen, Zhongfang; Hirsch, Andreas; Nagase, Shigeru; Thiel, Walter; Schleyer, Paul von Ragué

    2003-12-17

    Guided by the 2(N + 1)2 electron-counting rule for spherical aromatic molecules, we have designed various spherical sila- and germa-homoaromatic systems rich in group 14 elements. Their aromaticity is revealed by density-functional computations of their structures and the nucleus-independent chemical shifts (NICS). Besides the formerly used endohedral inclusion strategy, spherical homoaromaticity is another way to stabilize silicon and germanium clusters.

  18. Detecting topology in a nearly flat spherical universe

    International Nuclear Information System (INIS)

    Weeks, Jeffrey; Lehoucq, Roland; Uzan, Jean-Philippe

    2003-01-01

    When the density parameter is close to unity, the universe has a large curvature radius independent of its being hyperbolic or spherical, or in the limiting case of an infinite curvature radius, flat. Whatever the curvature, the universe may have either a simply connected or a multiply connected topology. In the flat case, the topology scale is arbitrary, and there is no a priori reason for this scale to be of the same order as the size of the observable universe. In the hyperbolic case, any nontrivial topology would almost surely be on a length scale too large to detect. In the spherical case, in contrast, the topology could easily occur on a detectable scale. The present paper shows how, in the spherical case, the assumption of a nearly flat universe simplifies the algorithms for detecting a multiply connected topology, but also reduces the amount of topology that can be seen. This is of primary importance for the upcoming cosmic microwave background data analysis. This paper shows that for spherical spaces one may restrict the search to diametrically opposite pairs of circles in the circles-in-the-sky method and still detect the cyclic factor in the standard factorization of the holonomy group. This vastly decreases the algorithm's run time. If the search is widened to include pairs of candidate circles whose centres are almost opposite and whose relative twist varies slightly, then the cyclic factor along with a cyclic subgroup of the general factor may also be detected. Unfortunately, the full holonomy group is, in general, unobservable in a nearly flat spherical universe, and so a full six-parameter search is unnecessary. Crystallographic methods could also potentially detect the cyclic factor and a cyclic subgroup of the general factor, but nothing else

  19. Detecting topology in a nearly flat spherical universe

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Jeffrey [15 Farmer St, Canton NY 13617-1120 (United States); Lehoucq, Roland [CE-Saclay, DSM/DAPNIA/Service d' Astrophysique, F-91191 Gif sur Yvette Cedex (France); Uzan, Jean-Philippe [Institut d' Astrophysique de Paris, GReCO, CNRS-FRE 2435, 98 bis, Bd Arago, 75014 Paris (France)

    2003-04-21

    When the density parameter is close to unity, the universe has a large curvature radius independent of its being hyperbolic or spherical, or in the limiting case of an infinite curvature radius, flat. Whatever the curvature, the universe may have either a simply connected or a multiply connected topology. In the flat case, the topology scale is arbitrary, and there is no a priori reason for this scale to be of the same order as the size of the observable universe. In the hyperbolic case, any nontrivial topology would almost surely be on a length scale too large to detect. In the spherical case, in contrast, the topology could easily occur on a detectable scale. The present paper shows how, in the spherical case, the assumption of a nearly flat universe simplifies the algorithms for detecting a multiply connected topology, but also reduces the amount of topology that can be seen. This is of primary importance for the upcoming cosmic microwave background data analysis. This paper shows that for spherical spaces one may restrict the search to diametrically opposite pairs of circles in the circles-in-the-sky method and still detect the cyclic factor in the standard factorization of the holonomy group. This vastly decreases the algorithm's run time. If the search is widened to include pairs of candidate circles whose centres are almost opposite and whose relative twist varies slightly, then the cyclic factor along with a cyclic subgroup of the general factor may also be detected. Unfortunately, the full holonomy group is, in general, unobservable in a nearly flat spherical universe, and so a full six-parameter search is unnecessary. Crystallographic methods could also potentially detect the cyclic factor and a cyclic subgroup of the general factor, but nothing else.

  20. Integrative Production Technology for High-Wage Countries

    CERN Document Server

    2012-01-01

    Industrial production in high-wage countries like Germany is still at risk. Yet, there are many counter-examples in which producing companies dominate their competitors by not only compensating for their specific disadvantages in terms of factor costs (e.g. wages, energy, duties and taxes) but rather by minimising waste using synchronising integrativity as well as by obtaining superior adaptivity on alternating conditions. In order to respond to the issue of economic sustainability of industrial production in high-wage countries, the leading production engineering and material research scientists of RWTH Aachen University together with renowned companies have established the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”. This compendium comprises the cluster’s scientific results as well as a selection of business and technology cases, in which these results have been successfully implemented into industrial practice in close cooperation with more than 30 companies of ...

  1. Spherical space Bessel-Legendre-Fourier mode solver for Maxwell's wave equations

    Science.gov (United States)

    Alzahrani, Mohammed A.; Gauthier, Robert C.

    2015-02-01

    For spherically symmetric dielectric structures, a basis set composed of Bessel, Legendre and Fourier functions, BLF, are used to cast Maxwell's wave equations into an eigenvalue problem from which the localized modes can be determined. The steps leading to the eigenmatrix are reviewed and techniques used to reduce the order of matrix and tune the computations for particular mode types are detailed. The BLF basis functions are used to expand the electric and magnetic fields as well as the inverse relative dielectric profile. Similar to the common plane wave expansion technique, the BLF matrix returns the eigen-frequencies and eigenvectors, but in BLF only steady states, non-propagated, are obtained. The technique is first applied to a air filled spherical structure with perfectly conducting outer surface and then to a spherical microsphere located in air. Results are compared published values were possible.

  2. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  3. Decay of reverberant sound in a spherical enclosure

    International Nuclear Information System (INIS)

    Carroll, M.M.; Chien, C.F.

    1977-01-01

    The assumption of diffuse reflection (Lambert's Law) leads to integral equations for the wall intensity in a reverberant sound field in the steady state and during decay. The latter equation, in the special case of a spherical enclosure with uniformly absorbent walls and uniform wall intensity, allows exponential decay with a decay time which agrees closely with the Norris--Eyring prediction. The sound-intensity and sound-energy density in the medium, during decay, are also calculated

  4. Consensus Analysis of Fractional-Order Multiagent Systems with Double-Integrator

    Directory of Open Access Journals (Sweden)

    Chunde Yang

    2017-01-01

    Full Text Available In nature, many phenomena can be explained by coordinated behavior of agents with fractional-order dynamics. In this paper, the consensus problem of fractional-order multiagent systems with double-integrator is studied, where the fractional-order satisfies 0<α<2. Based on the fractional-order stability theory, Mittag-Leffler function, and Laplace transform, a necessary and sufficient condition is obtained under the assumption that the directed graph for the communication network contains a directed spanning tree. Finally, an example with simulation is presented to illustrate the theoretical results.

  5. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    Science.gov (United States)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well

  6. Further results on global state feedback stabilization of nonlinear high-order feedforward systems.

    Science.gov (United States)

    Xie, Xue-Jun; Zhang, Xing-Hui

    2014-03-01

    In this paper, by introducing a combined method of sign function, homogeneous domination and adding a power integrator, and overcoming several troublesome obstacles in the design and analysis, the problem of state feedback control for a class of nonlinear high-order feedforward systems with the nonlinearity's order being relaxed to an interval rather than a fixed point is solved. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  8. 3-D spherical harmonics code FFT3 by the finite Fourier transformation method

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1997-01-01

    In the odd order spherical harmonics method, the rigorous boundary condition at the material interfaces is that the even moments of the angular flux and the normal components of the even order moments of current vectors must be continuous. However, it is difficult to derive spatial discretized equations by the finite difference or finite element methods, which satisfy this material interface condition. It is shown that using the finite Fourier transformation method, space discretized equations which satisfy this interface condition can be easily derived. The discrepancies of the flux distribution near void region between spherical harmonics method codes may be due to the difference of application of the material interface condition. (author)

  9. High resolution monochromatic X-ray imaging system based on spherically bent crystals

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C.M.; Seely, J.; Feldman, U.; Holland, G.

    1997-01-01

    We have developed a new X-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser [1,2]. The imaging system is used for plasma diagnostics of the main target and for characterization of potential backlighters. A spherically curved quartz crystal (2d=6.687 Angstrom, R=200mm) is used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the X-ray optical system is 3 endash 4 μm. Time resolved backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with 6 endash 7 μm spatial resolution. copyright 1997 American Institute of Physics

  10. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  11. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes

    2003-01-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  12. Improved lumped models for transient combined convective and radiative cooling of a two-layer spherical fuel element

    International Nuclear Information System (INIS)

    Silva, Alice Cunha da; Su, Jian

    2013-01-01

    The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)

  13. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients

    Directory of Open Access Journals (Sweden)

    Juan Manuel Solano-Altamirano

    2017-11-01

    Full Text Available In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2, wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii runtime selection of the library in charge of performing the algebraic computations; (iii a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  14. Continuous form-dependent focusing of non-spherical microparticles in a highly diluted suspension with the help of microfluidic spirals

    Science.gov (United States)

    Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.

    2018-04-01

    Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.

  15. On the solution of high order stable time integration methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Blaheta, Radim; Sysala, Stanislav; Ahmad, B.

    2013-01-01

    Roč. 108, č. 1 (2013), s. 1-22 ISSN 1687-2770 Institutional support: RVO:68145535 Keywords : evolution equations * preconditioners for quadratic matrix polynomials * a stiffly stable time integration method Subject RIV: BA - General Mathematics Impact factor: 0.836, year: 2013 http://www.boundaryvalueproblems.com/content/2013/1/108

  16. Simplified discrete ordinates method in spherical geometry

    International Nuclear Information System (INIS)

    Elsawi, M.A.; Abdurrahman, N.M.; Yavuz, M.

    1999-01-01

    The authors extend the method of simplified discrete ordinates (SS N ) to spherical geometry. The motivation for such an extension is that the appearance of the angular derivative (redistribution) term in the spherical geometry transport equation makes it difficult to decide which differencing scheme best approximates this term. In the present method, the angular derivative term is treated implicitly and thus avoids the need for the approximation of such term. This method can be considered to be analytic in nature with the advantage of being free from spatial truncation errors from which most of the existing transport codes suffer. In addition, it treats the angular redistribution term implicitly with the advantage of avoiding approximations to that term. The method also can handle scattering in a very general manner with the advantage of spending almost the same computational effort for all scattering modes. Moreover, the methods can easily be applied to higher-order S N calculations

  17. On integration of the first order differential equations in a finite terms

    International Nuclear Information System (INIS)

    Malykh, M D

    2017-01-01

    There are several approaches to the description of the concept called briefly as integration of the first order differential equations in a finite terms or symbolical integration. In the report three of them are considered: 1.) finding of a rational integral (Beaune or Poincaré problem), 2.) integration by quadratures and 3.) integration when the general solution of given differential equation is an algebraical function of a constant (Painlevé problem). Their realizations in Sage are presented. (paper)

  18. Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment

    KAUST Repository

    Liu, Dayan

    2015-03-31

    The integer order differentiation by integration method based on the Jacobi orthogonal polynomials for noisy signals was originally introduced by Mboup, Join and Fliess. We propose to extend this method from the integer order to the fractional order to estimate the fractional order derivatives of noisy signals. Firstly, two fractional order differentiators are deduced from the Jacobi orthogonal polynomial filter, using the Riemann-Liouville and the Caputo fractional order derivative definitions respectively. Exact and simple formulae for these differentiators are given by integral expressions. Hence, they can be used for both continuous-time and discrete-time models in on-line or off-line applications. Secondly, some error bounds are provided for the corresponding estimation errors. These bounds allow to study the design parameters\\' influence. The noise error contribution due to a large class of stochastic processes is studied in discrete case. The latter shows that the differentiator based on the Caputo fractional order derivative can cope with a class of noises, whose mean value and variance functions are polynomial time-varying. Thanks to the design parameters analysis, the proposed fractional order differentiators are significantly improved by admitting a time-delay. Thirdly, in order to reduce the calculation time for on-line applications, a recursive algorithm is proposed. Finally, the proposed differentiator based on the Riemann-Liouville fractional order derivative is used to estimate the state of a fractional order system and numerical simulations illustrate the accuracy and the robustness with respect to corrupting noises.

  19. Multiscale high-order/low-order (HOLO) algorithms and applications

    International Nuclear Information System (INIS)

    Chacón, L.; Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W.; Willert, J.A.; Womeldorff, G.

    2017-01-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  20. Multiscale high-order/low-order (HOLO) algorithms and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacón, L., E-mail: chacon@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Willert, J.A. [Institute for Defense Analyses, Alexandria, VA 22311 (United States); Womeldorff, G. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  1. Status report on high fidelity reactor simulation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere, M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-01-01

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool

  2. Thermo-mechanical screening tests to qualify beryllium pebble beds with non-spherical pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Joerg, E-mail: joerg.reimann@partner.kit.edu [IKET, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fretz, Benjamin [KBHF GmbH, Eggenstein-Leopoldshafen (Germany); Pupeschi, Simone [IAM, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-10-15

    Highlights: • In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. • Spherical pebbles are considered as the candidate material, however, non-spherical particles are of economic interest. • Thermo-mechanical pebble bed data do merely exist for non-spherical beryllium grades. • Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT) were used to measure the stress–strain relations and the thermal conductivity. • A small experimental set-up had to be used and a detailed 3D modelling was of prime importance. • Compared to spherical pebble beds, non-spherical pebble beds are generally softer and mainly the thermal conductivity is lower. - Abstract: In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. Fairly spherical pebbles are considered as a candidate material, however, non-spherical particles are of economic interest because production costs are much lower. Yet, thermo-mechanical pebble bed data do merely exist for these beryllium grades, and the blanket relevant potential of these grades cannot be judged. Screening experiments were performed with three different grades of non-spherical beryllium pebbles, produced by different companies, accompanied by experiments with the reference beryllium pebble beds. Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT), were performed to measure both the stress–strain relation and the thermal conductivity, k, at different stress levels. Because of the limited amounts of the non-spherical materials, the experimental set-ups were small and a detailed 3D modelling was of prime importance in order to prove that the used design was appropriate. Compared to the pebble beds consisting of spherical pebbles, non-spherical pebble beds are generally softer (smaller stress for a given strain), and, mainly as a consequence of this, for a given strain value, the thermal conductivity is lower. This

  3. Spherical conformal models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Takisa, P.M.; Maharaj, S.D.; Manjonjo, A.M.; Moopanar, S. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-10-15

    We consider spherical exact models for compact stars with anisotropic pressures and a conformal symmetry. The conformal symmetry condition generates an integral relationship between the gravitational potentials. We solve this condition to find a new anisotropic solution to the Einstein field equations. We demonstrate that the exact solution produces a relativistic model of a compact star. The model generates stellar radii and masses consistent with PSR J1614-2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed physical examination shows that the model is regular, well behaved and stable. The mass-radius limit and the surface red shift are consistent with observational constraints. (orig.)

  4. High-resolution monochromatic x-ray imaging system based on spherically bent crystals

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C.M.; Seely, J.; Feldman, U.; Holland, G.

    1998-01-01

    We have developed an improved x-ray imaging system based on spherically curve crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (2d=6.687 Angstrom, R=200 mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the x-ray optical system is 1.7 μm in selected places and 2 - 3 μm over a larger area. Time-resolved backlit monochromatic images of polystyrene planar targets driven by the Nike facility have been obtained with a spatial resolution of 2.5 μm in selected places and 5 μm over the focal spot of the Nike laser. copyright 1998 Optical Society of America

  5. Numerical insights into the phase diagram of p-atic membranes with spherical topology

    DEFF Research Database (Denmark)

    Hansen, Allan Grønhøj; Ramakrishnan, N.; Sunil Kumar, P. B.

    2017-01-01

    Abstract.: The properties of self-avoiding p-atic membranes restricted to spherical topology have been studied by Monte Carlo simulations of a triangulated random surface model. Spherically shaped p-atic membranes undergo a Kosterlitz-Thouless transition as expected with topology induced mutually...... of disclinations. We confirm the proposed buckling of disclinations in the p-atic ordered phase, while the expected associated disordering (crumpling) transition at low bending rigidities is absent in the phase diagram. Graphical abstract: [Figure not available: see fulltext.]...

  6. Analysis of a spherical permanent magnet actuator

    International Nuclear Information System (INIS)

    Wang, J.; Jewell, G.W.; Howe, D.

    1997-01-01

    This paper describes a new form of actuator with a spherical permanent magnet rotor and a simple winding arrangement, which is capable of a high specific torque by utilizing a rare-earth permanent magnet. The magnetic-field distribution is established using an analytical technique formulated in spherical coordinates, and the results are validated by finite element analysis. The analytical field solution allows the prediction of the actuator torque and back emf in closed forms. In turn, these facilitate the characterization of the actuator and provide a firm basis for design optimization, system dynamic modeling, and closed-loop control law development. copyright 1997 American Institute of Physics

  7. Highly integrated electronics for the star TPC

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, A.A.; Bieser, F.; Hearn, W.; Kleinfelder, S.; Merrick, T.; Millaud, J.; Noggle, T.; Rai, G.; Ritter, H.G.; Wieman, H. [Lawrence Berkeley Laboratory, CA (United States)

    1991-12-31

    The concept for the STAR TPC front-end electronics is presented and the progress toward the development of a fully integrated solution is described. It is the goal of the R+D program to develop the complete electronics chain for the STAR central TPC detector at RHIC. It is obvious that solutions chosen e.g. for ALEPH are not adequate for the 150000 channels that need to be instrumented for readout. It will be necessary to perform all the signal processing, digitization and multiplexing directly on the detector in order to reduce per channel cost and the amount of cabling necessary to read out the information. We follow the approach chosen by the EOS TPC project, where the readout electronics on the detector consists of an integrated preamplifier, a hybrid shaping amplifier, an integrated switched capacitor array and a highly multiplexed ADC. The STAR electronics will be further integrated so that approximately 16 channels of the preamplifier, the shaper, the analog store and the ADC will be contained in two integrated circuits located directly on the pad plane.

  8. A simple formula for emittance growth due to spherical aberration in a solenoid lens

    International Nuclear Information System (INIS)

    Kumar, V.; Phadte, D.; Patidar, C.B.

    2011-01-01

    We analyse the beam dynamics in a solenoid without the paraxial approximation, including up to the fifth order term in the radial displacement. We use this analysis to derive expressions for the coefficients of spherical aberration in terms of the on-axis field profile of the solenoid. Under the thin lens approximation, a simple formula is derived for the growth of rms emittance resulting due to spherical aberration in a solenoid. (author)

  9. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    Science.gov (United States)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  10. All static spherically symmetric perfect-fluid solutions of Einstein's equations

    International Nuclear Information System (INIS)

    Lake, Kayll

    2003-01-01

    An algorithm based on the choice of a single monotone function (subject to boundary conditions) is presented which generates all regular static spherically symmetric perfect-fluid solutions of Einstein's equations. For physically relevant solutions the generating functions must be restricted by nontrivial integral-differential inequalities. Nonetheless, the algorithm is demonstrated here by the construction of an infinite number of previously unknown physically interesting exact solutions

  11. High-voltage integrated transmitting circuit with differential driving for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Færch, Kjartan Ullitz

    2016-01-01

    In this paper, a high-voltage integrated differential transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is presented. Due to its application, area and power consumption are critical and need to be minimized. The circuitry...... is designed and implemented in AMS 0.35 μ m high-voltage process. Measurements are performed on the fabricated integrated circuit in order to assess its performance. The transmitting circuit consists of a low-voltage control logic, pulse-triggered level shifters and a differential output stage that generates...... conditions is 0.936 mW including the load. The integrated circuits measured prove to be consistent and robust to local process variations by measurements....

  12. Optical nucleation of bubble clouds in a high pressure spherical resonator.

    Science.gov (United States)

    Anderson, Phillip; Sampathkumar, A; Murray, Todd W; Gaitan, D Felipe; Glynn Holt, R

    2011-11-01

    An experimental setup for nucleating clouds of bubbles in a high-pressure spherical resonator is described. Using nanosecond laser pulses and multiple phase gratings, bubble clouds are optically nucleated in an acoustic field. Dynamics of the clouds are captured using a high-speed CCD camera. The images reveal cloud nucleation, growth, and collapse and the resulting emission of radially expanding shockwaves. These shockwaves are reflected at the interior surface of the resonator and then reconverge to the center of the resonator. As the shocks reconverge upon the center of the resonator, they renucleate and grow the bubble cloud. This process is repeated over many acoustic cycles and with each successive shock reconvergence, the bubble cloud becomes more organized and centralized so that subsequent collapses give rise to stronger, better defined shockwaves. After many acoustic cycles individual bubbles cannot be distinguished and the cloud is then referred to as a cluster. Sustainability of the process is ultimately limited by the detuning of the acoustic field inside the resonator. The nucleation parameter space is studied in terms of laser firing phase, laser energy, and acoustic power used.

  13. Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries

    International Nuclear Information System (INIS)

    Zou, Hongli; Zhang, Guanghui; Shen, Pei Kang

    2010-01-01

    An intermittent microwave heating method was used to synthesize spherical LiFePO 4 /C in the presence of glucose as reductive agent and carbon source without the use of the inert gas in the oven processes. The FePO 4 was used as iron precursor to reduce the cost and three lithium salts of Li 2 CO 3 , LiOH and CH 3 COOLi were chosen for comparison of the resulting materials. The materials can be alternatively heated by this method at a temperature controllable mode for crystallization and phase transformation and to provide relaxation time for protecting particles growth. The X-ray diffraction and scanning electron microscope measurements confirmed that the LiFePO 4 /C is olivine structured with the average particle size of 50-100 nm. The spherical LiFePO 4 /C as cathode material showed better electrochemical performance in terms of the specific capacity and the cycling stability, which might be attributed to the highly crystallized phase, small particle distribution and improved conductivity by carbon connection.

  14. Intrinsic cylindrical and spherical waves

    International Nuclear Information System (INIS)

    Ludlow, I K

    2008-01-01

    Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed

  15. Modeling real shim fields for very high degree (and order) B0 shimming of the human brain at 9.4 T.

    Science.gov (United States)

    Chang, Paul; Nassirpour, Sahar; Henning, Anke

    2018-01-01

    To describe the process of calibrating a B 0 shim system using high-degree (or high order) spherical harmonic models of the measured shim fields, to provide a method that considers amplitude dependency of these models, and to show the advantage of very high-degree B 0 shimming for whole-brain and single-slice applications at 9.4 Tesla (T). An insert shim with up to fourth and partial fifth/sixth degree (order) spherical harmonics was used with a Siemens 9.4T scanner. Each shim field was measured and modeled as input for the shimming algorithm. Optimal shim currents can therefore be calculated in a single iteration. A range of shim currents was used in the modeling to account for possible amplitude nonlinearities. The modeled shim fields were used to compare different degrees of whole-brain B 0 shimming on healthy subjects. The ideal shim fields did not correctly shim the subject brains. However, using the modeled shim fields improved the B 0 homogeneity from 55.1 (second degree) to 44.68 Hz (partial fifth/sixth degree) on the whole brains of 9 healthy volunteers, with a total applied current of 0.77 and 6.8 A, respectively. The necessity of calibrating the shim system was shown. Better B 0 homogeneity drastically reduces signal dropout and distortions for echo-planar imaging, and significantly improves the linewidths of MR spectroscopy imaging. Magn Reson Med 79:529-540, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Eccentricity in Images of Circular and Spherical Targets and its Impact to 3D Object Reconstruction

    Directory of Open Access Journals (Sweden)

    T. Luhmann

    2014-06-01

    Full Text Available This paper discusses a feature of projective geometry which causes eccentricity in the image measurement of circular and spherical targets. While it is commonly known that flat circular targets can have a significant displacement of the elliptical image centre with respect to the true imaged circle centre, it can also be shown that the a similar effect exists for spherical targets. Both types of targets are imaged with an elliptical contour. As a result, if measurement methods based on ellipses are used to detect the target (e.g. best-fit ellipses, the calculated ellipse centre does not correspond to the desired target centre in 3D space. This paper firstly discusses the use and measurement of circular and spherical targets. It then describes the geometrical projection model in order to demonstrate the eccentricity in image space. Based on numerical simulations, the eccentricity in the image is further quantified and investigated. Finally, the resulting effect in 3D space is estimated for stereo and multi-image intersections. It can be stated that the eccentricity is larger than usually assumed, and must be compensated for high-accuracy applications. Spherical targets do not show better results than circular targets. The paper is an updated version of Luhmann (2014 new experimental investigations on the effect of length measurement errors.

  17. Population spherical aberration: associations with ametropia, age, corneal curvature, and image quality

    Directory of Open Access Journals (Sweden)

    Kingston AC

    2013-05-01

    Full Text Available Amanda C Kingston,1,2 Ian G Cox11Bausch + Lomb, Rochester, NY, USA; 2Department of Biomedical Engineering, University of Rochester, Rochester, NY, USAPurpose: The aim of this analysis was to determine the total ocular wavefront aberration values of a large phakic population of physiologically normal, ametropic eyes, gathered under the same clinical protocol using the same diagnostic wavefront sensor.Materials and methods: Studies were conducted at multiple sites in Asia, North America, Europe, and Australia. A Bausch + Lomb Zywave II Wavefront Aberrometer (Rochester, NY, USA was used to measure the lower and higher order aberrations of each eye. Data analysis was conducted using linear regression analysis to determine the relationship between total spherical aberration, ametropia, age, corneal curvature, and image quality.Results: Linear regression analysis showed no correlation (r = 0.0207, P = 0.4874 between degree of ametropia and the amount of spherical aberration. There was also no correlation when the population was stratified into myopic and hyperopic refractive groups (rm = 0.0529, Pm = 0.0804 and rh = 0.1572, Ph = 0.2754. There was a statistically significant and weak positive correlation (r = 0.1962, P < 0.001 between age and the amount of spherical aberration measured in the eye; spherical aberration became more positive with increasing age. Also, there was a statistically significant and moderately positive correlation (r = 0.3611, P < 0.001 with steepness of corneal curvature; spherical aberration became more positive with increasing power of the anterior corneal surface. Assessment of image quality using optical design software (Zemax™, Bellevue, WA, USA showed that there was an overall benefit in correcting the average spherical aberration of this population.Conclusion: Analysis of this dataset provides insights into the inherent spherical aberration of a typical phakic, pre-presbyopic, population and provides the ability to

  18. Two new solutions to the third-order symplectic integration method

    International Nuclear Information System (INIS)

    Iwatsu, Reima

    2009-01-01

    Two new solutions are obtained for the symplecticity conditions of explicit third-order partitioned Runge-Kutta time integration method. One of them has larger stability limit and better dispersion property than the Ruth's method.

  19. Highly Efficient, Zero-Skew, Integrated Clock Distribution Networks Using Salphasic Principles

    Directory of Open Access Journals (Sweden)

    PASCA, A.

    2016-02-01

    Full Text Available The design of highly efficient clock distributions for integrated circuits is an active topic of research as there will never be a single solution for all systems. For high performance digital or mixed-signal circuits, achieving zero-skew clock over large areas usually comes with high costs in power requirements and design complexity. The present paper shows an overview of a recently proposed technique for ICs - on-die salphasic clock distribution, introduced by the author for CMOS processes. Initially reported in literature for rack-systems, the present paper shows that further refinements are needed for the concept to be applicable on a silicon die. Based on the formation of a standing wave (intrinsically presenting extended in-phase regions with a voltage peak at the input (creating a no-load condition, it is shown that any IC implementation must use transmission lines loss compensation techniques to maintain the proper standing wave configuration. Furthermore, the paper shows theoretical solutions and describes practical on-die techniques for pseudo-spherical bidimensional surfaces, which, with the already reported orthogonal and pseudo-orthogonal structures, can be used to distribute with minimal power requirements a zero-skew clock signal, over large silicon areas.

  20. A highly accurate boundary integral equation method for surfactant-laden drops in 3D

    Science.gov (United States)

    Sorgentone, Chiara; Tornberg, Anna-Karin

    2018-05-01

    The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

  1. The Implications of the European Integration Process of Kosovo's Constitutional Order

    Directory of Open Access Journals (Sweden)

    Flamur Hyseni

    2017-08-01

    Full Text Available In this article I have analyzed and studied on what are the implications of the European integration process of Kosovo’s constitutional order and how much of institutional order Kosovo has, also how much of the effects of the European integration process has used. I’ve made a brief analysis of the establishment of the constitutional order of Kosovo in the former federal state of Yugoslavia and establishment of Kosovo under international administration. However an analyze and more detailed study I’ve made on the first report of contracting between Kosovo and EU, Stabilization and Association Agreement which will be implemented in Kosovo through the National Program for the Implementation of the Stabilization and Association Agreement that was approved by the Government on 16 December 2015 and by the Assembly on 10 March 2016. The other aspect of the study and analysis in this article is the study of acts to protect the territorial integrity of Kosovo, which are: 12244/99 resolution of the UN Security Council, Constitutional Framework for Provisional Self- Government in Kosovo, 16 May 2001, Declaration of Independence, 17 February 2008 and the Constitution of the Republic of Kosovo, 09 April 2008.

  2. Naked singularities in self-similar spherical gravitational collapse

    International Nuclear Information System (INIS)

    Ori, A.; Piran, T.

    1987-01-01

    We present general-relativistic solutions of self-similar spherical collapse of an adiabatic perfect fluid. We show that if the equation of state is soft enough (Γ-1<<1), a naked singularity forms. The singularity resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hypothesis will hold

  3. The spherical harmonics method, II (application to problems with plane and spherical symmetry)

    Energy Technology Data Exchange (ETDEWEB)

    Mark, C

    1958-12-15

    The application of the spherical harmonic method to problems with plane or spherical symmetry is discussed in detail. The numerical results of some applications already made are included to indicate the degree of convergence obtained. Formulae for dealing with distributions of isotropic sources are developed. Tables useful in applying the method are given in Section 11. (author)

  4. Canonical quantization of static spherically symmetric geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A

    2013-01-01

    The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''

  5. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  6. Methods for compressible fluid simulation on GPUs using high-order finite differences

    Science.gov (United States)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  7. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  8. Multiple Scattering of Gamma Radiation in a Spherical Concrete Wall Room

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1962-12-15

    The Monte Carlo method has been applied for the calculation of the energy flux of scattered gamma radiation in a spherical room surrounded by an infinitely thick spherical wall and with a point source at the centre. Source energies were I, 2, 4, 6, and 10 MeV. The main investigation was carried out at a room radius of 500 cm but, for the 1 MeV source, the influence of varying the room radius down to 1 cm was analysed. The results contain energy distributions of the first four successive reflection components at the centre of the room and at the wall surface, as well as spatial distributions of the successive energy flux components. The neglect of reflection contributions of order five and higher was estimated to introduce an error of less than 0. 2 % of the total scattered energy flux. An analytical approximation is shown to produce a useful and easily applicable method of predicting the amount of scattered radiation in a spherical room.

  9. Multiple Scattering of Gamma Radiation in a Spherical Concrete Wall Room

    International Nuclear Information System (INIS)

    Leimdoerfer, M.

    1962-12-01

    The Monte Carlo method has been applied for the calculation of the energy flux of scattered gamma radiation in a spherical room surrounded by an infinitely thick spherical wall and with a point source at the centre. Source energies were I, 2, 4, 6, and 10 MeV. The main investigation was carried out at a room radius of 500 cm but, for the 1 MeV source, the influence of varying the room radius down to 1 cm was analysed. The results contain energy distributions of the first four successive reflection components at the centre of the room and at the wall surface, as well as spatial distributions of the successive energy flux components. The neglect of reflection contributions of order five and higher was estimated to introduce an error of less than 0. 2 % of the total scattered energy flux. An analytical approximation is shown to produce a useful and easily applicable method of predicting the amount of scattered radiation in a spherical room

  10. Unified Bessel, Modified Bessel, Spherical Bessel and Bessel-Clifford Functions

    OpenAIRE

    Yaşar, Banu Yılmaz; Özarslan, Mehmet Ali

    2016-01-01

    In the present paper, unification of Bessel, modified Bessel, spherical Bessel and Bessel-Clifford functions via the generalized Pochhammer symbol [ Srivastava HM, Cetinkaya A, K{\\i}ymaz O. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Applied Mathematics and Computation, 2014, 226 : 484-491] is defined. Several potentially useful properties of the unified family such as generating function, integral representation, Laplace transform and Mellin tran...

  11. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H{sub 2}-O{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kamenskihs, Vsevolods; Lee, John H.S. [Department of Mechanical Engineering, McGill University, Montreal, Quebec (Canada); Ng, Hoi Dick [Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec (Canada)

    2010-09-15

    In this study, the critical energy for direct initiation of spherical detonations in stoichiometric high-pressure hydrogen-oxygen mixtures are measured and investigated to look at the effect of explosion limits on the detonation sensitivity. Results up to an initial pressure of 20 atm are obtained. Experiments are carried out in a spherical bomb and direct initiation is achieved via spark ignition from a high-voltage capacitor discharge. A detailed description of different methods to obtain a good estimate of the correct amount of energy deposited into the mixture used to initiate the detonation, including the calorimeter method and current method, is provided. It is demonstrated that at elevated initial pressure, the second explosion limit effect plays a significant role leading to slow-branching reactions and the detonation sensitivity of hydrogen mixtures is comparable to other common hydrocarbon mixtures at such condition. (author)

  12. Neutron production in a spherical phantom aboard ISS

    International Nuclear Information System (INIS)

    Tasbaz, A.; Machrafi, R.

    2012-01-01

    As part of an ongoing research program on radiation monitoring on International Space Station (ISS) that was established to analyze the radiation exposure levels onboard the ISS using different radiation instruments and a spherical phantom to simulate human body. Monte Carlo transport code was used to simulate the interaction of high energy protons and neutrons with the spherical phantom currently onboard ISS. The phantom has been exposed to individual proton energies and to a spectrum of neutrons. The internal to external neutron flux ratio was calculated and compared to the experimental data, recently, measured on the ISS. (author)

  13. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  14. Spherical harmonics based descriptor for neural network potentials: Structure and dynamics of Au147 nanocluster.

    Science.gov (United States)

    Jindal, Shweta; Chiriki, Siva; Bulusu, Satya S

    2017-05-28

    We propose a highly efficient method for fitting the potential energy surface of a nanocluster using a spherical harmonics based descriptor integrated with an artificial neural network. Our method achieves the accuracy of quantum mechanics and speed of empirical potentials. For large sized gold clusters (Au 147 ), the computational time for accurate calculation of energy and forces is about 1.7 s, which is faster by several orders of magnitude compared to density functional theory (DFT). This method is used to perform the global minimum optimizations and molecular dynamics simulations for Au 147 , and it is found that its global minimum is not an icosahedron. The isomer that can be regarded as the global minimum is found to be 4 eV lower in energy than the icosahedron and is confirmed from DFT. The geometry of the obtained global minimum contains 105 atoms on the surface and 42 atoms in the core. A brief study on the fluxionality in Au 147 is performed, and it is concluded that Au 147 has a dynamic surface, thus opening a new window for studying its reaction dynamics.

  15. General Nth order integrals of motion in the Euclidean plane

    International Nuclear Information System (INIS)

    Post, S; Winternitz, P

    2015-01-01

    The general form of an integral of motion that is a polynomial of order N in the momenta is presented for a Hamiltonian system in two-dimensional Euclidean space. The classical and the quantum cases are treated separately, emphasizing both the similarities and the differences between the two. The main application will be to study Nth order superintegrable systems that allow separation of variables in the Hamilton–Jacobi and Schrödinger equations, respectively. (paper)

  16. Recurrence approach and higher order polynomial algebras for superintegrable monopole systems

    Science.gov (United States)

    Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

    2018-05-01

    We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.

  17. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.

    Science.gov (United States)

    Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao

    2017-06-12

    Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  18. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images

    Directory of Open Access Journals (Sweden)

    Lingyan Ran

    2017-06-01

    Full Text Available Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN, trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  19. On discrete 2D integrable equations of higher order

    International Nuclear Information System (INIS)

    Adler, V E; Postnikov, V V

    2014-01-01

    We study two-dimensional discrete integrable equations of order 1 with respect to one independent variable and m with respect to another one. A generalization of the multidimensional consistency property is proposed for this type of equations. The examples are related to the Bäcklund–Darboux transformations for the lattice equations of Bogoyavlensky type. (paper)

  20. Analysis of Shield Construction in Spherical Weathered Granite Development Area

    Science.gov (United States)

    Cao, Quan; Li, Peigang; Gong, Shuhua

    2018-01-01

    The distribution of spherical weathered bodies (commonly known as "boulder") in the granite development area directly affects the shield construction of urban rail transit engineering. This paper is based on the case of shield construction of granite globular development area in Southern China area, the parameter control in shield machine selection and shield advancing during the shield tunneling in this special geological environment is analyzed. And it is suggested that shield machine should be selected for shield construction of granite spherical weathered zone. Driving speed, cutter torque, shield machine thrust, the amount of penetration and the speed of the cutter head of shield machine should be controlled when driving the boulder formation, in order to achieve smooth excavation and reduce the disturbance to the formation.

  1. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

    Science.gov (United States)

    Gainetdinova, A A; Gazizov, R K

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

  2. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates; Perturbation lineaire d'ecoulements a symetrie spherique: schema decentre d'ordre 1 pour les equations de la dynamique des gaz en variables de Lagrange

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, J.M

    2007-07-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  3. Acoustic reciprocity: An extension to spherical harmonics domain.

    Science.gov (United States)

    Samarasinghe, Prasanga; Abhayapala, Thushara D; Kellermann, Walter

    2017-10-01

    Acoustic reciprocity is a fundamental property of acoustic wavefields that is commonly used to simplify the measurement process of many practical applications. Traditionally, the reciprocity theorem is defined between a monopole point source and a point receiver. Intuitively, it must apply to more complex transducers than monopoles. In this paper, the authors formulate the acoustic reciprocity theory in the spherical harmonics domain for directional sources and directional receivers with higher order directivity patterns.

  4. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  5. High order depletion sensitivity analysis

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.; Morcos, H.N.

    2002-01-01

    A high order depletion sensitivity method was applied to calculate the sensitivities of build-up of actinides in the irradiated fuel due to cross-section uncertainties. An iteration method based on Taylor series expansion was applied to construct stationary principle, from which all orders of perturbations were calculated. The irradiated EK-10 and MTR-20 fuels at their maximum burn-up of 25% and 65% respectively were considered for sensitivity analysis. The results of calculation show that, in case of EK-10 fuel (low burn-up), the first order sensitivity was found to be enough to perform an accuracy of 1%. While in case of MTR-20 (high burn-up) the fifth order was found to provide 3% accuracy. A computer code SENS was developed to provide the required calculations

  6. Description os surface quadrupole oscillations of heateU spherical nuclei in the Brownian movement approximation

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1982-01-01

    Description of collective phenomena in heated nuclei within the framework of the Brownian approximation may be conditionally divided into two parts: 1) solution of the problem for some realization of a random force, 2) averaging in a set of all the possible realizations. Results of the present work are setted the first part of the problem in the case of surface quadrupole oscillations of spherical heated nuclei. Quadrupole surface oscillations of heated spherical nuclei are considered in the Brownian motion approximation. The integrals of motion are constructed taking into account the energy and angular momentum conservations for the nucleus in the process of relaxation of the collective excitations. Wave functions are obtained for states having definite values of the integrals of motion in the phonon representation. It is noted that the description scheme developed is easily used with respect to other multipolarity oscillations

  7. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  8. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  9. Application of identifying transmission spheres for spherical surface testing

    Science.gov (United States)

    Han, Christopher B.; Ye, Xin; Li, Xueyuan; Wang, Quanzhao; Tang, Shouhong; Han, Sen

    2017-06-01

    We developed a new application on Microsoft Foundation Classes (MFC) to identify correct transmission spheres (TS) for Spherical Surface Testing (SST). Spherical surfaces are important optical surfaces, and the wide application and high production rate of spherical surfaces necessitates an accurate and highly reliable measuring device. A Fizeau Interferometer is an appropriate tool for SST due to its subnanometer accuracy. It measures the contour of a spherical surface using a common path, which is insensitive to the surrounding circumstances. The Fizeau Interferometer transmits a wide laser beam, creating interference fringes from re-converging light from the transmission sphere and the test surface. To make a successful measurement, the application calculates and determines the appropriate transmission sphere for the test surface. There are 3 main inputs from the test surfaces that are utilized to determine the optimal sizes and F-numbers of the transmission spheres: (1) the curvatures (concave or convex), (2) the Radii of Curvature (ROC), and (3) the aperture sizes. The application will firstly calculate the F-numbers (i.e. ROC divided by aperture) of the test surface, secondly determine the correct aperture size of a convex surface, thirdly verify that the ROC of the test surface must be shorter than the reference surface's ROC of the transmission sphere, and lastly calculate the percentage of area that the test surface will be measured. However, the amount of interferometers and transmission spheres should be optimized when measuring large spherical surfaces to avoid requiring a large amount of interferometers and transmission spheres for each test surface. Current measuring practices involve tedious and potentially inaccurate calculations. This smart application eliminates human calculation errors, optimizes the selection of transmission spheres (including the least number required) and interferometer sizes, and increases efficiency.

  10. High-order beam optics - an overview

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1989-01-01

    Beam-transport codes have been around for as long as thirty years and high order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. The author will describe some of the main design tools available today, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs., 1 tab

  11. Capacitance of a highly ordered array of nanocapacitors: Model and microscopy

    Science.gov (United States)

    Cortés, A.; Celedón, C.; Ulloa, P.; Kepaptsoglou, D.; Häberle, P.

    2011-11-01

    This manuscript describes briefly the process used to build an ordered porous array in an anodic aluminum oxide (AAO) membrane, filled with multiwall carbon nanotubes (MWCNTs). The MWCNTs were grown directly inside the membrane through chemical vapor deposition (CVD). The role of the CNTs is to provide narrow metal electrodes contact with a dielectric surface barrier, hence, forming a capacitor. This procedure allows the construction of an array of 1010 parallel nano-spherical capacitors/cm2. A central part of this contribution is the use of physical parameters obtained from processing transmission electron microscopy (TEM) images, to predict the specific capacitance of the AAOs arrays. Electrical parameters were obtained by solving Laplace's equation through finite element methods (FEMs).

  12. Determining spherical lens correction for astronaut training underwater.

    Science.gov (United States)

    Porter, Jason; Gibson, C Robert; Strauss, Samuel

    2011-09-01

    To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration astronauts while training underwater. The replica space suit's helmet contains curved visors that induce refractive power when submersed in water. Anterior surface powers and thicknesses were measured for the helmet's protective and inside visors. The impact of each visor on the helmet's refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet's total induced spherical power underwater and the astronaut's manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. The helmet's visors induced a total power of -2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (r = 0.971) with 70% of eyes having a difference in magnitude of astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater.

  13. Effective response and scattering cross section of spherical inclusions in a medium

    Energy Technology Data Exchange (ETDEWEB)

    Alexopoulos, A., E-mail: Aris.Alexopoulos@dsto.defence.gov.a [Electronic Warfare and Radar Division, Defence Science and Technology Organisation (DSTO), PO Box 1500, Edinburgh 5111 (Australia)

    2009-08-24

    The Maxwell-Garnett theory for a right-handed homogeneous system is extended in order to investigate the effective response of a medium consisting of low density distributed 3-dimensional inclusions. The polarisability factor is modified to account for inclusions with binary layered volumes and it is shown that such a configuration can yield doubly negative effective permittivity and permeability. Terms representing second-order scattering interactions between binary inclusions in the medium are derived and are used to reformulate conventional effective medium theory. In the appropriate limit, the one-body theory of Maxwell-Garnett is recovered. The scattering cross section of the spherical inclusions is determined and comparison is made to homogeneous dielectric scatterers in the Rayleigh limit. It is found that the scattering resonances can be manipulated using the inclusion parameters. Furthermore, the effect that two-interacting spherical inclusions in a medium have on the scattering cross section is investigated via higher order dipole moments while the issue of reducing the scattering cross section to zero is also examined.

  14. Design of reactor internals in larger high-temperature reactors with spherical fuel elements

    International Nuclear Information System (INIS)

    Elter, C.

    1981-01-01

    In his paper, the author analyzes and summarizes the present state of the art with emphasis on the prototype reactor THTR 300 MWe, because in addition to spherical fuel elements, this type includes other features of future HTR design such as the same flow direction of cooland gas through the core. The paper on hand also elaborates design guidelines for reactor internals applicable with large HTR's of up to 1200 MWe. Proved designs will be altered so as to meet the special requirements of larger cores with spherical elements to be reloaded according to the OTTO principle. This paper is furthermore designed as a starting point for selective and swift development of reactor internals for large HTR's to be refuelled according to the OTTO principle. (orig./GL) [de

  15. MAST: a Mega Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Darke, A.C.; Harbar, J.R.; Hay, J.H.; Hicks, J.B.; Hill, J.W.; McKenzie, J.S.; Morris, A.W.; Nightingale, M.P.S.; Todd, T.N.; Voss, G.M.; Watkins, J.R.

    1995-01-01

    The highly successful tight aspect ratio tokamak research pioneered on the START machine at Culham, together with the attractive possibilities of the concept, suggest a larger device should be considered. The design of a Mega Amp Spherical Tokamak is described, operating at much higher currents and over longer pulses than START and compatible with strong additional heating. (orig.)

  16. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

    OpenAIRE

    Klöckner, Andreas; Leitner, Martin; Schlabe, Daniel; Looye, Gertjan

    2013-01-01

    Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft’s life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of th...

  17. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    Science.gov (United States)

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Spherical Tensor Calculus for Local Adaptive Filtering

    Science.gov (United States)

    Reisert, Marco; Burkhardt, Hans

    In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.

  19. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    Science.gov (United States)

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-11-02

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.

  20. A high resolution Mirnov array for the Mega Ampere Spherical Tokamak

    International Nuclear Information System (INIS)

    Hole, M. J.; Appel, L. C.; Martin, R.

    2009-01-01

    Over the past two decades, the increase in neutral-beam heating and α particle production in magnetically confined fusion plasmas has led to an increase in energetic particle driven mode activity, much of which has an electromagnetic signature which can be detected by the use of external Mirnov coils. Typically, the frequency and spatial wave number band of such oscillations increase with increasing injection energy, offering new challenges for diagnostic design. In particular, as the frequency approaches the megahertz range, care must be taken to model the stray capacitance of the coil, which limits the resonant frequency of the probe; model transmission line effects in the system, which if unchecked can produce system resonances; and minimize coil conductive shielding, so as to minimize skin currents which limit the frequency response of the coil. As well as optimizing the frequency response, the coils should also be positioned to confidently identify oscillations over a wide wave number band. This work, which draws on new techniques in stray capacitance modeling and coil positioning, is a case study of the outboard Mirnov array for high-frequency acquisition in the Mega Ampere Spherical Tokamak, and is intended as a roadmap for the design of high frequency, weak field strength magnetic diagnostics.

  1. A new approximation of Fermi-Dirac integrals of order 1/2 for degenerate semiconductor devices

    Science.gov (United States)

    AlQurashi, Ahmed; Selvakumar, C. R.

    2018-06-01

    There had been tremendous growth in the field of Integrated circuits (ICs) in the past fifty years. Scaling laws mandated both lateral and vertical dimensions to be reduced and a steady increase in doping densities. Most of the modern semiconductor devices have invariably heavily doped regions where Fermi-Dirac Integrals are required. Several attempts have been devoted to developing analytical approximations for Fermi-Dirac Integrals since numerical computations of Fermi-Dirac Integrals are difficult to use in semiconductor devices, although there are several highly accurate tabulated functions available. Most of these analytical expressions are not sufficiently suitable to be employed in semiconductor device applications due to their poor accuracy, the requirement of complicated calculations, and difficulties in differentiating and integrating. A new approximation has been developed for the Fermi-Dirac integrals of the order 1/2 by using Prony's method and discussed in this paper. The approximation is accurate enough (Mean Absolute Error (MAE) = 0.38%) and easy enough to be used in semiconductor device equations. The new approximation of Fermi-Dirac Integrals is applied to a more generalized Einstein Relation which is an important relation in semiconductor devices.

  2. Observation of a High Performance Operating Regime with Small Edge-Localized Modes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Maingi, R.; Tritz, K.; Fredrickson, E.D.; Menard, J.E.; Sabbagh, S.A.; Stutman, D.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Gates, D.A.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Mueller, D.; Raman, R.; Roquemore, A.L.; Soukhanovskii, V.A.

    2004-01-01

    We report observation of a high performance scenario in the National Spherical Torus Experiment with very small edge-localized modes (ELMs). These ELMs have no measurable impact on stored energy and are consistent with high bootstrap current operation with line average density approaching Greenwald scaling. The ELM perturbation is observed to typically originate near the lower divertor region, as opposed to the outer midplane for ELMs described in the literature. If extrapolable, this scenario would provide an attractive operating regime for next step fusion experiments

  3. Modeling mantle convection in the spherical annulus

    Science.gov (United States)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  4. First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}

    Science.gov (United States)

    Ruiz, A.; Muriel, C.

    2017-05-01

    A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.

  5. An Improved Second-Order Generalized Integrator Based Quadrature Signal Generator

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Qin, Zian

    2016-01-01

    The second-order generalized integrator based quadrature signal generator (SOGI-QSG) is able to produce in-quadrature signals for many applications, such as frequency estimation, grid synchronization, and harmonic extraction. However, the SOGI-QSG is sensitive to input dc and harmonic components...

  6. Higher-order aberrations and best-corrected visual acuity in Native American children with a high prevalence of astigmatism.

    Science.gov (United States)

    Miller, Joseph M; Harvey, Erin M; Schwiegerling, Jim

    2015-08-01

    To determine whether higher-order aberrations (HOAs) in children from a highly astigmatic population differ from population norms and whether HOAs are associated with astigmatism and reduced best-corrected visual acuity. Subjects were 218 Tohono O'odham Native American children 5-9 years of age. Noncycloplegic HOA measurements were obtained with a handheld Shack-Hartmann sensor (SHS). Signed (z06s to z14s) and unsigned (z06u to z14u) wavefront aberration Zernike coefficients Z(3,-3) to Z(4,4) were rescaled for a 4 mm diameter pupil and compared to adult population norms. Cycloplegic refraction and best-corrected logMAR letter visual acuity (BCVA) were also measured. Regression analyses assessed the contribution of astigmatism (J0) and HOAs to BCVA. The mean root-mean-square (RMS) HOA of 0.191 ± 0.072 μm was significantly greater than population norms (0.100 ± 0.044 μm). All unsigned HOA coefficients (z06u to z14u) and all signed coefficients except z09s, z10s, and z11s were significantly larger than population norms. Decreased BCVA was associated with astigmatism (J0) and spherical aberration (z12u) but not RMS coma, with the effect of J0 about 4 times as great as z12u. Tohono O'odham children show elevated HOAs compared to population norms. Astigmatism and unsigned spherical aberration are associated with decreased acuity, but the effects of spherical aberration are minimal and not clinically significant. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  7. Dynamical effects of successive mergers on the evolution of spherical stellar systems

    International Nuclear Information System (INIS)

    Lee, H.M.

    1987-01-01

    Numerical investigations are carried out to study the dynamical effects of high-mass stars formed out of successive mergers among tidally captured binaries on the evolution of spherical stellar systems. It is assumed that all tidally captured systems become mergers in order to maximize these effects. Stellar systems with N greater than about 10 to the 7th are susceptible to merger instability which may lead to the formation of a central black hole. It is shown that globular clusters are likely to achieve postcollapse expansion due to three-body binary heating and stellar evolution, while galactic nuclei can easily be overcome by the merger instability in the core. 25 references

  8. Reliability-based design optimization via high order response surface method

    International Nuclear Information System (INIS)

    Li, Hong Shuang

    2013-01-01

    To reduce the computational effort of reliability-based design optimization (RBDO), the response surface method (RSM) has been widely used to evaluate reliability constraints. We propose an efficient methodology for solving RBDO problems based on an improved high order response surface method (HORSM) that takes advantage of an efficient sampling method, Hermite polynomials and uncertainty contribution concept to construct a high order response surface function with cross terms for reliability analysis. The sampling method generates supporting points from Gauss-Hermite quadrature points, which can be used to approximate response surface function without cross terms, to identify the highest order of each random variable and to determine the significant variables connected with point estimate method. The cross terms between two significant random variables are added to the response surface function to improve the approximation accuracy. Integrating the nested strategy, the improved HORSM is explored in solving RBDO problems. Additionally, a sampling based reliability sensitivity analysis method is employed to reduce the computational effort further when design variables are distributional parameters of input random variables. The proposed methodology is applied on two test problems to validate its accuracy and efficiency. The proposed methodology is more efficient than first order reliability method based RBDO and Monte Carlo simulation based RBDO, and enables the use of RBDO as a practical design tool.

  9. Initial results from the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Takase, Y.; Ejiri, A.; Kasuya, N.

    2001-01-01

    A new spherical tokamak TST-2 was constructed at the University of Tokyo and started operation in September 1999. Reliable plasma initiation is achieved with typically 1 kW of ECH power at 2.45 GHz. Plasma currents of up to 90 kA and toroidal fields of up to 0.2 T have been achieved during the initial experimental campaign. The ion temperature is typically 100 eV. Internal reconnection events (IREs) are often observed. The internal magnetic field measured at r/a=2/3 indicated growth of fluctuations up to the 4 th harmonic, suggesting the existence of modes with several different mode numbers. In the presence of a toroidal field and a vertically oriented mirror field, noninductively driven currents of order 1 kA were observed with 1 kW of ECH power. The driven current increased with decreasing filling pressure, down to 3x10 -6 torr. A study of high harmonic fast wave (HHFW) excitation and propagation has begun. Initial results indicate highly efficient wave launching. (author)

  10. High-order multi-implicit spectral deferred correction methods for problems of reactive flow

    International Nuclear Information System (INIS)

    Bourlioux, Anne; Layton, Anita T.; Minion, Michael L.

    2003-01-01

    Models for reacting flow are typically based on advection-diffusion-reaction (A-D-R) partial differential equations. Many practical cases correspond to situations where the relevant time scales associated with each of the three sub-processes can be widely different, leading to disparate time-step requirements for robust and accurate time-integration. In particular, interesting regimes in combustion correspond to systems in which diffusion and reaction are much faster processes than advection. The numerical strategy introduced in this paper is a general procedure to account for this time-scale disparity. The proposed methods are high-order multi-implicit generalizations of spectral deferred correction methods (MISDC methods), constructed for the temporal integration of A-D-R equations. Spectral deferred correction methods compute a high-order approximation to the solution of a differential equation by using a simple, low-order numerical method to solve a series of correction equations, each of which increases the order of accuracy of the approximation. The key feature of MISDC methods is their flexibility in handling several sub-processes implicitly but independently, while avoiding the splitting errors present in traditional operator-splitting methods and also allowing for different time steps for each process. The stability, accuracy, and efficiency of MISDC methods are first analyzed using a linear model problem and the results are compared to semi-implicit spectral deferred correction methods. Furthermore, numerical tests on simplified reacting flows demonstrate the expected convergence rates for MISDC methods of orders three, four, and five. The gain in efficiency by independently controlling the sub-process time steps is illustrated for nonlinear problems, where reaction and diffusion are much stiffer than advection. Although the paper focuses on this specific time-scales ordering, the generalization to any ordering combination is straightforward

  11. Exploration of spherical torus physics in the NSTX device

    Science.gov (United States)

    Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team

    2000-03-01

    The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.

  12. Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid.

    Science.gov (United States)

    Mitri, Farid G

    2012-08-01

    This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.

  13. RF start-up and sustainment experiments on the TST-2-K spherical tokamak

    International Nuclear Information System (INIS)

    Ejiri, A.; Takase, Y.; Kasahara, H.; Yamada, T.; Hanada, K.; Sato, K. N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Iyomasa, A.; Imamura, N.; Esaki, K.; Kitaguchi, M.; Sasaki, K.; Hoshika, H.; Mitarai, O.; Nishino, N.

    2006-01-01

    Plasma start-up and sustainment without an inductive field have been studied in the TST-2-K spherical tokamak using high power RF sources (8.2 GHz/up to 170 kW). Steady state discharges with a plasma current of 4 kA were achieved. The line integrated density was about 3 x 10 17 m -2 and the electron temperature was 160 eV. A truncated equilibrium was introduced to reproduce magnetic measurements. It was found that a positive Pfirsch-Schlueter current in the open field line region at the outboard boundary makes a significant contribution to the current. Insensitivity of the current to variations in the vertical field and RF power variation was also found

  14. Cesium Isotherm Testing with Spherical Resorcinol-Formaldehyde Resin at High Sodium Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conducted at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..

  15. Proposal for arbitrary-order temporal integration of ultrafast optical signals using a single uniform-period fiber Bragg grating.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-01

    A simple and practical all-fiber design for implementing arbitrary-order temporal integration of ultrafast optical waveforms is proposed and numerically investigated. We demonstrate that an ultrafast photonics integrator of any desired integration order can be implemented using a uniform-period fiber Bragg grating (FBG) with a properly designed amplitude-only grating apodization profile. In particular, the grating coupling strength must vary according to the (N-1) power of the fiber distance for implementing an Nth-order photonics integrator (N=1,2,...). This approach requires the same level of practical difficulty for realizing any given integration order. The proposed integration devices operate over a limited time window, which is approximately fixed by the round-trip propagation time in the FBG. Ultrafast arbitrary-order all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs.

  16. Spherical spacelike geometries in static spherically symmetric spacetimes: Generalized Painlevè–Gullstrand coordinates, foliation, and embedding

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, M.M., E-mail: akbar@utdallas.edu

    2017-06-10

    It is well known that static spherically symmetric spacetimes can admit foliations by flat spacelike hypersurfaces, which are best described in terms of the Painlevè–Gullstrand coordinates. The uniqueness and existence of such foliations were addressed earlier. In this paper, we prove, purely geometrically, that any possible foliation of a static spherically symmetric spacetime by an arbitrary codimension-one spherical spacelike geometry, up to time translation and rotation, is unique, and we find the algebraic condition under which it exists. This leads us to what can be considered as the most natural generalization of the Painlevè–Gullstrand coordinate system for static spherically symmetric metrics, which, in turn, makes it easy to derive generic conclusions on foliation and to study specific cases as well as to easily reproduce previously obtained generalizations as special cases. In particular, we note that the existence of foliation by flat hypersurfaces guarantees the existence of foliation by hypersurfaces whose Ricci curvature tensor is everywhere non-positive (constant negative curvature is a special case). The study of uniqueness and the existence concurrently solves the question of embeddability of a spherical spacelike geometry in one-dimensional higher static spherically symmetric spacetimes, and this produces known and new results geometrically, without having to go through the momentum and Hamiltonian constraints.

  17. High-Order Analytic Expansion of Disturbing Function for Doubly Averaged Circular Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2016-01-01

    Full Text Available Terms in the analytic expansion of the doubly averaged disturbing function for the circular restricted three-body problem using the Legendre polynomial are explicitly calculated up to the fourteenth order of semimajor axis ratio (α between perturbed and perturbing bodies in the inner case (α1. The expansion outcome is compared with results from numerical quadrature on an equipotential surface. Comparison with direct numerical integration of equations of motion is also presented. Overall, the high-order analytic expansion of the doubly averaged disturbing function yields a result that agrees well with the numerical quadrature and with the numerical integration. Local extremums of the doubly averaged disturbing function are quantitatively reproduced by the high-order analytic expansion even when α is large. Although the analytic expansion is not applicable in some circumstances such as when orbits of perturbed and perturbing bodies cross or when strong mean motion resonance is at work, our expansion result will be useful for analytically understanding the long-term dynamical behavior of perturbed bodies in circular restricted three-body systems.

  18. Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS Derivatives

    Directory of Open Access Journals (Sweden)

    Xiong Cao

    2018-05-01

    Full Text Available The spherization of nanoenergetic materials is the best way to improve the sensitivity and increase loading densities and detonation properties for weapons and ammunition, but the preparation of spherical nanoenergetic materials with high regularization, uniform size and monodispersity is still a challenge. In this paper, nanoenergetic hollow spherical hexanitrostibene (HNS derivatives were fabricated via a one-pot copolymerization strategy, which is based on the reaction of HNS and piperazine in acetonitrile solution. Characterization results indicated the as-prepared reaction nanoenergetic products were HNS-derived oligomers, where a free radical copolymerization reaction process was inferred. The hollow sphere structure of the HNS derivatives was characterized by scanning electron microscopy (SEM, transmission electron microscope (TEM, and synchrotron radiation X-ray imaging technology. The properties of the nanoenergetic hollow spherical derivatives, including thermal decomposition and sensitivity are discussed in detail. Sensitivity studies showed that the nanoenergetic derivatives exhibited lower impact, friction and spark sensitivity than raw HNS. Thermogravimetric-differential scanning calorimeter (TG-DSC results showed that continuous exothermic decomposition occurred in the whole temperature range, which indicated that nanoenergetic derivatives have a unique role in thermal applications. Therefore, nanoenergetic hollow spherical HNS derivatives could provide a new way to modify the properties of certain energetic compounds and fabricate spherical nanomaterials to improve the charge configuration.

  19. Spiral CT manifestations of spherical pneumonia

    International Nuclear Information System (INIS)

    Li Xiaohong; Yang Hongwei; Xu Chunmin; Qin Xiu

    2008-01-01

    Objective: To explore the Spiral CT manifestations and differential diagnosis of spherical pneumonia. Methods: 18 cases of spherical pneumonia and 20 cases of peripheral pulmonary carcinoma were selected, both of them were confirmed by clinic and/or pathology. The SCT findings of both groups were compared retrospectively. Results: Main spiral CT findings of spherical pneumonia were showed as followings: square or triangular lesions adjacent to pleura; with irregular shape, blurry, slightly lobulated margin, sometimes with halo sign. Small inflammatory patches and intensified vascular markings around the lesions were seen. Lesions became smaller or vanished after short-term anti-inflammatory treatment. Conclusion: Spherical pneumonia showed some characteristics on Spiral CT scan, which are helpful in diagnosis and differential diagnosis of this disease. (authors)

  20. High-order dispersion control of 10-petawatt Ti:sapphire laser facility.

    Science.gov (United States)

    Li, Shuai; Wang, Cheng; Liu, Yanqi; Xu, Yi; Li, Yanyan; Liu, Xingyan; Gan, Zebiao; Yu, Lianghong; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin

    2017-07-24

    A grism pair is utilized to control the high-order dispersion of the Shanghai Superintense Ultrafast Lasers Facility, which is a large-scale project aimed at delivering 10-PW laser pulses. We briefly present the characteristics of the laser system and calculate the cumulative B-integral, which determines the nonlinear phase shift influence on material dispersion. Three parameters are selected, grism separation, angle of incidence and slant distance of grating compressor, to determine their optimal values through an iterative searching procedure. Both the numerical and experimental results confirm that the spectral phase distortion is controlled, and the recompressed pulse with a duration of 24 fs is obtained in the single-shot mode. The distributions and stabilities of the pulse duration at different positions of the recompressed beam are also investigated. This approach offers a new feasible solution for the high-order dispersion compensation of femtosecond petawatt laser systems.

  1. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    International Nuclear Information System (INIS)

    Kaushik, Meenu; Joshi, L. M.

    2016-01-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  2. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com [Microwave Tubes Division, CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-03-09

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  3. Effects of SMILE and Trans-PRK on corneal higher order aberrations after myopic correction

    Directory of Open Access Journals (Sweden)

    Jiao Zhao

    2018-02-01

    Full Text Available AIM:To observe the effects of small incision lenticule extraction(SMILEand trans-epithelial photorefractive keratectomy(Trans-PRKon corneal horizontal coma, vertical coma, and spherical aberration and total higher order aberrations after refractive correction for myopia. METHODS: This was a prospective non-randomized cohort study. The cohort included 40 patients(80 eyeswith myopia, who received refraction correction surgery from December 2016 to February 2017 in Leshan Ophthalmic Center. Twenty patients(40 eyesreceived SMILE surgery and the other 20 patients(40 eyesreceived Trans-PRK surgery. Corneal aberrations were determined by a high-resolution Pentacam Scheimpflug camera before the surgery and at 1 and 3mo after the operation. Statistical analyses were performed using analysis of variance of repeated measures. RESULTS: At 1 and 3mo post-operation, the uncorrected visual acuity in both groups was better than or equal to the preoperative best corrected visual acuity. The preoperative corneal aberrations showed no significant difference between the two groups(P>0.05. Significantly higher aberration was found after the surgery in both groups(PP>0.05. Post-operation, horizontal and vertical coma had no significant difference between the two groups(P>0.05, while SMILE group showed lower spherical aberration and lower total higher order aberration than Trans-PRK group(PCONCLUSION: Both SMILE and Trans-PRK increase corneal aberration and their effects on horizontal and vertical coma are similar. However, SMILE has a minor influence on spherical aberration and total high order aberration than Trans-PRK.

  4. Theoretical and experimental study of high strain, high strain rate materials viscoplastic behaviour. Application to Mars 190 steel and tantalum

    International Nuclear Information System (INIS)

    Juanicotena, A.

    1998-01-01

    This work enters in the general framework of the study and modelling of metallic materials viscoplastic behaviour in the area of high strain and high strain rate, from 10 4 to 10 5 s -1 . We define a methodology allowing to describe the behaviour of armor steel Mars 190 and tantalum in the initial area. In a first time, the study of visco-plasticity physical mechanisms shows the necessity to take into account some fundamental processes of the plastic deformation. Then, the examination of various constitutive relations allows to select the Preston-Tonks-Wallace model, that notably reproduce the physical phenomenon of the flow stress saturation. In a second part, a mechanical characterization integrating loading direction, strain rate and temperature effects is conducted on the two materials. Moreover, these experimental results allow to calculate associated constants to Preston-Tonks-Wallace, Zerilli-Armstrong and Johnson-Cook models for each material. In a third time, in order to evaluate and to validate these constitutive laws, we conceive and develop an experimental device open to reach the area of study: the expanding spherical shell test. It concerns to impose a free radial expanding to a thin spherical shell by means a shock wave generated by an explosive. By the radial expanding velocity measure, we can determine stress, strain rate and strain applied on the spherical shell at each time. In a four and last part, we evaluate constitutive models out of their optimization area's. This validation is undertaken by comparisons 'experimental results/calculations' with the help of global experiences like expanding spherical shell test and Taylor test. (author)

  5. Scaling of a fast spherical discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2017-02-15

    The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It is shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.

  6. Spherical aberrations of human astigmatic corneas.

    Science.gov (United States)

    Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A

    2011-11-01

    To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.

  7. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    KAUST Repository

    Pelties, Christian

    2012-02-18

    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.

  8. Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2008-01-01

    The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-order spherical aberration and the chromatic aberration in combination with the development of a monochromator below an electron gun for smaller point-to-point resolution in optics. Another fundamental area of interest is the limitation of TEM and STEM resolution from the viewpoint of the scattering of electrons in crystals. The minimum size of the exit-wave function below samples undergoing TEM imaging is determined from the calculation of scattering around related atomic columns in the crystals. STEM does not have this limitation because the resolution is, in principle, determined by the probe size. One of the future prospects of Cs-corrected TEM/STEM is the possibility of extending the space around the sample holder by correcting the chromatic and spherical aberrations. This wider space will contribute to the ease of performing in situ experiments and various combinations of TEM and other analysis methods. High-resolution, in situ dynamic and 3D observations/analysis are the most important keywords in the next decade of high-resolution electron microscopy. (topical review)

  9. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  10. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  11. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yajuan, E-mail: yajuan.zhong@gmail.com [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Zhang, Junpeng [CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lin, Jun, E-mail: linjun@sinap.ac.cn [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, Liujun [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Guo, Quangui [CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2017-07-15

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10{sup −6} K{sup −1} (α{sub ∥}) and 6.15 × 10{sup −6} K{sup −1} (α{sub ⊥}) at the temperature range of 25–700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  12. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    International Nuclear Information System (INIS)

    Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui

    2017-01-01

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10 −6 K −1 (α ∥ ) and 6.15 × 10 −6 K −1 (α ⊥ ) at the temperature range of 25–700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  13. A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods

    Science.gov (United States)

    Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun

    2018-03-01

    Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a

  14. Coupling Ideality of Integrated Planar High-Q Microresonators

    Science.gov (United States)

    Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.

    2017-02-01

    Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore

  15. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    International Nuclear Information System (INIS)

    Lockett, R D

    2006-01-01

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio φ > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks

  16. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  17. Spherical anharmonic oscillator in self-similar approximation

    International Nuclear Information System (INIS)

    Yukalova, E.P.; Yukalov, V.I.

    1992-01-01

    The method of self-similar approximation is applied here for calculating the eigenvalues of the three-dimensional spherical anharmonic oscillator. The advantage of this method is in its simplicity and high accuracy. The comparison with other known analytical methods proves that this method is more simple and accurate. 25 refs

  18. Coulomb potentials between spherical heavy ions

    International Nuclear Information System (INIS)

    Iwe, H.

    1982-01-01

    The Coulomb interaction between spherical nuclei having arbitrary radial nuclear charge distributions is calculated. All these realistic Coulomb potentials are given in terms of analytical expressions and are available for immediate application. So in no case a numerical computation of the Coulomb integral is required. The parameters of the charge distributions are taken from electron scattering analysis. The Coulomb self-energies of the charge distributions used are also calculated analytically in a closed form. For a number of nucleus-nucleus pairs, the Coulomb potentials derived from realistic charge distributions are compared with those normally used in various nucleus-nucleus optical model calculations. In this connection a detailed discussion of the problem how to choose consistently Coulomb parameters for different approximations is given. (orig.)

  19. Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach

    Directory of Open Access Journals (Sweden)

    Byung-Kyu Choi

    2010-12-01

    Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.

  20. National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Masayuki Ono

    2000-01-01

    The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. Physics outcome of the NSTX research program is relevant to near-term applications such as the Volume Neutron Source (VNS) and burning plasmas, and future applications such as the pilot and power plants. The NSTX device began plasma operations in February 1999 and the plasma current was successfully ramped up to the design value of 1 million amperes (MA) on December 14, 1999. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments have also started. Stable CHI discharges of up to 133 kA and 130-msec duration have been produced using 20 kA of injected current. Using eight antennas connected to two transmitters, up to 2 MW of HHFW power was successfully coupled to the plasma. The Neutral-beam Injection (NBI) heating system and associated NBI-based diagnostics such as the Charge-exchange Recombination Spectrometer (CHERS) will be operational in October 2000

  1. Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator

    DEFF Research Database (Denmark)

    Wu, Guanglei; Caro, Stéphane; Wang, Jiawei

    2015-01-01

    analysis and optimal design of the proposed manipulator based on its kinematic analysis. The input and output transmission indices of the manipulator are defined for its optimum design based on the virtual coefficient between the transmission wrenches and twist screws. The sets of optimal parameters......This paper presents an asymmetrical spherical parallel manipulator and its transmissibility analysis. This manipulator contains a center shaft to both generate a decoupled unlimited-torsion motion and support the mobile platform for high positioning accuracy. This work addresses the transmission...... are identified and the distribution of the transmission index is visualized. Moreover, a comparative study regarding to the performances with the symmetrical spherical parallel manipulators is conducted and the comparison shows the advantages of the proposed manipulator with respect to its spherical parallel...

  2. Automatic X-ray inspection for the HTR-PM spherical fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Yi, DU, E-mail: duyi11@mails.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Energy Science Building A309, Haidian District, Beijing 100084 (China); Xiangang, WANG, E-mail: wangxiangang@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Energy Science Building A309, Haidian District, Beijing 100084 (China); Xincheng, XIANG, E-mail: inetxxc@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Energy Science Building, Haidian District, Beijing 100084 (China); Bing, LIU, E-mail: bingliu@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Energy Science Building, Haidian District, Beijing 100084 (China)

    2014-12-15

    Highlights: • An automatic X-ray inspection method is established to characterize HTR pebbles. • The method provides physical characterization and the inner structure of pebbles. • The method can be conducted non-destructively, quickly and automatically. • Sample pebbles were measured with this AXI method for validation. • The method shows the potential to be applied in situ. - Abstract: Inefficient quality assessment and control (QA and C) of spherical fuel elements for high temperature reactor-pebblebed modules (HTR-PM) has been a long-term problem, since conventional methods are labor intensive and cannot reveal the inside information nondestructively. Herein, we proposed a nondestructive, automated X-ray inspection (AXI) method to characterize spherical fuel elements including their inner structures based on X-ray digital radiography (DR). Briefly, DR images at different angles are first obtained and then the chosen important parameters such as spherical diameters, geometric and mass centers, can be automatically extracted and calculated via image processing techniques. Via evaluating sample spherical fuel elements, we proved that this AXI method can be conducted non-destructively, quickly and automatically. This method not only provides accurate physical characterization of spherical fuel elements but also reveals their inner structure with good resolution, showing great potentials to facilitate fast QA and C in HTM-PM spherical fuel element development and production.

  3. Automatic X-ray inspection for the HTR-PM spherical fuel elements

    International Nuclear Information System (INIS)

    Yi, DU; Xiangang, WANG; Xincheng, XIANG; Bing, LIU

    2014-01-01

    Highlights: • An automatic X-ray inspection method is established to characterize HTR pebbles. • The method provides physical characterization and the inner structure of pebbles. • The method can be conducted non-destructively, quickly and automatically. • Sample pebbles were measured with this AXI method for validation. • The method shows the potential to be applied in situ. - Abstract: Inefficient quality assessment and control (QA and C) of spherical fuel elements for high temperature reactor-pebblebed modules (HTR-PM) has been a long-term problem, since conventional methods are labor intensive and cannot reveal the inside information nondestructively. Herein, we proposed a nondestructive, automated X-ray inspection (AXI) method to characterize spherical fuel elements including their inner structures based on X-ray digital radiography (DR). Briefly, DR images at different angles are first obtained and then the chosen important parameters such as spherical diameters, geometric and mass centers, can be automatically extracted and calculated via image processing techniques. Via evaluating sample spherical fuel elements, we proved that this AXI method can be conducted non-destructively, quickly and automatically. This method not only provides accurate physical characterization of spherical fuel elements but also reveals their inner structure with good resolution, showing great potentials to facilitate fast QA and C in HTM-PM spherical fuel element development and production

  4. Generation of high order modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  5. Bidispersed Sphere Packing on Spherical Surfaces

    Science.gov (United States)

    Atherton, Timothy; Mascioli, Andrew; Burke, Christopher

    Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  6. A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David, E-mail: david.radice@aei.mpg.de [Max Planck Institute für Gravitationsphysik, Albert Einstein Institute, Potsdam (Germany); Abdikamalov, Ernazar [TAPIR, California Institute of Technology, Pasadena, CA (United States); Rezzolla, Luciano [Max Planck Institute für Gravitationsphysik, Albert Einstein Institute, Potsdam (Germany); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Ott, Christian D. [TAPIR, California Institute of Technology, Pasadena, CA (United States)

    2013-06-01

    Recent work by McClarren and Hauck (2010) [31] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.

  7. A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations

    International Nuclear Information System (INIS)

    Radice, David; Abdikamalov, Ernazar; Rezzolla, Luciano; Ott, Christian D.

    2013-01-01

    Recent work by McClarren and Hauck (2010) [31] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations

  8. Reduced order generalized integrators with phase compensation for three-phase active power filter

    DEFF Research Database (Denmark)

    Xie, Chuan; Li, Kai; Zhao, Xin

    2017-01-01

    -order generalized integrators (SOGIs) are utilized to achieve those objectives. However, it will increase the computational burden due to calculation of the multiple paralleled SOGIs. To overcome this issue, phase compensated reduced order generalized integrator (ROGI) is proposed in this paper. Compared...... paralleled ROGIs in positive and negative resonant frequencies. Moreover, the controller parameters are designed and optimized by means of Nyquist diagrams and sensitivity functions in z-domain for directly digital implementation. Finally, the laboratory tests of APF are performed to validate the feasibility...

  9. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders

    Science.gov (United States)

    Bucha, Blažej; Janák, Juraj

    2013-07-01

    We present a novel graphical user interface program GrafLab (GRAvity Field LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB®. This program allows to comfortably compute 38 various functionals of the geopotential up to ultra-high degrees and orders of spherical harmonic expansion. For the most difficult part of the SHS, namely the evaluation of the fully normalized associated Legendre functions (fnALFs), we used three different approaches according to required maximum degree: (i) the standard forward column method (up to maximum degree 1800, in some cases up to degree 2190); (ii) the modified forward column method combined with Horner's scheme (up to maximum degree 2700); (iii) the extended-range arithmetic (up to an arbitrary maximum degree). For the maximum degree 2190, the SHS with fnALFs evaluated using the extended-range arithmetic approach takes only approximately 2-3 times longer than its standard arithmetic counterpart, i.e. the standard forward column method. In the GrafLab, the functionals of the geopotential can be evaluated on a regular grid or point-wise, while the input coordinates can either be read from a data file or entered manually. For the computation on a regular grid we decided to apply the lumped coefficients approach due to significant time-efficiency of this method. Furthermore, if a full variance-covariances matrix of spherical harmonic coefficients is available, it is possible to compute the commission errors of the functionals. When computing on a regular grid, the output functionals or their commission errors may be depicted on a map using automatically selected cartographic projection.

  10. Spherical Harmonics Treatment of Epithermal Neutron Spectra in Reactor lattices

    International Nuclear Information System (INIS)

    Matausek, M.V.

    1972-04-01

    A procedure has been developed to solve the slowing down transport equation for neutrons in a cylindrized reactor lattice cell. Treating the anisotropy of the epithermal neutron flux by the spherical harmonics formalism, which reduces the space-angle-lethargy-dependent transport equation to the matrix integrodifferential equation in space and lethargy, and replacing the lethargy transfer integrals by finite-difference forms, a set of matrix ordinary differential equations, with lethargy and space dependent coefficients, is obtained. In the resonance region this set takes a lower block triangular form and can be directly solved by forward block substitution; in the lethargy range, where the fast fission effects have to be considered, the iterative procedure is introduced. A simple and efficient approximation is then proposed, making possible the analytical solution for the spatial dependence of the spherical harmonics flux moments. The proposed procedure has been numerically examined and approved. Some typical results are presented and discussed. (author)

  11. Interfacial Stability of Spherically Converging Plasma Jets for Magnetized Target Fusion

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, Jason; Wu, S. T.; Eskridge, Richard; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner to implode a magnetized target to produce the fusion reaction. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The results lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that the maximum temporal growth rate of the perturbed flow at the jet interface is very small in comparison with the time to full compression of the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of the gaseous liner can withstand velocity variation of the order of 10% between the neighboring jets over the density and temperature ranges investigated.

  12. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis

    Science.gov (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.

    2018-01-01

    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis process was explored in this paper. The accuracy of the dynamic equation of xonotlite spherical particles was verified by two methods, one was comparing the production rate of the xonotlite products calculated by the dynamic equation with the experimental values, and the other was comparing the apparent activation energies calculated by the dynamic equation with that calculated by the Kondo model. The results indicated that the production rates of the xonotlite spherical particles calculated by the dynamic equation were in good agreement with the experimental values and the apparent activation energy of the xonotlite spherical particles calculated by dynamic equation (84 kJ·mol-1) was close to that calculated by Kondo model (77 kJ·mol-1), verifying the high accuracy of the dynamic equation.

  13. Coherent radiation by a spherical medium of resonant atoms

    International Nuclear Information System (INIS)

    Prasad, Sudhakar; Glauber, Roy J.

    2010-01-01

    Radiation by the atoms of a resonant medium is a cooperative process in which the medium participates as a whole. In two previous papers we treated this problem for the case of a medium having slab geometry, which, under plane-wave excitation, supports coherent waves that propagate in one dimension. We extend the treatment here to the three-dimensional problem, focusing principally on the case of spherical geometry. By regarding the radiation field as a superposition of electric and magnetic multipole fields of different orders, we express it in terms of suitably defined scalar fields. The latter fields possess a sequence of exponentially decaying eigenmodes corresponding to each multipole order. We consider several examples of spherically symmetric initial excitations of a sphere. Small uniformly excited spheres, we find, tend to radiate superradiantly, while the radiation from a large sphere with an initially excited inner core exhibits temporal oscillations that result from the participation of a large number of coherently excited amplitudes in different modes. The frequency spectrum of the emitted radiation possesses a rich structure, including a frequency gap for large spheres and sharply defined and closely spaced peaks caused by the small frequency shifts and even smaller decay rates characteristic of the majority of eigenmodes.

  14. Venus gravity and topography: 60th degree and order model

    Science.gov (United States)

    Konopliv, A. S.; Borderies, N. J.; Chodas, P. W.; Christensen, E. J.; Sjogren, W. L.; Williams, B. G.; Balmino, G.; Barriot, J. P.

    1993-01-01

    We have combined the most recent Pioneer Venus Orbiter (PVO) and Magellan (MGN) data with the earlier 1978-1982 PVO data set to obtain a new 60th degree and order spherical harmonic gravity model and a 120th degree and order spherical harmonic topography model. Free-air gravity maps are shown over regions where the most marked improvement has been obtained (Ishtar-Terra, Alpha, Bell and Artemis). Gravity versus topography relationships are presented as correlations per degree and axes orientation.

  15. Analysis of Buried Dielectric Objects Using Higher-Order MoM for Volume Integral Equations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2004-01-01

    A higher-order method of moments (MoM) is applied to solve a volume integral equation for dielectric objects in layered media. In comparison to low-order methods, the higher-order MoM, which is based on higher-order hierarchical Legendre vector basis functions and curvilinear hexahedral elements,...

  16. Superdirective Magnetic Dipole Array as a First-Order Probe for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav

    2012-01-01

    The theory as well as numerical and experimental results are presented for a superdirective array composed of closely spaced electrically small resonant magnetic dipole elements. The array operates on a metal ground plane and can exhibit a maximum directivity of 11.5 dBi, 15.2 dBi, and 17.8 d......Bi (including 3 dB due to the ground plane), for 2, 3, and 4 magnetic dipoles, respectively. The array is self-resonant and is directly excited by a 50-ohm coaxial cable through the ground plane. The array radiates essentially the $\\vert\\mu\\vert=1$ spherical modes, which, despite a narrow bandwidth, makes...

  17. Algebraic properties of first integrals for systems of second-order ...

    African Journals Online (AJOL)

    Symmetries of the rst integrals for scalar linear or linearizable second- order ordinary differential equations (ODEs) have already been derived and shown to exhibit interesting properties. One of these is that the symmetry algebra sl(3; R ) is generated by the three triplets of symmetries of the functionally independent first ...

  18. Nonlinear Interaction of Waves in Rotating Spherical Layers

    Science.gov (United States)

    Zhilenko, D.; Krivonosova, O.; Gritsevich, M.

    2018-01-01

    Flows of a viscous incompressible fluid in a spherical layer that are due to rotational oscillations of its inner boundary at two frequencies with respect to the state of rest are numerically studied. It is found that an increase in the amplitude of oscillations of the boundary at the higher frequency can result in a significant enhancement of the low-frequency mode in a flow near the outer boundary. The direction of propagation of the low-frequency wave changes from radial to meridional, whereas the high-frequency wave propagates in the radial direction in a limited inner region of the spherical layer. The role of the meridional circulation in the energy exchange between spaced waves is demonstrated.

  19. Integrating total quality management principles with the requirements of DOE Order 5700.6C

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, D. [Scientific Ecology Group, Inc. (United States)

    1993-03-01

    The Department of Energy has recently required its field offices, contractors, and subcontractors to implement DOE Order 5700.6C, ``Quality Assurance,`` for all work on waste management contracts. The order restructures the 18 criteria of NQA-1 and focuses on the role of management in achieving and assuring quality, performance of activities to achieve and assure quality, and management`s assessment of its performance for the purpose of identifying improvements to be made. The DOE order also introduces elements of the total quality management (TQM) philosophy, which were not present in DOE Order 5700.6B. The research community within DOE has recently issued a document entitled DOE Order 5700.6C Implementation Guide, which is more explicit about the integration of TQM principles with the implementation of DOE Order 5700.6C in research facilities. The Environmental Protection Agency is sponsoring a quality assurance standard (ANSI/ASQC E-4) to replace EPA`s QAMS 005/80. The new standard is consistent with DOE Order 5700.6C, and it also stresses the integration of TQM principles within the quality assurance process. This paper discusses the intent and philosophy of the 10 criteria of the new DOE order, the status of ANSI/ASQC E-4, and how to effectively integrate TQM principles into the quality assurance process as the conversion is made from NQA-1 to DOE Order 5700.6C. The purpose and value of DOE Order 5700.6C Implementation Guide for research will also be discussed.

  20. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Wang; Jun-jie Hao; Zhi-meng Guo; Song Wang

    2015-01-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced us-ing a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense struc-ture, and the fine sub-micron TiC particles were homogeneously distributed in theα-Fe matrix. A TiC–Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature;the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  1. Ordering, symbols and finite-dimensional approximations of path integrals

    International Nuclear Information System (INIS)

    Kashiwa, Taro; Sakoda, Seiji; Zenkin, S.V.

    1994-01-01

    We derive general form of finite-dimensional approximations of path integrals for both bosonic and fermionic canonical systems in terms of symbols of operators determined by operator ordering. We argue that for a system with a given quantum Hamiltonian such approximations are independent of the type of symbols up to terms of O(ε), where ε of is infinitesimal time interval determining the accuracy of the approximations. A new class of such approximations is found for both c-number and Grassmannian dynamical variables. The actions determined by the approximations are non-local and have no classical continuum limit except the cases of pq- and qp-ordering. As an explicit example the fermionic oscillator is considered in detail. (author)

  2. Ziegler-Natta Catalyst Based on MgCl₂/Clay/ID/TiCl₄ for the Synthesis of Spherical Particles of Polypropylene Nanocomposites.

    Science.gov (United States)

    Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V

    2018-07-01

    In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.

  3. Cochlear implant electrode localization in post-operative CT using a spherical measure

    DEFF Research Database (Denmark)

    Braithwaite, Benjamin Michael; Kjer, Hans Martin; Fagertun, Jens

    2016-01-01

    the ordering of electrode contacts on implanted electrode arrays from post-operative CT images. Our method applies a specialized filter chain to the images based on a threshold and spherical measure, and selects contact positions at local maxima in the filtered image. Two datasets of 13 temporal bone specimens...

  4. Hawking radiation from a spherical loop quantum gravity black hole

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Pullin, Jorge

    2014-01-01

    We introduce quantum field theory on quantum space-times techniques to characterize the quantum vacua as a first step toward studying black hole evaporation in spherical symmetry in loop quantum gravity and compute the Hawking radiation. We use as quantum space-time the recently introduced exact solution of the quantum Einstein equations in vacuum with spherical symmetry and consider a spherically symmetric test scalar field propagating on it. The use of loop quantum gravity techniques in the background space-time naturally regularizes the matter content, solving one of the main obstacles to back-reaction calculations in more traditional treatments. The discreteness of area leads to modifications of the quantum vacua, eliminating the trans-Planckian modes close to the horizon, which in turn eliminates all singularities from physical quantities, like the expectation value of the stress–energy tensor. Apart from this, the Boulware, Hartle–Hawking and Unruh vacua differ little from the treatment on a classical space-time. The asymptotic modes near scri are reproduced very well. We show that the Hawking radiation can be computed, leading to an expression similar to the conventional one but with a high frequency cutoff. Since many of the conclusions concern asymptotic behavior, where the spherical mode of the field behaves in a similar way as higher multipole modes do, the results can be readily generalized to non spherically symmetric fields. (paper)

  5. Spherical Torus Center Stack Design

    International Nuclear Information System (INIS)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-01

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device

  6. Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap

    International Nuclear Information System (INIS)

    Jones, B.; Taylor, G.; Efthimion, P.C.; Munsat, T.

    2004-01-01

    Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic

  7. Spherical Demons: Fast Surface Registration

    Science.gov (United States)

    Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2009-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813

  8. Equivalence of some integrals of the radiation theory

    International Nuclear Information System (INIS)

    Chia, T.T.

    1977-01-01

    A definite integral which occurs in radiation theory is shown to be equal in value to another definite integral by evaluating the flux from a spherically symmetrical radiating sphere in two ways. As a corollary, an alternate proof of the invariance of the specific intensity of a ray in empty space along its path is presented. Furthermore, the equality of these two indefinite integrals leads to the conversion of members of a class of indefinite and definite integrals involving arbitrary functions of angle into other integrals. These transformations facilitate the calculation of some of these integrals which arise not only in the theory of radiation, but in other physical situations with spherical or axial symmetry - especially those in which inverse-square laws are involved. (Auth.)

  9. Analytic theory of the spherical electron to ion convertor

    International Nuclear Information System (INIS)

    Verdeyen, J.T.; Miller, P.A.

    1980-01-01

    Calculations will be presented which indicate that one could, with high efficiency, convert the electron beam energy transported from many pinched diode to ions at a reasonably sized evacuated spherical shell - or a light bulb

  10. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Robinson, D.C.; Akers, R.; Allfrey, S.J.

    1999-01-01

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  11. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Robinson, D.C.; Akers, R.; Allfrey, S.J.

    2001-01-01

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  12. ODF Maxima Extraction in Spherical Harmonic Representation via Analytical Search Space Reduction

    Science.gov (United States)

    Aganj, Iman; Lenglet, Christophe; Sapiro, Guillermo

    2015-01-01

    By revealing complex fiber structure through the orientation distribution function (ODF), q-ball imaging has recently become a popular reconstruction technique in diffusion-weighted MRI. In this paper, we propose an analytical dimension reduction approach to ODF maxima extraction. We show that by expressing the ODF, or any antipodally symmetric spherical function, in the common fourth order real and symmetric spherical harmonic basis, the maxima of the two-dimensional ODF lie on an analytically derived one-dimensional space, from which we can detect the ODF maxima. This method reduces the computational complexity of the maxima detection, without compromising the accuracy. We demonstrate the performance of our technique on both artificial and human brain data. PMID:20879302

  13. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    International Nuclear Information System (INIS)

    Barnes, D.C.; Nebel, R.A.; Ribe, F.L.; Schauer, M.M.; Schranck, L.S.; Umstadter, K.R.

    1999-01-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q). copyright 1999 American Institute of Physics

  14. Digital Information Platform Design of Fuel Element Engineering For High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Du Yuwei

    2014-01-01

    This product line provide fuel element for high temperature gas-cooled reactor nuclear power plant which is being constructed in Shidao bay in Shandong province. Its annual productive capacity is thirty ten thousands fuel elements whose shape is spherical . Compared with pressurized water fuel , this line has the feature of high radiation .In order to reduce harm to operators, the comprehensive information platform is designed , which can realize integration of automation and management for plant. This platform include two nets, automation net using field bus technique and information net using Ethernet technique ,which realize collection ,control, storage and publish of information.By means of construction, automatization and informatization of product line can reach high level. (author)

  15. Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Nash, Thomas J.

    2000-01-01

    The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/micros, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-microm in diameter

  16. Controlled electrosprayed formation of non-spherical microparticles

    Science.gov (United States)

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.

    2017-11-01

    Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.

  17. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  18. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

    Science.gov (United States)

    Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie

    2017-12-01

    In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coding Model and Mapping Method of Spherical Diamond Discrete Grids Based on Icosahedron

    Directory of Open Access Journals (Sweden)

    LIN Bingxian

    2016-12-01

    Full Text Available Discrete Global Grid(DGG provides a fundamental environment for global-scale spatial data's organization and management. DGG's encoding scheme, which blocks coordinate transformation between different coordination reference frames and reduces the complexity of spatial analysis, contributes a lot to the multi-scale expression and unified modeling of spatial data. Compared with other kinds of DGGs, Diamond Discrete Global Grid(DDGG based on icosahedron is beneficial to the spherical spatial data's integration and expression for much better geometric properties. However, its structure seems more complicated than DDGG on octahedron due to its initial diamond's edges cannot fit meridian and parallel. New challenges are posed when it comes to the construction of hierarchical encoding system and mapping relationship with geographic coordinates. On this issue, this paper presents a DDGG's coding system based on the Hilbert curve and designs conversion methods between codes and geographical coordinates. The study results indicate that this encoding system based on the Hilbert curve can express space scale and location information implicitly with the similarity between DDG and planar grid put into practice, and balances efficiency and accuracy of conversion between codes and geographical coordinates in order to support global massive spatial data's modeling, integrated management and all kinds of spatial analysis.

  20. Fifth-order canonical geometric aberration analysis of electrostatic round lenses

    CERN Document Server

    Liu Zhi Xiong

    2002-01-01

    In this paper the fifth-order canonical geometric aberration patterns are analyzed and a numerical example is given on the basis of the analytical expressions of fifth-order aberration coefficients derived in the present work. The fifth-order spherical aberration, astigmatism and field curvature, and distortion are similar to the third-order ones and the fifth-order coma is slightly different. Besides, there are two more aberrations which do not exist in the third-order aberration: they are peanut aberration and elliptical coma in accordance with their shapes. In the numerical example, by using a cross-check of the calculated coefficients with those computed through the differential algebraic method, it has been verified that all the expressions are correct and the computational results are reliable with high precision.

  1. The prediction of spherical aberration with schematic eyes.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1996-07-01

    Many model eyes have been proposed; they differ in optical characteristics and therefore have different aberrations and image quality. In predicting the visual performance of the eye, we are most concerned with the central foveal vision. Spherical aberration is the only on-axis monochromatic aberration and can be used as a criterion to assess the degree of resemblance of eye models to the human eye. We reviewed and compiled experimental values of the spherical aberration of the eye, calculated the spherical aberration of several different categories of model eyes and compared the calculated results to the experimental data. Results show an over-estimation of spherical aberration by all models, the finite schematic eyes predicting values of spherical aberration closest to the experimental data. Current model eyes do not predict the average experimental values of the spherical aberration of the eye. A new model eye satisfying this assessment criterion is required for investigations of the visual performance of the eye.

  2. Spherical electron momentum density distribution and Bayesian analysis of the renormalization parameter in Li metal

    International Nuclear Information System (INIS)

    Dobrzynski, Ludwik

    2000-01-01

    The Bayesian analysis of the spherical part of the electron momentum density was carried out with the goal of finding the best estimation of the spherically averaged renormalization parameter, z , quantifying the discontinuity in the electron momentum density distribution in Li metal. Three models parametrizing the electron momentum density were considered and nuisance parameters integrated out. The analysis show that the most likely value of z following from the data of Sakurai et al is in the range of 0.45-0.50, while 0.55 is obtained for the data of Schuelke et al . In the maximum entropy reconstruction of the spherical part of the electron momentum density three different algorithms were used. It is shown that all of them produce essentially the same results. The paper shows that the accurate Compton scattering experiments are capable of bringing information on this very important Fermiological aspect of the electron gas in a metal. (author)

  3. Temperature dynamics of liquid outside a spherical bubble

    International Nuclear Information System (INIS)

    Sharipov, Vasily

    2011-01-01

    Radial Fourier equation describing temperature distribution outside a spherical bubble is considered. This equation appears from the energy conservation law written for a single bubble. Analytical approximation to the solution of this equation was built for radius and temperature of the surface of the bubble as arbitrary functions of time. In zero-order approximation it is assumed that variation amplitude of bubble radius is much smaller than its value. Together with first-order correction the so obtained solution is in good agreement with numerical results. Reported analytical approximation reduces computation efforts more than 10 times with comparison to the conventional numerical scheme. Finally presented semi-analytical approximation provides a possibility to describe acoustic effects and cavitations being incorporated into the multiphase flow code. (author)

  4. Finite-time output feedback stabilization of high-order uncertain nonlinear systems

    Science.gov (United States)

    Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei

    2018-06-01

    This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.

  5. High frequency fast wave results from the CDX-U spherical torus

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)

  6. High frequency fast wave results from the CDX-U spherical torus

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Menard, J.

    1999-01-01

    The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)

  7. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations

    Science.gov (United States)

    Nicholls, David P.

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  8. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations.

    Science.gov (United States)

    Nicholls, David P

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  9. Recent results from the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Maingi, R; Bell, M G; Bell, R E; Bialek, J; Bourdelle, C; Bush, C E; Darrow, D S; Fredrickson, E D; Gates, D A; Gilmore, M; Gray, T; Jarboe, T R; Johnson, D W; Kaita, R; Kaye, S M; Kubota, S; Kugel, H W; LeBlanc, B P; Maqueda, R J; Mastrovito, D; Medley, S S; Menard, J E; Mueller, D; Nelson, B A; Ono, M; Paoletti, F; Park, H K; Paul, S F; Peebles, T; Peng, Y-K M; Phillips, C K; Raman, R; Rosenberg, A L; Roquemore, A L; Ryan, P M; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stutman, D; Swain, D W; Synakowski, E J; Taylor, G; Wilgen, J; Wilson, J R; Wurden, G A; Zweben, S J

    2003-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect-ratio fusion research facility whose research goal is to make a determination of the attractiveness of the spherical torus concept in the areas of high-β stability, confinement, current drive, and divertor physics. Remarkable progress was made in extending the operational regime of the device in FY 2002. In brief, β t of 34% and β N of 6.5 were achieved. H-mode became the main operational regime, and energy confinement exceeded conventional aspect-ratio tokamak scalings. Heating was demonstrated with the radiofrequency antenna, and signatures of current drive were observed. Current initiation with coaxial helicity injection produced discharges of 400 kA, and first measurements of divertor heat flux profiles in H-mode were made

  10. The ETE spherical Tokamak project. IAEA report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br

    2002-07-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  11. Spherical solitons in Earth’S mesosphere plasma

    International Nuclear Information System (INIS)

    Annou, K.; Annou, R.

    2016-01-01

    Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry

  12. High orders of perturbation theory. Are renormalons significant?

    International Nuclear Information System (INIS)

    Suslov, I.M.

    1999-01-01

    According to Lipatov [Sov. Phys. JETP 45, 216 (1977)], the high orders of perturbation theory are determined by saddle-point configurations, i.e., instantons, which correspond to functional integrals. According to another opinion, the contributions of individual large diagrams, i.e., renormalons, which, according to t'Hooft [The Whys of Subnuclear Physics: Proceedings of the 1977 International School of Subnuclear Physics (Erice, Trapani, Sicily, 1977), A. Zichichi (Ed.), Plenum Press, New York (1979)], are not contained in the Lipatov contribution, are also significant. The history of the conception of renormalons is presented, and the arguments in favor of and against their existence are discussed. The analytic properties of the Borel transforms of functional integrals, Green's functions, vertex parts, and scaling functions are investigated in the case of φ 4 theory. Their analyticity in a complex plane with a cut from the first instanton singularity to infinity (the Le Guillou-Zinn-Justin hypothesis [Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B 21, 3976 (1980)] is proved. It rules out the existence of the renormalon singularities pointed out by t'Hooft and demonstrates the nonconstructiveness of the conception of renormalons as a whole. The results can be interpreted as an indication of the internal consistency of φ 4 theory

  13. High-Order Wave Propagation Algorithms for Hyperbolic Systems

    KAUST Repository

    Ketcheson, David I.

    2013-01-22

    We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space and strong stability preserving Runge--Kutta integration in time. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples, including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium solutions of balance laws.

  14. Initial assessments of ignition spherical torus

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Borowski, S.K.; Bussell, G.T.

    1985-12-01

    Initial assessments of ignition spherical tori suggest that they can be highly cost effective and exceptionally small in unit size. Assuming advanced methods of current drive to ramp up the plasma current (e.g., via lower hybrid wave at modest plasma densities and temperatures), the inductive solenoid can largely be eliminated. Given the uncertainties in plasma energy confinement times and the effects of strong paramagnetism on plasma pressure, and allowing for the possible use of high-strength copper alloys (e.g., C-17510, Cu-Ni-Be alloy), ignition spherical tori with a 50-s burn are estimated to have major radii ranging from 1.0 to 1.6 m, aspect ratios from 1.4 to 1.7, vacuum toroidal fields from 2 to 3 T, plasma currents from 10 to 19 MA, and fusion power from 50 to 300 MW. Because of its modest field strength and simple poloidal field coil configuration, only conventional engineering approaches are needed in the design. A free-standing toroidal field coil/vacuum vessel structure is assessed to be feasible and relatively independent of the shield structure and the poloidal field coils. This exceptionally simple configuration depends significantly, however, on practical fabrication approaches of the center conductor post, about which there is presently little experience. 19 refs

  15. Plane waves and spherical means applied to partial differential equations

    CERN Document Server

    John, Fritz

    2004-01-01

    Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con

  16. Spectral combination of spherical gravitational curvature boundary-value problems

    Science.gov (United States)

    PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel

    2018-04-01

    Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error

  17. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.

    Science.gov (United States)

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-02-10

    The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4-16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from -6.3 ± 0.7 μm for young lenses to -5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and -2.6 ± 0.5 μm, respectively. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  19. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility

    Directory of Open Access Journals (Sweden)

    Yaohua Chen

    2017-03-01

    Full Text Available We present our recent laser-plasmas instability (LPI comparison experiment at the SGIII laser facility between the spherical and cylindrical hohlraums. Three kinds of filling are considered: vacuum, gas-filling with or without a capsule inside. A spherical hohlraum of 3.6 mm in diameter, and a cylindrical hohlraum of 2.4 mm × 4.3 mm are used. The capsule diameter is 0.96 mm. A flat-top laser pulse with 3 ns duration and up to 92.73 kJ energy is used. The experiment has shown that the LPI level in the spherical hohlraum is close to that of the outer beam in the cylindrical hohlraum, while much lower than that of the inner beam. The experiment is further simulated by using our 2-dimensional radiation hydrodynamic code LARED-Integration, and the laser back-scattering fraction and the stimulated Raman scatter (SRS spectrum are post-processed by the high efficiency code of laser interaction with plasmas HLIP. According to the simulation, the plasma waves are strongly damped and the SRS is mainly developed at the plasma conditions of electron density from 0.08 nc to 0.1 nc and electron temperature from 1.5 keV to 2.0 keV inside the hohlraums. However, obvious differences between the simulation and experiment are found, such as that the SRS back-scattering is underestimated, and the numerical SRS spectrum peaks at a larger wavelength and at a later time than the data. These differences indicate that the development of a 3D radiation hydrodynamic code, with more accurate physics models, is mandatory for spherical hohlraum study.

  20. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  1. FY 2006 Miniature Spherical Retroreflectors Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  2. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    Science.gov (United States)

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  3. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  4. Electron optics design of an 8-in. spherical MCP-PMT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ping, E-mail: chenping@opt.cn [Key Laboratory of Ultra-fast photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi’an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi (China); Tian, Jinshou [Key Laboratory of Ultra-fast photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi’an 710119 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi (China); Qian, Sen; Zhao, Tianchi [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Hulin; Wei, Yonglin; Sai, Xiaofeng; He, Jianping; Wang, Xing; Lu, Yu [Key Laboratory of Ultra-fast photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi’an 710119 (China); Chen, Lin; Guo, Lehui; Pei, Chengquan; Hui, Dandan [Key Laboratory of Ultra-fast photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi’an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-03-11

    This paper discusses the electron optical system of an 8-in. spherical MCP-PMT. The MCP assembly, the supporting pole and the supply voltages are carefully designed to optimize the photoelectron collection efficiency and the transit time spread. Coating the MCP nickel-chromium electrode with an additional high secondary emission material is employed to make a breakthrough on the collection efficiency. With the simulation software CST, the Finite Integration method and the Monte Carlo method are combined to evaluate the collection efficiency, the time properties and the Earth's magnetic field effects. Simulation results show that the photocathode active solid angle is over 3.5 πsr, the average collection efficiency can exceed 95% with the coated MCP and the mean transit time spread is 2.2 ns for a typical electric potential of 500 V applied between the photocathode and the MCP input facet. The prototype and the measured single photoelectron spectrum are also presented.

  5. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J.; Barbosa, L.F.W.; Patire Junior, H.; The high-power microwave sources group

    2003-01-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  6. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  7. Comparison of Poloidal Velocity Meassurements to Neoclassical Theory on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, R.E.; Andre, R.; Kaye, S.M.; Kolesnikov, R.A.; LeBlance, B.P.; Rewolldt, G.; Wang, W.X.; Sabbagh, S.A.

    2010-01-01

    Knowledge of poloidal velocity is necessary for the determination of the radial electric field, Er, which along with its gradient is linked to turbulence suppression and transport barrier formation. Recent measurements of poloidal flow on conventional tokamaks have been reported to be an order of magnitude larger than expected from neoclassical theory. In contrast, recent poloidal velocity measurements on the NSTX spherical torus (S. M. Kaye et al., Phys. Plasmas 8, 1977 (2001)) are near or below neoclassical estimates. A novel charge exchange recombination spectroscopy diagnostic is used, which features active and passive sets of up/down symmetric views to produce line-integrated poloidal velocity measurements that do not need atomic physics corrections. Local profiles are obtained with an inversion. Poloidal velocity measurements are compared with neoclassical values computed with the codes NCLASS (W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)) and GTC-Neo (W. X. Wang, et al., Phys. Plasmas 13, 082501 (2006)), which has been updated to handle impurities.

  8. SHADOK-3-6, Transport Equation with Anisotropic Diffusion in P1 Approximation for Spherical and Cylindrical Geometry

    International Nuclear Information System (INIS)

    Ligou, J.; Thomi, P.A.

    1973-01-01

    1 - Nature of physical problem solved: Integral transport equation, anisotropy of diffusion in P1 approximation. SHADOK3 - cylindrical geometry; direct solution of the linear system. SHADOK4 - cylindrical geometry; Thermalization iteration; solution of the linear system with inverse matrix calculation. SHADOK5 - like SHADOK3 for spherical geometry. SHADOK6 - like SHADOK4 for spherical geometry. 2 - Method of solution: Analysis in terms of annuli for each of which polynomial approximation is applied. Dynamic allocation (for formulas see report TM(10)). 3 - Restrictions on the complexity of the problem: Relative accuracy of the Bickley functions about 1.0E-13

  9. Integral constraints on perturbations of Robertson-Walker cosmologies

    International Nuclear Information System (INIS)

    Ellis, G.F.R.; Jaklitsch, M.J.

    1989-01-01

    Integral constraints occur in the case of spherically symmetric inhomogeneities in Robertson-Walker universes, and (according to Traschen) in the case of general perturbations of these models. It is shown that these constraints are the same in the case of spherical symmetry, and they are interpreted as 'fitting conditions', that is, as constraints on the background Robertson-Walker model rather than on the nature of inhomogeneities. These integral constraints significantly affect the interpretation of anisotropies in the cosmic microwave background radiation. 22 refs

  10. TOPICAL REVIEW: Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials

    Directory of Open Access Journals (Sweden)

    Nobuo Tanaka

    2008-01-01

    Full Text Available The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-order spherical aberration and the chromatic aberration in combination with the development of a monochromator below an electron gun for smaller point-to-point resolution in optics. Another fundamental area of interest is the limitation of TEM and STEM resolution from the viewpoint of the scattering of electrons in crystals. The minimum size of the exit-wave function below samples undergoing TEM imaging is determined from the calculation of scattering around related atomic columns in the crystals. STEM does not have this limitation because the resolution is, in principle, determined by the probe size. One of the future prospects of Cs-corrected TEM/STEM is the possibility of extending the space around the sample holder by correcting the chromatic and spherical aberrations. This wider space will contribute to the ease of performing in situ experiments and various combinations of TEM and other analysis methods. High-resolution, in situ dynamic and 3D observations/analysis are the most important keywords in the next decade of high-resolution electron microscopy.

  11. Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias

    This study deals with the interaction between turbulence and non-spherical particles and represents an extension of the modeling framework for particleladen flows. The effect of turbulence on particles is commonly referred to as turbulent dispersion while the effect of particles on the carrier....... This study encompass an outlook on existing work, an experimental study, development of a numerical model and a case study advancing the modeling techniques for pulverized coal combustion to deal with larger non-spherical biomass particles. Firstly, existing knowledge concerning the motion of non......-spherical particles and turbulence modulation are outlined. A complete description of the motion of non-spherical particles is still lacking. However, evidence suggests that the equation of motion for a sphere only represent an asymptotical value for a more general, but yet unformulated, description of the motion...

  12. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  13. Ignition curves for deuterium/helium-3 fuel in spherical tokamak ...

    Indian Academy of Sciences (India)

    have been obtained in ne, T plane and, to determine the thermal instability of ... economic, environmental and safety characteristics is more attractive than an advanced ... spherical torus experiments, a magnetohydrodynamics stable high beta ...

  14. High-order solution methods for grey discrete ordinates thermal radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Maginot, Peter G., E-mail: maginot1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-12-15

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.

  15. Merging startup experiments on the UTST spherical tokamak

    International Nuclear Information System (INIS)

    Yamada, Takuma; Kamio, Shuji; Imazawa, Ryota

    2010-01-01

    The University of Tokyo Spherical Tokamak (UTST) was constructed to explore the formation of ultrahigh-beta spherical tokamak (ST) plasmas using double null plasma merging. The main feature of the UTST is that the poloidal field coils are located outside the vacuum vessel to demonstrate startup in a reactor-relevant situation. Initial operations used partially completed power supplies to investigate the appropriate conditions for plasma merging. The plasma current of the merged ST reached 100 kA when the central solenoid coil was used to assist plasma formation. Merging of two ST plasmas through magnetic reconnection was successfully observed using two-dimensional pickup coil arrays, which directly measure the toroidal and axial magnetic fields inside the UTST vacuum vessel. The resistivity of the current sheet was found to be anomalously high during merging. (author)

  16. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    International Nuclear Information System (INIS)

    Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.

  17. Ion-streaming induced order transition in three-dimensional dust clusters

    International Nuclear Information System (INIS)

    Ludwig, Patrick; Kählert, Hanno; Bonitz, Michael

    2012-01-01

    Dust dynamics simulations utilizing a dynamical screening approach are performed to study the effect of ion-streaming on the self-organized structures in a three-dimensional spherically confined complex (dusty) plasma. Varying the Mach number M, the ratio of ion drift velocity to the sound velocity, the simulations reproduce the experimentally observed cluster configurations in the two limiting cases: at M = 0 strongly correlated crystalline structures consisting of nested spherical shells (Yukawa balls) and, for M ⩾ 1, flow-aligned dust chains, respectively. In addition, our simulations reveal a discontinuous transition between these two limits. It is found that already a moderate ion drift velocity (M ≈ 0.1 for the plasma conditions considered here) destabilizes the highly ordered Yukawa balls and initiates an abrupt melting transition. The critical value of M is found to be independent of the cluster size. (paper)

  18. Quality of vision in patients implanted with aspherical and spherical intraocular lens: Intraindividual comparison

    Directory of Open Access Journals (Sweden)

    Francesco Semeraro

    2014-01-01

    Full Text Available Aims: To compare the quality of vision in pseudophakic patients implanted with aspherical and spherical intraocular lenses (IOLs. Materials and Methods: Randomized prospective longitudinal intrapatient comparison between aspherical and spherical IOLs performed on 22 patients who underwent bilateral cataract surgery. Best corrected visual acuity, subjective contrast sensitivity, Strehl ratio and spherical aberrations (SA, and higher order wavefront aberrations for a 3.5 mm and a 6.0 mm pupil were measured after 3 months of cataract surgery. Results: SA (Z4,0 decreased significantly in eyes with aspherical IOL implant (P = 0.004. Modulation transfer function (MTF and point spread function (PSF resulted no significant difference between the two groups (P = 0.87; P = 0.32. Conclusion: Although the SA is significantly lower in eyes implanted with aspherical IOL, the quality of vision determined with MTF and PSF does not significantly differ for subjective and objective parameters that were analyzed.

  19. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  20. Water hammer caused by closure of turbine safety spherical valves

    Science.gov (United States)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.