WorldWideScience

Sample records for integrate extensive high-performance

  1. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  2. An integrated high performance fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1992-01-01

    A high performance Fastbus slave interface ASIC is presented. The Fastbus slave integrated circuit (FASIC) is a programmable device, enabling its direct use in many different applications. The FASIC acts as an interface between Fastbus and a 'standard' processor/memory bus. It can work stand-alone or together with a microprocessor. A set of address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/s to Fastbus can be obtained using an internal FIFO buffer in the FASIC. (orig.)

  3. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Deranian, R.D.; Ferron, J.R.; Johnson, R.D.; LaHaye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; Jayakumar, R.J.; Makowski, M.A.; Khayrutdinov, R.R.

    2005-01-01

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  4. An integrated high performance Fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1993-01-01

    A high performance CMOS Fastbus slave interface ASIC (Application Specific Integrated Circuit) supporting all addressing and data transfer modes defined in the IEEE 960 - 1986 standard is presented. The FAstbus Slave Integrated Circuit (FASIC) is an interface between the asynchronous Fastbus and a clock synchronous processor/memory bus. It can work stand-alone or together with a 32 bit microprocessor. The FASIC is a programmable device enabling its direct use in many different applications. A set of programmable address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/sec to Fastbus can be obtained using an internal FIFO in the FASIC to buffer data between the two buses during block transfers. Message passing from Fastbus to a microprocessor on the slave module is supported. A compact (70 mm x 170 mm) Fastbus slave piggy back sub-card interface including level conversion between ECL and TTL signal levels has been implemented using surface mount components and the 208 pin FASIC chip

  5. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Selkowitz, Stephen E.

    2001-01-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  6. The design of high performance weak current integrated amplifier

    International Nuclear Information System (INIS)

    Chen Guojie; Cao Hui

    2005-01-01

    A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)

  7. OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation.

    Science.gov (United States)

    Eastman, Peter; Friedrichs, Mark S; Chodera, John D; Radmer, Randall J; Bruns, Christopher M; Ku, Joy P; Beauchamp, Kyle A; Lane, Thomas J; Wang, Lee-Ping; Shukla, Diwakar; Tye, Tony; Houston, Mike; Stich, Timo; Klein, Christoph; Shirts, Michael R; Pande, Vijay S

    2013-01-08

    OpenMM is a software toolkit for performing molecular simulations on a range of high performance computing architectures. It is based on a layered architecture: the lower layers function as a reusable library that can be invoked by any application, while the upper layers form a complete environment for running molecular simulations. The library API hides all hardware-specific dependencies and optimizations from the users and developers of simulation programs: they can be run without modification on any hardware on which the API has been implemented. The current implementations of OpenMM include support for graphics processing units using the OpenCL and CUDA frameworks. In addition, OpenMM was designed to be extensible, so new hardware architectures can be accommodated and new functionality (e.g., energy terms and integrators) can be easily added.

  8. Physics of integrated high-performance NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J. E.; Bell, M. G.; Bell, R. E.; Fredrickson, E. D.; Gates, D. A.; Heidbrink, W.; Kaita, R.; Kaye, S. M.; Kessel, C. E.; Kugel, H.; LeBlanc, B. P.; Lee, K. C.; Levinton, F. M.; Maingi, R.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S. F.; Peebles, T.; Peng, M.; Raman, R.; Redi, M.; Roquemore, L.; Sabbagh, S. A.; Skiner, C. H.; Sontag, A.; Soukhanovskii, V.; Stratton, B.; Stutman, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Wade, M.; Wilson, J. R.; Zhu, W.

    2005-01-01

    An overarching goal of magnetic fusion research is the integration of steady state operation with high fusion power density, high plasma β, good thermal and fast particle confinement, and manageable heat and particle fluxes to reactor internal components. NSTX has made significant progress in integrating and understanding the interplay between these competing elements. Sustained high elongation up to 2.5 and H-mode transitions during the I p ramp-up have increased β p and reduced l i at high current resulting in I p flat-top durations exceeding 0.8s for I p >0.8MA. These shape and profile changes delay the onset of deleterious global MHD activity yielding β N values >4.5 and β T ∼20% maintained for several current diffusion times. Higher ∫ N discharges operating above the non-wall limit are sustained via rotational stabilization of the RWM. H-mode confinement scaling factors relative to H98(y,2) span the range 1±0.4 for B T >4kG and show a stron (Nearly linear) residual scaling with B T . Power balance analysis indicates the electron thermal transport dominates the loss power in beam-heated H m ode discharges, but the core χ e can be significantly reduced through current profile modification consistent with reversed magnetic shear. Small ELM regimes have been obtained in high performance plasmas on NSTX, but the ELM type and associated pedestal energy loss are found to depend sensitively on the boundary elongation, magnetic balance, and edge collisionality. NPA data and TRANSP analysis suggest resonant interactions with mid-radius tearing modes may lead to large fast-ion transport. The associated fast-ion diffusion and/or loss likely impact(s) both the driven current and power deposition profiles from NBI heating. Results from experiments to initiate the plasma without the ohmic solenoid and integrated scenario with the TSC code will also be described. (Author)

  9. An integrated framework for high level design of high performance signal processing circuits on FPGAs

    Science.gov (United States)

    Benkrid, K.; Belkacemi, S.; Sukhsawas, S.

    2005-06-01

    This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.

  10. Integrated energy system for a high performance building

    Science.gov (United States)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  11. High-performance file I/O in Java : existing approaches and bulk I/O extensions.

    Energy Technology Data Exchange (ETDEWEB)

    Bonachea, D.; Dickens, P.; Thakur, R.; Mathematics and Computer Science; Univ. of California at Berkeley; Illinois Institute of Technology

    2001-07-01

    There is a growing interest in using Java as the language for developing high-performance computing applications. To be successful in the high-performance computing domain, however, Java must not only be able to provide high computational performance, but also high-performance I/O. In this paper, we first examine several approaches that attempt to provide high-performance I/O in Java - many of which are not obvious at first glance - and evaluate their performance on two parallel machines, the IBM SP and the SGI Origin2000. We then propose extensions to the Java I/O library that address the deficiencies in the Java I/O API and improve performance dramatically. The extensions add bulk (array) I/O operations to Java, thereby removing much of the overhead currently associated with array I/O in Java. We have implemented the extensions in two ways: in a standard JVM using the Java Native Interface (JNI) and in a high-performance parallel dialect of Java called Titanium. We describe the two implementations and present performance results that demonstrate the benefits of the proposed extensions.

  12. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Omran, Hesham; Alshareef, Sarah; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (Zn

  13. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yier [Univ. of Central Florida, Orlando, FL (United States)

    2017-07-14

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from this project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.

  14. High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination

    International Nuclear Information System (INIS)

    Bouchard, Kristofer E.

    2016-01-01

    A lack of coherent plans to analyze, manage, and understand data threatens the various opportunities offered by new neuro-technologies. High-performance computing will allow exploratory analysis of massive datasets stored in standardized formats, hosted in open repositories, and integrated with simulations.

  15. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  16. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  17. Integrated cost estimation methodology to support high-performance building design

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Prasad; Greden, Lara; Eijadi, David; McDougall, Tom [The Weidt Group, Minnetonka (United States); Cole, Ray [Axiom Engineers, Monterey (United States)

    2007-07-01

    Design teams evaluating the performance of energy conservation measures (ECMs) calculate energy savings rigorously with established modelling protocols, accounting for the interaction between various measures. However, incremental cost calculations do not have a similar rigor. Often there is no recognition of cost reductions with integrated design, nor is there assessment of cost interactions amongst measures. This lack of rigor feeds the notion that high-performance buildings cost more, creating a barrier for design teams pursuing aggressive high-performance outcomes. This study proposes an alternative integrated methodology to arrive at a lower perceived incremental cost for improved energy performance. The methodology is based on the use of energy simulations as means towards integrated design and cost estimation. Various points along the spectrum of integration are identified and characterized by the amount of design effort invested, the scheduling of effort, and relative energy performance of the resultant design. It includes a study of the interactions between building system parameters as they relate to capital costs. Several cost interactions amongst energy measures are found to be significant.The value of this approach is demonstrated with alternatives in a case study that shows the differences between perceived costs for energy measures along various points on the integration spectrum. These alternatives show design tradeoffs and identify how decisions would have been different with a standard costing approach. Areas of further research to make the methodology more robust are identified. Policy measures to encourage the integrated approach and reduce the barriers towards improved energy performance are discussed.

  18. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  19. Infrastructure for Multiphysics Software Integration in High Performance Computing-Aided Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Michael T. [Illinois Rocstar LLC, Champaign, IL (United States); Safdari, Masoud [Illinois Rocstar LLC, Champaign, IL (United States); Kress, Jessica E. [Illinois Rocstar LLC, Champaign, IL (United States); Anderson, Michael J. [Illinois Rocstar LLC, Champaign, IL (United States); Horvath, Samantha [Illinois Rocstar LLC, Champaign, IL (United States); Brandyberry, Mark D. [Illinois Rocstar LLC, Champaign, IL (United States); Kim, Woohyun [Illinois Rocstar LLC, Champaign, IL (United States); Sarwal, Neil [Illinois Rocstar LLC, Champaign, IL (United States); Weisberg, Brian [Illinois Rocstar LLC, Champaign, IL (United States)

    2016-10-15

    The project described in this report constructed and exercised an innovative multiphysics coupling toolkit called the Illinois Rocstar MultiPhysics Application Coupling Toolkit (IMPACT). IMPACT is an open source, flexible, natively parallel infrastructure for coupling multiple uniphysics simulation codes into multiphysics computational systems. IMPACT works with codes written in several high-performance-computing (HPC) programming languages, and is designed from the beginning for HPC multiphysics code development. It is designed to be minimally invasive to the individual physics codes being integrated, and has few requirements on those physics codes for integration. The goal of IMPACT is to provide the support needed to enable coupling existing tools together in unique and innovative ways to produce powerful new multiphysics technologies without extensive modification and rewrite of the physics packages being integrated. There are three major outcomes from this project: 1) construction, testing, application, and open-source release of the IMPACT infrastructure, 2) production of example open-source multiphysics tools using IMPACT, and 3) identification and engagement of interested organizations in the tools and applications resulting from the project. This last outcome represents the incipient development of a user community and application echosystem being built using IMPACT. Multiphysics coupling standardization can only come from organizations working together to define needs and processes that span the space of necessary multiphysics outcomes, which Illinois Rocstar plans to continue driving toward. The IMPACT system, including source code, documentation, and test problems are all now available through the public gitHUB.org system to anyone interested in multiphysics code coupling. Many of the basic documents explaining use and architecture of IMPACT are also attached as appendices to this document. Online HTML documentation is available through the gitHUB site

  20. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.

    Science.gov (United States)

    Thorvaldsdóttir, Helga; Robinson, James T; Mesirov, Jill P

    2013-03-01

    Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today's sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license.

  1. Development of high-performance printed organic field-effect transistors and integrated circuits.

    Science.gov (United States)

    Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young

    2015-10-28

    Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.

  2. Software extension and integration with type classes

    DEFF Research Database (Denmark)

    Lämmel, Ralf; Ostermann, Klaus

    2006-01-01

    expressiveness, by using the language concept of \\emph{type classes}, as it is available in the functional programming language Haskell. A detailed comparison with related work shows that type classes provide a powerful framework in which solutions to known software extension and integration problems can...... be provided. We also pinpoint several limitations of type classes in this context....

  3. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    International Nuclear Information System (INIS)

    Zheng Liu; Zhang Feng; Liu Sheng-Bei; Dong Lin; Liu Xing-Fang; Liu Bin; Yan Guo-Guo; Wang Lei; Zhao Wan-Shun; Sun Guo-Sheng; He Zhi; Fan Zhong-Chao; Yang Fu-Hua

    2013-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm 2 with a total active area of 2.46 × 10 −3 cm 2 . Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10 −5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. A high-performance trench capacitor integrated in a passive integration technology

    International Nuclear Information System (INIS)

    Geiselbrechtinger, Angelika; Büyüktas, Kevni; Allers, Karl-Heinz; Hartung, Wolfgang

    2009-01-01

    The requirements for the electrical characteristics of passive on-chip devices become more and more important. The electrical performance of RF circuits is predominantly restricted by the passives. New technologies and new device concepts are necessary to meet the demands. In this work, a trench capacitor developed for RF applications is presented for the first time. This so-called SilCap (silicon capacitor) device features very high capacitance density, extreme low-voltage dependence, excellent temperature stability, good RF performance and a high breakthrough voltage. First, the device function and the technological concept are introduced. The concept is realized without implementing cost-intensive high-k materials. This trench capacitor is integrated in the front end of line of a passive integration technology. The achieved specific capacitance density is compared to a standard planar capacitor. Performance of the SilCap in terms of quality factor and breakthrough voltage is shown. Finally, reliability data of this trench capacitor are presented with special focus on extrinsic and dielectric lifetime

  5. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  6. High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits.

    Science.gov (United States)

    Yu, Lili; Zubair, Ahmad; Santos, Elton J G; Zhang, Xu; Lin, Yuxuan; Zhang, Yuhao; Palacios, Tomás

    2015-08-12

    Because of their extraordinary structural and electrical properties, two-dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (∼38) and small static power (picowatts), paving the way for low power electronic system in 2D materials.

  7. Integrated State Estimation and Contingency Analysis Software Implementation using High Performance Computing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yousu; Glaesemann, Kurt R.; Rice, Mark J.; Huang, Zhenyu

    2015-12-31

    Power system simulation tools are traditionally developed in sequential mode and codes are optimized for single core computing only. However, the increasing complexity in the power grid models requires more intensive computation. The traditional simulation tools will soon not be able to meet the grid operation requirements. Therefore, power system simulation tools need to evolve accordingly to provide faster and better results for grid operations. This paper presents an integrated state estimation and contingency analysis software implementation using high performance computing techniques. The software is able to solve large size state estimation problems within one second and achieve a near-linear speedup of 9,800 with 10,000 cores for contingency analysis application. The performance evaluation is presented to show its effectiveness.

  8. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hui; Wang, Xiaolei; Liu, Xuexia; Yang, Xiurong [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2012-12-18

    Poly(o-phenylenediamine) (POPD)-derived functional carbon materials with excellent capacitive performance are successfully synthesized by means of an integrated one-step process, in which FeCl{sub 3} not only oxidizes the polymerization of the organic monomers but also activates the carbonization. Furthermore, extensive research has proved that this strategy to discover novel carbons is useful not only for capacitors but also for other energy storage/conversion devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors.

    Science.gov (United States)

    Zhu, Hui; Wang, Xiaolei; Liu, Xuexia; Yang, Xiurong

    2012-12-18

    Poly(o-phenylenediamine) (POPD)-derived functional carbon materials with excellent capacitive performance are successfully synthesized by means of an integrated one-step process, in which FeCl(3) not only oxidizes the polymerization of the organic monomers but also activates the carbonization. Furthermore, extensive research has proved that this strategy to discover novel carbons is useful not only for capacitors but also for other energy storage/conversion devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    Science.gov (United States)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  11. III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Ringel, Steven [The Ohio State Univ., Columbus, OH (United States); Carlin, John A [The Ohio State Univ., Columbus, OH (United States); Grassman, Tyler [The Ohio State Univ., Columbus, OH (United States)

    2018-04-17

    This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of our recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the first

  12. Design for High Performance, Low Power, and Reliable 3D Integrated Circuits

    CERN Document Server

    Lim, Sung Kyu

    2013-01-01

    This book describes the design of through-silicon-via (TSV) based three-dimensional integrated circuits.  It includes details of numerous “manufacturing-ready” GDSII-level layouts of TSV-based 3D ICs, developed with tools covered in the book. Readers will benefit from the sign-off level analysis of timing, power, signal integrity, and thermo-mechanical reliability for 3D IC designs.  Coverage also includes various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the 3D IC design process. Describes design issues and solutions for high performance and low power 3D ICs, such as the pros/cons of regular and irregular placement of TSVs, Steiner routing, buffer insertion, low power 3D clock routing, power delivery network design and clock design for pre-bond testability. Discusses topics in design-for-electrical-reliability for 3D ICs, such as TSV-to-TSV coupling, current crowding at the wire-to-TSV junction and the e...

  13. Fabrication of high performance microlenses for an integrated capillary channel electrochromatograph with fluorescence detection

    International Nuclear Information System (INIS)

    Wendt, J. R.; Warren, M. E.; Sweatt, W. C.; Bailey, C. G.; Matzke, C. M.; Arnold, D. W.; Allerman, A. A.; Carter, T. R.; Asbill, R. E.; Samora, S.

    1999-01-01

    We describe the microfabrication of an extremely compact optical system as a key element in an integrated capillary channel electrochromatograph with fluorescence detection. The optical system consists of a vertical cavity surface-emitting laser (VCSEL), two high performance microlenses, and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. The design uses substrate-mode propagation within the fused silica substrate. Two generations of optical subsystems are described. The first generation design has a 6 mm optical length and is integrated directly onto the capillary channel-containing substrate. The second generation design separates the optical system onto its own substrate module and the optical path length is further compressed to 3.5 mm. The first generation design has been tested using direct fluorescence detection with a 750 nm VCSEL pumping a 10 -4 M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and is adequate for system sensitivity requirements. (c) 1999 American Vacuum Society

  14. A novel conductive-polymer-based integration process for high-performance flip-chip packages

    Science.gov (United States)

    Lohokare, Saurabh

    Conductive polymers have recently attracted considerable attention for low-temperature fabrication of lead-free, reworkable, and flexible flip-chip interconnects. Using these materials, I demonstrate in this thesis a process that enables low-cost and high-resolution flip-chip interconnects using conventional micro-fabrication techniques. This fabrication process offers improved performance as compared to conventional flip-chip techniques, such as screen-printing, and allows for definition of interconnects with excellent surface uniformity and control over the bump profile. In order to demonstrate the utility and wide applicability of this process, several test implementations that serve as case studies were investigated. Specifically, novel InGaAsSb avalanche photodiodes (APDs), operating around lambda = 2m and targeted for free-space communication and biomedical spectroscopy applications, were fabricated and flip-chip-integrated to test the static electrical characteristics of the polymer bumps. Additionally, the dynamic electrical performance characteristics of the polymer bumps were studied by using AlGaAsSb/AlGaSb p-i-n photodetectors as a case study. The fabrication of these photodetectors, operating around lambda = 1.55mum and targeted for optical communication applications, was accomplished using a customized inductively coupled plasma (ICP) etch process that resulted in a low dark current and excellent speed (3dB bandwidth of 10GHz) and, responsivity (60% external quantum efficiency) characteristics. Furthermore, flip-chip integration was used to demonstrate a three-dimensional, point-to-point micro-optical interconnect, which was 2.33mm-long in a system 15.27mm3 in volume. Lastly, high-speed parallel optical interconnects were demonstrated using polymer-flip-chip-integrated 10GHz vertical-cavity surface-emitting laser (VCSEL) and DOEs. Such interconnects offer the ability to alleviate the communication bottleneck that is projected to occur in future, high-performance

  15. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.

    Science.gov (United States)

    Simonyan, Vahan; Mazumder, Raja

    2014-09-30

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.

  16. High-Performance Integrated Virtual Environment (HIVE Tools and Applications for Big Data Analysis

    Directory of Open Access Journals (Sweden)

    Vahan Simonyan

    2014-09-01

    Full Text Available The High-performance Integrated Virtual Environment (HIVE is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.

  17. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.

    Science.gov (United States)

    El-Kady, Maher F; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F; Chaney, Lindsay; Lech, Andrew T; Kaner, Richard B

    2015-04-07

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems.

  18. High-performance integrated field-effect transistor-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: mohd.khairuddin@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Microelectronic Engineering (SoME), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: subash@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Bioprocess Engineering (SBE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis (Malaysia); Ruslinda, A.R., E-mail: ruslinda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Fathil, M.F.M., E-mail: faris.fathil@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Ayub, R.M., E-mail: ramzan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Nor, M. Nuzaihan Mohd, E-mail: m.nuzaihan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Voon, C.H., E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia)

    2016-04-21

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  19. GaAs Photonic Integrated Circuit (PIC) development for high performance communications

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, C.T.

    1998-03-01

    Sandia has established a foundational technology in photonic integrated circuits (PICs) based on the (Al,Ga,In)As material system for optical communication, radar control and testing, and network switching applications at the important 1.3{mu}m/1.55{mu}m wavelengths. We investigated the optical, electrooptical, and microwave performance characteristics of the fundamental building-block PIC elements designed to be as simple and process-tolerant as possible, with particular emphasis placed on reducing optical insertion loss. Relatively conventional device array and circuit designs were built using these PIC elements: (1) to establish a baseline performance standard; (2) to assess the impact of epitaxial growth accuracy and uniformity, and of fabrication uniformity and yield; (3) to validate our theoretical and numerical models; and (4) to resolve the optical and microwave packaging issues associated with building fully packaged prototypes. Novel and more complex PIC designs and fabrication processes, viewed as higher payoff but higher risk, were explored in a parallel effort with the intention of meshing those advances into our baseline higher-yield capability as they mature. The application focus targeted the design and fabrication of packaged solitary modulators meeting the requirements of future wideband and high-speed analog and digital data links. Successfully prototyped devices are expected to feed into more complex PICs solving specific problems in high-performance communications, such as optical beamforming networks for phased array antennas.

  20. High-performance integrated field-effect transistor-based sensors

    International Nuclear Information System (INIS)

    Adzhri, R.; Md Arshad, M.K.; Gopinath, Subash C.B.; Ruslinda, A.R.; Fathil, M.F.M.; Ayub, R.M.; Nor, M. Nuzaihan Mohd; Voon, C.H.

    2016-01-01

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  1. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage

    Science.gov (United States)

    El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.

    2015-01-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  2. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  3. NRU licence extension via integrated safety review

    Energy Technology Data Exchange (ETDEWEB)

    Mantifel, N. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The National Research Reactor, NRU at AECL Chalk River Laboratories achieved first criticality in November 1957. The completion of an Integrated Safety Review (ISR) in 2011, and subsequent Global Assessment Report (GAR), and Integrated Implementation Plan (IIP) has given confidence in the safe and reliable operation of NRU, therefore extending the licensing case to safely and reliably operate NRU until 2021 and beyond (64+ years of operation). The key vehicle to achieve this confidence is the IIP, that resulted from the ISR. NRU's IIP is a 10 year plan that addresses the gaps identified in the ISR between modern codes and standards in a prioritized approach. AECL is currently in year 3 of the IIP execution, is on or ahead of schedule to complete the identified improvements. The IIP in conjunction with a License Condition Handbook has replaced the licensing protocol with the Canadian Nuclear Safety Commission, (CNSC). Execution of the IIP to plan supports the continued safe operation of NRU. The ISR was carried out with the recognition that the NRU reactor is a research and isotope producing reactor approaching license renewal and not a power reactor undergoing refurbishment and life extension. Therefore, the IIP is being executed while NRU continues to deliver on its three missions: production of medical isotopes, support for fuels and materials research, and serving as a high flux neutron source in support of research relying on neutron scattering. The IIP is grouped into 5 Global Issue Groups, (GIGs) to support focused execution. The activities and tasks within the five GIGs are being executed via a matrix organization through the use of the Chalk River Laboratories Corrective Action Program to ensure the assignment of actions, completion and evidence to support closure is documented and retained. This paper discusses the approach taken by AECL to license and ensure safe, reliable operation of NRU until 2021 and beyond. (author)

  4. Links among high-performance work environment, service quality, and customer satisfaction: an extension to the healthcare sector.

    Science.gov (United States)

    Scotti, Dennis J; Harmon, Joel; Behson, Scott J

    2007-01-01

    Healthcare managers must deliver high-quality patient services that generate highly satisfied and loyal customers. In this article, we examine how a high-involvement approach to the work environment of healthcare employees may lead to exceptional service quality, satisfied patients, and ultimately to loyal customers. Specifically, we investigate the chain of events through which high-performance work systems (HPWS) and customer orientation influence employee and customer perceptions of service quality and patient satisfaction in a national sample of 113 Veterans Health Administration ambulatory care centers. We present a conceptual model for linking work environment to customer satisfaction and test this model using structural equations modeling. The results suggest that (1) HPWS is linked to employee perceptions of their ability to deliver high-quality customer service, both directly and through their perceptions of customer orientation; (2) employee perceptions of customer service are linked to customer perceptions of high-quality service; and (3) perceived service quality is linked with customer satisfaction. Theoretical and practical implications of our findings, including suggestions of how healthcare managers can implement changes to their work environments, are discussed.

  5. On the counterintuitive consequences of high-performance work practices in cross-border post-merger human integration

    DEFF Research Database (Denmark)

    Vasilaki, A.; Smith, Pernille; Giangreco, A.

    2012-01-01

    , such as communication, employee involvement, and team building, may not always produce the expected effects on human integration; rather, it can have the opposite effects if top management does not closely monitor the immediate results of deploying such practices. Implications for managers dealing with post......, this article investigates the impact of systemic and integrated human resource practices [i.e., high-performance work practices (HPWPs)] on human integration and how their implementation affects employees' behaviours and attitudes towards post-merger human integration. We find that the implementation of HPWPs...

  6. Guided Growth of Horizontal ZnSe Nanowires and their Integration into High-Performance Blue-UV Photodetectors.

    Science.gov (United States)

    Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto

    2015-07-15

    Perfectly aligned horizontal ZnSe nano-wires are obtained by guided growth, and easily integrated into high-performance blue-UV photodetectors. Their crystal phase and crystallographic orientation are controlled by the epitaxial relations with six different sapphire planes. Guided growth paves the way for the large-scale integration of nanowires into optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Agricultural extension officers' perceptions of integrated pest ...

    African Journals Online (AJOL)

    On the basis of the positive perceptions of the extension officers regarding IPM, the government of Kenya should establish a supportive policy that will enable the extension officers to promote and educate farmers on the various IPM practices. International Journal of Agriculture and Rural Development Vol. 7(2) 2006: 125- ...

  8. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shibo; Zhang, Zhiyong, E-mail: zyzhang@pku.edu.cn; Si, Jia; Zhong, Donglai; Peng, Lian-Mao, E-mail: lmpeng@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  9. Integrated approach for stress analysis of high performance diesel engine cylinder head

    Science.gov (United States)

    Chainov, N. D.; Myagkov, L. L.; Malastowski, N. S.; Blinov, A. S.

    2018-03-01

    Growing thermal and mechanical loads due to development of engines with high level of a mean effective pressure determine requirements to cylinder head durability. In this paper, computational schemes for thermal and mechanical stress analysis of a high performance diesel engine cylinder head were described. The most important aspects in this approach are the account of temperature fields of conjugated details (valves and saddles), heat transfer modeling in a cooling jacket of a cylinder head and topology optimization of the detail force scheme. Simulation results are shown and analyzed.

  10. Investigation on synergy of IBW and LHCD for integrated high performance operation in HT-7 tokamak

    International Nuclear Information System (INIS)

    Wan Baonian

    2002-01-01

    Control of the current density profile has been realized with off-axis current drive by LHW in the HT-7 tokamak predicted by a 2D FP code simulation and supported by measurements of a vertical HX array. IBW is explored to improve performance through heating electrons in the selected region. Strong synergy effect on driven current profile and increased driven efficiency was observed. Electron temperature shows an ITB-like profile with a significantly improved performance. Operation of IBW and LHCD synergetic discharges was optimized through moving the IBW resonant layer to maximize the plasma performance and to avoid the MHD activities. A variety of high performance discharges indicated by β N *H89=1∼ 4 was produced for several tens energy confinement times. This operation mode utilizing synergy effect of IBW and LHCD provide a new way to obtain steady-state operation in advanced tokamak scenario. (author)

  11. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    Science.gov (United States)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  12. An High Performance Integrated Balun for 60 GHz Application in 65nm CMOS Technology

    OpenAIRE

    Ercoli , Mariano; Kraemer , Michael; Dragomirescu , Daniela; Plana , Robert

    2010-01-01

    International audience; This paper shows a new design approach that allows to integrate an efficient balun into mm-wave radio frequency integrated circuits (RFIC). The proposed device is an evolution of the simple transformer. Thanks to the modification on the device's shape, the performance increases considerably, maintaining limited dimensions. The proposed balun shows a very good power division with only 0.5 dB of maximum amplitude imbalance within the whole band of interest and less than ...

  13. Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits

    Science.gov (United States)

    Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.

    2017-01-01

    Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.

  14. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CM...... and cooling purposes of future low energy buildings. The investigations were conceived as a low temperature concept, where the difference between the temperature of circulating fluid and air in the room was kept in range of 1–4 °C.......The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... HPC layer covering the CMT. This paper shows that CMT integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating (cooling) and at the same time create the comfortable and healthy environment for the occupants. This solution is very suitable for heating...

  15. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    Science.gov (United States)

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.

  16. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

    Science.gov (United States)

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-02-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development.

  17. Design of high performance mechatronics high-tech functionality by multidisciplinary system integration

    CERN Document Server

    Munnig Schmidt, R; Rankers, A

    2014-01-01

    Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives.This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS.As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this

  18. The design of high performance mechatronics high-tech functionality by multidisciplinary system integration

    CERN Document Server

    Munnig Schmidt, R; van Eijk, J

    2011-01-01

    Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives. This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS. As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, thi

  19. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    Science.gov (United States)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes are developed that provide low-loss, hermetic enclosure for enhanced monolithic microwave and millimeter-wave integrated circuits. These package schemes are based on a fused quartz substrate material offering improved RF performance through 44 GHz. The small size and weight of the packages make them useful for a number of applications, including phased array antenna systems. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices.

  20. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  1. A High-Performance Application Specific Integrated Circuit for Electrical and Neurochemical Traumatic Brain Injury Monitoring.

    Science.gov (United States)

    Pagkalos, Ilias; Rogers, Michelle L; Boutelle, Martyn G; Drakakis, Emmanuel M

    2018-05-22

    This paper presents the first application specific integrated chip (ASIC) for the monitoring of patients who have suffered a Traumatic Brain Injury (TBI). By monitoring the neurophysiological (ECoG) and neurochemical (glucose, lactate and potassium) signals of the injured human brain tissue, it is possible to detect spreading depolarisations, which have been shown to be associated with poor TBI patient outcome. This paper describes the testing of a new 7.5 mm 2 ASIC fabricated in the commercially available AMS 0.35 μm CMOS technology. The ASIC has been designed to meet the demands of processing the injured brain tissue's ECoG signals, recorded by means of depth or brain surface electrodes, and neurochemical signals, recorded using microdialysis coupled to microfluidics-based electrochemical biosensors. The potentiostats use switchedcapacitor charge integration to record currents with 100 fA resolution, and allow automatic gain changing to track the falling sensitivity of a biosensor. This work supports the idea of a "behind the ear" wireless microplatform modality, which could enable the monitoring of currently non-monitored mobile TBI patients for the onset of secondary brain injury. ©2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    Science.gov (United States)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  3. Participation in multilateral effort to develop high performance integrated CPC evacuated collectors

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1992-05-01

    The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985-1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This 'multilateral' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125 mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125 mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250 C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government, and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.

  4. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  5. Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors

    Science.gov (United States)

    Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong

    2015-11-01

    Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15-30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m2 g-1 and a high conductivity of 0.471 S cm-1. As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g-1 at a current density of 10 mA cm-2 over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons.

  6. SEMICONDUCTOR INTEGRATED CIRCUITS: A high performance 90 nm CMOS SAR ADC with hybrid architecture

    Science.gov (United States)

    Xingyuan, Tong; Jianming, Chen; Zhangming, Zhu; Yintang, Yang

    2010-01-01

    A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shifters are utilized. Design challenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlin-earity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238 × 214 μm2. The design results of this converter show that it is suitable for multi-supply embedded SoC applications.

  7. An Extension of the Mean Value Theorem for Integrals

    Science.gov (United States)

    Khalili, Parviz; Vasiliu, Daniel

    2010-01-01

    In this note we present an extension of the mean value theorem for integrals. The extension we consider is motivated by an older result (here referred as Corollary 2), which is quite classical for the literature of Mathematical Analysis or Calculus. We also show an interesting application for computing the sum of a harmonic series.

  8. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  9. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.

    Science.gov (United States)

    Yang, Yingjun; Ding, Li; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2017-04-25

    Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.

  10. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    International Nuclear Information System (INIS)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-01-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  −100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  −0.967 kHz hPa −1 , namely  −0.69 ppm hPa −1 , which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW. (paper)

  11. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, S.H.; Wang, X.H.; Xia, X.H.; Wang, Y.D.; Wang, X.L.; Tu, J.P.

    2017-01-01

    Tailored design/construction of high-quality sulfur/carbon composite cathode is critical for development of advanced lithium-sulfur batteries. We report a powerful strategy for integrated fabrication of sulfur impregnated into three-dimensional (3D) multileveled carbon nanoflake-nanosphere networks (CNNNs) by means of sacrificial ZnO template plus glucose carbonization. The multileveled CNNNs are not only utilized as large-area host/backbone for sulfur forming an integrated S/CNNNs composite electrode, but also serve as multiple carbon blocking barriers (nanoflake infrastructure andnanosphere superstructure) to physically confine polysulfides at the cathode. The designedself-supported S/CNNNs composite cathodes exhibit superior electrochemical performances with high capacities (1395 mAh g −1 at 0.1C, and 769 mAh g −1 at 5.0C after 200 cycles) and noticeable cycling performance (81.6% retention after 200 cycles). Our results build a new bridge between sulfur and carbon networks with multiple blocking effects for polysulfides, and provide references for construction of other high-performance sulfur cathodes.

  12. High-performance integrated virtual environment (HIVE): a robust infrastructure for next-generation sequence data analysis.

    Science.gov (United States)

    Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E; Tkachenko, Valery; Torcivia-Rodriguez, John; Voskanian, Alin; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja

    2016-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure.The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu. © The Author(s) 2016. Published by Oxford University Press.

  13. Analysis of integrated plant upgrading/life extension programs

    International Nuclear Information System (INIS)

    McCutchan, D.A.; Massie, H.W. Jr.; McFetridge, R.H.

    1988-01-01

    A present-worth generating cost model has been developed and used to evaluate the economic value of integrated plant upgrading life extension project in nuclear power plants. This paper shows that integrated plant upgrading programs can be developed in which a mix of near-term availability, power rating, and heat rate improvements can be obtained in combination with life extension. All significant benefits and costs are evaluated from the viewpoint of the utility, as measured in discounted revenue requirement differentials between alternative plans which are equivalent in system generating capacity. The near-term upgrading benefits are shown to enhance the benefit picture substantially. In some cases the net benefit is positive, even if the actual life extension proves to be less than expected

  14. Integrated and isolated impact of high-performance work practices on employee health and well-being: A comparative study.

    Science.gov (United States)

    Ogbonnaya, Chidiebere; Daniels, Kevin; Connolly, Sara; van Veldhoven, Marc

    2017-01-01

    We investigate the positive relationships between high-performance work practices (HPWP) and employee health and well-being and examine the conflicting assumption that high work intensification arising from HPWP might offset these positive relationships. We present new insights on whether the combined use (or integrated effects) of HPWP has greater explanatory power on employee health, well-being, and work intensification compared to their isolated or independent effects. We use data from the 2004 British Workplace Employment Relations Survey (22,451 employees nested within 1,733 workplaces) and the 2010 British National Health Service Staff survey (164,916 employees nested within 386 workplaces). The results show that HPWP have positive combined effects in both contexts, and work intensification has a mediating role in some of the linkages investigated. The results also indicate that the combined use of HPWP may be sensitive to particular organizational settings, and may operate in some sectors but not in others. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. High-performance integrated pick-up circuit for SPAD arrays in time-correlated single photon counting

    Science.gov (United States)

    Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo

    2017-05-01

    The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.

  16. High performance organic integrated device with ultraviolet photodetective and electroluminescent properties consisting of a charge-transfer-featured naphthalimide derivative

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hanyu; Wang, Xu; Yu, Junsheng, E-mail: luzhiyun@scu.edu.cn, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhou, Jie; Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn, E-mail: jsyu@uestc.edu.cn [College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-08-11

    A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-(3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy)-2- (4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 10{sup 11} Jones at −3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm{sup 2}, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m{sup 2}. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.

  17. High Performance Nano-Constituent Buffer Layer Thin Films to Enable Low Cost Integrated On-the-Move Communications Systems

    National Research Council Canada - National Science Library

    Cole, M. W; Nothwang, W. D; Hubbard, C; Ngo, E; Hirsch, S

    2004-01-01

    .... Utilizing a coplanar device design we successfully designed, fabricated, characterized, and optimized a high performance Ta2O5 thin film passive buffer layer on Si substrates, which will allow...

  18. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  19. Integrated and isolated impact of high-performance work practices on employee health and well-being : A comparative studie

    NARCIS (Netherlands)

    Ogbonnaya, C.; Daniels, K.; Connolly, S.; van Veldhoven, M.J.P.M.

    2017-01-01

    We investigate the positive relationships between high-performance work practices (HPWP) and employee health and well-being and examine the conflicting assumption that high work intensification arising from HPWP might offset these positive relationships. We present new insights on whether the

  20. Competency Modeling in Extension Education: Integrating an Academic Extension Education Model with an Extension Human Resource Management Model

    Science.gov (United States)

    Scheer, Scott D.; Cochran, Graham R.; Harder, Amy; Place, Nick T.

    2011-01-01

    The purpose of this study was to compare and contrast an academic extension education model with an Extension human resource management model. The academic model of 19 competencies was similar across the 22 competencies of the Extension human resource management model. There were seven unique competencies for the human resource management model.…

  1. High Performance Nano-Constituent Buffer Layer Thin Films to Enable Low Cost Integrated On-the-Move Communications Systems

    National Research Council Canada - National Science Library

    Cole, M. W; Nothwang, W. D; Hubbard, C; Ngo, E; Hirsch, S

    2004-01-01

    Successful integration of paraelectric Ba1-xSrxTiO3 (BST) based thin films with affordable Si substrates has a potential significant commercial impact as the demand for high-frequency tunable devices intensifies...

  2. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

    Science.gov (United States)

    Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo

    2015-03-25

    A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Integrating net-zero energy and high-performance green building technologies into contemporary housing in a cold climate

    Science.gov (United States)

    Martin Yoklic; Mark Knaebe; Karen Martinson

    2010-01-01

    The objectives of this research project are (1) to show how the sustainable resources of forest biomass, solar energy, harvested rainwater, and small-diameter logs can be integrated to a system that provides most or all of the energy and water needs of a typical cold climate residential household, and (2) to effectively interpret the results and convey the sustainable...

  4. Integrating qualitative and quantitative characterization of traditional Chinese medicine injection by high-performance liquid chromatography with diode array detection and tandem mass spectrometry.

    Science.gov (United States)

    Xie, Yuan-yuan; Xiao, Xue; Luo, Juan-min; Fu, Chan; Wang, Qiao-wei; Wang, Yi-ming; Liang, Qiong-lin; Luo, Guo-an

    2014-06-01

    The present study aims to describe and exemplify an integrated strategy of the combination of qualitative and quantitative characterization of a multicomponent mixture for the quality control of traditional Chinese medicine injections with the example of Danhong injection (DHI). The standardized chemical profile of DHI has been established based on liquid chromatography with diode array detection. High-performance liquid chromatography coupled with time-of-flight mass spectrometry and high-performance liquid chromatography with electrospray multistage tandem ion-trap mass spectrometry have been developed to identify the major constituents in DHI. The structures of 26 compounds including nucleotides, phenolic acids, and flavonoid glycosides were identified or tentatively characterized. Meanwhile, the simultaneous determination of seven marker constituents, including uridine, adenosine, danshensu, protocatechuic aldehyde, p-coumaric acid, rosmarinic acid, and salvianolic acid B, in DHI was performed by multiwavelength detection based on high-performance liquid chromatography with diode array detection. The integrated qualitative and quantitative characterization strategy provided an effective and reliable pattern for the comprehensive and systematic characterization of the complex traditional Chinese medicine system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Towards a high performance vertex detector based on 3D integration of deep N-well MAPS

    International Nuclear Information System (INIS)

    Re, V

    2010-01-01

    The development of deep N-Well (DNW) CMOS active pixel sensors was driven by the ambitious goal of designing a monolithic device with similar functionalities as in hybrid pixel readout chips, such as pixel-level sparsification and time stamping. The implementation of the DNW MAPS concept in a 3D vertical integration process naturally leads the designer towards putting more intelligence in the chip and in the pixels themselves, achieving novel device structures based on the interconnection of two or more layers fabricated in the same technology. These devices are read out with a data-push scheme that makes it possible to use pixel data for the generation of a flexible level 1 track trigger, based on associative memories, with short latency and high efficiency. This paper gives an update of the present status of DNW MAPS design in both 2D and 3D versions, and presents a discussion of the architectures that are being devised for the Layer 0 of the SuperB Silicon Vertex Tracker.

  6. Towards a high performance vertex detector based on 3D integration of deep N-well MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Re, V, E-mail: valerio.re@unibg.i [University of Bergamo, Department of Industrial Engineering, Viale Marconi 5, 24044 Dalmine (Italy)

    2010-06-15

    The development of deep N-Well (DNW) CMOS active pixel sensors was driven by the ambitious goal of designing a monolithic device with similar functionalities as in hybrid pixel readout chips, such as pixel-level sparsification and time stamping. The implementation of the DNW MAPS concept in a 3D vertical integration process naturally leads the designer towards putting more intelligence in the chip and in the pixels themselves, achieving novel device structures based on the interconnection of two or more layers fabricated in the same technology. These devices are read out with a data-push scheme that makes it possible to use pixel data for the generation of a flexible level 1 track trigger, based on associative memories, with short latency and high efficiency. This paper gives an update of the present status of DNW MAPS design in both 2D and 3D versions, and presents a discussion of the architectures that are being devised for the Layer 0 of the SuperB Silicon Vertex Tracker.

  7. 78 FR 63170 - Integrated Postsecondary Education Data System (IPEDS) 2013-2016; Extension of Public Comment...

    Science.gov (United States)

    2013-10-23

    ... DEPARTMENT OF EDUCATION Integrated Postsecondary Education Data System (IPEDS) 2013-2016; Extension of Public Comment Period; Correction AGENCY: Department of Education. ACTION: Correction notice... entitled, ``Integrated Postsecondary Education Data System (IPEDS) 2013-2016''. The comment period for this...

  8. Extension of Poincare's program for integrability, chaos and bifurcations

    NARCIS (Netherlands)

    Verhulst, Ferdinand|info:eu-repo/dai/nl/068380437

    2012-01-01

    We will review the achievements of Henri Poincar e in the theory of dy- namical systems and will add a number of extensions and generalizations of his results. It is pointed out that the attention given to two degrees-of-freedom Hamiltonian sys- tems is rather deceptive as near stable equilibrium

  9. Integrated of Mobile Phone as Interactive Media in Extensive Listening

    Directory of Open Access Journals (Sweden)

    Kodir Al-Baekani Abdul

    2018-01-01

    Full Text Available Learning English is the most difficult to learn by students, especially in learning of listening aspect. This research aims to investigate the process of listening activity in the classroom using mobile phone as interactive media in extensive listening and how the students’ responds of learning listening using mobile phone as an interactive media in extensive listening. Methodology of this research is descriptive qualitative. The subject of this research is Private Senior High School Muhammadiyah Karawang with 30 students as the sample of this research. The data analysis of this research uses the result of observation, interview, and documentation. Observation is used to know the learning process in classroom. Interview is used to know the students’ respond in learning process. While documentation is used to strengthen the data. The result of observation class shows that the process of teaching and learning listening as follows: (1 the teacher begins learning within 10 minutes, (2 the main activity using mobile phone in learning listening within 25 minutes, and (2 the final activity: the teacher gives a test to measure the students’ ability in listening comprehension. Meanwhile, the result of interview with the students shows that students mentioned convenience and interesting using mobile phone (37% and accessed in anywhere and anytime (30%, easiness (17%, authenticity (10%, and usefulness and fun (7% to use their mobile phone in English listening.

  10. Current Capabilities at SNL for the Integration of Small Modular Reactors onto Smart Microgrids Using Sandia's Smart Microgrid Technology High Performance Computing and Advanced Manufacturing.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, and secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.

  11. Pathology data integration with eXtensible Markup Language.

    Science.gov (United States)

    Berman, Jules J

    2005-02-01

    It is impossible to overstate the importance of XML (eXtensible Markup Language) as a data organization tool. With XML, pathologists can annotate all of their data (clinical and anatomic) in a format that can transform every pathology report into a database, without compromising narrative structure. The purpose of this manuscript is to provide an overview of XML for pathologists. Examples will demonstrate how pathologists can use XML to annotate individual data elements and to structure reports in a common format that can be merged with other XML files or queried using standard XML tools. This manuscript gives pathologists a glimpse into how XML allows pathology data to be linked to other types of biomedical data and reduces our dependence on centralized proprietary databases.

  12. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-03

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg -1 and 84.6 Wh kg -1 at power densities of 731.25 W kg -1 and 24375 W kg -1 , respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  13. A framework for organizing cancer-related variations from existing databases, publications and NGS data using a High-performance Integrated Virtual Environment (HIVE).

    Science.gov (United States)

    Wu, Tsung-Jung; Shamsaddini, Amirhossein; Pan, Yang; Smith, Krista; Crichton, Daniel J; Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    Years of sequence feature curation by UniProtKB/Swiss-Prot, PIR-PSD, NCBI-CDD, RefSeq and other database biocurators has led to a rich repository of information on functional sites of genes and proteins. This information along with variation-related annotation can be used to scan human short sequence reads from next-generation sequencing (NGS) pipelines for presence of non-synonymous single-nucleotide variations (nsSNVs) that affect functional sites. This and similar workflows are becoming more important because thousands of NGS data sets are being made available through projects such as The Cancer Genome Atlas (TCGA), and researchers want to evaluate their biomarkers in genomic data. BioMuta, an integrated sequence feature database, provides a framework for automated and manual curation and integration of cancer-related sequence features so that they can be used in NGS analysis pipelines. Sequence feature information in BioMuta is collected from the Catalogue of Somatic Mutations in Cancer (COSMIC), ClinVar, UniProtKB and through biocuration of information available from publications. Additionally, nsSNVs identified through automated analysis of NGS data from TCGA are also included in the database. Because of the petabytes of data and information present in NGS primary repositories, a platform HIVE (High-performance Integrated Virtual Environment) for storing, analyzing, computing and curating NGS data and associated metadata has been developed. Using HIVE, 31 979 nsSNVs were identified in TCGA-derived NGS data from breast cancer patients. All variations identified through this process are stored in a Curated Short Read archive, and the nsSNVs from the tumor samples are included in BioMuta. Currently, BioMuta has 26 cancer types with 13 896 small-scale and 308 986 large-scale study-derived variations. Integration of variation data allows identifications of novel or common nsSNVs that can be prioritized in validation studies. Database URL: BioMuta: http

  14. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  15. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  16. High performance conductometry

    International Nuclear Information System (INIS)

    Saha, B.

    2000-01-01

    Inexpensive but high performance systems have emerged progressively for basic and applied measurements in physical and analytical chemistry on one hand, and for on-line monitoring and leak detection in plants and facilities on the other. Salient features of the developments will be presented with specific examples

  17. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  18. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  19. A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling

    Science.gov (United States)

    Chen, Xiaoliang; Tian, Hongmiao; Li, Xiangming; Shao, Jinyou; Ding, Yucheng; An, Ningli; Zhou, Yaopei

    2015-07-01

    Piezoelectricity based energy harvesting from mechanical vibrations has attracted extensive attention for its potential application in powering wireless mobile electronics recently. Here, a patterned electrohydrodynamic (EHD) pulling technology was proposed to fabricate a new self-connected, piezoelectric fiber array vertically integrated P(VDF-TrFE) nanogenerator, with a molecular poling orientation fully aligned to the principal excitation for maximized conversion and a well-bridged electrode pair for efficient charge collection. The nanogenerator is fabricated in a novel way by applying a voltage across an electrode pair sandwiching an air gap and an array of shallow micropillars, during which the EHD force tends to pull the micropillars upward, generating a microfiber array finally in robust contact with the upper electrode. Such a thermoplastic and EHD deformation of the microfibers, featured simultaneously by an electric field and by a microfiber elongation dominantly vertical to the electrode, leads to a poling orientation of P(VDF-TrFE) well coincident with the principal strain for the generator excited by a force normal to the electrodes. The as-prepared piezoelectric device exhibits an enhanced output voltage up to 4.0 V and a current of 2.6 μA, therefore the piezoelectric voltage was enhanced to 5.4 times that from the bulk film. Under periodic mechanical impact, electric signals are repeatedly generated from the device and used to power a seven-segment indicator, RBGY colored light-emitting diodes, and a large-scale liquid crystal display screen. These results not only provide a tool for fabricating 3D piezoelectric polymers but offer a new type of self-connected nanogenerator for the next generation of self-powered electronics.Piezoelectricity based energy harvesting from mechanical vibrations has attracted extensive attention for its potential application in powering wireless mobile electronics recently. Here, a patterned electrohydrodynamic (EHD

  20. High-Performance Networking

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  1. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  2. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  3. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  4. EFFECT OF DIFFERENT AMOUNTS OF THE NONIONIC DETERGENTS C-10E(5) AND C-12E(5) PRESENT IN ELUENTS FOR ION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY OF INTEGRAL MEMBRANE-PROTEINS OF SENDAI VIRUS

    NARCIS (Netherlands)

    WELLINGWESTER, S; FEIJLBRIEF, M; KOEDIJK, DGAM; BRAAKSMA, MA; DOUMA, BRK; WELLING, GW

    1993-01-01

    Non-ionic detergents (0.03-0.5%) are used as additives to the eluents when integral membrane proteins are subjected to ion-exchange high-performance liquid chromatography (HPIEC). It is not known whether this concentration should bear some relation to the critical micelle concentration (CMC) of a

  5. An Examination of the Feasibility of Integrating Motivational Interviewing Techniques into FCS Cooperative Extension Programming

    Science.gov (United States)

    Radunovich, Heidi Liss; Ellis, Sarah; Spangler, Taylor

    2017-01-01

    Demonstrating program impact through behavior change is critical for the continued success of Family and Consumer Sciences (FCS) Cooperative Extension programming. However, the literature suggests that simply providing information to participants does not necessarily lead to behavior change. This study pilot tested the integration of Motivational…

  6. Delaminated rotator cuff tear: extension of delamination and cuff integrity after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Gwak, Heui-Chul; Kim, Chang-Wan; Kim, Jung-Han; Choo, Hye-Jeung; Sagong, Seung-Yeob; Shin, John

    2015-05-01

    The purpose of this study was to evaluate the extension of delamination and the cuff integrity after arthroscopic repair of delaminated rotator cuff tears. Sixty-five patients with delaminated rotator cuff tears were retrospectively reviewed. The delaminated tears were divided into full-thickness delaminated tears and partial-thickness delaminated tears. To evaluate the medial extension, we calculated the coronal size of the delaminated portion. To evaluate the posterior extension, we checked the tendon involved. Cuff integrity was evaluated by computed tomography arthrography. The mean medial extension in the full-thickness and partial-thickness delaminated tears was 18.1 ± 6.0 mm and 22.7 ± 6.3 mm, respectively (P = .0084). The posterior extension into the supraspinatus and the infraspinatus was 36.9% and 32.3%, respectively, in the full-thickness delaminated tears, and it was 27.7% and 3.1%, respectively, in the partial-thickness delaminated tears (P = .0043). With regard to cuff integrity, 35 cases of anatomic healing, 10 cases of partial healing defects, and 17 cases of retear were detected. Among the patients with retear and partial healing of the defect, all the partially healed defects showed delamination. Three retear patients showed delamination, and 14 retear patients did not show delamination; the difference was statistically significant (P = .0001). The full-thickness delaminated tears showed less medial extension and more posterior extension than the partial-thickness delaminated tears. Delamination did not develop in retear patients, but delamination was common in the patients with partially healed defects. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  8. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  9. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  10. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe

    2015-09-01

    Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on

  11. Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions

    International Nuclear Information System (INIS)

    Schaber, Katrin; Steinke, Florian; Mühlich, Pascal; Hamacher, Thomas

    2012-01-01

    Wind and solar energy will play an important role in the decarbonization of the European electricity generation. However, high shares of these variable renewable energies (VREs) challenge the power system considerably due to their temporal fluctuations and geographical dispersion. In this paper, we systematically analyze transmission grid extensions as an integration measure for VREs in Europe. We show the effects of grid extensions for fundamental properties of the power system as a function of the penetration and mix of wind and solar energy. Backup capacity requirements and overproduction are reduced with a powerful overlay transmission grid. We determine the costs of the grid extensions in dependence of the VRE penetration and mix and find that the grid integration costs remain below 25% of the VRE investment costs for all conceivable VRE configurations. Furthermore, robust design features of future power systems in terms of grid geometry and flexibility requirements for backup technologies are identified. We apply a spatially and temporally highly resolved techno-economic model of the European power system for our analysis. - Highlights: ► Quantification of the advantages and costs of a European overlay transmission grid. ► Grid integration costs for VREs in Europe remain below 6€/MWh. ► Application of a detailed power system model to a wide parameter space.

  12. Integration approach for developing a high-performance biointerface: Sequential formation of hydroxyapatite and calcium carbonate by an improved alternate soaking process

    International Nuclear Information System (INIS)

    Watanabe, Junji; Akashi, Mitsuru

    2008-01-01

    Biointerfaces are crucial for regulating biofunctions. An effective method of producing new biomaterials is surface modification, in particular, the hybrid organic-inorganic approach. In this paper, we propose a method for the sequential formation of hydroxyapatite and calcium carbonate on porous polyester membranes by using an improved alternate soaking process. The resulting hybrid membranes were characterized in terms of their calcium and phosphorus ion contents; further, their structure was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and infrared spectroscopy (IR). As a typical biofunction, protein adsorption by these hybrid membranes was investigated. Sequential hydroxyapatite and calcium carbonate formation on the membranes was successfully achieved, and the total amounts of hydroxyapatite and calcium carbonate formed were precisely regulated by the preparative conditions. The SEM and XRD characterizations were verified by comparing with the IR results. The amount of adsorbed protein correlated well with not only the amount of hydroxyapatite formed but also the combined amounts of hydroxyapatite and calcium carbonate formed. The results indicate that the hybrid membranes can function as high-performance biointerfaces that are capable of loading biomolecules such as proteins

  13. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders — from Optical Triangulation to the Automotive Field

    Directory of Open Access Journals (Sweden)

    Joe-Air Jiang

    2008-03-01

    Full Text Available With their significant features, the applications of complementary metal-oxidesemiconductor (CMOS image sensors covers a very extensive range, from industrialautomation to traffic applications such as aiming systems, blind guidance, active/passiverange finders, etc. In this paper CMOS image sensor-based active and passive rangefinders are presented. The measurement scheme of the proposed active/passive rangefinders is based on a simple triangulation method. The designed range finders chieflyconsist of a CMOS image sensor and some light sources such as lasers or LEDs. Theimplementation cost of our range finders is quite low. Image processing software to adjustthe exposure time (ET of the CMOS image sensor to enhance the performance oftriangulation-based range finders was also developed. An extensive series of experimentswere conducted to evaluate the performance of the designed range finders. From theexperimental results, the distance measurement resolutions achieved by the active rangefinder and the passive range finder can be better than 0.6% and 0.25% within themeasurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests onapplications of the developed CMOS image sensor-based range finders to the automotivefield were also conducted. The experimental results demonstrated that our range finders arewell-suited for distance measurements in this field.

  14. NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors

    Science.gov (United States)

    Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-07-01

    Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.

  15. High Performance Proactive Digital Forensics

    International Nuclear Information System (INIS)

    Alharbi, Soltan; Traore, Issa; Moa, Belaid; Weber-Jahnke, Jens

    2012-01-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  16. An Introduction to High Performance Fortran

    Directory of Open Access Journals (Sweden)

    John Merlin

    1995-01-01

    Full Text Available High Performance Fortran (HPF is an informal standard for extensions to Fortran 90 to assist its implementation on parallel architectures, particularly for data-parallel computation. Among other things, it includes directives for specifying data distribution across multiple memories, and concurrent execution features. This article provides a tutorial introduction to the main features of HPF.

  17. Carbon-based coating containing ultrafine MoO2 nanoparticles as an integrated anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Li, Quanyi; Yang, Qi; Zhao, Yanhong; Wan, Bin

    2017-10-01

    Copper-supported MoO2-C composite as an integrated anode with excellent battery performance was synthesized by a facile knife coating technique followed by heat treatment in a vacuum. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal analysis, nitrogen adsorption and desorption analysis, field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM). The results show the MoO2-C composite coating is comprised of a porous carbon matrix with a pore size of 1-3 nm and ultrafine MoO2 nanoparticles with a size of 5-10 nm encapsulated inside, the coating is tightly attached on the surface of copper foil, and the interface between them is free of cracks. Stable PAN-DMF-H2O system containing ammonium molybdate suitable for knife coating technique and the MoO2-C composite with ultrafine MoO2 nanoparticles encapsulated in the carbon matrix can be prepared through controlling amount of added ammonium molybdate solution. The copper-supported MoO2-C composite coating can be directly utilized as the integrated anode for lithium-ion batteries (LIBs). It delivers a capacity of 814 mA h g-1 at a current density of 100 mA g-1 after 100 cycles without apparent capacity fading. Furthermore, with increase of current densities to 200, 500, 1000, 2000, and 5000 mA g-1, it exhibits average capacities of 809, 697, 568, 383, and 188 mA h g-1. Its outstanding electrochemical performance is attributed to combined merits of integrated anode and structure with ultrafine MoO2 nanoparticles embedded in the porous carbon matrix.

  18. High performance germanium MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Saraswat, Krishna [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)]. E-mail: saraswat@stanford.edu; Chui, Chi On [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Krishnamohan, Tejas [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Kim, Donghyun [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Nayfeh, Ammar [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Pethe, Abhijit [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-12-15

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO {sub x}N {sub y} ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin ({approx}2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices.

  19. High performance germanium MOSFETs

    International Nuclear Information System (INIS)

    Saraswat, Krishna; Chui, Chi On; Krishnamohan, Tejas; Kim, Donghyun; Nayfeh, Ammar; Pethe, Abhijit

    2006-01-01

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO x N y ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin (∼2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices

  20. Integrating Research and Extension for the Nsf-Reu Program in Water Resources

    Science.gov (United States)

    Judge, J.; Migliaccio, K.; Gao, B.; Shukla, S.; Ehsani, R.; McLamore, E.

    2011-12-01

    Providing positive and meaningful research experiences to students in their undergraduate years is critical for motivating them to pursue advanced degrees or research careers in science and engineering. Such experiences not only offer training for the students in problem solving and critical thinking via hands-on projects, but also offer excellent mentoring and recruiting opportunities for the faculty advisors. The goal of the Research Experience for Undergraduates (REU) Program in the Agricultural and Biological Engineering Department (ABE) at the University of Florida (UF) is to provide eight undergraduate students a unique opportunity to conduct research in water resources using interdisciplinary approaches, integrating research and extension. The students are selected from diverse cultural and educational backgrounds. The eight-week REU Program utilizes the extensive infrastructure of UF - Institute of Food and Agricultural Sciences (IFAS) through the Research and Education Centers (RECs). Two students are paired to participate in their own project under the direct supervision of one of the four research mentors. Four of the eight students are located at the main campus, in Gainesville, Fl, and four remaining students are located off-campus, at the RECs, where some of the ABE faculty are located. The students achieve an enriching cohort experience through social networking, daily blogs, and weekly video conferences to share their research and other REU experiences. The students are co-located during the Orientation week and also during the 5-day Florida Waters Tour. Weekly group meetings and guest lectures are conducted via synchronously through video conferencing. The integration of research and extension is naturally achieved through the projects at the RECs, the guest lectures, Extension workshops, and visits to the Water Management Districts in Florida. In the last two years of the Program, we have received over 80 applicants, from four-year and advanced

  1. An integrated high-performance beam optics-nuclear processes framework with hybrid transfer map-Monte Carlo particle transport and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, L., E-mail: bandura@msu.ed [Argonne National Laboratory, Argonne, IL 60439 (United States); Erdelyi, B. [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Nolen, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-12-01

    An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.

  2. An integrated high-performance beam optics-nuclear processes framework with hybrid transfer map-Monte Carlo particle transport and optimization

    International Nuclear Information System (INIS)

    Bandura, L.; Erdelyi, B.; Nolen, J.

    2010-01-01

    An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.

  3. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    Science.gov (United States)

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm-2 at 2 mA cm-2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm-2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  4. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  5. Enhanced model for integrated simulation of an entrained bed gasifier implemented as Aspen Hysys extension

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Fortes, M; Bojarski, A; Ferrer-Nadal, S; Kopanos, G; Mitta, N; Pinilla, C A; Nougues, J M; Velo, E; Puigjaner, L [Universitat Politecnica de Catalunya, Barcelona (Spain). Dept. of Chemical Engineering-CEPIMA

    2007-07-01

    In this work an enhanced mathematical model of an entrained bed gasifier has been developed for improved synthesis gas production. The gasification model considers five stages: pyrolysis, volatiles combustion, char combustion, gasification and a final gas equilibrium zone. Mathematical simulations are carried out to help finding out feasible operating conditions of the process to achieve improved process performance. Visual Basic (VB) is tested as tool for modelling, by using the Aspen Hysys Extension (AHE) interface standards. This standard provides a suitable environment for this purpose, since it allows the creation of completely custom modules which are easy to plug and use thus facilitating the handling of complex models ready to interact with commercial simulation platforms. In this work, integration of different models is accomplished in Aspen Hysys (AH), which provides the basic connectivity within models components, and the thermodynamic framework needed. The integrated modules simulation environment platform uses data from ELCOGAS for validation purposes with excellent preliminary results. 9 refs., 2 figs.

  6. A simple multi-residue method for the determination of pesticides in fruits and vegetables using a methanolic extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry: optimization and extension of scope.

    Science.gov (United States)

    Hanot, V; Goscinny, S; Deridder, M

    2015-03-06

    In 2004, a new multi-residue pesticides method had been published using methanol as extraction solvent. Our goal for this study was to optimize the analytical scheme while extending the compound scope from 19 to 200 pesticides. The main changes from the original method take place at the sample extraction and processing with a special attention to make the overall method fit for routine analysis with minimal cost. Hence, after a quick Ultra-Turrax homogenization with a methanolic solution, the sample is simply diluted before the separation and detection by ultra-high-performance liquid chromatography and MS/MS detection for quantitative and confirmatory purposes. The performance of the method including limits of quantification (LOQs), linearity, matrix effect, precision was evaluated during validation in accordance with the European Union SANCO/12571/2013 regulatory guidelines. Two representative matrices, lettuce and orange, were selected and fortified at two concentration levels for these experiments. At the LOQ and ten times the LOQ, recoveries of the analytes were mostly within 70-120%, with coefficients of variation lower than 25% in intra-day repeatability conditions. In addition to being simple and fast, these results demonstrate the suitability of the optimized method for the analysis of large scope pesticides in routine laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An IFC schema extension and binary serialization format to efficiently integrate point cloud data into building models

    NARCIS (Netherlands)

    Krijnen, T.F.; Beetz, J.

    2017-01-01

    In this paper we suggest an extension to the Industry Foundation Classes (IFC) model to integrate point cloud datasets. The proposal includes a schema extension to the core model allowing the storage of points, either as Cartesian coordinates, points in parametric space of associated building

  8. SISYPHUS: A high performance seismic inversion factory

    Science.gov (United States)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  9. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  10. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  11. Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach.

    Science.gov (United States)

    Petruzziello, Filomena; Fouillen, Laetitia; Wadensten, Henrik; Kretz, Robert; Andren, Per E; Rainer, Gregor; Zhang, Xiaozhe

    2012-02-03

    Neuropeptidomics is used to characterize endogenous peptides in the brain of tree shrews (Tupaia belangeri). Tree shrews are small animals similar to rodents in size but close relatives of primates, and are excellent models for brain research. Currently, tree shrews have no complete proteome information available on which direct database search can be allowed for neuropeptide identification. To increase the capability in the identification of neuropeptides in tree shrews, we developed an integrated mass spectrometry (MS)-based approach that combines methods including data-dependent, directed, and targeted liquid chromatography (LC)-Fourier transform (FT)-tandem MS (MS/MS) analysis, database construction, de novo sequencing, precursor protein search, and homology analysis. Using this integrated approach, we identified 107 endogenous peptides that have sequences identical or similar to those from other mammalian species. High accuracy MS and tandem MS information, with BLAST analysis and chromatographic characteristics were used to confirm the sequences of all the identified peptides. Interestingly, further sequence homology analysis demonstrated that tree shrew peptides have a significantly higher degree of homology to equivalent sequences in humans than those in mice or rats, consistent with the close phylogenetic relationship between tree shrews and primates. Our results provide the first extensive characterization of the peptidome in tree shrews, which now permits characterization of their function in nervous and endocrine system. As the approach developed fully used the conservative properties of neuropeptides in evolution and the advantage of high accuracy MS, it can be portable for identification of neuropeptides in other species for which the fully sequenced genomes or proteomes are not available.

  12. High Performance Computing Operations Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  13. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  14. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  15. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  16. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  17. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  18. Air-assisted liquid-liquid microextraction integrated with QuEChERS for determining endocrine-disrupting compounds in fish by high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Luo, Zhoufei; Lu, Jing; Li, Haipu; Tu, Yi; Wan, Yuehao; Yang, Zhaoguang

    2018-09-15

    A new, sensitive, and rapid method based on the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) approach and air-assisted liquid-liquid microextraction (AALLME) technology was developed for the determination of 20 endocrine-disrupting compounds (EDCs) in fish by high-performance liquid chromatography-tandem mass spectrometry. The method first integrates AALLME into QuEChERS to achieve clean-up and enrichment of the EDCs in one step. A self-made glass tube was enfolded with plasticine to withstand the high centrifugal force. The established method was developed by optimization of the parameters. High linearities (R 2  > 0.9924) and recoveries (78.2-118.6%) at three spiked levels (5, 10, and 20 ng g -1 ), and low relative standard deviation values (1.1-14.5%) and limits of detection (0.03-0.80 ng g -1 ) were obtained. The method comparison shows that the proposed method is superior as it involves less organic solvent usage, simple operation and high efficiency. This method was successfully applied to different fishes for analyzing EDCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Wenyao; Fu, Yongsheng; Wang, Xin

    2018-05-01

    A facile strategy to synthesize a composite composed of cubic Co3O4 nanocrystals anchored on chemically integrated g-C3N4-modified N-graphene (CN-NG) as an advanced anode material for high-performance lithium-ion batteries is reported. It is found that the morphology of the Co3O4 nanocrystals contains blunt-edge nanocubes with well-demarcated boundaries and numerous exposed low-index (1 1 1) crystallographic facets. These planes can be directly involved in the electrochemical reactions, providing rapid Li-ion transport channels for charging and discharging and thus enhancing the round-trip diffusion efficiency. On the other hand, the CN-NG support displays unusual textural features, such as superior structural stability, accessible active sites, and good electrical conductivity. The experimental results reveal that the chemical and electronic coupling of graphitic carbon nitride and nitrogen-doped graphene synergistically facilitate the anchoring of Co3O4 nanocrystals and prevents their migration. The resulting Co3O4/CN-NG composite exhibits a high specific reversible capacity of up to 1096 mAh g-1 with excellent cycling stability and rate capability. We believe that such a hybrid carbon support could open a new path for applications in electrocatalysis, sensors, supercapacitors, etc., in the near future.

  20. Identifying High Performance ERP Projects

    OpenAIRE

    Stensrud, Erik; Myrtveit, Ingunn

    2002-01-01

    Learning from high performance projects is crucial for software process improvement. Therefore, we need to identify outstanding projects that may serve as role models. It is common to measure productivity as an indicator of performance. It is vital that productivity measurements deal correctly with variable returns to scale and multivariate data. Software projects generally exhibit variable returns to scale, and the output from ERP projects is multivariate. We propose to use Data Envelopment ...

  1. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  2. Monitoring SLAC High Performance UNIX Computing Systems

    International Nuclear Information System (INIS)

    Lettsome, Annette K.

    2005-01-01

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface

  3. Aerodynamic Engine/Airframe Integration for High Performance Aircraft and Missiles (L’Integration Aerodynamique des Moteurs et des Cellules dans les Avions et les Missiles a Hautes Performances)

    Science.gov (United States)

    1992-09-01

    baisse du niveas da plateau supersonique (Fig.9). L’onde de choc DCZ 0,30 0068avance de 1% dc Ia corde ci cc dilplacement ye rilperesic sur toute CX 104...propulsion component, which is very helpful for a better understanding of the underlying pheno- mena and finding possible areas of improve- men t.I...of excessive, and for a plane and plug nozzle of a hypersonic aircraft, for probably prohibitive, fine meshes. It has to be men - a highly integrated

  4. MathModelica - An Extensible Modeling and Simulation Environment with Integrated Graphics and Literate Programming

    OpenAIRE

    Fritzson, Peter; Gunnarsson, Johan; Jirstrand, Mats

    2002-01-01

    MathModelica is an integrated interactive development environment for advanced system modeling and simulation. The environment integrates Modelica-based modeling and simulation with graphic design, advanced scripting facilities, integration of program code, test cases, graphics, documentation, mathematical type setting, and symbolic formula manipulation provided via Mathematica. The user interface consists of a graphical Model Editor and Notebooks. The Model Editor is a graphical user interfa...

  5. Implementation of a high performance parallel finite element micromagnetics package

    International Nuclear Information System (INIS)

    Scholz, W.; Suess, D.; Dittrich, R.; Schrefl, T.; Tsiantos, V.; Forster, H.; Fidler, J.

    2004-01-01

    A new high performance scalable parallel finite element micromagnetics package has been implemented. It includes solvers for static energy minimization, time integration of the Landau-Lifshitz-Gilbert equation, and the nudged elastic band method

  6. Extension of Applicability of integral neutron transport theory in reactor cell and core investigation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Bosevski, T.; Kocic, A.; Altiparmakov, D.

    1980-01-01

    A Space-Point Energy-Group integral transport theory method (SPEG) is developed and applied to the local and global calculations of the Yugoslav RA reactor. Compared to other integral transport theory methods, the SPEG distinguishes by (1) the arbitrary order of the polynomial, (2) the effective determination of integral parameters through point flux values, (3) the use of neutron balance condition. as a posterior measure of the accuracy of the calculation and (4) the elimination of the subdivisions- into zones, in realistic cases. In addition, different direct (collision probability) and indirect (Monte Carlo) approaches to integral transport theory have been investigated and Some effective acceleration procedures introduced. The study was performed on three test problems in plane and cylindrical geometry, as well as on the nine-region cell of the RA reactor. In particular, the limitations of the integral transport theory including its non-applicability to optically large material regions and to global reactor calculations were examined. The proposed strictly multipoint approach, avoiding the subdivision into zones and groups, seems to provide a good starting point to overcome these limitations of the integral transport theory. (author)

  7. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  8. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  9. High performance separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sivaraman, N.; Vasudeva Rao, P.R.

    2011-01-01

    The major advantage of High Performance Liquid Chromatography (HPLC) is its ability to provide rapid and high performance separations. It is evident from Van Deemter curve for particle size versus resolution that packing materials with particle sizes less than 2 μm provide better resolution for high speed separations and resolving complex mixtures compared to 5 μm based supports. In the recent past, chromatographic support material using monolith has been studied extensively at our laboratory. Monolith column consists of single piece of porous, rigid material containing mesopores and micropores, which provide fast analyte mass transfer. Monolith support provides significantly higher separation efficiency than particle-packed columns. A clear advantage of monolith is that it could be operated at higher flow rates but with lower back pressure. Higher operating flow rate results in higher column permeability, which drastically reduces analysis time and provides high separation efficiency. The above developed fast separation methods were applied to assay the lanthanides and actinides from the dissolver solutions of nuclear reactor fuels

  10. Formal Pseudodifferential Operators in One and Several Variables, Central Extensions, and Integrable Systems

    Directory of Open Access Journals (Sweden)

    Jarnishs Beltran

    2015-01-01

    Full Text Available We review some aspects of the theory of Lie algebras of (twisted and untwisted formal pseudodifferential operators in one and several variables in a general algebraic context. We focus mainly on the construction and classification of nontrivial central extensions. As applications, we construct hierarchies of centrally extended Lie algebras of formal differential operators in one and several variables, Manin triples and hierarchies of nonlinear equations in Lax and zero curvature form.

  11. TH-AB-209-01: Making Benchtop X-Ray Fluorescence Computed Tomography (XFCT) Practical for in Vivo Imaging by Integration of a Dedicated High-Performance X-Ray Source in Conjunction with Micro-CT Functionality

    International Nuclear Information System (INIS)

    Manohar, N; Cho, S; Reynoso, F

    2016-01-01

    Purpose: To make benchtop x-ray fluorescence computed tomography (XFCT) practical for routine preclinical imaging tasks with gold nanoparticles (GNPs) by deploying, integrating, and characterizing a dedicated high-performance x-ray source and addition of simultaneous micro-CT functionality. Methods: Considerable research effort is currently under way to develop a polychromatic benchtop cone-beam XFCT system capable of imaging GNPs by stimulation and detection of gold K-shell x-ray fluorescence (XRF) photons. Recently, an ad hoc high-power x-ray source was incorporated and used to image the biodistribution of GNPs within a mouse, postmortem. In the current work, a dedicated x-ray source system featuring a liquid-cooled tungsten-target x-ray tube (max 160 kVp, ∼3 kW power) was deployed. The source was operated at 125 kVp, 24 mA. The tube’s compact dimensions allowed greater flexibility for optimizing both the irradiation and detection geometries. Incident x-rays were shaped by a conical collimator and filtered by 2 mm of tin. A compact “OEM” cadmium-telluride x-ray detector was implemented for detecting XRF/scatter spectra. Additionally, a flat panel detector was installed to allow simultaneous transmission CT imaging. The performance of the system was characterized by determining the detection limit (10-second acquisition time) for inserts filled with water/GNPs at various concentrations (0 and 0.010–1.0 wt%) and embedded in a small-animal-sized phantom. The phantom was loaded with 0.5, 0.3, and 0.1 wt% inserts and imaged using XFCT and simultaneous micro-CT. Results: An unprecedented detection limit of 0.030 wt% was experimentally demonstrated, with a 33% reduction in acquisition time. The reconstructed XFCT image accurately localized the imaging inserts. Micro-CT imaging did not provide enough contrast to distinguish imaging inserts from the phantom under the current conditions. Conclusion: The system is immediately capable of in vivo preclinical XFCT

  12. TH-AB-209-01: Making Benchtop X-Ray Fluorescence Computed Tomography (XFCT) Practical for in Vivo Imaging by Integration of a Dedicated High-Performance X-Ray Source in Conjunction with Micro-CT Functionality

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, N; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Reynoso, F [UT MD Anderson Cancer Center, Houston, TX (United States); Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To make benchtop x-ray fluorescence computed tomography (XFCT) practical for routine preclinical imaging tasks with gold nanoparticles (GNPs) by deploying, integrating, and characterizing a dedicated high-performance x-ray source and addition of simultaneous micro-CT functionality. Methods: Considerable research effort is currently under way to develop a polychromatic benchtop cone-beam XFCT system capable of imaging GNPs by stimulation and detection of gold K-shell x-ray fluorescence (XRF) photons. Recently, an ad hoc high-power x-ray source was incorporated and used to image the biodistribution of GNPs within a mouse, postmortem. In the current work, a dedicated x-ray source system featuring a liquid-cooled tungsten-target x-ray tube (max 160 kVp, ∼3 kW power) was deployed. The source was operated at 125 kVp, 24 mA. The tube’s compact dimensions allowed greater flexibility for optimizing both the irradiation and detection geometries. Incident x-rays were shaped by a conical collimator and filtered by 2 mm of tin. A compact “OEM” cadmium-telluride x-ray detector was implemented for detecting XRF/scatter spectra. Additionally, a flat panel detector was installed to allow simultaneous transmission CT imaging. The performance of the system was characterized by determining the detection limit (10-second acquisition time) for inserts filled with water/GNPs at various concentrations (0 and 0.010–1.0 wt%) and embedded in a small-animal-sized phantom. The phantom was loaded with 0.5, 0.3, and 0.1 wt% inserts and imaged using XFCT and simultaneous micro-CT. Results: An unprecedented detection limit of 0.030 wt% was experimentally demonstrated, with a 33% reduction in acquisition time. The reconstructed XFCT image accurately localized the imaging inserts. Micro-CT imaging did not provide enough contrast to distinguish imaging inserts from the phantom under the current conditions. Conclusion: The system is immediately capable of in vivo preclinical XFCT

  13. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  14. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  15. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.

    Science.gov (United States)

    Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E; Re, Matteo

    2014-06-01

    In the context of "network medicine", gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different "informativeness" embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further enhance disease gene ranking results, by adopting both

  16. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods

    Science.gov (United States)

    Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E.; Re, Matteo

    2014-01-01

    Objective In the context of “network medicine”, gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. Materials and methods We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. Results The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different “informativeness” embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Conclusions Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further

  17. Energy Efficient Graphene Based High Performance Capacitors.

    Science.gov (United States)

    Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo

    2017-07-10

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  19. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  20. Functional High Performance Financial IT

    DEFF Research Database (Denmark)

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz

    2011-01-01

    at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT......The world of finance faces the computational performance challenge of massively expanding data volumes, extreme response time requirements, and compute-intensive complex (risk) analyses. Simultaneously, new international regulatory rules require considerably more transparency and external...... auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...

  1. Development of stress corrosion techniques for structural integrity evaluation and life extension of PWR facilities

    International Nuclear Information System (INIS)

    Moreira, Pedro A.L.D.L. Pinheiro; Vilela, Jeferson J.; Lorenzo, Roberto F. Di; Lopes, Jadir A.M.

    2000-01-01

    The stress corrosion is a mechanism of degradation present in the nuclear plants. To extend the life of the plants components, this corrosion type it should be known. An evaluation for the implantation of methodologies of stress corrosion study in CDTN/CNEN, shows that the technique of slow deformation can be used in the evaluation of integrity structural nuclear power stations. This technique consists of straining a sample slowly, usually, in strain rate between 10 -4 and 10- 8 s -1 and in conditions that simulate the reactivity of the metal in environment (pressure, temperature, chemical composition of the water and etc) similar to the found at the nuclear power power stations. This simulation allows evaluating susceptibility the stress corrosion of components mechanical and structure that operate in central nuclear. (author)

  2. Extension of optical lithography by mask-litho integration with computational lithography

    Science.gov (United States)

    Takigawa, T.; Gronlund, K.; Wiley, J.

    2010-05-01

    Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.

  3. High performance electromagnetic simulation tools

    Science.gov (United States)

    Gedney, Stephen D.; Whites, Keith W.

    1994-10-01

    Army Research Office Grant #DAAH04-93-G-0453 has supported the purchase of 24 additional compute nodes that were installed in the Intel iPsC/860 hypercube at the Univesity Of Kentucky (UK), rendering a 32-node multiprocessor. This facility has allowed the investigators to explore and extend the boundaries of electromagnetic simulation for important areas of defense concerns including microwave monolithic integrated circuit (MMIC) design/analysis and electromagnetic materials research and development. The iPSC/860 has also provided an ideal platform for MMIC circuit simulations. A number of parallel methods based on direct time-domain solutions of Maxwell's equations have been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) algorithm, and a parallel planar generalized Yee-algorithm (PGY). The iPSC/860 has also provided an ideal platform on which to develop a 'virtual laboratory' to numerically analyze, scientifically study and develop new types of materials with beneficial electromagnetic properties. These materials simulations are capable of assembling hundreds of microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. This powerful simulation tool has enabled research of the full-wave analysis of complex multicomponent MMIC devices and the electromagnetic properties of many types of materials to be performed numerically rather than strictly in the laboratory.

  4. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    -resolution internal D/A converters are required. Unit-element mismatch-shaping D/A converters are analyzed, and the concept of mismatch-shaping is generalized to include scaled-element D/A converters. Several types of scaled-element mismatch-shaping D/A converters are proposed. Simulations show that, when implemented...... in a standard CMOS technology, they can be designed to yield 100 dB performance at 10 times oversampling. The proposed scaled-element mismatch-shaping D/A converters are well suited for use as the feedback stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential......-order difference of the output signal from the loop filter's first integrator stage. This technique avoids the need for accurate matching of analog and digital filters that characterizes the MASH topology, and it preserves the signal-band suppression of quantization errors. Simulations show that quantizers...

  5. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  6. EDITORIAL: High performance under pressure High performance under pressure

    Science.gov (United States)

    Demming, Anna

    2011-11-01

    The accumulation of charge in certain materials in response to an applied mechanical stress was first discovered in 1880 by Pierre Curie and his brother Paul-Jacques. The effect, piezoelectricity, forms the basis of today's microphones, quartz watches, and electronic components and constitutes an awesome scientific legacy. Research continues to develop further applications in a range of fields including imaging [1, 2], sensing [3] and, as reported in this issue of Nanotechnology, energy harvesting [4]. Piezoelectricity in biological tissue was first reported in 1941 [5]. More recently Majid Minary-Jolandan and Min-Feng Yu at the University of Illinois at Urbana-Champaign in the USA have studied the piezoelectric properties of collagen I [1]. Their observations support the nanoscale origin of piezoelectricity in bone and tendons and also imply the potential importance of the shear load transfer mechanism in mechanoelectric transduction in bone. Shear load transfer has been the principle basis of the nanoscale mechanics model of collagen. The piezoelectric effect in quartz causes a shift in the resonant frequency in response to a force gradient. This has been exploited for sensing forces in scanning probe microscopes that do not need optical readout. Recently researchers in Spain explored the dynamics of a double-pronged quartz tuning fork [2]. They observed thermal noise spectra in agreement with a coupled-oscillators model, providing important insights into the system's behaviour. Nano-electromechanical systems are increasingly exploiting piezoresistivity for motion detection. Observations of the change in a material's resistance in response to the applied stress pre-date the discovery of piezoelectric effect and were first reported in 1856 by Lord Kelvin. Researchers at Caltech recently demonstrated that a bridge configuration of piezoresistive nanowires can be used to detect in-plane CMOS-based and fully compatible with future very-large scale integration of

  7. Stargazing: an integrative conceptual review, theoretical reconciliation, and extension for star employee research.

    Science.gov (United States)

    Call, Matthew L; Nyberg, Anthony J; Thatcher, Sherry M B

    2015-05-01

    Stars--employees with disproportionately high and prolonged (a) performance, (b) visibility, and (c) relevant social capital--have garnered attention in economics, sociology, and management. However, star research is often isolated within these research disciplines. Thus, 3 distinct star research streams are evolving, each disconnected from the others and each bringing siloed theoretical perspectives, terms, and assumptions. A conceptual review of these perspectives reveals a focus on the expost effects that stars exert in organizations with little explanation of who a star is and how one becomes a star. To synthesize the stars literature across these 3 disciplines, we apply psychological theories, specifically motivation theories, to create an integrative framework for stars research. Thus, we present a unified stars definition and extend theory on the making, managing, and mobility of stars. We extend research about how and why employees may be motivated to become stars, how best to manage stars and their relationships with colleagues, and how to motivate star retention. We then outline directions for future research. (c) 2015 APA, all rights reserved.

  8. Design of an Integrated Plasma Control System and Extension of XSCTools to Ignitor

    Science.gov (United States)

    Albanese, R.; Ambrosino, G.; Artaserse, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.

    2010-11-01

    The performance of the integrated system for vertical stability, shape and plasma current control for the Ignitor machine has been assessed by means of the CREATELlinearized model of plasma responseootnotetextR. Albanese, F. Villone, Nucl. Fusion 38, 723 (1998) against a set of disturbances for the reference 11 MA limiter configuration and the 9 MA Double Null configuration. A new design, based on the methodology of the eXtreme Shape Controller (XSC) at JET, has been tested : by using all the shape control circuits with the exception of those used to control the vertical stability is possible to control up to four independent linear combinations of the 36 plasma-wall gaps. The results point out a substantial improvement in shape recovery, especially in the presence of a disturbance in li. The new shape controller can also automatically generate, via feedback control, new plasma shapes in the proximity of a given equilibrium configuration. The XSC ToolsootnotetextG. Ambrosino, R. Albanese et al., Fus. Eng.& Des. 74, 521 (2005) have been adapted and extended to develop linearized Ignitor models including 2D eddy currents and to solve inverse linearized plasma equilibria.

  9. The Learning Facilitation Role of Agricultural Extension Workers in the Adoption of Integrated Pest Management by Tropical Fruit Growers in Thailand.

    Science.gov (United States)

    Elsey, Barry; Sirichoti, Kittipong

    2002-01-01

    A sample of 120 Thai fruit growers reported that agricultural extension workers were influential in their adoption of integrated pest management, which balances cultural tradition and progressive practice. Extension workers used discussion and reflection on practical experience, a participatory and collaborative approach to the adoption of…

  10. Lightweight Provenance Service for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Dong; Chen, Yong; Carns, Philip; Jenkins, John; Ross, Robert

    2017-09-09

    Provenance describes detailed information about the history of a piece of data, containing the relationships among elements such as users, processes, jobs, and workflows that contribute to the existence of data. Provenance is key to supporting many data management functionalities that are increasingly important in operations such as identifying data sources, parameters, or assumptions behind a given result; auditing data usage; or understanding details about how inputs are transformed into outputs. Despite its importance, however, provenance support is largely underdeveloped in highly parallel architectures and systems. One major challenge is the demanding requirements of providing provenance service in situ. The need to remain lightweight and to be always on often conflicts with the need to be transparent and offer an accurate catalog of details regarding the applications and systems. To tackle this challenge, we introduce a lightweight provenance service, called LPS, for high-performance computing (HPC) systems. LPS leverages a kernel instrument mechanism to achieve transparency and introduces representative execution and flexible granularity to capture comprehensive provenance with controllable overhead. Extensive evaluations and use cases have confirmed its efficiency and usability. We believe that LPS can be integrated into current and future HPC systems to support a variety of data management needs.

  11. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  12. Improving UV Resistance of High Performance Fibers

    Science.gov (United States)

    Hassanin, Ahmed

    % rutile TiO2 nanoparticles showed excellent protection of braid from PBO. Only 7.5% strength loss was observed. To optimize the degree of protection of the sheath loaded with UV blocker particles, computational models were developed to optimize the protective layer thickness/weight and the amount of UV particles that provide the maximum protection with lightest weight of the protective layer and minimum amount of UV particles. The simulated results were found to be higher that the experimental results due to the tendency of nanoparticles to be agglomerated in real experiments. The third approach to achieve a maximum protection with the minimum weight added is constructing a sleeve from SpectraRTM (Ultra High Molecular Weight Polyethylene (UHMWPE) high performance fiber), which is known to resist UV, woven fabric. Covering the braid from PBO fiber with Spectra RTM woven fabric provide hybrid structure with two compatible components that can share the load and thus maintain the high strength to weight ratio. Although the SpectraRTM fabric had maximum cover factor, 20 % of visible light and about 15 % of UV were able to penetrate the fabric. This transmittance of UV-VIS light negatively affected the protection performance of the SpectraRTM woven fabric layer. It is thought that SpectraRTM fabric be coated with a thin layer (mentioned earlier) containing UV blocker for additional protection while maintain strength contribution to the hybrid structure. To maximize the strength to weight ratio of the hybrid structure (with core from PBO braid and sheath from SpectraRTM woven fabric) an established finite element model was utilized. The theoretical results using the finite element theory indicated that by controlling the bending rigidity of the filling yarn of the SpectraRTM fabric, the extension at peak load of woven fabric in warp direction (loading direction) could be controlled to match the braid extension at peak load. The match in the extension at peak load of the two

  13. Comprehensive understandings of energy confinement in LHD plasmas through extensive application of the integrated transport analysis suite

    International Nuclear Information System (INIS)

    Yokoyama, M.; Seki, R.; Suzuki, C.; Ida, K.; Osakabe, M.; Satake, S.; Yamada, H.; Murakami, S.

    2014-10-01

    The integrated transport analysis suite, TASK3D-a, has enhanced energy transport analyses in LHD. It has clearly elucidated (1) the systematic dependence of ion and electron energy confinement on wide variation of plasma parameters, and (2) statistically-derived fitting expressions for the ion and electron heat diffusivities (χ i and χ e ), separately, taking also those radial-profile information into account. In particular, the latter approach can outstrip the conventional scaling laws for the global confinement time (τ E ) in terms of its considerations on profiles (temperature, density, heating depositions etc.). This has been made possible with the analysis database accumulated by the extensive application of the integrated transport analysis suite to experiment data. In this proceeding, TASK3D-a analysis-database for high-ion-temperature (high-T i ) plasmas in LHD (Large Helical Device) are exemplified. This approach should be applicable to any other combinations of integrated transport analysis suites and fusion experiments. (author)

  14. NCI's Transdisciplinary High Performance Scientific Data Platform

    Science.gov (United States)

    Evans, Ben; Antony, Joseph; Bastrakova, Irina; Car, Nicholas; Cox, Simon; Druken, Kelsey; Evans, Bradley; Fraser, Ryan; Ip, Alex; Kemp, Carina; King, Edward; Minchin, Stuart; Larraondo, Pablo; Pugh, Tim; Richards, Clare; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    The Australian National Computational Infrastructure (NCI) manages Earth Systems data collections sourced from several domains and organisations onto a single High Performance Data (HPD) Node to further Australia's national priority research and innovation agenda. The NCI HPD Node has rapidly established its value, currently managing over 10 PBytes of datasets from collections that span a wide range of disciplines including climate, weather, environment, geoscience, geophysics, water resources and social sciences. Importantly, in order to facilitate broad user uptake, maximise reuse and enable transdisciplinary access through software and standardised interfaces, the datasets, associated information systems and processes have been incorporated into the design and operation of a unified platform that NCI has called, the National Environmental Research Data Interoperability Platform (NERDIP). The key goal of the NERDIP is to regularise data access so that it is easily discoverable, interoperable for different domains and enabled for high performance methods. It adopts and implements international standards and data conventions, and promotes scientific integrity within a high performance computing and data analysis environment. NCI has established a rich and flexible computing environment to access to this data, through the NCI supercomputer; a private cloud that supports both domain focused virtual laboratories and in-common interactive analysis interfaces; as well as remotely through scalable data services. Data collections of this importance must be managed with careful consideration of both their current use and the needs of the end-communities, as well as its future potential use, such as transitioning to more advanced software and improved methods. It is therefore critical that the data platform is both well-managed and trusted for stable production use (including transparency and reproducibility), agile enough to incorporate new technological advances and

  15. Integrated System Design: Promoting the Capacity of Sociotechnical Systems for Adaptation through Extensions of Cognitive Work Analysis.

    Science.gov (United States)

    Naikar, Neelam; Elix, Ben

    2016-01-01

    This paper proposes an approach for integrated system design, which has the intent of facilitating high levels of effectiveness in sociotechnical systems by promoting their capacity for adaptation. Building on earlier ideas and empirical observations, this approach recognizes that to create adaptive systems it is necessary to integrate the design of all of the system elements, including the interfaces, teams, training, and automation, such that workers are supported in adapting their behavior as well as their structure, or organization, in a coherent manner. Current approaches for work analysis and design are limited in regard to this fundamental objective, especially in cases when workers are confronted with unforeseen events. A suitable starting point is offered by cognitive work analysis (CWA), but while this framework can support actors in adapting their behavior, it does not necessarily accommodate adaptations in their structure. Moreover, associated design approaches generally focus on individual system elements, and those that consider multiple elements appear limited in their ability to facilitate integration, especially in the manner intended here. The proposed approach puts forward the set of possibilities for work organization in a system as the central mechanism for binding the design of its various elements, so that actors can adapt their structure as well as their behavior-in a unified fashion-to handle both familiar and novel conditions. Accordingly, this paper demonstrates how the set of possibilities for work organization in a system may be demarcated independently of the situation, through extensions of CWA, and how it may be utilized in design. This lynchpin, conceptualized in the form of a diagram of work organization possibilities (WOP), is important for preserving a system's inherent capacity for adaptation. Future research should focus on validating these concepts and establishing the feasibility of implementing them in industrial contexts.

  16. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  17. Modern industrial simulation tools: Kernel-level integration of high performance parallel processing, object-oriented numerics, and adaptive finite element analysis. Final report, July 16, 1993--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Deb, M.K.; Kennon, S.R.

    1998-04-01

    A cooperative R&D effort between industry and the US government, this project, under the HPPP (High Performance Parallel Processing) initiative of the Dept. of Energy, started the investigations into parallel object-oriented (OO) numerics. The basic goal was to research and utilize the emerging technologies to create a physics-independent computational kernel for applications using adaptive finite element method. The industrial team included Computational Mechanics Co., Inc. (COMCO) of Austin, TX (as the primary contractor), Scientific Computing Associates, Inc. (SCA) of New Haven, CT, Texaco and CONVEX. Sandia National Laboratory (Albq., NM) was the technology partner from the government side. COMCO had the responsibility of the main kernel design and development, SCA had the lead in parallel solver technology and guidance on OO technologies was Sandia`s main expertise in this venture. CONVEX and Texaco supported the partnership by hardware resource and application knowledge, respectively. As such, a minimum of fifty-percent cost-sharing was provided by the industry partnership during this project. This report describes the R&D activities and provides some details about the prototype kernel and example applications.

  18. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  19. High performance liquid chromatography in pharmaceutical analyses

    Directory of Open Access Journals (Sweden)

    Branko Nikolin

    2004-05-01

    components observed in plasma extract whereas electrochemical detection is nearly always associated with a major frontal peak than tails considerably. To date, the most sensitive method has been the reductive electrochemical detection and giving the excellent results in the investigation on some classes of drugs. Several high performance liquid chromatography oxidative electrochemical methods have been developed for the analyses of drugs and metabolites in body fluids. Mass spectrometer as specific detector with all variation of ionisation and interface (thermo spray, moving belt etc. or liquid chromatography-tandem mass spectrometry2,3,4,5. NMR as selective and specific detector in high performance liquid chromatography today is also in used. The development of a non-aqueous eluent for ion-exchange separation on silica has provided an excellent system which, when used in conjugation with an electrochemical detector, permits the analyses of an extensive range of especially basic drugs and metabolites. New packing materials such as polymeric, base deactivated silica's, pyrolysed carbon and the internal surface packing should offer the improved stability and higher efficiencies for certain classes of the compounds such as basic drugs. Microbore columns should become more accepted since they offer not only improved sensitivity but also a lower solvent consumption and consequently the reduced needs to dispose of noxious solvents. Many analyses of basic drugs are still performed by the same method of the ion-exchange chromatography on unmodified silica columns with an eluent buffered to about pH 9. Neutral or weakly acidic drugs for instance barbiturates can be chromatographed on a reversed phase system whilst acidic drugs for example paracetamol, cannabis are separated either by ion suppression or ion-pair chromatography on a reversed-phase packing material. In micelar liquid chromatography micelar mobile phases in reversed-phase instead of conventional hydro

  20. High-performance vacuum tubes for more energy efficiency. Building-integrated CPC vacuum tube collectors unite several functions.; Hochleistungs-Vakuumroehren fuer mehr Energieeffizienz. Gebaeudeintegrierte CPC-Vakuumroehren-Kollektoren vereinen mehrere Funktionen

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Eric

    2013-10-15

    The performance of solar collectors primarily contributes to increased efficiency and reduced operating costs of solar thermal systems. With the use of building-integrated CPC vacuum tube collectors an extremely high energy yield is achieved on a smaller collector gross area. As a building-integrated system solution the CPC facade provide panels in addition to its use as spandrel panels within the glazed buildings not only an architectural design element, but unite as a multifunctional component for several functions. [German] Die Leistungsfaehigkeit der Solarkollektoren traegt primaer zur Effizienzsteigerung und Reduzierung der Betriebskosten einer Solarthermieanlagen bei. Mit dem Einsatz gebaeudeintegrierter CPC-Vakuumroehrenkollektoren wird auf einer kleineren Kollektorbruttoflaeche ein extrem hoher Energieertrag erreicht. Als gebaeudeintegrierte Systemloesung bieten die CPC-Fassadenkollektoren neben dem Einsatz als Bruestungselemente auch innerhalb der verglasten Gebaeuden nicht nur ein architektonisches Gestaltungselement, sondern vereinen als multifunktionaler Bestandteil noch mehrere Funktionen.

  1. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg0

    International Nuclear Information System (INIS)

    Quadros, Daiane P.C. de; Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia; Borges, Daniel L.G.; D'Ulivo, Alessandro

    2014-01-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg 2+ to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO 2 nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L −1 for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials

  2. Improving the Efficiency of the Nodal Integral Method With the Portable, Extensible Tool-kit for Scientific Computation

    International Nuclear Information System (INIS)

    Toreja, Allen J.; Uddin, Rizwan

    2002-01-01

    An existing implementation of the nodal integral method for the time-dependent convection-diffusion equation is modified to incorporate various PETSc (Portable, Extensible Tool-kit for Scientific Computation) solver and pre-conditioner routines. In the modified implementation, the default iterative Gauss-Seidel solver is replaced with one of the following PETSc iterative linear solver routines: Generalized Minimal Residuals, Stabilized Bi-conjugate Gradients, or Transpose-Free Quasi-Minimal Residuals. For each solver, a Jacobi or a Successive Over-Relaxation pre-conditioner is used. Two sample problems, one with a low Peclet number and one with a high Peclet number, are solved using the new implementation. In all the cases tested, the new implementation with the PETSc solver routines outperforms the original Gauss-Seidel implementation. Moreover, the PETSc Stabilized Bi-conjugate Gradients routine performs the best on the two sample problems leading to CPU times that are less than half the CPU times of the original implementation. (authors)

  3. Micromachined high-performance RF passives in CMOS substrate

    International Nuclear Information System (INIS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-01-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications. (topical review)

  4. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  5. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  6. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  7. High-performance silicon photonics technology for telecommunications applications.

    Science.gov (United States)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  8. High-performance silicon photonics technology for telecommunications applications

    International Nuclear Information System (INIS)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Yamamoto, Tsuyoshi; Ishikawa, Yasuhiko; Wada, Kazumi

    2014-01-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge–based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge–based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications. (review)

  9. High-performance silicon photonics technology for telecommunications applications

    Science.gov (United States)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  10. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    ) high performance liquid chromatography (HPLC) grade .... applications. These are important requirements if the reagent is to be applicable to on-line pre or post column derivatisation in a possible automation of the analytical.

  11. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  12. Strategies and Experiences Using High Performance Fortran

    National Research Council Canada - National Science Library

    Shires, Dale

    2001-01-01

    .... High performance Fortran (HPF) is a relative new addition to the Fortran dialect It is an attempt to provide an efficient high-level Fortran parallel programming language for the latest generation of been debatable...

  13. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  14. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  15. Gradient High Performance Liquid Chromatography Method ...

    African Journals Online (AJOL)

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid ..... nimesulide, phenylephrine. Hydrochloride, chlorpheniramine maleate and caffeine anhydrous in pharmaceutical dosage form. Acta Pol.

  16. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  17. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  18. Carbon nanomaterials for high-performance supercapacitors

    OpenAIRE

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  19. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  20. HPTA: High-Performance Text Analytics

    OpenAIRE

    Vandierendonck, Hans; Murphy, Karen; Arif, Mahwish; Nikolopoulos, Dimitrios S.

    2017-01-01

    One of the main targets of data analytics is unstructured data, which primarily involves textual data. High-performance processing of textual data is non-trivial. We present the HPTA library for high-performance text analytics. The library helps programmers to map textual data to a dense numeric representation, which can be handled more efficiently. HPTA encapsulates three performance optimizations: (i) efficient memory management for textual data, (ii) parallel computation on associative dat...

  1. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  2. Rapid and Green Analytical Method for the Determination of Quinoline Alkaloids from Cinchona succirubra Based on Microwave-Integrated Extraction and Leaching (MIEL Prior to High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Farid Chemat

    2011-11-01

    Full Text Available Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield and qualitatively (quinine, quinidine, cinchonine, cinchonidine similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids.

  3. Rapid and green analytical method for the determination of quinoline alkaloids from Cinchona succirubra based on Microwave-Integrated Extraction and Leaching (MIEL) prior to high performance liquid chromatography.

    Science.gov (United States)

    Fabiano-Tixier, Anne-Sylvie; Elomri, Abdelhakim; Blanckaert, Axelle; Seguin, Elisabeth; Petitcolas, Emmanuel; Chemat, Farid

    2011-01-01

    Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids.

  4. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  5. Quantum Accelerators for High-Performance Computing Systems

    OpenAIRE

    Britt, Keith A.; Mohiyaddin, Fahd A.; Humble, Travis S.

    2017-01-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantu...

  6. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  7. Kemari: A Portable High Performance Fortran System for Distributed Memory Parallel Processors

    Directory of Open Access Journals (Sweden)

    T. Kamachi

    1997-01-01

    Full Text Available We have developed a compilation system which extends High Performance Fortran (HPF in various aspects. We support the parallelization of well-structured problems with loop distribution and alignment directives similar to HPF's data distribution directives. Such directives give both additional control to the user and simplify the compilation process. For the support of unstructured problems, we provide directives for dynamic data distribution through user-defined mappings. The compiler also allows integration of message-passing interface (MPI primitives. The system is part of a complete programming environment which also comprises a parallel debugger and a performance monitor and analyzer. After an overview of the compiler, we describe the language extensions and related compilation mechanisms in detail. Performance measurements demonstrate the compiler's applicability to a variety of application classes.

  8. Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance Environment

    Directory of Open Access Journals (Sweden)

    Andrea Lani

    2006-01-01

    Full Text Available Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical models and numerical methods that have arisen in the development of COOLFluiD, an environment for PDE solvers. Particular attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the application of two design patterns, Perspective and Method-Command-Strategy, that support extensibility and run-time flexibility in the implementation of physical models and generic numerical algorithms respectively.

  9. Team Development for High Performance Management.

    Science.gov (United States)

    Schermerhorn, John R., Jr.

    1986-01-01

    The author examines a team development approach to management that creates shared commitments to performance improvement by focusing the attention of managers on individual workers and their task accomplishments. It uses the "high-performance equation" to help managers confront shared beliefs and concerns about performance and develop realistic…

  10. Validated High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, rapid and sensitive high performance liquid chromatography (HPLC) method for the determination of cefadroxil monohydrate in human plasma. Methods: Schimadzu HPLC with LC solution software was used with Waters Spherisorb, C18 (5 μm, 150mm × 4.5mm) column. The mobile phase ...

  11. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  12. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  13. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  14. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  15. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  16. Technology Leadership in Malaysia's High Performance School

    Science.gov (United States)

    Yieng, Wong Ai; Daud, Khadijah Binti

    2017-01-01

    Headmaster as leader of the school also plays a role as a technology leader. This applies to the high performance schools (HPS) headmaster as well. The HPS excel in all aspects of education. In this study, researcher is interested in examining the role of the headmaster as a technology leader through interviews with three headmasters of high…

  17. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  18. Towards high performance in industrial refrigeration systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, R.; Niemann, Hans Henrik

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  19. Validated high performance liquid chromatographic (HPLC) method ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-22

    Feb 22, 2010 ... specific and accurate high performance liquid chromatographic method for determination of ZER in micro-volumes ... tional medicine as a cure for swelling, sores, loss of appetite and ... Receptor Activator for Nuclear Factor κ B Ligand .... The effect of ... be suitable for preclinical pharmacokinetic studies. The.

  20. Validated High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, rapid and sensitive high performance liquid ... response, tailing factor and resolution of six replicate injections was < 3 %. ... Cefadroxil monohydrate, Human plasma, Pharmacokinetics Bioequivalence ... Drug-free plasma was obtained from the local .... Influence of probenicid on the renal.

  1. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  2. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  3. Comparing Dutch and British high performing managers

    NARCIS (Netherlands)

    Waal, A.A. de; Heijden, B.I.J.M. van der; Selvarajah, C.; Meyer, D.

    2016-01-01

    National cultures have a strong influence on the performance of organizations and should be taken into account when studying the traits of high performing managers. At the same time, many studies that focus upon the attributes of successful managers show that there are attributes that are similar

  4. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  5. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  6. A new high performance current transducer

    International Nuclear Information System (INIS)

    Tang Lijun; Lu Songlin; Li Deming

    2003-01-01

    A DC-100 kHz current transducer is developed using a new technique on zero-flux detecting principle. It was shown that the new current transducer is of high performance, its magnetic core need not be selected very stringently, and it is easy to manufacture

  7. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.

    2014-06-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today\\'s traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world\\'s highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design. © 2014 IEEE.

  8. Quantum Accelerators for High-performance Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  9. Evaluation of high-performance computing software

    Energy Technology Data Exchange (ETDEWEB)

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  10. Architecting Web Sites for High Performance

    Directory of Open Access Journals (Sweden)

    Arun Iyengar

    2002-01-01

    Full Text Available Web site applications are some of the most challenging high-performance applications currently being developed and deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing of client requests, the control of service levels, and the interaction with remote network caches.

  11. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  12. Design of JMTR high-performance fuel element

    International Nuclear Information System (INIS)

    Sakurai, Fumio; Shimakawa, Satoshi; Komori, Yoshihiro; Tsuchihashi, Keiichiro; Kaminaga, Fumito

    1999-01-01

    For test and research reactors, the core conversion to low-enriched uranium fuel is required from the viewpoint of non-proliferation of nuclear weapon material. Improvements of core performance are also required in order to respond to recent advanced utilization needs. In order to meet both requirements, a high-performance fuel element of high uranium density with Cd wires as burnable absorbers was adopted for JMTR core conversion to low-enriched uranium fuel. From the result of examination of an adaptability of a few group constants generated by a conventional transport-theory calculation with an isotropic scattering approximation to a few group diffusion-theory core calculation for design of the JMTR high-performance fuel element, it was clear that the depletion of Cd wires was not able to be predicted accurately using group constants generated by the conventional method. Therefore, a new generation method of a few group constants in consideration of an incident neutron spectrum at Cd wire was developed. As the result, the most suitable high-performance fuel element for JMTR was designed successfully, and that allowed extension of operation duration without refueling to almost twice as long and offer of irradiation field with constant neutron flux. (author)

  13. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe; Sarmiento, Adel; Cortes, Adriano Mauricio; Dalcin, L.; Collier, N.; Calo, Victor M.

    2015-01-01

    and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  14. Designing a High Performance Parallel Personal Cluster

    OpenAIRE

    Kapanova, K. G.; Sellier, J. M.

    2016-01-01

    Today, many scientific and engineering areas require high performance computing to perform computationally intensive experiments. For example, many advances in transport phenomena, thermodynamics, material properties, computational chemistry and physics are possible only because of the availability of such large scale computing infrastructures. Yet many challenges are still open. The cost of energy consumption, cooling, competition for resources have been some of the reasons why the scientifi...

  15. AHPCRC - Army High Performance Computing Research Center

    Science.gov (United States)

    2010-01-01

    computing. Of particular interest is the ability of a distrib- uted jamming network (DJN) to jam signals in all or part of a sensor or communications net...and reasoning, assistive technologies. FRIEDRICH (FRITZ) PRINZ Finmeccanica Professor of Engineering, Robert Bosch Chair, Department of Engineering...High Performance Computing Research Center www.ahpcrc.org BARBARA BRYAN AHPCRC Research and Outreach Manager, HPTi (650) 604-3732 bbryan@hpti.com Ms

  16. Governance among Malaysian high performing companies

    Directory of Open Access Journals (Sweden)

    Asri Marsidi

    2016-07-01

    Full Text Available Well performed companies have always been linked with effective governance which is generally reflected through effective board of directors. However many issues concerning the attributes for effective board of directors remained unresolved. Nowadays diversity has been perceived as able to influence the corporate performance due to the likelihood of meeting variety of needs and demands from diverse customers and clients. The study therefore aims to provide a fundamental understanding on governance among high performing companies in Malaysia.

  17. DURIP: High Performance Computing in Biomathematics Applications

    Science.gov (United States)

    2017-05-10

    Mathematics and Statistics (AMS) at the University of California, Santa Cruz (UCSC) to conduct research and research-related education in areas of...Computing in Biomathematics Applications Report Title The goal of this award was to enhance the capabilities of the Department of Applied Mathematics and...DURIP: High Performance Computing in Biomathematics Applications The goal of this award was to enhance the capabilities of the Department of Applied

  18. Planning for high performance project teams

    International Nuclear Information System (INIS)

    Reed, W.; Keeney, J.; Westney, R.

    1997-01-01

    Both industry-wide research and corporate benchmarking studies confirm the significant savings in cost and time that result from early planning of a project. Amoco's Team Planning Workshop combines long-term strategic project planning and short-term tactical planning with team building to provide the basis for high performing project teams, better project planning, and effective implementation of the Amoco Common Process for managing projects

  19. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  20. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  1. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  2. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  3. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  4. High Performance Fortran for Aerospace Applications

    National Research Council Canada - National Science Library

    Mehrotra, Piyush

    2000-01-01

    .... HPF is a set of Fortran extensions designed to provide users with a high-level interface for programming data parallel scientific applications while delegating to the compiler/runtime system the task...

  5. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  6. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joseph; Pirrung, Meg; McCue, Lee Ann

    2017-06-09

    FQC is software that facilitates large-scale quality control of FASTQ files by carrying out a QC protocol, parsing results, and aggregating quality metrics within and across experiments into an interactive dashboard. The dashboard utilizes human-readable configuration files to manipulate the pages and tabs, and is extensible with CSV data.

  7. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC

    Science.gov (United States)

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan

    2016-04-01

    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  8. Toward a theory of high performance.

    Science.gov (United States)

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  9. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  10. Playa: High-Performance Programmable Linear Algebra

    Directory of Open Access Journals (Sweden)

    Victoria E. Howle

    2012-01-01

    Full Text Available This paper introduces Playa, a high-level user interface layer for composing algorithms for complex multiphysics problems out of objects from other Trilinos packages. Among other features, Playa provides very high-performance overloaded operators implemented through an expression template mechanism. In this paper, we give an overview of the central Playa objects from a user's perspective, show application to a sequence of increasingly complex solver algorithms, provide timing results for Playa's overloaded operators and other functions, and briefly survey some of the implementation issues involved.

  11. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  12. Estendendo extensões:a computação como agente integrador | Extending extensions: computing as an integrating agent

    Directory of Open Access Journals (Sweden)

    Isabel Cafezeiro

    2009-04-01

    Full Text Available Resumo Este artigo conceitua “extensão universitária” e discute algumas características importantes acerca desta atividade principalmente no que se refere às áreas tecnológicas. Apresenta também um  projeto de extensão desenvolvido no Instituto de Computação da Universidade Federal Fluminense que tem como objetivo específico  estender a outros projetos de extensão da UF conhecimentos computacionais e acesso a recursos computacionais. Discute-se de que maneira o Projeto Incluir materializa a atividade de extensão universitária. Palavras-chave extensão universitária; transdisciplinaridade; inclusão digital; novas tecnologias de informação e comunicação Abstract This article presents the concept of “extension” as a university activity and discusses some important points about this activity mainly with respect to technological areas. It is also presented an extension project developed in the Instituto de Computação da Universidade Federal Fluminense (UFF that aims to  provide to other projects computational knowledge  and access to computational resources. It is also discussed the way that the present project materializes extension activities. Keywords university extension; transdisciplinarity; digital divide; information and communication technology

  13. High-performance computing in seismology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  14. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  15. A High Performance COTS Based Computer Architecture

    Science.gov (United States)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  16. High-performance computing for airborne applications

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Manuzatto, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-01-01

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  17. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  18. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Linux Workstation for High Performance Graphics

    Science.gov (United States)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  20. Building Trust in High-Performing Teams

    Directory of Open Access Journals (Sweden)

    Aki Soudunsaari

    2012-06-01

    Full Text Available Facilitation of growth is more about good, trustworthy contacts than capital. Trust is a driving force for business creation, and to create a global business you need to build a team that is capable of meeting the challenge. Trust is a key factor in team building and a needed enabler for cooperation. In general, trust building is a slow process, but it can be accelerated with open interaction and good communication skills. The fast-growing and ever-changing nature of global business sets demands for cooperation and team building, especially for startup companies. Trust building needs personal knowledge and regular face-to-face interaction, but it also requires empathy, respect, and genuine listening. Trust increases communication, and rich and open communication is essential for the building of high-performing teams. Other building materials are a shared vision, clear roles and responsibilities, willingness for cooperation, and supporting and encouraging leadership. This study focuses on trust in high-performing teams. It asks whether it is possible to manage trust and which tools and operation models should be used to speed up the building of trust. In this article, preliminary results from the authors’ research are presented to highlight the importance of sharing critical information and having a high level of communication through constant interaction.

  1. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  2. Selection Ideal Coal Suppliers of Thermal Power Plants Using the Matter-Element Extension Model with Integrated Empowerment Method for Sustainability

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2014-01-01

    Full Text Available In order to reduce thermal power generation cost and improve its market competitiveness, considering fuel quality, cost, creditworthiness, and sustainable development capacity factors, this paper established the evaluation system for coal supplier selection of thermal power and put forward the coal supplier selection strategies for thermal power based on integrated empowering and ideal matter-element extension models. On the one hand, the integrated empowering model can overcome the limitations of subjective and objective methods to determine weights, better balance subjective, and objective information. On the other hand, since the evaluation results of the traditional element extension model may fall into the same class and only get part of the order results, in order to overcome this shortcoming, the idealistic matter-element extension model is constructed. It selects the ideal positive and negative matter-elements classical field and uses the closeness degree to replace traditional maximum degree of membership criterion and calculates the positive or negative distance between the matter-element to be evaluated and the ideal matter-element; then it can get the full order results of the evaluation schemes. Simulated and compared with the TOPSIS method, Romania selection method, and PROMETHEE method, numerical example results show that the method put forward by this paper is effective and reliable.

  3. A High Performance Frequency Standard and Distribution System for Cassini Ka-Band Experiment

    National Research Council Canada - National Science Library

    Wang, R. T; Calhoun, M. D; Kirk, A; Diener, W. A; Dick, G. J; Tjoelker, R. L

    2005-01-01

    ...), and 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO) and frequency-lock-loop, are integrated to achieve the very high performance, ground based frequency reference at a remote antenna site located 16 km from the hydrogen maser...

  4. TRUSSELATOR - On-Orbit Fabrication of High Performance Support Structures for Solar Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes to develop and demonstrate a process for fabricating high-performance composite truss structures on-orbit and integrating them with thin film solar cell...

  5. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool.

    Science.gov (United States)

    Brown, Joseph; Pirrung, Meg; McCue, Lee Ann

    2017-06-09

    FQC is software that facilitates quality control of FASTQ files by carrying out a QC protocol using FastQC, parsing results, and aggregating quality metrics into an interactive dashboard designed to richly summarize individual sequencing runs. The dashboard groups samples in dropdowns for navigation among the data sets, utilizes human-readable configuration files to manipulate the pages and tabs, and is extensible with CSV data. FQC is implemented in Python 3 and Javascript, and is maintained under an MIT license. Documentation and source code is available at: https://github.com/pnnl/fqc . joseph.brown@pnnl.gov. © The Author(s) 2017. Published by Oxford University Press.

  6. Intel Xeon Phi coprocessor high performance programming

    CERN Document Server

    Jeffers, James

    2013-01-01

    Authors Jim Jeffers and James Reinders spent two years helping educate customers about the prototype and pre-production hardware before Intel introduced the first Intel Xeon Phi coprocessor. They have distilled their own experiences coupled with insights from many expert customers, Intel Field Engineers, Application Engineers and Technical Consulting Engineers, to create this authoritative first book on the essentials of programming for this new architecture and these new products. This book is useful even before you ever touch a system with an Intel Xeon Phi coprocessor. To ensure that your applications run at maximum efficiency, the authors emphasize key techniques for programming any modern parallel computing system whether based on Intel Xeon processors, Intel Xeon Phi coprocessors, or other high performance microprocessors. Applying these techniques will generally increase your program performance on any system, and better prepare you for Intel Xeon Phi coprocessors and the Intel MIC architecture. It off...

  7. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  8. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  9. High Performance OLED Panel and Luminaire

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC, Rochester, NY (United States)

    2017-02-20

    In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementary light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.

  10. How to create high-performing teams.

    Science.gov (United States)

    Lam, Samuel M

    2010-02-01

    This article is intended to discuss inspirational aspects on how to lead a high-performance team. Cogent topics discussed include how to hire staff through methods of "topgrading" with reference to Geoff Smart and "getting the right people on the bus" referencing Jim Collins' work. In addition, once the staff is hired, this article covers how to separate the "eagles from the ducks" and how to inspire one's staff by creating the right culture with suggestions for further reading by Don Miguel Ruiz (The four agreements) and John Maxwell (21 Irrefutable laws of leadership). In addition, Simon Sinek's concept of "Start with Why" is elaborated to help a leader know what the core element should be with any superior culture. Thieme Medical Publishers.

  11. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  12. High performance nano-composite technology development

    International Nuclear Information System (INIS)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D.; Kim, E. K.; Jung, S. Y.; Ryu, H. J.; Hwang, S. S.; Kim, J. K.; Hong, S. M.; Chea, Y. B.; Choi, C. H.; Kim, S. D.; Cho, B. G.; Lee, S. H.

    1999-06-01

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  13. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  14. High performance parallel computers for science

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1989-01-01

    This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction

  15. High Performance with Prescriptive Optimization and Debugging

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo

    parallelization and automatic vectorization is attractive as it transparently optimizes programs. The thesis contributes an improved dependence analysis for explicitly parallel programs. These improvements lead to more loops being vectorized, on average we achieve a speedup of 1.46 over the existing dependence...... analysis and vectorizer in GCC. Automatic optimizations often fail for theoretical and practical reasons. When they fail we argue that a hybrid approach can be effective. Using compiler feedback, we propose to use the programmer’s intuition and insight to achieve high performance. Compiler feedback...... enlightens the programmer why a given optimization was not applied, and suggest how to change the source code to make it more amenable to optimizations. We show how this can yield significant speedups and achieve 2.4 faster execution on a real industrial use case. To aid in parallel debugging we propose...

  16. The path toward HEP High Performance Computing

    International Nuclear Information System (INIS)

    Apostolakis, John; Brun, René; Gheata, Andrei; Wenzel, Sandro; Carminati, Federico

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on the development of a highperformance prototype for particle transport. Achieving a good concurrency level on the emerging parallel architectures without a complete redesign of the framework can only be done by parallelizing at event level, or with a much larger effort at track level. Apart the shareable data structures, this typically implies a multiplication factor in terms of memory consumption compared to the single threaded version, together with sub-optimal handling of event processing tails. Besides this, the low level instruction pipelining of modern processors cannot be used efficiently to speedup the program. We have implemented a framework that allows scheduling vectors of particles to an arbitrary number of computing resources in a fine grain parallel approach. The talk will review the current optimisation activities within the SFT group with a particular emphasis on the development perspectives towards a simulation framework able to profit

  17. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  18. High performance sealing - meeting nuclear and aerospace requirements

    International Nuclear Information System (INIS)

    Wensel, R.; Metcalfe, R.

    1994-11-01

    Although high performance sealing is required in many places, two industries lead all others in terms of their demand-nuclear and aerospace. The factors that govern the high reliability and integrity of seals, particularly elastomer seals, for both industries are discussed. Aerospace requirements include low structural weight and a broad range of conditions, from the cold vacuum of space to the hot, high pressures of rocket motors. It is shown, by example, how a seal can be made an integral part of a structure in order to improve performance, rather than using a conventional handbook design. Typical processes are then described for selection, specification and procurement of suitable elastomers, functional and accelerated performance testing, database development and service-life prediction. Methods for quality assurance of elastomer seals are summarized. Potentially catastrophic internal dejects are a particular problem for conventional non-destructive inspection techniques. A new method of elastodynamic testing for these is described. (author)

  19. A high-performance digital control system for TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Dutch, M.J.; Milne, P.G.; Means, R.W.

    1997-10-01

    The TCV hybrid analogue-digital plasma control system has been superseded by a high performance Digital Plasma Control System, DPCS, made possible by recent advances in off the shelf technology. We discuss the basic requirements for such a control system and present the design and specifications which were laid down. The nominal and final performances are presented and the complete design is given in detail. The integration of the new system into the current operation of the TCV tokamak is described. The procurement of this system has required close collaboration between the end-users and two commercial suppliers with one of the latter taking full responsibility for the system integration. The impact of this approach on the design and commissioning costs for the TCV project is presented. New possibilities offered by this new system are discussed, including possible work relevant to ITER plasma control development. (author) 3 figs., 5 refs

  20. A high-performance digital control system for TCV

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J.B.; Dutch, M.J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Milne, P.G. [Pentland System Ltd., Livingstone (United Kingdom); Means, R.W. [HNC Software Inc., San Diego, CA (United States)

    1997-10-01

    The TCV hybrid analogue-digital plasma control system has been superseded by a high performance Digital Plasma Control System, DPCS, made possible by recent advances in off the shelf technology. We discuss the basic requirements for such a control system and present the design and specifications which were laid down. The nominal and final performances are presented and the complete design is given in detail. The integration of the new system into the current operation of the TCV tokamak is described. The procurement of this system has required close collaboration between the end-users and two commercial suppliers with one of the latter taking full responsibility for the system integration. The impact of this approach on the design and commissioning costs for the TCV project is presented. New possibilities offered by this new system are discussed, including possible work relevant to ITER plasma control development. (author) 3 figs., 5 refs.

  1. Towards High Performance Processing In Modern Java Based Control Systems

    CERN Document Server

    Misiowiec, M; Buttner, M

    2011-01-01

    CERN controls software is often developed on Java foundation. Some systems carry out a combination of data, network and processor intensive tasks within strict time limits. Hence, there is a demand for high performing, quasi real time solutions. Extensive prototyping of the new CERN monitoring and alarm software required us to address such expectations. The system must handle dozens of thousands of data samples every second, along its three tiers, applying complex computations throughout. To accomplish the goal, a deep understanding of multithreading, memory management and interprocess communication was required. There are unexpected traps hidden behind an excessive use of 64 bit memory or severe impact on the processing flow of modern garbage collectors. Tuning JVM configuration significantly affects the execution of the code. Even more important is the amount of threads and the data structures used between them. Accurately dividing work into independent tasks might boost system performance. Thorough profili...

  2. High performance discharges near the operational limit in HT-7

    International Nuclear Information System (INIS)

    Li Jiangang; Wan Baonian; Luo Jiarong; Gao Xiang; Zhao Yanping; Kuang Guangli; Zhang Xiaodong; Yang Yu; Yi Bao; Bojiang Ding; Jikang Xie; Yuanxi Wan

    2001-01-01

    Efforts have been made on the HT-7 tokamak to extend the stable operation boundaries. Extensive RF boronization and siliconization have been used and a wider operational Hugill diagram has been obtained. The transit density reached 1.3 times the Greenwald density limit in ohmic discharges. A stationary high performance discharge with q a =2.1 has been obtained after siliconization. Confinement improvement was obtained as a result of the significant reduction of electron thermal diffusivity χ e in the outer region of the plasma. An improved confinement phase was also observed with LHCD in the density range of 70-120% of the Greenwald density limit. Off-axis LH wave power deposition was attributed to the weak hollow current density profile. Code simulations and measurements showed good agreement with the off-axis LH wave deposition. Supersonic molecular beam injection has been successfully used to achieve stable high density operation in the region of the Greenwald density limit. (author)

  3. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  4. Optimizing High Performance Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Raymond A Yonathan

    2017-01-01

    Full Text Available This paper’s objectives are to learn the effect of glass powder, silica fume, Polycarboxylate Ether, and gravel to optimizing composition of each factor in making High Performance SCC. Taguchi method is proposed in this paper as best solution to minimize specimen variable which is more than 80 variations. Taguchi data analysis method is applied to provide composition, optimizing, and the effect of contributing materials for nine variable of specimens. Concrete’s workability was analyzed using Slump flow test, V-funnel test, and L-box test. Compressive and porosity test were performed for the hardened state. With a dimension of 100×200 mm the cylindrical specimens were cast for compressive test with the age of 3, 7, 14, 21, 28 days. Porosity test was conducted at 28 days. It is revealed that silica fume contributes greatly to slump flow and porosity. Coarse aggregate shows the greatest contributing factor to L-box and compressive test. However, all factors show unclear result to V-funnel test.

  5. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-01-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of < 100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipment: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost

  6. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M.; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-03-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of <100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipments: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost. 1 fig

  7. High Performance Graphene Oxide Based Rubber Composites

    Science.gov (United States)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  8. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  9. High performance computing in linear control

    International Nuclear Information System (INIS)

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  10. Development of a High Performance Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Song, K. N.; Yoon, K. H. (and others)

    2007-03-15

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 18 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates 16 are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models.

  11. Low-Cost High-Performance MRI

    Science.gov (United States)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (standards for affordable (<$50,000) and robust portable devices.

  12. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  13. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  14. Rapid Prototyping of High Performance Signal Processing Applications

    Science.gov (United States)

    Sane, Nimish

    Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high

  15. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  16. HIGH PERFORMANCE ADVANCED TOKAMAK REGIMES FOR NEXT-STEP EXPERIMENTS

    International Nuclear Information System (INIS)

    GREENFIELD, C.M.; MURAKAMI, M.; FERRON, J.R.; WADE, M.R.; LUCE, T.C.; PETTY, C.C.; MENARD, J.E; PETRIE, T.W.; ALLEN, S.L.; BURRELL, K.H.; CASPER, T.A; DeBOO, J.C.; DOYLE, E.J.; GAROFALO, A.M; GORELOV, Y.A; GROEBNER, R.J.; HOBIRK, J.; HYATT, A.W; JAYAKUMAR, R.J; KESSEL, C.E; LA HAYE, R.J; JACKSON, G.L; LOHR, J.; MAKOWSKI, M.A.; PINSKER, R.I.; POLITZER, P.A.; PRATER, R.; STRAIT, E.J.; TAYLOR, T.S; WEST, W.P.

    2003-01-01

    OAK-B135 Advanced Tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic (MHD) stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half-radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding (ELMing) H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts

  17. Extensive gaps and biases in our knowledge of a well-known fauna: Implications for integrating biological traits into macroecology

    KAUST Repository

    Tyler, Elizabeth

    2011-12-09

    Aim Ecologists seeking to describe patterns at ever larger scales require compilations of data on the global abundance and distribution of species. Comparable compilations of biological data are needed to elucidate the mechanisms behind these patterns, but have received far less attention. We assess the availability of biological data across an entire assemblage: the well-documented demersal marine fauna of the United Kingdom. We also test whether data availability for a species depends on its taxonomic group, maximum body size, the number of times it has been recorded in a global biogeographic database, or its commercial and conservation importance. Location Seas of the United Kingdom. Methods We defined a demersal marine fauna of 973 species from 15 phyla and 40 classes using five extensive surveys around the British Isles. We then quantified the availability of data on eight key biological traits (termed biological knowledge) for each species from online databases. Relationships between biological knowledge and our predictors were tested with generalized linear models. Results Full data on eight fundamental biological traits exist for only 9% (n= 88) of the UK demersal marine fauna, and 20% of species completely lack data. Clear trends in our knowledge exist: fish (median biological knowledge score = six traits) are much better known than invertebrates (one trait). Biological knowledge increases with biogeographic knowledge and (to a lesser extent) with body size, and is greater in species that are commercially exploited or of conservation concern. Main conclusions Our analysis reveals deep ignorance of the basic biology of a well-studied fauna, highlighting the need for far greater efforts to compile biological trait data. Clear biases in our knowledge, relating to how well sampled or \\'important\\' species are suggests that caution is required in extrapolating small subsets of biologically well-known species to ecosystem-level studies. © 2011 Blackwell

  18. Ultra high performance concrete dematerialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Concrete is the most widely used building material in the world and its use is expected to grow. It is well recognized that the production of portland cement results in the release of large amounts of carbon dioxide, a greenhouse gas (GHG). The main challenge facing the industry is to produce concrete in an environmentally sustainable manner. Reclaimed industrial by-proudcts such as fly ash, silica fume and slag can reduce the amount of portland cement needed to make concrete, thereby reducing the amount of GHGs released to the atmosphere. The use of these supplementary cementing materials (SCM) can also enhance the long-term strength and durability of concrete. The intention of the EcoSmart{sup TM} Concrete Project is to develop sustainable concrete through innovation in supply, design and construction. In particular, the project focuses on finding a way to minimize the GHG signature of concrete by maximizing the replacement of portland cement in the concrete mix with SCM while improving the cost, performance and constructability. This paper describes the use of Ductal{sup R} Ultra High Performance Concrete (UHPC) for ramps in a condominium. It examined the relationship between the selection of UHPC and the overall environmental performance, cost, constructability maintenance and operational efficiency as it relates to the EcoSmart Program. The advantages and challenges of using UHPC were outlined. In addition to its very high strength, UHPC has been shown to have very good potential for GHG emission reduction due to the reduced material requirements, reduced transport costs and increased SCM content. refs., tabs., figs.

  19. High-performance laboratories and cleanrooms; TOPICAL

    International Nuclear Information System (INIS)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-01-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations-primarily safety driven-that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities

  20. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  1. MUMAX: A new high-performance micromagnetic simulation tool

    International Nuclear Information System (INIS)

    Vansteenkiste, A.; Van de Wiele, B.

    2011-01-01

    We present MUMAX, a general-purpose micromagnetic simulation tool running on graphical processing units (GPUs). MUMAX is designed for high-performance computations and specifically targets large simulations. In that case speedups of over a factor 100 x can be obtained compared to the CPU-based OOMMF program developed at NIST. MUMAX aims to be general and broadly applicable. It solves the classical Landau-Lifshitz equation taking into account the magnetostatic, exchange and anisotropy interactions, thermal effects and spin-transfer torque. Periodic boundary conditions can optionally be imposed. A spatial discretization using finite differences in two or three dimensions can be employed. MUMAX is publicly available as open-source software. It can thus be freely used and extended by community. Due to its high computational performance, MUMAX should open up the possibility of running extensive simulations that would be nearly inaccessible with typical CPU-based simulators. - Highlights: → Novel, open-source micromagnetic simulator on GPU hardware. → Speedup of ∝100x compared to other widely used tools. → Extensively validated against standard problems. → Makes previously infeasible simulations accessible.

  2. Progress in a novel architecture for high performance processing

    Science.gov (United States)

    Zhang, Zhiwei; Liu, Meng; Liu, Zijun; Du, Xueliang; Xie, Shaolin; Ma, Hong; Ding, Guangxin; Ren, Weili; Zhou, Fabiao; Sun, Wenqin; Wang, Huijuan; Wang, Donglin

    2018-04-01

    The high performance processing (HPP) is an innovative architecture which targets on high performance computing with excellent power efficiency and computing performance. It is suitable for data intensive applications like supercomputing, machine learning and wireless communication. An example chip with four application-specific integrated circuit (ASIC) cores which is the first generation of HPP cores has been taped out successfully under Taiwan Semiconductor Manufacturing Company (TSMC) 40 nm low power process. The innovative architecture shows great energy efficiency over the traditional central processing unit (CPU) and general-purpose computing on graphics processing units (GPGPU). Compared with MaPU, HPP has made great improvement in architecture. The chip with 32 HPP cores is being developed under TSMC 16 nm field effect transistor (FFC) technology process and is planed to use commercially. The peak performance of this chip can reach 4.3 teraFLOPS (TFLOPS) and its power efficiency is up to 89.5 gigaFLOPS per watt (GFLOPS/W).

  3. High Performance Activity Practices in Small Firms in Romania

    Directory of Open Access Journals (Sweden)

    Gabriela ŢUŢUEANU

    2014-12-01

    Full Text Available High Performance Activity Practices in Small Firms in Romania Abstract: High performance activity practices (HPAPs are human resource management activities aimed at stimulating employee and organisational performance. The application of HPAPs is not widespread in small organisations. We examine whether the implementation of coherent bundles of HPAPs (aimed at employee ability, employee motivation or at the opportunity to perform depends on the scarcity of resources, as reflected in the size of the company, and on strategic decision-making in small firms related to the owner’s expertise and attitudes. In our research, a total of 224 employees from 50 small organisations were asked to rate the presence of HPAPs in their organisation. These averaged perceptions were linked to information provided by the owner–managers on the size of their firm and their own expertise and attitudes. The findings support that smaller but coherent bundles of HPAPs can be found in small organisations and that the implementation of these bundles depends on available resources, strategic decision-making and the combination of the two. These findings highlight the need to integrate the notions of resource poverty and strategic decision-making to understand the uptake of bundles of HPAPs within small firms.

  4. The need for high performance breeder reactors

    International Nuclear Information System (INIS)

    Vaughan, R.D.; Chermanne, J.

    1977-01-01

    It can be easily demonstrated, on the basis of realistic estimates of continued high oil costs, that an increasing portion of the growth in energy demand must be supplied by nuclear power and that this one might account for 20% of all the energy production by the end of the century. Such assumptions lead very quickly to the conclusion that the discovery, extraction and processing of the uranium will not be able to follow the demand; the bottleneck will essentially be related to the rate at which the ore can be discovered and extracted, and not to the existing quantities nor their grade. Figures as high as 150.000 T/annum and more would be quickly reached, and it is necessary to wonder already now if enough capital can be attracted to meet these requirements. There is only one solution to this problem: improve the conversion ratio of the nuclear system and quickly reach the breeding; this would lead to the reduction of the natural uranium consumption by a factor of about 50. However, this condition is not sufficient; the commercial breeder must have a breeding gain as high as possible because the Pu out-of-pile time and the Pu losses in the cycle could lead to an unacceptable doubling time for the system, if the breeding gain is too low. That is the reason why it is vital to develop high performance breeder reactors. The present paper indicates how the Gas-cooled Breeder Reactor [GBR] can meet the problems mentioned above, on the basis of recent and realistic studies. It briefly describes the present status of GBR development, from the predecessors in the gas cooled reactor line, particularly the AGR. It shows how the GBR fuel takes mostly profit from the LMFBR fuel irradiation experience. It compares the GBR performance on a consistent basis with that of the LMFBR. The GBR capital and fuel cycle costs are compared with those of thermal and fast reactors respectively. The conclusion is, based on a cost-benefit study, that the GBR must be quickly developed in order

  5. JT-60U high performance regimes

    International Nuclear Information System (INIS)

    Ishida, S.

    1999-01-01

    High performance regimes of JT-60U plasmas are presented with an emphasis upon the results from the use of a semi-closed pumped divertor with W-shaped geometry. Plasma performance in transient and quasi steady states has been significantly improved in reversed shear and high- βp regimes. The reversed shear regime elevated an equivalent Q DT eq transiently up to 1.25 (n D (0)τ E T i (0)=8.6x10 20 m-3·s·keV) in a reactor-relevant thermonuclear dominant regime. Long sustainment of enhanced confinement with internal transport barriers (ITBs) with a fully non-inductive current drive in a reversed shear discharge was successfully demonstrated with LH wave injection. Performance sustainment has been extended in the high- bp regime with a high triangularity achieving a long sustainment of plasma conditions equivalent to Q DT eq ∼0.16 (n D (0)τ E T i (0)∼1.4x10 20 m -3 ·s·keV) for ∼4.5 s with a large non-inductive current drive fraction of 60-70% of the plasma current. Thermal and particle transport analyses show significant reduction of thermal and particle diffusivities around ITB resulting in a strong Er shear in the ITB region. The W-shaped divertor is effective for He ash exhaust demonstrating steady exhaust capability of τ He */τ E ∼3-10 in support of ITER. Suppression of neutral back flow and chemical sputtering effect have been observed while MARFE onset density is rather decreased. Negative-ion based neutral beam injection (N-NBI) experiments have created a clear H-mode transition. Enhanced ionization cross- section due to multi-step ionization processes was confirmed as theoretically predicted. A current density profile driven by N-NBI is measured in a good agreement with theoretical prediction. N-NBI induced TAE modes characterized as persistent and bursting oscillations have been observed from a low hot beta of h >∼0.1-0.2% without a significant loss of fast ions. (author)

  6. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  7. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  8. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  9. Thermal interface pastes nanostructured for high performance

    Science.gov (United States)

    Lin, Chuangang

    Thermal interface materials in the form of pastes are needed to improve thermal contacts, such as that between a microprocessor and a heat sink of a computer. High-performance and low-cost thermal pastes have been developed in this dissertation by using polyol esters as the vehicle and various nanoscale solid components. The proportion of a solid component needs to be optimized, as an excessive amount degrades the performance, due to the increase in the bond line thickness. The optimum solid volume fraction tends to be lower when the mating surfaces are smoother, and higher when the thermal conductivity is higher. Both a low bond line thickness and a high thermal conductivity help the performance. When the surfaces are smooth, a low bond line thickness can be even more important than a high thermal conductivity, as shown by the outstanding performance of the nanoclay paste of low thermal conductivity in the smooth case (0.009 mum), with the bond line thickness less than 1 mum, as enabled by low storage modulus G', low loss modulus G" and high tan delta. However, for rough surfaces, the thermal conductivity is important. The rheology affects the bond line thickness, but it does not correlate well with the performance. This study found that the structure of carbon black is an important parameter that governs the effectiveness of a carbon black for use in a thermal paste. By using a carbon black with a lower structure (i.e., a lower DBP value), a thermal paste that is more effective than the previously reported carbon black paste was obtained. Graphite nanoplatelet (GNP) was found to be comparable in effectiveness to carbon black (CB) pastes for rough surfaces, but it is less effective for smooth surfaces. At the same filler volume fraction, GNP gives higher thermal conductivity than carbon black paste. At the same pressure, GNP gives higher bond line thickness than CB (Tokai or Cabot). The effectiveness of GNP is limited, due to the high bond line thickness. A

  10. Development of high performance ODS alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lin [Texas A & M Univ., College Station, TX (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States); Garner, Frank [Texas A & M Univ., College Station, TX (United States)

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoid and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.

  11. High performance current generator with one-picoampere resolution

    International Nuclear Information System (INIS)

    Grillo, L.; Manfredi, P.F.; Marchesini, R.

    1975-01-01

    A high-performance current generator for the picoampere region is presented. Although it was primarily developed as a part of an automatic test system to calibrate charge integrators for accelerating machines. It can suit a wide range of applications. It consists basically of a positive feedback loop of controlled gain which includes a varactor bridge operational amplifier. The essential features of the instrument are a 1 pA resolution and a 10 15 Ω output impedance. The output is guarded and floating between - 120 V and + 120 V, and the voltage across the external loads is measured without affecting the delivered current by a digital panel meter on the front panel. The unit can therefore operate as a high-accuracy dc impedance meter. (Auth.)

  12. A high performance scientific cloud computing environment for materials simulations

    Science.gov (United States)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  13. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    Science.gov (United States)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  14. Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

    2005-03-24

    Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

  15. Alternative High-Performance Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K. [Alfred Univ., NY (United States)

    2017-02-01

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  16. High performance VLSI telemetry data systems

    Science.gov (United States)

    Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.

    1990-01-01

    NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.

  17. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  18. A Heterogeneous High-Performance System for Computational and Computer Science

    Science.gov (United States)

    2016-11-15

    expand the research infrastructure at the institution but also to enhance the high -performance computing training provided to both undergraduate and... cloud computing, supercomputing, and the availability of cheap memory and storage led to enormous amounts of data to be sifted through in forensic... High -Performance Computing (HPC) tools that can be integrated with existing curricula and support our research to modernize and dramatically advance

  19. Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes

    Science.gov (United States)

    2013-12-18

    2, 870–875. 38. Chen, T.; Dai, L. Carbon Nanomaterials for High- Performance Supercapacitors . Mater. Today 2013, 16, 272–280. 39. Stoller, M. D...High-Performance Supercapacitors Based onWrinkledGraphene Electrodes Tao Chen,† Yuhua Xue,† Ajit K. Roy,‡ and Liming Dai†,* †Center of Advanced Science...electrodes and the associated supercapacitor cells cannot be both trans- parent and stretchable.1318 It is highly desirable to integrate the

  20. Development of a high performance liquid chromatography method ...

    African Journals Online (AJOL)

    Development of a high performance liquid chromatography method for simultaneous ... Purpose: To develop and validate a new low-cost high performance liquid chromatography (HPLC) method for ..... Several papers have reported the use of ...

  1. High Performance Home Building Guide for Habitat for Humanity Affiliates

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  2. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  3. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  4. Technologies of high-performance thermography systems

    Science.gov (United States)

    Breiter, R.; Cabanski, Wolfgang A.; Mauk, K. H.; Kock, R.; Rode, W.

    1997-08-01

    A family of 2 dimensional detection modules based on 256 by 256 and 486 by 640 platinum silicide (PtSi) focal planes, or 128 by 128 and 256 by 256 mercury cadmium telluride (MCT) focal planes for applications in either the 3 - 5 micrometer (MWIR) or 8 - 10 micrometer (LWIR) range was recently developed by AIM. A wide variety of applications is covered by the specific features unique for these two material systems. The PtSi units provide state of the art correctability with long term stable gain and offset coefficients. The MCT units provide extremely fast frame rates like 400 Hz with snapshot integration times as short as 250 microseconds and with a thermal resolution NETD less than 20 mK for e.g. the 128 by 128 LWIR module. The unique design idea general for all of these modules is the exclusively digital interface, using 14 bit analog to digital conversion to provide state of the art correctability, access to highly dynamic scenes without any loss of information and simplified exchangeability of the units. Device specific features like bias voltages etc. are identified during the final test and stored in a memory on the driving electronics. This concept allows an easy exchange of IDCAs of the same type without any need for tuning or e.g. the possibility to upgrade a PtSi based unit to an MCT module by just loading the suitable software. Miniaturized digital signal processor (DSP) based image correction units were developed for testing and operating the units with output data rates of up to 16 Mpixels/s. These boards provide the ability for freely programmable realtime functions like two point correction and various data manipulations in thermography applications.

  5. Can Knowledge of the Characteristics of "High Performers" Be Generalised?

    Science.gov (United States)

    McKenna, Stephen

    2002-01-01

    Two managers described as high performing constructed complexity maps of their organization/world. The maps suggested that high performance is socially constructed and negotiated in specific contexts and management competencies associated with it are context specific. Development of high performers thus requires personalized coaching more than…

  6. Efficient high-performance ultrasound beamforming using oversampling

    Science.gov (United States)

    Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew

    1998-05-01

    High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.

  7. Brain inspired high performance electronics on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2014-06-01

    Brain\\'s stunning speed, energy efficiency and massive parallelism makes it the role model for upcoming high performance computation systems. Although human brain components are a million times slower than state of the art silicon industry components [1], they can perform 1016 operations per second while consuming less power than an electrical light bulb. In order to perform the same amount of computation with today\\'s most advanced computers, the output of an entire power station would be needed. In that sense, to obtain brain like computation, ultra-fast devices with ultra-low power consumption will have to be integrated in extremely reduced areas, achievable only if brain folded structure is mimicked. Therefore, to allow brain-inspired computation, flexible and transparent platform will be needed to achieve foldable structures and their integration on asymmetric surfaces. In this work, we show a new method to fabricate 3D and planar FET architectures in flexible and semitransparent silicon fabric without comprising performance and maintaining cost/yield advantage offered by silicon-based electronics.

  8. Next Generation Life Support: High Performance EVA Glove

    Science.gov (United States)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  9. Behavioral Model of High Performance Camera for NIF Optics Inspection

    International Nuclear Information System (INIS)

    Hackel, B M

    2007-01-01

    The purpose of this project was to develop software that will model the behavior of the high performance Spectral Instruments 1000 series Charge-Coupled Device (CCD) camera located in the Final Optics Damage Inspection (FODI) system on the National Ignition Facility. NIF's target chamber will be mounted with 48 Final Optics Assemblies (FOAs) to convert the laser light from infrared to ultraviolet and focus it precisely on the target. Following a NIF shot, the optical components of each FOA must be carefully inspected for damage by the FODI to ensure proper laser performance during subsequent experiments. Rapid image capture and complex image processing (to locate damage sites) will reduce shot turnaround time; thus increasing the total number of experiments NIF can conduct during its 30 year lifetime. Development of these rapid processes necessitates extensive offline software automation -- especially after the device has been deployed in the facility. Without access to the unique real device or an exact behavioral model, offline software testing is difficult. Furthermore, a software-based behavioral model allows for many instances to be running concurrently; this allows multiple developers to test their software at the same time. Thus it is beneficial to construct separate software that will exactly mimic the behavior and response of the real SI-1000 camera

  10. A High Performance QDWH-SVD Solver using Hardware Accelerators

    KAUST Repository

    Sukkari, Dalal E.

    2015-04-08

    This paper describes a new high performance implementation of the QR-based Dynamically Weighted Halley Singular Value Decomposition (QDWH-SVD) solver on multicore architecture enhanced with multiple GPUs. The standard QDWH-SVD algorithm was introduced by Nakatsukasa and Higham (SIAM SISC, 2013) and combines three successive computational stages: (1) the polar decomposition calculation of the original matrix using the QDWH algorithm, (2) the symmetric eigendecomposition of the resulting polar factor to obtain the singular values and the right singular vectors and (3) the matrix-matrix multiplication to get the associated left singular vectors. A comprehensive test suite highlights the numerical robustness of the QDWH-SVD solver. Although it performs up to two times more flops when computing all singular vectors compared to the standard SVD solver algorithm, our new high performance implementation on single GPU results in up to 3.8x improvements for asymptotic matrix sizes, compared to the equivalent routines from existing state-of-the-art open-source and commercial libraries. However, when only singular values are needed, QDWH-SVD is penalized by performing up to 14 times more flops. The singular value only implementation of QDWH-SVD on single GPU can still run up to 18% faster than the best existing equivalent routines. Integrating mixed precision techniques in the solver can additionally provide up to 40% improvement at the price of losing few digits of accuracy, compared to the full double precision floating point arithmetic. We further leverage the single GPU QDWH-SVD implementation by introducing the first multi-GPU SVD solver to study the scalability of the QDWH-SVD framework.

  11. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    Science.gov (United States)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated

  12. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  13. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  14. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  15. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    Science.gov (United States)

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will

  16. DOE research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  17. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloys for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting

  18. High Performance Computing in Science and Engineering '08 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2009-01-01

    The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger “European Supercomputer” in Germany, where the hardware costs alone will be hundreds of millions Euro – much more than in the past – are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ¨ h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ¨ berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructur...

  19. The Hydrograph Analyst, an Arcview GIS Extension That Integrates Point, Spatial, and Temporal Data Provides A Graphical User Interface for Hydrograph Analysis

    International Nuclear Information System (INIS)

    Jones, M.L.; O'Brien, G.M.; Jones, M.L.

    2000-01-01

    The Hydrograph Analyst (HA) is an ArcView GIS 3.2 extension developed by the authors to analyze hydrographs from a network of ground-water wells and springs in a regional ground-water flow model. ArcView GIS integrates geographic, hydrologic, and descriptive information and provides the base functionality needed for hydrograph analysis. The HA extends ArcView's base functionality by automating data integration procedures and by adding capabilities to visualize and analyze hydrologic data. Data integration procedures were automated by adding functionality to the View document's Document Graphical User Interface (DocGUI). A menu allows the user to query a relational database and select sites which are displayed as a point theme in a View document. An ''Identify One to Many'' tool is provided within the View DocGUI to retrieve all hydrologic information for a selected site and display it in a simple and concise tabular format. For example, the display could contain various records from many tables storing data for one site. Another HA menu allows the user to generate a hydrograph for sites selected from the point theme. Hydrographs generated by the HA are added as hydrograph documents and accessed by the user with the Hydrograph DocGUI, which contains tools and buttons for hydrograph analysis. The Hydrograph DocGUI has a ''Select By Polygon'' tool used for isolating particular points on the hydrograph inside a user-drawn polygon or the user could isolate the same points by constructing a logical expression with the ArcView GIS ''Query Builder'' dialog that is also accessible in the Hydrograph DocGUI. Other buttons can be selected to alter the query applied to the active hydrograph. The selected points on the active hydrograph can be attributed (or flagged) individually or as a group using the ''Flag'' tool found on the Hydrograph DocGUI. The ''Flag'' tool activates a dialog box that prompts the user to select an attribute and ''methods'' or ''conditions'' that qualify

  20. Inclusive vision for high performance computing at the CSIR

    CSIR Research Space (South Africa)

    Gazendam, A

    2006-02-01

    Full Text Available and computationally intensive applications. A number of different technologies and standards were identified as core to the open and distributed high-performance infrastructure envisaged...

  1. High performance computing in power and energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaitan, Siddhartha Kumar [Iowa State Univ., Ames, IA (United States); Gupta, Anshul (eds.) [IBM Watson Research Center, Yorktown Heights, NY (United States)

    2013-07-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.

  2. High-performance scalable Information Service for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Hauser, R

    2012-01-01

    The ATLAS experiment is being operated by highly distributed computing system which is constantly producing a lot of status information which is used to monitor the experiment operational conditions as well as to access the quality of the physics data being taken. For example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands histograms, which have to be integrated over the whole farm and carefully analyzed in order to properly tune the event rejection. In order to handle such non-physics data the Information Service (IS) facility has been developed in the scope of the ATLAS TDAQ project. The IS provides high-performance scalable solution for information exchange in distributed environment. In the course of an ATLAS data taking session the IS handles about hundred gigabytes of information which is being constantly updated with the update interval varying from a second to few tens of seconds. IS ...

  3. Conducting polymer nanowire arrays for high performance supercapacitors.

    Science.gov (United States)

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-performance, stretchable, wire-shaped supercapacitors.

    Science.gov (United States)

    Chen, Tao; Hao, Rui; Peng, Huisheng; Dai, Liming

    2015-01-07

    A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7 F g(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High performance data acquisition with InfiniBand

    International Nuclear Information System (INIS)

    Adamczewski, Joern; Essel, Hans G.; Kurz, Nikolaus; Linev, Sergey

    2008-01-01

    For the new experiments at FAIR new concepts of data acquisition systems have to be developed like the distribution of self-triggered, time stamped data streams over high performance networks for event building. In this concept any data filtering is done behind the network. Therefore the network must achieve up to 1 GByte/s bi-directional data transfer per node. Detailed simulations have been done to optimize scheduling mechanisms for such event building networks. For real performance tests InfiniBand has been chosen as one of the fastest available network technology. The measurements of network event building have been performed on different Linux clusters from four to over hundred nodes. Several InfiniBand libraries have been tested like uDAPL, Verbs, or MPI. The tests have been integrated in the data acquisition backbone core software DABC, a general purpose data acquisition library. Detailed results are presented. In the worst cases (over hundred nodes) 50% of the required bandwidth can be already achieved. It seems possible to improve these results by further investigations

  6. A High Performance Delta-Sigma Modulator for Neurosensing.

    Science.gov (United States)

    Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md Kafiul; Yang, Zhi

    2015-08-07

    Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-µm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR) and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 µW, which corresponds to a figure-of-merit (FOM) of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors.

  7. Design and implementation of a high performance network security processor

    Science.gov (United States)

    Wang, Haixin; Bai, Guoqiang; Chen, Hongyi

    2010-03-01

    The last few years have seen many significant progresses in the field of application-specific processors. One example is network security processors (NSPs) that perform various cryptographic operations specified by network security protocols and help to offload the computation intensive burdens from network processors (NPs). This article presents a high performance NSP system architecture implementation intended for both internet protocol security (IPSec) and secure socket layer (SSL) protocol acceleration, which are widely employed in virtual private network (VPN) and e-commerce applications. The efficient dual one-way pipelined data transfer skeleton and optimised integration scheme of the heterogenous parallel crypto engine arrays lead to a Gbps rate NSP, which is programmable with domain specific descriptor-based instructions. The descriptor-based control flow fragments large data packets and distributes them to the crypto engine arrays, which fully utilises the parallel computation resources and improves the overall system data throughput. A prototyping platform for this NSP design is implemented with a Xilinx XC3S5000 based FPGA chip set. Results show that the design gives a peak throughput for the IPSec ESP tunnel mode of 2.85 Gbps with over 2100 full SSL handshakes per second at a clock rate of 95 MHz.

  8. High performance distributed objects in large hadron collider experiments

    International Nuclear Information System (INIS)

    Gutleber, J.

    1999-11-01

    This dissertation demonstrates how object-oriented technology can support the development of software that has to meet the requirements of high performance distributed data acquisition systems. The environment for this work is a system under planning for the Compact Muon Solenoid experiment at CERN that shall start its operation in the year 2005. The long operational phase of the experiment together with a tight and puzzling interaction with custom devices make the quest for an evolvable architecture that exhibits a high level of abstraction the driving issue. The question arises if an existing approach already fits our needs. The presented work casts light on these problems and as a result comprises the following novel contributions: - Application of object technology at hardware/software boundary. Software components at this level must be characterised by high efficiency and extensibility at the same time. - Identification of limitations when deploying commercial-off-the-shelf middleware for distributed object-oriented computing. - Capturing of software component properties in an efficiency model for ease of comparison and improvement. - Proof of feasibility that the encountered deficiencies in middleware can be avoided and that with the use of software components the imposed requirements can be met. - Design and implementation of an on-line software control system that allows to take into account the ever evolving requirements by avoiding hardwired policies. We conclude that state-of-the-art middleware cannot meet the required efficiency of the planned data acquisition system. Although new tool generations already provide a certain degree of configurability, the obligation to follow standards specifications does not allow the necessary optimisations. We identified the major limiting factors and argue that a custom solution following a component model with narrow interfaces can satisfy our requirements. This approach has been adopted for the current design

  9. InfoMall: An Innovative Strategy for High-Performance Computing and Communications Applications Development.

    Science.gov (United States)

    Mills, Kim; Fox, Geoffrey

    1994-01-01

    Describes the InfoMall, a program led by the Northeast Parallel Architectures Center (NPAC) at Syracuse University (New York). The InfoMall features a partnership of approximately 24 organizations offering linked programs in High Performance Computing and Communications (HPCC) technology integration, software development, marketing, education and…

  10. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.; Almuslem, A. S.; Gumus, Abdurrahman; Hussain, Aftab M.; Hussain, Aftab M.; Cruz, Melvin; Hussain, Muhammad Mustafa

    2016-01-01

    shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using

  11. High-Performance Classrooms for Women? Applying a Relational Frame to Management/Organizational Behavior Courses.

    Science.gov (United States)

    Buttner, E. Holly

    2002-01-01

    Attributes of relational theory, based on women's development, include preventive connecting, mutual empowering, achieving, and team building. These attributes are compatible with the practices of high performance work organizations. Relational practices should be integrated into management and organizational behavior courses. (Contains 53…

  12. Final Report - Phase II - Biogeochemistry of Uranium Under Reducing and Re-oxidizing Conditions: An Integrated Laboratory and Field Study ($20,575 extension)

    International Nuclear Information System (INIS)

    Brent Peyton; Rajesh Sani

    2006-01-01

    Our understanding of subsurface microbiology is hindered by the inaccessibility of this environment, particularly when the hydrogeologic medium is contaminated with toxic substances. Past research in our labs indicated that the composition of the growth medium (e.g., bicarbonate complexation of U(VI)) and the underlying mineral phase (e.g., hematite) significantly affects the rate and extent of U(VI) reduction and immobilization through a variety of effects. Our research was aimed at elucidating those effects to a much greater extent, while exploring the potential for U(IV) reoxidation and subsequent re-mobilization, which also appears to depend on the mineral phases present in the system. The project reported on here was an extension ($20,575) of the prior (much larger) project. This report is focused only on the work completed during the extension period. Further information on the larger impacts of our research, including 28 publications, can be found in the final report for the following projects: (1) Biogeochemistry of Uranium Under Reducing and Re-oxidizing Conditions: An Integrated Laboratory and Field Study Grant DE-FG03-01ER63270, and (2) Acceptable Endpoints for Metals and Radionuclides: Quantifying the Stability of Uranium and Lead Immobilized Under Sulfate Reducing Conditions Grant DE-FG03-98ER62630/A001 In this Phase II project, the toxic effects of uranium(VI) were studied using Desulfovibrio desulfuricans G20 in a medium containing bicarbonate or 1, 4-piperazinediethane sulfonic acid disodium salt monohydrate (PIPES) buffer (each at 30 mM, pH 7). The toxicity of uranium(VI) was dependent on the medium buffer and was observed in terms of longer lag times and in some cases, no measurable growth. The minimum inhibiting concentration (MIC) was 140 (micro)M U(VI) in PIPES buffered medium. This is 36 times lower than previously reported for D. desulfuricans. These results suggest that U(VI) toxicity and the detoxification mechanisms of G20 depend greatly

  13. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  14. Mechanical Properties of High Performance Cementitious Grout (II)

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report is an update of the report “Mechanical Properties of High Performance Cementitious Grout (I)” [1] and describes tests carried out on the high performance grout MASTERFLOW 9500, marked “WMG 7145 FP”, developed by BASF Construction Chemicals A/S and designed for use in grouted...

  15. Development of new high-performance stainless steels

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2002-01-01

    This paper focused on high-performance stainless steels and their development status. Effect of nitrogen addition on super-stainless steel was discussed. Research activities at Yonsei University, on austenitic and martensitic high-performance stainless, steels, and the next-generation duplex stainless steels were introduced

  16. Fatigue behaviour of high performance concretes for wind turbines; Ermuedungsverhalten von Hochleistungsbetonen in Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lohaus, Ludger; Oneschkow, Nadja; Elsmeier, Kerstin; Huemme, Julian [Hannover Univ. (Germany). Inst. fuer Baustoffe

    2012-08-15

    New developments in the wind energy sector will lead to wind turbines with enormous capacities. As a result, the loads of the supporting structures are also increasing. For some time now, high performance concretes with self-compacting properties have been used in wind turbines for structural connections. Furthermore, slender foundations and prestressed concrete supporting structures made out of high-strength concrete are under development. In future, fatigue design of these high performance concretes is to be done according to the new fib-Model Code 2010. This code includes a new fatigue design model which enables a safe and economic fatigue design, even for high strength concrete. Extensive research with regard to the fatigue behaviour of different types of high performance concrete has been carried out at the Institute of Building Materials Science, Leibniz Universitaet Hannover. As part of these research activities, the influences of steel fibre reinforcement on the fatigue behaviour of high performance concretes are being investigated. In this paper, interim results of these investigations are presented and the potential for the practical applications of high performance concrete is discussed. The results of the conducted investigations are presented in comparison with the new fatigue design model of the fib-Model Code 2010. (orig.)

  17. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    Science.gov (United States)

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software

  18. High Performance Building Facade Solutions - PIER Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and

  19. Respiratory inflammation and infections in high-performance athletes.

    Science.gov (United States)

    Gleeson, Maree; Pyne, David B

    2016-02-01

    Upper respiratory illness is the most common reason for non-injury-related presentation to a sports medicine clinic, accounting for 35-65% of illness presentations. Recurrent or persistent respiratory illness can have a negative impact on health and performance of athletes undertaking high levels of strenuous exercise. The cause of upper respiratory symptoms (URS) in athletes can be uncertain but the majority of cases are related to common respiratory viruses, viral reactivation, allergic responses to aeroallergens and exercise-related trauma to the integrity of respiratory epithelial membranes. Bacterial respiratory infections are uncommon in athletes. Undiagnosed or inappropriately treated asthma and/or allergy are common findings in clinical assessments of elite athletes experiencing recurrent URS. High-performance athletes with recurrent episodes of URS should undergo a thorough clinical assessment to exclude underlying treatable conditions of respiratory inflammation. Identifying athletes at risk of recurrent URS is important in order to prescribe preventative clinical, training and lifestyle strategies. Monitoring secretion rates and falling concentrations of salivary IgA can identify athletes at risk of URS. Therapeutic interventions are limited by the uncertainty of the underlying cause of inflammation. Topical anti-inflammatory sprays can be beneficial for some athletes. Dietary supplementation with bovine colostrum, probiotics and selected antioxidants can reduce the incidence or severity of URS in some athletes. Preliminary studies on athletes prone to URS indicate a genetic predisposition to a pro-inflammatory response and a dysregulated anti-inflammatory cytokine response to intense exercise as a possible mechanism of respiratory inflammation. This review focuses on respiratory infections and inflammation in elite/professional athletes.

  20. Coal-fired high performance power generating system

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  1. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  2. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  3. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa; Sevilla, Galo Torres; Cordero, Marlon Diaz; Kutbee, Arwa T.

    2017-01-01

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications

  4. Brain inspired high performance electronics on flexible silicon

    KAUST Repository

    Sevilla, Galo T.; Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2014-01-01

    Brain's stunning speed, energy efficiency and massive parallelism makes it the role model for upcoming high performance computation systems. Although human brain components are a million times slower than state of the art silicon industry components

  5. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa; Parashar, Manish; Kim, Hyunjoo; Jordan, Kirk E.; Sachdeva, Vipin; Sexton, James; Jamjoom, Hani; Shae, Zon-Yin; Pencheva, Gergina; Tavakoli, Reza; Wheeler, Mary F.

    2012-01-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a

  6. Mechanical Properties of High Performance Cementitious Grout Masterflow 9200

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on the high performance grout Masterflow 9200, developed by BASF Construction Chemicals A/S and designed for use in grouted connections of windmill foundations....

  7. High Performance Low Mass Nanowire Enabled Heatpipe, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Illuminex Corporation proposes a NASA Phase I SBIR project to develop high performance, lightweight, low-profile heat pipes with enhanced thermal transfer properties...

  8. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin; Tiraferri, Alberto; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2010-01-01

    obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed

  9. High Performance Low Mass Nanowire Enabled Heatpipe, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Heat pipes are widely used for passive, two-phase electronics cooling. As advanced high power, high performance electronics in space based and terrestrial...

  10. Novel nano materials for high performance logic and memory devices

    Science.gov (United States)

    Das, Saptarshi

    mobility with the layer thickness. The non-monotonic trend suggests that in order to harvest the maximum potential of MoS2 for high performance device applications, a layer thickness in the range of 6-12 nm would be ideal. Finally using scandium contacts on 10nm thick exfoliated MoS2 flakes that are covered by a 15nm ALD grown Al2O3 film, record high mobility of 700cm2/Vs is achieved at room-temperature which is extremely encouraging for the design of high performance logic devices. The destructive nature of the readout process in Ferroelectric Random Access Memories (FeRAMs) is one of the major limiting factors for their wide scale commercialization. Utilizing Ferroelectric Field-Effect Transistor RAM (FeTRAM) instead solves the destructive read out problem, but at the expense of introducing crystalline ferroelectrics that are hard to integrate into CMOS. In order to address these challenges a novel, fully functional, CMOS compatible, One-Transistor-One-Transistor (1T1T) memory cell architecture using an organic ferroelectric -- PVDF-TrFE -- as the memory storage unit (gate oxide) and a silicon nanowire as the memory read out unit (channel material) is proposed and experimentally demonstrated. While evaluating the scaling potential of the above mentioned organic FeTRAM, it is found that the switching time and switching voltage of this organic copolymer PVDF-TrFE exhibits an unexpected scaling behavior as a function of the lateral device dimensions. The phenomenological theory, that explains this abnormal scaling trend, involves in-plane interchain and intrachain interaction of the copolymer - resulting in a power-law dependence of the switching field on the device area (ESW alpha ACH0.1) that is ultimately responsible for the decrease in the switching time and switching voltage. These findings are encouraging since they indicate that scaling the switching voltage and switching time without aggressively scaling the copolymer thickness occurs naturally while scaling the

  11. High Performing Greenways Design: A Case Study of Gainesville, GA

    OpenAIRE

    AKPINAR, Abdullah

    2015-01-01

    Greenways play a significant role in structuring and developing our living environment in urban as well as suburban areas. They provide many recreational, environmental, ecological, social, educational, and economical benefits to cities. This article questions what makes high performing greenways by exploring the concept, history, and development of greenways in the United States. The paper illustrates the concept of linked open spaces and high performing urban greenways in residential commun...

  12. High Performing Greenways Design: A Case Study of Gainesville, GA

    OpenAIRE

    AKPINAR, Abdullah

    2014-01-01

    Greenways play a significant role in structuring and developing our living environment in urban as well as suburban areas. They provide many recreational, environmental, ecological, social, educational, and economical benefits to cities. This article questions what makes high performing greenways by exploring the concept, history, and development of greenways in the United States. The paper illustrates the concept of linked open spaces and high performing urban greenways in residential commun...

  13. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  14. High Performance Computing Modernization Program Kerberos Throughput Test Report

    Science.gov (United States)

    2017-10-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--17-9751 High Performance Computing Modernization Program Kerberos Throughput Test ...NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT High Performance Computing Modernization Program Kerberos Throughput Test Report Daniel G. Gdula* and

  15. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  16. libRoadRunner: a high performance SBML simulation and analysis library.

    Science.gov (United States)

    Somogyi, Endre T; Bouteiller, Jean-Marie; Glazier, James A; König, Matthias; Medley, J Kyle; Swat, Maciej H; Sauro, Herbert M

    2015-10-15

    This article presents libRoadRunner, an extensible, high-performance, cross-platform, open-source software library for the simulation and analysis of models expressed using Systems Biology Markup Language (SBML). SBML is the most widely used standard for representing dynamic networks, especially biochemical networks. libRoadRunner is fast enough to support large-scale problems such as tissue models, studies that require large numbers of repeated runs and interactive simulations. libRoadRunner is a self-contained library, able to run both as a component inside other tools via its C++ and C bindings, and interactively through its Python interface. Its Python Application Programming Interface (API) is similar to the APIs of MATLAB ( WWWMATHWORKSCOM: ) and SciPy ( HTTP//WWWSCIPYORG/: ), making it fast and easy to learn. libRoadRunner uses a custom Just-In-Time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly into native machine code for a variety of processors, making it appropriate for solving extremely large models or repeated runs. libRoadRunner is flexible, supporting the bulk of the SBML specification (except for delay and non-linear algebraic equations) including several SBML extensions (composition and distributions). It offers multiple deterministic and stochastic integrators, as well as tools for steady-state analysis, stability analysis and structural analysis of the stoichiometric matrix. libRoadRunner binary distributions are available for Mac OS X, Linux and Windows. The library is licensed under Apache License Version 2.0. libRoadRunner is also available for ARM-based computers such as the Raspberry Pi. http://www.libroadrunner.org provides online documentation, full build instructions, binaries and a git source repository. hsauro@u.washington.edu or somogyie@indiana.edu Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2015. This work is written

  17. High-Performance Secure Database Access Technologies for HEP Grids

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Vranicar; John Weicher

    2006-04-17

    The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicist’s computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that "Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications.” There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the

  18. High-Performance Secure Database Access Technologies for HEP Grids

    International Nuclear Information System (INIS)

    Vranicar, Matthew; Weicher, John

    2006-01-01

    The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicist's computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that 'Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications'. There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the secure

  19. High-Performance Scalable Information Service for the ATLAS Experiment

    International Nuclear Information System (INIS)

    Kolos, S; Boutsioukis, G; Hauser, R

    2012-01-01

    The ATLAS[1] experiment is operated by a highly distributed computing system which is constantly producing a lot of status information which is used to monitor the experiment operational conditions as well as to assess the quality of the physics data being taken. For example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands histograms, which have to be integrated over the whole farm and carefully analyzed in order to properly tune the event rejection. In order to handle such non-physics data the Information Service (IS) facility has been developed in the scope of the ATLAS Trigger and Data Acquisition (TDAQ)[2] project. The IS provides a high-performance scalable solution for information exchange in distributed environment. In the course of an ATLAS data taking session the IS handles about a hundred gigabytes of information which is being constantly updated with the update interval varying from a second to a few tens of seconds. IS provides access to any information item on request as well as distributing notification to all the information subscribers. In the latter case IS subscribers receive information within a few milliseconds after it was updated. IS can handle arbitrary types of information, including histograms produced by the HLT applications, and provides C++, Java and Python API. The Information Service is a unique source of information for the majority of the online monitoring analysis and GUI applications used to control and monitor the ATLAS experiment. Information Service provides streaming functionality allowing efficient replication of all or part of the managed information. This functionality is used to duplicate the subset of the ATLAS monitoring data to the CERN public network with a latency of a few milliseconds, allowing efficient real-time monitoring of the data taking from outside the protected ATLAS network. Each information

  20. High-performance, scalable optical network-on-chip architectures

    Science.gov (United States)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  1. High performance integer arithmetic circuit design on FPGA architecture, implementation and design automation

    CERN Document Server

    Palchaudhuri, Ayan

    2016-01-01

    This book describes the optimized implementations of several arithmetic datapath, controlpath and pseudorandom sequence generator circuits for realization of high performance arithmetic circuits targeted towards a specific family of the high-end Field Programmable Gate Arrays (FPGAs). It explores regular, modular, cascadable, and bit-sliced architectures of these circuits, by directly instantiating the target FPGA-specific primitives in the HDL. Every proposed architecture is justified with detailed mathematical analyses. Simultaneously, constrained placement of the circuit building blocks is performed, by placing the logically related hardware primitives in close proximity to one another by supplying relevant placement constraints in the Xilinx proprietary “User Constraints File”. The book covers the implementation of a GUI-based CAD tool named FlexiCore integrated with the Xilinx Integrated Software Environment (ISE) for design automation of platform-specific high-performance arithmetic circuits from us...

  2. Dynamic extension and configuration of multimedia terminals

    Science.gov (United States)

    Schaefer, Ralf; Finger, Ulrich

    1999-01-01

    In this paper, we present an implementation of an MPEG-4 decoder using Java for dynamic processing, i.e. providing flexibility and extensibility. The advantage of Java is its platform independent paradigm using a virtual machine. This enables us to provide downloading of tools and also dynamic configuration of already downloaded tools. However, the disadvantage of Java is its low performance. Therefore we propose a hybrid implemented approach using Java implementations only for flexibility and extensibility. All the rest of the decoder is implemented in native code, providing the high performance necessary for real time issues. We use Java only where Java is necessary. To integrate Java with the native code implementations we utilize the Java native interface (JNI). We use the JNI to create an instance of the Java virtual machine (JVM) in the running MPEG-4 application. This JVM instance handles all Java decoder tool implementations as well as incoming Java bit streams. All the other data streams are handled by the native implemented part.

  3. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  4. 10th International Workshop on Parallel Tools for High Performance Computing

    CERN Document Server

    Gracia, José; Hilbrich, Tobias; Knüpfer, Andreas; Resch, Michael; Nagel, Wolfgang

    2017-01-01

    This book presents the proceedings of the 10th International Parallel Tools Workshop, held October 4-5, 2016 in Stuttgart, Germany – a forum to discuss the latest advances in parallel tools. High-performance computing plays an increasingly important role for numerical simulation and modelling in academic and industrial research. At the same time, using large-scale parallel systems efficiently is becoming more difficult. A number of tools addressing parallel program development and analysis have emerged from the high-performance computing community over the last decade, and what may have started as collection of small helper script has now matured to production-grade frameworks. Powerful user interfaces and an extensive body of documentation allow easy usage by non-specialists.

  5. The computer program LIAR for the simulation and modeling of high performance linacs

    International Nuclear Information System (INIS)

    Assmann, R.; Adolphsen, C.; Bane, K.; Emma, P.; Raubenheimer, T.O.; Siemann, R.; Thompson, K.; Zimmermann, F.

    1997-07-01

    High performance linear accelerators are the central components of the proposed next generation of linear colliders. They must provide acceleration of up to 750 GeV per beam while maintaining small normalized emittances. Standard simulation programs, mainly developed for storage rings, did not meet the specific requirements for high performance linacs with high bunch charges and strong wakefields. The authors present the program. LIAR (LInear Accelerator Research code) that includes single and multi-bunch wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. LIAR has been applied to and checked against the existing Stanford Linear Collider (SLC), the linacs of the proposed Next Linear Collider (NLC) and the proposed Linac Coherent Light Source (LCLS) at SLAC. Its modular structure allows easy extension for different purposes. The program is available for UNIX workstations and Windows PC's

  6. In search of novel, high performance and intelligent materials for applications in severe and unconditioned environments

    International Nuclear Information System (INIS)

    Gyeabour Ayensu, A. I.; Normeshie, C. M. K.

    2007-01-01

    For extreme operating conditions in aerospace, nuclear power plants and medical applications, novel materials have become more competitive over traditional materials because of the unique characteristics. Extensive research programmes are being undertaken to develop high performance and knowledge-intensive new materials, since existing materials cannot meet the stringent technological requirements of advanced materials for emerging industries. The technologies of intermetallic compounds, nanostructural materials, advanced composites, and photonics materials are presented. In addition, medical biomaterial implants of high functional performance based on biocompatibility, resistance against corrosion and degradation, and for applications in hostile environment of human body are discussed. The opportunities for African researchers to collaborate in international research programmes to develop local raw materials into high performance materials are also highlighted. (au)

  7. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    OpenAIRE

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the...

  8. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  9. High performance leadership in unusually challenging educational circumstances

    Directory of Open Access Journals (Sweden)

    Andy Hargreaves

    2015-04-01

    Full Text Available This paper draws on findings from the results of a study of leadership in high performing organizations in three sectors. Organizations were sampled and included on the basis of high performance in relation to no performance, past performance, performance among similar peers and performance in the face of limited resources or challenging circumstances. The paper concentrates on leadership in four schools that met the sample criteria.  It draws connections to explanations of the high performance ofEstoniaon the OECD PISA tests of educational achievement. The article argues that leadership in these four schools that performed above expectations comprised more than a set of competencies. Instead, leadership took the form of a narrative or quest that pursued an inspiring dream with relentless determination; took improvement pathways that were more innovative than comparable peers; built collaboration and community including with competing schools; and connected short-term success to long-term sustainability.

  10. High Performance Computing Software Applications for Space Situational Awareness

    Science.gov (United States)

    Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.

    The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.

  11. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2013-01-01

    Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world's leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the

  12. Turbostratic stacked CVD graphene for high-performance devices

    Science.gov (United States)

    Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-03-01

    We have fabricated turbostratic stacked graphene with high-transport properties by the repeated transfer of CVD monolayer graphene. The turbostratic stacked CVD graphene exhibited higher carrier mobility and conductivity than CVD monolayer graphene. The electron mobility for the three-layer turbostratic stacked CVD graphene surpassed 10,000 cm2 V-1 s-1 at room temperature, which is five times greater than that for CVD monolayer graphene. The results indicate that the high performance is derived from maintenance of the linear band dispersion, suppression of the carrier scattering, and parallel conduction. Therefore, turbostratic stacked CVD graphene is a superior material for high-performance devices.

  13. Micromagnetics on high-performance workstation and mobile computational platforms

    Science.gov (United States)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  14. High performance computing and communications: FY 1997 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  15. Visualization and Data Analysis for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  16. Automated packaging platform for low-cost high-performance optical components manufacturing

    Science.gov (United States)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  17. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  18. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-01-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration

  19. High-performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures

    KAUST Repository

    Ltaief, Hatem

    2013-04-01

    This article presents a new high-performance bidiagonal reduction (BRD) for homogeneous multicore architectures. This article is an extension of the high-performance tridiagonal reduction implemented by the same authors [Luszczek et al., IPDPS 2011] to the BRD case. The BRD is the first step toward computing the singular value decomposition of a matrix, which is one of the most important algorithms in numerical linear algebra due to its broad impact in computational science. The high performance of the BRD described in this article comes from the combination of four important features: (1) tile algorithms with tile data layout, which provide an efficient data representation in main memory; (2) a two-stage reduction approach that allows to cast most of the computation during the first stage (reduction to band form) into calls to Level 3 BLAS and reduces the memory traffic during the second stage (reduction from band to bidiagonal form) by using high-performance kernels optimized for cache reuse; (3) a data dependence translation layer that maps the general algorithm with column-major data layout into the tile data layout; and (4) a dynamic runtime system that efficiently schedules the newly implemented kernels across the processing units and ensures that the data dependencies are not violated. A detailed analysis is provided to understand the critical impact of the tile size on the total execution time, which also corresponds to the matrix bandwidth size after the reduction of the first stage. The performance results show a significant improvement over currently established alternatives. The new high-performance BRD achieves up to a 30-fold speedup on a 16-core Intel Xeon machine with a 12000×12000 matrix size against the state-of-the-art open source and commercial numerical software packages, namely LAPACK, compiled with optimized and multithreaded BLAS from MKL as well as Intel MKL version 10.2. © 2013 ACM.

  20. From Big Data to Big Displays High-Performance Visualization at Blue Brain

    KAUST Repository

    Eilemann, Stefan

    2017-10-19

    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.

  1. High-performance-vehicle technology. [fighter aircraft propulsion

    Science.gov (United States)

    Povinelli, L. A.

    1979-01-01

    Propulsion needs of high performance military aircraft are discussed. Inlet performance, nozzle performance and cooling, and afterburner performance are covered. It is concluded that nonaxisymmetric nozzles provide cleaner external lines and enhanced maneuverability, but the internal flows are more complex. Swirl afterburners show promise for enhanced performance in the high altitude, low Mach number region.

  2. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  3. Determination of Caffeine in Beverages by High Performance Liquid Chromatography.

    Science.gov (United States)

    DiNunzio, James E.

    1985-01-01

    Describes the equipment, procedures, and results for the determination of caffeine in beverages by high performance liquid chromatography. The method is simple, fast, accurate, and, because sample preparation is minimal, it is well suited for use in a teaching laboratory. (JN)

  4. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa

    2012-10-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a representative HPC application. © 2012 IEEE.

  5. High Performance Skiing. How to Become a Better Alpine Skier.

    Science.gov (United States)

    Yacenda, John

    This book is intended for people who desire to improve their skiing by exploring high performance techniques leading to: (1) more consistent performance; (2) less fatigue and more endurance; (3) greater strength and flexibility; (4) greater versatility; (5) greater confidence in all skiing conditions; and (6) the knowledge to participate in…

  6. Computer science of the high performance; Informatica del alto rendimiento

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, A.

    2008-07-01

    The high performance computing is taking shape as a powerful accelerator of the process of innovation, to drastically reduce the waiting times for access to the results and the findings in a growing number of processes and activities as complex and important as medicine, genetics, pharmacology, environment, natural resources management or the simulation of complex processes in a wide variety of industries. (Author)

  7. Sensitive high performance liquid chromatographic method for the ...

    African Journals Online (AJOL)

    A new simple, sensitive, cost-effective and reproducible high performance liquid chromatographic (HPLC) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 4-chlorophenylbiguanide (4-CPB) in urine and plasma is described. The extraction procedure is a simple three-step process ...

  8. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2015-01-01

    A continuation of Contemporary High Performance Computing: From Petascale toward Exascale, this second volume continues the discussion of HPC flagship systems, major application workloads, facilities, and sponsors. The book includes of figures and pictures that capture the state of existing systems: pictures of buildings, systems in production, floorplans, and many block diagrams and charts to illustrate system design and performance.

  9. High-Performance Management Practices and Employee Outcomes in Denmark

    DEFF Research Database (Denmark)

    Cristini, Annalisa; Eriksson, Tor; Pozzoli, Dario

    High-performance work practices are frequently considered to have positive effects on corporate performance, but what do they do for employees? After showing that organizational innovation is indeed positively associated with firm performance, we investigate whether high-involvement work practices...

  10. Fatigue Behaviour of High Performance Cementitious Grout Masterflow 9500

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes the fatigue behaviour of the high performance grout MASTERFLOW 9500 subjected to cyclic loading, in air as well as submerged in water, at various frequencies and levels of maximum stress. Part of the results were also reported in [1] together with other mechanical...

  11. Two Profiles of the Dutch High Performing Employee

    Science.gov (United States)

    de Waal, A. A.; Oudshoorn, Michella

    2015-01-01

    Purpose: The purpose of this study is to explore the profile of an ideal employee, to be more precise the behavioral characteristics of the Dutch high-performing employee (HPE). Organizational performance depends for a large part on the commitment of employees. Employees provide their knowledge, skills, experiences and creativity to the…

  12. A high performance electrometer amplifier of hybrid design

    International Nuclear Information System (INIS)

    Rao, N.V.; Nazare, C.K.

    1979-01-01

    A high performance, reliable, electrometer amplifier of hybrid design for low current measurements in mass spectrometers has been developed. The short term instability with a 5 x 10 11 ohms input resistor is less than 1 x 10sup(-15) Amp. The drift is better than 1 mV/hour. The design steps are illustrated with a typical amplifier performance details. (auth.)

  13. Development and validation of a reversed phase High Performance ...

    African Journals Online (AJOL)

    A simple, rapid, accurate and economical isocratic Reversed Phase High Performance Liquid Chromatography (RPHPLC) method was developed, validated and used for the evaluation of content of different brands of paracetamol tablets. The method was validated according to ICH guidelines and may be adopted for the ...

  14. Dynamic Social Networks in High Performance Football Coaching

    Science.gov (United States)

    Occhino, Joseph; Mallett, Cliff; Rynne, Steven

    2013-01-01

    Background: Sports coaching is largely a social activity where engagement with athletes and support staff can enhance the experiences for all involved. This paper examines how high performance football coaches develop knowledge through their interactions with others within a social learning theory framework. Purpose: The key purpose of this study…

  15. Resolution of RNA using high-performance liquid chromatography

    NARCIS (Netherlands)

    Mclaughlin, L.W.; Bischoff, Rainer

    1987-01-01

    High-performance liquid chromatographic techniques can be very effective for the resolution and isolation of nucleic acids. The characteristic ionic (phosphodiesters) and hydrophobic (nucleobases) properties of RNAs can be exploited for their separation. In this respect anion-exchange and

  16. Mallow carotenoids determined by high-performance liquid chromatography

    Science.gov (United States)

    Mallow (corchorus olitorius) is a green vegetable, which is widely consumed either fresh or dry by Middle East population. This study was carried out to determine the contents of major carotenoids quantitatively in mallow, by using a High Performance Liquid Chromatography (HPLC) equipped with a Bis...

  17. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  18. Developments on HNF based high performance and green solid propellants

    NARCIS (Netherlands)

    Keizers, H.L.J.; Heijden, A.E.D.M. van der; Vliet, L.D. van; Welland-Veltmans, W.H.M.; Ciucci, A.

    2001-01-01

    Worldwide developments are ongoing to develop new and more energetic composite solid propellant formulations for space transportation and military applications. Since the 90's, the use of HNF as a new high performance oxidiser is being reinvestigated. Within European development programmes,

  19. High-Performance Matrix-Vector Multiplication on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2012-01-01

    In this paper, we develop a high-performance GPU kernel for one of the most popular dense linear algebra operations, the matrix-vector multiplication. The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture), which is designed from the ground up for scientific computing...

  20. High-performance carbon nanotube-reinforced bioplastic

    CSIR Research Space (South Africa)

    Ramontja, J

    2009-12-01

    Full Text Available -1 High-Performance Carbon Nanotube-Reinforced Bioplastic 1. James Ramontja1,2, 2. Suprakas Sinha Ray1,*, 3. Sreejarani K. Pillai1, 4. Adriaan S. Luyt2 1. 1 DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials...

  1. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  2. Monitoring aged reversed-phase high performance liquid chromatography columns

    NARCIS (Netherlands)

    Bolck, A; Smilde, AK; Bruins, CHP

    1999-01-01

    In this paper, a new approach for the quality assessment of routinely used reversed-phase high performance liquid chromatography columns is presented. A used column is not directly considered deteriorated when changes in retention occur. If attention is paid to the type and magnitude of the changes,

  3. Ultra high performance liquid chromatography of seized drugs

    NARCIS (Netherlands)

    Lurie, I.S.

    2010-01-01

    The primary goal of this thesis is to investigate the use of ultra high performance liquid chromatography (UHPLC) for the analysis of seized drugs. This goal was largely achieved and significant progress was made in achieving improved separation and detection of drugs of forensic interest.

  4. Comparative Studies of Some Polypores Using High Performance ...

    African Journals Online (AJOL)

    ... these polypores in a previous work. The ability of the polypores to produce triterpenoids is affected by their age, period of collection, geographical location and method of drying, which also affected the High Performance Liquid Chromatography characteristics of their secondary metabolites. African Research Review Vol.

  5. Manufacturing Advantage: Why High-Performance Work Systems Pay Off.

    Science.gov (United States)

    Appelbaum, Eileen; Bailey, Thomas; Berg, Peter; Kalleberg, Arne L.

    A study examined the relationship between high-performance workplace practices and the performance of plants in the following manufacturing industries: steel, apparel, and medical electronic instruments and imaging. The multilevel research methodology combined the following data collection activities: (1) site visits; (2) collection of plant…

  6. Quantification of Tea Flavonoids by High Performance Liquid Chromatography

    Science.gov (United States)

    Freeman, Jessica D.; Niemeyer, Emily D.

    2008-01-01

    We have developed a laboratory experiment that uses high performance liquid chromatography (HPLC) to quantify flavonoid levels in a variety of commercial teas. Specifically, this experiment analyzes a group of flavonoids known as catechins, plant-derived polyphenolic compounds commonly found in many foods and beverages, including green and black…

  7. High performance co-polyimide nanofiber reinforced composites

    NARCIS (Netherlands)

    Yao, Jian; Li, Guang; Bastiaansen, Cees; Peijs, Ton

    2015-01-01

    Electrospun co-polyimide BPDA (3, 3′, 4, 4′-Biphenyltetracarboxylic dianhydride)/PDA (p-Phenylenediamine)/ODA (4, 4′-oxydianiline) nanofiber reinforced flexible composites were manufactured by impregnating these high performance nanofibers with styrene-butadiene-styrene (SBS) triblock copolymer

  8. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.; Sevilla, Galo T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2014-01-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due

  9. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.; Ghoneim, Mohamed T.; Fahad, Hossain M.; Rojas, Jhonathan Prieto; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2014-01-01

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show

  10. Radioactivity monitor for high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Reeve, D.R.; Crozier, A.

    1977-01-01

    The coupling of a homogeneous radioactivity monitor to a liquid chromatograph involves compromises between the sensitivity of the monitor and the resolution and speed of analysis of the chromatograph. The theoretical relationships between these parameters are considered and expressions derived which make it possible to calculate suitable monitor operating conditions for most types of high-performance liquid chromatography

  11. Cobra Strikes! High-Performance Car Inspires Students, Markets Program

    Science.gov (United States)

    Jenkins, Bonita

    2008-01-01

    Nestled in the Lower Piedmont region of upstate South Carolina, Piedmont Technical College (PTC) is one of 16 technical colleges in the state. Automotive technology is one of its most popular programs. The program features an instructive, motivating activity that the author describes in this article: building a high-performance car. The Cobra…

  12. Neural Correlates of High Performance in Foreign Language Vocabulary Learning

    Science.gov (United States)

    Macedonia, Manuela; Muller, Karsten; Friederici, Angela D.

    2010-01-01

    Learning vocabulary in a foreign language is a laborious task which people perform with varying levels of success. Here, we investigated the neural underpinning of high performance on this task. In a within-subjects paradigm, participants learned 92 vocabulary items under two multimodal conditions: one condition paired novel words with iconic…

  13. A high-performance, low-cost, leading edge discriminator

    Indian Academy of Sciences (India)

    Abstract. A high-performance, low-cost, leading edge discriminator has been designed with a timing performance comparable to state-of-the-art, commercially available discrim- inators. A timing error of 16 ps is achieved under ideal operating conditions. Under more realistic operating conditions the discriminator displays a ...

  14. Buffer-Free High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a simple, economical and reproducible high performance liquid chromatographic (HPLC) method for the determination of theophylline in pharmaceutical dosage forms. Method: Caffeine was used as the internal standard and reversed phase C-18 column was used to elute the drug and ...

  15. Solid-Phase Extraction Combined with High Performance Liquid ...

    African Journals Online (AJOL)

    Methods: Solid-phase extraction method was employed for the extraction of the estrogen from milk and high performance liquid chromatography-diode array detector (HPLC-DAD) was used for the determination of estrogen. Results: Optimal chromatographic conditions were achieved on an Eclipse XDB-C18 column at a ...

  16. High-performance liquid chromatography of rat and mouse islet polypeptides

    DEFF Research Database (Denmark)

    Linde, S; Hansen, B; Welinder, B S

    1990-01-01

    After preparative high-performance liquid chromatography of mouse islet culture medium, concentrated on disposable C18 cartridges (Sep-Pak), an unexpected insulin immunoreactive peak eluting earlier than mouse insulin I and II was detected. Molecular mass determination by mass spectrometry...... on the buffer, the organic modifier and the procedure. In particular the use of methanol-trifluoroacetic acid resulted in extensive oxidation. The oxidation could be minimized by adding 2 mM dithiothreitol to the buffer and by degassing and/or nitrogen-bubbling of the buffer. Minimal formation of Met...

  17. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  18. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. Travis [Purdue University; Groll, Eckhard A. [Purdue University; Braun, James E. [Purdue University

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  19. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-09-10

    State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today\\'s computers. One limitation is silicon\\'s rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec(-1) and on/off ratio of near 10(4) within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of similar to 7% in the visible spectrum.

  20. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.; Schuchardt, Karen L.; Guillen, Zoe C.; Sivaramakrishnan, Chandrika; Gorton, Ian

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations and a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.

  1. Progress on high-performance rapid prototype aluminum mirrors

    Science.gov (United States)

    Woodard, Kenneth S.; Myrick, Bruce H.

    2017-05-01

    Near net shape parts can be produced using some very old processes (investment casting) and the relatively new direct metal laser sintering (DMLS) process. These processes have significant advantages for complex blank lightweighting and costs but are not inherently suited for producing high performance mirrors. The DMLS process can provide extremely complex lightweight structures but the high residual stresses left in the material results in unstable mirror figure retention. Although not to the extreme intricacy of DMLS, investment casting can also provide complex lightweight structures at considerably lower costs than DMLS and even conventional wrought mirror blanks but the less than 100% density for casting (and also DMLS) limits finishing quality. This paper will cover the progress that has been made to make both the DMLS and investment casting processes into viable near net shape blank options for high performance aluminum mirrors. Finish and figure results will be presented to show performance commensurate with existing conventional processes.

  2. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.

  3. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K. [Cray Inc., St. Paul, MN 55101 (United States); Porter, D. [Minnesota Supercomputing Institute for Advanced Computational Research, Minneapolis, MN USA (United States); O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Edmon, P., E-mail: pjm@cray.com, E-mail: nradclif@cray.com, E-mail: kkandalla@cray.com, E-mail: oneill@astro.umn.edu, E-mail: nolt0040@umn.edu, E-mail: donnert@ira.inaf.it, E-mail: twj@umn.edu, E-mail: dhp@umn.edu, E-mail: pedmon@cfa.harvard.edu [Institute for Theory and Computation, Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  4. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    International Nuclear Information System (INIS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W.; Edmon, P.

    2017-01-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  5. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  6. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  7. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-11-23

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications. While there exist bulk material reduction methods to flex them, such thinned CMOS electronics are fragile and vulnerable to handling for high throughput manufacturing. Here, we show a fusion of a CMOS technology compatible fabrication process for flexible CMOS electronics, with inkjet and conductive cellulose based interconnects, followed by additive manufacturing (i.e. 3D printing based packaging) and finally roll-to-roll printing of packaged decal electronics (thin film transistors based circuit components and sensors) focusing on printed high performance flexible electronic systems. This work provides the most pragmatic route for packaged flexible electronic systems for wide ranging applications.

  8. Conference on High Performance Software for Nonlinear Optimization

    CERN Document Server

    Murli, Almerico; Pardalos, Panos; Toraldo, Gerardo

    1998-01-01

    This book contains a selection of papers presented at the conference on High Performance Software for Nonlinear Optimization (HPSN097) which was held in Ischia, Italy, in June 1997. The rapid progress of computer technologies, including new parallel architec­ tures, has stimulated a large amount of research devoted to building software environments and defining algorithms able to fully exploit this new computa­ tional power. In some sense, numerical analysis has to conform itself to the new tools. The impact of parallel computing in nonlinear optimization, which had a slow start at the beginning, seems now to increase at a fast rate, and it is reasonable to expect an even greater acceleration in the future. As with the first HPSNO conference, the goal of the HPSN097 conference was to supply a broad overview of the more recent developments and trends in nonlinear optimization, emphasizing the algorithmic and high performance software aspects. Bringing together new computational methodologies with theoretical...

  9. Drift-kinetic Alfven modes in high performance tokamaks

    International Nuclear Information System (INIS)

    Jaun, A.; Fasoli, A.F.; Testa, D.; Vaclavik, J.; Villard, L.

    2001-01-01

    The stability of fast-particle driven Alfven eigenmodes is modeled in high performance tokamaks, successively with a conventional shear, an optimized shear and a tight aspect ratio plasma. A large bulk pressure yields global kinetic Alfven eigenmodes that are stabilized by mode conversion in the presence of a divertor. This suggests how conventional reactor scenarii could withstand significant pressure gradients from the fusion products. A large safety factor in the core q 0 >2.5 in deeply shear reversed configurations and a relatively large bulk ion Larmor radius in a low magnetic field can trigger global drift-kinetic Alfven eigenmodes that are unstable in high performance JET, NSTX and ITER plasmas. (author)

  10. Hydrazine Determination in Sludge Samples by High Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    G. Elias; G. A. Park

    2006-02-01

    A high-performance liquid chromatographic method using ultraviolet (UV) detection was developed to detect and quantify hydrazine in a variety of environmental matrices. The method was developed primarily for sludge samples, but it is also applicable to soil and water samples. The hydrazine in the matrices was derivatized to their hydrazones with benzaldehyde. The derivatized hydrazones were separated using high performance liquid chromatography (HPLC) with a reversed-phase C-18 column in an isocratic mode with methanol-water (95:5, v/v), and detected with UV detection at 313 nm. The detection limit (25 ml) for the new analytical method is 0.0067 mg ml-1of hydrazine. Hydrazine showed low recovery in soil samples because components in soil oxidized hydrazine. Sludge samples that contained relatively high soil content also showed lower recovery. The technique is relatively simple and cost-effective, and is applicable for hydrazine analysis in different environmental matrices.

  11. High Performance Descriptive Semantic Analysis of Semantic Graph Databases

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Adolf, Robert D.; al-Saffar, Sinan; Feo, John T.; Haglin, David J.; Mackey, Greg E.; Mizell, David W.

    2011-06-02

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to understand their inherent semantic structure, whether codified in explicit ontologies or not. Our group is researching novel methods for what we call descriptive semantic analysis of RDF triplestores, to serve purposes of analysis, interpretation, visualization, and optimization. But data size and computational complexity makes it increasingly necessary to bring high performance computational resources to bear on this task. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multi-threaded architecture of the Cray XMT platform, conventional servers, and large data stores. In this paper we describe that architecture and our methods, and present the results of our analyses of basic properties, connected components, namespace interaction, and typed paths such for the Billion Triple Challenge 2010 dataset.

  12. Unravelling the structure of matter on high-performance computers

    International Nuclear Information System (INIS)

    Kieu, T.D.; McKellar, B.H.J.

    1992-11-01

    The various phenomena and the different forms of matter in nature are believed to be the manifestation of only a handful set of fundamental building blocks-the elementary particles-which interact through the four fundamental forces. In the study of the structure of matter at this level one has to consider forces which are not sufficiently weak to be treated as small perturbations to the system, an example of which is the strong force that binds the nucleons together. High-performance computers, both vector and parallel machines, have facilitated the necessary non-perturbative treatments. The principles and the techniques of computer simulations applied to Quantum Chromodynamics are explained examples include the strong interactions, the calculation of the mass of nucleons and their decay rates. Some commercial and special-purpose high-performance machines for such calculations are also mentioned. 3 refs., 2 tabs

  13. High-performance scientific computing in the cloud

    Science.gov (United States)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  14. GPU-based high-performance computing for radiation therapy

    International Nuclear Information System (INIS)

    Jia, Xun; Jiang, Steve B; Ziegenhein, Peter

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. (topical review)

  15. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  16. Building and measuring a high performance network architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  17. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  18. High performance computing and communications: FY 1996 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-16

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

  19. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  20. Psychological Contract in High Performance Companies: The Pain and the Pleasure of being a Contemporary Worker

    Directory of Open Access Journals (Sweden)

    Diana Rebello Neves

    2014-08-01

    Full Text Available Broader changes in capitalist production structure outlined a scenario marked by fierce competition between companies, which is demanding a workforce increasingly committed and willing to devote much of his time to organizations (GREEN, 2001. This intense dedication of the worker involves aspects ranging from the increase in working hours, through the way of thinking in the organization, seen as an extension of their lives, until the option for work at the expense of personal life. It is in this context that organizations of traditional work have given way to organizations using the systems characterized by high work performance. These systems provide workers greater autonomy and control over their work processes, which give them greater responsibilities to solve technical and operational problems (APPELBAUM, 2002. Although there are many recent studies that address this new dynamic work (HUGHES, 2008; WOOD and MENEZES, 2011 they mostly tend to focus on explaining the characteristics of high performance work systems. However, few studies are devoted to better understand the motivations that lead individuals to work intensified pace and long hours, apparently voluntarily. Evidence of the growing adoption of high performance work systems, in the current context of labor relations, as well as the attractiveness that organizations adopting the exercise over a significant group of workers, motivated this research aimed to know the terms psychological contracts established between professional and high performance organizations.

  1. Renewing functionalized graphene as electrodes for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yan [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); Kang, Feiyu [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Zhi, Linjie [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); School of Materials Science and Engineering, University of Shanghai for Science and Technology, Jungong Road 516, 200093, Shanghai (China)

    2012-12-11

    An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Renewing functionalized graphene as electrodes for high-performance supercapacitors.

    Science.gov (United States)

    Fang, Yan; Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi; Kang, Feiyu; Zhi, Linjie

    2012-12-11

    An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enabling high performance computational science through combinatorial algorithms

    International Nuclear Information System (INIS)

    Boman, Erik G; Bozdag, Doruk; Catalyurek, Umit V; Devine, Karen D; Gebremedhin, Assefaw H; Hovland, Paul D; Pothen, Alex; Strout, Michelle Mills

    2007-01-01

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation

  4. Multi-Language Programming Environments for High Performance Java Computing

    OpenAIRE

    Vladimir Getov; Paul Gray; Sava Mintchev; Vaidy Sunderam

    1999-01-01

    Recent developments in processor capabilities, software tools, programming languages and programming paradigms have brought about new approaches to high performance computing. A steadfast component of this dynamic evolution has been the scientific community’s reliance on established scientific packages. As a consequence, programmers of high‐performance applications are reluctant to embrace evolving languages such as Java. This paper describes the Java‐to‐C Interface (JCI) tool which provides ...

  5. High-performance analysis of filtered semantic graphs

    OpenAIRE

    Buluç, A; Fox, A; Gilbert, JR; Kamil, S; Lugowski, A; Oliker, L; Williams, S

    2012-01-01

    High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry \\attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices ...

  6. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  7. Thermal and Hygric Expansion of High Performance Concrete

    OpenAIRE

    J. Toman; R. Černý

    2001-01-01

    The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on th...

  8. Combined high-performance liquid chromatography-radioimmunoassay for cytokinins

    International Nuclear Information System (INIS)

    MacDonald, E.M.S.; Akiyoshi, D.E.; Morris, R.O.

    1981-01-01

    The cytokinins isopentenyladenosine and ribosylzeatin were conjugated to bovine serum albumin and the conjugates used to raise antisera in rabbits. The resulting antisera had high specificity towards the cytokinin haptens and low cross-reactivity towards other purines. They were used as the basis for a radioimmunoassay for cytokinins, which, when applied in conjunction with high-performance liquid chromatography, allowed rapid and sensitive (to the picogram range) estimation and identification of multiple cytokinins from natural plant and bacterial sources. (orig.)

  9. High performance liquid chromatography in studies of radiolabeled antibodies

    International Nuclear Information System (INIS)

    Hnatowich, D.J.

    1986-01-01

    High performance liquid chromatography (HPLC) as applied to the separation of antibodies displays the same advantages as in its other applications, namely good resolution accompanied by fast analysis. It is therefore not surprising that many HPLC columns designed for use with antibodies and other proteins are now available commercially. The properties of proteins which provide the separation are size, hydrophobicity, charge and affinity. The features of each are discussed. (author)

  10. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Springer, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dakin, Bill [National Renewable Energy Lab. (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  11. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  12. Command vector memory systems: high performance at low cost

    OpenAIRE

    Corbal San Adrián, Jesús; Espasa Sans, Roger; Valero Cortés, Mateo

    1998-01-01

    The focus of this paper is on designing both a low cost and high performance, high bandwidth vector memory system that takes advantage of modern commodity SDRAM memory chips. To successfully extract the full bandwidth from SDRAM parts, we propose a new memory system organization based on sending commands to the memory system as opposed to sending individual addresses. A command specifies, in a few bytes, a request for multiple independent memory words. A command is similar to a burst found in...

  13. High Performance Parallel Multigrid Algorithms for Unstructured Grids

    Science.gov (United States)

    Frederickson, Paul O.

    1996-01-01

    We describe a high performance parallel multigrid algorithm for a rather general class of unstructured grid problems in two and three dimensions. The algorithm PUMG, for parallel unstructured multigrid, is related in structure to the parallel multigrid algorithm PSMG introduced by McBryan and Frederickson, for they both obtain a higher convergence rate through the use of multiple coarse grids. Another reason for the high convergence rate of PUMG is its smoother, an approximate inverse developed by Baumgardner and Frederickson.

  14. Enabling high performance computational science through combinatorial algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Erik G [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Bozdag, Doruk [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Catalyurek, Umit V [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Devine, Karen D [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Gebremedhin, Assefaw H [Computer Science and Center for Computational Science, Old Dominion University (United States); Hovland, Paul D [Mathematics and Computer Science Division, Argonne National Laboratory (United States); Pothen, Alex [Computer Science and Center for Computational Science, Old Dominion University (United States); Strout, Michelle Mills [Computer Science, Colorado State University (United States)

    2007-07-15

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation.

  15. A high performance scientific cloud computing environment for materials simulations

    OpenAIRE

    Jorissen, Kevin; Vila, Fernando D.; Rehr, John J.

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including...

  16. Factoring symmetric indefinite matrices on high-performance architectures

    Science.gov (United States)

    Jones, Mark T.; Patrick, Merrell L.

    1990-01-01

    The Bunch-Kaufman algorithm is the method of choice for factoring symmetric indefinite matrices in many applications. However, the Bunch-Kaufman algorithm does not take advantage of high-performance architectures such as the Cray Y-MP. Three new algorithms, based on Bunch-Kaufman factorization, that take advantage of such architectures are described. Results from an implementation of the third algorithm are presented.

  17. High-performance HR practices, positive affect and employee outcomes

    OpenAIRE

    Mostafa, Ahmed

    2017-01-01

    Purpose – The purpose of this paper is to provide insight into the affective or emotional mechanisms that underlie the relationship between high-performance HR practices (HPHRP) and employee attitudes and behaviours. Drawing on affective events theory (AET), this paper examines a mediation model in which HPHRP influence positive affect which in turn affects job satisfaction and organizational citizenship behaviours (OCBs). Design/methodology/approach – Two-wave data was collected from a sampl...

  18. Ultra-high Performance Liquid Chromatography in Steroid Analysis

    OpenAIRE

    Salonen, Fanny

    2017-01-01

    The latest version of liquid chromatography is ultra-high performance (or pressure) chromatography (UHPLC). In the technique, short and narrow-bore columns with particle sizes below 3 µm are used. The extremely high pressure used results in very short analysis times, excellent separation, and good resolution. This makes UHPLC a good choice for steroidal analysis. Steroids are a highly interesting area of study; they can be recognized as biomarkers for several diseases and are a relevant topic...

  19. Powder metallurgical high performance materials. Proceedings. Volume 3: general topics

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgy High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (boteke)

  20. Optical Thermal Characterization Enables High-Performance Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  1. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  2. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  3. High Performance Object-Oriented Scientific Programming in Fortran 90

    Science.gov (United States)

    Norton, Charles D.; Decyk, Viktor K.; Szymanski, Boleslaw K.

    1997-01-01

    We illustrate how Fortran 90 supports object-oriented concepts by example of plasma particle computations on the IBM SP. Our experience shows that Fortran 90 and object-oriented methodology give high performance while providing a bridge from Fortran 77 legacy codes to modern programming principles. All of our object-oriented Fortran 90 codes execute more quickly thatn the equeivalent C++ versions, yet the abstraction modelling capabilities used for scentific programming are comparably powereful.

  4. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  5. High-Performance Java Codes for Computational Fluid Dynamics

    Science.gov (United States)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  6. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, Alea [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  7. ELMs IN DIII-D HIGH PERFORMANCE DISCHARGES

    International Nuclear Information System (INIS)

    TURNBULL, A.D; LAO, L.L; OSBORNE, T.H; SAUTER, O; STRAIT, E.J; TAYLOR, T.S; CHU, M.S; FERRON, J.R; GREENFIELD, C.M; LEONARD, A.W; MILLER, R.L; SNYDER, P.B; WILSON, H.R; ZOHM, H

    2003-01-01

    A new understanding of edge localized modes (ELMs) in tokamak discharges is emerging [P.B. Snyder, et al., Phys. Plasmas, 9, 2037 (2002)], in which the ELM is an essentially ideal magnetohydrodynamic (MHD) instability and the ELM severity is determined by the radial width of the linearly unstable MHD kink modes. A detailed, comparative study of the penetration into the core of the respective linear instabilities in a standard DIII-D ELMing, high confinement mode (H-mode) discharge, with that for two relatively high performance discharges shows that these are also encompassed within the framework of the new model. These instabilities represent the key, limiting factor in extending the high performance of these discharges. In the standard ELMing H-mode, the MHD instabilities are highly localized in the outer few percent flux surfaces and the ELM is benign, causing only a small temporary drop in the energy confinement. In contrast, for both a very high confinement mode (VH-mode) and an H-mode with a broad internal transport barrier (ITB) extending over the entire core and coalesced with the edge transport barrier, the linearly unstable modes penetrate well into the mid radius and the corresponding consequences for global confinement are significantly more severe. The ELM accordingly results in an irreversible loss of the high performance

  8. Studies on high performance Timeslice building on the CBM FLES

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Helvi [Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    In contrast to already existing high energy physics experiments the Compressed Baryonic Matter (CBM) experiment collects all data untriggered. The First-level Event Selector (FLES), which denotes a high performance computer cluster, processes the very high incoming data rate of 1 TByte/s and performs a full online event reconstruction. For this task it needs to access the raw detector data in time intervals referred to as Timeslices. In order to construct the Timeslices, the FLES Timeslice building has to combine data from all input links and distribute them via a high-performance network to the compute nodes. For fast data transfer the Infiniband network has proven to be appropriate. One option to address the network is using Infiniband (RDMA) Verbs directly and potentially making best use of Infiniband. However, it is a very low-level implementation relying on the hardware and neglecting other possible network technologies in the future. Another approach is to apply a high-level API like MPI which is independent of the underlying hardware and suitable for less error prone software development. I present the given possibilities and show the results of benchmarks ran on high-performance computing clusters. The solutions are evaluated regarding the Timeslice building in CBM.

  9. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Quadros, Daiane P.C. de [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia [National Research Council of Italy, C.N.R., Instituto di Chimica dei Composti Organo Metallici – ICCOM – UOS Pisa, Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Borges, Daniel L.G. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); D' Ulivo, Alessandro, E-mail: dulivo@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Instituto di Chimica dei Composti Organo Metallici – ICCOM – UOS Pisa, Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2014-11-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg{sup 2+} to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO{sub 2} nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L{sup −1} for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials.

  10. High-performance web services for querying gene and variant annotation.

    Science.gov (United States)

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-05-06

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.

  11. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes.

    Science.gov (United States)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  12. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing......The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  13. Mis-expression of grainyhead-like transcription factors in zebrafish leads to defects in enveloping layer (EVL) integrity, cellular morphogenesis and axial extension.

    Science.gov (United States)

    Miles, Lee B; Darido, Charbel; Kaslin, Jan; Heath, Joan K; Jane, Stephen M; Dworkin, Sebastian

    2017-12-14

    The grainyhead-like (grhl) transcription factors play crucial roles in craniofacial development, epithelial morphogenesis, neural tube closure, and dorso-ventral patterning. By utilising the zebrafish to differentially regulate expression of family members grhl2b and grhl3, we show that both genes regulate epithelial migration, particularly convergence-extension (CE) type movements, during embryogenesis. Genetic deletion of grhl3 via CRISPR/Cas9 results in failure to complete epiboly and pre-gastrulation embryonic rupture, whereas morpholino (MO)-mediated knockdown of grhl3 signalling leads to aberrant neural tube morphogenesis at the midbrain-hindbrain boundary (MHB), a phenotype likely due to a compromised overlying enveloping layer (EVL). Further disruptions of grhl3-dependent pathways (through co-knockdown of grhl3 with target genes spec1 and arhgef19) confirm significant MHB morphogenesis and neural tube closure defects. Concomitant MO-mediated disruption of both grhl2b and grhl3 results in further extensive CE-like defects in body patterning, notochord and somite morphogenesis. Interestingly, over-expression of either grhl2b or grhl3 also leads to numerous phenotypes consistent with disrupted cellular migration during gastrulation, including embryo dorsalisation, axial duplication and impaired neural tube migration leading to cyclopia. Taken together, our study ascribes novel roles to the Grhl family in the context of embryonic development and morphogenesis.

  14. Development of low-cost high-performance multispectral camera system at Banpil

    Science.gov (United States)

    Oduor, Patrick; Mizuno, Genki; Olah, Robert; Dutta, Achyut K.

    2014-05-01

    Banpil Photonics (Banpil) has developed a low-cost high-performance multispectral camera system for Visible to Short- Wave Infrared (VIS-SWIR) imaging for the most demanding high-sensitivity and high-speed military, commercial and industrial applications. The 640x512 pixel InGaAs uncooled camera system is designed to provide a compact, smallform factor to within a cubic inch, high sensitivity needing less than 100 electrons, high dynamic range exceeding 190 dB, high-frame rates greater than 1000 frames per second (FPS) at full resolution, and low power consumption below 1W. This is practically all the feature benefits highly desirable in military imaging applications to expand deployment to every warfighter, while also maintaining a low-cost structure demanded for scaling into commercial markets. This paper describes Banpil's development of the camera system including the features of the image sensor with an innovation integrating advanced digital electronics functionality, which has made the confluence of high-performance capabilities on the same imaging platform practical at low cost. It discusses the strategies employed including innovations of the key components (e.g. focal plane array (FPA) and Read-Out Integrated Circuitry (ROIC)) within our control while maintaining a fabless model, and strategic collaboration with partners to attain additional cost reductions on optics, electronics, and packaging. We highlight the challenges and potential opportunities for further cost reductions to achieve a goal of a sub-$1000 uncooled high-performance camera system. Finally, a brief overview of emerging military, commercial and industrial applications that will benefit from this high performance imaging system and their forecast cost structure is presented.

  15. High-performance mass storage system for workstations

    Science.gov (United States)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive

  16. High Performance Computing in Science and Engineering '16 : Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  17. High performance computing in science and engineering '09: transactions of the High Performance Computing Center, Stuttgart (HLRS) 2009

    National Research Council Canada - National Science Library

    Nagel, Wolfgang E; Kröner, Dietmar; Resch, Michael

    2010-01-01

    ...), NIC/JSC (J¨ u lich), and LRZ (Munich). As part of that strategic initiative, in May 2009 already NIC/JSC has installed the first phase of the GCS HPC Tier-0 resources, an IBM Blue Gene/P with roughly 300.000 Cores, this time in J¨ u lich, With that, the GCS provides the most powerful high-performance computing infrastructure in Europe alread...

  18. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  19. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  20. Influence of different cusp coverage methods for the extension of ceramic inlays on marginal integrity and enamel crack formation in vitro.

    Science.gov (United States)

    Krifka, Stephanie; Stangl, Martin; Wiesbauer, Sarah; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne

    2009-09-01

    No information is available to date about cusp design of thin (1.0 mm) non-functional cusps and its influence upon (1) marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and (2) crack formation of dental tissues. The aim of this in vitro study was to investigate the effect of cusp coverage of thin non-functional cusps on marginal integrity and enamel crack formation. CI and PCC preparations were performed on extracted human molars. Non-functional cusps were adjusted to 1.0-mm wall thickness and 1.0-mm wall thickness with horizontal reduction of about 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were adhesively luted with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading. Marginal integrity was assessed by evaluating dye penetration after thermal cycling and mechanical loading. Enamel cracks were documented under a reflective-light microscope. The data were statistically analysed with the Mann-Whitney U test, the Fishers exact test (alpha = 0.05) and the error rates method. PCC with horizontal reduction of non-functional cusps showed statistically significant less microleakage than PCC without such a cusp coverage. Preparation designs with horizontal reduction of non-functional cusps showed a tendency to less enamel crack formation than preparation designs without cusp coverage. Thin non-functional cusp walls of adhesively bonded restorations should be completely covered or reduced to avoid enamel cracks and marginal deficiency.