Li, Xiaofan; Nie, Qing
2009-01-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...
Li, Xiaofan; Nie, Qing
2009-07-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.
A practical implementation of the higher-order transverse-integrated nodal diffusion method
International Nuclear Information System (INIS)
Prinsloo, Rian H.; Tomašević, Djordje I.; Moraal, Harm
2014-01-01
Highlights: • A practical higher-order nodal method is developed for diffusion calculations. • The method resolves the issue of the transverse leakage approximation. • The method achieves much superior accuracy as compared to standard nodal methods. • The calculational cost is only about 50% greater than standard nodal methods. • The method is packaged in a module for connection to existing nodal codes. - Abstract: Transverse-integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming of this approach is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work, an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher-order nodal methods developed some years ago. Further, a number of iteration schemes are developed around this consistent quadratic leakage approximation which yields accurate node average results in much improved calculational times. The most promising of these iteration schemes results from utilizing the consistent leakage approximation as a correction method to the standard quadratic leakage approximation. Numerical results are demonstrated on a set of benchmark problems and further applied to a realistic reactor problem, particularly the SAFARI-1 reactor, operating at Necsa, South Africa. The final optimal solution strategy is packaged into a standalone module which may simply be coupled to existing nodal diffusion codes
Exact and approximate interior corner problem in neutron diffusion by integral transform methods
International Nuclear Information System (INIS)
Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.
1976-09-01
The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem
Nodal integral method for the neutron diffusion equation in cylindrical geometry
International Nuclear Information System (INIS)
Azmy, Y.Y.
1987-01-01
The nodal methodology is based on retaining a higher a higher degree of analyticity in the process of deriving the discrete-variable equations compared to conventional numerical methods. As a result, extensive numerical testing of nodal methods developed for a wide variety of partial differential equations and comparison of the results to conventional methods have established the superior accuracy of nodal methods on coarse meshes. Moreover, these tests have shown that nodal methods are more computationally efficient than finite difference and finite-element methods in the sense that they require shorter CPU times to achieve comparable accuracy in the solutions. However, nodal formalisms and the final discrete-variable equations they produce are, in general, more complicated than their conventional counterparts. This, together with anticipated difficulties in applying the transverse-averaging procedure in curvilinear coordinates, has limited the applications of nodal methods, so far, to Cartesian geometry, and with additional approximations to hexagonal geometry. In this paper the authors report recent progress in deriving and numerically implementing a nodal integral method (NIM) for solving the neutron diffusion equation in cylindrical r-z geometry. Also, presented are comparisons of numerical solutions to two test problems with those obtained by the Exterminator-2 code, which indicate the superior accuracy of the nodal integral method solutions on much coarser meshes
Weres, Jerzy; Kujawa, Sebastian; Olek, Wiesław; Czajkowski, Łukasz
2016-04-01
Knowledge of physical properties of biomaterials is important in understanding and designing agri-food and wood processing industries. In the study presented in this paper computational methods were developed and combined with experiments to enhance identification of agri-food and forest product properties, and to predict heat and water transport in such products. They were based on the finite element model of heat and water transport and supplemented with experimental data. Algorithms were proposed for image processing, geometry meshing, and inverse/direct finite element modelling. The resulting software system was composed of integrated subsystems for 3D geometry data acquisition and mesh generation, for 3D geometry modelling and visualization, and for inverse/direct problem computations for the heat and water transport processes. Auxiliary packages were developed to assess performance, accuracy and unification of data access. The software was validated by identifying selected properties and using the estimated values to predict the examined processes, and then comparing predictions to experimental data. The geometry, thermal conductivity, specific heat, coefficient of water diffusion, equilibrium water content and convective heat and water transfer coefficients in the boundary layer were analysed. The estimated values, used as an input for simulation of the examined processes, enabled reduction in the uncertainty associated with predictions.
International Nuclear Information System (INIS)
Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.
1991-09-01
A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs
International Nuclear Information System (INIS)
Ritchie, A.B.; Riley, M.E.
1997-06-01
The authors have found that the conventional exponentiated split operator procedure is subject to difficulties in energy conservation when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. They report comparisons of this novel implicit split operator procedure with the conventional exponentiated split operator procedure on hydrogen atom solutions. The results look promising for a purely numerical approach to certain electron quantum mechanical problems
Maximum likelihood estimation for integrated diffusion processes
DEFF Research Database (Denmark)
Baltazar-Larios, Fernando; Sørensen, Michael
We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...
Energy Technology Data Exchange (ETDEWEB)
Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Bernacki, Bruce E.; Hanssen, Leonard; Gonzalez, Gerardo
2018-01-01
Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and the solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also
International Nuclear Information System (INIS)
Nilsson, Annica M.; Jonsson, Andreas; Jonsson, Jacob C.; Roos, Arne
2011-01-01
For most integrating sphere measurements, the difference in light distribution between a specular reference beam and a diffused sample beam can result in significant errors. The problem becomes especially pronounced in integrating spheres that include a port for reflectance or diffuse transmittance measurements. The port is included in many standard spectrophotometers to facilitate a multipurpose instrument, however, absorption around the port edge can result in a detected signal that is too low. The absorption effect is especially apparent for low-angle scattering samples, because a significant portion of the light is scattered directly onto that edge. In this paper, a method for more accurate transmittance measurements of low-angle light-scattering samples is presented. The method uses a standard integrating sphere spectrophotometer, and the problem with increased absorption around the port edge is addressed by introducing a diffuser between the sample and the integrating sphere during both reference and sample scan. This reduces the discrepancy between the two scans and spreads the scattered light over a greater portion of the sphere wall. The problem with multiple reflections between the sample and diffuser is successfully addressed using a correction factor. The method is tested for two patterned glass samples with low-angle scattering and in both cases the transmittance accuracy is significantly improved.
International Nuclear Information System (INIS)
Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko
2010-01-01
We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres. (author)
International Nuclear Information System (INIS)
Torej, Allen J.; Rizwan-Uddin
2001-01-01
The nodal integral method (NIM) has been developed for several problems, including the Navier-Stokes equations, the convection-diffusion equation, and the multigroup neutron diffusion equations. The coarse-mesh efficiency of the NIM is not fully realized in problems characterized by a wide range of spatial scales. However, the combination of adaptive mesh refinement (AMR) capability with the NIM can recover the coarse mesh efficiency by allowing high degrees of resolution in specific localized areas where it is needed and by using a lower resolution everywhere else. Furthermore, certain features of the NIM can be fruitfully exploited in the application of the AMR process. In this paper, we outline a general approach to couple nodal schemes with AMR and then apply it to the convection-diffusion (energy) equation. The development of the NIM with AMR capability (NIMAMR) is based on the well-known Berger-Oliger method for structured AMR. In general, the main components of all AMR schemes are 1. the solver; 2. the level-grid hierarchy; 3. the selection algorithm; 4. the communication procedures; 5. the governing algorithm. The first component, the solver, consists of the numerical scheme for the governing partial differential equations and the algorithm used to solve the resulting system of discrete algebraic equations. In the case of the NIM-AMR, the solver is the iterative approach to the solution of the set of discrete equations obtained by applying the NIM. Furthermore, in the NIM-AMR, the level-grid hierarchy (the second component) is based on the Hierarchical Adaptive Mesh Refinement (HAMR) system,6 and hence, the details of the hierarchy are omitted here. In the selection algorithm, regions of the domain that require mesh refinement are identified. The criterion to select regions for mesh refinement can be based on the magnitude of the gradient or on the Richardson truncation error estimate. Although an excellent choice for the selection criterion, the Richardson
Integrated Temperature Sensors based on Heat Diffusion
Van Vroonhoven, C.P.L.
2015-01-01
This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and
International Nuclear Information System (INIS)
Siefken, L.J.
1999-01-01
Preliminary designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. The uptake of hydrogen is limited to the equilibrium solubility calculated by applying Sievert's law. The uptake of hydrogen is an exothermic reaction that accelerates the heatup of a fuel rod. An embrittlement criteria is described that accounts for hydrogen and oxygen concentration and the extent of oxidation. A design is described for implementing the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5 code. A test matrix is described for assessing the impact of the proposed models on the calculated behavior of fuel rods in severe accident conditions. This report is a revision and reissue of the report entitled; ''Preliminary Design Report for Modeling of Hydrogen Uptake in Fuel Rod Cladding During Severe Accidents.''
Czech Academy of Sciences Publication Activity Database
Lánský, Petr; Ditlevsen, S.
2008-01-01
Roč. 99, 4-5 (2008), s. 253-262 ISSN 0340-1200 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401 Institutional research plan: CEZ:AV0Z50110509 Keywords : parameter estimation * stochastic diffusion neuronal model Subject RIV: BO - Biophysics Impact factor: 1.935, year: 2008
Galerkin method for solving diffusion equations
International Nuclear Information System (INIS)
Tsapelkin, E.S.
1975-01-01
A programme for the solution of the three-dimensional two-group multizone neutron diffusion problem in (x, y, z)-geometry is described. The programme XYZ-5 gives the currents of both groups, the effective neutron multiplication coefficient and several integral properties of the reactor. The solution was found with the Galerkin method using speciallly constructed and chosen coordinate functions. The programme is written in ALGOL-60 and consists of 5 parts. Its text is given
Path Integral Formulation of Anomalous Diffusion Processes
Friedrich, Rudolf; Eule, Stephan
2011-01-01
We present the path integral formulation of a broad class of generalized diffusion processes. Employing the path integral we derive exact expressions for the path probability densities and joint probability distributions for the class of processes under consideration. We show that Continuous Time Random Walks (CTRWs) are included in our framework. A closed expression for the path probability distribution of CTRWs is found in terms of their waiting time distribution as the solution of a Dyson ...
Measuring methods of matrix diffusion
International Nuclear Information System (INIS)
Muurinen, A.; Valkiainen, M.
1988-03-01
In Finland the spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. The radionuclides which are dissolved in the groundwater may be able to diffuse into the micropores of the porous rock matrix and thus be withdrawn from the flowing water in the fractures. This phenomenon is called matrix diffusion. A review over matrix diffusion is presented in the study. The main interest is directed to the diffusion of non-sorbing species. The review covers diffusion experiments and measurements of porosity, pore size, specific surface area and water permeability
Homotopy analysis method for neutron diffusion calculations
International Nuclear Information System (INIS)
Cavdar, S.
2009-01-01
The Homotopy Analysis Method (HAM), proposed in 1992 by Shi Jun Liao and has been developed since then, is based on a fundamental concept in differential geometry and topology, the homotopy. It has proved useful for problems involving algebraic, linear/non-linear, ordinary/partial differential and differential-integral equations being an analytic, recursive method that provides a series sum solution. It has the advantage of offering a certain freedom for the choice of its arguments such as the initial guess, the auxiliary linear operator and the convergence control parameter, and it allows us to effectively control the rate and region of convergence of the series solution. HAM is applied for the fixed source neutron diffusion equation in this work, which is a part of our research motivated by the question of whether methods for solving the neutron diffusion equation that yield straightforward expressions but able to provide a solution of reasonable accuracy exist such that we could avoid analytic methods that are widely used but either fail to solve the problem or provide solutions through many intricate expressions that are likely to contain mistakes or numerical methods that require powerful computational resources and advanced programming skills due to their very nature or intricate mathematical fundamentals. Fourier basis are employed for expressing the initial guess due to the structure of the problem and its boundary conditions. We present the results in comparison with other widely used methods of Adomian Decomposition and Variable Separation.
Mathematical methods for diffusion MRI processing
International Nuclear Information System (INIS)
Lenglet, C.; Lenglet, C.; Sapiro, G.; Campbell, J.S.W.; Pike, G.B.; Campbell, J.S.W.; Siddiqi, K.; Descoteaux, M.; Haro, G.; Wassermann, D.; Deriche, R.; Wassermann, D.; Anwander, A.; Thompson, P.M.
2009-01-01
In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). (authors)
Nodal spectrum method for solving neutron diffusion equation
International Nuclear Information System (INIS)
Sanchez, D.; Garcia, C. R.; Barros, R. C. de; Milian, D.E.
1999-01-01
Presented here is a new numerical nodal method for solving static multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X, Y directions and then considering flat approximations for the current. These flat approximations are the only approximations that are considered in this method, as a result the numerical solutions are completely free from truncation errors. We show numerical results to illustrate the methods accuracy for coarse mesh calculations
Verification of the integrity of barriers using gas diffusion
International Nuclear Information System (INIS)
Ward, D.B.; Williams, C.V.
1997-06-01
In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier's integrity after emplacement, and monitoring of the barrier's performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF 6 ) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF 6 diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF 6 through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days
Multiscale integration schemes for jump-diffusion systems
Energy Technology Data Exchange (ETDEWEB)
Givon, D.; Kevrekidis, I.G.
2008-12-09
We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration method and the slow components of the original system.
Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations
Alzahrani, Hasnaa H.
2016-01-01
A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge
Diffusion weighted imaging by MR method
International Nuclear Information System (INIS)
Horikawa, Yoshiharu; Naruse, Shoji; Ebisu, Toshihiko; Tokumitsu, Takuaki; Ueda, Satoshi; Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro.
1993-01-01
Diffusion weighted magnetic resonance imaging is a recently developed technique used to examine the micromovement of water molecules in vivo. We have applied this technique to examine various kinds of brain diseases, both experimentally and clinically. The calculated apparent diffusion coefficient (ADC) in vivo showed reliable values. In experimentally induced brain edema in rats, the pathophysiological difference of the type of edema (such as cytotoxic, and vasogenic) could be differentiated on the diffusion weighted MR images. Cytotoxic brain edema showed high intensity (slower diffusion) on the diffusion weighted images. On the other hand, vasogenic brain edema showed a low intensity image (faster diffusion). Diffusion anisotropy was demonstrated according to the direction of myelinated fibers and applied motion proving gradient (MPG). This anisotropy was also demonstrated in human brain tissue along the course of the corpus callosum, pyramidal tract and optic radiation. In brain ischemia cases, lesions were detected as high signal intensity areas, even one hour after the onset of ischemia. Diffusion was faster in brain tumor compared with normal brain. Histological differences were not clearly reflected by the ADC value. In epidermoid tumor cases, the intensity was characteristically high, was demonstrated, and the cerebrospinal fluid border was clearly demonstrated. New clinical information obtainable with this molecular diffusion method will prove to be useful in various clinical studies. (author)
On the integrability of the generalized Fisher-type nonlinear diffusion equations
International Nuclear Information System (INIS)
Wang Dengshan; Zhang Zhifei
2009-01-01
In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2
Entropy methods for diffusive partial differential equations
Jüngel, Ansgar
2016-01-01
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
Diffusion in periodic potentials with path integral hyperdynamics.
Ikonen, T; Khandkar, M D; Chen, L Y; Ying, S C; Ala-Nissila, T
2011-08-01
We consider the diffusion of brownian particles in one-dimensional periodic potentials as a test bench for the recently proposed stochastic path integral hyperdynamics (PIHD) scheme [Chen and Horing, J. Chem. Phys. 126, 224103 (2007)]. First, we consider the case where PIHD is used to enhance the transition rate of activated rare events. To this end, we study the diffusion of a single brownian particle moving in a spatially periodic potential in the high-friction limit at low temperature. We demonstrate that the boost factor as compared to straight molecular dynamics (MD) has nontrivial behavior as a function of the bias force. Instead of growing monotonically with the bias, the boost attains an optimal maximum value due to increased error in the finite path sampling induced by the bias. We also observe that the PIHD method can be sensitive to the choice of numerical integration algorithm. As the second case, we consider parallel resampling of multiple bias force values in the case of a brownian particle in a periodic potential subject to an external ac driving force. We confirm that there is no stochastic resonance in this system. However, while the PIHD method allows one to obtain data for multiple values of the ac bias, the boost with respect to MD remains modest due to the simplicity of the equation of motion in this case.
Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes
Mehrer, Helmut
2007-01-01
Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.
A multigrid Newton-Krylov method for flux-limited radiation diffusion
International Nuclear Information System (INIS)
Rider, W.J.; Knoll, D.A.; Olson, G.L.
1998-01-01
The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques
Outcomes of Diffusion Tensor Tractography-Integrated Stereotactic Radiosurgery
Energy Technology Data Exchange (ETDEWEB)
Koga, Tomoyuki, E-mail: kouga-tky@umin.ac.jp [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Maruyama, Keisuke; Kamada, Kyousuke; Ota, Takahiro; Shin, Masahiro [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Itoh, Daisuke [Department of Radiology, University of Tokyo Hospital, Tokyo (Japan); Kunii, Naoto [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Ino, Kenji; Terahara, Atsuro; Aoki, Shigeki; Masutani, Yoshitaka [Department of Radiology, University of Tokyo Hospital, Tokyo (Japan); Saito, Nobuhito [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan)
2012-02-01
Purpose: To analyze the effect of use of tractography of the critical brain white matter fibers created from diffusion tensor magnetic resonance imaging on reduction of morbidity associated with radiosurgery. Methods and Materials: Tractography of the pyramidal tract has been integrated since February 2004 if lesions are adjacent to it, the optic radiation since May 2006, and the arcuate fasciculus since October 2007. By visually confirming the precise location of these fibers, the dose to these fiber tracts was optimized. One hundred forty-four consecutive patients with cerebral arteriovenous malformations who underwent radiosurgery with this technique between February 2004 and December 2009 were analyzed. Results: Tractography was prospectively integrated in 71 of 155 treatments for 144 patients. The pyramidal tract was visualized in 45, the optic radiation in 22, and the arcuate fasciculus in 13 (two tracts in 9). During the follow-up period of 3 to 72 months (median, 23 months) after the procedure, 1 patient showed permanent worsening of pre-existing dysesthesia, and another patient exhibited mild transient hemiparesis 12 months later but fully recovered after oral administration of corticosteroid agents. Two patients had transient speech disturbance before starting integration of the arcuate fasciculus tractography, but no patient thereafter. Conclusion: Integrating tractography helped prevent morbidity of radiosurgery in patients with brain arteriovenous malformations.
International Nuclear Information System (INIS)
Ozgener, B.
1998-01-01
A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation
Design Method for Channel Diffusers of Centrifugal Compressors
Directory of Open Access Journals (Sweden)
Mykola Kalinkevych
2013-01-01
Full Text Available The design method for channel diffusers of centrifugal compressors, which is based on the solving of the inverse problem of gas dynamics, is presented in the paper. The concept of the design is to provide high pressure recovery of the diffuser by assuming the preseparation condition of the boundary layer along one of the channel surfaces. The channel diffuser was designed with the use of developed method to replace the vaned diffuser of the centrifugal compressor model stage. The numerical simulation of the diffusers was implemented by means of CFD software. Obtained gas dynamic characteristics of the designed diffuser were compared to the base vaned diffuser of the compressor stage.
Smith, Rachel A; Kim, Youllee; Zhu, Xun; Doudou, Dimi Théodore; Sternberg, Eleanore D; Thomas, Matthew B
2018-01-01
This study documents an investigation into the adoption and diffusion of eave tubes, a novel mosquito vector control, during a large-scale scientific field trial in West Africa. The diffusion of innovations (DOI) and the integrated model of behavior (IMB) were integrated (i.e., innovation attributes with attitudes and social pressures with norms) to predict participants' (N = 329) diffusion intentions. The findings showed that positive attitudes about the innovation's attributes were a consistent positive predictor of diffusion intentions: adopting it, maintaining it, and talking with others about it. As expected by the DOI and the IMB, the social pressure created by a descriptive norm positively predicted intentions to adopt and maintain the innovation. Drawing upon sharing research, we argued that the descriptive norm may dampen future talk about the innovation, because it may no longer be seen as a novel, useful topic to discuss. As predicted, the results showed that as the descriptive norm increased, the intention to talk about the innovation decreased. These results provide broad support for integrating the DOI and the IMB to predict diffusion and for efforts to draw on other research to understand motivations for social diffusion.
Analysis and visualization methods for interpretation of diffusion MRI data
Vos, S.B.
2013-01-01
Diffusion MRI is an imaging technique that is very sensitive to microstructural changes in tissue. Diffusion tensor MRI, the most commonly used method, can estimate the magnitude and anisotropy of diffusion. These tensor-based diffusion parameters have been shown to change in many neuropathological
Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations
Alzahrani, Hasnaa H.
2016-07-26
A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.
Simulation of anisotropic diffusion by means of a diffusion velocity method
Beaudoin, A; Rivoalen, E
2003-01-01
An alternative method to the Particle Strength Exchange method for solving the advection-diffusion equation in the general case of a non-isotropic and non-uniform diffusion is proposed. This method is an extension of the diffusion velocity method. It is shown that this extension is quite straightforward due to the explicit use of the diffusion flux in the expression of the diffusion velocity. This approach is used to simulate pollutant transport in groundwater and the results are compared to those of the PSE method presented in an earlier study by Zimmermann et al.
International Nuclear Information System (INIS)
Zhou, Xiafeng; Guo, Jiong; Li, Fu
2015-01-01
Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of
Energy Technology Data Exchange (ETDEWEB)
Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn
2015-12-15
Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of
Spectral nodal method for one-speed X,Y-geometry Eigenvalue diffusion problems
International Nuclear Information System (INIS)
Dominguez, Dany S.; Lorenzo, Daniel M.; Hernandez, Carlos G.; Barros, Ricardo C.; Silva, Fernando C. da
2001-01-01
Presented here is a new numerical nodal method for steady-state multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the transverse-integrated nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X and Y directions, and then considering flat approximations for the transverse leakage terms. These flat approximations are the only approximations that we consider in this method; as a result the numerical solutions are completely free from truncation errors in slab geometry. We show numerical results to illustrate the method's accuracy for coarse mesh calculations in a heterogeneous medium. (author)
Statistical Methods in Integrative Genomics
Richardson, Sylvia; Tseng, George C.; Sun, Wei
2016-01-01
Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions. PMID:27482531
Diverse methods for integrable models
Fehér, G.
2017-01-01
This thesis is centered around three topics, sharing integrability as a common theme. This thesis explores different methods in the field of integrable models. The first two chapters are about integrable lattice models in statistical physics. The last chapter describes an integrable quantum chain.
Diffuse interface methods for multiphase flow modeling
International Nuclear Information System (INIS)
Jamet, D.
2004-01-01
Full text of publication follows:Nuclear reactor safety programs need to get a better description of some stages of identified incident or accident scenarios. For some of them, such as the reflooding of the core or the dryout of fuel rods, the heat, momentum and mass transfers taking place at the scale of droplets or bubbles are part of the key physical phenomena for which a better description is needed. Experiments are difficult to perform at these very small scales and direct numerical simulations is viewed as a promising way to give new insight into these complex two-phase flows. This type of simulations requires numerical methods that are accurate, efficient and easy to run in three space dimensions and on parallel computers. Despite many years of development, direct numerical simulation of two-phase flows is still very challenging, mostly because it requires solving moving boundary problems. To avoid this major difficulty, a new class of numerical methods is arising, called diffuse interface methods. These methods are based on physical theories dating back to van der Waals and mostly used in materials science. In these methods, interfaces separating two phases are modeled as continuous transitions zones instead of surfaces of discontinuity. Since all the physical variables encounter possibly strong but nevertheless always continuous variations across the interfacial zones, these methods virtually eliminate the difficult moving boundary problem. We show that these methods lead to a single-phase like system of equations, which makes it easier to code in 3D and to make parallel compared to more classical methods. The first method presented is dedicated to liquid-vapor flows with phase-change. It is based on the van der Waals' theory of capillarity. This method has been used to study nucleate boiling of a pure fluid and of dilute binary mixtures. We discuss the importance of the choice and the meaning of the order parameter, i.e. a scalar which discriminates one
Diffusion in condensed matter methods, materials, models
Kärger, Jörg
2005-01-01
Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.
CALCULATIONS OF DOUBLE IMPURITY DIFFUSION IN INTEGRATED CIRCUIT PRODUCTION
Directory of Open Access Journals (Sweden)
V. A. Bondarev
2005-01-01
Full Text Available Analytical formulae for calculating simultaneous diffusion of two impurities in silicon are presented. The formulae are based on analytical solutions of diffusion equations that have been obtained for the first time by the author while using some special mathematical functions. In contrast to usual formal mathematical approaches, new functions are determined in the process of investigation of real physical models. Algorithms involve some important relations from thermodynamics of irreversible processes and also variational thermodynamic functionals that were previously obtained by the author for transfer processes. Calculations considerably reduce the time required for development of new integrated circuits.
Spin diffusion from an inhomogeneous quench in an integrable system.
Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž
2017-07-13
Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
The dynamics of multimodal integration: The averaging diffusion model.
Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James
2017-12-01
We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.
An accurate method for the determination of unlike potential parameters from thermal diffusion data
International Nuclear Information System (INIS)
El-Geubeily, S.
1997-01-01
A new method is introduced by means of which the unlike intermolecular potential parameters can be determined from the experimental measurements of the thermal diffusion factor as a function of temperature. The method proved to be easy, accurate, and applicable two-, three-, and four-parameter potential functions whose collision integrals are available. The potential parameters computed by this method are found to provide a faith full representation of the thermal diffusion data under consideration. 3 figs., 4 tabs
International Nuclear Information System (INIS)
Chih-Lung Chen; Institute of Nuclear Energy Research, Taoyuan, Taiwan; Tsing-Hai Wang; Shi-Ping Teng; Ching-Hor Lee
2014-01-01
Diffusion is a dominant mechanism regulating the transport of released nuclides. The through-diffusion method is typically applied to determine the diffusion coefficients (D). Depending on the design of the experiment, the concentrations in the source term [i.e., inlet reservoir (IR)] or the end term [i.e., outlet reservoir (OR)] can be fixed or vary. The combinations involve four distinct models (i.e., the CC-CC model, CC-VC model, VC-CC model, and the VC-VC model). Studies discussing the VC-CC model are scant. An analytical method considering the decay effect is required to accurately interpret the radioactive nuclide diffusion experiment results. Therefore, we developed a CC-CC model and a CC-VC model with a decay effect and the simplified formulas of these two models to determine the diffusion coefficient (i.e., the CC-CC method and CC-VC method). We also proposed two simplified methods using the VC-VC model to determine the diffusion coefficient straightforwardly based upon the concentration variation in IR and OR. More importantly, the best advantage of proposed method over others is that one can derive three diffusion coefficients based on one run of experiment. In addition, applying our CC-VC method to those data reported from Radiochemica Acta 96:111-117, 2008; and J Contam Hydrol 35:55-65, 1998, derived comparable diffusion coefficient lying in the identical order of magnitude. Furthermore, we proposed a formula to determine the conceptual critical time (Tc), which is particularly beneficial for the selection of using CC-VC or VC-VC method. Based on our proposed method, it becomes possible to calculate diffusion coefficient from a through-diffusion experiment in a shorter period of time. (author)
Diffuse-Interface Methods in Fluid Mechanics
Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.
1997-01-01
The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
Integral equation methods for electromagnetics
Volakis, John
2012-01-01
This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo
Multitracer method of diffusion measurement in chromium-manganese steels
International Nuclear Information System (INIS)
Dudala, J.; Stegowski, Z.; Gilewicz-Wolter, J.
2004-01-01
The paper presents an application of multitracer method to diffusion measurement in Cr-Mn steels. Radioisotope tracers of chromium 51 Cr, manganese 54 Mn and iron 59 Fe were used simultaneously in the diffusion process, Gamma-spectrum measurement and the proper analysis enabled evaluation of concentration distribution for each tracer. As a new tool, artificial neural networks (ANN) method was used for spectrum analysis. The proper solution of the diffusion model was applied to the experimental tracers' distribution data and diffusion coefficients were determined. (author)
International Nuclear Information System (INIS)
Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.
1982-11-01
A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations
Current trends in methods for neutron diffusion calculations
International Nuclear Information System (INIS)
Adams, C.H.
1977-01-01
Current work and trends in the application of neutron diffusion theory to reactor design and analysis are reviewed. Specific topics covered include finite-difference methods, synthesis methods, nodal calculations, finite-elements and perturbation theory
Determination of ion diffusion coefficients by the electromigration method
International Nuclear Information System (INIS)
Bonchev, G.D.; Milanov, M.V.; Bozhikov, G.A.; Ivanov, P.I.; Priemyshev, A.N.; Maslov, O.D.; Dmitriev, S.N.
2003-01-01
An electrophoretic method for measuring ion diffusion coefficients in aqueous solutions is developed. The value of the diffusion coefficient can be determined from the linear relationship between the square standard deviation of the electrophoretic zone and the time from the start of the diffusion process. Using the device for horizontal zone electrophoresis in a free electrolyte, a series of diffusion experiments are performed with no-carrier-added radionuclides in microconcentrations (10 -9 - 10 -10 M). Diffusion coefficients of 111 In(III), 175 Hf(IV) and 237 Pu(VI) ions at 25 0 C are determined in nitric acid media. Simultaneous determination of the diffusion coefficient and electrophoretic mobility allows one to calculate the effective charge of the investigated ions in accordance with the Nernst-Einstein law
Analytic Method for Pressure Recovery in Truncated Diffusers ...
African Journals Online (AJOL)
A prediction method is presented for the static pressure recovery in subsonic axisymmetric truncated conical diffusers. In the analysis, a turbulent boundary layer is assumed at the diffuser inlet and a potential core exists throughout the flow. When flow separation occurs, this approach cannot be used to predict the maximum ...
Sharp, Benjamin E; Miller, Shelie A
2016-03-15
Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts. Diffusion of innovation is an established field of research that analyzes the adoption of new innovations, and its principles can be used to construct scenario models that enhance LCA of emerging technologies. Integrating diffusion modeling techniques with an LCA of emerging technology can provide estimates for the extent of market penetration, the displacement of existing systems, and the rate of adoption. Two general perspectives of application are macro-level diffusion models that use a function of time to represent adoption, and microlevel diffusion models that simulate adoption through interactions of individuals. Incorporating diffusion of innovation concepts complement existing methods within LCA to inform proactive environmental management of emerging technologies.
New complex variable meshless method for advection—diffusion problems
International Nuclear Information System (INIS)
Wang Jian-Fei; Cheng Yu-Min
2013-01-01
In this paper, an improved complex variable meshless method (ICVMM) for two-dimensional advection—diffusion problems is developed based on improved complex variable moving least-square (ICVMLS) approximation. The equivalent functional of two-dimensional advection—diffusion problems is formed, the variation method is used to obtain the equation system, and the penalty method is employed to impose the essential boundary conditions. The difference method for two-point boundary value problems is used to obtain the discrete equations. Then the corresponding formulas of the ICVMM for advection—diffusion problems are presented. Two numerical examples with different node distributions are used to validate and inestigate the accuracy and efficiency of the new method in this paper. It is shown that ICVMM is very effective for advection—diffusion problems, and has a good convergent character, accuracy, and computational efficiency
New diffusion imaging method with a single acquisition sequence
International Nuclear Information System (INIS)
Melki, Ph.S.; Bittoun, J.; Lefevre, J.E.
1987-01-01
The apparent diffusion coefficient (ADC) is related to the molecular diffusion coefficient and to physiologic information: microcirculation in the capillary network, incoherent slow flow, and restricted diffusion. The authors present a new MR imaging sequence that yields computed ADC images in only one acquisition of 9-minutes with a 1.5-T imager (GE Signa). Compared to the previous method, this sequence is at least two times faster and thus can be used as a routine examination to supplement T1-, T2-, and density-weighted images. The method was assessed by measurement of the molecular diffusion in liquids, and the first clinical images obtained in neurologic diseases demonstrate its efficiency for clinical investigation. The possibility of separately imaging diffusion and perfusion is supported by an algorithm
A method for optimizing the cosine response of solar UV diffusers
Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki
2013-07-01
Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.
Qualitative methods for the study of policy diffusion
DEFF Research Database (Denmark)
Starke, Peter
2013-01-01
This article deals with the question whether and how processes of policy diffusion can be examined with qualitative methods. More specifically, how can qualitative methods address the “twin challenge of interdependence,” namely the challenge to identify diffusion, on the one hand, and the challen...... closes with some suggestions for further methodological development in the study of policy diffusion, including the combination of quantitative and qualitative methods.......This article deals with the question whether and how processes of policy diffusion can be examined with qualitative methods. More specifically, how can qualitative methods address the “twin challenge of interdependence,” namely the challenge to identify diffusion, on the one hand, and the challenge...... to discriminate between mechanisms of diffusion, on the other? I argue, first, that there are three distinct qualitative techniques that can be used, namely cross-case analysis (often based on systematic case selection), within-case process tracing, and counterfactual reasoning. I demonstrate how these techniques...
Novel immunoassay formats for integrated microfluidic circuits: diffusion immunoassays (DIA)
Weigl, Bernhard H.; Hatch, Anson; Kamholz, Andrew E.; Yager, Paul
2000-03-01
Novel designs of integrated fluidic microchips allow separations, chemical reactions, and calibration-free analytical measurements to be performed directly in very small quantities of complex samples such as whole blood and contaminated environmental samples. This technology lends itself to applications such as clinical diagnostics, including tumor marker screening, and environmental sensing in remote locations. Lab-on-a-Chip based systems offer many *advantages over traditional analytical devices: They consume extremely low volumes of both samples and reagents. Each chip is inexpensive and small. The sampling-to-result time is extremely short. They perform all analytical functions, including sampling, sample pretreatment, separation, dilution, and mixing steps, chemical reactions, and detection in an integrated microfluidic circuit. Lab-on-a-Chip systems enable the design of small, portable, rugged, low-cost, easy to use, yet extremely versatile and capable diagnostic instruments. In addition, fluids flowing in microchannels exhibit unique characteristics ('microfluidics'), which allow the design of analytical devices and assay formats that would not function on a macroscale. Existing Lab-on-a-chip technologies work very well for highly predictable and homogeneous samples common in genetic testing and drug discovery processes. One of the biggest challenges for current Labs-on-a-chip, however, is to perform analysis in the presence of the complexity and heterogeneity of actual samples such as whole blood or contaminated environmental samples. Micronics has developed a variety of Lab-on-a-Chip assays that can overcome those shortcomings. We will now present various types of novel Lab- on-a-Chip-based immunoassays, including the so-called Diffusion Immunoassays (DIA) that are based on the competitive laminar diffusion of analyte molecules and tracer molecules into a region of the chip containing antibodies that target the analyte molecules. Advantages of this
How thin barrier metal can be used to prevent Co diffusion in the modern integrated circuits?
International Nuclear Information System (INIS)
Dixit, Hemant; Konar, Aniruddha; Pandey, Rajan; Ethirajan, Tamilmani
2017-01-01
In modern integrated circuits (ICs), billions of transistors are connected to each other via thin metal layers (e.g. copper, cobalt, etc) known as interconnects. At elevated process temperatures, inter-diffusion of atomic species can occur among these metal layers, causing sub-optimal performance of interconnects, which may lead to the failure of an IC. Thus, typically a thin barrier metal layer is used to prevent the inter-diffusion of atomic species within interconnects. For ICs with sub-10 nm transistors (10 nm technology node), the design rule (thickness scaling) demands the thinnest possible barrier layer. Therefore, here we investigate the critical thickness of a titanium–nitride (TiN) barrier that can prevent the cobalt diffusion using multi-scale modeling and simulations. First, we compute the Co diffusion barrier in crystalline and amorphous TiN with the nudged elastic band method within first-principles density functional theory simulations. Later, using the calculated activation energy barriers, we quantify the Co diffusion length in the TiN metal layer with the help of kinetic Monte Carlo simulations. Such a multi-scale modelling approach yields an exact critical thickness of the metal layer sufficient to prevent the Co diffusion in IC interconnects. We obtain a diffusion length of a maximum of 2 nm for a typical process of thermal annealing at 400 °C for 30 min. Our study thus provides useful physical insights for the Co diffusion in the TiN layer and further quantifies the critical thickness (∼2 nm) to which the metal barrier layer can be thinned down for sub-10 nm ICs. (paper)
How thin barrier metal can be used to prevent Co diffusion in the modern integrated circuits?
Dixit, Hemant; Konar, Aniruddha; Pandey, Rajan; Ethirajan, Tamilmani
2017-11-01
In modern integrated circuits (ICs), billions of transistors are connected to each other via thin metal layers (e.g. copper, cobalt, etc) known as interconnects. At elevated process temperatures, inter-diffusion of atomic species can occur among these metal layers, causing sub-optimal performance of interconnects, which may lead to the failure of an IC. Thus, typically a thin barrier metal layer is used to prevent the inter-diffusion of atomic species within interconnects. For ICs with sub-10 nm transistors (10 nm technology node), the design rule (thickness scaling) demands the thinnest possible barrier layer. Therefore, here we investigate the critical thickness of a titanium-nitride (TiN) barrier that can prevent the cobalt diffusion using multi-scale modeling and simulations. First, we compute the Co diffusion barrier in crystalline and amorphous TiN with the nudged elastic band method within first-principles density functional theory simulations. Later, using the calculated activation energy barriers, we quantify the Co diffusion length in the TiN metal layer with the help of kinetic Monte Carlo simulations. Such a multi-scale modelling approach yields an exact critical thickness of the metal layer sufficient to prevent the Co diffusion in IC interconnects. We obtain a diffusion length of a maximum of 2 nm for a typical process of thermal annealing at 400 °C for 30 min. Our study thus provides useful physical insights for the Co diffusion in the TiN layer and further quantifies the critical thickness (~2 nm) to which the metal barrier layer can be thinned down for sub-10 nm ICs.
International Nuclear Information System (INIS)
Coulomb, F.
1989-06-01
The aim of this work is to study methods for solving the diffusion equation, based on a primal or mixed-dual finite elements discretization and well suited for use on multiprocessors computers; domain decomposition methods are the subject of the main part of this study, the linear systems being solved by the block-Jacobi method. The origin of the diffusion equation is explained in short, and various variational formulations are reminded. A survey of iterative methods is given. The elemination of the flux or current is treated in the case of a mixed method. Numerical tests are performed on two examples of reactors, in order to compare mixed elements and Lagrange elements. A theoretical study of domain decomposition is led in the case of Lagrange finite elements, and convergence conditions for the block-Jacobi method are derived; the dissection decomposition is previously the purpose of a particular numerical analysis. In the case of mixed-dual finite elements, a study is led on examples and is confirmed by numerical tests performed for the dissection decomposition; furthermore, after being justified, decompositions along axes of symmetry are numerically tested. In the case of a decomposition into two subdomains, the dissection decomposition and the decomposition with an integrated interface are compared. Alternative directions methods are defined; the convergence of those relative to Lagrange elements is shown; in the case of mixed elements, convergence conditions are found [fr
Diffusion-synthetic acceleration methods for discrete-ordinates problems
International Nuclear Information System (INIS)
Larsen, E.W.
1984-01-01
The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas behind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems an the status of current efforts aimed at solving these problems
International Nuclear Information System (INIS)
Cardon, Clement
2016-01-01
This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr
International Nuclear Information System (INIS)
Brown, Peter N.; Shumaker, Dana E.; Woodward, Carol S.
2005-01-01
We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton-Krylov nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time integration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated opacities and highly nonlinear fusion source terms
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
Diffusion accessibility as a method for visualizing macromolecular surface geometry.
Tsai, Yingssu; Holton, Thomas; Yeates, Todd O
2015-10-01
Important three-dimensional spatial features such as depth and surface concavity can be difficult to convey clearly in the context of two-dimensional images. In the area of macromolecular visualization, the computer graphics technique of ray-tracing can be helpful, but further techniques for emphasizing surface concavity can give clearer perceptions of depth. The notion of diffusion accessibility is well-suited for emphasizing such features of macromolecular surfaces, but a method for calculating diffusion accessibility has not been made widely available. Here we make available a web-based platform that performs the necessary calculation by solving the Laplace equation for steady state diffusion, and produces scripts for visualization that emphasize surface depth by coloring according to diffusion accessibility. The URL is http://services.mbi.ucla.edu/DiffAcc/. © 2015 The Protein Society.
ASPECTS OF INTEGRATION MANAGEMENT METHODS
Directory of Open Access Journals (Sweden)
Artemy Varshapetian
2015-10-01
Full Text Available For manufacturing companies to succeed in today's unstable economic environment, it is necessary to restructure the main components of its activities: designing innovative product, production using modern reconfigurable manufacturing systems, a business model that takes into account the global strategy and management methods using modern management models and tools. The first three components are discussed in numerous publications, for example, (Koren, 2010 and is therefore not considered in the article. A large number of publications devoted to the methods and tools of production management, for example (Halevi, 2007. On the basis of what was said in the article discusses the possibility of the integration of only three methods have received in recent years, the most widely used, namely: Six Sigma method - SS (George et al., 2005 and supplements its-Design for six sigm? - DFSS (Taguchi, 2003; Lean production transformed with the development to the "Lean management" and further to the "Lean thinking" - Lean (Hirano et al., 2006; Theory of Constraints, developed E.Goldratt - TOC (Dettmer, 2001. The article investigates some aspects of this integration: applications in diverse fields, positive features, changes in management structure, etc.
Pulsed neutron method for diffusion, slowing down, and reactivity measurements
International Nuclear Information System (INIS)
Sjoestrand, N.G.
1985-01-01
An outline is given on the principles of the pulsed neutron method for the determination of thermal neutron diffusion parameters, for slowing-down time measurements, and for reactivity determinations. The historical development is sketched from the breakthrough in the middle of the nineteen fifties and the usefulness and limitations of the method are discussed. The importance for the present understanding of neutron slowing-down, thermalization and diffusion are point out. Examples are given of its recent use for e.g. absorption cross section measurements and for the study of the properties of heterogeneous systems
Methods for enhancing numerical integration
International Nuclear Information System (INIS)
Doncker, Elise de
2003-01-01
We give a survey of common strategies for numerical integration (adaptive, Monte-Carlo, Quasi-Monte Carlo), and attempt to delineate their realm of applicability. The inherent accuracy and error bounds for basic integration methods are given via such measures as the degree of precision of cubature rules, the index of a family of lattice rules, and the discrepancy of uniformly distributed point sets. Strategies incorporating these basic methods often use paradigms to reduce the error by, e.g., increasing the number of points in the domain or decreasing the mesh size, locally or uniformly. For these processes the order of convergence of the strategy is determined by the asymptotic behavior of the error, and may be too slow in practice for the type of problem at hand. For certain problem classes we may be able to improve the effectiveness of the method or strategy by such techniques as transformations, absorbing a difficult part of the integrand into a weight function, suitable partitioning of the domain, transformations and extrapolation or convergence acceleration. Situations warranting the use of these techniques (possibly in an 'automated' way) are described and illustrated by sample applications
Domain decomposition method for solving the neutron diffusion equation
International Nuclear Information System (INIS)
Coulomb, F.
1989-03-01
The aim of this work is to study methods for solving the neutron diffusion equation; we are interested in methods based on a classical finite element discretization and well suited for use on parallel computers. Domain decomposition methods seem to answer this preoccupation. This study deals with a decomposition of the domain. A theoretical study is carried out for Lagrange finite elements and some examples are given; in the case of mixed dual finite elements, the study is based on examples [fr
Applications of a systematic homogenization theory for nodal diffusion methods
International Nuclear Information System (INIS)
Zhang, Hong-bin; Dorning, J.J.
1992-01-01
The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly
ALVIN, Diffusion and Integral Data Comparison and Sensitivity Analysis
International Nuclear Information System (INIS)
Harris, D.R.; Reupke, W.A.; Wilson, W.B.
1982-01-01
1 - Description of problem or function: ALVIN analyzes the consistency of a set of differential and integral nuclear data, adjusts the differential nuclear data to improve agreement with integral observations, and identifies inconsistent data. ALVIN also computes required sensitivities and related quantities such as sensitivity profiles. 2 - Method of solution: Linear perturbation theory is used for the sensitivity calculations. Data consistency and adjustment computations use least squares techniques. 3 - Restrictions on the complexity of the problem: The DAFT2 consistency and adjustment subroutine treats fully or partially correlated differential and integral parameters, but only as many as the order of the largest matrix that can be inverted. The DAFT3 consistency and adjustment subroutine treats arbitrarily large differential data sets, but only if they are uncorrelated with the integral data. Due to the current dimensions of some arrays, maxima of 75 spatial mesh points, 41 groups, and 6. order Legendre polynomials are allowed. This can be changed by increasing the dimensions of the LCM arrays and the arrays in the labeled COMMON block S1 and blank COMMON
Experimental methods for studying the diffusion of radioactive gases in solids. VII. Sorption method
International Nuclear Information System (INIS)
Bekman, I.N.
1983-01-01
The details of the use of a sorption method in the study of the diffusion of gasses and vapors labeled with radioactive tracers in solids have been considered. Three variants of diffusion systems, which permit the determination of the diffusion coefficient and the solubility constant of gases both from the increase in the amount of diffusate in the sample and from the decrease in its amount in the reservoir, have been tested. Different ways of conducting the experiment have been discussed. A universal method for taking into account the processes of the absorption and scattering of radiation in the material of the sample has been proposed. The experimental results were treated with the aid of a specially developed program package, which is realized on computers of the BESM-6 type. Various mathematical models of the diffusion of gases in solids have been analyzed. Solutions of the diffusion equations under the boundary conditions of the sorption method for the cases of diffusion with trapping, dissociative diffusion, and diffusion in a plate containing spherical inclusions have been obtained. The method has been tested in the example case of the diffusion of a radiative inert gas, viz., radon-22, in low-density polyethylene
An integrating factor matrix method to find first integrals
International Nuclear Information System (INIS)
Saputra, K V I; Quispel, G R W; Van Veen, L
2010-01-01
In this paper we develop an integrating factor matrix method to derive conditions for the existence of first integrals. We use this novel method to obtain first integrals, along with the conditions for their existence, for two- and three-dimensional Lotka-Volterra systems with constant terms. The results are compared to previous results obtained by other methods.
A Hennart nodal method for the diffusion equation
International Nuclear Information System (INIS)
Lesaint, P.; Noceir, S.; Verwaerde, D.
1995-01-01
A modification of the Hennart nodal method for neutron diffusion problems is presented. The final system of equations obtained by this method is not positive definite. However, a flux elimination technique leads to a simple positive definite system, which can be solved by the traditional iterative methods. Calculations of a two-dimensional International Atomic Energy Agency benchmark problem are performed and compared with results of the original Hennart nodal method and some finite element methods. The high computational efficiency of this modified nodal method is clearly demonstrated
Comparison of Two Disc Diffusion Methods with Minimum Inhibitory ...
African Journals Online (AJOL)
antimicrobial susceptibility pattern of N. gonorrhoeae may change rapidly, especially in areas where ineffective treatment regimens are applied.[3]. There are no universally accepted guidelines for testing the antimicrobial susceptibility of N. gonorrhoeae by a disc diffusion method, but different techniques are in practice, like ...
Study of porous bed diffusion using the frequency response method
International Nuclear Information System (INIS)
Billy, J.
1967-11-01
The flow of an inert mixture of two gases across a catalytic bed is accompanied by diffusion phenomena in the inter-particulate space and inside the particles themselves, and adsorption phenomena at the surface of the particles. These phenomena are analyzed in turn and three coefficients which characterize each of them are defined. With a view to carrying out an experimental study by the frequency response method, the differential system deduced from the preceding analysis is then resolved with the help of two simplifying hypotheses; two relationships are given which make it possible to calculate the two diffusion coefficients and the absorption coefficient. (author) [fr
Quantifying Diffuse Contamination: Method and Application to Pb in Soil.
Fabian, Karl; Reimann, Clemens; de Caritat, Patrice
2017-06-20
A new method for detecting and quantifying diffuse contamination at the continental to regional scale is based on the analysis of cumulative distribution functions (CDFs). It uses cumulative probability (CP) plots for spatially representative data sets, preferably containing >1000 determinations. Simulations demonstrate how different types of contamination influence elemental CDFs of different sample media. It is found that diffuse contamination is characterized by a distinctive shift of the low-concentration end of the distribution of the studied element in its CP plot. Diffuse contamination can be detected and quantified via either (1) comparing the distribution of the contaminating element to that of an element with a geochemically comparable behavior but no contamination source (e.g., Pb vs Rb), or (2) comparing the top soil distribution of an element to the distribution of the same element in subsoil samples from the same area, taking soil forming processes into consideration. Both procedures are demonstrated for geochemical soil data sets from Europe, Australia, and the U.S.A. Several different data sets from Europe deliver comparable results at different scales. Diffuse Pb contamination in surface soil is estimated to be contamination sources and can be used to efficiently monitor diffuse contamination at the continental to regional scale.
Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.
Brat, Daniel J; Verhaak, Roel G W; Aldape, Kenneth D; Yung, W K Alfred; Salama, Sofie R; Cooper, Lee A D; Rheinbay, Esther; Miller, C Ryan; Vitucci, Mark; Morozova, Olena; Robertson, A Gordon; Noushmehr, Houtan; Laird, Peter W; Cherniack, Andrew D; Akbani, Rehan; Huse, Jason T; Ciriello, Giovanni; Poisson, Laila M; Barnholtz-Sloan, Jill S; Berger, Mitchel S; Brennan, Cameron; Colen, Rivka R; Colman, Howard; Flanders, Adam E; Giannini, Caterina; Grifford, Mia; Iavarone, Antonio; Jain, Rajan; Joseph, Isaac; Kim, Jaegil; Kasaian, Katayoon; Mikkelsen, Tom; Murray, Bradley A; O'Neill, Brian Patrick; Pachter, Lior; Parsons, Donald W; Sougnez, Carrie; Sulman, Erik P; Vandenberg, Scott R; Van Meir, Erwin G; von Deimling, Andreas; Zhang, Hailei; Crain, Daniel; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron; Bowen, Jay; Dicostanzo, Katie; Gastier-Foster, Julie; Leraas, Kristen M; Lichtenberg, Tara M; Pierson, Christopher R; Ramirez, Nilsa C; Taylor, Cynthia; Weaver, Stephanie; Wise, Lisa; Zmuda, Erik; Davidsen, Tanja; Demchok, John A; Eley, Greg; Ferguson, Martin L; Hutter, Carolyn M; Mills Shaw, Kenna R; Ozenberger, Bradley A; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Jensen, Mark A; Liu, Jia; Pihl, Todd; Raman, Rohini; Wan, Yunhu; Wu, Ye; Ally, Adrian; Auman, J Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B; Beroukhim, Rameen; Bootwalla, Moiz S; Bowlby, Reanne; Bristow, Christopher A; Brooks, Denise; Butterfield, Yaron; Carlsen, Rebecca; Carter, Scott; Chin, Lynda; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Clarke, Amanda; Coetzee, Simon G; Dhalla, Noreen; Fennell, Tim; Fisher, Sheila; Gabriel, Stacey; Getz, Gad; Gibbs, Richard; Guin, Ranabir; Hadjipanayis, Angela; Hayes, D Neil; Hinoue, Toshinori; Hoadley, Katherine; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven; Jones, Corbin D; Kucherlapati, Raju; Lai, Phillip H; Lander, Eric; Lee, Semin; Lichtenstein, Lee; Ma, Yussanne; Maglinte, Dennis T; Mahadeshwar, Harshad S; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew L; Mieczkowski, Piotr A; Moore, Richard A; Mose, Lisle E; Mungall, Andrew J; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J; Parker, Joel S; Perou, Charles M; Protopopov, Alexei; Ren, Xiaojia; Roach, Jeffrey; Sabedot, Thaís S; Schein, Jacqueline; Schumacher, Steven E; Seidman, Jonathan G; Seth, Sahil; Shen, Hui; Simons, Janae V; Sipahimalani, Payal; Soloway, Matthew G; Song, Xingzhi; Sun, Huandong; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Thiessen, Nina; Triche, Timothy; Van Den Berg, David J; Veluvolu, Umadevi; Waring, Scot; Weisenberger, Daniel J; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Xu, Andrew W; Yang, Lixing; Zack, Travis I; Zhang, Jianhua; Aksoy, B Arman; Arachchi, Harindra; Benz, Chris; Bernard, Brady; Carlin, Daniel; Cho, Juok; DiCara, Daniel; Frazer, Scott; Fuller, Gregory N; Gao, JianJiong; Gehlenborg, Nils; Haussler, David; Heiman, David I; Iype, Lisa; Jacobsen, Anders; Ju, Zhenlin; Katzman, Sol; Kim, Hoon; Knijnenburg, Theo; Kreisberg, Richard Bailey; Lawrence, Michael S; Lee, William; Leinonen, Kalle; Lin, Pei; Ling, Shiyun; Liu, Wenbin; Liu, Yingchun; Liu, Yuexin; Lu, Yiling; Mills, Gordon; Ng, Sam; Noble, Michael S; Paull, Evan; Rao, Arvind; Reynolds, Sheila; Saksena, Gordon; Sanborn, Zack; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Shen, Ronglai; Shmulevich, Ilya; Sinha, Rileen; Stuart, Josh; Sumer, S Onur; Sun, Yichao; Tasman, Natalie; Taylor, Barry S; Voet, Doug; Weinhold, Nils; Weinstein, John N; Yang, Da; Yoshihara, Kosuke; Zheng, Siyuan; Zhang, Wei; Zou, Lihua; Abel, Ty; Sadeghi, Sara; Cohen, Mark L; Eschbacher, Jenny; Hattab, Eyas M; Raghunathan, Aditya; Schniederjan, Matthew J; Aziz, Dina; Barnett, Gene; Barrett, Wendi; Bigner, Darell D; Boice, Lori; Brewer, Cathy; Calatozzolo, Chiara; Campos, Benito; Carlotti, Carlos Gilberto; Chan, Timothy A; Cuppini, Lucia; Curley, Erin; Cuzzubbo, Stefania; Devine, Karen; DiMeco, Francesco; Duell, Rebecca; Elder, J Bradley; Fehrenbach, Ashley; Finocchiaro, Gaetano; Friedman, William; Fulop, Jordonna; Gardner, Johanna; Hermes, Beth; Herold-Mende, Christel; Jungk, Christine; Kendler, Ady; Lehman, Norman L; Lipp, Eric; Liu, Ouida; Mandt, Randy; McGraw, Mary; Mclendon, Roger; McPherson, Christopher; Neder, Luciano; Nguyen, Phuong; Noss, Ardene; Nunziata, Raffaele; Ostrom, Quinn T; Palmer, Cheryl; Perin, Alessandro; Pollo, Bianca; Potapov, Alexander; Potapova, Olga; Rathmell, W Kimryn; Rotin, Daniil; Scarpace, Lisa; Schilero, Cathy; Senecal, Kelly; Shimmel, Kristen; Shurkhay, Vsevolod; Sifri, Suzanne; Singh, Rosy; Sloan, Andrew E; Smolenski, Kathy; Staugaitis, Susan M; Steele, Ruth; Thorne, Leigh; Tirapelli, Daniela P C; Unterberg, Andreas; Vallurupalli, Mahitha; Wang, Yun; Warnick, Ronald; Williams, Felicia; Wolinsky, Yingli; Bell, Sue; Rosenberg, Mara; Stewart, Chip; Huang, Franklin; Grimsby, Jonna L; Radenbaugh, Amie J; Zhang, Jianan
2015-06-25
Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most
CaC in ATM – the Diffuse Method
I. Baroňák; M. Vozňák
2006-01-01
Connection Admission Control is an element in the of preclusive mechanisms of ATM management. Its main task is to prevent overloading of the network and to ensure the required quality of service. This means that it has to predict the service of the network and according to its state it can manage both existing and new connections. This paper deals with the diffuse method, a CAC method that enables us to obtain the required results.
Two new methods of determining radon diffusion in fish otoliths
International Nuclear Information System (INIS)
Whitehead, N.E.; Ditchburn, R.G.
1995-01-01
Otoliths are bony structures found in the ears of fish and used in the 210 Pb/ 226 Ra dating method for age determination. This paper checks the assumption that 222 Rn is not lost from or added to orange roughy fish otoliths by diffusion, which would invalidate the technique. The first method of monitoring diffusion relies on measuring the gamma activity of daughter radionuclides. Otoliths were exposed to an atmosphere enriched in 222 Rn for 10 days, and the supported gamma activity inside them measured allowing for various decay corrections. The calculated radon addition was (0.5 ±0.5)% of the activity of the 226 Ra present. The second method used an alpha spectrometer and attempted to detect 222 Rn directly outguessed from otoliths in the detector vacuum chamber. The results were consistent within errors with those of the first method and showed no loss or gain of 222 Rn, supporting previous estimates of a long life-span for the orange rough y. In contrast it was found that approximately 10% of 222 Rn formed in orange roughy fish scales was lost to an evacuated environment, (hence perhaps to an aqueous environment) and that for this species it could be difficult to base a dating method on analysis of scales. Nevertheless a preliminary minimum age of 57 years was obtained. The methods could be used with non-biological samples to determine 222 Rn diffusion rates. (author). 17 refs., 5 figs
A new diffusion nodal method based on analytic basis function expansion
International Nuclear Information System (INIS)
Noh, J.M.; Cho, N.Z.
1993-01-01
The transverse integration procedure commonly used in most advanced nodal methods results in some limitations. The first is that the transverse leakage term that appears in the transverse integration procedure must be appropriately approximated. In most advanced nodal methods, this term is expanded in a quadratic polynomial. The second arises when reconstructing the pinwise flux distribution within a node. The available one-dimensional flux shapes from nodal calculation in each spatial direction cannot be used directly in the flux reconstruction. Finally, the transverse leakage defined for a hexagonal node becomes so complicated as not to be easily handled and contains nonphysical singular terms. In this paper, a new nodal method called the analytic function expansion nodal (AFEN) method is described for both the rectangular geometry and the hexagonal geometry in order to overcome these limitations. This method does not solve the transverse-integrated one-dimensional diffusion equations but instead solves directly the original multidimensional diffusion equation within a node. This is a accomplished by expanding the solution (or the intranodal homogeneous flux distribution) in terms of nonseparable analytic basis functions satisfying the diffusion equation at any point in the node
Nested element method in multidimensional neutron diffusion calculations
International Nuclear Information System (INIS)
Altiparmakov, D.V.
1983-01-01
A new numerical method is developed that is particularly efficient in solving the multidimensional neutron diffusion equation in geometrically complex systems. The needs for a generally applicable and fast running computer code have stimulated the inroad of a nonclassical (R-function) numerical method into the nuclear field. By using the R-functions, the geometrical components of the diffusion problem are a priori analytically implemented into the approximate solution. The class of functions, to which the approximate solution belongs, is chosen as close to the exact solution class as practically acceptable from the time consumption point of view. That implies a drastic reduction of the number of degrees of freedom, compared to the other methods. Furthermore, the reduced number of degrees of freedom enables calculation of large multidimensional problems on small computers
A self-consistent nodal method in response matrix formalism for the multigroup diffusion equations
International Nuclear Information System (INIS)
Malambu, E.M.; Mund, E.H.
1996-01-01
We develop a nodal method for the multigroup diffusion equations, based on the transverse integration procedure (TIP). The efficiency of the method rests upon the convergence properties of a high-order multidimensional nodal expansion and upon numerical implementation aspects. The discrete 1D equations are cast in response matrix formalism. The derivation of the transverse leakage moments is self-consistent i.e. does not require additional assumptions. An outstanding feature of the method lies in the linear spatial shape of the local transverse leakage for the first-order scheme. The method is described in the two-dimensional case. The method is validated on some classical benchmark problems. (author)
Directory of Open Access Journals (Sweden)
Gao Lin
2017-01-01
Full Text Available Recently, a new integral transform similar to Sumudu transform has been proposed by Yang [1]. Some of the properties of the integral transform are expanded in the present article. Meanwhile, new applications to the linear wave and diffusion equations in semi-infinite domains are discussed in detail. The proposed method provides an alternative approach to solve the partial differential equations in mathematical physics.
Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications
Giere, A. C.
1977-01-01
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.
Support Operators Method for the Diffusion Equation in Multiple Materials
Energy Technology Data Exchange (ETDEWEB)
Winters, Andrew R. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-08-14
A second-order finite difference scheme for the solution of the diffusion equation on non-uniform meshes is implemented. The method allows the heat conductivity to be discontinuous. The algorithm is formulated on a one dimensional mesh and is derived using the support operators method. A key component of the derivation is that the discrete analog of the flux operator is constructed to be the negative adjoint of the discrete divergence, in an inner product that is a discrete analog of the continuum inner product. The resultant discrete operators in the fully discretized diffusion equation are symmetric and positive definite. The algorithm is generalized to operate on meshes with cells which have mixed material properties. A mechanism to recover intermediate temperature values in mixed cells using a limited linear reconstruction is introduced. The implementation of the algorithm is verified and the linear reconstruction mechanism is compared to previous results for obtaining new material temperatures.
Maxwell iteration for the lattice Boltzmann method with diffusive scaling
Zhao, Weifeng; Yong, Wen-An
2017-03-01
In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.
The Method of Lines for Ternary Diffusion Problems
Directory of Open Access Journals (Sweden)
Henryk Leszczyński
2014-01-01
Full Text Available The method of lines (MOL for diffusion equations with Neumann boundary conditions is considered. These equations are transformed by a discretization in space variables into systems of ordinary differential equations. The proposed ODEs satisfy the mass conservation law. The stability of solutions of these ODEs with respect to discrete L2 norms and discrete W1,∞ norms is investigated. Numerical examples confirm the parabolic behaviour of this model and very regular dynamics.
Benchmarking with high-order nodal diffusion methods
International Nuclear Information System (INIS)
Tomasevic, D.; Larsen, E.W.
1993-01-01
Significant progress in the solution of multidimensional neutron diffusion problems was made in the late 1970s with the introduction of nodal methods. Modern nodal reactor analysis codes provide significant improvements in both accuracy and computing speed over earlier codes based on fine-mesh finite difference methods. In the past, the performance of advanced nodal methods was determined by comparisons with fine-mesh finite difference codes. More recently, the excellent spatial convergence of nodal methods has permitted their use in establishing reference solutions for some important bench-mark problems. The recent development of the self-consistent high-order nodal diffusion method and its subsequent variational formulation has permitted the calculation of reference solutions with one node per assembly mesh size. In this paper, we compare results for four selected benchmark problems to those obtained by high-order response matrix methods and by two well-known state-of-the-art nodal methods (the open-quotes analyticalclose quotes and open-quotes nodal expansionclose quotes methods)
A method to investigate the diffusion properties of nuclear calcium.
Queisser, Gillian; Wittum, Gabriel
2011-10-01
Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.
van Nieuwkasteele-Bystrova, Svetlana Nikolajevna
2004-01-01
In modern integrated circuits with Cu interconnects a diffusion barrier is used between the dielectric and Cu in order to prevent diffusion of Cu through the dielectrics. The choice of such a barrier requires a material exploration and a study of the material reactivity with both Cu and the
Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion
Lakkis, I
2003-01-01
A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...
Integral methods in low-frequency electromagnetics
Solin, Pavel; Karban, Pavel; Ulrych, Bohus
2009-01-01
A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods
International Nuclear Information System (INIS)
Itagaki, Masafumi; Sahashi, Naoki.
1996-01-01
The multiple reciprocity method (MRM) in conjunction with the boundary element method has been employed to solve one-group eigenvalue problems described by the three-dimensional (3-D) neutron diffusion equation. The domain integral related to the fission source is transformed into a series of boundary-only integrals, with the aid of the higher order fundamental solutions based on the spherical and the modified spherical Bessel functions. Since each degree of the higher order fundamental solutions in the 3-D cases has a singularity of order (1/r), the above series of boundary integrals requires additional terms which do not appear in the 2-D MRM formulation. The critical eigenvalue itself can be also described using only boundary integrals. Test calculations show that Wielandt's spectral shift technique guarantees rapid and stable convergence of 3-D MRM computations. (author)
Separation of Kr-Xe system by thermal diffusion method
International Nuclear Information System (INIS)
Yoshida, Hiroshi; Numata, Kazuyoshi; Matsuda, Yuji; Ouchi, Misao; Naruse, Yuji
1979-11-01
Separation experiments of Kr-Xe system were carried out to study the possibility of adapting thermal diffusion method for concentration of krypton in a fuel reprocessing off-gas treatment process. The results are as follows. (1) A batchwise thermal diffusion column of hot tube diameter 21 mm, cold tube diameter 32 mm, effective hight 1000 mm and volume -- 500 CC is the best in separation characteristics and in ease of operation under the different conditions. (2) The overall separation factor increases with increase of the operating temperature in the column with and without reservoir. (3) The optimum operating pressure (about 400 Torr) is independent of the operating conditions such as temperature, reservoir volume and feed gas content. (4) A preliminary design of the Kr-Xe separating plant for a reprocessing plant (1500 ton-U/yr) shows the required number of columns and the total electric power. (author)
A comparison of Nodal methods in neutron diffusion calculations
Energy Technology Data Exchange (ETDEWEB)
Tavron, Barak [Israel Electric Company, Haifa (Israel) Nuclear Engineering Dept. Research and Development Div.
1996-12-01
The nuclear engineering department at IEC uses in the reactor analysis three neutron diffusion codes based on nodal methods. The codes, GNOMERl, ADMARC2 and NOXER3 solve the neutron diffusion equation to obtain flux and power distributions in the core. The resulting flux distributions are used for the furl cycle analysis and for fuel reload optimization. This work presents a comparison of the various nodal methods employed in the above codes. Nodal methods (also called Coarse-mesh methods) have been designed to solve problems that contain relatively coarse areas of homogeneous composition. In the nodal method parts of the equation that present the state in the homogeneous area are solved analytically while, according to various assumptions and continuity requirements, a general solution is sought out. Thus efficiency of the method for this kind of problems, is very high compared with the finite element and finite difference methods. On the other hand, using this method one can get only approximate information about the node vicinity (or coarse-mesh area, usually a feel assembly of a 20 cm size). These characteristics of the nodal method make it suitable for feel cycle analysis and reload optimization. This analysis requires many subsequent calculations of the flux and power distributions for the feel assemblies while there is no need for detailed distribution within the assembly. For obtaining detailed distribution within the assembly methods of power reconstruction may be applied. However homogenization of feel assembly properties, required for the nodal method, may cause difficulties when applied to fuel assemblies with many absorber rods, due to exciting strong neutron properties heterogeneity within the assembly. (author).
International Nuclear Information System (INIS)
Itagaki, Masafumi; Sahashi, Naoki.
1997-01-01
The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)
Domain decomposition methods for the neutron diffusion problem
International Nuclear Information System (INIS)
Guerin, P.; Baudron, A. M.; Lautard, J. J.
2010-01-01
The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, simplified transport (SPN) or diffusion approximations are often used. The MINOS solver developed at CEA Saclay uses a mixed dual finite element method for the resolution of these problems. and has shown his efficiency. In order to take into account the heterogeneities of the geometry, a very fine mesh is generally required, and leads to expensive calculations for industrial applications. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose here two domain decomposition methods based on the MINOS solver. The first approach is a component mode synthesis method on overlapping sub-domains: several Eigenmodes solutions of a local problem on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is an iterative method based on a non-overlapping domain decomposition with Robin interface conditions. At each iteration, we solve the problem on each sub-domain with the interface conditions given by the solutions on the adjacent sub-domains estimated at the previous iteration. Numerical results on parallel computers are presented for the diffusion model on realistic 2D and 3D cores. (authors)
Diffusion of Integral Membrane Proteins in Protein-Rich Membranes
DEFF Research Database (Denmark)
Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf
2017-01-01
of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...
Variational methods applied to problems of diffusion and reaction
Strieder, William
1973-01-01
This monograph is an account of some problems involving diffusion or diffusion with simultaneous reaction that can be illuminated by the use of variational principles. It was written during a period that included sabbatical leaves of one of us (W. S. ) at the University of Minnesota and the other (R. A. ) at the University of Cambridge and we are grateful to the Petroleum Research Fund for helping to support the former and the Guggenheim Foundation for making possible the latter. We would also like to thank Stephen Prager for getting us together in the first place and for showing how interesting and useful these methods can be. We have also benefitted from correspondence with Dr. A. M. Arthurs of the University of York and from the counsel of Dr. B. D. Coleman the general editor of this series. Table of Contents Chapter 1. Introduction and Preliminaries . 1. 1. General Survey 1 1. 2. Phenomenological Descriptions of Diffusion and Reaction 2 1. 3. Correlation Functions for Random Suspensions 4 1. 4. Mean Free ...
Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics.
Lee, Sunhee C
2018-05-18
Diffuse gliomas comprise the bulk of "brain cancer" in adults. The recent update to the 4th edition of the World Health Organization's classification of tumors of the central nervous system reflects an unprecedented change in the landscape of the diagnosis and management of diffuse gliomas that will affect all those involved in the management and care of patients. Of the recently discovered gene alterations, mutations in the Krebs cycle enzymes isocitrate dehydrogenases (IDHs) 1 and 2 have fundamentally changed the way the gliomas are understood and classified. Incorporating information on a few genetic parameters (IDH, ATRX and/or p53, and chromosome 1p19q codeletion), a relatively straightforward diagnostic algorithm has been generated with robust and reproducible results that correlate with patients' survival far better than relying on conventional histology alone. Evidence also supports the conclusion that the vast majority of diffuse gliomas without IDH mutations (IDH-wild-type astrocytomas) behave like IDH-wild-type glioblastomas ("molecular GBM"). Together, these changes reflect a big shift in the practice of diagnostic neuropathology in which tumor risk stratification aligns better with molecular information than histology/grading. The purpose of this review is to provide the readers with a brief synopsis of the changes in the 2016 World Health Organization update with an emphasis on diffuse gliomas and to summarize key gene abnormalities on which these classifications are based. Practical points involved in day-to-day diagnostic workup are also discussed, along with a comparison of the various diagnostic tests, including immunohistochemistry, with an emphasis on targeted next-generation sequencing panel technology as a future universal approach.
Serag, Maged F.
2014-10-06
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.
Newton-Krylov methods applied to nonequilibrium radiation diffusion
International Nuclear Information System (INIS)
Knoll, D.A.; Rider, W.J.; Olsen, G.L.
1998-01-01
The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton's method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton's method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step
A fast nodal neutron diffusion method for cartesian geometry
International Nuclear Information System (INIS)
Makai, M.; Maeder, C.
1983-01-01
A numerical method based on an analytical solution to the three-dimensional two-group diffusion equation has been derived assuming that the flux is a sum of the functions of one variable. In each mesh the incoming currents are used as boundary conditions. The final equations for the average flux and the outgoing currents are of the response matrix type. The method is presented in a form that can be extended to the general multigroup case. In the SEXI computer program developed on the basis of this method, the response matrix elements are recalculated in each outer iteration to minimize the data transfer between disk storage and central memory. The efficiency of the method is demonstrated for a light water reactor (LWR) benchmark problem. The SEXI program has been incorporated into the LWR simulator SILWER code as a possible option
Energy Technology Data Exchange (ETDEWEB)
Giordano, Gabriela Furlan [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Vieira, Luis Carlos Silveira; Gobbi, Angelo Luiz [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Lima, Renato Sousa [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Kubota, Lauro Tatsuo, E-mail: kubota@iqm.unicamp.br [Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil)
2015-05-22
Highlights: • Integrated platform was developed to determine ethanol in fermentation broths. • The designed system integrates gas diffusion separation with voltammetric detection. • Detector relied on Ni(OH){sub 2}-modified electrode stabilized by Co{sup 2+} and Cd{sup 2+} insertion. • Separation was made by PTFE membrane separating sample from electrolyte (receptor). • Despite the sample complexity, accurate tests were achieved by direct interpolation. - Abstract: An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH){sub 2}-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH){sub 2} structure by insertion of Co{sup 2+} and Cd{sup 2+} ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v){sup −1}, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate
Directory of Open Access Journals (Sweden)
Kravtsenyuk Olga V
2007-01-01
Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a gain in spatial resolution can be obtained.
Directory of Open Access Journals (Sweden)
Vladimir V. Lyubimov
2007-01-01
Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a 27% gain in spatial resolution can be obtained.
On matrix diffusion: formulations, solution methods and qualitative effects
Carrera, Jesús; Sánchez-Vila, Xavier; Benet, Inmaculada; Medina, Agustín; Galarza, Germán; Guimerà, Jordi
Matrix diffusion has become widely recognized as an important transport mechanism. Unfortunately, accounting for matrix diffusion complicates solute-transport simulations. This problem has led to simplified formulations, partly motivated by the solution method. As a result, some confusion has been generated about how to properly pose the problem. One of the objectives of this work is to find some unity among existing formulations and solution methods. In doing so, some asymptotic properties of matrix diffusion are derived. Specifically, early-time behavior (short tests) depends only on φm2RmDm / Lm2, whereas late-time behavior (long tracer tests) depends only on φmRm, and not on matrix diffusion coefficient or block size and shape. The latter is always true for mean arrival time. These properties help in: (a) analyzing the qualitative behavior of matrix diffusion; (b) explaining one paradox of solute transport through fractured rocks (the apparent dependence of porosity on travel time); (c) discriminating between matrix diffusion and other problems (such as kinetic sorption or heterogeneity); and (d) describing identifiability problems and ways to overcome them. RésuméLa diffusion matricielle est un phénomène reconnu maintenant comme un mécanisme de transport important. Malheureusement, la prise en compte de la diffusion matricielle complique la simulation du transport de soluté. Ce problème a conduit à des formulations simplifiées, en partie à cause de la méthode de résolution. Il s'en est suivi une certaine confusion sur la façon de poser correctement le problème. L'un des objectifs de ce travail est de trouver une certaine unité parmi les formulations et les méthodes de résolution. C'est ainsi que certaines propriétés asymptotiques de la diffusion matricielle ont été dérivées. En particulier, le comportement à l'origine (expériences de traçage courtes) dépend uniquement du terme φm2RmDm / Lm2, alors que le comportement à long terme
Linear finite element method for one-dimensional diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
Automatic numerical integration methods for Feynman integrals through 3-loop
International Nuclear Information System (INIS)
De Doncker, E; Olagbemi, O; Yuasa, F; Ishikawa, T; Kato, K
2015-01-01
We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities. (paper)
Prediction of Chloride Diffusion in Concrete Structure Using Meshless Methods
Directory of Open Access Journals (Sweden)
Ling Yao
2016-01-01
Full Text Available Degradation of RC structures due to chloride penetration followed by reinforcement corrosion is a serious problem in civil engineering. The numerical simulation methods at present mainly involve finite element methods (FEM, which are based on mesh generation. In this study, element-free Galerkin (EFG and meshless weighted least squares (MWLS methods are used to solve the problem of simulation of chloride diffusion in concrete. The range of a scaling parameter is presented using numerical examples based on meshless methods. One- and two-dimensional numerical examples validated the effectiveness and accuracy of the two meshless methods by comparing results obtained by MWLS with results computed by EFG and FEM and results calculated by an analytical method. A good agreement is obtained among MWLS and EFG numerical simulations and the experimental data obtained from an existing marine concrete structure. These results indicate that MWLS and EFG are reliable meshless methods that can be used for the prediction of chloride ingress in concrete structures.
Method of stabilizing superconducting diffusion Nb3Sn strips
International Nuclear Information System (INIS)
Polak, M.; Hlasnik, I.; Sabo, M.; Okali, D.
1982-01-01
The claim of the patent is a method consisting in the etching of the remnant of tin or bronze with HCl or a solution of HCl and HNO 3 or another suitable etching agent after the end of the diffusion process. Then the strip is copper coated in an alkaline solution containing Seignette salt, NaOH and CuSO 4 with a layer of copper 1 μm thick. On this layer is electrolytically plated the stabilizing copper in an acid copper-plating solution. This method makes it possible to obtain a contact resistance between the superconducting material and the copper stabilizing layer as low as 6 to 8x10 - 9 Ohm.cm - 2 and to increase the mechanical cohesion of the superconducting material and the stabilizing layer. (Ha)
Development of advanced methods for analysis of experimental data in diffusion
Jaques, Alonso V.
There are numerous experimental configurations and data analysis techniques for the characterization of diffusion phenomena. However, the mathematical methods for estimating diffusivities traditionally do not take into account the effects of experimental errors in the data, and often require smooth, noiseless data sets to perform the necessary analysis steps. The current methods used for data smoothing require strong assumptions which can introduce numerical "artifacts" into the data, affecting confidence in the estimated parameters. The Boltzmann-Matano method is used extensively in the determination of concentration - dependent diffusivities, D(C), in alloys. In the course of analyzing experimental data, numerical integrations and differentiations of the concentration profile are performed. These methods require smoothing of the data prior to analysis. We present here an approach to the Boltzmann-Matano method that is based on a regularization method to estimate a differentiation operation on the data, i.e., estimate the concentration gradient term, which is important in the analysis process for determining the diffusivity. This approach, therefore, has the potential to be less subjective, and in numerical simulations shows an increased accuracy in the estimated diffusion coefficients. We present a regression approach to estimate linear multicomponent diffusion coefficients that eliminates the need pre-treat or pre-condition the concentration profile. This approach fits the data to a functional form of the mathematical expression for the concentration profile, and allows us to determine the diffusivity matrix directly from the fitted parameters. Reformulation of the equation for the analytical solution is done in order to reduce the size of the problem and accelerate the convergence. The objective function for the regression can incorporate point estimations for error in the concentration, improving the statistical confidence in the estimated diffusivity matrix
A residual Monte Carlo method for discrete thermal radiative diffusion
International Nuclear Information System (INIS)
Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.
2003-01-01
Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems
An efficient method for model refinement in diffuse optical tomography
Zirak, A. R.; Khademi, M.
2007-11-01
Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.
Method for manufacturing nuclear radiation detector with deep diffused junction
International Nuclear Information System (INIS)
Hall, R.N.
1977-01-01
Germanium radiation detectors are manufactured by diffusing lithium into high purity p-type germanium. The diffusion is most readily accomplished from a lithium-lead-bismuth alloy at approximately 430 0 C and is monitored by a quartz half cell containing a standard composition of this alloy. Detectors having n-type cores may be constructed by converting high purity p-type germanium to n-type by a lithium diffusion and subsequently diffusing some of the lithium back out through the surface to create a deep p-n junction. Production of coaxial germanium detectors comprising deep p-n junctions by the lithium diffusion process is described
Energy Technology Data Exchange (ETDEWEB)
Zmijarevic, I; Tomashevic, Dj [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)
1988-07-01
This paper presents Chebychev acceleration of outer iterations of a nodal diffusion code of high accuracy. Extrapolation parameters, unique for all moments are calculated using the node integrated distribution of fission source. Sample calculations are presented indicating the efficiency of method. (author)
Subdomain Precise Integration Method for Periodic Structures
Directory of Open Access Journals (Sweden)
F. Wu
2014-01-01
Full Text Available A subdomain precise integration method is developed for the dynamical responses of periodic structures comprising many identical structural cells. The proposed method is based on the precise integration method, the subdomain scheme, and the repeatability of the periodic structures. In the proposed method, each structural cell is seen as a super element that is solved using the precise integration method, considering the repeatability of the structural cells. The computational efforts and the memory size of the proposed method are reduced, while high computational accuracy is achieved. Therefore, the proposed method is particularly suitable to solve the dynamical responses of periodic structures. Two numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method through comparison with the Newmark and Runge-Kutta methods.
A mixed finite element method for nonlinear diffusion equations
Burger, Martin; Carrillo, José
2010-01-01
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.
A numerical method for resonance integral calculations
International Nuclear Information System (INIS)
Tanbay, Tayfun; Ozgener, Bilge
2013-01-01
A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-06
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.
Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.
2018-02-01
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.
A Critical Study of Agglomerated Multigrid Methods for Diffusion
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2011-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.
Diffusion models in metamorphic thermo chronology: philosophy and methods
International Nuclear Information System (INIS)
Munha, Jose Manuel; Tassinari, Colombo Celso Gaeta
1999-01-01
Understanding kinetics of diffusion is of major importance to the interpretation of isotopic ages in metamorphic rocks. This paper provides a review of concepts and methodologies involved on the various diffusion models that can be applied to radiogenic systems in cooling rocks. The central concept of closure temperature is critically discussed and quantitative estimates for the various diffusion models are evaluated, in order to illustrate the controlling factors and the limits of their practical application. (author)
Efficient orbit integration by manifold correction methods.
Fukushima, Toshio
2005-12-01
Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not.
Disposable glucose test strip for whole blood with integrated sensing/diffusion-limiting layer
Energy Technology Data Exchange (ETDEWEB)
Chen Zhencheng [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China); Fang Cheng, E-mail: fangpingchuan@163.co [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China); Wang Hongyan; He Jishan [Department of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083 (China)
2009-12-30
A disposable glucose test strip with an integrated sensing/diffusion-limiting layer was developed. A formulation containing filler, glucose oxidase and electronic mediator was screen-printed over two carbon electrodes to form an integrated sensing/diffusion-limiting layer. On rehydration, the integrated layer does not break up, but swells to form a gelled and three-dimensional meshy reaction zone on the surface of the underlying conductive elements in which reactants and mediator move freely, but interfering species such as red blood cells containing oxygenated hemoglobin are excluded. On the same time, the integrated layer maintains a rate of permeation of the analyte through it with a variation of less than 10% at temperatures ranging from 15 deg. C to 42 deg. C. This biosensor is substantially insensitive to interferents and essentially independent to relevant temperature, which provides a more reliable reading of actual blood glucose value in human whole blood.
A fast collocation method for a variable-coefficient nonlocal diffusion model
Wang, Che; Wang, Hong
2017-02-01
We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.
Radiation induced diffusion as a method to protect surface
International Nuclear Information System (INIS)
Baumvol, I.J.R.
1980-01-01
Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt
Estimating the diffuseness of sound fields: A wavenumber analysis method
DEFF Research Database (Denmark)
Nolan, Melanie; Davy, John L.; Brunskog, Jonas
2017-01-01
The concept of a diffuse sound field is widely used in the analysis of sound in enclosures. The diffuse sound field is generally described as composed of plane waves with random phases, which wave number vectors are uniformly distributed over all angles of incidence. In this study, an interpretat...
Cornelissen, J.P.; Thøger, L.; Vijn, P.
2006-01-01
In recent years, theoretical commentaries and empirical research on the concept of Integrated Marketing Communications (IMC) have been concerned with its development and specification as a theoretical construct, and its diffusion among academics and practitioner populations across the globe. In this
Ratts, Manivong J.; Wood, Chris
2011-01-01
The authors present diffusion of innovation theory (Rogers, 2003) as a framework for integrating social justice into counselor education. An overview of diffusion theory is provided along with how the tenets of diffusion of innovation can be used to alleviate fears and anxieties that come with adopting an innovation such as social justice in…
Boundary element methods applied to two-dimensional neutron diffusion problems
International Nuclear Information System (INIS)
Itagaki, Masafumi
1985-01-01
The Boundary element method (BEM) has been applied to two-dimensional neutron diffusion problems. The boundary integral equation and its discretized form have been derived. Some numerical techniques have been developed, which can be applied to critical and fixed-source problems including multi-region ones. Two types of test programs have been developed according to whether the 'zero-determinant search' or the 'source iteration' technique is adopted for criticality search. Both programs require only the fluxes and currents on boundaries as the unknown variables. The former allows a reduction in computing time and memory in comparison with the finite element method (FEM). The latter is not always efficient in terms of computing time due to the domain integral related to the inhomogeneous source term; however, this domain integral can be replaced by the equivalent boundary integral for a region with a non-multiplying medium or with a uniform source, resulting in a significant reduction in computing time. The BEM, as well as the FEM, is well suited for solving irregular geometrical problems for which the finite difference method (FDM) is unsuited. The BEM also solves problems with infinite domains, which cannot be solved by the ordinary FEM and FDM. Some simple test calculations are made to compare the BEM with the FEM and FDM, and discussions are made concerning the relative merits of the BEM and problems requiring future solution. (author)
Finite element method for neutron diffusion problems in hexagonal geometry
International Nuclear Information System (INIS)
Wei, T.Y.C.; Hansen, K.F.
1975-06-01
The use of the finite element method for solving two-dimensional static neutron diffusion problems in hexagonal reactor configurations is considered. It is investigated as a possible alternative to the low-order finite difference method. Various piecewise polynomial spaces are examined for their use in hexagonal problems. The central questions which arise in the design of these spaces are the degree of incompleteness permissible and the advantages of using a low-order space fine-mesh approach over that of a high-order space coarse-mesh one. There is also the question of the degree of smoothness required. Two schemes for the construction of spaces are described and a number of specific spaces, constructed with the questions outlined above in mind, are presented. They range from a complete non-Lagrangian, non-Hermite quadratic space to an incomplete ninth order space. Results are presented for two-dimensional problems typical of a small high temperature gas-cooled reactor. From the results it is concluded that the space used should at least include the complete linear one. Complete spaces are to be preferred to totally incomplete ones. Once function continuity is imposed any additional degree of smoothness is of secondary importance. For flux shapes typical of the small high temperature gas-cooled reactor the linear space fine-mesh alternative is to be preferred to the perturbation quadratic space coarse-mesh one and the low-order finite difference method is to be preferred over both finite element schemes
Lessing, Paul A [Idaho Falls, ID
2008-07-22
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Fast Drift and Diffusion in a Class of Isochronous Systems with the Windows Method
Energy Technology Data Exchange (ETDEWEB)
Fortunati, Alessandro, E-mail: alessandro.fortunati@bristol.ac.uk [University of Bristol, School of Mathematics (United Kingdom)
2017-06-15
The aim of the paper is to deal with some peculiar difficulties arising from the use of the geometrical tool known as windows method in the context of the well known problem of Arnold’s diffusion for isochronous nearly-integrable Hamiltonian systems. Despite the simple features of the class of systems at hand, it is possible to show how the absence of an anisochrony term leads to several substantial differences in the application of the method, requiring some additional devices, such as non-equally spaced transition chains and variable windows. As a consequence, we show the existence of a set of unstable orbits, whose drifting time matches, up to a constant, the one obtained via variational methods.
Wielandt method applied to the diffusion equations discretized by finite element nodal methods
International Nuclear Information System (INIS)
Mugica R, A.; Valle G, E. del
2003-01-01
Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)
An atmospheric electrical method to determine the eddy diffusion ...
Indian Academy of Sciences (India)
Keywords. Atmospheric electrical profiles; electrode layer; ion–aerosol balance equations. ... eddy diffusion theory (K-theory) in our model equations. K-theory is appropriate for near neutral ...... limit of strong turbulent mixing; J. Geophys. Res.
Study of arsenic diffusion in dental therapy by nuclear methods
International Nuclear Information System (INIS)
Khalis, M.
1987-07-01
Activation by fast neutrons (14 MeV) allows the evaluation of radioactive arsenic distribution in the different parts of teeth of which the nerve was killed. As an average 60 % of the arsenic is found in the upper part 4.3 % in the middle part and 2.2 % in the apical part. About 34 % of arsenious anhydride is diffused into the organism. This quantitative analysis is a contribution to the therapeutic choice in function of element diffusion [fr
Integral Methods in Science and Engineering
Constanda, Christian
2011-01-01
An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques
Method of manufacturing Josephson junction integrated circuits
International Nuclear Information System (INIS)
Jillie, D.W. Jr.; Smith, L.N.
1985-01-01
Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed
Evaluation of diffuse hepatic diseases by integrated image, SPECT and numerical taxonomic analysis
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Shin
1987-02-01
In 135 patients with various hepatic diseases, cardiopulmonary circulation and hepatic accumulation of the activity were collected for 100 sec after bolus injection of 111-222 MBq (3 - 6 mci) of /sup 99m/Tc-phytate, and then integrated as a single image. Anterior, right lateral and posterior planar images, and hepatosplenic SPECT images were obtained thereafter. Lung to liver count ratio (P/L) was estimated by the integrated image. Liver volume (HV), spleen volume (SV) and liver to spleen count ratio (MHC/MSC) were calculated using the data obtained by SPECT. P/L was useful as an index of effective hepatic blood flow. MHC/MSC was closely correlated with the grade of portal hypertension. HV or SV alone shows low clinical value in discriminating liver diseases. Principal component analysis was applied to the 4 above-mentioned radinuclide data and the following 11 laboratory data ; total serum protein, serum albumine, glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), lactic dehydrogenase (LDH), alkaline phosphatase (AL-P), zink sulfateturbidity test (ZTT), thymol turbidity test (TTT), r-glutamyl transpeptidase (r-GTP), cholinesterase (Ch-E), and total bilirubin (T-Bil). These fifteen data were condensed to 5 principal components. And then cluster analysis was carried out among 135 patients. The subjects were classified in 7 small groups. In group (G) I to GIII, frequency of liver cirrhosis was high, while on the contrary in GIV to GVII, the frequency of normal cases increased gradually. From the above results, cluster analysis seemed to reflect the pathophysiological state and the grade of the disease. This method might be useful for estimation of the grade of damage in diffuse hepatic disease and a good objective evaluation method in follow-up studies. (J.P.N.).
Analysis of Diffusion Problems using Homotopy Perturbation and Variational Iteration Methods
DEFF Research Database (Denmark)
Barari, Amin; Poor, A. Tahmasebi; Jorjani, A.
2010-01-01
In this paper, variational iteration method and homotopy perturbation method are applied to different forms of diffusion equation. The diffusion equations have found wide applications in heat transfer problems, theory of consolidation and many other problems in engineering. The methods proposed...
Variational method for integrating radial gradient field
Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo
2014-12-01
We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.
A method for distinguishing between propagons, diffusions, and locons
Energy Technology Data Exchange (ETDEWEB)
Seyf, Hamid Reza; Henry, Asegun [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Heat Lab, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2016-07-14
The majority of intuition on phonon transport has been derived from studies of homogenous crystalline solids, where the atomic composition and structure are periodic. For this specific class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit) result in plane wave modulated velocity fields for the normal modes of vibration. However, it has been known for several decades that whenever a system lacks periodicity, either compositional or structural, the normal modes of vibration can still be determined (in the harmonic limit), but the solutions take on different characteristics and many modes may not be plane wave modulated. Previous work has classified the types of vibrations into three primary categories, namely, propagons, diffusions, and locons. One can use the participation ratio to distinguish locons, from propagons and diffusons, which measures the extent to which a mode is localized. However, distinguishing between propagons and diffusons has remained a challenge, since both are spatially delocalized. Here, we present a new method that quantifies the extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave modulation. This then allows for clear and quantitative distinctions between propagons and diffusons. By resolving this issue quantitatively, one can now automate the classification of modes for any arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably around their respective equilibrium sites. Several example test cases are studied including crystalline silicon and germanium, crystalline silicon with different defect concentrations, as well as amorphous silicon, germanium, and silica.
Application of impulsive methods to the study of diffusion in solid state alloys
International Nuclear Information System (INIS)
Belaidouni, Said
1979-01-01
This research thesis deals with the field of high temperature melt environments, and more particularly with the determination of the contribution of different steps of the electrochemical reaction (charge transfer, transport of electro-active species, variation of the electrode surface condition). The use of metal electrodes highlighted the importance of phenomena of diffusion in the metal. This leaded to the use of impulsive methods to determine solid-state transport properties. After a presentation of the theoretical processing of impulsive methods (cell potential, transport equations, double-layer charge), and a discussion of the diffusion in metal alloys (diffusion flow, diffusion coefficients, grain boundary diffusion), the author reports an experimental investigation (installation and measurement equipment) and discusses the obtained results (alloy thermodynamics, diffusion studied by the deposition method, impulsive methods with potentiostatic or galvano-static pulses) [fr
Mining method selection by integrated AHP and PROMETHEE method.
Bogdanovic, Dejan; Nikolic, Djordje; Ilic, Ivana
2012-03-01
Selecting the best mining method among many alternatives is a multicriteria decision making problem. The aim of this paper is to demonstrate the implementation of an integrated approach that employs AHP and PROMETHEE together for selecting the most suitable mining method for the "Coka Marin" underground mine in Serbia. The related problem includes five possible mining methods and eleven criteria to evaluate them. Criteria are accurately chosen in order to cover the most important parameters that impact on the mining method selection, such as geological and geotechnical properties, economic parameters and geographical factors. The AHP is used to analyze the structure of the mining method selection problem and to determine weights of the criteria, and PROMETHEE method is used to obtain the final ranking and to make a sensitivity analysis by changing the weights. The results have shown that the proposed integrated method can be successfully used in solving mining engineering problems.
Solution of two group neutron diffusion equation by using homotopy analysis method
International Nuclear Information System (INIS)
Cavdar, S.
2010-01-01
The Homotopy Analysis Method (HAM), proposed in 1992 by Shi Jun Liao and has been developed since then, is based on differential geometry as well as homotopy which is a fundamental concept in topology. It has proved to be useful for obtaining series solutions of many such problems involving algebraic, linear/non-linear, ordinary/partial differential equations, differential-integral equations, differential-difference equations, and coupled equations of them. Briefly, through HAM, it is possible to construct a continuous mapping of an initial guess approximation to the exact solution of the equation of concern. An auxiliary linear operator is chosen to construct such kind of a continuous mapping and an auxiliary parameter is used to ensure the convergence of series solution. We present the solutions of two-group neutron diffusion equation through HAM in this work. We also compare the results with that obtained by other well-known solution analytical and numeric methods.
On the application of finite element method in the solution of steady state diffusion equation
International Nuclear Information System (INIS)
Ono, S.
1982-01-01
The solution of the steady state neutron diffusion equation is obtained by using the finite element method. Specifically the variational approach is used for one dimensional problems and the weighted residual method (Galerkin) for one and two dimensional problems. The spatial domain is divided into retangular elements and the neutron flux is approximated by linear (one dimensional case), and bilinear (two-dimensional case) functions. Numerical results are obtained with a FORTRAN IV computer program and compared with those obtained by the finite difference CITATION code. The results show that linear or bilinear functions, do not satisfactorily describe the differential parameters in highly heterogeneous reactor cases, but provide good results for integral parameters such as multiplication factor. (Author) [pt
On Solution of a Fractional Diffusion Equation by Homotopy Transform Method
International Nuclear Information System (INIS)
Salah, A.; Hassan, S.S.A.
2012-01-01
The homotopy analysis transform method (HATM) is applied in this work in order to find the analytical solution of fractional diffusion equations (FDE). These equations are obtained from standard diffusion equations by replacing a second-order space derivative by a fractional derivative of order α and a first order time derivative by a fractional derivative. Furthermore, some examples are given. Numerical results show that the homotopy analysis transform method is easy to implement and accurate when applied to a fractional diffusion equations.
International Nuclear Information System (INIS)
Ferri, A.A.
1986-01-01
Nodal methods applied in order to calculate the power distribution in a nuclear reactor core are presented. These methods have received special attention, because they yield accurate results in short computing times. Present nodal schemes contain several unknowns per node and per group. In the methods presented here, non linear feedback of the coupling coefficients has been applied to reduce this number to only one unknown per node and per group. The resulting algorithm is a 7- points formula, and the iterative process has proved stable in the response matrix scheme. The intranodal flux shape is determined by partial integration of the diffusion equations over two of the coordinates, leading to a set of three coupled one-dimensional equations. These can be solved by using a polynomial approximation or by integration (analytic solution). The tranverse net leakage is responsible for the coupling between the spatial directions, and two alternative methods are presented to evaluate its shape: direct parabolic approximation and local model expansion. Numerical results, which include the IAEA two-dimensional benchmark problem illustrate the efficiency of the developed methods. (M.E.L.) [es
Thermal diffusivity measurement by lock-in photothermal shadowgraph method
Energy Technology Data Exchange (ETDEWEB)
Cifuentes, A. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico); Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao (Spain); Alvarado, S. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico); Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Heverlee B-3001 (Belgium); Cabrera, H. [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Científicas, IVIC, Mérida 5101, Venezuela and SPIE-ICTP Anchor Research in Optics Program Lab, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste (Italy); Calderón, A.; Marín, E., E-mail: emarinm@ipn.mx [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico)
2016-04-28
Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.
Modelling and simulation of diffusive processes methods and applications
Basu, SK
2014-01-01
This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport
On the self-diffusion process in liquid metals and alloys by the radioactive tracer method
International Nuclear Information System (INIS)
Ganovici, L.
1978-01-01
A theoretical and experimental study of self-diffusion process in liquid metals and alloys is presented. There are only a few pure metals for which diffusion coefficients in a liquid state are known. The thesis aims at increasing the number of liquid metals for which diffusion coefficients are available, by determining these values for liquids: Cd, Tl, Sb and Te. The self-diffusion coefficients of Te in some tellurium based liquid alloys such as Tl 2 Te, PbTe and Bi 90 Te 10 were also determined. Self-diffusion coefficients have been measured using two radioactive tracer methods: a) the capillary-reservoir method; b) the semi-infinite capillary method. The self-diffusion coefficients were derived from the measured radioactive concentration profile, using the solutions of Fick's second law for appropriate initial and limit conditions. The temperature dependence study of self-diffusion coefficients in liquids Cd, Tl, Sb and Te, was used to check some theoretical models on the diffusion mechanism in metallic melts. The experimental diffusion data interpreted in terms of the Arrhenius type temperature dependence, was used to propose two simple empiric relations for determining self diffusion coefficients of group I liquid metals and for liquid semi-metals. It was established a marked decrease of self-diffusion coefficients of liquid Te close to the solidification temperature. The diffusivity of Te in liquid Tl 2 Te points to an important decrease close to the solidification temperature. A simplified model was proposed for the diffusion structural unit in this alloy and the hard sphere model for liquid metals was checked by comparing the theoretical and experimental self-diffusion coefficients. (author)
Nonlinear structural analysis using integrated force method
Indian Academy of Sciences (India)
A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated ``Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.
Note: interpreting iterative methods convergence with diffusion point of view
Hong, Dohy
2013-01-01
In this paper, we explain the convergence speed of different iteration schemes with the fluid diffusion view when solving a linear fixed point problem. This interpretation allows one to better understand why power iteration or Jacobi iteration may converge faster or slower than Gauss-Seidel iteration.
Methods of diffusion of innovation within small seafood enterprises ...
African Journals Online (AJOL)
In present essay, technology level enhancement of small seafood enterprises is studied based on technology diffusion. New technologies attraction in small enterprises causes competition especially in small sea food enterprises in internal markets (considering lack of water resources). Therefore, to accomplish such thing, ...
Atomic diffusion theory challenging the Cahn-Hilliard method
International Nuclear Information System (INIS)
Nastar, M.
2014-01-01
Our development of the self-consistent mean-field (SCMF) kinetic theory for nonuniform alloys leads to the statement that kinetic correlations induced by the vacancy diffusion mechanism have a dramatic effect on nano-scale diffusion phenomena, leading to nonlinear features of the interdiffusion coefficients. Lattice rate equations of alloys including nonuniform gradients of chemical potential are derived within the Bragg-Williams statistical approximation and the third shell kinetic approximation of the SCMF theory. General driving forces including deviations of the free energy from a local equilibrium thermodynamic formulation are introduced. These deviations are related to the variation of vacancy motion due to the spatial variation of the alloy composition. During the characteristic time of atomic diffusion, multiple exchanges of the vacancy with the same atoms may happen, inducing atomic kinetic correlations that depend as well on the spatial variation of the alloy composition. As long as the diffusion driving forces are uniform, the rate equations are shown to obey in this form the Onsager formalism of thermodynamics of irreversible processes (TIP) and the TIP-based Cahn-Hilliard diffusion equation. If now the chemical potential gradients are not uniform, the continuous limit of the present SCMF kinetic equations does not coincide with the Cahn-Hilliard (CH) equation. In particular, the composition gradient and higher derivative terms depending on kinetic parameters add to the CH thermodynamic-based composition gradient term. Indeed, a diffusion equation written as a mobility multiplied by a thermodynamic formulation of the driving forces is shown to be inadequate. In the reciprocal space, the thermodynamic driving force has to be multiplied by a nonlinear function of the wave vector accounting for the variation of kinetic correlations with composition inhomogeneities. Analytical expressions of the effective interdiffusion coefficient are given for two limit
A symmetrized quasi-diffusion method for solving multidimensional transport problems
International Nuclear Information System (INIS)
Miften, M.M.; Larsen, E.W.
1992-01-01
In this paper, the authors propose a 'symmetrized' QD (SQD) method in which the non-self-adjoint QD diffusion problem is replaced by two self-adjoint diffusion problems. These problems are more easily discretized and more efficiently solved than in the standard QD method. They also give SQD calculational results for transport problems in x-y geometry
Analysis of the Diffuse Domain Method for Second Order Elliptic Boundary Value Problems
Burger, Martin; Elvetun, Ole; Schlottbom, Matthias
2017-01-01
The diffuse domain method for partial differential equations on complicated geometries recently received strong attention in particular from practitioners, but many fundamental issues in the analysis are still widely open. In this paper, we study the diffuse domain method for approximating second
Effective diffusion coefficient of radon in concrete, theory and method for field measurements
International Nuclear Information System (INIS)
Culot, M.V.J.; Olson, H.G.; Schiager, K.J.
1976-01-01
A linear diffusion model serves as the basis for determination of an effective radon diffusion coefficient in concrete. The coefficient was needed to later allow quantitative prediction of radon accumulation within and behind concrete walls after application of an impervious radon barrier. A resolution of certain discrepancies noted in the literature in the use of an effective diffusion coefficient to model diffusion of a radioactive gas through a porous medium is suggested. An outline of factors expected to affect the concrete physical structure and the effective diffusion coefficient of radon through it is also presented. Finally, a field method for evaluating effective radon diffusion coefficients in concrete is proposed and results of measurements performed on a concrete foundation wall are compared with similar published values of gas diffusion coefficients in concrete. (author)
Recent advances in computational-analytical integral transforms for convection-diffusion problems
Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.
2017-10-01
An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.
Directory of Open Access Journals (Sweden)
Qian Zhang
2014-01-01
Full Text Available The paper presents a framework for the construction of Monte Carlo finite volume element method (MCFVEM for the convection-diffusion equation with a random diffusion coefficient, which is described as a random field. We first approximate the continuous stochastic field by a finite number of random variables via the Karhunen-Loève expansion and transform the initial stochastic problem into a deterministic one with a parameter in high dimensions. Then we generate independent identically distributed approximations of the solution by sampling the coefficient of the equation and employing finite volume element variational formulation. Finally the Monte Carlo (MC method is used to compute corresponding sample averages. Statistic error is estimated analytically and experimentally. A quasi-Monte Carlo (QMC technique with Sobol sequences is also used to accelerate convergence, and experiments indicate that it can improve the efficiency of the Monte Carlo method.
Indirect methods for wake potential integration
International Nuclear Information System (INIS)
Zagorodnov, I.
2006-05-01
The development of the modern accelerator and free-electron laser projects requires to consider wake fields of very short bunches in arbitrary three dimensional structures. To obtain the wake numerically by direct integration is difficult, since it takes a long time for the scattered fields to catch up to the bunch. On the other hand no general algorithm for indirect wake field integration is available in the literature so far. In this paper we review the know indirect methods to compute wake potentials in rotationally symmetric and cavity-like three dimensional structures. For arbitrary three dimensional geometries we introduce several new techniques and test them numerically. (Orig.)
Numerical methods for engine-airframe integration
International Nuclear Information System (INIS)
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment
Permutation statistical methods an integrated approach
Berry, Kenneth J; Johnston, Janis E
2016-01-01
This research monograph provides a synthesis of a number of statistical tests and measures, which, at first consideration, appear disjoint and unrelated. Numerous comparisons of permutation and classical statistical methods are presented, and the two methods are compared via probability values and, where appropriate, measures of effect size. Permutation statistical methods, compared to classical statistical methods, do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This text takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field in statistics. This topic is new in that it took modern computing power to make permutation methods available to people working in the mainstream of research. This research monograph addresses a statistically-informed audience, and can also easily serve as a ...
Diffusion Geometry Based Nonlinear Methods for Hyperspectral Change Detection
2010-05-12
for matching biological spectra across a data base of hyperspectral pathology slides acquires with different instruments in different conditions, as...generalizing wavelets and similar scaling mechanisms. Plain Sight Systems, Inc. -7- Proprietary and Confidential To be specific, let the bi-Markov...remarkably well. Conventional nearest neighbor search , compared with a diffusion search. The data is a pathology slide ,each pixel is a digital
Improvement of wind tunnel experiment method for atmospheric diffusion
International Nuclear Information System (INIS)
Nakai, Masayuki; Sada, Koichi
1987-01-01
A wind direction fluctuation vane was added to CRIEPI's large - scale atmospheric diffusion wind tunnel for the purpose of increasing and controlling turbulence intensity. When the wind direction fluctuation vane was operated lateral plume spread and lateral turbulence intersity became greater than for cases when it was not operated. Use of the vane improved the ability of the wind tunnel to simulate plane spread under natural conditions. (author)
Analysis Method for Integrating Components of Product
Energy Technology Data Exchange (ETDEWEB)
Choi, Jun Ho [Inzest Co. Ltd, Seoul (Korea, Republic of); Lee, Kun Sang [Kookmin Univ., Seoul (Korea, Republic of)
2017-04-15
This paper presents some of the methods used to incorporate the parts constituting a product. A new relation function concept and its structure are introduced to analyze the relationships of component parts. This relation function has three types of information, which can be used to establish a relation function structure. The relation function structure of the analysis criteria was established to analyze and present the data. The priority components determined by the analysis criteria can be integrated. The analysis criteria were divided based on their number and orientation, as well as their direct or indirect characteristic feature. This paper presents a design algorithm for component integration. This algorithm was applied to actual products, and the components inside the product were integrated. Therefore, the proposed algorithm was used to conduct research to improve the brake discs for bicycles. As a result, an improved product similar to the related function structure was actually created.
Analysis Method for Integrating Components of Product
International Nuclear Information System (INIS)
Choi, Jun Ho; Lee, Kun Sang
2017-01-01
This paper presents some of the methods used to incorporate the parts constituting a product. A new relation function concept and its structure are introduced to analyze the relationships of component parts. This relation function has three types of information, which can be used to establish a relation function structure. The relation function structure of the analysis criteria was established to analyze and present the data. The priority components determined by the analysis criteria can be integrated. The analysis criteria were divided based on their number and orientation, as well as their direct or indirect characteristic feature. This paper presents a design algorithm for component integration. This algorithm was applied to actual products, and the components inside the product were integrated. Therefore, the proposed algorithm was used to conduct research to improve the brake discs for bicycles. As a result, an improved product similar to the related function structure was actually created.
First integral method for an oscillator system
Directory of Open Access Journals (Sweden)
Xiaoqian Gong
2013-04-01
Full Text Available In this article, we consider the nonlinear Duffing-van der Pol-type oscillator system by means of the first integral method. This system has physical relevance as a model in certain flow-induced structural vibration problems, which includes the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. Firstly, we apply the Division Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to explore a quasi-polynomial first integral to an equivalent autonomous system. Then, through solving an algebraic system we derive the first integral of the Duffing-van der Pol-type oscillator system under certain parametric condition.
A novel family of DG methods for diffusion problems
Johnson, Philip; Johnsen, Eric
2017-11-01
We describe and demonstrate a novel family of numerical schemes for handling elliptic/parabolic PDE behavior within the discontinuous Galerkin (DG) framework. Starting from the mixed-form approach commonly applied for handling diffusion (examples include Local DG and BR2), the new schemes apply the Recovery concept of Van Leer to handle cell interface terms. By applying recovery within the mixed-form approach, we have designed multiple schemes that show better accuracy than other mixed-form approaches while being more flexible and easier to implement than the Recovery DG schemes of Van Leer. While typical mixed-form approaches converge at rate 2p in the cell-average or functional error norms (where p is the order of the solution polynomial), many of our approaches achieve order 2p +2 convergence. In this talk, we will describe multiple schemes, including both compact and non-compact implementations; the compact approaches use only interface-connected neighbors to form the residual for each element, while the non-compact approaches add one extra layer to the stencil. In addition to testing the schemes on purely parabolic PDE problems, we apply them to handle the diffusive flux terms in advection-diffusion systems, such as the compressible Navier-Stokes equations.
Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method
International Nuclear Information System (INIS)
Xu Qi; Yu Ganglin; Wang Kan; Sun Jialong
2014-01-01
In this paper, the adaptability of the neutron diffusion numerical algorithm on GPUs was studied, and a GPU-accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. The IAEA 3D PWR benchmark problem was calculated in the numerical test. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. (authors)
International Nuclear Information System (INIS)
Wareing, T.A.
1993-01-01
New methods are presented for diffusion-synthetic accelerating the S N equations in slab and x-y geometries with the corner balance spatial differencing scheme. With the standard diffusion-synthetic acceleration method, the discretized diffusion problem is derived from the discretized S N problem to insure stability through consistent differencing. The major difference between our new methods and standard diffusion-synthetic acceleration is that the discretized diffusion problem is derived from a discretization of the P 1 equations, independently of the discretized S N problem. We present theoretical and numerical results to show that these new methods are unconditionally efficient in slab and x-y geometries with rectangular spatial meshes and isotropic scattering. (orig.)
Multistep Methods for Integrating the Solar System
1988-07-01
Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects
Directory of Open Access Journals (Sweden)
Sarah D. Lichenstein
2016-09-01
Full Text Available Purpose: Diffusion MRI provides a non-invasive way of estimating structural connectivity in the brain. Many studies have used diffusion phantoms as benchmarks to assess the performance of different tractography reconstruction algorithms and assumed that the results can be applied to in vivo studies. Here we examined whether quality metrics derived from a common, publically available, diffusion phantom can reliably predict tractography performance in human white matter tissue. Material and Methods: We compared estimates of fiber length and fiber crossing among a simple tensor model (diffusion tensor imaging, a more complicated model (ball-and-sticks and model-free (diffusion spectrum imaging, generalized q-sampling imaging reconstruction methods using a capillary phantom and in vivo human data (N=14. Results: Our analysis showed that evaluation outcomes differ depending on whether they were obtained from phantom or human data. Specifically, the diffusion phantom favored a more complicated model over a simple tensor model or model-free methods for resolving crossing fibers. On the other hand, the human studies showed the opposite pattern of results, with the model-free methods being more advantageous than model-based methods or simple tensor models. This performance difference was consistent across several metrics, including estimating fiber length and resolving fiber crossings in established white matter pathways. Conclusions: These findings indicate that the construction of current capillary diffusion phantoms tends to favor complicated reconstruction models over a simple tensor model or model-free methods, whereas the in vivo data tends to produce opposite results. This brings into question the previous phantom-based evaluation approaches and suggests that a more realistic phantom or simulation is necessary to accurately predict the relative performance of different tractography reconstruction methods. Acronyms: BSM: ball-and-sticks model; d
Energy Technology Data Exchange (ETDEWEB)
Bretscher, M M [Argonne National Laboratory, Argonne, IL 60439 (United States)
1985-07-01
Simple diffusion theory cannot be used to evaluate control rod worths in thermal neutron reactors because of the strongly absorbing character of the control material. However, reliable control rod worths can be obtained within the framework of diffusion theory if the control material is characterized by a set of mesh-dependent effective diffusion parameters. For thin slab absorbers the effective diffusion parameters can be expressed as functions of a suitably-defined pair of 'blackness coefficients'. Methods for calculating these blackness coefficients in the P1, P3, and P5 approximations, with and without scattering, are presented. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method, based on reaction rate ratios, is discussed. (author)
Experimental Methods and Development of Models on Diffusion of Nuclides onto Rocks
International Nuclear Information System (INIS)
Park, Chung-Kyun; Lee, Jae-Kwang; Baik, Min-Hoon
2007-01-01
In the context of nuclear waste repositories, the rock matrix can act as a barrier against radionuclide migration and matrix diffusion can be an important mechanism for delaying the arrival times to the biosphere. It takes a growing interest whether matrix diffusion is an important retarding and dispersing transport mechanism for solutes carried by groundwater in fractured porous media. It can retard solutes by spreading them from the flowing groundwater into the diluting reservoir of the interconnected pore space of the rock matrix, and providing an increased surface for sorption processes. Diffusion experiments has been carried in crystalline rocks to determine the diffusivities of some radionuclides either by through-diffusion cells or in-diffusion setups. We'd like to compare the experimental methods and their functions according to sorption properties of species
Computation of short-time diffusion using the particle simulation method
International Nuclear Information System (INIS)
Janicke, L.
1983-01-01
The method of particle simulation allows a correct description of turbulent diffusion even in areas near the source and the computation of overall average values (anticipated values). The model is suitable for dealing with complex situation. It is derived from the K-model which describes the dispersion of noxious matter using the diffusion formula. (DG) [de
International Nuclear Information System (INIS)
Riquelme, Rodrigo; Lira, Ignacio; Perez-Lopez, Carlos; Rayas, Juan A; RodrIguez-Vera, Ramon
2007-01-01
Two methods to measure the diffusion coefficient of a species in a liquid by optical interferometry were compared. The methods were tested on a 1.75 M NaCl aqueous solution diffusing into water at 26 deg. C. Results were D = 1.587 x 10 -9 m 2 s -1 with the first method and D = 1.602 x 10 -9 m 2 s -1 with the second method. Monte Carlo simulation was used to assess the possible dispersion of these results. The standard uncertainties were found to be of the order of 0.05 x 10 -9 m 2 s -1 with both methods. We found that the value of the diffusion coefficient obtained by either method is very sensitive to the magnification of the optical system, and that if diffusion is slow the measurement of time does not need to be very accurate
A method to measure the diffusion coefficient by neutron wave propagation for limited samples
International Nuclear Information System (INIS)
Woznicka, U.
1986-03-01
A study has been made of the use of the neutron wave and pulse propagation method for measurement of thermal neutron diffusion parameters. Earlier works an homogenous and heterogeneous media are reviewed. A new method is sketched for the determination of the diffusion coefficient for samples of limited size. The principle is to place a relatively thin slab of the material between two blocks of a medium with known properties. The advantages and disadvantages of the method are discussed. (author)
Determination of axial diffusion coefficients by the Monte-Carlo method
International Nuclear Information System (INIS)
Milgram, M.
1994-01-01
A simple method to calculate the homogenized diffusion coefficient for a lattice cell using Monte-Carlo techniques is demonstrated. The method relies on modelling a finite reactor volume to induce a curvature in the flux distribution, and then follows a large number of histories to obtain sufficient statistics for a meaningful result. The goal is to determine the diffusion coefficient with sufficient accuracy to test approximate methods built into deterministic lattice codes. Numerical results are given. (author). 4 refs., 8 figs
Improved parallel solution techniques for the integral transport matrix method
Energy Technology Data Exchange (ETDEWEB)
Zerr, R. Joseph, E-mail: rjz116@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States); Azmy, Yousry Y., E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Burlington Engineering Laboratories, Raleigh, NC (United States)
2011-07-01
Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)
Improved parallel solution techniques for the integral transport matrix method
International Nuclear Information System (INIS)
Zerr, R. Joseph; Azmy, Yousry Y.
2011-01-01
Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)
Bennett, Ilana J; Stark, Craig E L
2016-03-01
Pattern separation describes the orthogonalization of similar inputs into unique, non-overlapping representations. This computational process is thought to serve memory by reducing interference and to be mediated by the dentate gyrus of the hippocampus. Using ultra-high in-plane resolution diffusion tensor imaging (hrDTI) in older adults, we previously demonstrated that integrity of the perforant path, which provides input to the dentate gyrus from entorhinal cortex, was associated with mnemonic discrimination, a behavioral outcome designed to load on pattern separation. The current hrDTI study assessed the specificity of this perforant path integrity-mnemonic discrimination relationship relative to other cognitive constructs (identified using a factor analysis) and white matter tracts (hippocampal cingulum, fornix, corpus callosum) in 112 healthy adults (20-87 years). Results revealed age-related declines in integrity of the perforant path and other medial temporal lobe (MTL) tracts (hippocampal cingulum, fornix). Controlling for global effects of brain aging, perforant path integrity related only to the factor that captured mnemonic discrimination performance. Comparable integrity-mnemonic discrimination relationships were also observed for the hippocampal cingulum and fornix. Thus, whereas perforant path integrity specifically relates to mnemonic discrimination, mnemonic discrimination may be mediated by a broader MTL network. Copyright © 2015 Elsevier Inc. All rights reserved.
Doyle, Glynda J; Garrett, Bernie; Currie, Leanne M
2014-05-01
To identify studies reporting mobile device integration into undergraduate and graduate nursing curricula. To explore the potential use of Rogers' Diffusion of Innovation model as a framework to guide implementation of mobile devices into nursing curricula. Literature review and thematic categorization. Literature published up until June 2013 was searched using EBSCO, PubMed, and Google Scholar. The literature was reviewed for research articles pertaining to mobile device use in nursing education. Research articles were grouped by study design, and articles were classified by: 1) strategies for individual adopters and 2) strategies for organizations. Rogers' Diffusion of Innovation theory was used to categorize reported implementation strategies. Fifty-two research studies were identified. Strategies for implementation were varied, and challenges to integrating mobile devices include lack of administrative support and time/funding to educate faculty as well as students. Overall, the use of mobile devices appears to provide benefits to nursing students; however the research evidence is limited. Anticipating challenges and ensuring a well laid out strategic plan can assist in supporting successful integration of mobile devices. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Transport coefficients for deeply inelastic scattering from the Feynman path integral method
International Nuclear Information System (INIS)
Brink, D.M.; Neto, J.; Weidenmueller, H.A.
1979-01-01
Friction and diffusion coefficients can be derived simply by combining statistical arguments with the Feynman path integral method. A transport equation for Feynman's influence functional is obtained, and transport coefficients are deduced from it. The expressions are discussed in the limits of weak, and of strong coupling. (Auth.)
A purely Lagrangian method for the numerical integration of Fokker-Planck equations
International Nuclear Information System (INIS)
Combis, P.; Fronteau, J.
1986-01-01
A new numerical approach to Fokker-Planck equations is presented, in which the integration grid moves according to the solution of a differential system. The method is purely Lagrangian, the mean effect of the diffusion being inserted into the differential system itself
Directory of Open Access Journals (Sweden)
Marek Danielewski
2015-01-01
Full Text Available The problem of Kirkendall’s trajectories in finite, three- and one-dimensional ternary diffusion couples is studied. By means of the parabolic transformation method, we calculate the solute field, the Kirkendall marker velocity, and displacement fields. The velocity field is generally continuous and can be integrated to obtain a displacement field that is continuous everywhere. Special features observed experimentally and reported in the literature are also studied: (i multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple evolve into two locations as a result of the initial distribution, (ii multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple move into two locations due to composition dependent mobilities, and (iii a Kirkendall plane that coincides with the interphase interface. The details of the deformation (material trajectories in these special situations are given using both methods and are discussed in terms of the stress-free strain rate associated with the Kirkendall effect. Our nonlinear transform generalizes the diagonalization method by Krishtal, Mokrov, Akimov, and Zakharov, whose transform of diffusivities was linear.
Numerical methods for calculating thermal residual stresses and hydrogen diffusion
International Nuclear Information System (INIS)
Leblond, J.B.; Devaux, J.; Dubois, D.
1983-01-01
Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)
International Nuclear Information System (INIS)
Hayward, Robert M.; Rahnema, Farzad; Zhang, Dingkang
2013-01-01
Highlights: ► A new hybrid stochastic–deterministic transport theory method to couple with diffusion theory. ► The method is implemented in 2D hexagonal geometry. ► The new method produces excellent results when compared with Monte Carlo reference solutions. ► The method is fast, solving all test cases in less than 12 s. - Abstract: A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffusion theory, is presented. The new method is an extension of the incident flux response expansion method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease of use in mind, the new method is derived in such a way that it can be implemented with only minimal modifications to an existing diffusion theory method. A new angular expansion, which is necessary for the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration. It is found that the new method produces excellent results (with average relative error in partial current less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast, solving all test cases in less than 12 s
DETERMINATION OF MOISTURE DIFFUSION COEFFICIENT OF LARCH BOARD WITH FINITE DIFFERENCE METHOD
Directory of Open Access Journals (Sweden)
Qiaofang Zhou
2011-04-01
Full Text Available This paper deals with the moisture diffusion coefficient of Dahurian Larch (Larix gmelinii Rupr. by use of the Finite Difference Method (FDM. To obtain moisture distributions the dimensional boards of Dahurian Larch were dried, from which test samples were cut and sliced evenly into 9 pieces in different drying periods, so that moisture distributions at different locations and times across the thickness of Dahurian Larch were obtained with a weighing method. With these experimental data, FDM was used to solve Fick’s one-dimensional unsteady-state diffusion equation, and the moisture diffusion coefficient across the thickness at specified time was obtained. Results indicated that the moisture diffusion coefficient decreased from the surface to the center of the Dahurian Larch wood, and it decreased with decreasing moisture content at constant wood temperature; as the wood temperature increased, the moisture diffusion coefficient increased, and the effect of the wood temperature on the moisture diffusion coefficient was more significant than that of moisture content. Moisture diffusion coefficients were different for the two experiments due to differing diffusivity of the specimens.
Zhu, Yanjie; Peng, Xi; Wu, Yin; Wu, Ed X; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong
2017-02-01
To develop a new model-based method with spatial and parametric constraints (MB-SPC) aimed at accelerating diffusion tensor imaging (DTI) by directly estimating the diffusion tensor from highly undersampled k-space data. The MB-SPC method effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images using an L1-L2 norm and the smoothness of the diffusion tensor using a total variation seminorm. The undersampled k-space datasets were obtained from fully sampled DTI datasets of a simulated phantom and an ex-vivo experimental rat heart with acceleration factors ranging from 2 to 4. The diffusion tensor was directly reconstructed by solving a minimization problem with a nonlinear conjugate gradient descent algorithm. The reconstruction performance was quantitatively assessed using the normalized root mean square error (nRMSE) of the DTI indices. The MB-SPC method achieves acceptable DTI measures at an acceleration factor up to 4. Experimental results demonstrate that the proposed method can estimate the diffusion tensor more accurately than most existing methods operating at higher net acceleration factors. The proposed method can significantly reduce artifact, particularly at higher acceleration factors or lower SNRs. This method can easily be adapted to MR relaxometry parameter mapping and is thus useful in the characterization of biological tissue such as nerves, muscle, and heart tissue. © 2016 American Association of Physicists in Medicine.
Continual integration method in the polaron model
International Nuclear Information System (INIS)
Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.
1981-01-01
The article is devoted to the investigation of a polaron system on the base of a variational approach formulated on the language of continuum integration. The variational method generalizing the Feynman one for the case of the system pulse different from zero has been formulated. The polaron state has been investigated at zero temperature. A problem of the bound state of two polarons exchanging quanta of a scalar field as well as a problem of polaron scattering with an external field in the Born approximation have been considered. Thermodynamics of the polaron system has been investigated, namely, high-temperature expansions for mean energy and effective polaron mass have been studied [ru
Directory of Open Access Journals (Sweden)
Norichika Kanie
2014-04-01
Full Text Available One of the next major challenges for research and policy on sustainability is setting the post-2015 Development Agenda. This challenge arises as a direct result of the formal ending of the Millennium Development Goals (MDGs in 2015 and as an outcome of the 2012 United Nations Conference on Sustainable Development (Rio+20. The post-2015 Development Agenda is expected to include two agendas: one on human well-being to advance the MDG targets and the other on planetary well-being, which requires a safe “operating space” within the Earth’s life-support system. In contrast to the MDGs, the Sustainable Development Goals (SDGs are meant to apply to both developing and developed countries and create a space for development within the stable functioning of the Earth’s systems. However, what might this all look like? For answers, this paper reviews the achievements and reflections of the MDGs to date and identifies new challenges entailed in the shift of development goals from “millennium” to “sustainable”. While most of the existing studies look at these two sets of issues separately, combining the two reveals two important features of the SDGs. First, SDGs need to integrate both human and planetary well-being in a goal, and second, goals, or sub-goals, need to be formulated at multiple levels, from global to local levels. While the MDGs represented no integrated goals, some of the existing proposals on SDGs include integrated goals. However, our analysis has shown that they do not present the vertical diffusion of goals. Considering both integration and diffusion in the architecture of SDGs is a remaining task.
A combined reconstruction-classification method for diffuse optical tomography
Energy Technology Data Exchange (ETDEWEB)
Hiltunen, P [Department of Biomedical Engineering and Computational Science, Helsinki University of Technology, PO Box 3310, FI-02015 TKK (Finland); Prince, S J D; Arridge, S [Department of Computer Science, University College London, Gower Street London, WC1E 6B (United Kingdom)], E-mail: petri.hiltunen@tkk.fi, E-mail: s.prince@cs.ucl.ac.uk, E-mail: s.arridge@cs.ucl.ac.uk
2009-11-07
We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.
A method to calibrate a solar pyranometer for measuring reference diffuse irradiance
Energy Technology Data Exchange (ETDEWEB)
Reda, I.; Stoffel, T.; Myers, D. [National Renewable Energy Laboratory, Golden, CO (United States)
2003-02-01
Accurate pyranometer calibrations, traceable to internationally recognized standards, are critical for solar irradiance measurements. One calibration method is the component summation, where the pyranometers are calibrated outdoors under clear sky conditions, and the reference global solar irradiance is calculated as the sum of two reference components, the diffuse and subtended beam solar irradiances. The beam component is measured with pyrheliometers traceable to the World Radiometric Reference, while there is no internationally recognized reference for the diffuse component. In the absence of such a reference, we present a method to consistently calibrate pyranometers for measuring the diffuse component with an estimated uncertainty of {+-} (3% of reading +1 W/m{sup 2}). The method is based on using a modified shade/unshade method, and pyranometers with less than 1 W/m{sup 2} thermal offset errors. We evaluated the consistency of our method by calibrating three pyranometers four times. Calibration results show that the responsivity change is within {+-} 0.52% for the three pyranometers. We also evaluated the effect of calibrating pyranometers unshaded, then using them shaded to measure diffuse irradiance. We calibrated three unshaded pyranometers using the component summation method. Their outdoor measurements of clear sky diffuse irradiance, from sunrise to sundown, showed that the three calibrated pyranometers can be used to measure the diffuse irradiance to within {+-} 1.4 W/m{sup 2} variation from the reference irradiance. (author)
Improvements of the integral transport theory method
International Nuclear Information System (INIS)
Kavenoky, A.; Lam-Hime, M.; Stankovski, Z.
1979-01-01
The integral transport theory is widely used in practical reactor design calculations however it is computer time consuming for two dimensional calculations of large media. In the first part of this report a new treatment is presented; it is based on the Galerkin method: inside each region the total flux is expanded over a three component basis. Numerical comparison shows that this method can considerably reduce the computing time. The second part of the this report is devoted to homogeneization theory: a straightforward calculation of the fundamental mode for an heterogeneous cell is presented. At first general presentation of the problem is given, then it is simplified to plane geometry and numerical results are presented
Collaborative teaching of an integrated methods course
Directory of Open Access Journals (Sweden)
George Zhou
2011-03-01
Full Text Available With an increasing diversity in American schools, teachers need to be able to collaborate in teaching. University courses are widely considered as a stage to demonstrate or model the ways of collaboration. To respond to this call, three authors team taught an integrated methods course at an urban public university in the city of New York. Following a qualitative research design, this study explored both instructors‟ and pre-service teachers‟ experiences with this course. Study findings indicate that collaborative teaching of an integrated methods course is feasible and beneficial to both instructors and pre-service teachers. For instructors, this collaborative teaching was a reciprocal learning process where they were engaged in thinking about teaching in a broader and innovative way. For pre-service teachers, this collaborative course not only helped them understand how three different subjects could be related to each other, but also provided opportunities for them to actually see how collaboration could take place in teaching. Their understanding of collaborative teaching was enhanced after the course.
Energy Technology Data Exchange (ETDEWEB)
Duerigen, Susan
2013-05-15
The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.
Application of the SPH method in nodal diffusion analyses of SFR cores
Energy Technology Data Exchange (ETDEWEB)
Nikitin, Evgeny; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety; Mikityuk, K. [Paul Scherrer Institut, Villigen (Switzerland)
2016-07-01
The current study investigated the potential of the SPH method, applied to correct the few-group XS produced by Serpent, to further improve the accuracy of the nodal diffusion solutions. The procedure for the generation of SPH-corrected few-group XS is presented in the paper. The performance of the SPH method was tested on a large oxide SFR core from the OECD/NEA SFR benchmark. The reference SFR core was modeled with the DYN3D and PARCS nodal diffusion codes using the SPH-corrected few-group XS generated by Serpent. The nodal diffusion results obtained with and without SPH correction were compared to the reference full-core Serpent MC solution. It was demonstrated that the application of the SPH method improves the accuracy of the nodal diffusion solutions, particularly for the rodded core state.
International Nuclear Information System (INIS)
Zhang, De-Long; Zhang, Qun; Zhang, Pei; Kang, Jian; Wong, Wing-Han; Yu, Dao-Yin
2016-01-01
Graphical abstract: Diffusion growth of Ga"3"+-doped LiTaO_3(LT) thin film was studied thermodynamically. Some Ga"3"+-doped LT thin films were grown on LT surface by in-diffusion of homogeneously coated Ga_2O_3 film at the temperature range of (1273 to 1473) K. The Ga"3"+ profile in the grown thin film was analyzed by secondary ion mass spectrometry. Form the measured Ga"3"+ profiles, some thermodynamic parameters were obtained. These include diffusivity, diffusion constant, chemical activation energy, solubility, solubility constant and enthalpy of solution. These parameters are crucial to design and growth of a Ga"3"+-doped LT thin film with desired Ga"3"+ profile for integrated optics application. A thermodynamic model is suggested for the growth and verified experimentally. - Highlights: • Diffusion growth of Ga"3"+-doped LiTaO_3 thin film were studied thermodynamically. • Diffusion constant is 1.41 · 10"−"6 m"2/s and activation energy is 237.2 kJ/mol. • Solubility constant is 22.9 · 10"2"6 ions/m"3 and enthalpy of solution is 28.9 kJ/mol. • Ga"3"+ dopant has small effect on LiTaO_3 refractive index. • Ga"3"+ growth can be described by a Fick-type equation with a constant diffusivity. - Abstract: A thermodynamic study was performed on diffusion growth of Ga"3"+-doped LiTaO_3(LT) thin film for integrated optics. Some Ga"3"+-doped LT thin films were grown on LT surface by in-diffusion of homogeneously coated Ga_2O_3 film at the temperature range of (1273 to 1473) K. After growth, the refractive indices at Ga"3"+-doped and un-doped surface parts were measured by prism coupling technique and Li composition there was evaluated from the measured refractive indices. The results show that Ga"3"+ dopant has small effect on the LT index. Li_2O out-diffusion is not measurable. The Ga"3"+ profile in the grown thin film was analysed by secondary ion mass spectrometry. It is found that the grown Ga"3"+ ions follow a complementary error function profile. A
An inherently parallel method for solving discretized diffusion equations
International Nuclear Information System (INIS)
Eccleston, B.R.; Palmer, T.S.
1999-01-01
A Monte Carlo approach to solving linear systems of equations is being investigated in the context of the solution of discretized diffusion equations. While the technique was originally devised decades ago, changes in computer architectures (namely, massively parallel machines) have driven the authors to revisit this technique. There are a number of potential advantages to this approach: (1) Analog Monte Carlo techniques are inherently parallel; this is not necessarily true to today's more advanced linear equation solvers (multigrid, conjugate gradient, etc.); (2) Some forms of this technique are adaptive in that they allow the user to specify locations in the problem where resolution is of particular importance and to concentrate the work at those locations; and (3) These techniques permit the solution of very large systems of equations in that matrix elements need not be stored. The user could trade calculational speed for storage if elements of the matrix are calculated on the fly. The goal of this study is to compare the parallel performance of Monte Carlo linear solvers to that of a more traditional parallelized linear solver. The authors observe the linear speedup that they expect from the Monte Carlo algorithm, given that there is no domain decomposition to cause significant communication overhead. Overall, PETSc outperforms the Monte Carlo solver for the test problem. The PETSc parallel performance improves with larger numbers of unknowns for a given number of processors. Parallel performance of the Monte Carlo technique is independent of the size of the matrix and the number of processes. They are investigating modifications to the scheme to accommodate matrix problems with positive off-diagonal elements. They are also currently coding an on-the-fly version of the algorithm to investigate the solution of very large linear systems
Comparison of two disc diffusion methods with minimum inhibitory ...
African Journals Online (AJOL)
Susceptibility to penicillin, ciprofloxacin, tetracycline, ceftriaxone and spectinomycin and cefixime were determined by CSLI and AGSP method and Kappa statistics used to analyse the data with SPSS software. Results: All isolates were susceptible to ceftriaxone and spectinomycin by three methods. Ninety‑nine (99%) ...
Directory of Open Access Journals (Sweden)
Yanhui Liao
Full Text Available Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers.Using in vivo diffusion tensor imaging (DTI to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years. DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System. The data revealed that smokers had higher fractional anisotropy (FA than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF.We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity.
Numerical study of water diffusion in biological tissues using an improved finite difference method
International Nuclear Information System (INIS)
Xu Junzhong; Does, Mark D; Gore, John C
2007-01-01
An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)
Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.
2018-01-01
Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.
Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2006-01-01
Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations
Method of independently operating a group of stages within a diffusion cascade
International Nuclear Information System (INIS)
Benedict, M.; Allen, J.F.; Levey, H.B.
1976-01-01
A method of operating a group of the diffusion stages of a productive diffusion cascade with counter-current flow is described. The group consists of a top and a bottom stage which isolates the group from the cascade. The diffused gas produced in the top stage is circulated to the feed of the bottom stage, while at the same time undiffused gas from the bottom stage is circulated to the feed of the top stage whereby major changes in inventory distribution within the group of stages are prevented
Preparation of standard mixtures of gas hydrocarbons in air by the diffusion dilution method
International Nuclear Information System (INIS)
Garcia, M. R.; Perez, M. M.
1979-01-01
An original diffusion system able to produce continuously gaseous samples is described. This system can generate samples with concentrations of benzene in air from 0.1 to 1 ppm a reproducible way. The diffusion dilution method used Is also studied. The use of this diffusion system has been extended to the preparation of binary mixtures (benzene-toluene). Whit a secondary dilution device is possible preparing these mixtures over a wide range of concentrations (0.11 to 0.04 ppm for benzene and 0.06 to 0.02 for toluene). (Author) 7 refs
Method for measurement of radon diffusion and solubility in solid materials
Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia
2018-02-01
In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.
On the Diffusion Coefficient of Two-step Method for LWR analysis
International Nuclear Information System (INIS)
Lee, Deokjung; Choi, Sooyoung; Smith, Kord S.
2015-01-01
The few-group constants including diffusion coefficients are generated from the assembly calculation results. Once the assembly calculation is done, the cross sections (XSs) are spatially homogenized, and a critical spectrum calculation is performed in order to take into account the neutron leakages of the lattice. The diffusion coefficient is also generated through the critical spectrum calculation. Three different methods of the critical spectrum calculation such as B1 method, P1 method, and fundamental mode (FM) calculation method are considered in this paper. The diffusion coefficients can also be affected by transport approximations for the transport XS calculation which is used in the assembly transport lattice calculation in order to account for the anisotropic scattering effects. The outflow transport approximation and the inflow transport approximation are investigated in this paper. The accuracy of the few group data especially the diffusion coefficients has been studied to optimize the combination of the transport correction methods and the critical spectrum calculation methods using the UNIST lattice physics code STREAM. The combination of the inflow transport approximation and the FM method is shown to provide the highest accuracy in the LWR core calculations. The methodologies to calculate the diffusion coefficients have been reviewed, and the performances of them have been investigated with a LWR core problem. The combination of the inflow transport approximation and the fundamental mode critical spectrum calculation shows the smallest errors in terms of assembly power distribution
Tanaka, Hiroaki; Inaka, Koji; Sugiyama, Shigeru; Takahashi, Sachiko; Sano, Satoshi; Sato, Masaru; Yoshitomi, Susumu
2004-01-01
We developed a new protein crystallization method has been developed using a simplified counter-diffusion method for optimizing crystallization condition. It is composed of only a single capillary, the gel in the silicon tube and the screw-top test tube, which are readily available in the laboratory. The one capillary can continuously scan a wide range of crystallization conditions (combination of the concentrations of the precipitant and the protein) unless crystallization occurs, which means that it corresponds to many drops in the vapor-diffusion method. The amount of the precipitant and the protein solutions can be much less than in conventional methods. In this study, lysozyme and alpha-amylase were used as model proteins for demonstrating the efficiency of this method. In addition, one-dimensional (1-D) simulations of the crystal growth were performed based on the 1-D diffusion model. The optimized conditions can be applied to the initial crystallization conditions for both other counter-diffusion methods with the Granada Crystallization Box (GCB) and for the vapor-diffusion method after some modification.
Diffusion-synthetic acceleration methods for the discrete-ordinates equations
International Nuclear Information System (INIS)
Larsen, E.W.
1983-01-01
The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas beind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems and the status of current efforts aimed at solving these problems
Parallel Jacobi EVD Methods on Integrated Circuits
Directory of Open Access Journals (Sweden)
Chi-Chia Sun
2014-01-01
Full Text Available Design strategies for parallel iterative algorithms are presented. In order to further study different tradeoff strategies in design criteria for integrated circuits, A 10 × 10 Jacobi Brent-Luk-EVD array with the simplified μ-CORDIC processor is used as an example. The experimental results show that using the μ-CORDIC processor is beneficial for the design criteria as it yields a smaller area, faster overall computation time, and less energy consumption than the regular CORDIC processor. It is worth to notice that the proposed parallel EVD method can be applied to real-time and low-power array signal processing algorithms performing beamforming or DOA estimation.
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
2014-03-01
accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re
Energy Technology Data Exchange (ETDEWEB)
Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur (Belgium); Guaino, Philippe; Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur (Belgium)
2013-09-02
For the fabrication of monolithically integrated flexible Cu(In, Ga)Se{sub 2}, CIGS modules on stainless steel, individual photovoltaic cells must be insulated from metal substrates by a barrier layer that can sustain high thermal treatments. In this work, a combination of sol–gel (organosilane-sol) and sputtered SiAlxOy forming thin diffusion barrier layers (TDBL) was prepared on stainless steel substrates. The deposition of organosilane-sol dielectric layers on the commercial stainless steel (maximal roughness, Rz = 500 nm and Root Mean Square roughness, RMS = 56 nm) induces a planarization of the surface (RMS = 16.4 nm, Rz = 176 nm). The DC leakage current through the dielectric layers was measured for the metal-insulator-metal (MIM) junctions that act as capacitors. This method allowed us to assess the quality of our TDBL insulating layer and its lateral uniformity. Indeed, evaluating a ratio of the number of valid MIM capacitors to the number of tested MIM capacitors, a yield of ∼ 95% and 50% has been reached respectively with non-annealed and annealed samples based on sol–gel double layers. A yield of 100% was achieved for sol–gel double layers reinforced with a sputtered SiAlxOy coating and a third sol–gel monolayer. Since this yield is obtained on several samples, it can be extrapolated to any substrate size. Furthermore, according to Glow Discharge Optical Emission Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy measurements, these barrier layers exhibit excellent barrier properties against the diffusion of undesired atoms which could otherwise spoil the electronic and optical properties of CIGS photovoltaic cells. - Highlights: • We functionalize steel for monolithically integrated Cu(In,Ga)Se{sub 2} solar cells • Thin dielectric and diffusion barrier layers (TDDBL) prepared on steel • Reliability and breakdown voltage of dielectric layers have been studied. • Investigation of thermal treatment effect on dielectric
A coarse-mesh nodal method-diffusive-mesh finite difference method
International Nuclear Information System (INIS)
Joo, H.; Nichols, W.R.
1994-01-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2004-01-01
The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions
An innovative method for determining the diffusion coefficient of product nuclide
Energy Technology Data Exchange (ETDEWEB)
Chen, Chih Lung [Dept. of Nuclear Back-end Management, Taiwan Power Company, Taipei (China); Wang, Tsing Hai [Dept. Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu (China)
2017-08-15
Diffusion is a crucial mechanism that regulates the migration of radioactive nuclides. In this study, an innovative numerical method was developed to simultaneously calculate the diffusion coefficient of both parent and, afterward, series daughter nuclides in a sequentially reactive through-diffusion model. Two constructed scenarios, a serial reaction (RN{sub 1} → RN{sub 2} → RN{sub 3}) and a parallel reaction (RN{sub 1} → RN{sub 2}A + RN{sub 2}B), were proposed and calculated for verification. First, the accuracy of the proposed three-member reaction equations was validated using several default numerical experiments. Second, by applying the validated numerical experimental concentration variation data, the as-determined diffusion coefficient of the product nuclide was observed to be identical to the default data. The results demonstrate the validity of the proposed method. The significance of the proposed numerical method will be particularly powerful in determining the diffusion coefficients of systems with extremely thin specimens, long periods of diffusion time, and parent nuclides with fast decay constants.
International Nuclear Information System (INIS)
Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin
2014-01-01
The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified
Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity
International Nuclear Information System (INIS)
Wang Yuzhu; Chen Hongxin; Cai Weiquan; Liu Liang; Zhou Shanyu; Shu Wei; Li Fosheng
1994-01-01
In this paper, we report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity. With this red-shifted diffuse light, a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 20m/s. The mechanism of this kind of laser cooling and the experimental results are discussed. (author). 12 refs, 5 figs
Numerov iteration method for second order integral-differential equation
International Nuclear Information System (INIS)
Zeng Fanan; Zhang Jiaju; Zhao Xuan
1987-01-01
In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics
An Integrated Method for Airfoil Optimization
Okrent, Joshua B.
Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal
Heusch, Philipp; Wittsack, Hans-Jörg; Pentang, Gael; Buchbender, Christian; Miese, Falk; Schek, Julia; Kröpil, Patric; Antoch, Gerald; Lanzman, Rotem S
2013-12-01
Biexponential analysis has been used increasingly to obtain contributions of both diffusion and microperfusion to the signal decay in diffusion-weighted imaging DWI of different parts of the body. To compare biexponential diffusion parameters of transplanted kidneys obtained with three different calculation methods. DWI was acquired in 15 renal allograft recipients (eight men, seven women; mean age, 52.4 ± 14.3 years) using a paracoronal EPI sequence with 16 b-values (b = 0-750 s/mm(2)) and six averages at 1.5T. No respiratory gating was used. Three different calculation methods were used for the calculation of biexponential diffusion parameters: Fp, ADCP, and ADCD were calculated without fixing any parameter a priori (calculation method 1); ADCP was fixed to 12.0 µm(2)/ms, whereas Fp and ADCD were calculated using the biexponential model (calculation method 2); multistep approach with monoexponential fitting of the high b-value portion (b ≥ 250 s/mm(2)) for determination of ADCD and assessment of the low b intercept for determination of Fp (calculation method 3). For quantitative analysis, ROI measurements were performed on the according parameter maps. Mean ADCD values of the renal cortex using calculation method 1 were significantly lower than using calculation methods 2 and 3 (P < 0.001). There was a significant correlation between calculation methods 1 and 2 (r = 0.69 (P < 0.005) and calculation methods 1 and 3 (r = 0.59; P < 0.05) as well as calculation methods 2 and 3 (r = 0.98; P < 0.001). Mean Fp values of the renal cortex were higher with calculation method 1 than with calculation methods 2 and 3 (P < 0.001). For Fp, only the correlation between calculation methods 2 and 3 was significant (r = 0.98; P < 0.001). Biexponential diffusion parameters differ significantly depending on the calculation methods used for their calculation.
International Nuclear Information System (INIS)
Zhang, Dingkang; Rahnema, Farzad; Ougouag, Abderrfi M.
2011-01-01
A response-based local transport method has been developed in 2-D (r, θ) geometry for coupling to any coarse-mesh (nodal) diffusion method/code. Monte Carlo method is first used to generate a (pre-computed) the response function library for each unique coarse mesh in the transport domain (e.g., the outer reflector region of the Pebble Bed Reactor). The scalar flux and net current at the diffusion/transport interface provided by the diffusion method are used as an incoming surface source to the transport domain. A deterministic iterative sweeping method together with the response function library is utilized to compute the local transport solution within all transport coarse meshes. After the partial angular currents crossing the coarse mesh surfaces are converged, albedo coefficients are computed as boundary conditions for the diffusion methods. The iteration on the albedo boundary condition (for the diffusion method via transport) and the incoming angular flux boundary condition (for the transport via diffusion) is continued until convergence is achieved. The method was tested for in a simplified 2-D (r, θ) pebble bed reactor problem consisting of an inner reflector, an annular fuel region and a controlled outer reflector. The comparisons have shown that the results of the response-function-based transport method agree very well with a direct MCNP whole core solution. The agreement in coarse mesh averaged flux was found to be excellent: relative difference of about 0.18% and a maximum difference of about 0.55%. Note that the MCNP uncertainty was less than 0.1%. (author)
Diffusion tensor MR imaging of white matter integrity in HIV-positive patients with planning deficit
International Nuclear Information System (INIS)
Correa, Diogo Goulart; Doring, Thomas M.; Wilner, Nina Ventura; Cabral, Rafael Ferracini; Gasparetto, Emerson Leandro; Zimmermann, Nicolle; Fonseca, Rochele Paz; Leite, Sarah C.B.; Bahia, Paulo R.V.
2015-01-01
The aim of this study was to evaluate whether normal controls and human immunodeficiency virus (HIV) patients with and without planning deficits differ on white matter integrity. A total of 34 HIV-positive patients with planning deficits were compared with 13 HIV-positive patients without planning deficits and 19 gender-, age-, and education-matched control subjects. Diffusion tensor imaging (DTI) was performed along 30 noncolinear directions in a 1.5-T scanner. For tract-based spatial statistics analysis, a white matter skeleton was created, and a permutation-based inference with 5000 permutations with a threshold of p < 0.05 was used to identify abnormalities in fractional anisotropy (FA). The median, radial, and axial diffusivities were also projected onto the mean FA skeleton. Compared with controls, HIV-positive patients with planning deficits had decreased FA in bilateral anterior thalamic radiations, bilateral inferior fronto-occiptal fasciculi, genu and splenium of the corpus callosum, bilateral superior longitudinal fascicule, and bilateral uncinate fasciculi. Compared to HIV-positive patients without planning deficits, patients with planning deficits had decreased FA in bilateral anterior thalamic radiations, bilateral inferior fronto-occiptal fasciculi, genu of the corpus callosum, bilateral superior longitudinal fascicule, and right uncinate fascicule. DTI can detect extensive white matter abnormalities in the normal-appearing white matter of HIV-positive patients with planning deficits compared with controls and HIV-positive patients without planning deficits. (orig.)
Diffusion tensor MR imaging of white matter integrity in HIV-positive patients with planning deficit
Energy Technology Data Exchange (ETDEWEB)
Correa, Diogo Goulart; Doring, Thomas M.; Wilner, Nina Ventura; Cabral, Rafael Ferracini; Gasparetto, Emerson Leandro [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil); Zimmermann, Nicolle; Fonseca, Rochele Paz [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Pontifical Catholic University of Rio Grande do Sul, Department of Psychology, Rio Grande do Sul (Brazil); Leite, Sarah C.B.; Bahia, Paulo R.V. [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil)
2015-05-01
The aim of this study was to evaluate whether normal controls and human immunodeficiency virus (HIV) patients with and without planning deficits differ on white matter integrity. A total of 34 HIV-positive patients with planning deficits were compared with 13 HIV-positive patients without planning deficits and 19 gender-, age-, and education-matched control subjects. Diffusion tensor imaging (DTI) was performed along 30 noncolinear directions in a 1.5-T scanner. For tract-based spatial statistics analysis, a white matter skeleton was created, and a permutation-based inference with 5000 permutations with a threshold of p < 0.05 was used to identify abnormalities in fractional anisotropy (FA). The median, radial, and axial diffusivities were also projected onto the mean FA skeleton. Compared with controls, HIV-positive patients with planning deficits had decreased FA in bilateral anterior thalamic radiations, bilateral inferior fronto-occiptal fasciculi, genu and splenium of the corpus callosum, bilateral superior longitudinal fascicule, and bilateral uncinate fasciculi. Compared to HIV-positive patients without planning deficits, patients with planning deficits had decreased FA in bilateral anterior thalamic radiations, bilateral inferior fronto-occiptal fasciculi, genu of the corpus callosum, bilateral superior longitudinal fascicule, and right uncinate fascicule. DTI can detect extensive white matter abnormalities in the normal-appearing white matter of HIV-positive patients with planning deficits compared with controls and HIV-positive patients without planning deficits. (orig.)
Unified path integral approach to theories of diffusion-influenced reactions
Prüstel, Thorsten; Meier-Schellersheim, Martin
2017-08-01
Building on mathematical similarities between quantum mechanics and theories of diffusion-influenced reactions, we develop a general approach for computational modeling of diffusion-influenced reactions that is capable of capturing not only the classical Smoluchowski picture but also alternative theories, as is here exemplified by a volume reactivity model. In particular, we prove the path decomposition expansion of various Green's functions describing the irreversible and reversible reaction of an isolated pair of molecules. To this end, we exploit a connection between boundary value and interaction potential problems with δ - and δ'-function perturbation. We employ a known path-integral-based summation of a perturbation series to derive a number of exact identities relating propagators and survival probabilities satisfying different boundary conditions in a unified and systematic manner. Furthermore, we show how the path decomposition expansion represents the propagator as a product of three factors in the Laplace domain that correspond to quantities figuring prominently in stochastic spatially resolved simulation algorithms. This analysis will thus be useful for the interpretation of current and the design of future algorithms. Finally, we discuss the relation between the general approach and the theory of Brownian functionals and calculate the mean residence time for the case of irreversible and reversible reactions.
International Nuclear Information System (INIS)
Mello, Kelen Berra de
2005-02-01
In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)
Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems
International Nuclear Information System (INIS)
Trueba, J L; Arrayas, M
2009-01-01
We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)
Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems
Energy Technology Data Exchange (ETDEWEB)
Trueba, J L; Arrayas, M [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)
2009-07-17
We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)
International Nuclear Information System (INIS)
Lawrence, R.D.; Dorning, J.J.
1980-01-01
A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method
Three-group albedo method applied to the diffusion phenomenon with up-scattering of neutrons
International Nuclear Information System (INIS)
Terra, Andre M. Barge Pontes Torres; Silva, Jorge A. Valle da; Cabral, Ronaldo G.
2007-01-01
The main objective of this research is to develop a three-group neutron Albedo algorithm considering the up-scattering of neutrons in order to analyse the diffusion phenomenon in nonmultiplying media. The neutron Albedo method is an analytical method that does not try to solve describing explicit equations for the neutron fluxes. Thus the neutron Albedo methodology is very different from the conventional methodology, as the neutron diffusion theory model. Graphite is analyzed as a model case. One major application is in the determination of the nonleakage probabilities with more understandable results in physical terms than conventional radiation transport method calculations. (author)
METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS
Directory of Open Access Journals (Sweden)
A. Lasher
2013-09-01
example, this research proved the sustainability of the proposed integrated optimization parameters of transport systems. This approach could be applied not only for MTS, but also for other transport systems. Originality. The bases of the complex optimization of transport presented are the new system of universal scientific methods and approaches that ensure high accuracy and authenticity of calculations with the simulation of transport systems and transport networks taking into account the dynamics of their development. Practical value. The development of the theoretical and technological bases of conducting the complex optimization of transport makes it possible to create the scientific tool, which ensures the fulfillment of the automated simulation and calculating of technical and economic structure and technology of the work of different objects of transport, including its infrastructure.
Double-diffusive natural convection in an enclosure filled with nanofluid using ISPH method
Directory of Open Access Journals (Sweden)
Abdelraheem M. Aly
2016-12-01
Full Text Available The double-diffusive natural convection in an enclosure filled with nanofluid is studied using ISPH method. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. In addition the thermal energy equations include regular diffusion and cross-diffusion terms. In ISPH algorithm, a semi implicit velocity correction procedure is utilized and the pressure is implicitly evaluated by solving pressure Poisson equation. The results are presented with flow configurations, isotherms, concentration and nanoparticle volume fraction contours and average Nusselt and Sherwood numbers for different cases. The results from this investigation are well validated and have favorable comparisons with previously published results. It is found that, among all cases, a good natural convection can be obtained by considering the double diffusive case. An increase in Soret number accompanied by a decrease in Dufour number results in an increase in average Nusselt number and a decrease in average Sherwood number.
Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2013-01-01
Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.
International Nuclear Information System (INIS)
Utama, Briandhika; Purqon, Acep
2016-01-01
Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods. (paper)
International Nuclear Information System (INIS)
Kirk, B.L.; Azmy, Y.Y.
1992-01-01
In this paper the one-group, steady-state neutron diffusion equation in two-dimensional Cartesian geometry is solved using the nodal integral method. The discrete variable equations comprise loosely coupled sets of equations representing the nodal balance of neutrons, as well as neutron current continuity along rows or columns of computational cells. An iterative algorithm that is more suitable for solving large problems concurrently is derived based on the decomposition of the spatial domain and is accelerated using successive overrelaxation. This algorithm is very well suited for parallel computers, especially since the spatial domain decomposition occurs naturally, so that the number of iterations required for convergence does not depend on the number of processors participating in the calculation. Implementation of the authors' algorithm on the Intel iPSC/2 hypercube and Sequent Balance 8000 parallel computer is presented, and measured speedup and efficiency for test problems are reported. The results suggest that the efficiency of the hypercube quickly deteriorates when many processors are used, while the Sequent Balance retains very high efficiency for a comparable number of participating processors. This leads to the conjecture that message-passing parallel computers are not as well suited for this algorithm as shared-memory machines
Fourier spectral methods for fractional-in-space reaction-diffusion equations
Bueno-Orovio, Alfonso
2014-04-01
© 2014, Springer Science+Business Media Dordrecht. Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains of ℝ. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.
International Nuclear Information System (INIS)
Fujimura, Toichiro; Okumura, Keisuke
2002-11-01
A prototype version of a diffusion code has been developed to analyze the hexagonal core as reduced moderation reactor and the applicability of some acceleration methods have been investigated to accelerate the convergence of the iterative solution method. The hexagonal core is divided into regular triangular prisms in the three-dimensional code MOSRA-Prism and a polynomial expansion nodal method is applied to approximate the neutron flux distribution by a cubic polynomial. The multi-group diffusion equation is solved iteratively with ordinal inner and outer iterations and the effectiveness of acceleration methods is ascertained by applying an adaptive acceleration method and a neutron source extrapolation method, respectively. The formulation of the polynomial expansion nodal method is outlined in the report and the local and global effectiveness of the acceleration methods is discussed with various sample calculations. A new general expression of vacuum boundary condition, derived in the formulation is also described. (author)
Laser interferometric method for determining the carrier diffusion length in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Manukhov, V. V. [Saint Petersburg State University (Russian Federation); Fedortsov, A. B.; Ivanov, A. S., E-mail: ivaleks58@gmail.com [Saint Petersburg Mining University (Russian Federation)
2015-09-15
A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.
An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods
International Nuclear Information System (INIS)
Montcel, Bruno; Poulet, Patrick
2006-01-01
We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
Conservative multi-implicit integral deferred correction methods with adaptive mesh refinement
International Nuclear Information System (INIS)
Layton, A.T.
2004-01-01
In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, nonlinear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation of which require the use of specialized spatial discretization procedures. This study presents high-order conservative methods for the temporal integration of model equations of reacting flows. By means of a method of lines discretization on the flux difference form of the equations, these methods compute approximations to the cell-averaged or finite-volume solution. The temporal discretization is based on a multi-implicit generalization of integral deferred correction methods. The advection term is integrated explicitly, and the diffusion and reaction terms are treated implicitly but independently, with the splitting errors present in traditional operator splitting methods reduced via the integral deferred correction procedure. To reduce computational cost, time steps used to integrate processes with widely-differing time scales may differ in size. (author)
Boundary integral methods for unsaturated flow
International Nuclear Information System (INIS)
Martinez, M.J.; McTigue, D.F.
1990-01-01
Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if αD > 4, where α is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on αD. 11 refs., 4 figs.,
Tracer diffusion in an ordered alloy: application of the path probability and Monte Carlo methods
International Nuclear Information System (INIS)
Sato, Hiroshi; Akbar, S.A.; Murch, G.E.
1984-01-01
Tracer diffusion technique has been extensively utilized to investigate diffusion phenomena and has contributed a great deal to the understanding of the phenomena. However, except for self diffusion and impurity diffusion, the meaning of tracer diffusion is not yet satisfactorily understood. Here we try to extend the understanding to concentrated alloys. Our major interest here is directed towards understanding the physical factors which control diffusion through the comparison of results obtained by the Path Probability Method (PPM) and those by the Monte Carlo simulation method (MCSM). Both the PPM and the MCSM are basically in the same category of statistical mechanical approaches applicable to random processes. The advantage of the Path Probability method in dealing with phenomena which occur in crystalline systems has been well established. However, the approximations which are inevitably introduced to make the analytical treatment tractable, although their meaning may be well-established in equilibrium statistical mechanics, sometimes introduce unwarranted consequences the origin of which is often hard to trace. On the other hand, the MCSM which can be carried out in a parallel fashion to the PPM provides, with care, numerically exact results. Thus a side-by-side comparison can give insight into the effect of approximations in the PPM. It was found that in the pair approximation of the CVM, the distribution in the completely random state is regarded as homogeneous (without fluctuations), and hence, the fluctuation in distribution is not well represented in the PPM. These examples thus show clearly how the comparison of analytical results with carefully carried out calculations by the MCSM guides the progress of theoretical treatments and gives insights into the mechanism of diffusion
Green's function method and its application to verification of diffusion models of GASFLOW code
International Nuclear Information System (INIS)
Xu, Z.; Travis, J.R.; Breitung, W.
2007-07-01
To validate the diffusion model and the aerosol particle model of the GASFLOW computer code, theoretical solutions of advection diffusion problems are developed by using the Green's function method. The work consists of a theory part and an application part. In the first part, the Green's functions of one-dimensional advection diffusion problems are solved in infinite, semi-infinite and finite domains with the Dirichlet, the Neumann and/or the Robin boundary conditions. Novel and effective image systems especially for the advection diffusion problems are made to find the Green's functions in a semi-infinite domain. Eigenfunction method is utilized to find the Green's functions in a bounded domain. In the case, key steps of a coordinate transform based on a concept of reversed time scale, a Laplace transform and an exponential transform are proposed to solve the Green's functions. Then the product rule of the multi-dimensional Green's functions is discussed in a Cartesian coordinate system. Based on the building blocks of one-dimensional Green's functions, the multi-dimensional Green's function solution can be constructed by applying the product rule. Green's function tables are summarized to facilitate the application of the Green's function. In the second part, the obtained Green's function solutions benchmark a series of validations to the diffusion model of gas species in continuous phase and the diffusion model of discrete aerosol particles in the GASFLOW code. Perfect agreements are obtained between the GASFLOW simulations and the Green's function solutions in case of the gas diffusion. Very good consistencies are found between the theoretical solutions of the advection diffusion equations and the numerical particle distributions in advective flows, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle
A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.
2007-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the
Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method
Singh, R.; Mellinger, A.
2015-04-01
Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values.
Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.
1987-01-01
The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.
Directory of Open Access Journals (Sweden)
Claude Rodrigue Bambe Moutsinga
2018-01-01
Full Text Available Most existing multivariate models in finance are based on diffusion models. These models typically lead to the need of solving systems of Riccati differential equations. In this paper, we introduce an efficient method for solving systems of stiff Riccati differential equations. In this technique, a combination of Laplace transform and homotopy perturbation methods is considered as an algorithm to the exact solution of the nonlinear Riccati equations. The resulting technique is applied to solving stiff diffusion model problems that include interest rates models as well as two and three-factor stochastic volatility models. We show that the present approach is relatively easy, efficient and highly accurate.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.
Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q
2013-03-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION
Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.
2013-01-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and technique...
Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio
2011-11-01
Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.
Integral Equation Methods for Electromagnetic and Elastic Waves
Chew, Weng; Hu, Bin
2008-01-01
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq
Discontinuous Galerkin methods and a posteriori error analysis for heterogenous diffusion problems
International Nuclear Information System (INIS)
Stephansen, A.F.
2007-12-01
In this thesis we analyse a discontinuous Galerkin (DG) method and two computable a posteriori error estimators for the linear and stationary advection-diffusion-reaction equation with heterogeneous diffusion. The DG method considered, the SWIP method, is a variation of the Symmetric Interior Penalty Galerkin method. The difference is that the SWIP method uses weighted averages with weights that depend on the diffusion. The a priori analysis shows optimal convergence with respect to mesh-size and robustness with respect to heterogeneous diffusion, which is confirmed by numerical tests. Both a posteriori error estimators are of the residual type and control the energy (semi-)norm of the error. Local lower bounds are obtained showing that almost all indicators are independent of heterogeneities. The exception is for the non-conforming part of the error, which has been evaluated using the Oswald interpolator. The second error estimator is sharper in its estimate with respect to the first one, but it is slightly more costly. This estimator is based on the construction of an H(div)-conforming Raviart-Thomas-Nedelec flux using the conservativeness of DG methods. Numerical results show that both estimators can be used for mesh-adaptation. (author)
Analytic methods to generate integrable mappings
Indian Academy of Sciences (India)
essential integrability features of an integrable differential equation is a .... With this in mind we first write x3(t) as a cubic polynomial in (xn−1,xn,xn+1) and then ..... coefficients, the quadratic equation in xn+N has real and distinct roots which in ...
International Nuclear Information System (INIS)
Obradovic, D.
1970-04-01
In the study of the nuclear reactors space-time behaviour the modal analysis is very often used though some basic mathematical problems connected with application of this methods are still unsolved. In this paper the modal analysis is identified as a set of the methods in the mathematical literature known as the Galerkin methods (or projection methods, or sometimes direct methods). Using the results of the mathematical investigations of these methods the applicability of the Galerkin type methods to the calculations of the eigenvalue and eigenvectors of the stationary and non-stationary diffusion operator, as well as for the solutions of the corresponding functional equations, is established (author)
Schwarz, Karsten; Rieger, Heiko
2013-03-01
We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.
Comparative study of two methods for determining the diffusible hydrogen content in welds
International Nuclear Information System (INIS)
Celio de Abreu, L.; Modenesi, P.J.; Villani-Marques, P.
1994-01-01
This work presents a comparative study of the methods for measurement of the amount of diffusible hydrogen in welds: glycerin, mercury and gaseous chromatography. The effect of the variables collecting temperatures and times were analyzed. Basic electrodes type AWS E 9018-M were humidified and dried at different times and temperatures in order to obtain a large variation in the diffusible hydrogen contents. The results showed that the collecting time can be reduced when the collecting temperature is raised, the mercury and chromatography methods present similar results, higher than those obtained by the glycerin method, the use of liquid nitrogen in the preparation of the specimens for test is unessential. The chromatography method presents the lower dispersion and is the method that can have the collecting time more reduced by the raising of the collecting temperature. The use of equations for comparison between results obtained by the various methods encountered in the literature is also discussed. (Author) 16 refs
A novel finite volume discretization method for advection-diffusion systems on stretched meshes
Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.
2018-06-01
This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.
Lattice Boltzmann method for multi-component, non-continuum mass diffusion
International Nuclear Information System (INIS)
Joshi, Abhijit S; Peracchio, Aldo A; Grew, Kyle N; Chiu, Wilson K S
2007-01-01
Recently, there has been a great deal of interest in extending the lattice Boltzmann method (LBM) to model transport phenomena in the non-continuum regime. Most of these studies have focused on single-component flows through simple geometries. This work examines an ad hoc extension of a recently developed LBM model for multi-component mass diffusion (Joshi et al 2007 J. Phys. D: Appl. Phys. 40 2961) to model mass diffusion in the non-continuum regime. In order to validate the method, LBM results for ternary diffusion in a two-dimensional channel are compared with predictions of the dusty gas model (DGM) over a range of Knudsen numbers. A calibration factor based on the DGM is used in the LBM to correlate Knudsen diffusivity to pore size. Results indicate that the LBM can be a useful tool for predicting non-continuum mass diffusion (Kn > 0.001), but additional research is needed to extend the range of applicability of the algorithm for a larger parameter space. Guidelines are given on using the methodology described in this work to model non-continuum mass transport in more complex geometries where the DGM is not easily applicable. In addition, the non-continuum LBM methodology can be extended to three-dimensions. An envisioned application of this technique is to model non-continuum mass transport in porous solid oxide fuel cell electrodes
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...
Conjugate Gradient like methods and their application to fixed source neutron diffusion problems
International Nuclear Information System (INIS)
Suetomi, Eiichi; Sekimoto, Hiroshi
1989-01-01
This paper presents a number of fast iterative methods for solving systems of linear equations appearing in fixed source problems for neutron diffusion. We employed the conjugate gradient and conjugate residual methods. In order to accelerate the conjugate residual method, we proposed the conjugate residual squared method by transforming the residual polynomial of the conjugate residual method. Since the convergence of these methods depends on the spectrum of coefficient matrix, we employed the incomplete Choleski (IC) factorization and the modified IC (MIC) factorization as preconditioners. These methods were applied to some neutron diffusion problems and compared with the successive overrelaxation (SOR) method. The results of these numerical experiments showed superior convergence characteristics of the conjugate gradient like method with MIC factorization to the SOR method, especially for a problem involving void region. The CPU time of the MICCG, MICCR and MICCRS methods showed no great difference. In order to vectorize the conjugate gradient like methods based on (M)IC factorization, the hyperplane method was used and implemented on the vector computers, the HITAC S-820/80 and ETA10-E (one processor mode). Significant decrease of the CPU times was observed on the S-820/80. Since the scaled conjugate gradient (SCG) method can be vectorized with no manipulation, it was also compared with the above methods. It turned out the SCG method was the fastest with respect to the CPU times on the ETA10-E. These results suggest that one should implement suitable algorithm for different vector computers. (author)
A moving mesh finite difference method for equilibrium radiation diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
A moving mesh finite difference method for equilibrium radiation diffusion equations
International Nuclear Information System (INIS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-01-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation
A asymptotic numerical method for the steady-state convection diffusion equation
International Nuclear Information System (INIS)
Wu Qiguang
1988-01-01
In this paper, A asymptotic numerical method for the steady-state Convection diffusion equation is proposed, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical computation for model problem show that we can obtain the numerical solution in the boundary layer with moderate step size
Iterative method for obtaining the prompt and delayed alpha-modes of the diffusion equation
International Nuclear Information System (INIS)
Singh, K.P.; Degweker, S.B.; Modak, R.S.; Singh, Kanchhi
2011-01-01
Highlights: → A method for obtaining α-modes of the neutron diffusion equation has been developed. → The difference between the prompt and delayed modes is more pronounced for the higher modes. → Prompt and delayed modes differ more in reflector region. - Abstract: Higher modes of the neutron diffusion equation are required in some applications such as second order perturbation theory, and modal kinetics. In an earlier paper we had discussed a method for computing the α-modes of the diffusion equation. The discussion assumed that all neutrons are prompt. The present paper describes an extension of the method for finding the α-modes of diffusion equation with the inclusion of delayed neutrons. Such modes are particularly suitable for expanding the time dependent flux in a reactor for describing transients in a reactor. The method is illustrated by applying it to a three dimensional heavy water reactor model problem. The problem is solved in two and three neutron energy groups and with one and six delayed neutron groups. The results show that while the delayed α-modes are similar to λ-modes they are quite different from prompt modes. The difference gets progressively larger as we go to higher modes.
A nodal method applied to a diffusion problem with generalized coefficients
International Nuclear Information System (INIS)
Laazizi, A.; Guessous, N.
1999-01-01
In this paper, we consider second order neutrons diffusion problem with coefficients in L ∞ (Ω). Nodal method of the lowest order is applied to approximate the problem's solution. The approximation uses special basis functions in which the coefficients appear. The rate of convergence obtained is O(h 2 ) in L 2 (Ω), with a free rectangular triangulation. (authors)
The Induced Dimension Reduction method applied to convection-diffusion-reaction problems
Astudillo, R.; Van Gijzen, M.B.
2016-01-01
Discretization of (linearized) convection-diffusion-reaction problems yields a large and sparse non symmetric linear system of equations, Ax = b. (1) In this work, we compare the computational behavior of the Induced Dimension Reduction method (IDR(s)) [10], with other short-recurrences Krylov
Method of moments approach to pricing double barrier contracts in polynomial jump-diffusion models
Eriksson, B.; Pistorius, M.
2011-01-01
Abstract: We present a method of moments approach to pricing double barrier contracts when the underlying is modelled by a polynomial jump-diffusion. By general principles the price is linked to certain infinite dimensional linear programming problems. Subsequently approximating these by finite
Thermal diffusivity measurements with a photothermal method of fusion solid breeder materials
International Nuclear Information System (INIS)
Bertolotti, M.; Fabri, L.; Ferrari, A.; Sibilia, C.; Alvani, C.; Casadio, S.
1989-01-01
The Photothermal Deflection method is employed in thermal diffusivity measurements. A theoretical analysis is performed to reduce the influence of arbitrary parameters. Measurements on gamma-lithium aluminate samples as a function of temperatures are performed. (author). 5 refs.; 4 figs
A new in-situ method to determine the apparent gas diffusion coefficient of soils
Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin
2015-04-01
Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.
Gyrya, V.; Lipnikov, K.
2017-11-01
We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.
A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
Yunying Zheng
2011-01-01
Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.
Modified micro-diffusion method for 15N-enriched soil solutions
International Nuclear Information System (INIS)
Aigner, M.
2000-01-01
The preparation of solutions for determination of 15 N/ 14 N isotope ratios is described, with special reference to dilute samples. A micro-diffusion method has been simplified to be more suitable for rapid isotope-ratio determination in soil solutions collected in tensionics. Ammonia expelled during micro-diffusion is captured on acidified filter discs fixed to the caps of gas-tight vials. The discs are transferred to tin capsules for shipment to the Soil Science Unit for 15 N-enrichment determination. (author)
International Nuclear Information System (INIS)
Hakulinen, Ullamari; Brander, Antti; Ryymin, Pertti; Öhman, Juha; Soimakallio, Seppo; Helminen, Mika; Dastidar, Prasun; Eskola, Hannu
2012-01-01
Diffusion tensor imaging (DTI) is increasingly used in various diseases as a clinical tool for assessing the integrity of the brain’s white matter. Reduced fractional anisotropy (FA) and an increased apparent diffusion coefficient (ADC) are nonspecific findings in most pathological processes affecting the brain’s parenchyma. At present, there is no gold standard for validating diffusion measures, which are dependent on the scanning protocols, methods of the softwares and observers. Therefore, the normal variation and repeatability effects on commonly-derived measures should be carefully examined. Thirty healthy volunteers (mean age 37.8 years, SD 11.4) underwent DTI of the brain with 3T MRI. Region-of-interest (ROI) -based measurements were calculated at eleven anatomical locations in the pyramidal tracts, corpus callosum and frontobasal area. Two ROI-based methods, the circular method (CM) and the freehand method (FM), were compared. Both methods were also compared by performing measurements on a DTI phantom. The intra- and inter-observer variability (coefficient of variation, or CV%) and repeatability (intra-class correlation coefficient, or ICC) were assessed for FA and ADC values obtained using both ROI methods. The mean FA values for all of the regions were 0.663 with the CM and 0.621 with the FM. For both methods, the FA was highest in the splenium of the corpus callosum. The mean ADC value was 0.727 ×10 -3 mm 2 /s with the CM and 0.747 ×10 -3 mm 2 /s with the FM, and both methods found the ADC to be lowest in the corona radiata. The CV percentages of the derived measures were < 13% with the CM and < 10% with the FM. In most of the regions, the ICCs were excellent or moderate for both methods. With the CM, the highest ICC for FA was in the posterior limb of the internal capsule (0.90), and with the FM, it was in the corona radiata (0.86). For ADC, the highest ICC was found in the genu of the corpus callosum (0.93) with the CM and in the uncinate
MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD
Directory of Open Access Journals (Sweden)
Emir Zafer HOŞGÜN
2013-06-01
Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.
Visual quantification of diffuse emphysema with Sakal's method and high-resolution chest CT
International Nuclear Information System (INIS)
Feuerstein, I.M.; McElvaney, N.G.; Simon, T.R.; Hubbard, R.C.; Crystal, R.G.
1990-01-01
This paper determines the accuracy and efficacy of visual quantitation for a diffuse form of pulmonary emphysema with high-resolution CT (HRCT). Twenty- five adults patients with symptomatic emphysema due to α-antitrypsin deficiency prospectively underwent HRCT with 1.5-mm sections, a high-spatial-resolution algorithm, and targeted reconstruction. Photography was performed with narrow lung windows to accentuate diffuse emphysema. Emphysema was then scored with use of a modification of Sakai's extent and severity scoring method. The scans were all scored by the same blinded observer. Pulmonary function testing (PFT), including diffusing capacity measurement, was performed in all patients. Results were statistically correlated with the use of regression analysis
Adaptive collocation method for simultaneous heat and mass diffusion with phase change
International Nuclear Information System (INIS)
Chawla, T.C.; Leaf, G.; Minkowycz, W.J.; Pedersen, D.R.; Shouman, A.R.
1983-01-01
The present study is carried out to determine melting rates of a lead slab of various thicknesses by contact with sodium coolant and to evaluate the extent of penetration and the mixing rates of molten lead into liquid sodium by molecular diffusion alone. The study shows that these two calculations cannot be performed simultaneously without the use of adaptive coordinates which cause considerable stretching of the physical coordinates for mass diffusion. Because of the large difference in densities of these two liquid metals, the traditional constant density approximation for the calculation of mass diffusion cannot be used for studying their interdiffusion. The use of orthogonal collocation method along with adaptive coordinates produces extremely accurate results which are ascertained by comparing with the existing analytical solutions for concentration distribution for the case of constant density approximation and for melting rates for the case of infinite lead slab
The entropy dissipation method for spatially inhomogeneous reaction-diffusion-type systems
Di Francesco, M.
2008-12-08
We study the long-time asymptotics of reaction-diffusion-type systems that feature a monotone decaying entropy (Lyapunov, free energy) functional. We consider both bounded domains and confining potentials on the whole space for arbitrary space dimensions. Our aim is to derive quantitative expressions for (or estimates of) the rates of convergence towards an (entropy minimizing) equilibrium state in terms of the constants of diffusion and reaction and with respect to conserved quantities. Our method, the so-called entropy approach, seeks to quantify convergence to equilibrium by using functional inequalities, which relate quantitatively the entropy and its dissipation in time. The entropy approach is well suited to nonlinear problems and known to be quite robust with respect to model variations. It has already been widely applied to scalar diffusion-convection equations, and the main goal of this paper is to study its generalization to systems of partial differential equations that contain diffusion and reaction terms and admit fewer conservation laws than the size of the system. In particular, we successfully apply the entropy approach to general linear systems and to a nonlinear example of a reaction-diffusion-convection system arising in solid-state physics as a paradigm for general nonlinear systems. © 2008 The Royal Society.
Numerical simulation of compressible two-phase flow using a diffuse interface method
International Nuclear Information System (INIS)
Ansari, M.R.; Daramizadeh, A.
2013-01-01
Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems
Energy Technology Data Exchange (ETDEWEB)
Gjesdal, Thor
1997-12-31
This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.
Integrated circuit and method of arbitration in a network on an integrated circuit.
2011-01-01
The invention relates to an integrated circuit and to a method of arbitration in a network on an integrated circuit. According to the invention, a method of arbitration in a network on an integrated circuit is provided, the network comprising a router unit, the router unit comprising a first input
Direct measurement of gaseous activities by diffusion-in long proportional counter method
International Nuclear Information System (INIS)
Yoshida, M.; Yamamoto, T.; Wu, Y.; Aratani, T.; Uritani, A.; Mori, C.
1993-01-01
Direct measurement of gaseous activities by the diffusion-in long proportional counter method (DLPC method) was studied. The measuring time without end effect was estimated by observing the behavior of 37 Ar in the counter and was long enough to carry out the accurate activity measurement. The correction for wall effect was also examined on the basis of the measured and calculated correction factors. Among the tested gases of methane, P10 gas and propane, P10 gas was made clear to be a suitable counting gas for the DLPC method because of good diffusion properties and small wall effect. This method is quite effective for standardization of gaseous activities used for tracer experiments and calibration works of radioactive gas monitoring instruments. (orig.)
IN-SITU MEASURING METHOD OF RADON AND THORON DIFFUSION COEFFICIENT IN SOIL
Directory of Open Access Journals (Sweden)
V.S. Yakovleva
2014-06-01
Full Text Available A simple and valid in-situ measurement method of effective diffusion coefficient of radon and thoron in soil and other porous materials was designed. The analysis of numerical investigation of radon and thoron transport in upper layers of soil revealed that thoron flux density from the earth surface does not depend on soil gas advective velocity and varies only with diffusion coefficient changes. This result showed the advantages of thoron using versus radon using in the suggested method. The comparison of the new method with existing ones previously developed. The method could be helpful for solving of problems of radon mass-transport in porous media and gaseous exchange between soil and atmosphere.
A simple method for calculation of the hydrogen diffusion in composite materials
International Nuclear Information System (INIS)
Paraschiv, M.C.; Paraschiv, A.; Grecu, V. V.
2008-01-01
A method for calculating the diffusion of various chemical species in composite materials when the material compounds can not be described as a function of the position coordinate in every point has been proposed. The method can be applied only for such systems in which a quasi-continuous presence of every component can be defined in every arbitrary region. Since the complete random distribution of the boundaries between the components will influence the diffusion process, the continuity equation associated to the diffusion problem was extended for arbitrary volumes that keep the volume concentration of every component of the alloy as the entire material volume. Its consistency with the Fick's second law was also proved. To visualise the differences of hydrogen migration in a thermal gradient inside the TRIGA fuels, arising as a result of increasing the uranium content from ∼ 10% wt. U to ∼ 45% wt. U in the TRIGA U-ZrH δ alloy, the method has been applied for the two concentrations of uranium. To this aim, the assumption that the rate-controlling parameter of hydrogen diffusion is the dissociation equilibrium pressure of hydrogen in zirconium hydride has been used. The results show significant differences of both hydrogen distribution and the kinetics of hydrogen migration in a thermal gradient for the two cases analysed. (authors)
Mustapha, K.
2017-06-03
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
Moura, Rodrigo; Fernandez, Pablo; Mengaldo, Gianmarco
2017-11-01
We investigate the dispersion and diffusion characteristics of hybridized discontinuous Galerkin (DG) methods. This provides us with insights to develop robust and accurate high-order DG discretizations for under-resolved flow simulations. Using the eigenanalysis technique introduced in (Moura et al., JCP, 2015 and Mengaldo et al., Computers & Fluids, 2017), we present a dispersion-diffusion analysis for the linear advection-diffusion equation. The effect of the accuracy order, the Riemann flux and the viscous stabilization are investigated. Next, we examine the diffusion characteristics of hybridized DG methods for under-resolved turbulent flows. The implicit large-eddy simulation (iLES) of the inviscid and viscous Taylor-Green vortex (TGV) problems are considered to this end. The inviscid case is relevant in the limit of high Reynolds numbers Re , i.e. negligible molecular viscosity, while the viscous case explores the effect of Re on the accuracy and robustness of the simulations. The TGV cases considered here are particularly crucial to under-resolved turbulent free flows away from walls. We conclude the talk with a discussion on the connections between hybridized and standard DG methods for under-resolved flow simulations.
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.
Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja
2018-07-01
Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le
2017-01-01
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
Fast solution of neutron diffusion problem by reduced basis finite element method
International Nuclear Information System (INIS)
Chunyu, Zhang; Gong, Chen
2018-01-01
Highlights: •An extremely efficient method is proposed to solve the neutron diffusion equation with varying the cross sections. •Three orders of speedup is achieved for IAEA benchmark problems. •The method may open a new possibility of efficient high-fidelity modeling of large scale problems in nuclear engineering. -- Abstract: For the important applications which need carry out many times of neutron diffusion calculations such as the fuel depletion analysis and the neutronics-thermohydraulics coupling analysis, fast and accurate solutions of the neutron diffusion equation are demanding but necessary. In the present work, the certified reduced basis finite element method is proposed and implemented to solve the generalized eigenvalue problems of neutron diffusion with variable cross sections. The order reduced model is built upon high-fidelity finite element approximations during the offline stage. During the online stage, both the k eff and the spatical distribution of neutron flux can be obtained very efficiently for any given set of cross sections. Numerical tests show that a speedup of around 1100 is achieved for the IAEA two-dimensional PWR benchmark problem and a speedup of around 3400 is achieved for the three-dimensional counterpart with the fission cross-sections, the absorption cross-sections and the scattering cross-sections treated as parameters.
Integrals of Frullani type and the method of brackets
Directory of Open Access Journals (Sweden)
Bravo Sergio
2017-01-01
Full Text Available The method of brackets is a collection of heuristic rules, some of which have being made rigorous, that provide a flexible, direct method for the evaluation of definite integrals. The present work uses this method to establish classical formulas due to Frullani which provide values of a specific family of integrals. Some generalizations are established.
Non-destructive measurement methods for large scale gaseous diffusion process equipment
International Nuclear Information System (INIS)
Mayer, R.L.; Hagenauer, R.C.; McGinnis, B.R.
1994-01-01
Two measurement methods have been developed to measure non-destructively uranium hold-up in gaseous diffusion plants. These methods include passive neutron and passive γ ray measurements. An additional method, high resolution γ ray spectroscopy, provides supplementary information about additional γ ray emitting isotopes, γ ray correction factors, 235 U/ 234 U ratios and 235 U enrichment. Many of these methods can be used as a general purpose measurement technique for large containers of uranium. Measurement applications for these methods include uranium hold-up, waste measurements, criticality safety and nuclear accountability
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
Diffusion Parameters of BeO by the Pulsed Neutron Method
International Nuclear Information System (INIS)
Joshi, B.V.; Nargundkar, V.R.; Subbarao, K.
1965-01-01
The use of the pulsed neutron method for the precise determination of the diffusion parameters of moderators is described. The diffusion parameters of BeO have been obtained by this method. The neutron bursts were produced from a cascade accelerator by pulsing the ion source and using the Be (d, n) reaction. The detector was an enriched boron trifluoride proportional counter. It is shown that by a proper choice of the counter position arid length, and the source position, most of the space harmonics can be eliminated. Any constant background can be accounted for in the calculation of the decay constant. Very large bucklings were not used to avoid time harmonics. Any remaining harmonic content was rendered ineffective by the use of adequate time delay. The decay constant of the fundamental mode of the thermal neutron population was determined for several bucklings. Conditions to be satisfied for an accurate determination of the diffusion cooling constant C are discussed. The following values are obtained for BeO: λ 0 = absorption constant = 156.02 ± 4.37 s -1 D = diffusion coefficient = (1.3334 ± 0.0128) x 10 5 cm 2 /s C = diffusion cooling constant = (-4.8758 ± 0.5846) x 10 5 cm 4 /s. The effect of neglecting the contribution of the B 6 term on the determination of the diffusion parameters was estimated and is shown to be considerable. The reason for the longstanding discrepancy between the values of C obtained for the same moderator by different workers is attributed to this. (author) [fr
International Nuclear Information System (INIS)
Halilou, A.; Lounici, A.
1981-01-01
The subject is divided in two parts: In the first part a nodal method has been worked out to solve the steady state multigroup diffusion equation. This method belongs to the same set of nodal methods currently used to calculate the exact fission powers and neutron fluxes in a very short computing time. It has been tested on a two dimensional idealized reactors. The effective multiplication factor and the fission powers for each fuel element have been calculated. The second part consists in studying and mastering the multigroup diffusion code DAHRA - a reduced version of DIANE - a two dimensional code using finite difference method
Energy Technology Data Exchange (ETDEWEB)
Hehl, A. von [IWT - Stiftung Institut fuer Werkstofftechnik, Hauptabteilung Werkstofftechnik, Bremen (Germany); Syassen, F. [Airbus Operations GmbH, Metal Technology, Bremen (Germany); Schimanski, K.
2012-04-15
Components in hybrid design become more and more important in terms of their lightweight potential. In this context the demand for weight saving in aerospace leads to increasing numbers of applications of fibre composites for primary structural components. In consequence the use of FRP-metal compounds is necessary. Within the investigations of the researcher group ''Schwarz Silber'' (FOR 1224) founded by the DFG (German Research Foundation) material optimised interface structures for advanced CFRP-aluminium compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium) and fibres (glass fibre) as transition elements between CFRP and aluminium. For the connection of the aluminium sheet and the transition element die-casting and laser beam welding are basically used. As a possible alternative to the both liquid phase processes a feasibility study haven been done focussing the solid state processes diffusion bonding. The experimental results show the high potential of this process in view of the transferable loads for integral transition structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Measurements of integrated direct, diffuse and global ultraviolet-B radiation
International Nuclear Information System (INIS)
Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.
2015-01-01
We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.
Directory of Open Access Journals (Sweden)
Shumanova M.V.
2015-03-01
Full Text Available The process fish salting has been studied by the method of photon correlation spectroscopy; the distribution of salt concentration in the solution and herring flesh with skin has been found, diffusion coefficients and salt concentrations used for creating a mathematical model of the salting technology have been worked out; the possibility of determination by this method the coefficient of dynamic viscosity of solutions and different media (minced meat etc. has been considered
Accurate Electromagnetic Modeling Methods for Integrated Circuits
Sheng, Z.
2010-01-01
The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on
An in situ method for real-time monitoring of soil gas diffusivity
Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2016-04-01
Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect
GPU-accelerated 3D neutron diffusion code based on finite difference method
Energy Technology Data Exchange (ETDEWEB)
Xu, Q.; Yu, G.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ. (China)
2012-07-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
GPU-accelerated 3D neutron diffusion code based on finite difference method
International Nuclear Information System (INIS)
Xu, Q.; Yu, G.; Wang, K.
2012-01-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
A revised method to calculate the concentration time integral of atmospheric pollutants
International Nuclear Information System (INIS)
Voelz, E.; Schultz, H.
1980-01-01
It is possible to calculate the spreading of a plume in the atmosphere under nonstationary and nonhomogeneous conditions by introducing the ''particle-in-cell'' method (PIC). This is a numerical method by which the transport of and the diffusion in the plume is reproduced in such a way, that particles representing the concentration are moved time step-wise in restricted regions (cells) and separately with the advection velocity and the diffusion velocity. This has a systematical advantage over the steady state Gaussian plume model usually used. The fixed-point concentration time integral is calculated directly instead of being substituted by the locally integrated concentration at a constant time as is done in the Gaussian model. In this way inaccuracies due to the above mentioned computational techniques may be avoided for short-time emissions, as may be seen by the fact that both integrals do not lead to the same results. Also the PIC method enables one to consider the height-dependent wind speed and its variations while the Gaussian model can be used only with averaged wind data. The concentration time integral calculated by the PIC method results in higher maximum values in shorter distances to the source. This is an effect often observed in measurements. (author)
DEFF Research Database (Denmark)
Liu, Yuanrong; Chen, Weimin; Zhong, Jing
2017-01-01
The previously developed numerical inverse method was applied to determine the composition-dependent interdiffusion coefficients in single-phase finite diffusion couples. The numerical inverse method was first validated in a fictitious binary finite diffusion couple by pre-assuming four standard...... sets of interdiffusion coefficients. After that, the numerical inverse method was then adopted in a ternary Al-Cu-Ni finite diffusion couple. Based on the measured composition profiles, the ternary interdiffusion coefficients along the entire diffusion path of the target ternary diffusion couple were...... obtained by using the numerical inverse approach. The comprehensive comparisons between the computations and the experiments indicate that the numerical inverse method is also applicable to high-throughput determination of the composition-dependent interdiffusion coefficients in finite diffusion couples....
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion
Energy Technology Data Exchange (ETDEWEB)
Turkulets, Yury [Micron Semiconductor Israel Ltd., Qiryat Gat 82109 (Israel); Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501 (Israel); Silber, Amir; Ripp, Alexander; Sokolovsky, Mark [Micron Semiconductor Israel Ltd., Qiryat Gat 82109 (Israel); Shalish, Ilan, E-mail: shalish@bgu.ac.il [Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501 (Israel)
2016-03-28
Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model the process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.
Jørs, Erik; Konradsen, Flemming; Huici, Omar; Morant, Rafael C; Volk, Julie; Lander, Flemming
2016-01-01
Teaching farmers integrated pest management (IPM) in farmer field schools (FFS) has led to reduced pesticide use and safer handling. This article evaluates the long-term impact of training farmers on IPM and the diffusion of knowledge from trained farmers to neighboring farmers, a subject of importance to justify training costs and to promote a healthy and sustainable agriculture. Training on IPM of farmers took place from 2002 to 2004 in their villages in La Paz County, Bolivia, whereas dissemination of knowledge from trained farmer to neighboring farmer took place until 2009. To evaluate the impact of the intervention, self-reported knowledge and practice on pesticide handling and IPM among trained farmers (n = 23) and their neighboring farmers (n = 47) were analyzed in a follow-up study and compared in a cross-sectional analysis with a control group of farmers (n = 138) introduced in 2009. Variables were analyzed using χ2 test and analysis of variance (ANOVA). Trained farmers improved and performed significantly better in all tested variables than their neighboring farmers, although the latter also improved their performance from 2002 to 2009. Including a control group showed an increasing trend in all variables, with the control farmers having the poorest performance and trained farmers the best. The same was seen in an aggregated variable where trained farmers had a mean score of 16.55 (95% confidence interval [CI]: 15.45-17.65), neighboring farmers a mean score of 11.97 (95% CI: 10.56-13.38), and control farmers a mean score of 9.18 (95% CI: 8.55-9.80). Controlling for age and living altitude did not change these results. Trained farmers and their neighboring farmers improved and maintained knowledge and practice on IPM and pesticide handling. Diffusion of knowledge from trained farmers might explain the better performance of the neighboring farmers compared with the control farmers. Dissemination of knowledge can contribute to justify the cost and convince
International Nuclear Information System (INIS)
Mittal, R.C.; Rohila, Rajni
2016-01-01
In this paper, we have applied modified cubic B-spline based differential quadrature method to get numerical solutions of one dimensional reaction-diffusion systems such as linear reaction-diffusion system, Brusselator system, Isothermal system and Gray-Scott system. The models represented by these systems have important applications in different areas of science and engineering. The most striking and interesting part of the work is the solution patterns obtained for Gray Scott model, reminiscent of which are often seen in nature. We have used cubic B-spline functions for space discretization to get a system of ordinary differential equations. This system of ODE’s is solved by highly stable SSP-RK43 method to get solution at the knots. The computed results are very accurate and shown to be better than those available in the literature. Method is easy and simple to apply and gives solutions with less computational efforts.
Kucza, Witold
2013-07-25
Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.
Adaptive integral equation methods in transport theory
International Nuclear Information System (INIS)
Kelley, C.T.
1992-01-01
In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented
A symplectic integration method for elastic filaments
Ladd, Tony; Misra, Gaurav
2009-03-01
Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.
Preconditioned iterative methods for space-time fractional advection-diffusion equations
Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.
2016-08-01
In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
A clutter removal method for the Doppler ultrasound signal based on a nonlinear diffusion equation
International Nuclear Information System (INIS)
Li Peng; Xin Pengcheng; Bian Zhengzhong; Yu Gang
2008-01-01
Strong clutter components produced by stationary and slow-moving tissue structures render the lower frequency part of the spectrogram useless and degrade the accuracy of clinical ultrasound indices. An adaptive method based on the nonlinear forward-and-backward diffusion equation (FAB-DE) is proposed to remove strong clutter components from the contaminated Doppler signal. The clutter signal is extracted first by the FAB-DE accurately, in which the nonlinear diffusion coefficient function of the FAB-DE locally adjusts according to signal features and the diffusion adaptively switches between forward and backward mode. The present method has been validated by simulated and realistic pulse wave Doppler signals, and compared with the conventional high pass filter and the matching pursuit method. The simulation results, including spectrogram, mean velocity error, standard deviation of mean velocity and signal-to-clutter ratio of a decontaminated signal, demonstrate that the present FAB-DE method can remove clutter sufficiently and retain more low blood components simultaneously as compared with the other two methods. Results of the realistic Doppler blood signal, including spectrogram and low-frequency part of the spectrum, support the conclusion drawn from simulation cases
International Nuclear Information System (INIS)
Guerin, P.
2007-12-01
The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, diffusion approximation is often used. For this problem, the MINOS solver based on a mixed dual finite element method has shown his efficiency. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose in this dissertation two domain decomposition methods for the resolution of the mixed dual form of the eigenvalue neutron diffusion problem. The first approach is a component mode synthesis method on overlapping sub-domains. Several Eigenmodes solutions of a local problem solved by MINOS on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is a modified iterative Schwarz algorithm based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, the problem is solved on each sub domain by MINOS with the interface conditions deduced from the solutions on the adjacent sub-domains at the previous iteration. The iterations allow the simultaneous convergence of the domain decomposition and the eigenvalue problem. We demonstrate the accuracy and the efficiency in parallel of these two methods with numerical results for the diffusion model on realistic 2- and 3-dimensional cores. (author)
Tchitchekova, Deyana S.; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-01
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ˜3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Splitting Method for Solving the Coarse-Mesh Discretized Low-Order Quasi-Diffusion Equations
International Nuclear Information System (INIS)
Hiruta, Hikaru; Anistratov, Dmitriy Y.; Adams, Marvin L.
2005-01-01
In this paper, the development is presented of a splitting method that can efficiently solve coarse-mesh discretized low-order quasi-diffusion (LOQD) equations. The LOQD problem can reproduce exactly the transport scalar flux and current. To solve the LOQD equations efficiently, a splitting method is proposed. The presented method splits the LOQD problem into two parts: (a) the D problem that captures a significant part of the transport solution in the central parts of assemblies and can be reduced to a diffusion-type equation and (b) the Q problem that accounts for the complicated behavior of the transport solution near assembly boundaries. Independent coarse-mesh discretizations are applied: the D problem equations are approximated by means of a finite element method, whereas the Q problem equations are discretized using a finite volume method. Numerical results demonstrate the efficiency of the methodology presented. This methodology can be used to modify existing diffusion codes for full-core calculations (which already solve a version of the D problem) to account for transport effects
Ku, Bon Ki; Kulkarni, Pramod
2012-05-01
We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.
International Nuclear Information System (INIS)
Tchitchekova, Deyana S.; Morthomas, Julien; Perez, Michel; Ribeiro, Fabienne; Ducher, Roland
2014-01-01
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress
Energy Technology Data Exchange (ETDEWEB)
Tchitchekova, Deyana S. [IRSN, PSN, SEMIA, LPTM, Saint-Paul-Lez-Durance (France); Univ. Lyon, INSA Lyon, MATEIS, UMR CNRS 5510, Villeurbanne (France); Morthomas, Julien; Perez, Michel [Univ. Lyon, INSA Lyon, MATEIS, UMR CNRS 5510, Villeurbanne (France); Ribeiro, Fabienne [IRSN, PSN, SEMIA, LPTM, Saint-Paul-Lez-Durance (France); Ducher, Roland [IRSN, PSN, SAG, LETR, Saint-Paul-Lez-Durance (France)
2014-07-21
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Integral Method of Boundary Characteristics: Neumann Condition
Kot, V. A.
2018-05-01
A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.
Energy Technology Data Exchange (ETDEWEB)
Holden, Helge; Karlsen, Kenneth H.; Lie, Knut-Andreas
1999-10-01
We present and analyze a numerical method for the solution of a class of scalar, multi-dimensional, nonlinear degenerate convection-diffusion equations. The method is based on operator splitting to separate the convective and the diffusive terms in the governing equation. The nonlinear, convective part is solved using front tracking and dimensional splitting, while the nonlinear diffusion equation is solved by a suitable difference scheme. We verify L{sup 1} compactness of the corresponding set of approximate solutions and derive precise entropy estimates. In particular, these results allow us to pass to the limit in our approximations and recover an entropy solution of the problem in question. The theory presented covers a large class of equations. Important subclasses are hyperbolic conservation laws, porous medium type equations, two-phase reservoir flow equations, and strongly degenerate equations coming from the recent theory of sedimentation-consolidation processes. A thorough numerical investigation of the method analyzed in this paper (and similar methods) is presented in a companion paper. (author)
Selective Integration in the Material-Point Method
DEFF Research Database (Denmark)
Andersen, Lars; Andersen, Søren; Damkilde, Lars
2009-01-01
The paper deals with stress integration in the material-point method. In order to avoid parasitic shear in bending, a formulation is proposed, based on selective integration in the background grid that is used to solve the governing equations. The suggested integration scheme is compared...... to a traditional material-point-method computation in which the stresses are evaluated at the material points. The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour....
Numerical method of singular problems on singular integrals
International Nuclear Information System (INIS)
Zhao Huaiguo; Mou Zongze
1992-02-01
As first part on the numerical research of singular problems, a numerical method is proposed for singular integrals. It is shown that the procedure is quite powerful for solving physics calculation with singularity such as the plasma dispersion function. Useful quadrature formulas for some class of the singular integrals are derived. In general, integrals with more complex singularities can be dealt by this method easily
Modeling of three-dimensional diffusible resistors with the one-dimensional tube multiplexing method
International Nuclear Information System (INIS)
Gillet, Jean-Numa; Degorce, Jean-Yves; Meunier, Michel
2009-01-01
Electronic-behavior modeling of three-dimensional (3D) p + -π-p + and n + -ν-n + semiconducting diffusible devices with highly accurate resistances for the design of analog resistors, which are compatible with the CMOS (complementary-metal-oxide-semiconductor) technologies, is performed in three dimensions with the fast tube multiplexing method (TMM). The current–voltage (I–V) curve of a silicon device is usually computed with traditional device simulators of technology computer-aided design (TCAD) based on the finite-element method (FEM). However, for the design of 3D p + -π-p + and n + -ν-n + diffusible resistors, they show a high computational cost and convergence that may fail with fully non-separable 3D dopant concentration profiles as observed in many diffusible resistors resulting from laser trimming. These problems are avoided with the proposed TMM, which divides the 3D resistor into one-dimensional (1D) thin tubes with longitudinal axes following the main orientation of the average electrical field in the tubes. The I–V curve is rapidly obtained for a device with a realistic 3D dopant profile, since a system of three first-order ordinary differential equations has to be solved for each 1D multiplexed tube with the TMM instead of three second-order partial differential equations in the traditional TCADs. Simulations with the TMM are successfully compared to experimental results from silicon-based 3D resistors fabricated by laser-induced dopant diffusion in the gaps of MOSFETs (metal-oxide-semiconductor field-effect transistors) without initial gate. Using thin tubes with other shapes than parallelepipeds as ring segments with toroidal lateral surfaces, the TMM can be generalized to electronic devices with other types of 3D diffusible microstructures
Measurement of the thermal diffusivity on ceramics and metals using the laser flash method
International Nuclear Information System (INIS)
Blumm, J.; Sauseng, B.
2001-01-01
Full Text: In the past few decades measurement of the thermophysical properties such as thermal expansion, specific heat, thermal diffusivity or thermal conductivity has become increasingly important for industrial applications. One example is the optimization of the heat transfer in industrial assemblies used for automotive or space applications. The thermal diffusivity and thermal conductivity of all components exposed to high and/or sub-ambient temperatures or large temperature gradients should be accurately known. Another well known example is the characterization of materials such as graphite used in nuclear reactors. Furthermore, analysis of solid and liquid metals is of paramount importance for the simulation of casting processes using finite element software programs. Thermal barrier coatings (zirconia) are used more and more often for high-temperature turbine blades. Reducing the thermal conductivity and the heat transfer through such coatings usually allows higher working temperatures and therefore higher efficiency of the gas turbine. These examples clearly demonstrate the need of instrumentation for the accurate measurement of the required thermophysical properties. The laser flash method has been developed to become one of the most commonly used techniques for the measurement of the thermal diffusivity of various kinds of solids and liquids. Easy sample preparation, small sample dimensions, fast measurement times and high accuracy are only some of the advantages of this non-destructive measurement technique. In addition, temperature dependent measurements can easily be realized. Since the development of the method by Parker et al. new routines for processing of the raw data have been established. Analytical mathematical descriptions were found to compensate for heat loss and finite pulse effects. Using modern personal computers and non-linear regression routines, mathematical models can be used to fit the raw data, yielding improved results for thermal
International Nuclear Information System (INIS)
Schneider, D.
2001-01-01
The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P N approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)
Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations
International Nuclear Information System (INIS)
Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.
2005-01-01
Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications
Energy Technology Data Exchange (ETDEWEB)
Accary, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Centre d' Etudes de Chimie Metallurgique du CNRS (France)
1959-07-01
Diffusion in {alpha} brasses has been investigated using methods involving the evaporation and the condensation of zinc. Having shown that at sufficiently high temperatures intergranular diffusion has no effect, it was then proved that the rate of evaporation or of condensation can only be defined if the mechanical treatment of the test piece before diffusion, the direction of the diffusion and the nature of the impurities present are also defined. The coefficient of diffusion D is then given by the equation D ({pi}/4t){rho}{sup 2}{sub 0} where t is the duration of the diffusion; {rho}{sub 0} is the extrapolated value of {rho} = ({delta}m)/({delta}C) for a zero value of the variation of concentration ({delta}m in is the change in weight of the test piece per unit surface; {delta}C is the difference between the concentration at the surface and the initial concentration of the test piece). This method has been used to study the effect of the direction of the diffusion on the coefficient of diffusion. The coefficient for diffusion which decreases the concentration of zinc is 5 times greater than that for diffusion which increases the quantity of zinc in the metal; an interpretation of this phenomena based on the mechanism of diffusion vacancies in the structure has been proposed. By means of micrographic investigation and by weighing it has been shown that the presence of certain impurities, such as phosphorous, arsenic, antimony, silicon, and aluminium can result in a marked increase of the rate of diffusion: the effect of these impurities on the coefficient of diffusion has been related to their valency and atomic weight. (author) [French] La diffusion dans les laitons {alpha} a ete etudiee au moyen des methodes d'evaporation et de condensafion du zinc. Apres avoir montre qu'aux temperatures suffisamment elevees, la diffusion intergranulaire ne jouait aucun role, l'auteur a prouve que la vitesse d'evaporation ou de condensation n'est definie que dans la mesure ou
Accuracy analysis of the thermal diffusivity measurement of molten salts by stepwise heating method
International Nuclear Information System (INIS)
Kato, Yoshio; Furukawa, Kazuo
1976-11-01
The stepwise heating method for measuring thermal diffusivity of molten salts is based on the electrical heating of a thin metal plate as a plane heat source in the molten salt. In this method, the following estimations on error are of importance: (1) thickness effect of the metal plate, (2) effective length between the plate and a temperature measuring point and (3) effect of the noise on the temperature rise signal. In this report, a measuring apparatus is proposed and measuring conditions are suggested on the basis of error estimations. The measurements for distilled water and glycerine were made first to test the performance; the results agreed well with standard values. The thermal diffusivities of molten NaNO 3 at 320-380 0 C and of molten Li 2 BeF 4 at 470-700 0 C were measured. (auth.)
Cu diffusion as an alternative method for nanopatterned CuTCNQ film growth
International Nuclear Information System (INIS)
Capitán, M J; Álvarez, J; Miranda, R; Navío, C
2016-01-01
In this paper we show by means of ‘in situ’ x-ray diffraction studies that CuTCNQ formation from Cu(solid)–TCNQ(solid tetracyanoquinodimethane) goes through Cu diffusion at room temperature. The film quality depends on the TCNQ evaporation rate. At low evaporation rate we get a single phase-I CuTCNQ film very well crystallized and well oriented. The film has a CuTCNQ(0 2 0) orientation. The film is formed by CuTCNQ nanorods of a very homogeneous size. The film homogeneity has also been seen by atomic force microscopy (AFM). The electronic properties of the film have been measured by x-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS). Thus, the Cu-diffusion method has arisen as a very simple, clean and efficient method to grow localized CuTCNQ nanorods on Cu, opening up new insights for technological applications. (paper)
Energy Technology Data Exchange (ETDEWEB)
Zanette, Rodrigo; Petersen, Caudio Zen [Univ. Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcello [Univ. Federal de Pelotas (Brazil). Centro de Engenharias; Zabadal, Jorge Rodolfo [Univ. Federal do Rio Grande do Sul, Tramandai (Brazil)
2017-05-15
In this paper a solution for the one-dimensional steady state Multilayer Multigroup Neutron Diffusion Equation in cartesian geometry by Fictitious Borders Power Method and a perturbative analysis of this solution is presented. For each new iteration of the power method, the neutron flux is reconstructed by polynomial interpolation, so that it always remains in a standard form. However when the domain is long, an almost singular matrix arises in the interpolation process. To eliminate this singularity the domain segmented in R regions, called fictitious regions. The last step is to solve the neutron diffusion equation for each fictitious region in analytical form locally. The results are compared with results present in the literature. In order to analyze the sensitivity of the solution, a perturbation in the nuclear parameters is inserted to determine how a perturbation interferes in numerical results of the solution.
Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds
Desvillettes, Laurent; Fellner, Klemens
2008-01-01
In the continuation of [Desvillettes, L., Fellner, K.: Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations. J. Math. Anal. Appl. 319 (2006), no. 1, 157-176], we study reversible reaction-diffusion equations via entropy methods (based on the free energy functional) for a 1D system of four species. We improve the existing theory by getting 1) almost exponential convergence in L1 to the steady state via a precise entropy-entropy dissipation estimate, 2) an explicit global L∞ bound via interpolation of a polynomially growing H1 bound with the almost exponential L1 convergence, and 3), finally, explicit exponential convergence to the steady state in all Sobolev norms.
International Nuclear Information System (INIS)
Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin
2014-01-01
The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10 −12 to 5·10 −5 m 2 /s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). - Highlights: • The new method and installation for determination of radon diffusion coefficient D are developed. • The measured D-values vary in an extremely wide range, from 5×10 -5 to 1×10 -12 m 2 /s. • The materials include water, air, soil, building materials and radon-proof membranes. • The duration of the single test does not exceed 18 hours. • The measurement uncertainty varies from 5% (in permeable materials) to 40% (in radon gas barriers)
International Nuclear Information System (INIS)
Ohlsson, Y.; Neretnieks, I.
1998-01-01
Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data
A fractional spline collocation-Galerkin method for the time-fractional diffusion equation
Directory of Open Access Journals (Sweden)
Pezza L.
2018-03-01
Full Text Available The aim of this paper is to numerically solve a diffusion differential problem having time derivative of fractional order. To this end we propose a collocation-Galerkin method that uses the fractional splines as approximating functions. The main advantage is in that the derivatives of integer and fractional order of the fractional splines can be expressed in a closed form that involves just the generalized finite difference operator. This allows us to construct an accurate and efficient numerical method. Several numerical tests showing the effectiveness of the proposed method are presented.
International Nuclear Information System (INIS)
Nowak, P.F.
1993-01-01
A grey diffusion acceleration method is presented and is shown by Fourier analysis and test calculations to be effective in accelerating radiative transfer calculations. The spectral radius is bounded by 0.9 for the continuous equations, but is significantly smaller for the discretized equations, especially in the optically thick regimes characteristic to radiation transport problems. The GDA method is more efficient than the multigroup DSA method because its slightly higher iteration count is more than offset by the much lower cost per iteration. A wide range of test calculations confirm the efficiency of GDA compared to multifrequency DSA. (orig.)
Two-Dimensional Space-Time Dependent Multi-group Diffusion Equation with SLOR Method
International Nuclear Information System (INIS)
Yulianti, Y.; Su'ud, Z.; Waris, A.; Khotimah, S. N.
2010-01-01
The research of two-dimensional space-time diffusion equations with SLOR (Successive-Line Over Relaxation) has been done. SLOR method is chosen because this method is one of iterative methods that does not required to defined whole element matrix. The research is divided in two cases, homogeneous case and heterogeneous case. Homogeneous case has been inserted by step reactivity. Heterogeneous case has been inserted by step reactivity and ramp reactivity. In general, the results of simulations are agreement, even in some points there are differences.
Directory of Open Access Journals (Sweden)
S. Das
2013-12-01
Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.
Energy Technology Data Exchange (ETDEWEB)
Tomasevic, Dj; Altiparmarkov, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)
1988-07-01
A variational nodal diffusion method with accurate treatment of transverse leakage shape is developed and presented in this paper. Using Legendre expansion in transverse coordinates higher order quasi-one-dimensional nodal equations are formulated. Numerical solution has been carried out using analytical solutions in alternating directions assuming Legendre expansion of the RHS term. The method has been tested against 2D and 3D IAEA benchmark problem, as well as 2D CANDU benchmark problem. The results are highly accurate. The first order approximation yields to the same order of accuracy as the standard nodal methods with quadratic leakage approximation, while the second order reaches reference solution. (author)
Mueller-Klieser, W.
1984-01-01
A method has been developed for the quantitative evaluation of oxygen tension (PO2) distributions in multicellular spheroids measured with O2-sensitive microelectrodes. The experimental data showed that multicellular tumor spheroids in stirred growth media were characterized by a diffusion-depleted zone surrounding the spheroids. This zone was elicited by an unstirred layer of medium next to the spheroid leading to a continuous decrease in the PO2 values from the bulk medium towards the spher...
Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application
International Nuclear Information System (INIS)
Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun
2005-01-01
We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic
Energy Technology Data Exchange (ETDEWEB)
Can, Ahmet [Department of Mechanical Engineering, University of Trakya, 22030 Edirne (Turkey)
2007-02-15
This paper presents an analytical method, which determines the moisture diffusion coefficients for the natural and forced convection hot air drying of pumpkin seeds and their temperature dependence. In order to obtain scientific data, the pumpkin seed drying process was investigated under both natural and forced hot air convection regimes. This paper presents the experimental results in which the drying air was heated by solar energy. (author)
The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation
Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi
2014-01-01
We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...
A method for the determination of gas diffusion coefficients in undisturbed Boom Clay
International Nuclear Information System (INIS)
Jacops, E.; Volckaert, G.; Maes, N.; Weetjens, E.; Maes, T.; Vandervoort, F.
2010-01-01
Document available in extended abstract form only. The main mechanisms by which gas will be generated in deep geological repositories are: anaerobic corrosion of metals in wastes and packaging; radiolysis of water and organic materials in the packages, and microbial degradation of various organic wastes. Corrosion and radiolysis yield mainly hydrogen while microbial degradation leads to methane and carbon dioxide. The gas generated in the near field of a geological repository in clay will dissolve in the ground water and be transported away from the repository by diffusion as dissolved species. However if the gas generation rate is larger than the diffusive flux, the pore water will get over-saturated and a free gas phase will be formed. This will lead to a gas pressure build-up and finally to an advective gas flux. The latter might influence the performance of the repository. Therefore it is important to assess whether or not gas production rates can exceed the capacity of the near field to store and dissipate these gases by dissolution and diffusion only. The current available gas diffusion parameters for hydrogen in Boom Clay, obtained from the MEGAS project, suffer from an uncertainty of 1 to 2 orders of magnitude. Sensitivity calculations performed by Weetjens et al. (2006) for the disposal of vitrified high-level waste showed that with this uncertainty on the diffusion coefficient, the formation of a free gas phase cannot be excluded. Furthermore, recent re-evaluations of the MEGAS experiments by Krooss (2008) and Aertsens (2008) showed that the applied technique does not allow precise determination of the diffusion coefficient. Therefore a new method was developed to determine more precisely the gas diffusion coefficient for dissolved gases (especially dissolved hydrogen) in Boom Clay. This should allow for a more realistic assessment of the gas flux evolution of a repository as function of the estimated gas generation rates. The basic idea is to perform a
An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video
Directory of Open Access Journals (Sweden)
Dong Huilong
2016-03-01
Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.
Contribution to an effective design method for stationary reaction-diffusion patterns
Energy Technology Data Exchange (ETDEWEB)
Szalai, István; Horváth, Judit [Laboratory of Nonlinear Chemical Dynamics, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary); De Kepper, Patrick [Centre de Recherche Paul Pascal, CNRS, University of Bordeaux, 115, Avenue Schweitzer, F-33600 Pessac (France)
2015-06-15
The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.
Contribution to an effective design method for stationary reaction-diffusion patterns
International Nuclear Information System (INIS)
Szalai, István; Horváth, Judit; De Kepper, Patrick
2015-01-01
The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences
Song, Yun S; Steinrücken, Matthias
2012-03-01
The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.
Coarse-mesh method for multidimensional, mixed-lattice diffusion calculations
International Nuclear Information System (INIS)
Dodds, H.L. Jr.; Honeck, H.C.; Hostetler, D.E.
1977-01-01
A coarse-mesh finite difference method has been developed for multidimensional, mixed-lattice reactor diffusion calculations, both statics and kinetics, in hexagonal geometry. Results obtained with the coarse-mesh (CM) method have been compared with a conventional mesh-centered finite difference method and with experiment. The results of this comparison indicate that the accuracy of the CM method for highly heterogeneous (mixed) lattices using one point per hexagonal mesh element (''hex'') is about the same as the conventional method with six points per hex. Furthermore, the computing costs (i.e., central processor unit time and core storage requirements) of the CM method with one point per hex are about the same as the conventional method with one point per hex
Lerner, Vladimir S.
2012-01-01
The impulses, cutting entropy functional (EF) measure on trajectories Markov diffusion process, integrate information path functional (IPF) composing discrete information Bits extracted from observing random process. Each cut brings memory of the cutting entropy, which provides both reduction of the process entropy and discrete unit of the cutting entropy a Bit. Consequently, information is memorized entropy cutting in random observations which process interactions. The origin of information ...
Bucci, Monica; Mandelli, Maria Luisa; Berman, Jeffrey I; Amirbekian, Bagrat; Nguyen, Christopher; Berger, Mitchel S; Henry, Roland G
2013-01-01
sensitivity (79%) as determined from cortical IES compared to deterministic q-ball (50%), probabilistic DTI (36%), and deterministic DTI (10%). The sensitivity using the q-ball algorithm (65%) was significantly higher than using DTI (23%) (p probabilistic algorithms (58%) were more sensitive than deterministic approaches (30%) (p = 0.003). Probabilistic q-ball fiber tracks had the smallest offset to the subcortical stimulation sites. The offsets between diffusion fiber tracks and subcortical IES sites were increased significantly for those cases where the diffusion fiber tracks were visibly thinner than expected. There was perfect concordance between the subcortical IES function (e.g. hand stimulation) and the cortical connection of the nearest diffusion fiber track (e.g. upper extremity cortex). This study highlights the tremendous utility of intraoperative stimulation sites to provide a gold standard from which to evaluate diffusion MRI fiber tracking methods and has provided an object standard for evaluation of different diffusion models and approaches to fiber tracking. The probabilistic q-ball fiber tractography was significantly better than DTI methods in terms of sensitivity and accuracy of the course through the white matter. The commonly used DTI fiber tracking approach was shown to have very poor sensitivity (as low as 10% for deterministic DTI fiber tracking) for delineation of the lateral aspects of the corticospinal tract in our study. Effects of the tumor/edema resulted in significantly larger offsets between the subcortical IES and the preoperative fiber tracks. The provided data show that probabilistic HARDI tractography is the most objective and reproducible analysis but given the small sample and number of stimulation points a generalization about our results should be given with caution. Indeed our results inform the capabilities of preoperative diffusion fiber tracking and indicate that such data should be used carefully when making pre-surgical and
Fourier spectral methods for fractional-in-space reaction-diffusion equations
Bueno-Orovio, Alfonso; Kay, David; Burrage, Kevin
2014-01-01
approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction
Momentum integral network method for thermal-hydraulic transient analysis
International Nuclear Information System (INIS)
Van Tuyle, G.J.
1983-01-01
A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion
International Nuclear Information System (INIS)
Yasmin, Hasina; Nakata, Yasuhiro; Abe, Osamu; Masutani, Yoshitaka; Ohtomo, Kuni; Aoki, Shigeki; Sato, Noriko; Nemoto, Kiyotaka; Arima, Kunimasa; Furuta, Nobuo; Uno, Masatake; Hirai, Shigeo
2008-01-01
Our aim was to determine diffusion abnormalities in the uncinate fasciculus (UF) in Alzheimer's disease (AD) by diffusion tensor tractography (DTT) using a new method for measuring the core of the tract. We studied 19 patients with AD and 19 age-matched control subjects who underwent MRI using diffusion tensor imaging (DTI). DTT of the UF was generated. The mean diffusivity (MD) and fractional anisotropy (FA) of the core of the tract were measured after voxelized tract shape processing. Student's t-test was used to compare results between patients with AD and controls. Intraobserver correlation tests were also performed. FA was significantly lower (P 0.93 for measured FA and r > 0.92 for measured MD. Our results suggest that FA reflects progression of AD-related histopathological changes in the UF of the white matter and may represent a useful biological index in monitoring AD. Diffusion tensor tract-specific analysis with voxelized tract shape processing to measure the core of the tract may be a sensitive tool for evaluation of diffusion abnormalities of white matter tracts in AD. (orig.)
Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.
2017-10-01
The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.
International Nuclear Information System (INIS)
Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong
2017-01-01
Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and
Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion
International Nuclear Information System (INIS)
Mousseau, V.A.; Knoll, D.A.; Rider, W.J.
2000-01-01
An algorithm is presented for the solution of the time dependent reaction-diffusion systems which arise in non-equilibrium radiation diffusion applications. This system of nonlinear equations is solved by coupling three numerical methods, Jacobian-free Newton-Krylov, operator splitting, and multigrid linear solvers. An inexact Newton's method is used to solve the system of nonlinear equations. Since building the Jacobian matrix for problems of interest can be challenging, the authors employ a Jacobian-free implementation of Newton's method, where the action of the Jacobian matrix on a vector is approximated by a first order Taylor series expansion. Preconditioned generalized minimal residual (PGMRES) is the Krylov method used to solve the linear systems that come from the iterations of Newton's method. The preconditioner in this solution method is constructed using a physics-based divide and conquer approach, often referred to as operator splitting. This solution procedure inverts the scalar elliptic systems that make up the preconditioner using simple multigrid methods. The preconditioner also addresses the strong coupling between equations with local 2 x 2 block solves. The intra-cell coupling is applied after the inter-cell coupling has already been addressed by the elliptic solves. Results are presented using this solution procedure that demonstrate its efficiency while incurring minimal memory requirements
Numerical calculation of the tensor of diffusion in the nuclear reactor cells by Monte-Carlo method
International Nuclear Information System (INIS)
Gorodkov, S.S.; Kalugin, M.A.
2009-01-01
New algorithm based on the sequential application of the RMS path method has been proposed for the diffusion constants calculation. The offered algorithm conforms to the diffusion constants calculation in arbitrary segments of nuclear reactors without detail description of geometry, dependence of cross-sections from energy or neutron scattering anisotropy by kernel medium. The proposed algorithm is used for the diffusion constants calculation in uranium-graphite reactor sells
Practical method of calculating time-integrated concentrations at medium and large distances
International Nuclear Information System (INIS)
Cagnetti, P.; Ferrara, V.
1980-01-01
Previous reports have covered the possibility of calculating time-integrated concentrations (TICs) for a prolonged release, based on concentration estimates for a brief release. This study proposes a simple method of evaluating concentrations in the air at medium and large distances, for a brief release. It is known that the stability of the atmospheric layers close to ground level influence diffusion only over short distances. Beyond some tens of kilometers, as the pollutant cloud progressively reaches higher layers, diffusion is affected by factors other than the stability at ground level, such as wind shear for intermediate distances and the divergence and rotational motion of air masses towards the upper limit of the mesoscale and on the synoptic scale. Using the data available in the literature, expressions for sigmasub(y) and sigmasub(z) are proposed for transfer times corresponding to those for up to distances of several thousand kilometres, for two initial diffusion situations (up to distances of 10 - 20 km), those characterized by stable and neutral conditions respectively. Using this method simple hand calculations can be made for any problem relating to the diffusion of radioactive pollutants over long distances
Application of the integral method to modelling the oxidation of defected fuel elements
International Nuclear Information System (INIS)
Kolar, M.
1995-06-01
The starting point for this report is the discrepancy reported in previous work between the reaction-diffusion calculations and the CEX-1 experiment, which involves storage of defected fuel elements in air at 150 deg C. This discrepancy is considerably diminished here by a more critical choice of theoretical parameters, and by taking into account the fact that different CEX-1 fuel elements were oxidized at very different rates and that the fuel element used previously for comparison with theoretical calculations actually underwent two limited-oxygen-supply cycles. Much better agreement is obtained here between the theory and the third, unlimited-air, storage period of the CEX-1 experiment. The approximate integral method is used extensively for the solution of the one-dimensional diffusion moving-boundary problems that may describe various storage periods of the CEX-1 experiment. In some cases it is easy to extend this method to arbitrary precision by using higher moments of the diffusion equation. Using this method, the validity of quasi-steady-state approximation is verified. Diffusion-controlled oxidation is also studied. In this case, for the unlimited oxygen supply, the integral method leads to an exact analytical solution for linear geometry, and to a good analytical approximation of the solution for the spherically symmetric geometry. These solutions may have some application in the analysis of experiments on the oxidation of small UO 2 fragments or powders when the individual UO 2 grains may be considered to be approximately spherical. (author). 23 refs., 5 tabs., 11 figs
Solution of the Multigroup-Diffusion equation by the response matrix method
International Nuclear Information System (INIS)
Oliveira, C.R.E.
1980-10-01
A preliminary analysis of the response matrix method is made, considering its application to the solution of the multigroup diffusion equations. The one-dimensional formulation is presented and used to test some flux expansions, seeking the application of the method to the two-dimensional problem. This formulation also solves the equations that arise from the integro-differential synthesis algorithm. The slow convergence of the power method, used to solve the eigenvalue problem, and its acceleration by means of the Chebyshev polynomial method, are also studied. An algorithm for the estimation of the dominance ratio is presented, based on the residues of two successive iteration vectors. This ratio, which is not known a priori, is fundamental for the efficiency of the method. Some numerical problems are solved, testing the 1D formulation of the response matrix method, its application to the synthesis algorithm and also, at the same time, the algorithm to accelerate the source problem. (Author) [pt
Five-point form of the nodal diffusion method and comparison with finite-difference
International Nuclear Information System (INIS)
Azmy, Y.Y.
1988-01-01
Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab
Achieving Integration in Mixed Methods Designs—Principles and Practices
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-01-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participato...
Integrated management of thesis using clustering method
Astuti, Indah Fitri; Cahyadi, Dedy
2017-02-01
Thesis is one of major requirements for student in pursuing their bachelor degree. In fact, finishing the thesis involves a long process including consultation, writing manuscript, conducting the chosen method, seminar scheduling, searching for references, and appraisal process by the board of mentors and examiners. Unfortunately, most of students find it hard to match all the lecturers' free time to sit together in a seminar room in order to examine the thesis. Therefore, seminar scheduling process should be on the top of priority to be solved. Manual mechanism for this task no longer fulfills the need. People in campus including students, staffs, and lecturers demand a system in which all the stakeholders can interact each other and manage the thesis process without conflicting their timetable. A branch of computer science named Management Information System (MIS) could be a breakthrough in dealing with thesis management. This research conduct a method called clustering to distinguish certain categories using mathematics formulas. A system then be developed along with the method to create a well-managed tool in providing some main facilities such as seminar scheduling, consultation and review process, thesis approval, assessment process, and also a reliable database of thesis. The database plays an important role in present and future purposes.
IMP: Integrated method for power analysis
Energy Technology Data Exchange (ETDEWEB)
1989-03-01
An integrated, easy to use, economical package of microcomputer programs has been developed which can be used by small hydro developers to evaluate potential sites for small scale hydroelectric plants in British Columbia. The programs enable evaluation of sites located far from the nearest stream gauging station, for which streamflow data are not available. For each of the province's 6 hydrologic regions, a streamflow record for one small watershed is provided in the data base. The program can then be used to generate synthetic streamflow records and to compare results obtained by the modelling procedure with the actual data. The program can also be used to explore the significance of modelling parameters and to develop a detailed appreciation for the accuracy which can be obtained under various circumstances. The components of the program are an atmospheric model of precipitation; a watershed model that will generate a continuous series of streamflow data, based on information from the atmospheric model; a flood frequency analysis system that uses site-specific topographic data plus information from the atmospheric model to generate a flood frequency curve; a hydroelectric power simulation program which determines daily energy output for a run-of-river or reservoir storage site based on selected generation facilities and the time series generated in the watershed model; and a graphic analysis package that provides direct visualization of data and modelling results. This report contains a description of the programs, a user guide, the theory behind the model, the modelling methodology, and results from a workshop that reviewed the program package. 32 refs., 16 figs., 18 tabs.
A discussion on validity of the diffusion theory by Monte Carlo method
Peng, Dong-qing; Li, Hui; Xie, Shusen
2008-12-01
Diffusion theory was widely used as a basis of the experiments and methods in determining the optical properties of biological tissues. A simple analytical solution could be obtained easily from the diffusion equation after a series of approximations. Thus, a misinterpret of analytical solution would be made: while the effective attenuation coefficient of several semi-infinite bio-tissues were the same, the distribution of light fluence in the tissues would be the same. In order to assess the validity of knowledge above, depth resolved internal fluence of several semi-infinite biological tissues which have the same effective attenuation coefficient were simulated with wide collimated beam in the paper by using Monte Carlo method in different condition. Also, the influence of bio-tissue refractive index on the distribution of light fluence was discussed in detail. Our results showed that, when the refractive index of several bio-tissues which had the same effective attenuation coefficient were the same, the depth resolved internal fluence would be the same; otherwise, the depth resolved internal fluence would be not the same. The change of refractive index of tissue would have affection on the light depth distribution in tissue. Therefore, the refractive index is an important optical property of tissue, and should be taken in account while using the diffusion approximation theory.
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
Donoso, M; Ghaly, Evone S
2005-01-01
The goals of this study are to user near-infrared reflectance (NIR) spectroscopy to measure the disintegration time of a series of tablets compacted at different compressional forces, calibrate NIR data vs. laboratory equipment data, develop a model equation, validate the model, and test the model's predictive ability. Seven theophylline tablet formulations of the same composition but with different disintegration time values (0.224, 1.141, 2.797, 5.492, 9.397, 16.8, and 30.092 min) were prepared along with five placebo tablet formulations with different disintegration times. Laboratory disintegration time was compared to near-infrared diffuse reflectance data. Linear regression, quadratic, cubic, and partial least square techniques were used to determine the relationship between disintegration time and near-infrared spectra. The results demonstrated that an increase in disintegration time produced an increase in near-infrared absorbance. Series of model equations, which depended on the mathematical technique used for regression, were developed from the calibration of disintegration time using laboratory equipment vs. the near-infrared diffuse reflectance for each formulation. The results of NIR disintegration time were similar to laboratory tests. The near-infrared diffuse reflectance spectroscopy method is an alternative nondestructive method for measurement of disintegration time of tablets.
One step linear reconstruction method for continuous wave diffuse optical tomography
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Directory of Open Access Journals (Sweden)
Beltrán-Prieto Juan Carlos
2016-01-01
Full Text Available The mathematical modelling of diffusion of a bleaching agent into a porous material is studied in the present paper. Law of mass conservation was applied to analize the mass transfer of a reactant from the bulk into the external surface of a solid geometrically described as a flat plate. After diffusion of the reactant, surface reaction following kinetics of first order was considered to take place. The solution of the differential equation that described the process leaded to an equation that represents the concentration profile in function of distance, porosity and Thiele modulus. The case of interfacial mass resistance is also discused. In this case, finite difference method was used for the solution of the differential equation taking into account the respective boundary conditions. The profile of concentration can be obtained after numerical especification of Thiele modulus and Biot number.
Analytical-numerical method for treatment of turbulent diffusion of particles in the air
International Nuclear Information System (INIS)
Arsov, L.J.
1976-01-01
This work deals with the problem of air pollution around a stationary punctual source. For description of air pollution from a punctual source a mathematical model is suggested, and for calculation of effluents concentration an analytical-numerical algorithm is given. In addition to the analitical treatment the mathematical model is far more flexible and complete. Eddy diffusivity is represented by an arbitrary function, and an arbitrary wind velocity profile ahs been proposed. The apsorption of the ground is introduced through a variable apsorption coefficient, and the sedimentation through the mean velocity of deposition. To determine the movement of particles a parabolic equation of diffusion is used. The method has been tested through calculation of effluents concentration for different values of physical parameters
Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.
2013-01-01
Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.
The development of coastal diffusion observation method with a model airplane
International Nuclear Information System (INIS)
Yamada, Masaharu; Fukuda, Masaaki
1982-01-01
A tethered ballon system has been developed in order to take aerial photograph of dye-cloud in times of coastal diffusion experiment. The system has some weakpoints; it can not be used both under strong wind and under on-shore blowing wind. To cover these wind conditions, another method of aerial photography is developed making use of model airplane. Radio controlled airplane on the market is reconstructed to mount 35 mm camera, the shutter of which is handled through the channel ordinarily used to control wheel logs. The procedure of the new system in case of diffusion experiment is similar to that of the tethered balloon system. Observations with this system has been carried out from winter to summer this year. Some results of them are described. (author)
A balancing domain decomposition method by constraints for advection-diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Tu, Xuemin; Li, Jing
2008-12-10
The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A pre-conditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm.
Numerical method for solving the three-dimensional time-dependent neutron diffusion equation
International Nuclear Information System (INIS)
Khaled, S.M.; Szatmary, Z.
2005-01-01
A numerical time-implicit method has been developed for solving the coupled three-dimensional time-dependent multi-group neutron diffusion and delayed neutron precursor equations. The numerical stability of the implicit computation scheme and the convergence of the iterative associated processes have been evaluated. The computational scheme requires the solution of large linear systems at each time step. For this purpose, the point over-relaxation Gauss-Seidel method was chosen. A new scheme was introduced instead of the usual source iteration scheme. (author)
Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems
International Nuclear Information System (INIS)
Anistratov, Dmitriy Y.
2011-01-01
The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)
Determining the performance of a Diffuser Augmented Wind Turbine using a combined CFD/BEM method
Directory of Open Access Journals (Sweden)
Kesby Joss E.
2017-01-01
Full Text Available Traditionally, the optimisation of a Diffuser Augmented Wind Turbine has focused on maximising power output. However, due to the often less than ideal location of small-scale turbines, cut-in speed and starting time are of equal importance in maximising Annual Energy Production, which is the ultimate goal of any wind turbine design. This paper proposes a method of determining power output, cut-in speed and starting time using a combination of Computational Fluid Dynamics and Blade Element Momentum theory. The proposed method has been validated against published experimental data.
Enriched reproducing kernel particle method for fractional advection-diffusion equation
Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam
2018-06-01
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.
Deterministic methods to solve the integral transport equation in neutronic
International Nuclear Information System (INIS)
Warin, X.
1993-11-01
We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs
Methods to assess radioisotope migration in cementitious media using radial diffusion and advection
International Nuclear Information System (INIS)
Hinchliff, J.; Felipe-Sotero, M.; Evans, N.D.M.; Read, D.; Drury, D.
2012-01-01
One of the primary aims of this project is to understand how a range of isotopes associated with radioactive wastes, move through the cementitious media potentially present in a geological disposal facility (GDF). This paper describes the development of experimental methods that use radial flow from intact cylinders of cementitious material to evaluate the potential for diffusion and advection of relevant isotopes through Nirex reference vault backfill (NRVB). The small scale and cost effectiveness of the approach means that multiple experiments can be undertaken encompassing the full range of physical (and chemical) variations. The radial flow experimental method uses small pre-cast cylinders of the matrix under investigation. For diffusion an appropriate concentration of the isotope of interest ( 90 Sr in the present experiments) is introduced into a cavity in the centre of the cylinder, which is then sealed, and placed in a solution previously equilibrated with the matrix. The increase in concentration of the isotope in the external solution is then determined at defined time intervals. For advection 90 Sr is similarly introduced into the central core of the cylinder and then equilibrated water is forced under nitrogen pressure, from the central core to the outside of the cylinder where it is collected in a tray prior to analysis. Both experimental set ups and results have been modelled using conventional numerical solutions and the simulation package GoldSim. Concerning diffusion experiments the modelled data reproduces the observed data effectively with a right diffusivity value of 9*10 -11 m 2 /s. Concerning advection results are more mitigated and need further investigation
International Nuclear Information System (INIS)
Yuste, Santos Bravo; Abad, Enrique
2011-01-01
We present an iterative method to obtain approximations to Bessel functions of the first kind J p (x) (p > -1) via the repeated application of an integral operator to an initial seed function f 0 (x). The class of seed functions f 0 (x) leading to sets of increasingly accurate approximations f n (x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f 0 (x) = 1. This set of polynomials is useful not only for the computation of J p (x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.
International Nuclear Information System (INIS)
Kim, K.S.; Kim, T.H.
1982-01-01
Internal friction peaks associated with the presence of carbon in 18-8 type 304 stainless steel have been observed from measurements with a torsion pendulum. The temperature for maximum internal friction lies between 250degC and 300degC with a frequency of vibration. The height of the peak rises and the position of the peak shifts to a lower temperature with an increase of the carbon content. And a comparison of the activation energy and the diffusion coefficient determined by internal friction methods with those measured in conventional macro-diffusion experiments reveals that the diffusion data measured by internal friction method and the diffusion data measured by conventional method exist in the same line. It follows from the above fact that observed internal friction peak is associated with the stress-induced diffusion of carbon in face-centered cubic alloys. (Author)
International Nuclear Information System (INIS)
Wang, Wenyan; Han, Bo; Yamamoto, Masahiro
2013-01-01
We propose a new numerical method for reproducing kernel Hilbert space to solve an inverse source problem for a two-dimensional fractional diffusion equation, where we are required to determine an x-dependent function in a source term by data at the final time. The exact solution is represented in the form of a series and the approximation solution is obtained by truncating the series. Furthermore, a technique is proposed to improve some of the existing methods. We prove that the numerical method is convergent under an a priori assumption of the regularity of solutions. The method is simple to implement. Our numerical result shows that our method is effective and that it is robust against noise in L 2 -space in reconstructing a source function. (paper)
International Nuclear Information System (INIS)
Ackroyd, R.T.
1987-01-01
A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)
Weiss, K; Laverdière, M; Rivest, R
1996-01-01
Corynebacterium species are increasingly being implicated in foreign-body infections and in immunocompromised-host infections. However, there are no specific recommendations on the method or the criteria to use in order to determine the in vitro activities of the antibiotics commonly used to treat Corynebacterium infections. The first aim of our study was to compare the susceptibilities of various species of Corynebacterium to vancomycin, erythromycin, and penicillin by using a broth microdilution method and a disk diffusion method. Second, the activity of penicillin against our isolates was assessed by using the interpretative criteria recommended by the National Committee for Clinical Laboratory Standards for the determination of the susceptibility of streptococci and Listeria monocytogenes to penicillin. Overall, 100% of the isolates were susceptible to vancomycin, while considerable variations in the activities of erythromycin and penicillin were noted for the different species tested, including the non-Corynebacterium jeikeium species. A good correlation in the susceptibilities of vancomycin and erythromycin between the disk diffusion and the microdilution methods was observed. However, a 5% rate of major or very major errors was detected with the Listeria criteria, while a high rate of minor errors (18%) was noted when the streptococcus criteria were used. Our findings indicate considerable variations in the activities of erythromycin and penicillin against the various species of Corynebacterium. Because of the absence of definite recommendations, important discrepancies were observed between the methods and the interpretations of the penicillin activity. PMID:8849254
International Nuclear Information System (INIS)
Zhang, M.; Takeda, M.; Nakajima, H.
2006-01-01
Laboratory diffusion testing as well as batch experiments are well established and widely adopted techniques for characterizing the diffusive and adsorptive properties of geological, geotechnical, and synthetic materials in both scientific and applied fields, including geological disposal of radioactive waste. Although several types of diffusion test, such as the through- diffusion test, in-diffusion test, out-diffusion test, and column test, are currently available, different methods may have different advantages and disadvantages. In addition, traditional methods may have limitations, such as the need for relatively long test times, cumbersome test procedures, and the possibility of errors due to differences between analytical assumptions and actual test conditions. Furthermore, traditional batch experiments using mineral powders are known to overestimate the sorption coefficient. In part 1 of this report, we present a brief overview of laboratory diffusion and batch experiments. The advantages, disadvantages, limitations, and/or potential problems associated with individual tests were compared and summarized. This comprehensive report will provide practical references for reviewing the results obtained from relevant experiments, especially from the viewpoint of regulation. To solve and/or eliminate the potential problems associated with conventional methods, and to obtain the diffusion coefficient and rock capacity factor from a laboratory test both rapidly and accurately, part 2 of this study discusses possible strategies involving the development of rigorous solutions to some relevant test methods, and sensitivity analyses for the related tests that may be helpful to judge the accuracy of the two parameters to be determined from individual tests. (authors)
Solid state reaction studies in Fe3O4–TiO2 system by diffusion couple method
International Nuclear Information System (INIS)
Ren, Zhongshan; Hu, Xiaojun; Xue, Xiangxin; Chou, Kuochih
2013-01-01
Highlights: •The solid state reactions of Fe2O3-TiO2 system was studied by the diffusion couple method. •Different products were formed by diffusion, and the FeTiO3 was more stable phase. •The inter-diffusion coefficients and diffusion activation energy were estimated. -- Abstract: The solid state reactions in Fe 3 O 4 –TiO 2 system has been studied by diffusion couple experiments at 1323–1473 K, in which the oxygen partial pressure was controlled by the CO–CO 2 gas mixture. The XRD analysis was used to confirm the phases of the inter-compound, and the concentration profiles were determined by electron probe microanalysis (EPMA). Based on the concentration profile of Ti, the inter-diffusion coefficients in Fe 3 O 4 phase, which were both temperature and concentration of Ti ions dependent, were calculated by the modified Boltzmann–Matano method. According to the relation between the thickness of diffusion layer and temperature, the diffusion coefficient of the Fe 3 O 4 –TiO 2 system was obtained. According to the Arrhenius equation, the estimated diffusion activation energy was about 282.1 ± 18.8 kJ mol −1
Directory of Open Access Journals (Sweden)
Olena G. Filatova
2018-04-01
Full Text Available Better insight into white matter (WM alterations after stroke onset could help to understand the underlying recovery mechanisms and improve future interventions. MR diffusion imaging enables to assess such changes. Our goal was to investigate the relation of WM diffusion characteristics derived from diffusion models of increasing complexity with the motor function of the upper limb. Moreover, we aimed to evaluate the variation of such characteristics across different WM structures of chronic stroke patients in comparison to healthy subjects. Subjects were scanned with a two b-value diffusion-weighted MRI protocol to exploit multiple diffusion models: single tensor, single tensor with isotropic compartment, bi-tensor model, bi-tensor with isotropic compartment. From each model we derived the mean tract fractional anisotropy (FA, mean (MD, radial (RD and axial (AD diffusivities outside the lesion site based on a WM tracts atlas. Asymmetry of these measures was correlated with the Fugl-Meyer upper extremity assessment (FMA score and compared between patient and control groups. Eighteen chronic stroke patients and eight age-matched healthy individuals participated in the study. Significant correlation of the outcome measures with the clinical scores of stroke recovery was found. The lowest correlation of the corticospinal tract FAasymmetry and FMA was with the single tensor model (r = −0.3, p = 0.2 whereas the other models reported results in the range of r = −0.79 ÷ −0.81 and p = 4E-5 ÷ 8E-5. The corticospinal tract and superior longitudinal fasciculus showed most alterations in our patient group relative to controls. Multiple compartment models yielded superior correlation of the diffusion measures and FMA compared to the single tensor model.
Quadratic algebras in the noncommutative integration method of wave equation
International Nuclear Information System (INIS)
Varaksin, O.L.
1995-01-01
The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras
New method for calculation of integral characteristics of thermal plumes
DEFF Research Database (Denmark)
Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor
2008-01-01
A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...... of the directional velocity (upward component of the mean velocity). The method is applied for determination of the characteristics of an asymmetric thermal plume generated by a sitting person. The method was validated in full-scale experiments in a climatic chamber with a thermal manikin as a simulator of a sitting...
INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES
Directory of Open Access Journals (Sweden)
H. Shen
2012-08-01
Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.
International Nuclear Information System (INIS)
Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael
2014-01-01
To predict the long-term migration of radionuclides (RNs) under variable conditions within the framework of safety analyses for geological disposal, thermodynamic sorption models are very powerful tools. The integrated sorption and diffusion (ISD) model for compacted bentonite was developed to achieve a consistent combination of clay–water interaction, sorption, and diffusion models. The basic premise considered in the ISD model was to consistently use the same simple surface model design and parameters for describing RNs sorption/diffusion as well as clay surface and porewater chemistry. A simple 1-site non-electrostatic surface complexation model in combination with a 1-site ion exchange model was selected to keep sorption model characteristics relatively robust for compacted systems. Fundamental parameters for the proposed model were evaluated from surface titration data for purified montmorillonite. The resulting basic model was then parameterized on the basis of selected published sorption data-sets for Np(V), Am(III), and U(VI) in dispersed systems, which cover a range of key geochemical conditions such as pH, ionic strength, and carbonate concentration. The sorption trends for these RNs can be quantitatively described by the model considering a full suite of surface species including hydrolytic and carbonate species. The application of these models to the description of diffusive-sorptive transport in compacted bentonites is presented in Part 2. (author)
Alternative containment integrity test methods, an overview of possible techniques
International Nuclear Information System (INIS)
Spletzer, B.L.
1986-01-01
A study is being conducted to develop and analyze alternative methods for testing of containment integrity. The study is focused on techniques for continuously monitoring containment integrity to provide rapid detection of existing leaks, thus providing greater certainty of the integrity of the containment at any time. The study is also intended to develop techniques applicable to the currently required Type A integrated leakage rate tests. A brief discussion of the range of alternative methods currently being considered is presented. The methods include applicability to all major containment types, operating and shutdown plant conditions, and quantitative and qualitative leakage measurements. The techniques are analyzed in accordance with the current state of knowledge of each method. The bulk of the techniques discussed are in the conceptual stage, have not been tested in actual plant conditions, and are presented here as a possible future direction for evaluating containment integrity. Of the methods considered, no single method provides optimum performance for all containment types. Several methods are limited in the types of containment for which they are applicable. The results of the study to date indicate that techniques for continuous monitoring of containment integrity exist for many plants and may be implemented at modest cost
DEFF Research Database (Denmark)
Hounyo, Ulrich
to a gneral class of estimators of integrated covolatility. We then show the first-order asymptotic validity of this method in the multivariate context with a potential presence of jumps, dependent microsturcture noise, irregularly spaced and non-synchronous data. Due to our focus on non...... covariance estimator. As an application of our results, we also consider the bootstrap for regression coefficients. We show that the wild blocks of bootstrap, appropriately centered, is able to mimic both the dependence and heterogeneity of the scores, thus justifying the construction of bootstrap percentile...... intervals as well as variance estimates in this context. This contrasts with the traditional pairs bootstrap which is not able to mimic the score heterogeneity even in the simple case where no microsturcture noise is present. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves...
Directory of Open Access Journals (Sweden)
P. Ooshaksaraei
2013-01-01
Full Text Available Silicon wafer accounts for almost one-half the cost of a photovoltaic (PV panel. A bifacial silicon solar cell is attractive due to its potential of enhancing power generation from the same silicon wafer in comparison with a conventional monofacial solar cell. The bifacial PV cell is able to capture solar radiation by back surface. This ability requires a suitable reflector appropriately oriented and separated from the cell’s rear surface. In order to optimize the bifacial solar cell performance with respect to an external back surface reflector, diffuse and semimirror reflectors were investigated at various angles and separations from the back surface. A simple bifacial solar panel, consisting of four monocrystalline Si solar cells, was designed and built. Reflection from the rear surface was provided by an extended semimirror and a white-painted diffuse reflector. Maximum power generation was observed at 30° with respect to ground for the semimirror reflector and 10° for diffuse reflector at an optimized reflector-panel separation of 115 mm. Output power enhancement of 20% and 15% from semimirror and diffuse reflectors, respectively, were observed. This loss from diffuse reflector is attributed to scattering of light beyond the rear surface capture cross-section of the bifacial solar panel.
Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades
International Nuclear Information System (INIS)
1980-01-01
A method is specified for the operation of a gaseous diffusion cascade wherein electrically driven compressors circulate a process gas through a plurality of serially connected gaseous diffusion stages to establish first and second countercurrently flowing cascade streams of process gas, one of the streams being at a relatively low pressure and enriched in a component of the process gas and the other being at a higher pressure and depleted in the same, and wherein automatic control systems maintain the stage process gas pressures by positioning process gas flow control valve openings at values which are functions of the difference between reference-signal inputs to the systems, and signal inputs proportional to the process gas pressures in the gaseous diffusion stages associated with the systems, the cascade process gas inventory being altered, while the cascade is operating, by simultaneously directing into separate process-gas freezing zones a plurality of substreams derived from one of the first and second streams at different points along the lengths thereof to solidify approximately equal weights of process gas in the zone while reducing the reference-signal inputs to maintain the positions of the control valves substantially unchanged despite the removal of process gas inventory via the substreams. (author)
Two pricing methods for solving an integrated commercial fishery ...
African Journals Online (AJOL)
a model (Hasan and Raffensperger, 2006) to solve this problem: the integrated ... planning and labour allocation for that processing firm, but did not consider any fleet- .... the DBONP method actually finds such price information, and uses it.
Critical Analysis of Methods for Integrating Economic and Environmental Indicators
Huguet Ferran, Pau; Heijungs, Reinout; Vogtländer, Joost G.
2018-01-01
The application of environmental strategies requires scoring and evaluation methods that provide an integrated vision of the economic and environmental performance of systems. The vector optimisation, ratio and weighted addition of indicators are the three most prevalent techniques for addressing
A simple flow-concentration modelling method for integrating water ...
African Journals Online (AJOL)
A simple flow-concentration modelling method for integrating water quality and ... flow requirements are assessed for maintenance low flow, drought low flow ... the instream concentrations of chemical constituents that will arise from different ...
APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS
Directory of Open Access Journals (Sweden)
Vorona Yu.V.
2015-12-01
Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.
New Approaches to Aluminum Integral Foam Production with Casting Methods
Directory of Open Access Journals (Sweden)
Ahmet Güner
2015-08-01
Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.
Solution of the diffusion equations for several groups by the finite elements method
International Nuclear Information System (INIS)
Arredondo S, C.
1975-01-01
The code DELFIN has been implemented for the solution of the neutrons diffusion equations in two dimensions obtained by applying the approximation of several groups of energy. The code works with any number of groups and regions, and can be applied to thermal reactors as well as fast reactor. Providing it with the diffusion coefficients, the effective sections and the fission spectrum we obtain the results for the systems multiplying constant and the flows of each groups. The code was established using the method of finite elements, which is a form of resolution of the variational formulation of the equations applying the Ritz-Galerkin method with continuous polynomial functions by parts, in one case of the Lagrange type with rectangular geometry and up to the third grade. The obtained results and the comparison with the results in the literature, permit to reach the conclusion that it is convenient, to use the rectangular elements in all the cases where the geometry permits it, and demonstrate also that the finite elements method is better than the finite differences method. (author)
Liu, Xiaodan; Watanabe, Keita; Kakeda, Shingo; Yoshimura, Reiji; Abe, Osamu; Ide, Satoru; Hayashi, Kenji; Katsuki, Asuka; Umene-Nakano, Wakako; Watanabe, Rieko; Ueda, Issei; Nakamura, Jun; Korogi, Yukunori
2016-06-01
Higher daytime cortisol levels because of a hyperactive hypothalamic-pituitary-adrenal axis have been reported in patients with major depressive disorder (MDD). The elevated glucocorticoids inhibit the proliferation of the oligodendrocytes that are responsible for myelinating the axons of white matter fibre tracts. To evaluate the relationship between white matter integrity and serum cortisol levels during a first depressive episode in drug-naive patients with MDD (MDD group) using a tract-based spatial statistics (TBSS) method. The MDD group (n = 29) and a healthy control group (n = 47) underwent diffusion tensor imaging (DTI) scans and an analysis was conducted using TBSS. Morning blood samples were obtained from both groups for cortisol measurement. Compared with the controls, the MDD group had significantly reduced fractional anisotropy values (Plevels in the MDD group (Plevels in the MDD group may injure the white matter integrity in the frontal-subcortical and frontal-limbic circuits. © The Royal College of Psychiatrists 2016.
Applying the response matrix method for solving coupled neutron diffusion and transport problems
International Nuclear Information System (INIS)
Sibiya, G.S.
1980-01-01
The numerical determination of the flux and power distribution in the design of large power reactors is quite a time-consuming procedure if the space under consideration is to be subdivided into very fine weshes. Many computing methods applied in reactor physics (such as the finite-difference method) require considerable computing time. In this thesis it is shown that the response matrix method can be successfully used as an alternative approach to solving the two-dimension diffusion equation. Furthermore it is shown that sufficient accuracy of the method is achieved by assuming a linear space dependence of the neutron currents on the boundaries of the geometries defined for the given space. (orig.) [de
Transport and diffusion of material quantities on propagating interfaces via level set methods
Adalsteinsson, D
2003-01-01
We develop theory and numerical algorithms to apply level set methods to problems involving the transport and diffusion of material quantities in a level set framework. Level set methods are computational techniques for tracking moving interfaces; they work by embedding the propagating interface as the zero level set of a higher dimensional function, and then approximate the solution of the resulting initial value partial differential equation using upwind finite difference schemes. The traditional level set method works in the trace space of the evolving interface, and hence disregards any parameterization in the interface description. Consequently, material quantities on the interface which themselves are transported under the interface motion are not easily handled in this framework. We develop model equations and algorithmic techniques to extend the level set method to include these problems. We demonstrate the accuracy of our approach through a series of test examples and convergence studies.
Transport and diffusion of material quantities on propagating interfaces via level set methods
International Nuclear Information System (INIS)
Adalsteinsson, David; Sethian, J.A.
2003-01-01
We develop theory and numerical algorithms to apply level set methods to problems involving the transport and diffusion of material quantities in a level set framework. Level set methods are computational techniques for tracking moving interfaces; they work by embedding the propagating interface as the zero level set of a higher dimensional function, and then approximate the solution of the resulting initial value partial differential equation using upwind finite difference schemes. The traditional level set method works in the trace space of the evolving interface, and hence disregards any parameterization in the interface description. Consequently, material quantities on the interface which themselves are transported under the interface motion are not easily handled in this framework. We develop model equations and algorithmic techniques to extend the level set method to include these problems. We demonstrate the accuracy of our approach through a series of test examples and convergence studies
International Nuclear Information System (INIS)
Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C.
2013-01-01
In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation
Tau method approximation of the Hubbell rectangular source integral
International Nuclear Information System (INIS)
Kalla, S.L.; Khajah, H.G.
2000-01-01
The Tau method is applied to obtain expansions, in terms of Chebyshev polynomials, which approximate the Hubbell rectangular source integral:I(a,b)=∫ b 0 (1/(√(1+x 2 )) arctan(a/(√(1+x 2 )))) This integral corresponds to the response of an omni-directional radiation detector situated over a corner of a plane isotropic rectangular source. A discussion of the error in the Tau method approximation follows
Diffusion theory and knowledge dissemination, utilization, and integration in public health.
Green, Lawrence W; Ottoson, Judith M; García, César; Hiatt, Robert A
2009-01-01
Legislators and their scientific beneficiaries express growing concerns that the fruits of their investment in health research are not reaching the public, policy makers, and practitioners with evidence-based practices. Practitioners and the public lament the lack of relevance and fit of evidence that reaches them and barriers to their implementation of it. Much has been written about this gap in medicine, much less in public health. We review the concepts that have guided or misguided public health in their attempts to bridge science and practice through dissemination and implementation. Beginning with diffusion theory, which inspired much of public health's work on dissemination, we compare diffusion, dissemination, and implementation with related notions that have served other fields in bridging science and practice. Finally, we suggest ways to blend diffusion with other theory and evidence in guiding a more decentralized approach to dissemination and implementation in public health, including changes in the ways we produce the science itself.
Assessing Backwards Integration as a Method of KBO Family Finding
Benfell, Nathan; Ragozzine, Darin
2018-04-01
The age of young asteroid collisional families can sometimes be determined by using backwards n-body integrations of the solar system. This method is not used for discovering young asteroid families and is limited by the unpredictable influence of the Yarkovsky effect on individual specific asteroids over time. Since these limitations are not as important for objects in the Kuiper belt, Marcus et al. 2011 suggested that backwards integration could be used to discover and characterize collisional families in the outer solar system. But various challenges present themselves when running precise and accurate 4+ Gyr integrations of Kuiper Belt objects. We have created simulated families of Kuiper Belt Objects with identical starting locations and velocity distributions, based on the Haumea Family. We then ran several long-term test integrations to observe the effect of various simulation parameters on integration results. These integrations were then used to investigate which parameters are of enough significance to require inclusion in the integration. Thereby we determined how to construct long-term integrations that both yield significant results and require manageable processing power. Additionally, we have tested the use of backwards integration as a method of discovery of potential young families in the Kuiper Belt.
Study on the measurement method of diffusion coefficient for radon in the soil. 2
International Nuclear Information System (INIS)
Iida, Takao
2000-03-01
To investigate radon behavior in the soil at Ningyo Pass, the radon concentrations in the soil and the radon exhalation rate from soil surface were measured by four continuous soil radon monitoring systems, soil gas sampling method, and accumulation method. The radon concentrations in the soil measured with continuous soil radon monitoring systems varied form 5000 Bq·m -3 to 15000 Bq·m -3 at 10 cm to 40 cm depth. On the other hand, the radon concentrations measured by soil gas sampling method was 15000 Bq·m -3 at 15 cm depth. The accumulation method gives the vales of 0. 36∼0.68 Bq·m -2 ·s -1 for radon exhalation rate from soil surface. To simulate the radon transport in soil, the following parameters of the soil are important: radon diffusion coefficients, dry density, wet density, soil particle density, true density, water content and radium concentration. The measured radon diffusion coefficients in the soil were (1.61±0.09)x10 -6 m 2 s -1 , (8.68±0.23)x10 -7 m 2 s -1 ∼ (1.53±0.12)x10 -6 m 2 s -1 and (2.99±0.32)x10 -6 m 2 s -1 ∼ (4.39±0.43)x10 -6 m 2 s -1 for sandy soils of the campus of Nagoya University, Tsuruga peninsula, and Ningyo Pass, respectively. By using these parameters, the radon transport phenomena in the soil of two layers were calculated by analytical and numerical methods. The radon profile calculated by numerical method agrees fairly well with measured values. By covering of 2 m soil, the radon exhalation rate decreases to 1/4 by analytical method, and 3/5 by numerical method. The covering of normal soil is not so effective for reducing the radon exhalation rate. (author)
Explicit integration of extremely stiff reaction networks: partial equilibrium methods
International Nuclear Information System (INIS)
Guidry, M W; Hix, W R; Billings, J J
2013-01-01
In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)
Approximation of the exponential integral (well function) using sampling methods
Baalousha, Husam Musa
2015-04-01
Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to approximate the exponential integral. Most of these methods are based on numerical approximations and are valid for a certain range of the argument value. This paper presents a new approach to approximate the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to approximate the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.
An integrated lean-methods approach to hospital facilities redesign.
Nicholas, John
2012-01-01
Lean production methods for eliminating waste and improving processes in manufacturing are now being applied in healthcare. As the author shows, the methods are appropriate for redesigning hospital facilities. When used in an integrated manner and employing teams of mostly clinicians, the methods produce facility designs that are custom-fit to patient needs and caregiver work processes, and reduce operational costs. The author reviews lean methods and an approach for integrating them in the redesign of hospital facilities. A case example of the redesign of an emergency department shows the feasibility and benefits of the approach.
Iterative algorithm for the volume integral method for magnetostatics problems
International Nuclear Information System (INIS)
Pasciak, J.E.
1980-11-01
Volume integral methods for solving nonlinear magnetostatics problems are considered in this paper. The integral method is discretized by a Galerkin technique. Estimates are given which show that the linearized problems are well conditioned and hence easily solved using iterative techniques. Comparisons of iterative algorithms with the elimination method of GFUN3D shows that the iterative method gives an order of magnitude improvement in computational time as well as memory requirements for large problems. Computational experiments for a test problem as well as a double layer dipole magnet are given. Error estimates for the linearized problem are also derived
Energy Technology Data Exchange (ETDEWEB)
Accary, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1955-12-15
The author develops a zero concentration extrapolation method for the exact determination of the diffusion coefficient. He applies it to the comparison of the inward and outward diffusion coefficient in {alpha} brasses. In a second part he shows the large influence of traces of some elements such as P, As, Sb, on the diffusion velocity in {alpha} brasses. (author) [French] L'auteur montre comment, au moyen d'une extrapolation a variation de concentration nulle, ces methodes permettent d'atteindre rigoureusement la valeur du coefficient de diffusion. Il les utilise pour comparer la valeur du coefficient de diffusion avec enrichissement en zinc a la valeur du coefficient de diffusion avec appauvrissement en zinc. Dans une seconde partie, il met en evidence la grande influence de traces d'elements tels que le phosphore, l'arsenic, l'antimoine sur la vitesse de diffusion dans les laitons {alpha}. (auteur)
The Galerkin finite element method for a multi-term time-fractional diffusion equation
Jin, Bangti
2015-01-01
© 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.
The modeling method of diffusion of radio activated materials in clay waste disposals
Energy Technology Data Exchange (ETDEWEB)
Saberi, Reza; Sepanloo, Kamran [NSTRI, Tehran (Iran, Islamic Republic of); Alinejad, Majid [Engineering Research Institute of Natural Hazard, Isfahan (Iran, Islamic Republic of); Mozaffari, Ali [KNT Univ. of Technology, Tehran (Iran, Islamic Republic of)
2017-02-15
New nuclear power plants are necessary to meet today's and future challenges of energy supply. Nuclear power is the only large-scale energy source that takes full responsibility for all its wastes. Nuclear wastes are particularly hazardous and hard to manage relative to different toxic industrial wastes. Three methods are presented and analysed to model the diffusion of the waste from the waste disposal to the bottom surface. For this purpose three software programmes such as ABAQUS, Matlab coding, Geostudio and ArcGIS have been applied.
Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr
2005-05-15
We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.
The modeling method of diffusion of radio activated materials in clay waste disposals
International Nuclear Information System (INIS)
Saberi, Reza; Sepanloo, Kamran; Alinejad, Majid; Mozaffari, Ali
2017-01-01
New nuclear power plants are necessary to meet today's and future challenges of energy supply. Nuclear power is the only large-scale energy source that takes full responsibility for all its wastes. Nuclear wastes are particularly hazardous and hard to manage relative to different toxic industrial wastes. Three methods are presented and analysed to model the diffusion of the waste from the waste disposal to the bottom surface. For this purpose three software programmes such as ABAQUS, Matlab coding, Geostudio and ArcGIS have been applied.
International Nuclear Information System (INIS)
Higashihara, Tomohiro; Nakata, Kotaro; Hasegawa, Takuma
2006-01-01
Dissolved helium in groundwater is one of the most suitable tracers for the groundwater dating. The diffusion coefficients in aquitard and aquifer were important to estimate an accumulation of the helium in groundwater. However, few papers have been reported about the diffusion of helium in rocks. In this study, effective diffusion coefficients of the helium in sandstones and mudstone were determined using a through-diffusion method. The effective diffusion coefficients of helium were in the range of 1.5 x 10 -10 to 1.1 x 10 -9 m 2 s -1 and larger than those of Br - ions. Geometrical factors for the diffusion of helium were also larger than those for the diffusion of Br - ions. This fact suggests that diffusion path of helium in the rocks is not more restricted than that of Br - ions. The diffusion coefficients of helium were also estimated using the diffusion coefficient of helium in bulk water and formation factors for diffusion of Br - ions. The estimated diffusion coefficients of helium were larger than the effective diffusion coefficients. It is clarified that the effective diffusion coefficients of helium are underestimated by the estimation method using anions. (author)
Long-time integration methods for mesoscopic models of pattern-forming systems
International Nuclear Information System (INIS)
Abukhdeir, Nasser Mohieddin; Vlachos, Dionisios G.; Katsoulakis, Markos; Plexousakis, Michael
2011-01-01
Spectral methods for simulation of a mesoscopic diffusion model of surface pattern formation are evaluated for long simulation times. Backwards-differencing time-integration, coupled with an underlying Newton-Krylov nonlinear solver (SUNDIALS-CVODE), is found to substantially accelerate simulations, without the typical requirement of preconditioning. Quasi-equilibrium simulations of patterned phases predicted by the model are shown to agree well with linear stability analysis. Simulation results of the effect of repulsive particle-particle interactions on pattern relaxation time and short/long-range order are discussed.
Diffuse reflectance startigraphy - a new method in the study of loess (?)
József, Szeberényi; Balázs, Bradák; Klaudia, Kiss; József, Kovács; György, Varga; Réka, Balázs; Viczián, István
2017-04-01
The different varieties of loess (and intercalated paleosol layers) together constitute one of the most widespread terrestrial sediments, which was deposited, altered, and redeposited in the course of the changing climatic conditions of the Pleistocene. To reveal more information about Pleistocene climate cycles and/or environments the detailed lithostratigraphical subdivision and classification of the loess variations and paleosols are necessary. Beside the numerous method such as various field measurements, semi-quantitative tests and laboratory investigations, diffuse reflectance spectroscopy (DRS) is one of the well applied method on loess/paleosol sequences. Generally, DRS has been used to separate the detrital and pedogenic mineral component of the loess sections by the hematite/goethite ratio. DRS also has been applied as a joint method of various environmental magnetic investigations such as magnetic susceptibility- and isothermal remanent magnetization measurements. In our study the so-called "diffuse reflectance stratigraphy method" were developed. At First, complex mathematical method was applied to compare the results of the spectral reflectance measurements. One of the most preferred multivariate methods is cluster analysis. Its scope is to group and compare the loess variations and paleosol based on the similarity and common properties of their reflectance curves. In the Second, beside the basic subdivision of the profiles by the different reflectance curves of the layers, the most characteristic wavelength section of the reflectance curve was determined. This sections played the most important role during the classification of the different materials of the section. The reflectance value of individual samples, belonged to the characteristic wavelength were depicted in the function of depth and well correlated with other proxies like grain size distribution and magnetic susceptibility data. The results of the correlation showed the significance of the
Synthesis of metal-organic framework films by pore diffusion method
Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration
Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.
Zeng, Irene Sui Lan; Lumley, Thomas
2018-01-01
Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.
A dynamic integrated fault diagnosis method for power transformers.
Gao, Wensheng; Bai, Cuifen; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.
A Dynamic Integrated Fault Diagnosis Method for Power Transformers
Gao, Wensheng; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841
Pilot projects and their diffusion: a case study of integrated coastal management in South Africa
CSIR Research Space (South Africa)
Vreugdenhil, H
2012-01-01
Full Text Available contribution to the diffusion of the innovation and so to a policy transition in South African coastal zone management. Finally, we identify types of pilot project and the accompanying design choices that are most suitable for transition management....
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew
2015-01-01
-scale experiments in a climate chamber. The experimental results indicate that diffuse ceiling can significantly improve thermal comfort in the occupied zone, by reducing draught risk and vertical temperature gradient. The linear function between pressure drop and air change rate points out that the air flow...
Bloemen, Oswald J. N.; Deeley, Quinton; Sundram, Fred; Daly, Eileen M.; Barker, Gareth J.; Jones, Derek K.; van Amelsvoort, Therese A. M. J.; Schmitz, Nicole; Robertson, Dene; Murphy, Kieran C.; Murphy, Declan G. M.
2010-01-01
Background: Autistic Spectrum Disorder (ASD), including Asperger syndrome and autism, is a highly genetic neurodevelopmental disorder. There is a consensus that ASD has a biological basis, and it has been proposed that it is a "connectivity" disorder. Diffusion Tensor Magnetic Resonance Imaging
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per
. And the thermal comfort is analyzed by draught rate vertical temperature gradient and radiant temperature asymmetry. Finally the effect of plenum and diffuse ceiling is discussed. This report mainly focuses on the experiment results and discussions. Therefore, some details about the measurement are not presented...
Achieving integration in mixed methods designs-principles and practices.
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-12-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.
Achieving Integration in Mixed Methods Designs—Principles and Practices
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-01-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. PMID:24279835
Zendejas, Gerardo; Chiasson, Mike
This paper will propose and explore a method to enhance focal actors' abilities to enroll and control the many social and technical components interacting during the initiation, production, and diffusion of innovations. The reassembling and stabilizing of such components is the challenging goal of the focal actors involved in these processes. To address this possibility, a healthcare project involving the initiation, production, and diffusion of an IT-based innovation will be influenced by the researcher, using concepts from actor network theory (ANT), within an action research methodology (ARM). The experiences using this method, and the nature of enrolment and translation during its use, will highlight if and how ANT can provide a problem-solving method to help assemble the social and technical actants involved in the diffusion of an innovation. Finally, the paper will discuss the challenges and benefits of implementing such methods to attain widespread diffusion.
DEFF Research Database (Denmark)
Nagy, Elisabeth; Justesen, Ulrik Stenz; Eitel, Zsuzsa
2015-01-01
-clavulanic acid, cefoxitin, clindamycin, imipenem, metronidazole, moxifloxacin, piperacillin/tazobactam, tigecycline by agar dilution method previously. The inhibition zones of the same antibiotics including meropenem disc were determined by the disc diffusion on Brucella blood agar supplemented with haemin...
The Nodal Polynomial Expansion method to solve the multigroup diffusion equations
International Nuclear Information System (INIS)
Ribeiro, R.D.M.
1983-03-01
The methodology of the solutions of the multigroup diffusion equations and uses the Nodal Polynomial Expansion Method is covered. The EPON code was developed based upon the above mentioned method for stationary state, rectangular geometry, one-dimensional or two-dimensional and for one or two energy groups. Then, one can study some effects such as the influence of the baffle on the thermal flux by calculating the flux and power distribution in nuclear reactors. Furthermore, a comparative study with other programs which use Finite Difference (CITATION and PDQ5) and Finite Element (CHD and FEMB) Methods was undertaken. As a result, the coherence, feasibility, speed and accuracy of the methodology used were demonstrated. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Chiou, S.Y.; Strutton, P.H. [Imperial College London, The Nick Davey Laboratory, Division of Surgery, Human Performance Group, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Hellyer, P.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Sharp, D.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Newbould, R.D. [Imanova, Ltd, London (United Kingdom); Patel, M.C. [Charing Cross Hospital, Imaging Department, Imperial College Healthcare NHS Trust, London (United Kingdom)
2017-09-15
Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function. (orig.)
Development of method to chemical separation of gallium-67 by thermal diffusion technique
International Nuclear Information System (INIS)
Martins, Patricia de Andrade
2012-01-01
Radioisotopes of gallium have been studied and evaluated for medical applications since 1949. Over the past 50 years 67 Ga has been widely used in the diagnosis of various diseases, including acute and chronic inflammatory lesions, bacterial or sterile and several types of tumors. In Brazil 30% of clinics that provide services for Nuclear Medicine use 67 Ga citrate and the demand for 67 G a at IPEN-CNEN/SP is 37 GBq (1 Ci)/week. The 67 Ga presents physical half-life of 3.26 days (78 hours) and decays 100% by electron capture to stable 67 Zn. Its decay includes the emission of γ rays with energies of 93.3 keV (37%), 184.6 keV (20.4%), 300.2 keV (16.6%) and 888 keV (26%). In the past 67 Ga was produced by the reaction 68 Zn (p, 2n) 67 Ga at IPEN-CNEN/SP. After irradiation, the target was dissolved in concentrated HCl and the solution percolated through a cationic resin DOWEX 50W-X8, 200-400 mesh, conditioned with 10 mol L -1 HCl. Zinc, nickel and copper were eluted in 10 mol L -1 HCl and 67 Ga 3.5 mol L -1 HCl. The final product was obtained as 67 Ga citrate. This work presents a new, fast, direct and efficient method for the chemical separation of 67 G a by thermal diffusion (heating of the target) combined with concentrated acetic acid extraction. Purification was performed by ion exchange chromatography. Natural zinc electrodeposition was performed on nickel/copper plates as substrate and the zinc deposits were adherent to the substrate, slightly shiny and uniform. The targets were irradiated with 26 MeV protons and integrated current of 10 μA.h. After irradiation, the targets were heated at 300 deg C for 2 hours and placed in contact with concentrated acetic acid for 1 hour. The average yield of extraction of 67 Ga was (72 ± 10)%. This solution was evaporated and the residue was taken up in 0.5 mol L -1 NH 4 OH. The 67 G a was purified on cationic resin Dowex 50WX8 in NH 4 OH medium. The 67 Ga recovery was (98 ± 2)%. This solution was evaporated and taken up
Energy Technology Data Exchange (ETDEWEB)
Zanette, Rodrigo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pós-Graduação em Matemática Aplicada; Petersen, Claudio Z.; Tavares, Matheus G., E-mail: rodrigozanette@hotmail.com, E-mail: claudiopetersen@yahoo.com.br, E-mail: matheus.gulartetavares@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil). Programa de Pós-Graduação em Modelagem Matemática
2017-07-01
We describe in this work the application of the modified power method for solve the multigroup neutron diffusion eigenvalue problem in slab geometry considering two-dimensions for nuclear reactor global calculations. It is well known that criticality calculations can often be best approached by solving eigenvalue problems. The criticality in nuclear reactors physics plays a relevant role since establishes the ratio between the numbers of neutrons generated in successive fission reactions. In order to solve the eigenvalue problem, a modified power method is used to obtain the dominant eigenvalue (effective multiplication factor (K{sub eff})) and its corresponding eigenfunction (scalar neutron flux), which is non-negative in every domain, that is, physically relevant. The innovation of this work is solving the neutron diffusion equation in analytical form for each new iteration of the power method. For solve this problem we propose to apply the Finite Fourier Sine Transform on one of the spatial variables obtaining a transformed problem which is resolved by well-established methods for ordinary differential equations. The inverse Fourier transform is used to reconstruct the solution for the original problem. It is known that the power method is an iterative source method in which is updated by the neutron flux expression of previous iteration. Thus, for each new iteration, the neutron flux expression becomes larger and more complex due to analytical solution what makes propose that it be reconstructed through an polynomial interpolation. The methodology is implemented to solve a homogeneous problem and the results are compared with works presents in the literature. (author)
Application of nonlinear nodal diffusion method for a small research reactor
International Nuclear Information System (INIS)
Jaradat, Mustafa K.; Alawneh, Luay M.; Park, Chang Je; Lee, Byungchul
2014-01-01
Highlights: • We applied nonlinear unified nodal method for 10 MW IAEA MTR benchmark problem. • TRITION–NEWT system was used to obtain two-group burnup dependent cross sections. • The criticality and power distribution compared with reference (IAEA-TECDOC-233). • Comparison between different fuel materials was conducted. • Satisfactory results were provided using UNM for MTR core calculations. - Abstract: Nodal diffusion methods are usually used for LWR calculations and rarely used for research reactor calculations. A unified nodal method with an implementation of the coarse mesh finite difference acceleration was developed for use in plate type research reactor calculations. It was validated for two PWR benchmark problems and then applied for IAEA MTR benchmark problem for static calculations to check the validity and accuracy of the method. This work was conducted to investigate the unified nodal method capability to treat material testing reactor cores. A 10 MW research reactor core is considered with three calculation cases for low enriched uranium fuel depending on the core burnup status of fresh, beginning-of-life, and end-of-life cores. The validation work included criticality calculations, flux distribution, and power distribution; in addition, a comparison between different fuel materials with the same uranium content was conducted. The homogenized two-group cross sections were generated using the TRITON–NEWT system. The results were compared with a reference, which was taken from IAEA-TECDOC-233. The unified nodal method provides satisfactory results for an all-rod out case, and the three-dimensional, two-group diffusion model can be considered accurate enough for MTR core calculations
Computation of rectangular source integral by rational parameter polynomial method
International Nuclear Information System (INIS)
Prabha, Hem
2001-01-01
Hubbell et al. (J. Res. Nat Bureau Standards 64C, (1960) 121) have obtained a series expansion for the calculation of the radiation field generated by a plane isotropic rectangular source (plaque), in which leading term is the integral H(a,b). In this paper another integral I(a,b), which is related with the integral H(a,b) has been solved by the rational parameter polynomial method. From I(a,b), we compute H(a,b). Using this method the integral I(a,b) is expressed in the form of a polynomial of a rational parameter. Generally, a function f (x) is expressed in terms of x. In this method this is expressed in terms of x/(1+x). In this way, the accuracy of the expression is good over a wide range of x as compared to the earlier approach. The results for I(a,b) and H(a,b) are given for a sixth degree polynomial and are found to be in good agreement with the results obtained by numerically integrating the integral. Accuracy could be increased either by increasing the degree of the polynomial or by dividing the range of integration. The results of H(a,b) and I(a,b) are given for values of b and a up to 2.0 and 20.0, respectively
An integration weighting method to evaluate extremum coordinates
International Nuclear Information System (INIS)
Ilyushchenko, V.I.
1990-01-01
The numerical version of the Laplace asymptotics has been used to evaluate the coordinates of extrema of multivariate continuous and discontinuous test functions. The performed computer experiments demonstrate the high efficiency of the integration method proposed. The saturating dependence of extremum coordinates on such parameters as a number of integration subregions and that of K going /theoretically/ to infinity has been studied in detail for the limitand being a ratio of two Laplace integrals with exponentiated K. The given method is an integral equivalent of that of weighted means. As opposed to the standard optimization methods of the zero, first and second order the proposed method can be successfully applied to optimize discontinuous objective functions, too. There are possibilities of applying the integration method in the cases, when the conventional techniques fail due to poor analytical properties of the objective functions near extremal points. The proposed method is efficient in searching for both local and global extrema of multimodal objective functions. 12 refs.; 4 tabs
An artificial nonlinear diffusivity method for supersonic reacting flows with shocks
Fiorina, B.; Lele, S. K.
2007-03-01
A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.
International Nuclear Information System (INIS)
Cartier, J.
2006-04-01
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Kochunov, P; Chiappelli, J; Hong, L E
2013-01-01
Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.
Higher-Order Integral Equation Methods in Computational Electromagnetics
DEFF Research Database (Denmark)
Jørgensen, Erik; Meincke, Peter
Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...
Two pricing methods for solving an integrated commercial fishery ...
African Journals Online (AJOL)
In this paper, we develop two novel pricing methods for solving an integer program. We demonstrate the methods by solving an integrated commercial fishery planning model (IFPM). In this problem, a fishery manager must schedule fishing trawlers (determine when and where the trawlers should go fishing, and when the ...
Method for integrating a train of fast, nanosecond wide pulses
International Nuclear Information System (INIS)
Rose, C.R.
1987-01-01
This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
A study of compositional verification based IMA integration method
Huang, Hui; Zhang, Guoquan; Xu, Wanmeng
2018-03-01
The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.
Heat-balance integral method for heat transfer in superfluid helium
Directory of Open Access Journals (Sweden)
Baudouy Bertrand
2009-01-01
Full Text Available The heat-balance integral method is used to solve the non-linear heat diffusion equation in static turbulent superfluid helium (He II. Although this is an approximate method, it has proven that it gives solutions with fairly good accuracy in non-linear fluid dynamics and heat transfer. Using this method, it has been possible to develop predictive solutions that reproduce analytical solution and experimental data. We present the solutions of the clamped heat flux case and the clamped temperature case in a semi-infinite using independent variable transformation to take account of temperature dependency of the thermophysical properties. Good accuracy is obtained using the Kirchhoff transform whereas the method fails with the Goodman transform for larger temperature range.
Numerical analysis of diffuse ceiling ventilation and its integration with a radiant ceiling system
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per Kvols; Chen, Qingyan
2017-01-01
A novel system combining diffuse ceiling ventilation and radiant ceiling was proposed recently, with the aim of providing energy efficient and comfort environment to office buildings. Designing of such a system is challenging because of complex interactions between the two subsystems and a large ......-uniformity air distribution and further led to the draught problem in the occupied zone. This system was recommended to apply in the small offices instead of large, open spaces....
International Nuclear Information System (INIS)
Kobayashi, Tetsuo
2010-01-01
Described is the technological aspect of MRI, MR diffusion-weighted imaging (MR-DWI), principles of its measurement and application for imaging the cerebral function and for aiding the quantitative diagnosis of brain diseases. The author explains the principle of MR imaging process; diffusion properties of water molecules, MR-DWI based on them and DW-fMRI of the brain; MR-diffusion tensor imaging (MR-DTI), its analysis and color acquisition, and tracking of white matter nerve fibers; analysis of white matter lesions by the tracking; and the new tracking method at the chiasm of nerve fascicles. The usual fMRI reflects the blood oxygen level depending (BOLD) signals whereas recently attracted DW-fMRI, the volume changes of nerve cells concomitant to nerve activation accompanying apparent changes of water diffusion coefficients in and out of cells which occur faster than BOLD signs, resulting in higher resolution of time and space. However, DWI requires the higher intensity of static magnetic field like 3T. MR-DTI acquires the anisotropic diffusion of water molecules using MR-DWI technique with application of 6 or more motion probing gradients, thus makes it possible to track the running directions of nerve fibers and capillary vessels, and is proposed to be a useful mean of specific fiber tracking in the white matter when displayed by 3 different colors exhibiting the directions like the right/left (x axis, red), anterior/posterior (y, green) and upper/lower (z, blue) sides of head. Recently, MR-DWI and MR-DTI have been found usable for pathogenic studies of brain diseases such as dementia. Tensor anisotropy is apparently lowered at the chiasm of nerve fascicles, the cause of tracking error, for which authors have developed a new method using the similarity of directional vector, not of tensor, before and behind the chiasm. As exemplified, MRI technology is further advancing even at present. (T.T.)
INTEGRATED SENSOR EVALUATION CIRCUIT AND METHOD FOR OPERATING SAID CIRCUIT
Krüger, Jens; Gausa, Dominik
2015-01-01
WO15090426A1 Sensor evaluation device and method for operating said device Integrated sensor evaluation circuit for evaluating a sensor signal (14) received from a sensor (12), having a first connection (28a) for connection to the sensor and a second connection (28b) for connection to the sensor. The integrated sensor evaluation circuit comprises a configuration data memory (16) for storing configuration data which describe signal properties of a plurality of sensor control signals (26a-c). T...
Mathematical methods linear algebra normed spaces distributions integration
Korevaar, Jacob
1968-01-01
Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector
User's guide to Monte Carlo methods for evaluating path integrals
Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan
2018-04-01
We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.
Classification Method in Integrated Information Network Using Vector Image Comparison
Directory of Open Access Journals (Sweden)
Zhou Yuan
2014-05-01
Full Text Available Wireless Integrated Information Network (WMN consists of integrated information that can get data from its surrounding, such as image, voice. To transmit information, large resource is required which decreases the service time of the network. In this paper we present a Classification Approach based on Vector Image Comparison (VIC for WMN that improve the service time of the network. The available methods for sub-region selection and conversion are also proposed.
Directory of Open Access Journals (Sweden)
E. J. Rogalski
2009-01-01
Full Text Available In the present study, changes in the parahippocampal white matter (PWM, in the region that includes the perforant path, were investigated, in vivo, in 14 individuals with amnestic mild cognitive impairment (aMCI compared to 14 elderly controls with no cognitive impairment (NCI. For this purpose, (1 volumetry; (2 diffusion tensor imaging (DTI derived measures of mean diffusivity (MD and fractional anisotropy (FA; and (3 tractography were used. In addition, regression models were utilized to examine the association of PWM measurements with memory decline. The results from this study confirm previous findings in our laboratory and others, showing that compared to controls, individuals with aMCI have PWM volume loss. In addition to volume reduction, participants with aMCI demonstrated a significant increase in MD, but no difference in FA, both in the PWM region and in fibers modeled to pass through the PWM region. Further, the DTI metric of MD was associated with declarative memory performance, suggesting it may be a sensitive marker for memory dysfunction. These results indicate that there is general tissue loss and degradation (decreased volume; increased MD in individuals with aMCI compared to older people with normal cognitive function. However, the microstructural organization of remaining fibers, as determined by measures of anisotropic diffusion, is not significantly different from that of controls.
Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z.
2014-01-01
© 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.
Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
Jin, B.
2014-05-30
© 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.
Gebauer, D; Fink, A; Filippini, N; Johansen-Berg, H; Reishofer, G; Koschutnig, K; Kargl, R; Purgstaller, C; Fazekas, F; Enzinger, C
2012-07-01
While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme-based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research.
Iles, Irina A; Egnoto, Michael J; Fisher Liu, Brooke; Ackerman, Gary; Roberts, Holly; Smith, Daniel
2017-11-01
After the 9/11 terrorist attacks, the U.S. government initiated several national security technology adoption programs. The American public, however, has been skeptical about these initiatives and adoption of national security technologies has been mandated, rather than voluntary. We propose and test a voluntary behavioral intention formation model for the adoption of one type of new security technology: portable radiation detectors. Portable radiation detectors are an efficient way of detecting radiological and nuclear threats and could potentially prevent loss of life and damage to individuals' health. However, their functioning requires that a critical mass of individuals use them on a daily basis. We combine the explanatory advantages of diffusion of innovation with the predictive power of two volitional behavior frameworks: the theory of reasoned action and the health belief model. A large sample survey (N = 1,482) investigated the influence of factors identified in previous diffusion of innovation research on portable radiation detector adoption intention. Results indicated that nonfinancial incentives, as opposed to financial incentives, should be emphasized in persuasive communications aimed at fostering adoption. The research provides a new integration of diffusion of innovation elements with determinants of volitional behavior from persuasion literature, and offers recommendations on effective communication about new security technologies to motivate public adoption and enhance national safety. © 2017 Society for Risk Analysis.
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.
Identification of Yeast Species In the Oral Cavity of Iranian Soldiers By Disk Diffusion Method
Directory of Open Access Journals (Sweden)
M. Imami
2008-02-01
Full Text Available Background:The disk diffusion method for identification of yeasts species was performed based on different but distinct susceptibilities of yeasts spp.to chemicals:janus green, ethidium bromide,2,3,5-triphenyltetrazolium chloride, brilliant green, cycloheximide and rhodamine 6G. Methods: Atotal of 568 Iranian soldiers went under study for isolation and identification of Yeast species from their oral cavity. Asterile swab was used for each individual and specimens were collected from the nasopharynx region, then inoculated to petri dishes containing Sabouraud Dextrose Agar and incubated for 48 hrs at 37 °C. All colonies were counted and stocked in distilled water and stored in a refrigerator for further analysis. The yeasts were identified by the “disk diffusion test” [6,8]. This is a simple, rapid, accurate, and inexpensive technique presented by Sobczak [8]. By this method we identified yeast species within 24-48 hrs. Results: 51.4% of petri dishes were positive for yeast species and 318 strains were identified. Candida albicans, Candida kefyr, Candida tropicalis and Candida guilliermondii were the most common yeast species isolated from the oral cavity of soldiers. Conclusion: We used this method because of its simplicity and other beneficial characteristics for rapid identification of large and numerous isolates and the results were compared with other morphological characters such as chlamydospore and germ tube production. In addition,we used some type strains (Candida parapsilosis: PTCC 5089,Candida tropicalis: PTCC 5028,Saccharomyces cerevisiae:PTCC 5052,Candida lipolytica: PTCC 5063,Candida lipolytica:PTCC 5064,and the results were acceptable.
Castelino, Roystan V.; Jana, Suman; Kumhar, Rajesh; Singh, Niraj K.
2018-04-01
The simulation and hardware based experiment in this presented paper shows a possibility of increasing the reliability of solar power under diffused condition by using super capacitor module. This experimental setup can be used in those areas where the sun light is intermittent and under the diffused radiation condition. Due to diffused radiation, solar PV cells operate very poorly, but by using this setup the power efficiency can be increased greatly. Sometimes dependent numerical models are used to measure the voltage and current response of the hardware setup in MATLAB Simulink based environment. To convert the scattered solar radiation to electricity using the conventional solar PV module, batteries have to be linked with the rapid charging or discharging device like super capacitor module. The conventional method consists of a charging circuit, which dumps the power if the voltage is below certain voltage level, but this circuit utilizes the entire power even if the voltage is low under diffused sun light conditions. There is no power dumped in this circuit. The efficiency and viability of this labscale experimental setup can be examined with further experiment and industrial model.
Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations
Flegg, Mark B.; Hellander, Stefan; Erban, Radek
2015-01-01
© 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.
Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations
Flegg, Mark B.
2015-05-01
© 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.
An integral nodal variational method for multigroup criticality calculations
International Nuclear Information System (INIS)
Lewis, E.E.; Tsoulfanidis, N.
2003-01-01
An integral formulation of the variational nodal method is presented and applied to a series of benchmark critically problems. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Either homogeneous or heterogeneous nodes may be employed. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the standard spherical harmonics expansion using the same spatial approximations. (author)
Integrative methods for analyzing big data in precision medicine.
Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša
2016-03-01
We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of "Big Data" in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cultural adaptation and translation of measures: an integrated method.
Sidani, Souraya; Guruge, Sepali; Miranda, Joyal; Ford-Gilboe, Marilyn; Varcoe, Colleen
2010-04-01
Differences in the conceptualization and operationalization of health-related concepts may exist across cultures. Such differences underscore the importance of examining conceptual equivalence when adapting and translating instruments. In this article, we describe an integrated method for exploring conceptual equivalence within the process of adapting and translating measures. The integrated method involves five phases including selection of instruments for cultural adaptation and translation; assessment of conceptual equivalence, leading to the generation of a set of items deemed to be culturally and linguistically appropriate to assess the concept of interest in the target community; forward translation; back translation (optional); and pre-testing of the set of items. Strengths and limitations of the proposed integrated method are discussed. (c) 2010 Wiley Periodicals, Inc.
Jackson, Bob; Silgram, Martyn; Quinton, John
2010-05-01
Recent UK government-funded research has shown that compacted, unvegetated tramlines wheelings can represent an important source and transport pathway, which can account for 80% of surface runoff, sediment and phosphorus losses to edge-of-field from cereals on moderate slopes. For example, recent research found 5.5-15.8% of rainfall lost as runoff, and losses of 0.8-2.9 kg TP/ha and 0.3-4.8 T/ha sediment from tramline wheelings. When compaction was released by shallow cultivation, runoff was reduced to 0.2-1.7% of rainfall with losses of 0.0-0.2 kg TP/ha and 0.003-0.3 T/ha sediment respectively i.e. close to reference losses from control areas without tramlines. Recent independent assessments using novel tracer techniques have also shown that tramline wheelings can represent important sediment sources at river catchment scale. In response to these latest findings, a new project is now underway investigating the most cost-effective and practical ways of operationalising methods for managing tramline wheelings in autumn-sown cereal systems to reduce the risk of soil compaction from the autumn spray operation and the associated risk of surface runoff and diffuse pollution loss of sediment, phosphorus and nitrogen to edge of field. Research is focusing on the over-winter period when soils are close to field capacity and the physical protection of the soil surface granted by growing crop is limited. This paper outlines this new multi-disciplinary project and associated methodologies, which include hillslope-scale event-based evaluations of the effectiveness of novel mitigation methods on surface runoff and diffuse pollution losses to edge of field, assessments of the economic and practical viability of mitigation methods, and modelling the impact on water quality of implementation of the most promising techniques at both farm and catchment scale. The study involves a large consortium with 20 partners, including many industrial organisations representing tractor, crop
Patel, Jitendra Kumar; Natarajan, Ganesh
2018-05-01
We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The
Han, Xu; Suo, Shiteng; Sun, Yawen; Zu, Jinyan; Qu, Jianxun; Zhou, Yan; Chen, Zengai; Xu, Jianrong
2017-03-01
To compare four methods of region-of-interest (ROI) placement for apparent diffusion coefficient (ADC) measurements in distinguishing low-grade gliomas (LGGs) from high-grade gliomas (HGGs). Two independent readers measured ADC parameters using four ROI methods (single-slice [single-round, five-round and freehand] and whole-volume) on 43 patients (20 LGGs, 23 HGGs) who had undergone 3.0 Tesla diffusion-weighted imaging and time required for each method of ADC measurements was recorded. Intraclass correlation coefficients (ICCs) were used to assess interobserver variability of ADC measurements. Mean and minimum ADC values and time required were compared using paired Student's t-tests. All ADC parameters (mean/minimum ADC values of three single-slice methods, mean/minimum/standard deviation/skewness/kurtosis/the10 th and 25 th percentiles/median/maximum of whole-volume method) were correlated with tumor grade (low versus high) by unpaired Student's t-tests. Discriminative ability was determined by receiver operating characteristic curves. All ADC measurements except minimum, skewness, and kurtosis of whole-volume ROI differed significantly between LGGs and HGGs (all P determination methods. Whole-volume histogram analysis did not yield better results than single-slice methods and took longer. Mean ADC value derived from single-round ROI is the most optimal parameter for differentiating LGGs from HGGs. 3 J. Magn. Reson. Imaging 2017;45:722-730. © 2016 International Society for Magnetic Resonance in Medicine.
Energy Technology Data Exchange (ETDEWEB)
Tsili, Athina C., E-mail: a_tsili@yahoo.gr [Department of Clinical Radiology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Ntorkou, Alexandra, E-mail: alexdorkou@hotmail.com [Department of Clinical Radiology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Astrakas, Loukas, E-mail: astrakas@uoi.gr [Department of Medical Physics, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Xydis, Vasilis, E-mail: vxydis@cc.uoi.gr [Department of Clinical Radiology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Tsampalas, Stavros, E-mail: stamp@gmail.com [Department of Urology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Sofikitis, Nikolaos, E-mail: akrosnin@hotmail.com [Department of Urology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Argyropoulou, Maria I., E-mail: margyrop@cc.uoi.gr [Department of Clinical Radiology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece)
2017-04-15
Highlights: • Seminomas have lower mean ADC compared to NSGCNs. • Round ROI is accurate in characterizing TGCNS. • ROI shape has no significant effect on interobserver variability. - Abstract: Introduction: To evaluate the difference in apparent diffusion coefficient (ADC) measurements at diffusion-weighted (DW) magnetic resonance imaging of differently shaped regions-of-interest (ROIs) in testicular germ cell neoplasms (TGCNS), the diagnostic ability of differently shaped ROIs in differentiating seminomas from nonseminomatous germ cell neoplasms (NSGCNs) and the interobserver variability. Materials and methods: Thirty-three TGCNs were retrospectively evaluated. Patients underwent MR examinations, including DWI on a 1.5-T MR system. Two observers measured mean tumor ADCs using four distinct ROI methods: round, square, freehand and multiple small, round ROIs. The interclass correlation coefficient was analyzed to assess interobserver variability. Statistical analysis was used to compare mean ADC measurements among observers, methods and histologic types. Results: All ROI methods showed excellent interobserver agreement, with excellent correlation (P < 0.001). Multiple, small ROIs provided the lower mean ADC in TGCNs. Seminomas had lower mean ADC compared to NSGCNs for each ROI method (P < 0.001). Round ROI proved the most accurate method in characterizing TGCNS. Conclusion: Interobserver variability in ADC measurement is excellent, irrespective of the ROI shape. Multiple, small round ROIs and round ROI proved the more accurate methods for ADC measurement in the characterization of TGCNs and in the differentiation between seminomas and NSGCNs, respectively.
Experience with the Incomplete Cholesky Conjugate Gradient method in a diffusion code
International Nuclear Information System (INIS)
Hoebel, W.
1985-01-01
For the numerical solution of sparse systems of linear equations arising from finite difference approximation of the multidimensional neutron diffusion equation fast methods are needed. Effective algorithms for scalar computers may not be likewise suitable on vector computers. In the improved version DIXY2 of the Karlsruhe two-dimensional neutron diffusion code for rectangular geometries an Incomplete Cholesky Conjugate Gradient (ICCG) algorithm has been combined with the originally implemented Cyclically Reduced 4-Lines SOR (CR4LSOR) inner iteration method. The combined procedure is automatically activated for slowly converging applications, thus leading to a drastic reduction of iterations as well as CPU-times on a scalar computer. In a follow-up benchmark study necessary modifications to ICCG and CR4LSOR for their use on a vector computer were investigated. It was found that a modified preconditioning for the ICCG algorithm restricted to the block diagonal matrix is an effective method both on scalar and vector computers. With a splitting of the 9-band-matrix in two triangular Cholesky matrices necessary inversions are performed on a scalar machine by recursive forward and backward substitutions. On vector computers an additional factorization of the triangular matrices into four bidiagonal matrices enables Buneman reduction and the recursive inversion is restricted to a small system. A similar strategy can be realized with CR4LSOR if the unvectorizable Gauss-Seidel iteration is replaced by Double Jacobi and Buneman technique for a vector computer. Compared to single line blocking over the original mesh the cyclical 4-lines reduction of the DIXY inner iteration scheme reduces numbers of iterations and CPU-times considerably
Directory of Open Access Journals (Sweden)
R Dinarvand
2008-09-01
Full Text Available Background: The inherent shortcomings of conventional drug delivery systems containing estrogens and the potential of nanoparticles (NPs have offered tremendous scope for investigation. Although polymeric NPs have been used as drug carriers for many active agents, the use of appropriate polymer and method of NP preparation to overcome different challenges is very important. Materials and methods: Poly lactide-co-glycolide (PLGA NPs containing estradiol valerate were prepared by the modified spontaneous emulsification solvent diffusion method. Several parameters including the drug/polymer ratios in range of 2.5-10%, poly vinyl alcohol (PVA in concentration of 0-4% as stabilizer and internal phase volume and composition were examined to optimize formulation. The size distribution and morphology of the NPs, encapsulation efficacy and in vitro release profile in phosphate buffer medium (pH 7.4 during 12 hrs were then investigated. Results: The NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. By adjustment of the process parameters, the size and the drug encapsulation efficacy as well as the drug release kinetics can be optimally controlled. The mean particle size of the best formula with encapsulation efficiency of 100% was 175 ± 19, in which release profile was best fitted to Higuchi's model of release which showed that release mechanism was mainly controlled by diffusion of the drug to the release medium. Conclusion: According to the size and surface properties of the prepared particles, it may be concluded that they are a good formulation for non-parenteral routes of administration.
Experience with the incomplete Cholesky conjugate gradient method in a diffusion code
International Nuclear Information System (INIS)
Hoebel, W.
1986-01-01
For the numerical solution of sparse systems of linear equations arising from the finite difference approximation of the multidimensional neutron diffusion equation, fast methods are needed. Effective algorithms for scalar computers may not be likewise suitable on vector computers. In the improved version (DIXY2) of the Karlsruhe two-dimensional neutron diffusion code for rectangular geometries, an incomplete Cholesky conjugate gradient (ICCG) algorithm has been combined with the originally implemented cyclically reduced four-line successive overrelaxation (CR4LSOR) inner iteration method. The combined procedure is automatically activated for slowly converging applications, thus leading to a drastic reduction of iterations as well as CPU times on a scalar computer. In a follow-up benchmark study, necessary modifications to ICCG and CR4LSOR for use on a vector computer were investigated. It was found that a modified preconditioning for the ICCG algorithm restricted to the block diagonal matrix is an effective method both on scalar and vector computers. With a splitting of the nine-band matrix in two triangular Cholesky matrices, necessary inversions are performed on a scalar machine by recursive forward and backward substitutions. On vector computers an additional factorization of the triangular matrices into four bidiagonal matrices enables Buneman reduction, and the recursive inversion is restricted to a small system. A similar strategy can be realized with CR4LSOR if the unvectorizable Gauss-eidel iteration is replaced by Double Jacobi and Buneman techniques for a vector computer. Compared to single-line blocking over the original mesh, the cyclical four-line reduction of the DIXY inner iteration scheme reduces numbers of iterations and CPU times considerably
The 3D Lagrangian Integral Method. Henrik Koblitz Rasmussen
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2003-01-01
. This are processes such as thermo-forming, gas-assisted injection moulding and all kind of simultaneous multi-component polymer processing operations. Though, in all polymer processing operations free surfaces (or interfaces) are present and the dynamic of these surfaces are of interest. In the "3D Lagrangian...... Integral Method" to simulate viscoelastic flow, the governing equations are solved for the particle positions (Lagrangian kinematics). Therefore, the transient motion of surfaces can be followed in a particularly simple fashion even in 3D viscoelastic flow. The "3D Lagrangian Integral Method" is described...
International Nuclear Information System (INIS)
Valdes Parra, J.J.
1986-01-01
One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)
International Nuclear Information System (INIS)
Marchive, Daniel; Treheux, Daniel; Guiraldenq, Pierre
1976-01-01
The ferritic action of tin for a 18-10 stainless steel has been measured by two different methods: the first is based on the diffusion couple method and the graphical representation of compositions in a diagram α/α + γ/γ corresponding to ferrite and austenitic elements of the steel. In the second method, ferrite formation is analyzed in small ingots prepared with different chromium and tin concentrations. Ferrite coefficient of tin, compared to chromium is 0.25 with diffusion couples and this value is in good agreement with the classical method [fr
Jain, Sonal
2018-01-01
In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.
International Nuclear Information System (INIS)
Xu, Yuenong; Smooke, M.D.
1993-01-01
In this paper we present a primitive variable Newton-based solution method with a block-line linear equation solver for the calculation of reacting flows. The present approach is compared with the stream function-vorticity Newton's method and the SIMPLER algorithm on the calculation of a system of fully elliptic equations governing an axisymmetric methane-air laminar diffusion flame. The chemical reaction is modeled by the flame sheet approximation. The numerical solution agrees well with experimental data in the major chemical species. The comparison of three sets of numerical results indicates that the stream function-vorticity solution using the approximate boundary conditions reported in the previous calculations predicts a longer flame length and a broader flame shape. With a new set of modified vorticity boundary conditions, we obtain agreement between the primitive variable and stream function-vorticity solutions. The primitive variable Newton's method converges much faster than the other two methods. Because of much less computer memory required for the block-line tridiagonal solver compared to a direct solver, the present approach makes it possible to calculate multidimensional flames with detailed reaction mechanisms. The SIMPLER algorithm shows a slow convergence rate compared to the other two methods in the present calculation
International Nuclear Information System (INIS)
Petersen, Claudio Zen; Vilhena, Marco T.; Barros, Ricardo C.
2009-01-01
In this paper the application of the Laplace transform method is described in order to determine the energy-dependent albedo matrix that is used in the boundary conditions multigroup neutron diffusion eigenvalue problems in slab geometry for nuclear reactor global calculations. In slab geometry, the diffusion albedo substitutes without approximation the baffle-reflector system around the active domain. Numerical results to typical test problems are shown to illustrate the accuracy and the efficiency of the Chebysheff acceleration scheme. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)
2017-04-15
It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.
Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region
Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji
2003-06-01
The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.
Integration of plume and puff diffusion models/application of CFD
Mori, Akira
The clinical symptoms of patients and other evidences of a gas poisoning accident inside an industrial building strongly suggested an abrupt influx of engine exhaust from a construction vehicle which was operating outside in the open air. But the obviously high level of gas concentration could not be well explained by any conventional steady-state gas diffusion models. The author used an unsteady-state continuous Puff Model to simulate the time-wise changes in air stream with the pollutant gas being continuously emitted, and successfully reproduced the observed phenomena. The author demonstrates that this diffusion formula can be solved analytically by the use of error function as long as the change in wind velocity is stepwise, and clarifies the accurate differences between the unsteady- and steady-states and their convergence profiles. Also, the relationship between the Puff and Plume Models is discussed. The case study included a computational fluid dynamics (CFD) analysis to estimate the steady-state air stream and the gas concentration pattern in the affected area. It is well known that clear definition of the boundary conditions is key to successful CFD analysis. The author describes a two-step use of CFD: the first step to define the boundary conditions and the second to determine the steady-state air stream and the gas concentration pattern.
Charvet, Christine J; Hof, Patrick R; Raghanti, Mary Ann; Van Der Kouwe, Andre J; Sherwood, Chet C; Takahashi, Emi
2017-04-01
The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Solution verification, goal-oriented adaptive methods for stochastic advection–diffusion problems
Almeida, Regina C.
2010-08-01
A goal-oriented analysis of linear, stochastic advection-diffusion models is presented which provides both a method for solution verification as well as a basis for improving results through adaptation of both the mesh and the way random variables are approximated. A class of model problems with random coefficients and source terms is cast in a variational setting. Specific quantities of interest are specified which are also random variables. A stochastic adjoint problem associated with the quantities of interest is formulated and a posteriori error estimates are derived. These are used to guide an adaptive algorithm which adjusts the sparse probabilistic grid so as to control the approximation error. Numerical examples are given to demonstrate the methodology for a specific model problem. © 2010 Elsevier B.V.