Edge states and integer quantum Hall effect in topological insulator thin films.
Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing
2015-08-25
The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.
International Nuclear Information System (INIS)
Khrennikov, Andrei; Klein, Moshe; Mor, Tal
2010-01-01
In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.
Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2
Firoz Islam, SK; Benjamin, Colin
2016-09-01
The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.
Nobel Lecture: Topological quantum matter*
Haldane, F. Duncan M.
2017-10-01
Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."
A quantum architecture for multiplying signed integers
International Nuclear Information System (INIS)
Alvarez-Sanchez, J J; Alvarez-Bravo, J V; Nieto, L M
2008-01-01
A new quantum architecture for multiplying signed integers is presented based on Booth's algorithm, which is well known in classical computation. It is shown how a quantum binary chain might be encoded by its flank changes, giving the final product in 2's-complement representation.
Towards topological quantum computer
Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, An.
2018-01-01
Quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates) for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.
Towards topological quantum computer
Directory of Open Access Journals (Sweden)
D. Melnikov
2018-01-01
Full Text Available Quantum R-matrices, the entangling deformations of non-entangling (classical permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern–Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.
Introduction to topological quantum matter & quantum computation
Stanescu, Tudor D
2017-01-01
What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...
Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard
Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.
Focus on topological quantum computation
International Nuclear Information System (INIS)
Pachos, Jiannis K; Simon, Steven H
2014-01-01
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the understanding of anyon properties inspired new quantum algorithms and helped in the characterization of topological phases of matter and their experimental realization. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This ‘focus on’ collection brings together several of the latest developments in the field and facilitates the synergy between different approaches. (editorial)
Quantum recurrence and integer ratios in neutron resonances
Energy Technology Data Exchange (ETDEWEB)
Ohkubo, Makio
1998-03-01
Quantum recurrence of the compound nucleus in neutron resonance reactions are described for normal modes which are excited on the compound nucleus simultaneously. In the structure of the recurrence time, integer relations among dominant level spacings are derived. The `base modes` are assumed as stable combinations of the normal modes, preferably excited in many nuclei. (author)
A topological quantum optics interface.
Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo
2018-02-09
The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
When quantum optics meets topology
Amo, Alberto
2018-02-01
Routing photons at the micrometer scale remains one of the greatest challenges of integrated quantum optics. The main difficulty is the scattering losses at bends and splitters in the photonic circuit. Current approaches imply elaborate designs, quite sensitive to fabrication details (1). Inspired by the physics underlying the one-way transport of electrons in topological insulators, on page 666 of this issue, Barik et al. (2) report a topological photonic crystal in which single photons are emitted and routed through bends with negligible loss. The marriage between quantum optics and topology promises new opportunities for compact quantum optics gating and manipulation.
Topology change and quantum physics
International Nuclear Information System (INIS)
Balachandran, A.P.; Marmo, G.; Simoni, A.
1995-01-01
The role of topology in elementary quantum physics is discussed in detail. It is argued that attributes of classical spatial topology emerge from properties of state vectors with suitably smooth time evolution. Equivalently, they emerge from considerations on the domain of the quantum Hamiltonian, this domain being often specified by boundary conditions in elementary quantum physics. Examples are presented where classical topology is changed by smoothly altering the boundary conditions. When the parameters labelling the latter are treated as quantum variables, quantum states need not give a well-defined classical topology, instead they can give a quantum superposition of such topologies. An existing argument of Sorkin based on the spin-statistics connection and indicating the necessity of topology change in quantum gravity is recalled. It is suggested therefrom and our results here that Einstein gravity and its minor variants are effective theories of a deeper description with additional novel degrees of freedom. Other reasons for suspecting such a microstructure are also summarized. (orig.)
Topology change and quantum physics
International Nuclear Information System (INIS)
Balachandran, A.P.; Marmo, G.; Simoni, A.
1995-03-01
The role of topology in elementary quantum physics is discussed in detail. It is argued that attributes of classical spatial topology emerge from properties of state vectors with suitably smooth time evolution. Equivalently, they emerge from considerations on the domain of the quantum Hamiltonian, this domain being often specified by boundary conditions in elementary quantum physics. Several examples are presented where classical topology is changed by smoothly altering the boundary conditions. When the parameters labelling the latter are treated as quantum variables, quantum states need not give a well-defined classical topology, instead they can give a quantum superposition of such topologies. An existing argument of Sorkin based on the spin-statistics connection and indicating the necessity of topology change in quantum gravity is recalled. It is suggested therefrom and our results here that Einstein gravity and its minor variants are effective theories of a deeper description with additional novel degrees of freedom. Other reasons for suspecting such a microstructure are also summarized. (author). 22 refs, 3 figs
Classical topology and quantum states
Indian Academy of Sciences (India)
structures) can be reconstructed using Gel'fand–Naimark theory and its ..... pair production and annihilation [23], quantum gravity too can be expected to become ..... showed their utility for research of current interest such as topology change ...
The integer quantum hall effect revisited
Energy Technology Data Exchange (ETDEWEB)
Michalakis, Spyridon [Los Alamos National Laboratory; Hastings, Matthew [Q STATION, CALIFORNIA
2009-01-01
For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.
Complex dynamics of the integer quantum Hall effect
International Nuclear Information System (INIS)
Trugman, S.A.; Nicopoulos, V.N.; Florida Univ., Gainesville, FL
1991-01-01
We investigate both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the integer quantum Hall effect. Classical scattering is complex, due in one case to the approach of scattering states to an infinite number of bound states. We show that bound states are generic, and occur for all but extremely smooth scattering potentials (|rvec ∇| → 0). Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances rather than classical bound states. Extended scatterers provide an explanation for the breakdown of the QHE at a comparatively small Hall voltage. 16 refs., 14 figs
Pinning mode of integer quantum Hall Wigner crystal of skyrmions
Zhu, Han; Sambandamurthy, G.; Chen, Y. P.; Jiang, P.-H.; Engel, L. W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.
2009-03-01
Just away from integer Landau level (LL) filling factors ν, the dilute quasi-particles/holes at the partially filled LL form an integer-quantum-Hall Wigner crystal, which exhibits microwave pinning mode resonances [1]. Due to electron-electron interaction, it was predicted that the elementary excitation around ν= 1 is not a single spin flip, but a larger-scale spin texture, known as a skyrmion [2]. We have compared the pinning mode resonances [1] of integer quantum Hall Wigner crystals formed in the partly filled LL just away from ν= 1 and ν= 2, in the presence of an in-plane magnetic field. As an in-plane field is applied, the peak frequencies of the resonances near ν= 1 increase, while the peak frequencies below ν= 2 show neligible dependence on in-plane field. We interpret this observation as due to a skyrmion crystal phase around ν= 1 and a single-hole Wigner crystal phase below ν= 2. The in-plane field increases the Zeeman gap and causes shrinking of the skyrmion size toward single spin flips. [1] Yong P. Chen et al., Phys. Rev. Lett. 91, 016801 (2003). [2] S. L. Sondhi et al., Phys. Rev. B 47, 16 419 (1993); L. Brey et al., Phys. Rev. Lett. 75, 2562 (1995).
Topological phases: Wormholes in quantum matter
Schoutens, K.
2009-01-01
Proliferation of so-called anyonic defects in a topological phase of quantum matter leads to a critical state that can be visualized as a 'quantum foam', with topology-changing fluctuations on all length scales.
Gaussian free fields at the integer quantum Hall plateau transition
Energy Technology Data Exchange (ETDEWEB)
Bondesan, R., E-mail: roberto.bondesan@phys.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Wieczorek, D.; Zirnbauer, M.R. [Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany)
2017-05-15
In this work we put forward an effective Gaussian free field description of critical wavefunctions at the transition between plateaus of the integer quantum Hall effect. To this end, we expound our earlier proposal that powers of critical wave intensities prepared via point contacts behave as pure scaling fields obeying an Abelian operator product expansion. Our arguments employ the framework of conformal field theory and, in particular, lead to a multifractality spectrum which is parabolic. We also derive a number of old and new identities that hold exactly at the lattice level and hinge on the correspondence between the Chalker–Coddington network model and a supersymmetric vertex model.
Wavefunctions for topological quantum registers
International Nuclear Information System (INIS)
Ardonne, E.; Schoutens, K.
2007-01-01
We present explicit wavefunctions for quasi-hole excitations over a variety of non-abelian quantum Hall states: the Read-Rezayi states with k ≥ 3 clustering properties and a paired spin-singlet quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the quasi-hole wavefunctions. We establish that the braid properties for the paired spin-singlet state are those of 'Fibonacci anyons', and thus suitable for universal quantum computation. Our derivations in this paper rely on explicit computations in the parafermionic conformal field theories that underly these particular quantum Hall states
Topologically nontrivial quantum layers
International Nuclear Information System (INIS)
Carron, G.; Exner, P.; Krejcirik, D.
2004-01-01
Given a complete noncompact surface Σ embedded in R 3 , we consider the Dirichlet Laplacian in the layer Ω that is defined as a tubular neighborhood of constant width about Σ. Using an intrinsic approach to the geometry of Ω, we generalize the spectral results of the original paper by Duclos et al. [Commun. Math. Phys. 223, 13 (2001)] to the situation when Σ does not possess poles. This enables us to consider topologically more complicated layers and state new spectral results. In particular, we are interested in layers built over surfaces with handles or several cylindrically symmetric ends. We also discuss more general regions obtained by compact deformations of certain Ω
Robust integer and fractional helical modes in the quantum Hall effect
Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir
2018-04-01
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.
Topological strings from quantum mechanics
International Nuclear Information System (INIS)
Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki
2014-12-01
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P 2 , local P 1 x P 1 and local F 1 . In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
Topological superconductivity, topological confinement, and the vortex quantum Hall effect
International Nuclear Information System (INIS)
Diamantini, M. Cristina; Trugenberger, Carlo A.
2011-01-01
Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.
Integer Quantum Magnon Hall Plateau-Plateau Transition in a Spin Ice Model
Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi
2016-01-01
Low-energy magnon bands in a two-dimensional spin ice model become integer quantum magnon Hall bands. By calculating the localization length and the two-terminal conductance of magnon transport, we show that the magnon bands with disorders undergo a quantum phase transition from an integer quantum magnon Hall regime to a conventional magnon localized regime. Finite size scaling analysis as well as a critical conductance distribution shows that the quantum critical point belongs to the same un...
An n -material thresholding method for improving integerness of solutions in topology optimization
International Nuclear Information System (INIS)
Watts, Seth; Engineering); Tortorelli, Daniel A.; Engineering)
2016-01-01
It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, the canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.
Supersymmetric Quantum Mechanics and Topology
International Nuclear Information System (INIS)
Wasay, Muhammad Abdul
2016-01-01
Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.
Dynamical topological invariant after a quantum quench
Yang, Chao; Li, Linhu; Chen, Shu
2018-02-01
We show how to define a dynamical topological invariant for one-dimensional two-band topological systems after a quantum quench. By analyzing general two-band models of topological insulators, we demonstrate that the reduced momentum-time manifold can be viewed as a series of submanifolds S2, and thus we are able to define a dynamical topological invariant on each of the spheres. We also unveil the intrinsic relation between the dynamical topological invariant and the difference in the topological invariant of the initial and final static Hamiltonian. By considering some concrete examples, we illustrate the calculation of the dynamical topological invariant and its geometrical meaning explicitly.
Exploring topological phases with quantum walks
International Nuclear Information System (INIS)
Kitagawa, Takuya; Rudner, Mark S.; Berg, Erez; Demler, Eugene
2010-01-01
The quantum walk was originally proposed as a quantum-mechanical analog of the classical random walk, and has since become a powerful tool in quantum information science. In this paper, we show that discrete-time quantum walks provide a versatile platform for studying topological phases, which are currently the subject of intense theoretical and experimental investigations. In particular, we demonstrate that recent experimental realizations of quantum walks with cold atoms, photons, and ions simulate a nontrivial one-dimensional topological phase. With simple modifications, the quantum walk can be engineered to realize all of the topological phases, which have been classified in one and two dimensions. We further discuss the existence of robust edge modes at phase boundaries, which provide experimental signatures for the nontrivial topological character of the system.
Exploring 4D quantum Hall physics with a 2D topological charge pump
Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel
2018-01-01
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Exploring 4D quantum Hall physics with a 2D topological charge pump.
Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel
2018-01-03
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Topological quantum field theory and four manifolds
Marino, Marcos
2005-01-01
The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...
Equivariant topological quantum field theory and symmetry protected topological phases
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [Division of Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA, 91125 (United States); Turzillo, Alex [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794 (United States)
2017-03-01
Short-Range Entangled topological phases of matter are closely related to Topological Quantum Field Theory. We use this connection to classify Symmetry Protected Topological phases in low dimensions, including the case when the symmetry involves time-reversal. To accomplish this, we generalize Turaev’s description of equivariant TQFT to the unoriented case. We show that invertible unoriented equivariant TQFTs in one or fewer spatial dimensions are classified by twisted group cohomology, in agreement with the proposal of Chen, Gu, Liu and Wen. We also show that invertible oriented equivariant TQFTs in spatial dimension two or fewer are classified by ordinary group cohomology.
Entropy, Topological Theories and Emergent Quantum Mechanics
Directory of Open Access Journals (Sweden)
D. Cabrera
2017-02-01
Full Text Available The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a ﬁnite dimensional Hilbert space of quantum states. Speciﬁcally, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological ﬁeld theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.
Quantum Hall Conductivity and Topological Invariants
Reyes, Andres
2001-04-01
A short survey of the theory of the Quantum Hall effect is given emphasizing topological aspects of the quantization of the conductivity and showing how topological invariants can be derived from the hamiltonian. We express these invariants in terms of Chern numbers and show in precise mathematical terms how this relates to the Kubo formula.
Topological geometrodynamics. III. Quantum theory
International Nuclear Information System (INIS)
Pitkanen, M.
1986-01-01
The description of 3-space as a spacelike 3-surface of the space H = M 4 x CP 2 (product of Minkowski space and two-dimensional complex projective space CP 2 ) and the idea that particles correspond to 3-surfaces of finite size in H are the basic ingredients of topological geometrodynamics, TGD, an attempt to a geometry-based unification of the fundamental interactions. The observations that the Schroedinger equation can be derived from a variational principle and that the existence of a unitary S matrix follows from the phase symmetry of this action lead to the idea that quantum TGD should be derivable from a quadratic phase symmetric variational principle in the space SH consisting of the spacelike 3-surfaces of H. In this paper a formal realization of this idea is proposed. First, the space SH is endowed with the necessary geometric structures (metric, vielbein, and spinor structures) induced from the corresponding structures of the space H. Second, the concepts of the scalar super field in SH (both fermions and bosons should be describable by the same probability amplitude) and of super d'Alambertian are defined. It is shown that the requirement of a maximal symmetry leads to a unique CP-breaking super d'Alambertian and thus to a unique theory ''predicting everything.'' Finally, a formal expression for the S matrix of the theory is derived
Network-topology-adaptive quantum conference protocols
International Nuclear Information System (INIS)
Zhang Sheng; Wang Jian; Tang Chao-Jing; Zhang Quan
2011-01-01
As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols. (general)
Influence of topology in a quantum ring
International Nuclear Information System (INIS)
Netto, A.L. Silva; Chesman, C.; Furtado, C.
2008-01-01
In this Letter we study the quantum rings in the presence of a topological defect. We use geometric theory of defects to describe one and two-dimensional quantum rings in the presence of a single screw dislocation. In addition we consider some potential in a two dimensional ring and calculate their energy spectrum. It is shown that the energy spectrum depend on the parabolic way on the burgers vectors of the screw dislocation. We also show that the presence of a topological defect introduces a new contribution for the Aharonov-Bohm effect in the quantum ring
EXAMPLES OF QUANTUM HOLONOMY WITH TOPOLOGY CHANGES
Directory of Open Access Journals (Sweden)
Taksu Cheon
2013-10-01
Full Text Available We study a family of closed quantum graphs described by one singular vertex of order n = 4. By suitable choice of the parameters specifying the singular vertex, we can construct a closed path in the parameter space that physically corresponds to the smooth interpolation of different topologies - a ring, separate two lines, separate two rings, two rings with a contact point. We find that the spectrum of a quantum particle on this family of graphs shows quantum holonomy.
Fabry-Perot Interferometry in the Integer and Fractional Quantum Hall Regimes
McClure, Douglas; Chang, Willy; Kou, Angela; Marcus, Charles; Pfeiffer, Loren; West, Ken
2011-03-01
We present measurements of electronic Fabry-Perot interferometers in the integer and fractional quantum Hall regimes. Two classes of resistance oscillations may be seen as a function of magnetic field and gate voltage, as we have previously reported. In small interferometers in the integer regime, oscillations of the type associated with Coulomb interaction are ubiquitous, while those consistent with single-particle Aharonov-Bohm interference are seen to co-exist in some configurations. The amplitude scaling of both types with temperature and device size is consistent with a theoretical model. Oscillations are further observed in the fractional quantum Hall regime. Here the dependence of the period on the filling factors in the constrictions and bulk of the interferometer can shed light on the effective charge of the interfering quasiparticles, but care is needed to distinguish these oscillations from those associated with integer quantum Hall states. We acknowledge funding from Microsoft Project Q and IBM.
Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix
2017-07-01
We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.
Directory of Open Access Journals (Sweden)
Daniel Litinski
2017-09-01
Full Text Available We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall–superconductor hybrids.
Blind topological measurement-based quantum computation.
Morimae, Tomoyuki; Fujii, Keisuke
2012-01-01
Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 × 10(-3), which is comparable to that (7.5 × 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.
Topological quantum numbers in nonrelativistic physics
Thouless, David James
1998-01-01
Topological quantum numbers are distinguished from quantum numbers based on symmetry because they are insensitive to the imperfections of the systems in which they are observed. They have become very important in precision measurements in recent years, and provide the best measurements of voltage and electrical resistance. This book describes the theory of such quantum numbers, starting with Dirac's argument for the quantization of electric charge, and continuing with discussions on the helium superfluids, flux quantization and the Josephson effect in superconductors, the quantum Hall effect,
Orbifolds, quantum cosmology, and nontrivial topology
International Nuclear Information System (INIS)
Fagundes, Helio V.; Vargas, Teofilo
2006-01-01
In order to include nontrivial topologies in the problem of quantum creation of a universe, it seems to be necessary to generalize the sum over compact, smooth 4-manifolds to a sum over finite-volume, compact 4-orbifolds. We consider in detail the case of a 4-spherical orbifold with a cone-point singularity. This allows for the inclusion of a nontrivial topology into the semiclassical path integral approach to quantum cosmology, in the context of a Robertson-Walker minisuperspace. (author)
Quantum computation with topological codes from qubit to topological fault-tolerance
Fujii, Keisuke
2015-01-01
This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.
Proceeding of the workshop on quantum gravity and topology
International Nuclear Information System (INIS)
Oda, Ichiro
1991-10-01
The workshop on Quantum Gravity and Topology was held at INS on February 21-23, 1991. Several introductory lectures and more than 15 talks were delivered for about 100 participants. The main subjects discussed were i) Topological quantum field theories and topological gravity ii) Low dimensional and four dimensional gravity iii) Topology change iv) Superstring theories etc. (J.P.N.)
Exact diagonalization study of domain structures in integer filling factor quantum Hall ferromagnets
Czech Academy of Sciences Publication Activity Database
Rezayi, E. H.; Jungwirth, Tomáš; MacDonald, A. H.; Haldane, F. D. M.
2003-01-01
Roč. 67, č. 20 (2003), s. 201305-1 - 201305-4 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : domain structure * integer filling factor * quantum Hall ferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003
Knots, topology and quantum field theories
International Nuclear Information System (INIS)
Lusanna, L.
1989-01-01
The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks
Quantum numbers and band topology of nanotubes
Energy Technology Data Exchange (ETDEWEB)
Damnjanovic, M [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Milosevic, I [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Vukovic, T [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Maultzsch, J [Institut fuer Festkoerper Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)
2003-05-30
Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.
Quantum numbers and band topology of nanotubes
International Nuclear Information System (INIS)
Damnjanovic, M; Milosevic, I; Vukovic, T; Maultzsch, J
2003-01-01
Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities
Quantum numbers and band topology of nanotubes
Damnjanovic, M; Vukovic, T; Maultzsch, J
2003-01-01
Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.
Topological 2-dimensional quantum mechanics
International Nuclear Information System (INIS)
Dasnieres de Veigy, A.; Ouvry, S.
1992-12-01
A Chern-Simons Lagrangian is defined for a system of planar particles topologically interacting at a distance. The anyon model appears as a particular case where all the particles are identical. Exact N-body eigenstates are proposed and a perturbative algorithm is set up. The case where some particles are fixed on a lattice, is discussed, and curved manifolds are considered. (author) 14 refs
Half-integer flux quantum effect in cuprate superconductors - a probe of pairing symmetry
International Nuclear Information System (INIS)
Tsuei, C.C.; Kirtley, J.R.; Gupta, A.; Sun, J.Z.; Moler, K.A.; Wang, J.H.
1996-01-01
Based on macroscopic quantum coherence effects arising from pair tunneling and flux quantization, a series of tricrystal experiments have been designed and carried out to test the order parameter symmetry in high-T c cuprate superconductors. By using a scanning SQUID microscope, we have directly and non-invasively observed the spontaneously generated half-integer flux quantum effect in controlled-orientation tricrystal cuprate superconducting systems. The presence or absence of the half-integer flux quantum effect as a function of the tricrystal geometry allows us to prove that the order parameter symmetry in the YBCO and Tl2201 systems is consistent with that of the d x 2 -y 2 pair state. (orig.)
Universal conductance and conductivity at critical points in integer quantum Hall systems.
Schweitzer, L; Markos, P
2005-12-16
The sample averaged longitudinal two-terminal conductance and the respective Kubo conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, and , respectively. In the second-lowest Landau band, a critical conductance is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value . We argue that this difference is due to the multifractal structure of critical wave functions, a property that should generically show up in the conductance at quantum critical points.
Fermionic topological quantum states as tensor networks
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Casimir amplitudes in topological quantum phase transitions.
Griffith, M A; Continentino, M A
2018-01-01
Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.
Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems
Directory of Open Access Journals (Sweden)
Maissam Barkeshli
2014-11-01
Full Text Available The idea of topological quantum computation is to build powerful and robust quantum computers with certain macroscopic quantum states of matter called topologically ordered states. These systems have degenerate ground states that can be used as robust “topological qubits” to store and process quantum information. In this paper, we propose a new experimental setup that can realize topological qubits in a simple bilayer fractional quantum Hall system with proper electric gate configurations. Our proposal is accessible with current experimental techniques, involves well-established topological states, and, moreover, can realize a large class of topological qubits, generalizing the Majorana zero modes studied in recent literature to more computationally powerful possibilities. We propose three tunneling and interferometry experiments to detect the existence and nonlocal topological properties of the topological qubits.
Classifying quantum entanglement through topological links
Quinta, Gonçalo M.; André, Rui
2018-04-01
We propose an alternative classification scheme for quantum entanglement based on topological links. This is done by identifying a nonrigid ring to a particle, attributing the act of cutting and removing a ring to the operation of tracing out the particle, and associating linked rings to entangled particles. This analogy naturally leads us to a classification of multipartite quantum entanglement based on all possible distinct links for a given number of rings. To determine all different possibilities, we develop a formalism that associates any link to a polynomial, with each polynomial thereby defining a distinct equivalence class. To demonstrate the use of this classification scheme, we choose qubit quantum states as our example of physical system. A possible procedure to obtain qubit states from the polynomials is also introduced, providing an example state for each link class. We apply the formalism for the quantum systems of three and four qubits and demonstrate the potential of these tools in a context of qubit networks.
Measurement-only topological quantum computation via anyonic interferometry
International Nuclear Information System (INIS)
Bonderson, Parsa; Freedman, Michael; Nayak, Chetan
2009-01-01
We describe measurement-only topological quantum computation using both projective and interferometrical measurement of topological charge. We demonstrate how anyonic teleportation can be achieved using 'forced measurement' protocols for both types of measurement. Using this, it is shown how topological charge measurements can be used to generate the braiding transformations used in topological quantum computation, and hence that the physical transportation of computational anyons is unnecessary. We give a detailed discussion of the anyonics for implementation of topological quantum computation (particularly, using the measurement-only approach) in fractional quantum Hall systems
''Topological'' (Chern-Simons) quantum mechanics
International Nuclear Information System (INIS)
Dunne, G.V.; Jackiw, R.; Trugenberger, C.A.
1990-01-01
We construct quantum-mechanical models that are analogs of three-dimensional, topologically massive as well as Chern-Simons gauge-field theories, and we study the phase-space reductive limiting procedure that takes the former to the latter. The zero-point spectra of operators behave discontinuously in the limit, as a consequence of a nonperturbative quantum-mechanical anomaly. The nature of the limit for wave functions depends on the representation, but is always such that normalization is preserved
Protected gates for topological quantum field theories
International Nuclear Information System (INIS)
Beverland, Michael E.; Pastawski, Fernando; Preskill, John; Buerschaper, Oliver; Koenig, Robert; Sijher, Sumit
2016-01-01
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group
Complex scattering dynamics and the integer quantum Hall effect
International Nuclear Information System (INIS)
Trugman, S.A.; Waugh, F.R.
1987-01-01
The effect of a magnetic field on potential scattering is investigated microscopically. A magnetic field renders the scattering of a classical charged particle far more complex than previously suspected. Consequences include possible 1/f noise and an explanation of the observed breakdown of the quantum Hall effect at large currents. A particular scatterer is described by a discontinuous one dimensional Hamiltonian map, a class of maps that has not previously been studied. A renormalization group analysis indicates that singular behavior arises from the interplay of electron orbits that are periodic and orbits that are quasiperiodic
Morse theory interpretation of topological quantum field theories
International Nuclear Information System (INIS)
Labastida, J.M.F.
1989-01-01
Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)
Topological quantum theories and integrable models
International Nuclear Information System (INIS)
Keski-Vakkuri, E.; Niemi, A.J.; Semenoff, G.; Tirkkonen, O.
1991-01-01
The path-integral generalization of the Duistermaat-Heckman integration formula is investigated for integrable models. It is shown that for models with periodic classical trajectories the path integral reduces to a form similar to the finite-dimensional Duistermaat-Heckman integration formula. This provides a relation between exactness of the stationary-phase approximation and Morse theory. It is also argued that certain integrable models can be related to topological quantum theories. Finally, it is found that in general the stationary-phase approximation presumes that the initial and final configurations are in different polarizations. This is exemplified by the quantization of the SU(2) coadjoint orbit
Robust quantum network architectures and topologies for entanglement distribution
Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.
2018-01-01
Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
Directory of Open Access Journals (Sweden)
Chikashi Arita
2012-10-01
Full Text Available We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.
Topological quantum field theory: 20 years later
DEFF Research Database (Denmark)
Reshetikhin, Nicolai
2008-01-01
This article is an overview of the developments in topological quantum ﬁeld theory, and, in particular on the progress in the Chern–Simons theory.......This article is an overview of the developments in topological quantum ﬁeld theory, and, in particular on the progress in the Chern–Simons theory....
Topology in quantum states. PEPS formalism and beyond
Energy Technology Data Exchange (ETDEWEB)
Aguado, M [Max-Planck-Institut fuer Quantenoptik. Hans-Kopfermann-Str. 1. D-85748 Garching (Germany); Cirac, J I [Max-Planck-Institut fuer Quantenoptik. Hans-Kopfermann-Str. 1. D-85748 Garching (Germany); Vidal, G [School of Physical Sciences. University of Queensland, Brisbane, QLD, 4072 (Australia)
2007-11-15
Topology has been proposed as a tool to protect quantum information encoding and processes. Work concerning the meaning of topology in quantum states as well as its characterisation in the projected entangled pair state (PEPS) formalism and related schemes is reviewed.
Quantum Phase Transition and Entanglement in Topological Quantum Wires.
Cho, Jaeyoon; Kim, Kun Woo
2017-06-05
We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting the two-site entanglements in the ground state. It is shown that the topological phase transition of the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. This transition is characterised solely by quantum information theory and does not accompany the closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of the transition points.
Imaging the Conductance of Integer and Fractional Quantum Hall Edge States
Directory of Open Access Journals (Sweden)
Nikola Pascher
2014-01-01
Full Text Available We measure the conductance of a quantum point contact while the biased tip of a scanning probe microscope induces a depleted region in the electron gas underneath. At a finite magnetic field, we find plateaus in the real-space maps of the conductance as a function of tip position at integer (ν=1, 2, 3, 4, 6, 8 and fractional (ν=1/3, 2/3, 5/3, 4/5 values of transmission. They resemble theoretically predicted compressible and incompressible stripes of quantum Hall edge states. The scanning tip allows us to shift the constriction limiting the conductance in real space over distances of many microns. The resulting stripes of integer and fractional filling factors are rugged on scales of a few hundred nanometers, i.e., on a scale much smaller than the zero-field elastic mean free path of the electrons. Our experiments demonstrate that microscopic inhomogeneities are relevant even in high-quality samples and lead to locally strongly fluctuating widths of incompressible regions even down to their complete suppression for certain tip positions. The macroscopic quantization of the Hall resistance measured experimentally in a nonlocal contact configuration survives in the presence of these inhomogeneities, and the relevant local energy scale for the ν=2 state turns out to be independent of tip position.
Quantum simulation of the integer factorization problem: Bell states in a Penning trap
Rosales, Jose Luis; Martin, Vicente
2018-03-01
The arithmetic problem of factoring an integer N can be translated into the physics of a quantum device, a result that supports Pólya's and Hilbert's conjecture to demonstrate Riemann's hypothesis. The energies of this system, being univocally related to the factors of N , are the eigenvalues of a bounded Hamiltonian. Here we solve the quantum conditions and show that the histogram of the discrete energies, provided by the spectrum of the system, should be interpreted in number theory as the relative probability for a prime to be a factor candidate of N . This is equivalent to a quantum sieve that is shown to require only o (ln√{N}) 3 energy measurements to solve the problem, recovering Shor's complexity result. Hence the outcome can be seen as a probability map that a pair of primes solve the given factorization problem. Furthermore, we show that a possible embodiment of this quantum simulator corresponds to two entangled particles in a Penning trap. The possibility to build the simulator experimentally is studied in detail. The results show that factoring numbers, many orders of magnitude larger than those computed with experimentally available quantum computers, is achievable using typical parameters in Penning traps.
Quantum topological entropy: First steps of a 'pedestrian' approach
International Nuclear Information System (INIS)
Hudetz, T.
1991-01-01
We introduce a notion of topological entropy for automorphisms of arbitrary (noncommutative, but unital) nuclear C * -algebras A, generalizing the 'classical' topological entropy for a homeomorphism T: X → X of an arbitrary (possibly connected) compact Hausdorff space X, where the generalization is of course understood in the sense that the latter topological dynamical system (with Z-action) is equivalently viewed as the C * -dynamical system given by the T-induced automorphism of the Abelian C * -algebra A = C(X) of (complex-valued) continuous functions on X. As a simple but basic example, we calculate our quantum topological entropy for shift automorphisms on AF algebras A associated with topological Markov chains (i.e. 'quantum topological' Markov chains); and also a real physical interpretation of our simple 'quantum probabilistic' entropy functionals is discussed (already in the introduction, anticipating the later definitions and results). (author)
Topological order, entanglement, and quantum memory at finite temperature
International Nuclear Information System (INIS)
Mazáč, Dalimil; Hamma, Alioscia
2012-01-01
We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement–deconfinement transitions in the corresponding Z 2 gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed. - Highlights: ► We calculate the topological entropy of a general toric code in any dimension. ► We find phase transitions in the topological entropy. ► The phase transitions coincide with the appearance of quantum/classical memory.
The topology of moduli space and quantum field theory
International Nuclear Information System (INIS)
Montano, D.; Sonnenschein, J.
1989-01-01
We show how an SO(2,1) gauge theory with a fermionic symmetry may be used to describe the topology of the moduli space of curves. The observables of the theory correspond to the generators of the cohomology of moduli space. This is an extension of the topological quantum field theory introduced by Witten to investigate the cohomology of Yang-Mills instanton moduli space. We explore the basic structure of topological quantum field theories, examine a toy U(1) model, and then realize a full theory of moduli space topology. We also discuss why a pure gravity theory, as attempted in previous work, could not succeed. (orig.)
Optimization of edge state velocity in the integer quantum Hall regime
Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.
2018-02-01
Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be /B , where is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.
Geodesic paths and topological charges in quantum systems
Grangeiro Souza Barbosa Lima, Tiago Aecio
This dissertation focuses on one question: how should one drive an experimentally prepared state of a generic quantum system into a different target-state, simultaneously minimizing energy dissipation and maximizing the fidelity between the target and evolved-states? We develop optimal adiabatic driving protocols for general quantum systems, and show that these are geodesic paths. Geometric ideas have always played a fundamental role in the understanding and unification of physical phenomena, and the recent discovery of topological insulators has drawn great interest to topology from the field of condensed matter physics. Here, we discuss the quantum geometric tensor, a mathematical object that encodes geometrical and topological properties of a quantum system. It is related to the fidelity susceptibility (an important quantity regarding quantum phase transitions) and to the Berry curvature, which enables topological characterization through Berry phases. A refined understanding of the interplay between geometry and topology in quantum mechanics is of direct relevance to several emergent technologies, such as quantum computers, quantum cryptography, and quantum sensors. As a demonstration of how powerful geometric and topological ideas can become when combined, we present the results of an experiment that we recently proposed. This experimental work was done at the Google Quantum Lab, where researchers were able to visualize the topological nature of a two-qubit system in sharp detail, a startling contrast with earlier methods. To achieve this feat, the optimal protocols described in this dissertation were used, allowing for a great improvement on the experimental apparatus, without the need for technical engineering advances. Expanding the existing literature on the quantum geometric tensor using notions from differential geometry and topology, we build on the subject nowadays known as quantum geometry. We discuss how slowly changing a parameter of a quantum
Photonic topological boundary pumping as a probe of 4D quantum Hall physics.
Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P; Kraus, Yaacov E; Rechtsman, Mikael C
2018-01-03
When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.
Photonic topological boundary pumping as a probe of 4D quantum Hall physics
Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P.; Kraus, Yaacov E.; Rechtsman, Mikael C.
2018-01-01
When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.
Suppression of tunneling by interference in half-integer--spin particles
Loss, Daniel; DiVincenzo, David P.; Grinstein, G.
1992-01-01
Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.
Quantum and Classical Approaches in Graphene and Topological Insulators
DEFF Research Database (Denmark)
Posvyanskiy, Vladimir
mechanical study, this approach can give simple and pictorial explanation of the topological edge states. In our work we find the semiclassical orbits for the samples of different geometries and also discuss the influence of the quantum effects, the Berry phase, on the semiclassical electron dynamics....... Finally, we try to find the semiclassical mechanism responsible for topological protection of the edge states....
Post, Evert Jan
1999-05-01
This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction between ensemble disorder as in the normal Hall effect versus ensemble order in the plateau states. Since the order of the latter permits a view of the plateau states as a macro- or meso-scopic single system, the period integral description applies, yielding a straightforward unified description of integer and fractional quantum Hall effects.
An Invitation to the Mathematics of Topological Quantum Computation
International Nuclear Information System (INIS)
Rowell, E C
2016-01-01
Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials. (paper)
Quantum Geometry of Refined Topological Strings
Aganagic, M.; Cheng, M.C.N.; Dijkgraaf, R.; Kreft, D.; Vafa, C.
2012-01-01
We consider branes in refined topological strings. We argue that their wavefunctions satisfy a Schrödinger equation depending on multiple times and prove this in the case where the topological string has a dual matrix model description. Furthermore, in the limit where one of the equivariant
Anomalous Integer Quantum Hall Effect in the Ballistic Regime with Quantum Point Contacts
Wees, B.J. van; Willems, E.M.M.; Harmans, C.J.P.M.; Beenakker, C.W.J.; Houten, H. van; Williamson, J.G.; Foxon, C.T.; Harris, J.J.
1989-01-01
The Hall conductance of a wide two-dimensional electron gas has been measured in a geometry in which two quantum point contacts form controllable current and voltage probes, separated by less than the transport mean free path. Adjustable barriers in the point contacts allow selective population and
Topological orbifold models and quantum cohomology rings
International Nuclear Information System (INIS)
Zaslow, E.
1993-01-01
We discuss the topological sigma model on an orbifold target space. We describe the moduli space of classical minima for computing correlation functions involving twisted operators, and show, through a detailed computation of an orbifold of CP 1 by the dihedral group D 4 , how to compute the complete ring of observables. Through this procedure, we compute all the rings from dihedral CP 1 orbifolds. We then consider CP 2 /D 4 , and show how the techniques of topological-anti-topological fusion might be used to compute twist field correlation functions for nonabelian orbifolds. (orig.)
Particle creation and destruction of quantum coherence by topological change
International Nuclear Information System (INIS)
Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.
1988-01-01
The possibility is considered that changes of spatial topology occur as tunneling events in quantum gravity. Creation of scalar and spinor particles during these tunneling transitions is studied. The relevant formalism based on the euclidean Schroedinger equation and coherent state representation is developed. This formalism is illustrated in a two-dimensional example. It is argued that the particle creation during the topological changes induces the loss of quantum coherence. The particle creation is calculated in the case of O(4)-invariant background euclidean four-dimensional metrics. This calculation is used for estimating the loss of quantum coherence. An upper limit on the rate of the topological changes, A -17 M 4 Pl , is derived from the observation of K 0 -anti K 0 oscillations. (orig.)
Quantum transport in topological semimetals under magnetic fields
Lu, Hai-Zhou; Shen, Shun-Qing
2017-06-01
Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.
Topological Rényi entropy after a quantum quench.
Halász, Gábor B; Hamma, Alioscia
2013-04-26
We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.
Quantum algorithms for topological and geometric analysis of data
Lloyd, Seth; Garnerone, Silvano; Zanardi, Paolo
2016-01-01
Extracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis. PMID:26806491
International Nuclear Information System (INIS)
Kramer, T.
2006-01-01
I review some aspects of an alternative model of the quantum Hall effect, which is not based on the presence of disorder potentials. Instead, a quantization of the electronic drift current in the presence of crossed electric and magnetic fields is employed to construct a non-linear transport theory. Another important ingredient of the alternative theory is the coupling of the two-dimensional electron gas to the leads and the applied voltages. By working in a picture where the external voltages fix the chemical potential in the 2D subsystem, the experimentally observed linear relation between the voltage and the location of the quantum Hall plateaus finds an natural explanation. Also, the classical Hall effect emerges as a natural limit of the quantum Hall effect. For low temperatures (or high currents), a non-integer substructure splits higher Landau levels into sublevels. The appearance of substructure and non-integer plateaus in the resistivity is not linked to electron-electron interactions, but caused by the presence of a (linear) electric field. Some of the resulting fractions correspond exactly to half-integer plateaus. (Author)
Two-Dimensional Dirac Fermions in a Topological Insulator: Transport in the Quantum Limit
Energy Technology Data Exchange (ETDEWEB)
Analytis, J.G.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; McDonald, R.D.; /Los Alamos; Riggs, S.C.; /Natl. High Mag. Field Lab.; Chu, J.-H.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; Boebinger, G.S.; /Natl. High Mag. Field Lab.; Fisher, I.R.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.
2011-08-12
Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi{sub 2}Se{sub 3} in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9 x 10{sup 16} cm{sup -3}, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the {nu} = 1 Landau level attained by a field of {approx} 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.
Architectural design for a topological cluster state quantum computer
International Nuclear Information System (INIS)
Devitt, Simon J; Munro, William J; Nemoto, Kae; Fowler, Austin G; Stephens, Ashley M; Greentree, Andrew D; Hollenberg, Lloyd C L
2009-01-01
The development of a large scale quantum computer is a highly sought after goal of fundamental research and consequently a highly non-trivial problem. Scalability in quantum information processing is not just a problem of qubit manufacturing and control but it crucially depends on the ability to adapt advanced techniques in quantum information theory, such as error correction, to the experimental restrictions of assembling qubit arrays into the millions. In this paper, we introduce a feasible architectural design for large scale quantum computation in optical systems. We combine the recent developments in topological cluster state computation with the photonic module, a simple chip-based device that can be used as a fundamental building block for a large-scale computer. The integration of the topological cluster model with this comparatively simple operational element addresses many significant issues in scalable computing and leads to a promising modular architecture with complete integration of active error correction, exhibiting high fault-tolerant thresholds.
Quantum A∞-structures for open-closed topological strings
International Nuclear Information System (INIS)
Herbst, M.
2006-02-01
We study factorizations of topological string amplitudes on higher genus Riemann surfaces with multiple boundary components and find quantum A ∞ -relations, which are the higher genus analog of the (classical) A ∞ -relations on the disk. For topological strings with c=3 the quantum A ∞ -relations are trivially satisfied on a single D-brane, whereas in a multiple D-brane configuration they may be used to compute open higher genus amplitudes recursively from disk amplitudes. This can be helpful in open Gromov-Witten theory in order to determine open string higher genus instanton corrections. Finally, we find that the quantum A ∞ -structure cannot quite be recast into a quantum master equation on the open string moduli space. (orig.)
Unconventional quantum Hall effect in Floquet topological insulators
Tahir, M.
2016-07-27
We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.
Unconventional quantum Hall effect in Floquet topological insulators
Tahir, M.; Vasilopoulos, P.; Schwingenschlö gl, Udo
2016-01-01
We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.
Interaction effects and quantum phase transitions in topological insulators
International Nuclear Information System (INIS)
Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos
2010-01-01
We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.
Hao, Tian
2017-02-22
The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.
Quantum picturalism for topological cluster-state computing
International Nuclear Information System (INIS)
Horsman, Clare
2011-01-01
Topological quantum computing (QC) is a way of allowing precise quantum computations to run on noisy and imperfect hardware. One implementation uses surface codes created by forming defects in a highly-entangled cluster state. Such a method of computing is a leading candidate for large-scale QC. However, there has been a lack of sufficiently powerful high-level languages to describe computing in this form without resorting to single-qubit operations, which quickly become prohibitively complex as the system size increases. In this paper, we apply the category-theoretic work of Abramsky and Coecke to the topological cluster-state model of QC to give a high-level graphical language that enables direct translation between quantum processes and physical patterns of measurement in a computer-a 'compiler language'. We give the equivalence between the graphical and topological information flows, and show the applicable rewrite algebra for this computing model. We show that this gives us a native graphical language for the design and analysis of topological quantum algorithms, and finish by discussing the possibilities for automating this process on a large scale.
Topological field theories and quantum mechanics on commutative space
International Nuclear Information System (INIS)
Lefrancois, M.
2005-12-01
In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)
Manipulating topological-insulator properties using quantum confinement
International Nuclear Information System (INIS)
Kotulla, M; Zülicke, U
2017-01-01
Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron–hole asymmetry are disentangled and their respective physical consequences elucidated. (paper)
Black-hole decay and topological stability in quantum gravity
International Nuclear Information System (INIS)
Rodrigues, L.M.C.S.; Soares, I.D.; Zanelli, J.
1988-01-01
In the context of Quantum Gravity, the evolution of Schwarzschild black-holes is studied. The superspace of the theory is restricted to a class of geometries that contains the Schwarzschild solution for different masses as well as other geometries with different topologies. It is shown that, black-holes are topologically stable under quantum fluctuations but unstable under quantum processes of emission and absorption of gravitons. It is found that, the probability of emission behaves as exp (- α (M f - M i ), where M i and M f are the masses associated to the initial and final states, respectively and α is a positive constant of the order of 1. As the black-hole looses mass it evolves towards a state corresponding to a black-hole of very small that cannot be distinguished from a pure graviton state. (author) [pt
Unruly topologies in two-dimensional quantum gravity
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
A sum over histories formulation of quantum geometry could involve sums over different topologies as well as sums over different metrics. In classical gravity a geometry is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum gravity. In this difficulty, motivation is found for including in the sum over histories, geometries defined on more general objects than manifolds-unruly topologies. In simplicial two-dimensional quantum gravity a class of simplicial complexes is found to which the gravitational action can be extended, for which sums over the class are straightforwardly defined, and for which a manifold dominates the sum in the classical limit. The situation in higher dimensions is discussed. (author)
A general action for topological quantum field theories
International Nuclear Information System (INIS)
Dayi, O.F.
1989-03-01
Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs
Quantum phase transitions of a disordered antiferromagnetic topological insulator
Baireuther, P.; Edge, J. M.; Fulga, I. C.; Beenakker, C. W. J.; Tworzydło, J.
2014-01-01
We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of disorder first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this so-called "statistical" topological phase.
Quantum states with topological properties via dipolar interactions
Energy Technology Data Exchange (ETDEWEB)
Peter, David
2015-06-25
This thesis proposes conceptually new ways to realize materials with topological properties by using dipole-dipole interactions. First, we study a system of ultracold dipolar fermions, where the relaxation mechanism of dipolar spins can be used to reach the quantum Hall regime. Second, in a system of polar molecules in an optical lattice, dipole-dipole interactions induce spin-orbit coupling terms for the rotational excitations. In combination with time-reversal symmetry breaking this leads to topological bands with Chern numbers greater than one.
Half-integer flux quantum effect in tricrystal Bi2Sr2CaCu2O8+δ
International Nuclear Information System (INIS)
Kirtley, J.R.; Tsuei, C.C.; Raffy, H.; Sun, J.Z.; Megtert, S.
1996-01-01
We have used a scanning SQUID microscope to directly observe the half-integer flux quantum effect, in epitaxial films of Bi 2 Sr 2 CaCu 2 O 8+δ , at the meeting point of a tricrystal substrate of SrTiO 3 in a geometry chosen to show this effect for a d-wave superconductor. This observation, when considered along with recent photoemission results, proves that the in-plane order parameter for this high-T c cuprate superconductor closely follows d x 2 -y 2 symmetry. (orig.)
Topological quantum error correction in the Kitaev honeycomb model
Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.
2017-08-01
The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.
Topological networks for quantum communication between distant qubits
Lang, Nicolai; Büchler, Hans Peter
2017-11-01
Efficient communication between qubits relies on robust networks, which allow for fast and coherent transfer of quantum information. It seems natural to harvest the remarkable properties of systems characterized by topological invariants to perform this task. Here, we show that a linear network of coupled bosonic degrees of freedom, characterized by topological bands, can be employed for the efficient exchange of quantum information over large distances. Important features of our setup are that it is robust against quenched disorder, all relevant operations can be performed by global variations of parameters, and the time required for communication between distant qubits approaches linear scaling with their distance. We demonstrate that our concept can be extended to an ensemble of qubits embedded in a two-dimensional network to allow for communication between all of them.
Quantum magnetotransport properties of ultrathin topological insulator films
Tahir, M.
2013-01-30
We study the quantum magnetotransport in ultrathin topological insulator films in an external magnetic field considering hybridization between the upper and lower surfaces of the film. We investigate the two possible mechanisms for splitting of Landau levels, Zeeman and hybridization effects, and show that their interplay leads to minima in the collisional and Hall conductivities with a metal-to-insulator phase transition at the charge neutrality point. Hall plateaus arise at unusual multiples of e2/h . Evidence of a quantum phase transition for the zeroth and splitting of the higher Landau levels is found from the temperature and magnetic field dependences of the transport.
Quantum magnetotransport properties of ultrathin topological insulator films
Tahir, M.; Sabeeh, K.; Schwingenschlö gl, Udo
2013-01-01
We study the quantum magnetotransport in ultrathin topological insulator films in an external magnetic field considering hybridization between the upper and lower surfaces of the film. We investigate the two possible mechanisms for splitting of Landau levels, Zeeman and hybridization effects, and show that their interplay leads to minima in the collisional and Hall conductivities with a metal-to-insulator phase transition at the charge neutrality point. Hall plateaus arise at unusual multiples of e2/h . Evidence of a quantum phase transition for the zeroth and splitting of the higher Landau levels is found from the temperature and magnetic field dependences of the transport.
Conservation of topological quantum numbers in energy bands
International Nuclear Information System (INIS)
Chang, L.N.; Liang, Y.
1988-01-01
Quantum systems described by parametrized Hamiltinians are studied in a general context. Within this context, the classification scheme of Avron-Seiler-Simon for non-degenerate energy bands is extended to cover general parameter spaces, whole their sum rule is generalized to cover cases with degenerate bands as well. Additive topological quantum numbers are defined, and these are shown to be conserved in energy band ''collisions''. The conservation laws dictate that when some invariants are non-vanishing, no energy gap can develop in a set of degenerate bands. This gives rise to a series of splitting rules
Quantum control of topological defects in magnetic systems
Takei, So; Mohseni, Masoud
2018-02-01
Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .
Topological and statistical properties of quantum control transition landscapes
International Nuclear Information System (INIS)
Hsieh, Michael; Wu Rebing; Rabitz, Herschel; Rosenthal, Carey
2008-01-01
A puzzle arising in the control of quantum dynamics is to explain the relative ease with which high-quality control solutions can be found in the laboratory and in simulations. The emerging explanation appears to lie in the nature of the quantum control landscape, which is an observable as a function of the control variables. This work considers the common case of the observable being the transition probability between an initial and a target state. For any controllable quantum system, this landscape contains only global maxima and minima, and no local extrema traps. The probability distribution function for the landscape value is used to calculate the relative volume of the region of the landscape corresponding to good control solutions. The topology of the global optima of the landscape is analysed and the optima are shown to have inherent robustness to variations in the controls. Although the relative landscape volume of good control solutions is found to shrink rapidly as the system Hilbert space dimension increases, the highly favourable landscape topology at and away from the global optima provides a rationale for understanding the relative ease of finding high-quality, stable quantum optimal control solutions
Anomalous quantum numbers and topological properties of field theories
International Nuclear Information System (INIS)
Polychronakos, A.P.
1987-01-01
We examine the connection between anomalous quantum numbers, symmetry breaking patterns and topological properties of some field theories. The main results are the following: In three dimensions the vacuum in the presence of abelian magnetic field configurations behaves like a superconductor. Its quantum numbers are exactly calculable and are connected with the Atiyah-Patodi-Singer index theorem. Boundary conditions, however, play a nontrivial role in this case. Local conditions were found to be physically preferable than the usual global ones. Due to topological reasons, only theories for which the gauge invariant photon mass in three dimensions obeys a quantization condition can support states of nonzero magnetic flux. For similar reasons, this mass induces anomalous angular momentum quantum numbers to the states of the theory. Parity invariance and global flavor symmetry were shown to be incompatible in such theories. In the presence of mass less flavored fermions, parity will always break for an odd number of fermion flavors, while for even fermion flavors it may not break but only at the expense of maximally breaking the flavor symmetry. Finally, a connection between these theories and the quantum Hall effect was indicated
Strain-induced topological quantum phase transition in phosphorene oxide
Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun
Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.
Wang, Shengtao
The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation
The new topological sectors associated with quantum electrodynamics
International Nuclear Information System (INIS)
Marino, E.C.
1994-01-01
A formulation of Quantum Electrodynamics in terms of an antisymmetric-tensor gauge field is presented. In this formulation the topological current of this field appears as a source for the electromagnetic field and the topological charge therefore acts physically as an electric charge. These nontrivial, electrically charged, sectors contain massless states orthogonal to the vacuum which are created by a gauge invariant operator can be interpreted as coherent states of photons. The new states do interact with the charged states of QCD in the usual way. It is argued that if these new sectors are in fact realized in nature then a very intense background electromagnetic field is necessary for the experimental observation of them. The order of magnitude of the intensity threshold is presented. (author). 2 refs
Quantum magnetotransport properties of topological insulators under strain
Tahir, M.
2012-08-15
We present a detailed theoretical investigation of the quantum magnetotransport properties of topological insulators under strain. We consider an external magnetic field perpendicular to the surface of the topological insulator in the presence of strain induced by the substrate. The strain effects mix the lower and upper surface states of neighboring Landau levels into two unequally spaced energy branches. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for the beating of Shubnikov–de Haas oscillations is found from the temperature and magnetic field dependence of the collisional and Hall conductivities. In the regime of a strong magnetic field, the beating pattern is replaced by a splitting of the magnetoresistance peaks due to finite strain energy. These results are in excellent agreement with recent HgTe transport experiments.
Quantum information transfer between topological and conventional charge qubits
International Nuclear Information System (INIS)
Li Jun; Zou Yan
2016-01-01
We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot (QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire (MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements. Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions (MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001 (2008)] in our considered system. Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer. (paper)
Quantum spin/valley Hall effect and topological insulator phase transitions in silicene
Tahir, M.
2013-04-26
We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.
Quantum spin/valley Hall effect and topological insulator phase transitions in silicene
Tahir, M.; Manchon, Aurelien; Sabeeh, K.; Schwingenschlö gl, Udo
2013-01-01
We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.
Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton
2018-04-01
We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.
Implications of causality for quantum biology - I: topology change
Scofield, D. F.; Collins, T. C.
2018-06-01
A framework for describing the causal, topology changing, evolution of interacting biomolecules is developed. The quantum dynamical manifold equations (QDMEs) derived from this framework can be related to the causality restrictions implied by a finite speed of light and to Planck's constant to set a transition frequency scale. The QDMEs imply conserved stress-energy, angular-momentum and Noether currents. The functional whose extremisation leads to this result provides a causal, time-dependent, non-equilibrium generalisation of the Hohenberg-Kohn theorem. The system of dynamical equations derived from this functional and the currents J derived from the QDMEs are shown to be causal and consistent with the first and second laws of thermodynamics. This has the potential of allowing living systems to be quantum mechanically distinguished from non-living ones.
Topological mirror superconductivity.
Zhang, Fan; Kane, C L; Mele, E J
2013-08-02
We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.
Some Aspects of Mathematical and Physical Approaches for Topological Quantum Computation
Directory of Open Access Journals (Sweden)
V. Kantser
2011-10-01
Full Text Available A paradigm to build a quantum computer, based on topological invariants is highlighted. The identities in the ensemble of knots, links and braids originally discovered in relation to topological quantum field theory are shown: how they define Artin braid group -- the mathematical basis of topological quantum computation (TQC. Vector spaces of TQC correspond to associated strings of particle interactions, and TQC operates its calculations on braided strings of special physical quasiparticles -- anyons -- with non-Abelian statistics. The physical platform of TQC is to use the topological quantum numbers of such small groups of anyons as qubits and to perform operations on these qubits by exchanging the anyons, both within the groups that form the qubits and, for multi-qubit gates, between groups. By braiding two or more anyons, they acquire up a topological phase or Berry phase similar to that found in the Aharonov-Bohm effect. Topological matter such as fractional quantum Hall systems and novel discovered topological insulators open the way to form system of anyons -- Majorana fermions -- with the unique property of encoding and processing quantum information in a naturally fault-tolerant way. In the topological insulators, due to its fundamental attribute of topological surface state occurrence of the bound, Majorana fermions are generated at its heterocontact with superconductors. One of the key operations of TQC -- braiding of non-Abelian anyons: it is illustrated how it can be implemented in one-dimensional topological isolator wire networks.
Measurement-only topological quantum computation without forced measurements
International Nuclear Information System (INIS)
Zheng, Huaixiu; Dua, Arpit; Jiang, Liang
2016-01-01
We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons. (paper)
Signatures of lattice geometry in quantum and topological Hall effect
International Nuclear Information System (INIS)
Göbel, Börge; Mook, Alexander; Mertig, Ingrid; Henk, Jürgen
2017-01-01
The topological Hall effect (THE) of electrons in skyrmion crystals (SkXs) is strongly related to the quantum Hall effect (QHE) on lattices. This relation suggests to revisit the QHE because its Hall conductivity can be unconventionally quantized. It exhibits a jump and changes sign abruptly if the Fermi level crosses a van Hove singularity. In this Paper, we investigate the unconventional QHE features by discussing band structures, Hall conductivities, and topological edge states for square and triangular lattices; their origin are Chern numbers of bands in the SkX (THE) or of the corresponding Landau levels (QHE). Striking features in the energy dependence of the Hall conductivities are traced back to the band structure without magnetic field whose properties are dictated by the lattice geometry. Based on these findings, we derive an approximation that allows us to determine the energy dependence of the topological Hall conductivity on any two-dimensional lattice. The validity of this approximation is proven for the honeycomb lattice. We conclude that SkXs lend themselves for experiments to validate our findings for the THE and—indirectly—the QHE. (paper)
Classical and quantum aspects of topological solitons (using numerical methods)
International Nuclear Information System (INIS)
Weidig, T.
1999-08-01
In Introduction, we review integrable and topological solitons. In Numerical Methods, we describe how to minimise functionals, time-integrate configurations and solve eigenvalue problems. We also present the Simulated Annealing scheme for minimisation in solitonic systems. In Classical Aspects, we analyse the effect of the potential term on the structure of minimal-energy solutions for any topological charge n. The simplest holomorphic baby Skyrme model has no known stable minimal-energy solution for n > 1. The one-vacuum baby Skyrme model possesses non-radially symmetric multi-skyrmions that look like 'skyrmion lattices' formed by skyrmions with n = 2. The two-vacua baby Skyrme model has radially symmetric multi-skyrmions. We implement Simulated Annealing and it works well for higher order terms. We find that the spatial part of the six-derivative term is zero. In Quantum Aspects, we find the first order quantum mass correction for the φ 4 kink using the semi-classical expansion. We derive a trace formula which gives the mass correction by using the eigenmodes and values of the soliton and vacuum perturbations. We show that the zero mode is the most important contribution. We compute the mass correction of φ 4 kink and Sine-Gordon numerically by solving the eigenvalue equations and substituting into the trace formula. (author)
QSAR models based on quantum topological molecular similarity.
Popelier, P L A; Smith, P J
2006-07-01
A new method called quantum topological molecular similarity (QTMS) was fairly recently proposed [J. Chem. Inf. Comp. Sc., 41, 2001, 764] to construct a variety of medicinal, ecological and physical organic QSAR/QSPRs. QTMS method uses quantum chemical topology (QCT) to define electronic descriptors drawn from modern ab initio wave functions of geometry-optimised molecules. It was shown that the current abundance of computing power can be utilised to inject realistic descriptors into QSAR/QSPRs. In this article we study seven datasets of medicinal interest : the dissociation constants (pK(a)) for a set of substituted imidazolines , the pK(a) of imidazoles , the ability of a set of indole derivatives to displace [(3)H] flunitrazepam from binding to bovine cortical membranes , the influenza inhibition constants for a set of benzimidazoles , the interaction constants for a set of amides and the enzyme liver alcohol dehydrogenase , the natriuretic activity of sulphonamide carbonic anhydrase inhibitors and the toxicity of a series of benzyl alcohols. A partial least square analysis in conjunction with a genetic algorithm delivered excellent models. They are also able to highlight the active site, of the ligand or the molecule whose structure determines the activity. The advantages and limitations of QTMS are discussed.
A Relation Between Topological Quantum Field Theory and the Kodama State
Oda, Ichiro
2003-01-01
We study a relation between topological quantum field theory and the Kodama (Chern-Simons) state. It is shown that the Kodama (Chern-Simons) state describes a topological state with unbroken diffeomorphism invariance in Yang-Mills theory and Einstein's general relativity in four dimensions. We give a clear explanation of "why" such a topological state exists.
The supersymmetric Casimir effect and quantum creation of the universe with nontrivial topology
International Nuclear Information System (INIS)
Goncharov, Yu.P.; Bytsenko, A.A.
1985-01-01
We estimate the probability of quantum creation of the universe, having the spatial topology (S 1 ) 3 , and filled with the fields of minimal N=1 supergravity, in the semiclassical approximation. After creation, inflation of the universe occurs due to the topological Casimir effect. Creation of the universe with an isotropic topology is found to be the most preferable. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Clark, R.G.; Ford, R.A.; Haynes, S.R.; Ryan, J.F.; Turberfield, A.J.; Wright, P.A. (Clarendon Lab., Univ. of Oxford (UK)); Williams, F.I.B.; Deville, G.; Glattli, D.C. (CEN de Saclay, 91 - Gif-sur-Yvette (France)); Mallett, J.R.; Oswald, P.M.W. (Clarendon Lab., Univ. of Oxford (UK) Katholieke Univ. Leuven (Belgium)); Burgt, M. van der; Herlach, F. (Katholieke Univ. Leuven (Belgium)); Foxon, C.T.; Harris, J.J. (Philips Research Labs., Redhill (UK))
1991-02-01
Our recent optical detection of the integer and fractional quantum Hall effects in GaAs, by intrinsic band-gap photoluminescence at dilution refrigerator temperatures, is reviewed. This work has been extended to the extreme quantum limit where a photoluminescence peak develops close to Landau level filling factor {nu}=1/5 which correlates both with the onset of threshold behaviour in current-voltage characteristics of the two-dimensional electron system and a resonant radio-frequency absorption; the latter are quantitatively accounted for by a model of crystalline electronic structure broken up into domains. Preliminary mK transport experiments in intense, pulsed magnetic fields are also described, which establish a basis to access the electron solid phase transition in a hitherto unattainable region of the (B,T) plane. (orig.).
Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects
Directory of Open Access Journals (Sweden)
Yurii A. Sitenko
2018-01-01
Full Text Available Space out of a topological defect of the Abrikosov–Nielsen–Olesen (ANO vortex type is locally flat but non-Euclidean. If a spinor field is quantized in such a space, then a variety of quantum effects are induced in the vacuum. On the basis of the continuum model for long-wavelength electronic excitations originating in the tight-binding approximation for the nearest-neighbor interaction of atoms in the crystal lattice, we consider quantum ground-state effects in Dirac materials with two-dimensional monolayer structures warped into nanocones by a disclination; the nonzero size of the disclination is taken into account, and a boundary condition at the edge of the disclination is chosen to ensure self-adjointness of the Dirac–Weyl Hamiltonian operator. We show that the quantum ground-state effects are independent of the disclination size, and we find circumstances in which they are independent of parameters of the boundary condition.
International Nuclear Information System (INIS)
Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro
2015-01-01
Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs
International Nuclear Information System (INIS)
Gvozdikov, V M; Taut, M
2009-01-01
We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.
Realization of a Quantum Integer-Spin Chain with Controllable Interactions
2015-06-17
2jρþ−;−þjÞ ð8Þ is akin to the entanglement fidelity F of Greenberger- Horne- Zeilinger (GHZ) states in two-level systems [59]. Measuring the amplitude...White, Simplifying Quantum Logic Uing Higher-Dimensional Hilbert Spaces, Nat. Phys. 5, 134 (2009). [10] C. Brukner, M. Zukowski, and A. Zeilinger
Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection
Chamon, Claudio
2005-01-01
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.
Twisted quantum double model of topological order with boundaries
Bullivant, Alex; Hu, Yuting; Wan, Yidun
2017-10-01
We generalize the twisted quantum double model of topological orders in two dimensions to the case with boundaries by systematically constructing the boundary Hamiltonians. Given the bulk Hamiltonian defined by a gauge group G and a 3-cocycle in the third cohomology group of G over U (1 ) , a boundary Hamiltonian can be defined by a subgroup K of G and a 2-cochain in the second cochain group of K over U (1 ) . The consistency between the bulk and boundary Hamiltonians is dictated by what we call the Frobenius condition that constrains the 2-cochain given the 3-cocyle. We offer a closed-form formula computing the ground-state degeneracy of the model on a cylinder in terms of the input data only, which can be naturally generalized to surfaces with more boundaries. We also explicitly write down the ground-state wave function of the model on a disk also in terms of the input data only.
Modeling the quantum to classical crossover in topologically disordered networks
International Nuclear Information System (INIS)
Schijven, P; Kohlberger, J; Blumen, A; Mülken, O
2012-01-01
We model transport in topologically disordered networks that are subjected to an environment that induces classical diffusion. The dynamics is phenomenologically described within the framework of the recently introduced quantum stochastic walk, allowing study of the crossover between coherent transport and purely classical diffusion. To study the transport efficiency, we connect our system with a source and a drain and provide a detailed analysis of their effects. We find that the coupling to the environment removes all effects of localization and quickly leads to classical transport. Furthermore, we find that on the level of the transport efficiency, the system can be well described by reducing it to a two-node network (a dimer). (paper)
Rényi entropies and topological quantum numbers in 2D gapped Dirac materials
International Nuclear Information System (INIS)
Bolívar, Juan Carlos; Romera, Elvira
2017-01-01
New topological quantum numbers are introduced by analyzing complexity measures and relative Rényi entropies in silicene in the presence of perpendicular electric and magnetic fields. These topological quantum numbers characterize the topological insulator and band insulator phases in silicene. In addition, we have found that, these information measures reach extremum values at the charge neutrality points. These results are valid for other 2D gapped Dirac materials analogous to silicene with a buckled honeycomb structure and a significant spin-orbit coupling. - Highlights: • Topological quantum numbers (Chern-like numbers) by Rényi entropies in silicene. • These topological numbers characterize silicene topological and band insulator phases. • These information measures reach extremum values at the charge neutrality points. • These results are valid for other 2D gapped Dirac materials analogous to silicene.
Characterization of heterocyclic rings through quantum chemical topology.
Griffiths, Mark Z; Popelier, Paul L A
2013-07-22
Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.
Stochastic quantization of a topological quantum mechanical model
International Nuclear Information System (INIS)
Antunes, Sergio; Krein, Gastao; Menezes, Gabriel; Svaiter, Nami Fux
2011-01-01
Full text: Stochastic quantization of complex actions has been extensively studied in the literature. In these models, a Markovian Langevin equation is used in order to study the quantization of such systems. In such papers, the advantages of the Markovian stochastic quantization method were explored and exposed. However, many drawbacks of the method were also pointed out, such as instability of the simulations with absence of convergence and sometimes convergence to the wrong limit. Indeed, although several alternative methods have been proposed to deal with interesting physical systems where the action is complex, these approaches do not suggest any general way of solving the particular difficulties that arise in each situation. Here, we wish to make contributions to the program of stochastic quantization of theories with imaginary action by investigating the consequences of a non-Markovian stochastic quantization in a particular situation, namely a quantum mechanical topological action. We analyze the Markovian stochastic quantization for a topological quantum mechanical action which is analog to a Maxwell-Chern-Simons action in the Weyl gauge. Afterwards we consider a Langevin equation with memory kernel and Einstein's relations with colored noise. We show that convergence towards equilibrium is achieved in both regimes. We also sketch a simple numerical analysis to investigate the possible advantages of non-Markovian procedure over the usual Markovian quantization. Both retarded Green's function for the diffusion problem are considered in such analysis. We show that, although the results indicated that the effect of memory kernel, as usually expected, is to delay the convergence to equilibrium, non-Markovian systems imply a faster decay compared to Markovian ones as well as smoother convergence to equilibrium. (author)
Post, E J
1999-01-01
This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction betw...
Energy Technology Data Exchange (ETDEWEB)
Doolittle, R. [ONR, Arlington, VA (United States)
1994-11-15
The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.
Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures
International Nuclear Information System (INIS)
Du, Rui-Rui
2015-01-01
This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under
Energy Technology Data Exchange (ETDEWEB)
Bauer, W.
2007-03-15
The goal of this diploma thesis is to present an overview of how to reduce the problem of topology change of general spacetimes to the investigation of elementary cobordisms. In the following we investigate the possibility to construct quantum fields on elementary cobordisms, in particular we discuss the trousers topology. Trying to avoid the problems occuring at spacetimes with instant topology change we use a model for simulating topology change. We construct the algebra of observables for a free scalar field with the algebraic approach to quantum field theory. Therefore we determine a fundamental solution of the eld equation. (orig.)
Georgiev, Lachezar S.
2006-12-01
We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma , in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected controlled-NOT gate, which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the π/8 gate, are also explicitly implemented by quasihole braidings. Instead of the π/8 gate we try to construct a topologically protected Toffoli gate, in terms of the controlled-phase gate and CNOT or by a braid-group-based controlled-controlled- Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g3 .
Error Correction for Non-Abelian Topological Quantum Computation
Directory of Open Access Journals (Sweden)
James R. Wootton
2014-03-01
Full Text Available The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S_{3}. This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.
Levitation of current carrying states in the lattice model for the integer quantum Hall effect.
Koschny, T; Potempa, H; Schweitzer, L
2001-04-23
The disorder driven quantum Hall to insulator transition is investigated for a two-dimensional lattice model. The Hall conductivity and the localization length are calculated numerically near the transition. For uncorrelated and weakly correlated disorder potentials the current carrying states are annihilated by the negative Chern states originating from the band center. In the presence of correlated disorder potentials with correlation length larger than approximately half the lattice constant the floating up of the critical states in energy without merging is observed. This behavior is similar to the levitation scenario proposed for the continuum model.
Current distribution and conductance quantization in the integer quantum Hall regime
International Nuclear Information System (INIS)
Cresti, Alessandro; Farchioni, Riccardo; Grosso, Giuseppe; Parravicini, Giuseppe Pastori
2003-01-01
Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)
Current distribution and conductance quantization in the integer quantum Hall regime
Energy Technology Data Exchange (ETDEWEB)
Cresti, Alessandro [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Farchioni, Riccardo [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Grosso, Giuseppe [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Parravicini, Giuseppe Pastori [NEST-INFM and Dipartimento di Fisica ' A Volta' , Universita di Pavia, via A Bassi 6, I-27100 Pavia (Italy)
2003-06-25
Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)
Exploring quantum control landscapes: Topology, features, and optimization scaling
International Nuclear Information System (INIS)
Moore, Katharine W.; Rabitz, Herschel
2011-01-01
Quantum optimal control experiments and simulations have successfully manipulated the dynamics of systems ranging from atoms to biomolecules. Surprisingly, these collective works indicate that the effort (i.e., the number of algorithmic iterations) required to find an optimal control field appears to be essentially invariant to the complexity of the system. The present work explores this matter in a series of systematic optimizations of the state-to-state transition probability on model quantum systems with the number of states N ranging from 5 through 100. The optimizations occur over a landscape defined by the transition probability as a function of the control field. Previous theoretical studies on the topology of quantum control landscapes established that they should be free of suboptimal traps under reasonable physical conditions. The simulations in this work include nearly 5000 individual optimization test cases, all of which confirm this prediction by fully achieving optimal population transfer of at least 99.9% on careful attention to numerical procedures to ensure that the controls are free of constraints. Collectively, the simulation results additionally show invariance of required search effort to system dimension N. This behavior is rationalized in terms of the structural features of the underlying control landscape. The very attractive observed scaling with system complexity may be understood by considering the distance traveled on the control landscape during a search and the magnitude of the control landscape slope. Exceptions to this favorable scaling behavior can arise when the initial control field fluence is too large or when the target final state recedes from the initial state as N increases.
Quantum field theory on toroidal topology: Algebraic structure and applications
Energy Technology Data Exchange (ETDEWEB)
Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)
2014-06-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu
Quantum field theory on toroidal topology: Algebraic structure and applications
International Nuclear Information System (INIS)
Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.
2014-01-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then
Topological quantum field theories in terms of coloured graphs associated to quantum groups
International Nuclear Information System (INIS)
Karowski, M.
1993-01-01
Apart from obvious mathematical applications the investigation is motivated by the problem of braid group statistics in physics. Statistics is one of the central concepts in many body quantum systems. Consider a system of two identical particles located at x 1 and x 2 in R d with Schroedinger wave function ψ(x 1 , x 2 ). Under the exchange of particles with these coordinates one usually has Bose or Fermi statistics in case ψ(x 2 , x 1 )=±ψ(x-1,x T 2). For a quick access to the problem consider the following classical geometric space-time description of the exchange of position for two identical particles, reflecting itself in two quantum mechanical transformation laws. We briefly review the set-up of topological quantum field theory and present our new formulation in terms of coloured graphs. (orig.)
Robustness of edge states in topological quantum dots against global electric field
Qu, Jin-Xian; Zhang, Shu-Hui; Liu, Ding-Yang; Wang, Ping; Yang, Wen
2017-07-01
The topological insulator has attracted increasing attention as a new state of quantum matter featured by the symmetry-protected edge states. Although the qualitative robustness of the edge states against local perturbations has been well established, it is not clear how these topological edge states respond quantitatively to a global perturbation. Here, we study the response of topological edge states in a HgTe quantum dot to an external in-plane electric field—a paradigmatic global perturbation in solid-state environments. We find that the stability of the topological edge state could be larger than that of the ground bulk state by several orders of magnitudes. This robustness may be verified by standard transport measurements in the Coulomb blockage regime. Our work may pave the way towards utilizing these topological edge states as stable memory devices for charge and/or spin information and stable emitter of single terahertz photons or entangled terahertz photon pairs for quantum communication.
International Nuclear Information System (INIS)
Kogan, I.I.
1991-01-01
The quantum geometrodynamics of the open topological membrane is described in terms of 2+1 topologically massive gravity (TMG) where the inverse graviton mass is proportional to the 2D central charge and thus is the measure of the off-criticality. The hamiltonian quantization of TMG on Riemann surfaces is considered and the moduli space appears as the subspace of the quantum-mechanical configuration space containing, besides the moduli, the first-order time derivatives of half of the moduli. The appearance of the first-order time derivatives as coordinates, not momenta, is due to the third-order derivative in the TMG lagrangian. The hamiltonian for the latter leads us to the discrete levels picture which looks like the topologically massive gauge theory (TMGT) case, where we also get the Landau levels picture and the lowest Landau level corresponds to the Hilbert space of the Chern-Simons theory (CST). The connection between the positivity of the energy and the complex structure on the moduli space is discussed. (orig.)
Topological color codes and two-body quantum lattice Hamiltonians
Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.
2010-02-01
Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the
Abelian Chern endash Simons theory. I. A topological quantum field theory
International Nuclear Information System (INIS)
Manoliu, M.
1998-01-01
We give a construction of the Abelian Chern endash Simons gauge theory from the point of view of a 2+1-dimensional topological quantum field theory. The definition of the quantum theory relies on geometric quantization ideas that have been previously explored in connection to the non-Abelian Chern endash Simons theory [J. Diff. Geom. 33, 787 endash 902 (1991); Topology 32, 509 endash 529 (1993)]. We formulate the topological quantum field theory in terms of the category of extended 2- and 3-manifolds introduced in a preprint by Walker in 1991 and prove that it satisfies the axioms of unitary topological quantum field theories formulated by Atiyah [Publ. Math. Inst. Hautes Etudes Sci. Pans 68, 175 endash 186 (1989)]. copyright 1998 American Institute of Physics
Valley polarized quantum Hall effect and topological insulator phase transitions in silicene
Tahir, M.; Schwingenschlö gl, Udo
2013-01-01
encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address
Directory of Open Access Journals (Sweden)
Ion C. Baianu
2009-04-01
Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.
Feasibility of self-correcting quantum memory and thermal stability of topological order
International Nuclear Information System (INIS)
Yoshida, Beni
2011-01-01
Recently, it has become apparent that the thermal stability of topologically ordered systems at finite temperature, as discussed in condensed matter physics, can be studied by addressing the feasibility of self-correcting quantum memory, as discussed in quantum information science. Here, with this correspondence in mind, we propose a model of quantum codes that may cover a large class of physically realizable quantum memory. The model is supported by a certain class of gapped spin Hamiltonians, called stabilizer Hamiltonians, with translation symmetries and a small number of ground states that does not grow with the system size. We show that the model does not work as self-correcting quantum memory due to a certain topological constraint on geometric shapes of its logical operators. This quantum coding theoretical result implies that systems covered or approximated by the model cannot have thermally stable topological order, meaning that systems cannot be stable against both thermal fluctuations and local perturbations simultaneously in two and three spatial dimensions. - Highlights: → We define a class of physically realizable quantum codes. → We determine their coding and physical properties completely. → We establish the connection between topological order and self-correcting memory. → We find they do not work as self-correcting quantum memory. → We find they do not have thermally stable topological order.
Unconventional transformation of spin Dirac phase across a topological quantum phase transition
Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid
2015-01-01
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717
Conforti, Michele; Zambelli, Giacomo
2014-01-01
This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.
Topological Qubits from Valence Bond Solids
Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert
2018-05-01
Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.
Fold maps and positive topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Wrazidlo, Dominik Johannes
2017-04-12
The notion of positive TFT as coined by Banagl is specified by an axiomatic system based on Atiyah's original axioms for TFTs. By virtue of a general framework that is based on the concept of Eilenberg completeness of semirings from computer science, a positive TFT can be produced rigorously via quantization of systems of fields and action functionals - a process inspired by Feynman's path integral from classical quantum field theory. The purpose of the present dissertation thesis is to investigate a new differential topological invariant for smooth manifolds that arises as the state sum of the fold map TFT, which has been constructed by Banagl as a example of a positive TFT. By eliminating an internal technical assumption on the fields of the fold map TFT, we are able to express the informational content of the state sum in terms of an extension problem for fold maps from cobordisms into the plane. Next, we use the general theory of generic smooth maps into the plane to improve known results about the structure of the state sum in arbitrary dimensions, and to determine it completely in dimension two. The aggregate invariant of a homotopy sphere, which is derived from the state sum, naturally leads us to define a filtration of the group of homotopy spheres in order to understand the role of indefinite fold lines beyond a theorem of Saeki. As an application, we show how Kervaire spheres can be characterized by indefinite fold lines in certain dimensions.
Exploring photonic topological insulator states in a circuit-QED lattice
Li, Jing-Ling; Shan, Chuan-Jia; Zhao, Feng
2018-04-01
We propose a simple protocol to explore the topological properties of photonic integer quantum Hall states in a one-dimensional circiut-QED lattice. By periodically modulating the on-site photonic energies in such a lattice, we demonstrate that this one-dimensional lattice model can be mapped into a two-dimensional integer quantum Hall insulator model. Based on the lattice-based cavity input-output theory, we show that both the photonic topological protected edge states and topological invariants can be clearly measured from the final steady state of the resonator lattice after taking into account cavity dissipation. Interestingly, we also find that the measurement signals associated with the above topological features are quite unambitious even in five coupled dissipative resonators. Our work opens up a new prospect of exploring topological states with a small-size dissipative quantum artificial lattice, which is quite attractive to the current quantum optics community.
Energy Technology Data Exchange (ETDEWEB)
Wu, Yun [Iowa State Univ., Ames, IA (United States)
2016-12-17
The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. In addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).
Phase transition and field effect topological quantum transistor made of monolayer MoS2
Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.
2018-06-01
We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.
Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology
Energy Technology Data Exchange (ETDEWEB)
Llorens, J. M.; Wewior, L.; Cardozo de Oliveira, E. R.; Alén, B., E-mail: benito.alen@csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Ulloa, J. M.; Utrilla, A. D.; Guzmán, A.; Hierro, A. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)
2015-11-02
External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena.
Topology versus Anderson localization: Nonperturbative solutions in one dimension
Altland, Alexander; Bagrets, Dmitry; Kamenev, Alex
2015-02-01
We present an analytic theory of quantum criticality in quasi-one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters (g ,χ ) representing localization and topological properties, respectively. Certain critical values of χ (half-integer for Z classes, or zero for Z2 classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow of the integer quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding supersymmetric nonlinear sigma models. In Z2 classes we uncover a hidden supersymmetry, present at the quantum critical point.
Energy Technology Data Exchange (ETDEWEB)
Huang, Hong [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zhi, E-mail: physicswangzhi@gmail.com [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)
2017-06-28
Majorana bound states in topological Josephson junctions induce a 4π period current-phase relation. Direct detection of the 4π periodicity is complicated by the quasiparticle poisoning. We reveal that Majorana bound states are also signaled by the anomalous enhancement on the critical current of the junction. We show the landscape of the critical current for a nanowire Josephson junction under a varying Zeeman field, and reveal a sharp step feature at the topological quantum phase transition point, which comes from the anomalous enhancement of the critical current at the topological regime. In multi-band wires, the anomalous enhancement disappears for an even number of bands, where the Majorana bound states fuse into Andreev bound states. This anomalous critical current enhancement directly signals the existence of the Majorana bound states, and also provides a valid signature for the topological quantum phase transition. - Highlights: • We introduce the critical current step as a signal for the topological quantum phase transition. • We study the quantum phase transition in the topological nanowire under a rotating Zeeman field. • We show that the critical current anomaly gradually disappears for systems with more sub-bands.
3D Quantum Hall Effect of Fermi Arc in Topological Semimetals
Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.
2017-09-01
The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.
Hocking, John G
1988-01-01
""As textbook and reference work, this is a valuable addition to the topological literature."" - Mathematical ReviewsDesigned as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff t
Topology-preserving quantum deformation with non-numerical parameter
Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina
2013-11-01
We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.
Quantum oscillation evidence for a topological semimetal phase in ZrSnTe
Hu, Jin; Zhu, Yanglin; Gui, Xin; Graf, David; Tang, Zhijie; Xie, Weiwei; Mao, Zhiqiang
2018-04-01
The layered WHM-type (W =Zr /Hf /La , H =Si /Ge /Sn /Sb , M =S /Se /Te ) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W , H , and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological nontrivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.
Fermi points and topological quantum phase transitions in a multi-band superconductor.
Puel, T O; Sacramento, P D; Continentino, M A
2015-10-28
The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. The Kitaev model plays a guiding role in the search for Majorana modes in condensed matter systems. Also, the sp-chain with an anti-symmetric mixing among the s and p bands is a paradigmatic example of a topological insulator with well understood properties. Interestingly, these models share the same universality class for their topological quantum phase transitions. In this work we study a two-band model of spinless fermions with attractive inter-band interactions. We obtain its zero temperature phase diagram, which presents a rich variety of phases including a Weyl superconductor and a topological insulator. The transition from the topological to the trivial superconducting phase has critical exponents different from those of Kitaev's model.
Quantum capacitance in topological insulators under strain in a tilted magnetic field
Tahir, M.
2012-12-06
Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.
Quantum capacitance in topological insulators under strain in a tilted magnetic field
Tahir, M.; Schwingenschlö gl, Udo
2012-01-01
Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.
Directory of Open Access Journals (Sweden)
Nicolai Lang, Hans Peter Büchler
2018-01-01
Full Text Available Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.
Topology vs. Anderson localization: non-perturbative solutions in one dimension
Altland, Alexander; Bagrets, Dmitry; Kamenev, Alex
2014-01-01
We present an analytic theory of quantum criticality in quasi one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters $(g,\\chi)$ representing localization and topological properties, respectively. Certain critical values of $\\chi$ (half-integer for $\\Bbb{Z}$ classes, or zero for $\\Bbb{Z}_2$ classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated t...
Topology and Edge Modes in Quantum Critical Chains
Verresen, Ruben; Jones, Nick G.; Pollmann, Frank
2018-02-01
We show that topology can protect exponentially localized, zero energy edge modes at critical points between one-dimensional symmetry-protected topological phases. This is possible even without gapped degrees of freedom in the bulk—in contrast to recent work on edge modes in gapless chains. We present an intuitive picture for the existence of these edge modes in the case of noninteracting spinless fermions with time-reversal symmetry (BDI class of the tenfold way). The stability of this phenomenon relies on a topological invariant defined in terms of a complex function, counting its zeros and poles inside the unit circle. This invariant can prevent two models described by the same conformal field theory (CFT) from being smoothly connected. A full classification of critical phases in the noninteracting BDI class is obtained: Each phase is labeled by the central charge of the CFT, c ∈1/2 N , and the topological invariant, ω ∈Z . Moreover, c is determined by the difference in the number of edge modes between the phases neighboring the transition. Numerical simulations show that the topological edge modes of critical chains can be stable in the presence of interactions and disorder.
Quantum glassiness in clean strongly correlated systems: an example of topological overprotection
Chamon, Claudio
2005-03-01
Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Towards Noncommutative Topological Quantum Field Theory: New invariants for 3-manifolds
International Nuclear Information System (INIS)
Zois, I.P.
2016-01-01
We present some ideas for a possible Noncommutative Topological Quantum Field Theory (NCTQFT for short) and Noncommutative Floer Homology (NCFH for short). Our motivation is two-fold and it comes both from physics and mathematics: On the one hand we argue that NCTQFT is the correct mathematical framework for a quantum field theory of all known interactions in nature (including gravity). On the other hand we hope that a possible NCFH will apply to practically every 3-manifold (and not only to homology 3-spheres as ordinary Floer Homology currently does). The two motivations are closely related since, at least in the commutative case, Floer Homology Groups constitute the space of quantum observables of (3+1)-dim Topological Quantum Field Theory. Towards this goal we define some new invariants for 3-manifolds using the space of taut codim-1 foliations modulo coarse isotopy along with various techniques from noncommutative geometry. (paper)
Critical behaviour of SU(n) quantum chains and topological non-linear σ-models
International Nuclear Information System (INIS)
Affleck, I.; British Columbia Univ., Vancouver
1988-01-01
The critical behaviour of SU(n) quantum ''spin'' chains, Wess-Zumino-Witten σ-models and grassmanian σ-models at topological angle θ = π (of possible relevance to the quantum Hall effect) is reexamined. It is argued that an additional Z n symmetry is generally necessary to stabilize the massless phase. This symmetry is not present for the σ-models for n>2 and is only present for certain representations of ''spin'' chains. (orig.)
Fingerprints of bosonic symmetry protected topological state in a quantum point contact
Zhang, Rui-Xing; Liu, Chao-Xing
2016-01-01
In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for BSPT state, while either charge insulator/spin insulator or cha...
International Nuclear Information System (INIS)
Guo, Xiaoyong; Ren, Xiaobin; Wang, Gangzhi; Peng, Jie
2014-01-01
We investigate the impact of a time-reversal invariant external field on the topological phases of a three-dimensional (3D) topological insulator. By taking the momentum k z as a parameter, we calculate the spin-Chern number analytically. It is shown that both the quantum spin Hall phase and the integer quantum Hall phase can be realized in our system. When the strength of the external field is varied, a series of topological phase transitions occurs with the closing of the energy gap or the spin-spectrum gap. In a tight-binding form, the surface modes are discussed numerically to confirm the analytically results. (paper)
Chiral topological excitons in a Chern band insulator
Chen, Ke; Shindou, Ryuichi
2017-10-01
A family of semiconductors called Chern band insulators are shown to host exciton bands with nonzero topological Chern integers and chiral exciton edge modes. Using a prototypical two-band Chern insulator model, we calculate a cross-correlation function to obtain the exciton bands and their Chern integers. The lowest exciton band acquires Chern integers such as ±1 and ±2 in the electronic Chern insulator phase. The nontrivial topology can be experimentally observed both by a nonlocal optoelectronic response of exciton edge modes and by a phase shift in the cross-correlation response due to the bulk mode. Our result suggests that magnetically doped HgTe, InAs/GaSb quantum wells, and (Bi,Sb)2Te3 thin films are promising candidates for a platform of topological excitonics.
International Nuclear Information System (INIS)
Xiu-Ming, Zhang; Yi-Shi, Duan
2010-01-01
In the light of the decomposition of the SU(2) gauge potential for I = 1/2, we obtain the SU(2) Chern-Simons current over S 4 , i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern–Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of φ-mapping under the condition that the zero points of field Ψ are regular points. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)
Taming the cosmological constant in 2D causal quantum gravity with topology change
Loll, R.; Westra, W.; Zohren, S.
2005-01-01
As shown in previous work, there is a well-defined nonperturbative gravitational path integral including an explicit sum over topologies in the setting of Causal Dy- namical Triangulations in two dimensions. In this paper we derive a complete ana- lytical solution of the quantum continuum
Epperson, Michael
2013-01-01
This book presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. More broadly, as a philosophical enterprise, the authors propose this conceptual framework as a speculative ontological program that includes a rigorous mathematical formalism, providing a coherent and intuitive ontological scheme that is both novel and applicable practically to the physical sciences.
Quantum simulation of 2D topological physics in a 1D array of optical cavities.
Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-07-06
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.
Topological phase transitions and quantum Hall effect in the graphene family
Ledwith, P.; Kort-Kamp, W. J. M.; Dalvit, D. A. R.
2018-04-01
Monolayer staggered materials of the graphene family present intrinsic spin-orbit coupling and can be driven through several topological phase transitions using external circularly polarized lasers and static electric or magnetic fields. We show how topological features arising from photoinduced phase transitions and the magnetic-field-induced quantum Hall effect coexist in these materials and simultaneously impact their Hall conductivity through their corresponding charge Chern numbers. We also show that the spectral response of the longitudinal conductivity contains signatures of the various phase-transition boundaries, that the transverse conductivity encodes information about the topology of the band structure, and that both present resonant peaks which can be unequivocally associated with one of the four inequivalent Dirac cones present in these materials. This complex optoelectronic response can be probed with straightforward Faraday rotation experiments, allowing the study of the crossroads between quantum Hall physics, spintronics, and valleytronics.
Topological BF field theory description of topological insulators
International Nuclear Information System (INIS)
Cho, Gil Young; Moore, Joel E.
2011-01-01
Research highlights: → We show that a BF theory is the effective theory of 2D and 3D topological insulators. → The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. → The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. → Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a π flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.
Manetti, Marco
2015-01-01
This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.
Topological structures of adiabatic phase for multi-level quantum systems
International Nuclear Information System (INIS)
Liu Zhengxin; Zhou Xiaoting; Liu Xin; Liu Xiongjun; Chen Jingling
2007-01-01
The topological properties of adiabatic gauge fields for multi-level (three-level in particular) quantum systems are studied in detail. Similar to the result that the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system or angular momentum systems, etc) has a monopole structure, the curvature 2-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-level quantum systems are shown to have monopole-like (for all levels) or instanton-like (for the degenerate levels) structures
Methodology for bus layout for topological quantum error correcting codes
Energy Technology Data Exchange (ETDEWEB)
Wosnitzka, Martin; Pedrocchi, Fabio L.; DiVincenzo, David P. [RWTH Aachen University, JARA Institute for Quantum Information, Aachen (Germany)
2016-12-15
Most quantum computing architectures can be realized as two-dimensional lattices of qubits that interact with each other. We take transmon qubits and transmission line resonators as promising candidates for qubits and couplers; we use them as basic building elements of a quantum code. We then propose a simple framework to determine the optimal experimental layout to realize quantum codes. We show that this engineering optimization problem can be reduced to the solution of standard binary linear programs. While solving such programs is a NP-hard problem, we propose a way to find scalable optimal architectures that require solving the linear program for a restricted number of qubits and couplers. We apply our methods to two celebrated quantum codes, namely the surface code and the Fibonacci code. (orig.)
Chen, Wei
2018-03-01
For D -dimensional weakly interacting topological insulators in certain symmetry classes, the topological invariant can be calculated from a D - or (D +1 ) -dimensional integration over a certain curvature function that is expressed in terms of single-particle Green's functions. Based on the divergence of curvature function at the topological phase transition, we demonstrate how a renormalization group approach circumvents these integrations and reduces the necessary calculation to that for the Green's function alone, rendering a numerically efficient tool to identify topological phase transitions in a large parameter space. The method further unveils a number of statistical aspects related to the quantum criticality in weakly interacting topological insulators, including correlation function, critical exponents, and scaling laws, that can be used to characterize the topological phase transitions driven by either interacting or noninteracting parameters. We use 1D class BDI and 2D class A Dirac models with electron-electron and electron-phonon interactions to demonstrate these principles and find that interactions may change the critical exponents of the topological insulators.
Impact of topology in foliated quantum Einstein gravity.
Houthoff, W B; Kurov, A; Saueressig, F
2017-01-01
We use a functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation of gravity to study the scale dependence of Newton's coupling and the cosmological constant on a background spacetime with topology [Formula: see text]. The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of "gravitational instability", modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology [Formula: see text] (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology.
Impact of topology in foliated quantum Einstein gravity
Energy Technology Data Exchange (ETDEWEB)
Houthoff, W.B.; Saueressig, F. [Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Nijmegen (Netherlands); Kurov, A. [Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Nijmegen (Netherlands); Moscow State University, Department of Theoretical Physics, Moscow (Russian Federation)
2017-07-15
We use a functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation of gravity to study the scale dependence of Newton's coupling and the cosmological constant on a background spacetime with topology S{sup 1} x S{sup d}. The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of ''gravitational instability'', modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology S{sup 1} x T{sup d} (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology. (orig.)
International Nuclear Information System (INIS)
Yoshida, Beni
2011-01-01
Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.
Topological order and memory time in marginally-self-correcting quantum memory
Siva, Karthik; Yoshida, Beni
2017-03-01
We examine two proposals for marginally-self-correcting quantum memory: the cubic code by Haah and the welded code by Michnicki. In particular, we prove explicitly that they are absent of topological order above zero temperature, as their Gibbs ensembles can be prepared via a short-depth quantum circuit from classical ensembles. Our proof technique naturally gives rise to the notion of free energy associated with excitations. Further, we develop a framework for an ergodic decomposition of Davies generators in CSS codes which enables formal reduction to simpler classical memory problems. We then show that memory time in the welded code is doubly exponential in inverse temperature via the Peierls argument. These results introduce further connections between thermal topological order and self-correction from the viewpoint of free energy and quantum circuit depth.
Higher dimensional quantum Hall effect as A-class topological insulator
Energy Technology Data Exchange (ETDEWEB)
Hasebe, Kazuki, E-mail: khasebe@stanford.edu
2014-09-15
We perform a detail study of higher dimensional quantum Hall effects and A-class topological insulators with emphasis on their relations to non-commutative geometry. There are two different formulations of non-commutative geometry for higher dimensional fuzzy spheres: the ordinary commutator formulation and quantum Nambu bracket formulation. Corresponding to these formulations, we introduce two kinds of monopole gauge fields: non-abelian gauge field and antisymmetric tensor gauge field, which respectively realize the non-commutative geometry of fuzzy sphere in the lowest Landau level. We establish connection between the two types of monopole gauge fields through Chern–Simons term, and derive explicit form of tensor monopole gauge fields with higher string-like singularity. The connection between two types of monopole is applied to generalize the concept of flux attachment in quantum Hall effect to A-class topological insulator. We propose tensor type Chern–Simons theory as the effective field theory for membranes in A-class topological insulators. Membranes turn out to be fractionally charged objects and the phase entanglement mediated by tensor gauge field transforms the membrane statistics to be anyonic. The index theorem supports the dimensional hierarchy of A-class topological insulator. Analogies to D-brane physics of string theory are discussed too.
Building blocks of topological quantum chemistry: Elementary band representations
Cano, Jennifer; Bradlyn, Barry; Wang, Zhijun; Elcoro, L.; Vergniory, M. G.; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei
2018-01-01
The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time reversal in his theory of "elementary" band representations. In a recent paper [Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268] we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wave functions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.
Topological quantum information, virtual Jones polynomials and Khovanov homology
International Nuclear Information System (INIS)
Kauffman, Louis H
2011-01-01
In this paper, we give a quantum statistical interpretation of the bracket polynomial state sum 〈K〉, the Jones polynomial V K (t) and virtual knot theory versions of the Jones polynomial, including the arrow polynomial. We use these quantum mechanical interpretations to give new quantum algorithms for these Jones polynomials. In those cases where the Khovanov homology is defined, the Hilbert space C(K) of our model is isomorphic with the chain complex for Khovanov homology with coefficients in the complex numbers. There is a natural unitary transformation U:C(K) → C(K) such that 〈K〉 = Trace(U), where 〈K〉 denotes the evaluation of the state sum model for the corresponding polynomial. We show that for the Khovanov boundary operator ∂:C(K) → C(K), we have the relationship ∂U + U∂ = 0. Consequently, the operator U acts on the Khovanov homology, and we obtain a direct relationship between the Khovanov homology and this quantum algorithm for the Jones polynomial. (paper)
Nonperturbative sum over topologies in 2-D Lorentzian quantum gravity
Loll, R.; Westra, W.; Zohren, S.
The recent progress in the Causal Dynamical Triangulations (CDT) approach to quantum gravity indicates that gravitation is nonperturbatively renormalizable. We review some of the latest results in 1+1 and 3+1 dimensions with special emphasis on the 1+1 model. In particular we discuss a
From topological quantum field theories to supersymmetric gauge theories
International Nuclear Information System (INIS)
Bossard, G.
2007-10-01
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the β function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
Universal quantum computing using (Zd) 3 symmetry-protected topologically ordered states
Chen, Yanzhu; Prakash, Abhishodh; Wei, Tzu-Chieh
2018-02-01
Measurement-based quantum computation describes a scheme where entanglement of resource states is utilized to simulate arbitrary quantum gates via local measurements. Recent works suggest that symmetry-protected topologically nontrivial, short-ranged entangled states are promising candidates for such a resource. Miller and Miyake [npj Quantum Inf. 2, 16036 (2016), 10.1038/npjqi.2016.36] recently constructed a particular Z2×Z2×Z2 symmetry-protected topological state on the Union Jack lattice and established its quantum-computational universality. However, they suggested that the same construction on the triangular lattice might not lead to a universal resource. Instead of qubits, we generalize the construction to qudits and show that the resulting (d -1 ) qudit nontrivial Zd×Zd×Zd symmetry-protected topological states are universal on the triangular lattice, for d being a prime number greater than 2. The same construction also holds for other 3-colorable lattices, including the Union Jack lattice.
Fingerprints of a Bosonic Symmetry-Protected Topological State in a Quantum Point Contact
Zhang, Rui-Xing; Liu, Chao-Xing
2017-05-01
In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish a bosonic symmetry-protected topological (BSPT) state from a fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge-insulator-spin-conductor phase is found for the BSPT state, while either the charge-insulator-spin-insulator or the charge-conductor-spin-conductor phase is expected for the two-channel QSH state. Consequently, a simple transport measurement will reveal the fingerprint of bosonic topological physics in bilayer graphene systems.
Valley polarized quantum Hall effect and topological insulator phase transitions in silicene
Tahir, M.
2013-01-25
The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.
Energy Technology Data Exchange (ETDEWEB)
Kuai, Jian [School of Physics and Electronics, Yancheng Teachers College, Yancheng, 224002 Jiangsu (China); Da, H.X., E-mail: haixia8779@163.com [Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore)
2014-03-15
We use scattering matrix method to theoretically demonstrate that the quantum Goos–Hänchen shift of the surface on three-dimensional topological insulator coated by ferromagnetic strips is sensitive to the magnitude of ferromagnetic magnetization. The dependence of quantum Goos–Hänchen shift on magnetization and gate bias is investigated by performing station phase approach. It is found that quantum Goos–Hänchen shift is positive and large under the magnetic barrier but may be positive as well as negative values under the gate bias. Furthermore, the position of quantum Goos–Hänchen peak can also be modulated by the combination of gate bias and proximity magnetic effects. Our results indicate that topological insulators are another candidates to support quantum Goos–Hänchen shift. - Highlights: • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators is first investigated. • The magnetization affects quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators. • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators can be manipulated by the gate voltages.
A statistical mechanical approach to restricted integer partition functions
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-05-01
The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.
Quantum nonlocal theory of topological Fermi arc plasmons in Weyl semimetals
Andolina, Gian Marcello; Pellegrino, Francesco M. D.; Koppens, Frank H. L.; Polini, Marco
2018-03-01
The surface of a Weyl semimetal (WSM) displays Fermi arcs, i.e., disjoint segments of a two-dimensional Fermi contour. We present a quantum-mechanical nonlocal theory of chiral Fermi arc plasmons in WSMs with broken time-reversal symmetry. These are collective excitations constructed from topological Fermi arc and bulk electron states and arising from electron-electron interactions, which are treated in the realm of the random phase approximation. Our theory includes quantum effects associated with the penetration of the Fermi arc surface states into the bulk and dissipation, which is intrinsically nonlocal in nature and arises from decay processes mainly involving bulk electron-hole pair excitations.
Cabo-Montes de Oca, Alejandro
2002-01-01
It is shown how the electromagnetic response of 2DEG under Quantum Hall Effect regime, characterized by the Chern-Simons topological action, transforms the sample impurities and defects in charge-reservoirs that stabilize the Hall conductivity plateaus. The results determine the basic dynamical origin of the singular properties of localization under the occurrence of the Quantum Hall Effect obtained in the pioneering works of Laughlin and of Joynt and Prange, by means of a gauge invariance argument and a purely electronic analysis, respectively. The common intuitive picture of electrons moving along the equipotential lines gets an analytical realization through the Chern-Simons current and charge densities.
(3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces
Energy Technology Data Exchange (ETDEWEB)
Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2017-05-22
We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2018-03-01
We present a novel class of nonlinear dynamical systems-a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.
Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2018-03-01
We present a novel class of nonlinear dynamical systems—a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.
Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers
Zhai, Xuechao; Jin, Guojun
2013-09-01
Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.
Testing the Topological Nature of the Fractional Quantum Hall Edge
International Nuclear Information System (INIS)
Jolad, Shivakumar; Jain, Jainendra K.
2009-01-01
We carry out numerical diagonalization for much larger systems than before by restricting the fractional quantum Hall (FQH) edge excitations to a basis that is exact for a short-range interaction and very accurate for the Coulomb interaction. This enables us to perform substantial tests of the predicted universality of the edge physics. Our results suggest the possibility that the behavior of the FQH edge is intrinsically nonuniversal, even in the absence of edge reconstruction, and therefore may not bear a sharp and unique relation to the nature of the bulk FQH state
International Nuclear Information System (INIS)
Nastase, Horatiu; Stephanov, Misha; Nieuwenhuizen, Peter van; Rebhan, Anton
1999-01-01
We fix the long-standing ambiguity in the one-loop contribution to the mass of a 1 + 1-dimensional supersymmetric soliton by adopting a set of boundary conditions which follow from the symmetries of the action and which depend only on the topology of the sector considered, and by invoking a physical principle that ought to hold generally in quantum field theories with a topological sector: for vanishing mass and other dimensionful constants, the vacuum energies in the trivial and topological sectors have to become equal. In the two-dimensional N = 1 supersymmetric case we find a result which for the supersymmetric sine-Gordon model agrees with the known exact solution of the S-matrix but seems to violate the BPS bound. We analyze the non-trivial relation between the quantum soliton mass and the quantum BPS bound and find a resolution. For N = 2 supersymmetric theories, there are no one-loop corrections to the soliton mass and to the central charge (and also no ambiguities) so that the BPS bound is always saturated. Beyond one-loop there are no ambiguities in any theory, which we explicitly check by a two-loop calculation in the sine-Gordon model
Magnetoconductance in InN/GaN quantum wells in topological insulator phase
Bardyszewski, W.; Rodak, D.; Łepkowski, S. P.
2017-04-01
We present a theoretical study of the magnetic-field effect on the electronic properties of the two-dimensional, hypothetical topological insulator based on the InN/GaN quantum well system. Using the effective two-dimensional Hamiltonian, we have modelled magneto-transport in mesoscopic, symmetric samples of such materials. It turns out that, as in the case of the other two-dimensional topological insulators, the magnetoconductance in such samples is quantized due to the presence of helical edge states for magnetic fields below a certain critical value and for fairly small disorder strength. However, in our case the helical edge transport is much more prone to the disorder than, for example, in the case of topological insulators based on the HgTe/CdTe quantum wells. At low enough level of disorder and for the Fermi energy located in the energy gap of an infinite planar quantum well, we may expect an interesting phenomenon of non-monotonic dependence of the conductance on the magnetic field caused by the complicated interplay of couplings between the heavy hole, light hole and conduction subbands.
Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.
2018-06-01
In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.
General topological features and instanton vacuum in quantum Hall and spin liquids
International Nuclear Information System (INIS)
Pruisken, A.M.M.; Shankar, R.; Surendran, Naveen
2005-01-01
We introduce the concept of superuniversality in quantum Hall liquids and spin liquids. This concept has emerged from previous studies of the quantum Hall effect and states that all the fundamental features of the quantum Hall effect are generically displayed as general topological features of the θ parameter in nonlinear σ models in two dimensions. To establish superuniversality in spin liquids we revisit the mapping by Haldane who argued that the antiferromagnetic Heisenberg spin-s chain in 1+1 space-time dimensions is effectively described by the O(3) nonlinear σ model with a θ term. By combining the path integral representation for the dimerized spin s=1/2 chain with renormalization-group decimation techniques we generalize the Haldane approach to include a more complicated theory, the fermionic rotor chain, involving four different renormalization-group parameters. We show how the renormalization-group calculation technique can be used to build a bridge between the fermionic rotor chain and the O(3) nonlinear σ model with the θ term. As an integral and fundamental aspect of the mapping we establish the topological significance of the dangling spin at the edge of the chain. The edge spin in spin liquids is in all respects identical to the massless chiral edge excitations in quantum Hall liquids. We consider various different geometries of the spin chain such as open and closed chains, chains with an even and odd number of sides. We show that for each of the different geometries the θ term has a distinctly different physical meaning. We compare each case with a topologically equivalent quantum Hall liquid
Strain induced novel quantum magnetotransport properties of topological insulators
Energy Technology Data Exchange (ETDEWEB)
Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)
2016-12-15
Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electric modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment. - Highlights: • The strain removes the degeneracy in inversion symmetric Dirac cones. • The strain gives rise to the splitting and mixture of the Landau levels. • The strain leads to the asymmetric spectrum of the dc conductivity. • Shubnikov de Haas oscillations are shown to be superimposed on Weiss oscillations. • Interplay between strain and electric field causes different occupancy of TI states.
International Nuclear Information System (INIS)
Dey, Dayasindhu; Saha, Sudip Kumar; Deo, P. Singha; Kumar, Manoranjan; Sarkar, Sujit
2017-01-01
We study the topological quantum phase transition and also the nature of this transition using the density matrix renormalization group method. We observe the existence of topological quantum phase transition for repulsive interaction, however this phase is more stable for the attractive interaction. The length scale dependent study shows many new and important results and we show explicitly that the major contribution to the excitation comes from the edge of the system when the system is in the topological state. We also show the dependence of Majorana localization length for various values of chemical potential. (author)
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio
2018-01-01
Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
Cellular automaton decoders of topological quantum memories in the fault tolerant setting
International Nuclear Information System (INIS)
Herold, Michael; Eisert, Jens; Kastoryano, Michael J; Campbell, Earl T
2017-01-01
Active error decoding and correction of topological quantum codes—in particular the toric code—remains one of the most viable routes to large scale quantum information processing. In contrast, passive error correction relies on the natural physical dynamics of a system to protect encoded quantum information. However, the search is ongoing for a completely satisfactory passive scheme applicable to locally interacting two-dimensional systems. Here, we investigate dynamical decoders that provide passive error correction by embedding the decoding process into local dynamics. We propose a specific discrete time cellular-automaton decoder in the fault tolerant setting and provide numerical evidence showing that the logical qubit has a survival time extended by several orders of magnitude over that of a bare unencoded qubit. We stress that (asynchronous) dynamical decoding gives rise to a Markovian dissipative process. We hence equate cellular-automaton decoding to a fully dissipative topological quantum memory, which removes errors continuously. In this sense, uncontrolled and unwanted local noise can be corrected for by a controlled local dissipative process. We analyze the required resources, commenting on additional polylogarithmic factors beyond those incurred by an ideal constant resource dynamical decoder. (paper)
Quantum condensates and topological bosons in coupled light-matter excitations
Energy Technology Data Exchange (ETDEWEB)
Janot, Alexander
2016-02-29
Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.
Wang, Hai Tao; Cho, Sam Young
2015-01-14
In order to investigate the quantum phase transition in the one-dimensional quantum compass model, we numerically calculate non-local string correlations, entanglement entropy and fidelity per lattice site by using the infinite matrix product state representation with the infinite time evolving block decimation method. In the whole range of the interaction parameters, we find that four distinct string orders characterize the four different Haldane phases and the topological quantum phase transition occurs between the Haldane phases. The critical exponents of the string order parameters β = 1/8 and the cental charges c = 1/2 at the critical points show that the topological phase transitions between the phases belong to an Ising type of universality classes. In addition to the string order parameters, the singularities of the second derivative of the ground state energies per site, the continuous and singular behaviors of the Von Neumann entropy and the pinch points of the fidelity per lattice site manifest that the phase transitions between the phases are of the second-order, in contrast to the first-order transition suggested in previous studies.
Spaans, M.
General Relativity is extended into the quantum domain. A thought experiment is explored to derive a specific topological build-up for Planckian spacetime. The presented arguments are inspired by Feynman's path integral for superposition and Wheeler's quantum foam of Planck mass mini black holes
Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States
Liu, Zhao; Möller, Gunnar; Bergholtz, Emil J.
2017-09-01
We investigate extrinsic wormholelike twist defects that effectively increase the genus of space in lattice versions of multicomponent fractional quantum Hall systems. Although the original band structure is distorted by these defects, leading to localized midgap states, we find that a new lowest flat band representing a higher genus system can be engineered by tuning local single-particle potentials. Remarkably, once local many-body interactions in this new band are switched on, we identify various Abelian and non-Abelian fractional quantum Hall states, whose ground-state degeneracy increases with the number of defects, i.e, with the genus of space. This sensitivity of topological degeneracy to defects provides a "proof of concept" demonstration that genons, predicted by topological field theory as exotic non-Abelian defects tied to a varying topology of space, do exist in realistic microscopic models. Specifically, our results indicate that genons could be created in the laboratory by combining the physics of artificial gauge fields in cold atom systems with already existing holographic beam shaping methods for creating twist defects.
Quantum and classical contributions to linear magnetoresistance in topological insulator thin films
International Nuclear Information System (INIS)
Singh, Sourabh; Gopal, R. K.; Sarkar, Jit; Mitra, Chiranjib
2016-01-01
Three dimensional topological insulators possess backscattering immune relativistic Dirac fermions on their surface due to nontrivial topology of the bulk band structure. Both metallic and bulk insulating topological insulators exhibit weak-antilocalization in the low magnetic field and linear like magnetoresistance in higher fields. We explore the linear magnetoresistance in bulk insulating topological insulator Bi 2-x Sb x Te 3-y Se y thin films grown by pulsed laser deposition technique. Thin films of Bi 2-x Sb x Te 3-y Se y were found to be insulating in nature, which conclusively establishes the origin of linear magnetoresistance from surface Dirac states. The films were thoroughly characterized for their crystallinity and composition and then subjected to transport measurements. We present a careful analysis taking into considerations all the existing models of linear magnetoresistance. We comprehend that the competition between classical and quantum contributions to magnetoresistance results in linear magnetoresistance in high fields. We observe that the cross-over field decreases with increasing temperature and the physical argument for this behavior is explained.
Quantum coherent transport in SnTe topological crystalline insulator thin films
Energy Technology Data Exchange (ETDEWEB)
Assaf, B. A.; Heiman, D. [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Katmis, F.; Moodera, J. S. [Francis Bitter Magnet Laboratory, MIT, Cambridge, Massachusetts 02139 (United States); Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Wei, P. [Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Zhang, Z. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bennett, S. P.; Harris, V. G. [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)
2014-09-08
Topological crystalline insulators (TCI) are unique systems where a band inversion that is protected by crystalline mirror symmetry leads to a multiplicity of topological surface states. Binary SnTe is an attractive lead-free TCI compound; the present work on high-quality thin films provides a route for increasing the mobility and reducing the carrier density of SnTe without chemical doping. Results of quantum coherent magnetotransport measurements reveal a multiplicity of Dirac surface states that are unique to TCI. Modeling of the weak antilocalization shows variations in the extracted number of carrier valleys that reflect the role of coherent intervalley scattering in coupling different Dirac states on the degenerate TCI surface.
Towards Noncommutative Topological Quantum Field Theory: Tangential Hodge-Witten cohomology
International Nuclear Information System (INIS)
Zois, I P
2014-01-01
Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called ''tangential cohomology'' of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for tangential cohomology of foliations by mimicing Witten's approach to ordinary Morse theory by perturbations of the Laplacian
Towards Noncommutative Topological Quantum Field Theory – Hodge theory for cyclic cohomology
International Nuclear Information System (INIS)
Zois, I P
2014-01-01
Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called ''tangential cohomology'' of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for cyclic and Hochschild cohomology for the corresponding C*-algebra of a foliation
Quantum influence of topological defects in Goedel-type space-times
Energy Technology Data Exchange (ETDEWEB)
Carvalho, Josevi [Universidade Federal de Campina Grande, Unidade Academica de Tecnologia de Alimentos, Centro de Ciencias e Tecnologia Agroalimentar, Pombal, PB (Brazil); Carvalho, M.; Alexandre, M. de [Universidade Federal de Alagoas, Instituto de Fisica, Maceio, AL (Brazil); Furtado, Claudio [Universidade Federal da Paraiba, Cidade Universitaria, Departamento de Fisica, CCEN, Joao Pessoa, PB (Brazil)
2014-06-15
In this contribution, some solutions of the Klein-Gordon equation in Goedel-type metrics with an embedded cosmic string are considered. The quantum dynamics of a scalar particle in three spaces whose metrics are described by different classes of Goedel solutions, with a cosmic string passing through the spaces, is found. The energy levels and eigenfunctions of the Klein-Gordon operator are obtained. We show that these eigenvalues and eigenfunctions depend on the parameter characterizing the presence of a cosmic string in the space-time. We note that the presence of topological defects breaks the degeneracy of energy levels. (orig.)
Lee, Minchul; Choi, Mahn-Soo
2014-08-15
We investigate the mesoscopic resistor-capacitor circuit consisting of a quantum dot coupled to spatially separated Majorana fermion modes in a chiral topological superconductor. We find substantially enhanced relaxation resistance due to the nature of Majorana fermions, which are their own antiparticles and are composed of particle and hole excitations in the same abundance. Further, if only a single Majorana mode is involved, the zero-frequency relaxation resistance is completely suppressed due to a destructive interference. As a result, the Majorana mode opens an exotic dissipative channel on a superconductor which is typically regarded as dissipationless due to its finite superconducting gap.
Holographic control of information and dynamical topology change for composite open quantum systems
Aref'eva, I. Ya.; Volovich, I. V.; Inozemcev, O. V.
2017-12-01
We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.
Fingerprints of bosonic symmetry protected topological state in a quantum point contact
Zhang, Rui-Xing; Liu, Chao-Xing
In this work, we study the transport through a quantum point contact for two-channel interacting helical liquids that exist at the edge of a bilayer graphene under a strong magnetic field. We identify ``smoking gun'' transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for a weak repulsive interaction in the BSPT state, while either charge insulator/spin insulator or charge conductor/spin conductor phase is expected for the two-channel QSH state. In the strong interaction limit, shot noise measurement for the BSPT state is expect to reveal charge-2e instanton tunneling, in comparison with the charge-e tunneling in the two-channel QSH phase.
Nickerson, Naomi H; Li, Ying; Benjamin, Simon C
2013-01-01
A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.
Kim, Jihwan; Kim, Bum-Kyu; Kim, Hong-Seok; Hwang, Ahreum; Kim, Bongsoo; Doh, Yong-Joo
2017-11-08
We report on the fabrication and electrical transport properties of superconducting junctions made of β-Ag 2 Se topological insulator (TI) nanowires in contact with Al superconducting electrodes. The temperature dependence of the critical current indicates that the superconducting junction belongs to a short and diffusive junction regime. As a characteristic feature of the narrow junction, the critical current decreases monotonously with increasing magnetic field. The stochastic distribution of the switching current exhibits the macroscopic quantum tunneling behavior, which is robust up to T = 0.8 K. Our observations indicate that the TI nanowire-based Josephson junctions can be a promising building block for the development of nanohybrid superconducting quantum bits.
Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells
Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu
2017-07-01
Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.
Quantum spin Hall effect in IV-VI topological crystalline insulators
Safaei, S.; Galicka, M.; Kacman, P.; Buczko, R.
2015-06-01
We envision that the quantum spin Hall effect should be observed in (111)-oriented thin films of SnSe and SnTe topological crystalline insulators. Using a tight-binding approach supported by first-principles calculations of the band structures, we demonstrate that in these films the energy gaps in the two-dimensional band spectrum depend in an oscillatory fashion on the layer thickness. These results as well as the calculated topological invariant indexes and edge state spin polarizations show that for films ˜20-40 monolayers thick a two-dimensional topological insulator phase appears. In this range of thicknesses in both SnSe and SnTe, (111)-oriented films edge states with Dirac cones with opposite spin polarization in their two branches are obtained. While in the SnTe layers a single Dirac cone appears at the projection of the {\\boldsymbol{}}\\bar{Γ } point of the two-dimensional Brillouin zone, in the SnSe (111)-oriented layers three Dirac cones at {\\boldsymbol{}}\\bar{M} points projections are predicted.
General response formula and application to topological insulator in quantum open system.
Shen, H Z; Qin, M; Shao, X Q; Yi, X X
2015-11-01
It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics.
International Nuclear Information System (INIS)
Bakke, Knut; Furtado, Claudio
2012-01-01
We discuss holonomic quantum computation based on the scalar Aharonov–Bohm effect for a neutral particle. We show that the interaction between the magnetic dipole moment and external fields yields a non-abelian quantum phase allowing us to make any arbitrary rotation on a one-qubit. Moreover, we show that the interaction between the magnetic dipole moment and a magnetic field in the presence of a topological defect yields an analogue effect of the scalar Aharonov–Bohm effect for a neutral particle, and a new way of building one-qubit quantum gates. - Highlights: ► Holonomic quantum computation for neutral particles. ► Implementation of one-qubit quantum gates based on the Anandan quantum phase. ► Implementation of one-qubit quantum gates based on the scalar Aharonov–Bohm effect.
Adiabatic photo-steering theory in topological insulators
Inoue, Jun-ichi
2014-12-01
Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.
Duality between the Deconfined Quantum-Critical Point and the Bosonic Topological Transition
Directory of Open Access Journals (Sweden)
Yan Qi Qin
2017-09-01
Full Text Available Recently, significant progress has been made in (2+1-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities; i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter systems: the one relating the easy-plane noncompact CP^{1} model (NCCP^{1} and noncompact quantum electrodynamics (QED with two flavors (N=2 of massless two-component Dirac fermions. The easy-plane NCCP^{1} model is the field theory of the putative deconfined quantum-critical point separating a planar (XY antiferromagnet and a dimerized (valence-bond solid ground state, while N=2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work, we present strong numerical support for the proposed duality. We realize the N=2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC simulations. Using stochastic series expansion QMC simulations, we study a planar version of the S=1/2 J-Q spin Hamiltonian (a quantum XY model with additional multispin couplings and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. In the J-Q model, we find both continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims of no deconfined
Quantum pumping induced by disorder in one dimension
Energy Technology Data Exchange (ETDEWEB)
Qin, Jihong [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Huaiming, E-mail: hmguo@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China)
2016-07-01
The topological property in one dimension is protected by symmetry. Based on a concrete model, we study the effect of disorder preserving or breaking the symmetry and show the nature of symmetry protecting in the one dimensional topological phase. A stable quantum pumping can be constructed within the topological model. It is shown that an integer charge is pumped across a periodic chain in a cyclic process. Furthermore we find that not only the quantum pumping is stable to on-site disorder, but also can be induced by it. These results may be realized experimentally using quasicrystals. - Highlights: • We study the effect of disorder preserving or breaking the symmetry. • We show that an integer charge is pumped across a periodic chain in a cyclic process. • Not only the quantum pumping is stable to on-site disorder, but also can be induced by it.
Spaans, M.
2013-01-01
General Relativity is extended into the quantum domain. A thought experiment is ex- plored to derive a specific topological build-up for Planckian space-time. The presented arguments are inspired by Feynman’s path integral for superposition andWheeler’s quan- tum foam of Planck mass mini black
Quantum capacitance of an ultrathin topological insulator film in a magnetic field
Tahir, M.; Sabeeh, K.; Schwingenschlö gl, Udo
2013-01-01
We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.
Energy Technology Data Exchange (ETDEWEB)
Sukhanov, Aleksei A.
2017-05-15
We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.
International Nuclear Information System (INIS)
Chaichian, M.; Tureanu, A.; Demichev, A.; Presnajder, P.; Sheikh-Jabbari, M.M.
2001-02-01
After discussing the peculiarities of quantum systems on noncommutative (NC) spaces with nontrivial topology and the operator representation of the *-product on them, we consider the Aharonov-Bohm and Casimir effects for such spaces. For the case of the Aharonov-Bohm effect, we have obtained an explicit expression for the shift of the phase, which is gauge invariant in the NC sense. The Casimir energy of a field theory on a NC cylinder is divergent, while it becomes finite on a torus, when the dimensionless parameter of noncommutativity is a rational number. The latter corresponds to a well-defined physical picture. Certain distinctions from other treatments based on a different way of taking the noncommutativity into account are also discussed. (author)
Sukhanov, Aleksei A.
2017-05-01
We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.
Quantum capacitance of an ultrathin topological insulator film in a magnetic field
Tahir, M.
2013-02-12
We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.
Arnold, Vladimir; Zorich, Anton
1999-01-01
This volume offers an account of the present state of the art in pseudoperiodic topology-a young branch of mathematics, born at the boundary between the ergodic theory of dynamical systems, topology, and number theory. Related topics include the theory of algorithms, convex integer polyhedra, Morse inequalities, real algebraic geometry, statistical physics, and algebraic number theory. The book contains many new results. Most of the articles contain brief surveys on the topics, making the volume accessible to a broad audience. From the Preface by V.I. Arnold: "The authors … have done much to s
Hassani Gangaraj, Seyyed Ali
At the interface of two different media such as metal and vacuum, light can couple to the electrons of the metal to form a wave that is bound to the interface. This wave is called a surface plasmon-plariton (SPP), generally characterized by intense fields that decay quickly away from the interface. Due to their unique properties, SPPs have found a broad range of applications in various areas of science, including light harvesting, medical science, energy transfer and imaging. In addition to the widely studied classical plasmonics, quantum plasmonics is also attracting considerable interest in the electromagnetics and quantum optics communities. In this thesis several new areas of investigation into quantum plasmonics is presented, focusing on entanglement mediated by SPPs in several different environments: 3D waveguides, 2D surfaces and on photonic topological insulators. Entanglement is an experimentally verified property of nature where pairs of quantum systems are connected in some manner such that the quantum state of each system cannot be described independently. Generating, preserving, and controlling entanglement is necessary for many quantum computer implementations. It is highly desirable to control entanglement between two multi-level emitters such as quantum dots via a macroscopic, easily-adjusted external parameter. SPPs guided by the medium, as a coupling agent between quantum dots, are highly tunable and offer a promising way to achieve having control over a SPP mediated entanglement. We first consider two quantum dots placed above 3D finite length waveguides. We have restricted our consideration to two waveguides types, i.e. a metal nanowire and a groove waveguide. Our main results in this work are to show that realistic finite-length nanowire and groove waveguides, with their associated discontinuities, play a crucial role in the engineering of highly entangled states. It is demonstrated that proper positioning of the emitters with respect to the
Landman, Bruce
2014-01-01
""Integers"" is a refereed online journal devoted to research in the area of combinatorial number theory. It publishes original research articles in combinatorics and number theory. This work presents all papers of the 2013 volume in book form.
Neutrosophic Integer Programming Problem
Directory of Open Access Journals (Sweden)
Mai Mohamed
2017-02-01
Full Text Available In this paper, we introduce the integer programming in neutrosophic environment, by considering coffecients of problem as a triangulare neutrosophic numbers. The degrees of acceptance, indeterminacy and rejection of objectives are simultaneously considered.
Topologies on the algebra of test functions in quantum field theory
International Nuclear Information System (INIS)
Hofmann, G.
1982-01-01
The algebraic structure of the tensor algebra over the Schwartz spce defines two topologies. The properties of the locally convex topologies situated between the topologies defined above are studied and the families of topologies for which the positive cone is normal or non-normal are constructed
International Nuclear Information System (INIS)
Khalili, F. Ya.
2007-01-01
The intracavity topologies of laser gravitational-wave detectors proposed several years ago are the promising way to obtain sensitivity of these devices significantly better than the Standard Quantum Limit (SQL). In essence, the intracavity detector is a two-stage device where the end mirrors displacement created by the gravitational wave is transferred to the displacement of an additional local mirror by means of the optical rigidity. The local mirror positions have to be monitored by an additional local meter. It is evident that the local meter precision defines the sensitivity of the detector. To overcome the SQL, the quantum variational measurement can be used in the local meter. In this method a frequency-dependent correlation between the meter backaction noise and measurement noise is introduced, which allows us to eliminate the backaction noise component from the meter output signal. This correlation is created by means of an additional filter cavity. In this article the sensitivity limitations of this scheme imposed by the optical losses both in the local meter itself and in the filter cavity are estimated. It is shown that the main sensitivity limitation stems from the filter cavity losses. In order to overcome it, it is necessary to increase the filter cavity length. In a preliminary prototype experiment, an approximate 10 m long filter cavity can be used to obtain sensitivity approximately 2-3 times better than the SQL. For future Quantum Non-Demolition (QND) gravitational-wave detectors with sensitivity about 10 times better than the SQL, the filter cavity length should be within kilometer range
Emerging Trends in Topological Insulators and Topological ...
Indian Academy of Sciences (India)
/fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...
Quantum analysis of Jackiw and Teitelboim's model for (1+1)D gravity and topological gauge theory
International Nuclear Information System (INIS)
Terao, Haruhiko
1993-01-01
We study the BRST quantization of the (1+1)-dimensional gravity model proposed by Jackiw and Teitelboim and also the topological gauge model which is equivalent to the gravity model at least classically. The gravity model quantized in the light-cone gauge is found to be a free theory with a nilpotent BRST charge. We show also that there exist twisted N=2 superconformal algebras in the Jackiw-Teitelboim model as well as in the topological gauge model. We discuss the quantum equivalence between the gravity theory and the topological gauge theory. It is shown that these theories are indeed equivalent to each other in the light-cone gauge. (orig.)
Li, C.; De Ronde, B.; Nikitin, A.; Huang, Y.; Golden, M.S.; De Visser, A.; Brinkman, A.
2017-01-01
The quantum Hall effect is studied in the topological insulator BiSbTeSe2. By employing top- and back-gate electric fields at high magnetic field, the Landau levels of the Dirac cones in the top and bottom topological surface states can be tuned independently. When one surface is tuned to the
Zvyagin, A. A.
2018-04-01
Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.
Buttingsrud, Bård; Ryeng, Einar; King, Ross D; Alsberg, Bjørn K
2006-06-01
The requirement of aligning each individual molecule in a data set severely limits the type of molecules which can be analysed with traditional structure activity relationship (SAR) methods. A method which solves this problem by using relations between objects is inductive logic programming (ILP). Another advantage of this methodology is its ability to include background knowledge as 1st-order logic. However, previous molecular ILP representations have not been effective in describing the electronic structure of molecules. We present a more unified and comprehensive representation based on Richard Bader's quantum topological atoms in molecules (AIM) theory where critical points in the electron density are connected through a network. AIM theory provides a wealth of chemical information about individual atoms and their bond connections enabling a more flexible and chemically relevant representation. To obtain even more relevant rules with higher coverage, we apply manual postprocessing and interpretation of ILP rules. We have tested the usefulness of the new representation in SAR modelling on classifying compounds of low/high mutagenicity and on a set of factor Xa inhibitors of high and low affinity.
Integer and combinatorial optimization
Nemhauser, George L
1999-01-01
Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION ""This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list.""-Optima ""A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such f
Topological hierarchy matters — topological matters with superlattices of defects
International Nuclear Information System (INIS)
He Jing; Kou Su-Peng
2016-01-01
Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)
Topological aspects of classical and quantum (2+1)-dimensional gravity
International Nuclear Information System (INIS)
Soda, Jiro.
1990-03-01
In order to understand (3+1)-dimensional gravity, (2+1)-dimensional gravity is studied as a toy model. Our emphasis is on its topological aspects, because (2+1)-dimensional gravity without matter fields has no local dynamical degrees of freedom. Starting from a review of the canonical ADM formalism and York's formalism for the initial value problem, we will solve the evolution equations of (2+1)-dimensional gravity with a cosmological constant in the case of g=0 and g=1, where g is the genus of Riemann surface. The dynamics of it is understood as the geodesic motion in the moduli space. This remarkable fact is the same with the case of (2+1)-dimensional pure gravity and seen more apparently from the action level. Indeed we will show the phase space reduction of (2+1)-dimensional gravity in the case of g=1. For g ≥ 2, unfortunately we are not able to explicitly perform the phase space reduction of (2+1)-dimensional gravity due to the complexity of the Hamiltonian constraint equation. Based on this result, we will attempt to incorporate matter fields into (2+1)-dimensional pure gravity. The linearization and mini-superspace methods are used for this purpose. By using the linearization method, we conclude that the transverse-traceless part of the energy-momentum tensor affects the geodesic motion. In the case of the Einstein-Maxwell theory, we observe that the Wilson lines interact with the geometry to bend the geodesic motion. We analyze the mini-superspace model of (2+1)-dimensional gravity with the matter fields in the case of g=0 and g=1. For g=0, a wormhole solution is found but for g=1 we can not find an analogous solution. Quantum gravity is also considered and we succeed to perform the phase space reduction of (2+1)-dimensional gravity in the case of g=1 at the quantum level. From this analysis we argue that the conformal rotation is not necessary in the sense that the Euclidean quantum gravity is inappropriate for the full gravity. (author)
Energy Technology Data Exchange (ETDEWEB)
Khomitsky, D. V., E-mail: khomitsky@phys.unn.ru; Chubanov, A. A.; Konakov, A. A. [Lobachevsky National Research State University of Nizhny Novgorod, Department of Physics (Russian Federation)
2016-12-15
The dynamics of Dirac–Weyl spin-polarized wavepackets driven by a periodic electric field is considered for the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological insulator with Dirac–Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular and irregular regimes determined by the strength and frequency of the driving field is found analytically within the quasiclassical approach by means of the Ince–Strutt diagram for the Mathieu equation, and is supported by full quantum-mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos. Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for further experimental and technological applications of spindependent phenomena in nanostructures based on topological insulators.
Large quantum rings in the ν > 1 quantum Hall regime
International Nuclear Information System (INIS)
Raesaenen, E; Aichinger, M
2009-01-01
We study computationally the ground-state properties of large quantum rings in the filling-factor ν>1 quantum Hall regime. We show that the arrangement of electrons into different Landau levels leads to clear signatures in the total energies as a function of the magnetic field. In this context, we discuss possible approximations for the filling factor ν in the system. We are able to characterize integer-ν states in quantum rings in an analogy with conventional quantum Hall droplets. We also find a partially spin-polarized state between ν = 2 and 3. Despite the specific topology of a quantum ring, this state is strikingly reminiscent of the recently found ν = 5/2 state in a quantum dot.
Large quantum rings in the ν > 1 quantum Hall regime.
Räsänen, E; Aichinger, M
2009-01-14
We study computationally the ground-state properties of large quantum rings in the filling-factor ν>1 quantum Hall regime. We show that the arrangement of electrons into different Landau levels leads to clear signatures in the total energies as a function of the magnetic field. In this context, we discuss possible approximations for the filling factor ν in the system. We are able to characterize integer-ν states in quantum rings in an analogy with conventional quantum Hall droplets. We also find a partially spin-polarized state between ν = 2 and 3. Despite the specific topology of a quantum ring, this state is strikingly reminiscent of the recently found ν = 5/2 state in a quantum dot.
Fractional and integer charges from Levinson's theorem
International Nuclear Information System (INIS)
Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.
2001-01-01
We compute fractional and integer fermion quantum numbers of static background field configurations using phase shifts and Levinson's theorem. By extending fermionic scattering theory to arbitrary dimensions, we implement dimensional regularization in a (1+1)-dimensional gauge theory. We demonstrate that this regularization procedure automatically eliminates the anomaly in the vector current that a naive regulator would produce. We also apply these techniques to bag models in one and three dimensions
Energy Technology Data Exchange (ETDEWEB)
Choi, Hyunwoo, E-mail: chw0089@gmail.com [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of); Shin, Changhwan, E-mail: cshin@uos.ac.kr [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)
2017-06-15
Highlights: • The quantum capacitance in topological insulator (TI) at room temperature is directly revealed. • The physical origin of quantum capacitance, the two dimensional surface state of TI, is experimentally validated. • Theoretically calculated results of ideal quantum capacitance can well predict the experimental data. - Abstract: A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO{sub 2}-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C{sub T}{sup −1} = C{sub Q}{sup −1} + C{sub SiO2}{sup −1}). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron–electron interaction in the two-dimensional surface state of the TI.
Topological phase transitions in an inverted InAs/GaSb quantum well driven by tilted magnetic fields
Hsu, Hsiu-Chuan; Jhang, Min-Jyun; Chen, Tsung-Wei; Guo, Guang-Yu
2017-05-01
The helical edge states in a quantum spin Hall insulator are presumably protected by time-reversal symmetry. However, even in the presence of magnetic field which breaks time-reversal symmetry, the helical edge conduction can still exist, dubbed as pseudo quantum spin Hall effect. In this paper, the effects of the magnetic fields on the pseudo quantum spin Hall effect and the phase transitions are studied. We show that an in-plane magnetic field drives a pseudo quantum spin Hall state to a metallic state at a high field. Moreover, at a fixed in-plane magnetic field, an increasing out-of-plane magnetic field leads to a reentrance of pseudo quantum spin Hall state in an inverted InAs/GaSb quantum well. The edge state probability distribution and Chern numbers are calculated to verify that the reentrant states are topologically nontrivial. The origin of the reentrant behavior is attributed to the nonmonotonic bending of Landau levels and the Landau level mixing caused by the orbital effect induced by the in-plane magnetic field. The robustness to disorder is demonstrated by the numerically calculated quantized conductance for disordered nanowires within Landauer-Büttiker formalism.
Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains
Cao, Ting; Zhao, Fangzhou; Louie, Steven G.
2017-08-01
We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.
Energy Technology Data Exchange (ETDEWEB)
Rogacheva, E. I.; Budnik, A. V.; Sipatov, A. Yu.; Nashchekina, O. N. [National Technical University “Kharkov Polytechnic Institute,” 21 Frunze St., Kharkov 61002 (Ukraine); Dresselhaus, M. S. [Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)
2015-02-02
The dependences of the electrical conductivity, the Hall coefficient, and the Seebeck coefficient on the layer thickness d (d = 18−600 nm) of p-type topological insulator Bi{sub 2}Te{sub 3} thin films grown by thermal evaporation in vacuum on glass substrates were obtained at room temperature. In the thickness range of d = 18–100 nm, sustained oscillations with a substantial amplitude were revealed. The observed oscillations are well approximated by a harmonic function with a period Δd = (9.5 ± 0.5) nm. At d > 100 nm, the transport coefficients practically do not change as d is increased. The oscillations of the kinetic properties are attributed to the quantum size effects due to the hole confinement in the Bi{sub 2}Te{sub 3} quantum wells. The results of the theoretical calculations of Δd within the framework of a model of an infinitely deep potential well are in good agreement with the experimental results. It is suggested that the substantial amplitude of the oscillations and their sustained character as a function of d are connected with the topologically protected gapless surface states of Bi{sub 2}Te{sub 3} and are inherent to topological insulators.
Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?
Berenstein, David; Miller, Alexandra
2017-06-30
In the context of Lin-Lunin-Maldacena geometries, we show that superpositions of classical coherent states of trivial topology can give rise to new classical limits where the topology of spacetime has changed. We argue that this phenomenon implies that neither the topology nor the geometry of spacetime can be the result of an operator measurement. We address how to reconcile these statements with the usual semiclassical analysis of low energy effective field theory for gravity.
Hard equality constrained integer knapsacks
Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.
2002-01-01
We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve
Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.
Zhou, Tao; Gao, Yi; Wang, Z D
2014-06-11
We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.
Search for New Quantum Algorithms
National Research Council Canada - National Science Library
Lomonaco, Samuel J; Kauffman, Louis H
2006-01-01
.... Additionally, methods and techniques of quantum topology have been used to obtain new results in quantum computing including discovery of a relationship between quantum entanglement and topological linking...
Wu, Zhenhua; Luo, Kun; Yu, Jiahan; Wu, Xiaobo; Lin, Liangzhong
2018-02-01
Electron tunneling through a single magnetic barrier in a HgTe topological insulator has been theoretically investigated. We find that the perpendicular magnetic field would not lead to spin-flip of the edge states due to the conservation of the angular moment. By tuning the magnetic field and the Fermi energy, the edge channels can be transited from switch-on states to switch-off states and the current from unpolarized states can be filtered to fully spin polarized states. These features offer us an efficient way to control charge/spin transport in a HgTe/CdTe quantum well, and pave a way to construct the nanoelectronic devices utilizing the topological edge states.
Topological setting of Bessel functions
International Nuclear Information System (INIS)
Mekhfi, M.
1995-11-01
We start from the topology of the punctured plane encoded within its homotopy group which is isomorphic to the set of integers Z. We then realize group elements Π(n), n is an element of Z as differential operators on the space of analytic functions. Using plausible physical arguments we select a subset of functions which we identify with integer orders reduced Bessel functions. On the other hand we propose a unifying new formula of topological origin, generating real orders Bessel functions out of integers orders ones, the generator being an operator built entirely out of the Π s . We thus have shown that the topology (of the puntured plane) is underlying the inner structure of Bessel functions, in addition it unifies them independently of the orders being integers or reals. (author). 4 refs
Investigating Students’ Development of Learning Integer Concept and Integer Addition
Directory of Open Access Journals (Sweden)
Nenden Octavarulia Shanty
2016-09-01
Full Text Available This research aimed at investigating students’ development of learning integer concept and integer addition. The investigation was based on analyzing students’ works in solving the given mathematical problems in each instructional activity designed based on Realistic Mathematics Education (RME levels. Design research was chosen to achieve and to contribute in developing a local instruction theory for teaching and learning of integer concept and integer addition. In design research, the Hypothetical Learning Trajectory (HLT plays important role as a design and research instrument. It was designed in the phase of preliminary design and tested to three students of grade six OASIS International School, Ankara – Turkey. The result of the experiments showed that temperature in the thermometer context could stimulate students’ informal knowledge of integer concept. Furthermore, strategies and tools used by the students in comparing and relating two temperatures were gradually be developed into a more formal mathematics. The representation of line inside thermometer which then called the number line could bring the students to the last activity levels, namely rules for adding integer, and became the model for more formal reasoning. Based on these findings, it can be concluded that students’ learning integer concept and integer addition developed through RME levels.Keywords: integer concept, integer addition, Realistic Mathematics Education DOI: http://dx.doi.org/10.22342/jme.7.2.3538.57-72
Devi, Sushila; Brogi, B. B.; Ahluwalia, P. K.; Chand, S.
2018-06-01
Electronic transport through asymmetric parallel coupled quantum dot system hybridized between normal leads has been investigated theoretically in the Coulomb blockade regime by using Non-Equilibrium Green Function formalism. A new decoupling scheme proposed by Rabani and his co-workers has been adopted to close the chain of higher order Green's functions appearing in the equations of motion. For resonant tunneling case; the calculations of current and differential conductance have been presented during transition of coupled quantum dot system from series to symmetric parallel configuration. It has been found that during this transition, increase in current and differential conductance of the system occurs. Furthermore, clear signatures of negative differential conductance and negative current appear in series case, both of which disappear when topology of system is tuned to asymmetric parallel configuration.
Topological strength of magnetic skyrmions
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D.; Ramos, J.G.G.S.; Rodrigues, E.I.B.
2017-02-01
This work deals with magnetic structures that attain integer and half-integer skyrmion numbers. We model and solve the problem analytically, and show how the solutions appear in materials that engender distinct, very specific physical properties, and use them to describe their topological features. In particular, we found a way to model skyrmion with a large transition region correlated with the presence of a two-peak skyrmion number density. Moreover, we run into the issue concerning the topological strength of a vortex-like structure and suggest an experimental realization, important to decide how to modify and measure the topological strength of the magnetic structure.
Yang, Wei-Wei; Li, Lei; Zhao, Jing-Sheng; Liu, Xiao-Xiong; Deng, Jian-Bo; Tao, Xiao-Ma; Hu, Xian-Ru
2018-05-01
By doing calculations based on density functional theory, we predict that the two-dimensional anti-ferromagnetic (AFM) NiOsCl6 as a Chern insulator can realize the quantum anomalous Hall (QAH) effect. We investigate the magnetocrystalline anisotropy energies in different magnetic configurations and the Néel AFM configuration is proved to be ground state. When considering spin–orbit coupling (SOC), this layered material with spins perpendicular to the plane shows properties as a Chern insulator characterized by an inversion band structure and a nonzero Chern number. The nontrivial band gap is 37 meV and the Chern number C = ‑1, which are induced by a strong SOC and AFM order. With strong SOC, the NiOsCl6 system performs a continuous topological phase transition from the Chern insulator to the trivial insulator upon the increasing Coulomb repulsion U. The critical U c is indicated as 0.23 eV, at which the system is in a metallic phase with . Upon increasing U, the E g reduces linearly with C = ‑1 for 0 U c . At last we analysis the QAH properties and this continuous topological phase transition theoretically in a two-band model. This AFM Chern insulator NiOsCl6 proposes not only a promising way to realize the QAH effect, but also a new material to study the continuous topological phase transition.
Jacak, Janusz; Łydżba, Patrycja; Jacak, Lucjan
2017-05-01
In this paper the topological approach to quantum Hall effects is carefully described. Commensurability conditions together with proposed generators of a system braid group are employed to establish the fractional quantum Hall effect hierarchies of conventional semiconductors, monolayer and bilayer graphene structures. Obtained filling factors are compared with experimental data and a very good agreement is achieved. Preliminary constructions of ground-state wave functions in the lowest Landau level are put forward. Furthermore, this work explains why pyramids of fillings from higher bands are not counterparts of the well-known composite-fermion hierarchy - it provides with the cause for an intriguing robustness of ν = 7/3 , 8/3 and 5/2 states (also in graphene). The argumentation why paired states can be developed in two-subband systems (wide quantum wells) only when the Fermi energy lies in the first Landau level is specified. Finally, the paper also clarifies how an additional surface in bilayer systems contributes to an observation of the fractional quantum Hall effect near half-filling, ν = 1/2 .
Quantum ring in a rotating frame in the presence of a topological defect
International Nuclear Information System (INIS)
Dantas, L.; Furtado, C.; Silva Netto, A.L.
2015-01-01
In this contribution, we study the effects caused by rotation of an electron/hole in the presence of a screw dislocation confined in a quantum ring potential, within a quantum dynamics. The Tan–Inkson potential is used to model the confinement of the particle in two-dimensional quantum ring. We suppose that the quantum ring is placed in the presence of an external uniform magnetic field and an Aharonov–Bohm flux in the center of the system, and that the frame rotates around the z-axis. The Schrödinger equation is solved and the eigenfunctions and energy eigenvalues are exactly obtained for this configuration. The influence of the dislocation and the rotation on both the persistent current and magnetization is also studied. - Highlights: • Quantum ring in a rotating frame. • Tan–Inkson potential in the presence of rotation. • Quantum ring in the presence of screw dislocation. • Landau levels
Levitation and percolation in quantum Hall systems with correlated disorder
Song, Hui; Maruyama, Isao; Hatsugai, Yasuhiro
2007-01-01
We investigate the integer quantum Hall system in a two dimensional lattice model with spatially correlated disorder by using the efficient method to calculate the Chern number proposed by Fukui et al. [J. Phys. Soc. Jpn. 74, 1674 (2005)]. Distribution of charge density indicates that the extended states at the center of each Landau band have percolating current paths, which are topologically equivalent to the edge states that exist in a system with boundaries. As increasing the strength of d...
Arithmetically Related Ideal Topologies and the Infinitude of Primes ...
African Journals Online (AJOL)
algebra. Mathematics Subject Classification (1991): 11N80, 11N25, 11A41, 11T99, 13A15, 20M25 Keywords: x-ideal, topological semigroup, ideal topology, infinitude of primes, generalized primes and integers, distribution, integers, specified multiplicative constraints, primes, ideals, multiplicative ideal theory, semigroup
Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity
Westra, W.
2007-01-01
Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical
Layer Construction of 3D Topological States and String Braiding Statistics
Directory of Open Access Journals (Sweden)
Chao-Ming Jian
2014-12-01
Full Text Available While the topological order in two dimensions has been studied extensively since the discovery of the integer and fractional quantum Hall systems, topological states in three spatial dimensions are much less understood. In this paper, we propose a general formalism for constructing a large class of three-dimensional topological states by stacking layers of 2D topological states and introducing coupling between them. Using this construction, different types of topological states can be obtained, including those with only surface topological order and no bulk topological quasiparticles, and those with topological order both in the bulk and at the surface. For both classes of states, we study its generic properties and present several explicit examples. As an interesting consequence of this construction, we obtain example systems with nontrivial braiding statistics between string excitations. In addition to studying the string-string braiding in the example system, we propose a topological field-theory description for the layer-constructed systems, which captures not only the string-particle braiding statistics but also the string-string braiding statistics when the coupling is twisted. Last, we provide a proof of a general identity for Abelian string statistics and discuss an example system with non-Abelian strings.
Liu, Zhe; Jiang, Liwei; Zheng, Yisong
2016-07-13
By means of a numerical diagonalization approach, we calculate the electronic structure of a three-dimensional topological insulator (3DTI) quantum wire (QW) in the presence of a magnetic field. The QW can be viewed as a 3DTI film with lateral surfaces, when its rectangular cross section has a large aspect ratio. Our calculation indicates that nonchiral edge states emerge because of the confined states at the lateral surfaces. These states completely cover the valence band region among the Landau levels, which reasonably account for the absence of the [Formula: see text] quantum Hall effect in the relevant experimental works. In an ultrathin 3DTI film, inversion between the electron-type and hole-type bands occurs, which leads to the so-called pseudo-spin Hall effect. In a 3DTI QW with a square cross section, a tilting magnetic field can establish well-defined Landau levels in all four surfaces. In such a case, the quantum Hall edge states are localized at the square corners, characterized by the linearly crossing one-dimensional band profile. And they can be shifted between the adjacent corners by simply rotating the magnetic field.
International Nuclear Information System (INIS)
Harrison, N; McDonald, R D
2009-01-01
We propose a quantum oscillation experiment by which the rotation of an underdoped YBa 2 Cu 3 O 6+x sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|. (fast track communication)
International Nuclear Information System (INIS)
Olkhov, O.A.
2001-01-01
We consider interacting electromagnetic and electron-positron fields as a nonmetrized space-time 4-manifold. The Dirac and Maxwell equations is found to be a relationships expressing topological and metric properties of this manifold. A new equation for the weak interaction is proposed that explains geometrical mechanism of CP-violation
(DARPA) Topologically Protected Quantum Information Processing In Spin-Orbit Compled Semiconductors
2013-12-17
expression for the disorder suppression of the superconducting quasiparticle gap in the topological superconducting states carrying MFs. Our principle...assisted electron transfer amplitude (derived from the fractionalization property of the MFs) the quasiparticle tunneling from to through the...mesoscopic rings, the energy-level of such a quasiparticle excitation spectrum in the ring is expected to develop a periodic dependence on
Topological Phases in the Real World
Hsu, Yi-Ting
The experimental discovery and subsequent theoretical understanding of the integer quantum Hall effect, the first known topological phase, has started a revolutionary breakthrough in understanding states of matter since its discovery four decades ago. Topological phases are predicted to have many generic signatures resulting from their underlying topological nature, such as quantized Hall transport, robust boundary states, and possible fractional excitations. The intriguing nature of these signatures and their potential applications in quantum computation has intensely fueled the efforts of the physics community to materialize topological phases. Among various topological phases initially predicted on theoretical grounds, chiral topological superconductors and time-reversal symmetric topological insulators (TI) in three dimension (3D) are two promising candidates for experimental realization and application. The family of materials, Bi2X3 (X = Se, Te), has been predicted and shown experimentally to be time-reversal symmetric 3D TIs through the observation of robust Dirac surface states with Rashba-type spin-winding. Due to their robust surface states with spin-windings, these 3D TIs are expected to be promising materials for producing large spin-transfer torques which are advantageous for spintronics application. As for topological superconductors, despite the exotic excitations that have been extensively proposed as qubits for topological quantum computing, materials hosting topological superconductivity are rare to date and the leading candidate in two dimensions (2D), Sr 2RuO4, has a low transition temperature (Tc ). The goal of my phd study is to push forward the current status of realization of topological phases by materializing higher Tc topological superconductors and investigating the stability of Dirac surface states in 3D TIs. In the first part of this thesis, I will discuss our double-pronged objective for topological superconductors: to propose how to
International Nuclear Information System (INIS)
Endo, Takako; Konno, Norio; Obuse, Hideaki; Segawa, Etsuo
2017-01-01
In this paper, we treat quantum walks in a two-dimensional lattice with cutting edges along a straight boundary introduced by Asboth and Edge (2015 Phys. Rev . A 91 022324) in order to study one-dimensional edge states originating from topological phases of matter and to obtain collateral evidence of how a quantum walker reacts to the boundary. Firstly, we connect this model to the CMV matrix, which provides a 5-term recursion relation of the Laurent polynomial associated with spectral measure on the unit circle. Secondly, we explicitly derive the spectra of bulk and edge states of the quantum walk with the boundary using spectral analysis of the CMV matrix. Thirdly, while topological numbers of the model studied so far are well-defined only when gaps in the bulk spectrum exist, we find a new topological number defined only when there are no gaps in the bulk spectrum. We confirm that the existence of the spectrum for edge states derived from the CMV matrix is consistent with the prediction from a bulk-edge correspondence using topological numbers calculated in the cases where gaps in the bulk spectrum do or do not exist. Finally, we show how the edge states contribute to the asymptotic behavior of the quantum walk through limit theorems of the finding probability. Conversely, we also propose a differential equation using this limit distribution whose solution is the underlying edge state. (paper)
International Nuclear Information System (INIS)
Damski, Bogdan
2005-01-01
It can be shown that the dynamics of the Landau-Zener model can be accurately described in terms of the Kibble-Zurek theory of the topological defect production in nonequilibrium phase transitions. The simplest quantum model exhibiting the Kibble-Zurek mechanism is presented. A new intuitive description of Landau-Zener dynamics is found
Quantum Hall effect on top and bottom surface states of topological insulator (Bi1-xSbx)2Te3 films.
Yoshimi, R; Tsukazaki, A; Kozuka, Y; Falson, J; Takahashi, K S; Checkelsky, J G; Nagaosa, N; Kawasaki, M; Tokura, Y
2015-04-14
The three-dimensional topological insulator is a novel state of matter characterized by two-dimensional metallic Dirac states on its surface. To verify the topological nature of the surface states, Bi-based chalcogenides such as Bi2Se3, Bi2Te3, Sb2Te3 and their combined/mixed compounds have been intensively studied. Here, we report the realization of the quantum Hall effect on the surface Dirac states in (Bi1-xSbx)2Te3 films. With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ±1 are resolved. Furthermore, the appearance of a quantum Hall plateau at filling factor zero reflects a pseudo-spin Hall insulator state when the Fermi level is tuned in between the energy levels of the non-degenerate top and bottom surface Dirac points. The observation of the quantum Hall effect in three-dimensional topological insulator films may pave a way toward topological insulator-based electronics.
Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto
2015-04-10
Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.
Low field magnetoresistance in a 2D topological insulator based on wide HgTe quantum well.
Olshanetsky, E B; Kvon, Z D; Gusev, G M; Mikhailov, N N; Dvoretsky, S A
2016-09-01
Low field magnetoresistance is experimentally studied in a two-dimensional topological insulator (TI) in both diffusive and quasiballistic samples fabricated on top of a wide (14 nm) HgTe quantum well. In all cases a pronounced quasi-linear positive magnetoresistance is observed similar to that found previously in diffusive samples based on a narrow (8 nm) HgTe well. The experimental results are compared with the main existing theoretical models based on different types of disorder: sample edge roughness, nonmagnetic disorder in an otherwise coherent TI and metallic puddles due to locally trapped charges that act like local gate on the sample. The quasiballistic samples with resistance close to the expected quantized values also show a positive low-field magnetoresistance but with a pronounced admixture of mesoscopic effects.
International Nuclear Information System (INIS)
Khanna, F C; Malbouisson, J M C; Santana, A E
2009-01-01
A Bogoliubov transformation accounting simultaneously for spatial compactifica-tion and thermal effects is introduced. The fields are described in a Γ D d = S 1 1 x ... x S 1 d x R D-d topology, and the Bogoliubov transformation is derived by a generalization of the thermofield dynamics formalism, a real-time finite-temperature quantum field theory. We consider the Casimir effect for Maxwell and Dirac fields and for a non-interacting massless QCD at finite temperature. For the fermion sector in a cubic box, we analyze the temperature at which the Casimir pressure changes its sign from attractive to repulsive. This critical temperature is approximately 200 MeV when the edge of the cube is of the order of the confining lengths (∼ 1 : fm) for quarks in baryons.
Henriet, Loïc; Sclocchi, Antonio; Orth, Peter P.; Le Hur, Karyn
2017-02-01
We analyze the topological deformations of the ground state manifold of a quantum spin-1/2 in a magnetic field H =H (sinθ cosϕ ,sinθ sinϕ ,cosθ ) induced by a coupling to an ohmic quantum dissipative environment at zero temperature. From Bethe ansatz results and a variational approach, we confirm that the Chern number associated with the geometry of the reduced spin ground state manifold is preserved in the delocalized phase for α <1 . We report a divergence of the Berry curvature at αc=1 for magnetic fields aligned along the equator θ =π /2 . This divergence is caused by the complete quenching of the transverse magnetic field by the bath associated with a gap closing that occurs at the localization Kosterlitz-Thouless quantum phase transition in this model. Recent experiments in quantum circuits have engineered nonequilibrium protocols to access topological properties from a measurement of a dynamical Chern number defined via the out-of-equilibrium spin expectation values. Applying a numerically exact stochastic Schrödinger approach we find that, for a fixed field sweep velocity θ (t )=v t , the bath induces a crossover from (quasi)adiabatic to nonadiabatic dynamical behavior when the spin bath coupling α increases. We also investigate the particular regime H /ωc≪v /H ≪1 with large bath cutoff frequency ωc, where the dynamical Chern number vanishes already at α =1 /2 . In this regime, the mapping to an interacting resonance level model enables us to analytically describe the behavior of the dynamical Chern number in the vicinity of α =1 /2 . We further provide an intuitive physical explanation of the bath-induced breakdown of adiabaticity in analogy to the Faraday effect in electromagnetism. We demonstrate that the driving of the spin leads to the production of a large number of bosonic excitations in the bath, which strongly affect the spin dynamics. Finally, we quantify the spin-bath entanglement and formulate an analogy with an effective
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
Tian, Jifa; Chang, Cuizu; Cao, Helin; He, Ke; Ma, Xucun; Xue, Qikun; Chen, Yong P.
2014-01-01
Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials. PMID:24810663
Energy Technology Data Exchange (ETDEWEB)
Lefrancois, M
2005-12-15
In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)
Band connectivity for topological quantum chemistry: Band structures as a graph theory problem
Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei
2018-01-01
The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.
Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals
Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.
2018-04-01
Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.
Topological nature of the node-arc semimetal PtSn4 probed by de Haas-van Alphen quantum oscillations
Wang, Y. J.; Liang, D. D.; Ge, M.; Yang, J.; Gong, J. X.; Luo, L.; Pi, L.; Zhu, W. K.; Zhang, C. J.; Zhang, Y. H.
2018-04-01
Dirac node arc semimetal state is a new topological quantum state which is proposed to exist in PtSn4 (Wu et al 2016 Dirac node arcs in PtSn4 Nat. Phys. 12 667–71). We present a systematic de Haas-van Alphen quantum oscillation study on this compound. Two intriguing oscillation branches, i.e. F 1 and F 2, are detected in the fast Fourier transformation spectra, both of which are characterized to possess tiny effective mass and ultrahigh quantum mobility. And the F 2 branch exhibits an angle-dependent nontrivial Berry phase. The features are consistent with the existence of the node arc semimetal state and shed new light on its complicated Fermi surfaces and topological nature.
Fractal universe and quantum gravity.
Calcagni, Gianluca
2010-06-25
We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.
Penempatan Optimal Phasor Measurement Unit (PMU) Dengan Integer Programming
Amrulloh, Yunan Helmy
2013-01-01
Phasor Measurement Unit (PMU) merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP) yang akan memberikan variabel dengan pilihan nilai (0,1) yang menu...
International Nuclear Information System (INIS)
Ashtekar, A.; Sen, A.
1980-01-01
Schwarzschild--Kruskal space--time admits a two-parameter family of everywhere regular, static, source-free Maxwell fields. It is shown that there exists a corresponding two-parameter family of unitarily inequivalent representations of the canonical commutation relations. Elements of the underlying Hilbert space may be interpreted as ''quantum fluctuations of the Maxwell field off nontrivial classical vacua.'' The representation corresponding to the ''trivial'' sector: i.e., the zero classical solution: is the usual Fock representation. All others are ''non-Fock.'' In particular, in all other sectors, the Maxwell field develops a nonzero vacuum expectation value. The parameters labelling the family can be interpreted as electric and magnetic charges. Therefore, unitary inequivalence naturally leads to superselection rules for these charges. These features arise in spite of the linearity of field equations only because the space--time topology is ''nontrivial.'' Also, because of linearity, an exact analysis is possible at the quantum level; recourse to perturbation theory is unnecessary
International Nuclear Information System (INIS)
Frahm, K M; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is approximately inversely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows us to find this vector for matrices of billion size. This network provides a new PageRank order of integers. (paper)
Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G
2018-01-17
Metal-organic frameworks (MOFs) are materials with applications in catalysis, gas separations, and storage. Quantum mechanical (QM) calculations can provide valuable guidance to understand and predict their properties. In order to make the calculations faster, rather than modeling these materials as periodic (infinite) systems, it is useful to construct finite models (called cluster models) and use subsystem methods such as fragment methods or combined quantum mechanical and molecular mechanical (QM/MM) methods. Here we employ a QM/MM methodology to study one particular MOF that has been of widespread interest because of its wide pores and good solvent and thermal stability, namely NU-1000, which contains hexanuclear zirconium nodes and 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy 4- ) linkers. A modified version of the Bristow-Tiana-Walsh transferable force field has been developed to allow QM/MM calculations on NU-1000; we call the new parametrization the NU1T force field. We consider isomeric structures corresponding to various proton topologies of the [Zr 6 (μ 3 -O) 8 O 8 H 16 ] 8+ node of NU-1000, and we compute their relative energies using a QM/MM scheme designed for the present kind of problem. We compared the results to full quantum mechanical (QM) energy calculations and found that the QM/MM models can reproduce the full QM relative energetics (which span a range of 334 kJ mol -1 ) with a mean unsigned deviation (MUD) of only 2 kJ mol -1 . Furthermore, we found that the structures optimized by QM/MM are nearly identical to their full QM optimized counterparts.
Spin texture readout of a Moore-Read topological quantum register
Romers, J.C.; Schoutens, K.
2012-01-01
We study the composite charged spin texture (CST) over the Moore-Read quantum Hall state that arises when a collection of elementary CSTs is moved to the same location. Following an algebraic approach based on the characteristic pair correlations of the Moore-Read state, we find that the spin
Topological Gyroscopic Metamaterials
Nash, Lisa Michelle
Topological materials are generally insulating in their bulk, with protected conducting states on their boundaries that are robust against disorder and perturbation of material property. The existence of these conducting edge states is characterized by an integer topological invariant. Though the phenomenon was first discovered in electronic systems, recent years have shown that topological states exist in classical systems as well. In this thesis we are primarily concerned with the topological properties of gyroscopic materials, which are created by coupling networks of fast-spinning objects. Through a series of simulations, numerical calculations, and experiments, we show that these materials can support topological edge states. We find that edge states in these gyroscopic metamaterials bear the hallmarks of topology related to broken time reversal symmetry: they transmit excitations unidirectionally and are extremely robust against experimental disorder. We also explore requirements for topology by studying several lattice configurations and find that topology emerges naturally in gyroscopic systems.A simple prescription can be used to create many gyroscopic lattices. Though many of our gyroscopic networks are periodic, we explore amorphous point-sets and find that topology also emerges in these networks.
Adiabatic photo-steering theory in topological insulators
International Nuclear Information System (INIS)
Inoue, Jun-ichi
2014-01-01
Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane–Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed. (focus issue review)
Chern-Simons invariants on hyperbolic manifolds and topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies (SISSA/ISAS), Trieste (Italy); INFN, Sezione di Trieste (Italy); Bytsenko, A.A.; Goncalves, A.E. [Universidade Estadual de Londrina, Departamento de Fisica, Londrina-Parana (Brazil)
2016-11-15
We derive formulas for the classical Chern-Simons invariant of irreducible SU(n)-flat connections on negatively curved locally symmetric three-manifolds. We determine the condition for which the theory remains consistent (with basic physical principles). We show that a connection between holomorphic values of Selberg-type functions at point zero, associated with R-torsion of the flat bundle, and twisted Dirac operators acting on negatively curved manifolds, can be interpreted by means of the Chern-Simons invariant. On the basis of the Labastida-Marino-Ooguri-Vafa conjecture we analyze a representation of the Chern-Simons quantum partition function (as a generating series of quantum group invariants) in the form of an infinite product weighted by S-functions and Selberg-type functions. We consider the case of links and a knot and use the Rogers approach to discover certain symmetry and modular form identities. (orig.)
Topological quantum field theory and the Nielsen-Thurston classification of M(0,4)
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Masbaum, G.; Ueno, K.
2006-01-01
We show that the Nielsen–Thurston classification of mapping classes of the sphere with four marked points is determined by the quantum $SU(n)$ representations, for any fixed $n\\geq 2$. In the Pseudo–Anosov case we also show that the stretching factor is a limit of eigenvalues of (non-unitary) $SU......)$-TQFT representation matrices. It follows that at big enough levels, Pseudo–Anosov mapping classes are represented by matrices of infinite order....
Fixed-topology Lorentzian triangulations: Quantum Regge Calculus in the Lorentzian domain
Tate, Kyle; Visser, Matt
2011-11-01
A key insight used in developing the theory of Causal Dynamical Triangu-lations (CDTs) is to use the causal (or light-cone) structure of Lorentzian manifolds to restrict the class of geometries appearing in the Quantum Gravity (QG) path integral. By exploiting this structure the models developed in CDTs differ from the analogous models developed in the Euclidean domain, models of (Euclidean) Dynamical Triangulations (DT), and the corresponding Lorentzian results are in many ways more "physical". In this paper we use this insight to formulate a Lorentzian signature model that is anal-ogous to the Quantum Regge Calculus (QRC) approach to Euclidean Quantum Gravity. We exploit another crucial fact about the structure of Lorentzian manifolds, namely that certain simplices are not constrained by the triangle inequalities present in Euclidean signa-ture. We show that this model is not related to QRC by a naive Wick rotation; this serves as another demonstration that the sum over Lorentzian geometries is not simply related to the sum over Euclidean geometries. By removing the triangle inequality constraints, there is more freedom to perform analytical calculations, and in addition numerical simulations are more computationally efficient. We first formulate the model in 1 + 1 dimensions, and derive scaling relations for the pure gravity path integral on the torus using two different measures. It appears relatively easy to generate "large" universes, both in spatial and temporal extent. In addition, loopto-loop amplitudes are discussed, and a transfer matrix is derived. We then also discuss the model in higher dimensions.
Algebraic K-theory and algebraic topology
Energy Technology Data Exchange (ETDEWEB)
Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)
2003-09-15
This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.
Tahir, Muhammad; Schwingenschlö gl, Udo
2013-01-01
We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence
Harmonic oscillator states with integer and non-integer orbital angular momentum
International Nuclear Information System (INIS)
Land, Martin
2011-01-01
We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non
Landman, Bruce M
2003-01-01
Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students something quite rare for a book at this level: a glimpse into the world of mathematical research and the opportunity to begin pondering unsolved problems themselves. In addition to being the first truly accessible book on Ramsey theory, this innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subarea of Ramsey theory. The result is a breakthrough book that will engage students, teachers, and researchers alike.
Majidi, Leyla; Zare, Moslem; Asgari, Reza
2018-06-01
The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.
Quantum phase transitions between a class of symmetry protected topological states
Energy Technology Data Exchange (ETDEWEB)
Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai
2015-07-01
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.
Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui
2018-04-01
Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.
Urkude, Rajashri; Rawat, Rajeev; Palikundwar, Umesh
2018-04-01
In 3D topological insulators, achieving a genuine bulk-insulating state is an important topic of research. The material system (Bi,Sb)2(Te,Se)3 has been proposed as a topological insulator with high resistivity and low carrier concentration. Topological insulators are predicted to present interesting surface transport phenomena but their experimental studies have been hindered by metallic bulk conduction that overwhelms the surface transport. Here we present a study of the bulk-insulating properties of (Bi0.3Sb0.7)2Te3. We show that a high resistivity exceeding 1 Ωm as a result of variable-range hopping behavior of state and Shubnikov-de Haas oscillations as coming from the topological surface state. We have been able to clarify both the bulk and surface transport channels, establishing a comprehensive understanding of the transport properties in this material. Our results demonstrate that (Bi0.3Sb0.7)2Te3 is a good material for studying the surface quantum transport in a topological insulator.
The non-commutative topology of two-dimensional dirty superconductors
De Nittis, Giuseppe; Schulz-Baldes, Hermann
2018-01-01
Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.
Integer-valued trawl processes
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole E.; Lunde, Asger; Shephard, Neil
2014-01-01
the probabilistic properties of such processes in detail and, in addition, study volatility modulation and multivariate extensions within the new modelling framework. Moreover, we describe how the parameters of a trawl process can be estimated and obtain promising estimation results in our simulation study. Finally......This paper introduces a new continuous-time framework for modelling serially correlated count and integer-valued data. The key component in our new model is the class of integer-valued trawl processes, which are serially correlated, stationary, infinitely divisible processes. We analyse...
Winding numbers in homotopy theory from integers to reals
International Nuclear Information System (INIS)
Mekhfi, M.
1993-07-01
In Homotopy Theory (HT) we define paths on a given topological space. Closed paths prove to be construction elements of a group (the fundamental group) Π 1 and carry charges, the winding numbers. The charges are integers as they indicate how many times closed paths encircle a given hole (or set of holes). Open paths as they are defined in (HT) do not possess any groups structure and as such they are less useful in topology. In the present paper we enlarge the concept of a path in such a way that both types of paths do possess a group structure. In this broad sense we have two fundamental groups the Π i = Z group and the SO(2) group of rotations but the latter has the global property that there is no periodicity in the rotation angle. There is also two charge operators W and W λ whose eigenvalues are either integers or reals depending respectively on the paths being closed or open. Also the SO(2) group and the real charge operator W λ are not independently defined but directly related respectively to the Π i group and to the integer charge operator W. Thus well defined links can be established between seemingly different groups and charges. (author). 3 refs, 1 fig
Stochastic programming with integer recourse
van der Vlerk, Maarten Hendrikus
1995-01-01
In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic
van den Akker, R.
2007-01-01
This thesis adresses statistical problems in econometrics. The first part contributes statistical methodology for nonnegative integer-valued time series. The second part of this thesis discusses semiparametric estimation in copula models and develops semiparametric lower bounds for a large class of
Rewrite systems for integer arithmetic
H.R. Walters (Pum); H. Zantema (Hans)
1995-01-01
textabstractWe present three term rewrite systems for integer arithmetic with addition, multiplication, and, in two cases, subtraction. All systems are ground confluent and terminating; termination is proved by semantic labelling and recursive path order. The first system represents numbers by
Rewrite systems for integer arithmetic
Walters, H.R.; Zantema, H.
1994-01-01
We present three term rewrite systems for integer arithmetic with addition, multiplication, and, in two cases, subtraction. All systems are ground con uent and terminating; termination is proved by semantic labelling and recursive path order. The first system represents numbers by successor and
A few Smarandache Integer Sequences
Ibstedt, Henry
2010-01-01
This paper deals with the analysis of a few Smarandache Integer Sequences which first appeared in Properties or the Numbers, F. Smarandache, University or Craiova Archives, 1975. The first four sequences are recurrence generated sequences while the last three are concatenation sequences.
Quantum Hall Ferroelectrics and Nematics in Multivalley Systems
Sodemann, Inti; Zhu, Zheng; Fu, Liang
2017-10-01
We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.
Inhofer, A.; Duffy, J.; Boukhicha, M.; Bocquillon, E.; Palomo, J.; Watanabe, K.; Taniguchi, T.; Estève, I.; Berroir, J. M.; Fève, G.; Plaçais, B.; Assaf, B. A.
2018-02-01
A metal-dielectric topological-insulator capacitor device based on hexagonal-boron-nitrate- (h -BN) encapsulated CVD-grown Bi2Se3 is realized and investigated in the radio-frequency regime. The rf quantum capacitance and device resistance are extracted for frequencies as high as 10 GHz and studied as a function of the applied gate voltage. The superior quality h -BN gate dielectric combined with the optimized transport characteristics of CVD-grown Bi2Se3 (n ˜1018 cm-3 in 8 nm) on h -BN allow us to attain a bulk depleted regime by dielectric gating. A quantum-capacitance minimum and a linear variation of the capacitance with the chemical potential are observed revealing a Dirac regime. The topological surface state in proximity to the gate is seen to reach charge neutrality, but the bottom surface state remains charged and capacitively coupled to the top via the insulating bulk. Our work paves the way toward implementation of topological materials in rf devices.
Topological pregauge-pregeometry
International Nuclear Information System (INIS)
Akama, Keiichi; Oda, Ichiro.
1990-12-01
The pregauge-pregeometric action, i.e. the fundamental matter action whose quantum fluctuations give rise to the Einstein-Hilbert and the Yang-Mills actions is investigated from the viewpoint of the topological field theory. We show that the scalar pregauge-pregeometric action is a topological invariant for appropriate choices of the internal gauge group. This model realizes the picture that the gravitational and internal gauge theory at the low energy scale is induced as the quantum effects of the topological field theory at the Planck scale. (author)
Landman, Bruce M
2014-01-01
Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and t...
Integer programming theory, applications, and computations
Taha, Hamdy A
1975-01-01
Integer Programming: Theory, Applications, and Computations provides information pertinent to the theory, applications, and computations of integer programming. This book presents the computational advantages of the various techniques of integer programming.Organized into eight chapters, this book begins with an overview of the general categorization of integer applications and explains the three fundamental techniques of integer programming. This text then explores the concept of implicit enumeration, which is general in a sense that it is applicable to any well-defined binary program. Other
Analytical theory and possible detection of the ac quantum spin Hall effect.
Deng, W Y; Ren, Y J; Lin, Z X; Shen, R; Sheng, L; Sheng, D N; Xing, D Y
2017-07-11
We develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.
Killi, Matthew; Trotzky, Stefan; Paramekanti, Arun
2012-12-01
Bosons and fermions, in the presence of frustration or background gauge fields, can form many-body ground states that support equilibrium charge or spin currents. Motivated by the experimental creation of frustration or synthetic gauge fields in ultracold atomic systems, we propose a general scheme by which making a sudden anisotropic quench of the atom tunneling across the lattice and tracking the ensuing density modulations provides a powerful and gauge-invariant route to probing diverse equilibrium current patterns. Using illustrative examples of trapped superfluid Bose and normal Fermi systems in the presence of artificial magnetic fluxes on square lattices, and frustrated bosons in a triangular lattice, we show that this scheme to probe equilibrium bulk current order works independent of particle statistics. We also show that such quenches can detect chiral edge modes in gapped topological states, such as quantum Hall or quantum spin Hall insulators.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Aharonov–Bohm interference in topological insulator nanoribbons
Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi
2009-01-01
Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport
Algebras and manifolds: Differential, difference, simplicial and quantum
International Nuclear Information System (INIS)
Finkelstein, D.; Rodriguez, E.
1986-01-01
Generalized manifolds and Clifford algebras depict the world at levels of resolution ranging from the classical macroscopic to the quantum microscopic. The coarsest picture is a differential manifold and algebra (dm), direct integral of familiar local Clifford algebras of spin operators in curved time-space. Next is a finite difference manifold (Δm) of Regge calculus. This is a subalgebra of the third, a Minkowskian simplicial manifold (Σm). The most detailed description is the quantum manifold (Qm), whose algebra is the free Clifford algebra S of quantum set theory. We surmise that each Σm is a classical 'condensation' of a Qm. Quantum simplices have both integer and half-integer spins in their spectrum. A quantum set theory of nature requires a series of reductions leading from the Qm and a world descriptor W up through the intermediate Σm and Δm to a dm and an action principle. What may be a new algebraic language for topology, classical or quantum, is a by-product of the work. (orig.)
Applied Integer Programming Modeling and Solution
Chen, Der-San; Dang, Yu
2011-01-01
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and
Domí nguez, Luis F.; Pistikopoulos, Efstratios N.
2010-01-01
continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem
THE PHENOMENON OF HALF-INTEGER SPIN, QUATERNIONS, AND PAULI MATRICES
Directory of Open Access Journals (Sweden)
FERNANDO R. GONZÁLEZ DÍAZ
2017-01-01
Full Text Available In this paper the phenomenon of half-integer spin exemplification Paul AM Dirac made with a pair of scissors, an elastic cord and chair play. Four examples in which the same phenomenon appears and the algebraic structure of quaternions is related to one of the examples are described. Mathematical proof of the phenomenon using known topological and algebraic results are explained. The basic results of algebraic structures are described quaternions H , and an intrinsic relationship with the phenomenon half-integer spin and the Pauli matrices is established.
Quantum Hall effect with small numbers of vortices in Bose-Einstein condensates
Byrnes, Tim; Dowling, Jonathan P.
2015-08-01
When vortices are displaced in Bose-Einstein condensates (BECs), the Magnus force gives the system a momentum transverse in the direction to the displacement. We show that BECs in long channels with vortices exhibit a quantization of the current response with respect to the spatial vortex distribution. The quantization originates from the well-known topological property of the phase around a vortex; it is an integer multiple of 2 π . In a way similar to that of the integer quantum Hall effect, the current along the channel is related to this topological phase and can be extracted from two experimentally measurable quantities: the total momentum of the BEC and the spatial distribution. The quantization is in units of m /2 h , where m is the mass of the atoms and h is Planck's constant. We derive an exact vortex momentum-displacement relation for BECs in long channels under general circumstances. Our results present the possibility that the configuration described here can be used as a novel way of measuring the mass of the atoms in the BEC using a topological invariant of the system. If an accurate determination of the plateaus are experimentally possible, this gives the possibility of a topological quantum mass standard and precise determination of the fine structure constant.
Topology, entropy, and Witten index of dilaton black holes
International Nuclear Information System (INIS)
Gibbons, G.W.; Kallosh, R.E.
1995-01-01
We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) a topology S 1 xRxS 2 and Euler number χ=0 in contrast with the nonextreme case with χ=2. The entropy of extreme U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstroem case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of all extreme black holes, including [U(1)] 2 black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten index. We have studied also the topology of ''moduli space'' of multi-black-holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not hyper-Kaehler since the corresponding geometry has a torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electromagnetic black hole is 300 times greater than that released by the fission of a 235 U nucleus
Momentum-space cigar geometry in topological phases
Palumbo, Giandomenico
2018-01-01
In this paper, we stress the importance of momentum-space geometry in the understanding of two-dimensional topological phases of matter. We focus, for simplicity, on the gapped boundary of three-dimensional topological insulators in class AII, which are described by a massive Dirac Hamiltonian and characterized by an half-integer Chern number. The gap is induced by introducing a magnetic perturbation, such as an external Zeeman field or a ferromagnet on the surface. The quantum Bures metric acquires a central role in our discussion and identifies a cigar geometry. We first derive the Chern number from the cigar geometry and we then show that the quantum metric can be seen as a solution of two-dimensional non-Abelian BF theory in momentum space. The gauge connection for this model is associated to the Maxwell algebra, which takes into account the Lorentz symmetries related to the Dirac theory and the momentum-space magnetic translations connected to the magnetic perturbation. The Witten black-hole metric is a solution of this gauge theory and coincides with the Bures metric. This allows us to calculate the corresponding momentum-space entanglement entropy that surprisingly carries information about the real-space conformal field theory describing the defect lines that can be created on the gapped boundary.
Topological Acoustic Delay Line
Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan
2018-03-01
Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.
Machine learning topological states
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-11-01
Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.
Quasi-greedy systems of integer translates
DEFF Research Database (Denmark)
Nielsen, Morten; Sikic, Hrvoje
We consider quasi-greedy systems of integer translates in a finitely generated shift invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...
Quasi-greedy systems of integer translates
DEFF Research Database (Denmark)
Nielsen, Morten; Sikic, Hrvoje
2008-01-01
We consider quasi-greedy systems of integer translates in a finitely generated shift-invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...
Positive integer solutions of certain diophantine equations
Indian Academy of Sciences (India)
BIJAN KUMAR PATEL
2018-03-19
Mar 19, 2018 ... integer solutions. They also found all the positive integer solutions of the given equations in terms of Fibonacci and Lucas numbers. Another interesting number sequence which is closely related to the sequence of. Fibonacci numbers is the sequence of balancing numbers. In 1999, Behera et al. [1] intro-.
Energy Technology Data Exchange (ETDEWEB)
You, Jia-Bin, E-mail: jiabinyou@gmail.com [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Chan, A.H. [Department of Physics, National University of Singapore, 117542 (Singapore); Oh, C.H., E-mail: phyohch@nus.edu.sg [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Department of Physics, National University of Singapore, 117542 (Singapore); Vedral, Vlatko [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Department of Physics, National University of Singapore, 117542 (Singapore); Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom)
2014-10-15
We examine the topological properties of a spin–singlet superconductor with Rashba and Dresselhaus (110) spin–orbit couplings. We demonstrate that there are several topological invariants in the Bogoliubov–de Gennes (BdG) Hamiltonian by symmetry analysis. In particular, the Pfaffian invariant P for the particle–hole symmetry can be used to demonstrate all the possible phase diagrams of the BdG Hamiltonian. We find that the edge spectrum is either Dirac cone or flat band which supports the emergence of the Majorana fermion in this system. For the Majorana flat bands, an edge index, namely the Pfaffian invariant P(k{sub y}) or the winding number W(k{sub y}), is needed to make them topologically stable. These edge indices can also be used in determining the location of the Majorana flat bands. - Highlights: • Majorana fermion can emerge in the spin–orbit coupled singlet superconductor. • Pfaffian invariant and 1D winding number can be used to identify the nontrivial topological phase where Majorana flat band exists. • All the possible phase diagrams in the spin–orbit coupled singlet superconductor are demonstrated. • Majorana flat band only exists in the y direction in our model. • Majorana flat band has a significant experimental signature in the tunneling conductance measurement.
Analysis misconception of integers in microteaching activities
Setyawati, R. D.; Indiati, I.
2018-05-01
This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.
Integer channels in nonuniform non-equilibrium 2D systems
Shikin, V.
2018-01-01
We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.
Population transfer HMQC for half-integer quadrupolar nuclei
International Nuclear Information System (INIS)
Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul
2015-01-01
This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., 27 Al- 17 O). In this case, the build-up is strongly affected by relaxation for small T 2 ′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO 4 -14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the 31 P-( 27 Al) experiments
Topological objects in hadron physics
International Nuclear Information System (INIS)
Rho, M.
1988-01-01
The notion of topological objects in hadronic physics is discussed, with emphasis on the role of the Wess-Zumino term and induced transmutation of quantum numbers in chiral bag models. Some applications to nuclear systems are given
International Nuclear Information System (INIS)
Onufrieva, F.; Pfeuty, P.
1999-01-01
A new microscopic scenario for high T c cuprates based on the existence of an electronic topological transition (ETT) in a strongly correlated 2D electron system has been developed recently. We first briefly sketch the principal results concerning the behaviour of a 2D fermion system on a square lattice close to an ETT and the main consequences for a strongly correlated system: d-wave superconductivity and SDW (CDW) quantum liquid state above T SC . We then illustrate how this theory can explain several crucial experimental facts (observed by NMR, angle resolved photoemission spectroscopy (ARPES), tunneling spectroscopy, inelastic neutron scattering) which reveal anomalous behavior in the SC state and in the metallic state above T s c. (orig.)
Topological surface states in nodal superconductors.
Schnyder, Andreas P; Brydon, Philip M R
2015-06-24
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.
Signatures of topological superconductivity
Energy Technology Data Exchange (ETDEWEB)
Peng, Yang
2017-07-19
The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses
Novel topological invariants and anomalies
International Nuclear Information System (INIS)
Hirayama, M.; Sugimasa, N.
1987-01-01
It is shown that novel topological invariants are associated with a class of Dirac operators. Trace formulas which are similar to but different from Callias's formula are derived. Implications of these topological invariants to anomalies in quantum field theory are discussed. A new class of anomalies are calculated for two models: one is two dimensional and the other four dimensional
Wang, Xiao-Qi; Yi, Guang-Yu; Han, Yu; Jiang, Cui; Gong, Wei-Jiang
2018-07-01
We construct one mesoscopic circuit in which one quantum dot couples to one DIII-class topological superconductor and one s-wave superconductor, in addition to its connection with the metallic lead. And then, the Andreev reflection current in the metallic lead is evaluated. It is found that the two kinds of superconductors drive the Andreev reflection in the constructive manner. Next as finite superconducting phase difference is taken into account, the Andreev reflection oscillates in period π/2, and it can be suppressed in the low-energy region if the superconducting phase difference is (n + 1/2) π/2 (n ∈ Integer). Such a result is almost independent of the increase of the intradot Coulomb interaction. Therefore, this structure can assist to realize the manipulation of the Andreev reflection. Also, the result in this work provides useful information for understanding the property of the DIII-class topological superconductor.
Tahir, Muhammad
2013-05-01
We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence of Zeeman interaction, we investigate the opening of a gap at the Dirac point, making the surface Dirac fermions massive, and the effects on the transport properties. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for a transition from gapless to gapped surface states at n = 0 and activated transport is found from the temperature and magnetic-field dependence of the collisional and Hall conductivities. © Copyright EPLA, 2013.
Willard, Stephen
2004-01-01
Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Its treatment encompasses two broad areas of topology: ""continuous topology,"" represented by sections on convergence, compactness, metrization and complete metric spaces, uniform spaces, and function spaces; and ""geometric topology,"" covered by nine sections on connectivity properties, topological characterization theorems, and homotopy theory. Many standard spaces are introduced in the related problems that accompany each section (340
Direct comparison of fractional and integer quantized Hall resistance
Ahlers, Franz J.; Götz, Martin; Pierz, Klaus
2017-08-01
We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3 ± 6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.
Topological Susceptibility from Slabs
Bietenholz, Wolfgang; Gerber, Urs
2015-01-01
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.
Topological susceptibility from slabs
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)
2015-12-14
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.
International Nuclear Information System (INIS)
Zhukovskii, K.V.; Eminov, P.A.
1995-01-01
The one-loop approximation is used to calculate the effects of finite temperature and nonzero chemical potential on the electron energy shift in a (2 + 1)-quantum electrodynamic system containing a Churn-Simon term. The induced electron mass is derived with a massless (2 + 1)-quantum electrodynamic system together with the exchange correction to the thermodynamic potential for a completely degenerate electron gas. It is shown that in the last case, incorporating the Churn-Simon term leads to loss of the gap in the direction law
Penempatan Optimal Phasor Measurement Unit (PMU dengan Integer Programming
Directory of Open Access Journals (Sweden)
Yunan Helmy Amrulloh
2013-09-01
Full Text Available Phasor Measurement Unit (PMU merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP yang akan memberikan variabel dengan pilihan nilai (0,1 yang menunjukkan tempat yang harus dipasang PMU. Dalam tugas akhir ini, BIP diterapkan untuk menyelesaikan masalah penempatan PMU secara optimal pada sistem tenaga listrik Jawa-Bali 500 KV yang selanjutnya diterapkan dengan penambahan konsep incomplete observability. Hasil simulasi menunjukkan bahwa penerapan BIP pada sistem dengan incomplete observability memberikan jumlah PMU yang lebih sedikit dibandingkan dengan sistem tanpa konsep incomplete observability.
Parallel Integer Factorization Using Quadratic Forms
National Research Council Canada - National Science Library
McMath, Stephen S
2005-01-01
Factorization is important for both practical and theoretical reasons. In secure digital communication, security of the commonly used RSA public key cryptosystem depends on the difficulty of factoring large integers...
Energy Technology Data Exchange (ETDEWEB)
Bossard, G
2007-10-15
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the {beta} function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
Symmetric Topological Phases and Tensor Network States
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
Charges and Electromagnetic Radiation as Topological Excitations
Directory of Open Access Journals (Sweden)
Manfried Faber
2017-01-01
Full Text Available We discuss a model with stable topological solitons in Minkowski space with only three degrees of freedom, the rotational angles of a spatial Dreibein. This model has four types of solitons differing in two topological quantum numbers which we identify with electric charge and spin. The vacuum has a two-dimensional degeneracy leading to two types of massless excitations, characterised by a topological quantum number which could have a physical equivalent in the photon number.
Relativity of topology and dynamics
International Nuclear Information System (INIS)
Finkelstein, D.; Rodriguez, E.
1984-01-01
Recent developments in quantum set theory are used to formulate a program for quantum topological physics. The world is represented in Hilbert space whose psi vectors represent abstract complexes generated from the null set by one bracket operator and the usual Grassmann (or Clifford) product. Such a theory may be more basic than field theory, in that it may generate its own natural topology, time, kinematics and dynamics, without benefit of an absolute time-space dimension, topology, or Hamiltonian. For example there is a natural expression for the quantum gravitational field in terms of quantum topological operators. In such a theory the usual spectrum of possible dimensions describes only one of an indefinite hierarchy of levels, each with a similar spectrum, describing nonspatial infrastructure. While c simplices have no continuous symmetry, the q simplex has an orthogonal group (O(m,n). Because quantum theory cannot take the universe as physical system, a ''third relativity'' is proposed. The division between observer and observed is arbitrary. Then it is wrong to ask for ''the'' topology and dynamics of a system, in the same sense that it is wrong to ask for the ''the'' psi vectors of a system; topology and dynamics, like psi vectors, are not absolute but relative to the observer. (author)
Energy Technology Data Exchange (ETDEWEB)
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)
2014-09-08
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
International Nuclear Information System (INIS)
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.
2014-01-01
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
Propagation of optical vortices with fractional topological charge in free space
Ali, Tamelia; Kreminska, Liubov; Golovin, Andrii B.; Crouse, David T.
2014-10-01
The behavior of the optical vortices with fractional topological charges in the far-field is assessed through numerical modeling and confirmed by experimental results. The generation of fractional topological charge variations of the phase within a Gaussian beam was achieved by using a liquid crystal spatial light modulator (LCoS SLM). It is shown that a laser beam carrying an optical vortex with a fractional topological charge evolves into a beam with a topological charge of integer value, specifically an integer value closer to the fractional number in the far field. A potential application of this work is for data transmission within optical telecommunication systems.
Classical solutions of non-linear sigma-models and their quantum fluctuations
International Nuclear Information System (INIS)
Din, A.M.
1980-05-01
I study the properties of O(N) and CPsup(n-1) non-linear sigma-models in the two dimensional Euclidean space. All classical solutions of the equations of motion can be characterized and in the CPsup(n-1) model they can be expressed in a simple and explicit way in terms of holomorphic vectors. The topological winding number and the action of the general CPsup(n-1) solution can be evaluated and the latter turns out always to be a integer multiple of 2π. I further discuss the stability of the solutions and the problem of one-loop calculations of quantum fluctuations around classical solutions
Generalized Mathai-Quillen Topological Sigma Models
Llatas, Pablo M.
1995-01-01
A simple field theoretical approach to Mathai-Quillen topological field theories of maps $X: M_I \\to M_T$ from an internal space to a target space is presented. As an example of applications of our formalism we compute by applying our formulas the action and Q-variations of the fields of two well known topological systems: Topological Quantum Mechanics and type-A topological Sigma Model.
Topological Photonics for Continuous Media
Silveirinha, Mario
Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.
Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers
Donnell, William A.
2012-01-01
In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…
Multiple topological phases in phononic crystals
Chen, Zeguo; Wu, Ying
2017-01-01
We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.
Multiple topological phases in phononic crystals
Chen, Zeguo
2017-11-20
We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.
Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.
2008-06-01
A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.
Linear and integer programming made easy
Hu, T C
2016-01-01
Linear and integer programming are fundamental toolkits for data and information science and technology, particularly in the context of today’s megatrends toward statistical optimization, machine learning, and big data analytics. Drawn from over 30 years of classroom teaching and applied research experience, this textbook provides a crisp and practical introduction to the basics of linear and integer programming. The authors’ approach is accessible to students from all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification, and computer vision. Readers will learn to cast hard combinatorial problems as mathematical programming optimizations, understand how to achieve formulations where the objective and constraints are linear, choose appropriate solution methods, and interpret results appropriately. •Provides a concise introduction to linear and integer programming, appropriate for undergraduates, graduates, a short cours...
Topologically distinct classes of valence-bond solid states with their parent Hamiltonians
International Nuclear Information System (INIS)
Tu Honghao; Zhang Guangming; Xiang Tao; Liu Zhengxin; Ng Taikai
2009-01-01
We present a general method to construct one-dimensional translationally invariant valence-bond solid states with a built-in Lie group G and derive their matrix product representations. The general strategies to find their parent Hamiltonians are provided so that the valence-bond solid states are their unique ground states. For quantum integer-spin-S chains, we discuss two topologically distinct classes of valence-bond solid states: one consists of two virtual SU(2) spin-J variables in each site and another is formed by using two SO(2S+1) spinors. Among them, a spin-1 fermionic valence-bond solid state, its parent Hamiltonian, and its properties are discussed in detail. Moreover, two types of valence-bond solid states with SO(5) symmetries are further generalized and their respective properties are analyzed as well.
Integer programming techniques for educational timetabling
DEFF Research Database (Denmark)
Fonseca, George H.G.; Santos, Haroldo G.; Carrano, Eduardo G.
2017-01-01
in recent studies in the field. This work presents new cuts and reformulations for the existing integer programming model for XHSTT. The proposed cuts improved hugely the linear relaxation of the formulation, leading to an average gap reduction of 32%. Applied to XHSTT-2014 instance set, the alternative...... formulation provided four new best known lower bounds and, used in a matheuristic framework, improved eleven best known solutions. The computational experiments also show that the resulting integer programming models from the proposed formulation are more effectively solved for most of the instances....
Topological insulators and topological superconductors
Bernevig, Andrei B
2013-01-01
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...
Domínguez, Luis F.
2010-12-01
This work introduces two algorithms for the solution of pure integer and mixed-integer bilevel programming problems by multiparametric programming techniques. The first algorithm addresses the integer case of the bilevel programming problem where integer variables of the outer optimization problem appear in linear or polynomial form in the inner problem. The algorithm employs global optimization techniques to convexify nonlinear terms generated by a reformulation linearization technique (RLT). A continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem appear in linear or polynomial forms in the inner problem. The algorithm relies on the use of global multiparametric mixed-integer programming techniques at the inner optimization level. In both algorithms, the multiparametric solutions obtained are embedded in the outer problem to form a set of single-level (M)(I)(N)LP problems - which are then solved to global optimality using standard fixed-point (global) optimization methods. Numerical examples drawn from the open literature are presented to illustrate the proposed algorithms. © 2010 Elsevier Ltd.
Aganagic, M; Marino, M; Vafa, C; Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun
2005-01-01
We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact Calabi-Yau toric threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kahler classes of Calabi-Yau. We interpret this result as an operator computation of the amplitudes in the B-model mirror which is the Kodaira-Spencer quantum theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.
Riemann, topology, and physics
Monastyrsky, Michael I
2008-01-01
This significantly expanded second edition of Riemann, Topology, and Physics combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter such as the quantum Hall effect, quasicrystals, membranes with nontrivial topology, "fake" differential structures on 4-dimensional Euclidean space, new invariants of knots and more. In his relatively short lifetime, this great mathematician made outstanding contributions to nearly all branches of mathematics; today Riemann’s name appears prom...
International Nuclear Information System (INIS)
Zou, L.P.; Zhang, P.M.; Pak, D.G.
2013-01-01
We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed
Topological Methods for Visualization
Energy Technology Data Exchange (ETDEWEB)
Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United Stat
2016-04-07
This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.
Half-integer ghost states and simple BRST quantization
International Nuclear Information System (INIS)
Marnelius, R.
1987-01-01
Quantum mechanical BRST systems are considered. As is well known an odd number of ghost operators has a representation with respect to the ghost number operator consisting of states with half-integer ghost numbers. Here it is shown that an eigenstate representation of the ghost operators requires a particular mixed Grassmann character of the states. It is also shown that such states always may be avoided provided only one starts from a lagrangian where the fundamental constraints are generated by Lagrange multipliers. In the latter case there also exists an anti-BRST charge. Some relevant properties of the different BRST approaches are displayed. The existence of inequivalent physical representations is demonstrated. (orig.)
What topology could be the Universe created with?
International Nuclear Information System (INIS)
Gurzadyan, V.G.; Kocharyan, A.A.
1987-01-01
In the framework of Hawking quantum cosmology the topological and geometrical properties of a created Universe with cosmological constant are considered. Probabilities for the Universe creation with different topologies (including torus, sphere, hyperbolic space) are calculated. These topologies turned out to be equally probable for the case of inflationary Universe. For the considered model the probability for the quantum change of topology during the Universe evolution is calculated
Goodman, Sue E
2009-01-01
Beginning Topology is designed to give undergraduate students a broad notion of the scope of topology in areas of point-set, geometric, combinatorial, differential, and algebraic topology, including an introduction to knot theory. A primary goal is to expose students to some recent research and to get them actively involved in learning. Exercises and open-ended projects are placed throughout the text, making it adaptable to seminar-style classes. The book starts with a chapter introducing the basic concepts of point-set topology, with examples chosen to captivate students' imaginations while i
Stochastic integer programming by dynamic programming
Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Stougie, L.; Ermoliev, Yu.; Wets, R.J.B.
1988-01-01
Stochastic integer programming is a suitable tool for modeling hierarchical decision situations with combinatorial features. In continuation of our work on the design and analysis of heuristics for such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to
Optimization of Product Instantiation using Integer Programming
van den Broek, P.M.; Botterweck, Goetz; Jarzabek, Stan; Kishi, Tomoji
2010-01-01
We show that Integer Programming (IP) can be used as an optimization technique for the instantiation of products of feature models. This is done by showing that the constraints of feature models can be written in linear form. As particular IP technique, we use Gomory cutting planes. We have applied
Predecessor queries in dynamic integer sets
DEFF Research Database (Denmark)
Brodal, Gerth Stølting
1997-01-01
We consider the problem of maintaining a set of n integers in the range 0.2w–1 under the operations of insertion, deletion, predecessor queries, minimum queries and maximum queries on a unit cost RAM with word size w bits. Let f (n) be an arbitrary nondecreasing smooth function satisfying n...
Bivium as a Mixed Integer Programming Problem
DEFF Research Database (Denmark)
Borghoff, Julia; Knudsen, Lars Ramkilde; Stolpe, Mathias
2009-01-01
over $GF(2)$ into a combinatorial optimization problem. We convert the Boolean equation system into an equation system over $\\mathbb{R}$ and formulate the problem of finding a $0$-$1$-valued solution for the system as a mixed-integer programming problem. This enables us to make use of several...
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.
Globally symmetric topological phase: from anyonic symmetry to twist defect
International Nuclear Information System (INIS)
Teo, Jeffrey C Y
2016-01-01
Topological phases in two dimensions support anyonic quasiparticle excitations that obey neither bosonic nor fermionic statistics. These anyon structures often carry global symmetries that relate distinct anyons with similar fusion and statistical properties. Anyonic symmetries associate topological defects or fluxes in topological phases. As the symmetries are global and static, these extrinsic defects are semiclassical objects that behave disparately from conventional quantum anyons. Remarkably, even when the topological states supporting them are Abelian, they are generically non-Abelian and powerful enough for topological quantum computation. In this article, I review the most recent theoretical developments on symmetries and defects in topological phases. (topical review)
Canonical Duality Theory for Topology Optimization
Gao, David Yang
2016-01-01
This paper presents a canonical duality approach for solving a general topology optimization problem of nonlinear elastic structures. By using finite element method, this most challenging problem can be formulated as a mixed integer nonlinear programming problem (MINLP), i.e. for a given deformation, the first-level optimization is a typical linear constrained 0-1 programming problem, while for a given structure, the second-level optimization is a general nonlinear continuous minimization pro...
Universe as a topological defect
International Nuclear Information System (INIS)
Anabalon, Andres; Willison, Steven; Zanelli, Jorge
2008-01-01
Four-dimensional Einstein's general relativity is shown to arise from a gauge theory for the conformal group, SO(4,2). The theory is constructed from a topological dimensional reduction of the six-dimensional Euler density integrated over a manifold with a four-dimensional topological defect. The resulting action is a four-dimensional theory defined by a gauged Wess-Zumino-Witten term. An ansatz is found which reduces the full set of field equations to those of Einstein's general relativity. When the same ansatz is replaced in the action, the gauged WZW term reduces to the Einstein-Hilbert action. Furthermore, the unique coupling constant in the action can be shown to take integer values if the fields are allowed to be analytically continued to complex values
International Nuclear Information System (INIS)
Finkelstein, D.
1989-01-01
The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics
The ABCD of topological recursion
DEFF Research Database (Denmark)
Andersen, Jorgen Ellegaard; Borot, Gaëtan; Chekhov, Leonid O.
Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of math-ph/0702045, seeing it as a quantization of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial data a quantum Airy structure...... the 2d TQFT partition function as a special case), non-commutative Frobenius algebras, loop spaces of Frobenius algebras and a Z2-invariant version of the latter. This Z2-invariant version in the case of a semi-simple Frobenius algebra corresponds to the topological recursion of math-ph/0702045....
Buchin, K.; Buchin, M.; Wagner, D.; Wattenhofer, R.
2007-01-01
Information between two nodes in a network is sent based on the network topology, the structure of links connecting pairs of nodes of a network. The task of topology control is to choose a connecting subset from all possible links such that the overall network performance is good. For instance, a
On almost-periodic points of a topological Markov chain
International Nuclear Information System (INIS)
Bogatyi, Semeon A; Redkozubov, Vadim V
2012-01-01
We prove that a transitive topological Markov chain has almost-periodic points of all D-periods. Moreover, every D-period is realized by continuously many distinct minimal sets. We give a simple constructive proof of the result which asserts that any transitive topological Markov chain has periodic points of almost all periods, and study the structure of the finite set of positive integers that are not periods.
On the Delone property of (−β-integers
Directory of Open Access Journals (Sweden)
Wolfgang Steiner
2011-08-01
Full Text Available The (−β-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. They can be described by infinite words which are fixed points of anti-morphisms. We show that they are not necessarily uniformly discrete and relatively dense in the real numbers.
Logic integer programming models for signaling networks.
Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert
2009-05-01
We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
What Else Is Decidable about Integer Arrays?
Habermehl, Peter; Iosif, Radu; Vojnar, Tomáš
2008-01-01
International audience; We introduce a new decidable logic for reasoning about infinite arrays of integers. The logic is in the ∃ * ∀ * first-order fragment and allows (1) Presburger constraints on existentially quantified variables, (2) difference constraints as well as periodicity constraints on universally quantified indices, and (3) difference constraints on values. In particular, using our logic, one can express constraints on consecutive elements of arrays (e.g. ∀i. 0 ≤ i < n → a[i + 1]...
Integer factoring and modular square roots
Czech Academy of Sciences Publication Activity Database
Jeřábek, Emil
2016-01-01
Roč. 82, č. 2 (2016), s. 380-394 ISSN 0022-0000 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : integer factoring * quadratic residue * PPA Subject RIV: BA - General Mathematics Impact factor: 1.678, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022000015000768
On the price of integer charge quarks
International Nuclear Information System (INIS)
Okun, L.B.; Voloshin, M.B.; Zakharov, V.I.
1979-01-01
Implication of the integer charge quark (ICQ) model with a broken SU(3)xU(1) gauge symmetry for interactions in the leptonic sector were discussed. In this model there should be very large deviations of e + e - →μ + μ - annihilation processes in the GeV region from the standard QED behaviour. Such deviations seem to be completely excluded by existing data. Therefore it is concluded that the ICQ model is ruled out
Quadratic Sieve integer factorization using Hadoop
Ghebregiorgish, Semere Tsehaye
2012-01-01
Master's thesis in Computer Science Integer factorization problem is one of the most important parts in the world of cryptography. The security of the widely-used public-key cryptographic algorithm, RSA [1], and the Blum Blum Shub cryptographic pseudorandom number generator [2] heavily depend on the presumed difficulty of factoring a number to its prime constituents. As the size of the number to be factored gets larger, the difficulty of the problem increases enormously. Thi...
Buchstaber, Victor M
2015-01-01
This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric v
Franz, Marcel
2013-01-01
Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was
The quantum anomalous Hall effect on a star lattice with spin-orbit coupling and an exchange field
International Nuclear Information System (INIS)
Chen Mengsu; Wan Shaolong
2012-01-01
We study a star lattice with Rashba spin-orbit coupling and an exchange field and find that there is a quantum anomalous Hall effect in this system, and that there are five energy gaps at Dirac points and quadratic band crossing points. We calculate the Berry curvature distribution and obtain the Hall conductivity (Chern number ν) quantized as integers, and find that ν =- 1,2,1,1,2 when the Fermi level lies in these five gaps. Our model can be viewed as a general quantum anomalous Hall system and, in limit cases, can give what the honeycomb lattice and kagome lattice give. We also find that there is a nearly flat band with ν = 1 which may provide an opportunity for realizing the fractional quantum anomalous Hall effect. Finally, the chiral edge states on a zigzag star lattice are given numerically, to confirm the topological property of this system. (paper)
Search for Majorana fermions in topological superconductors.
Energy Technology Data Exchange (ETDEWEB)
Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-10-01
The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).
Superconducting Coset Topological Fluids in Josephson Junction Arrays
Diamantini, M C; Trugenberger, C A; Sodano, Pasquale; Trugenberger, Carlo A.
2006-01-01
We show that the superconducting ground state of planar Josephson junction arrays is a P- and T-invariant coset topological quantum fluid whose topological order is characterized by the degeneracy 2 on the torus. This new mechanism for planar superconductivity is the P- and T-invariant analogue of Laughlin's quantum Hall fluids. The T=0 insulator-superconductor quantum transition is a quantum critical point characterized by gauge fields and deconfined degrees of freedom. Experiments on toroidal Josephson junction arrays could provide the first direct evidence for topological order and superconducting quantum fluids.
Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile
2015-03-01
The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.
Module detection in complex networks using integer optimisation
Directory of Open Access Journals (Sweden)
Tsoka Sophia
2010-11-01
Full Text Available Abstract Background The detection of modules or community structure is widely used to reveal the underlying properties of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a measure of network topological properties, several methodologies for the discovery of community structure based on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest computational resources are particularly challenging due to the NP-hard nature of the related optimisation problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit whereby the algorithm fails to detect smaller communities than a specific size in large networks. Results We present a novel solution approach to identify community structure in large complex networks and address resolution limitations in module detection. The proposed algorithm employs modularity to express network community structure and it is based on mixed integer optimisation models. The solution procedure is extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution limitations. Conclusions A comprehensive comparative analysis of methodologies for module detection based on modularity maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we illustrate ways to improve existing methodologies for community structure identification so as to increase its efficiency and applicability.
Schmidt, Burkhard; Friedrich, Bretislav
2014-02-14
We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as alignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Burkhard, E-mail: burkhard.schmidt@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin (Germany); Friedrich, Bretislav, E-mail: brich@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)
2014-02-14
We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables – such as alignment and orientation cosines – in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.
Topological surface states in nodal superconductors
International Nuclear Information System (INIS)
Schnyder, Andreas P; Brydon, Philip M R
2015-01-01
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)
Topological Insulators Dirac Equation in Condensed Matters
Shen, Shun-Qing
2012-01-01
Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...
Topological Order in Silicon Photonics
2017-02-07
photonic edge states and quantum emitters [ S. Barik , H. Miyake, W. DeGottardi, E. Waks and M. Hafezi, New J. Phys., 18, 11301 (2016) ]. Entanglement... Barik , H. Miyake, W. DeGottardi, E. Waks, and M. Hafezi “Two-Dimensionally Confined Topological Edge States in Photonic Crystals”, New J. Phys., 18
International Nuclear Information System (INIS)
Chung, Stephen-wei.
1993-01-01
The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint
On the group of substitutions of formal power series with integer coefficients
International Nuclear Information System (INIS)
Babenko, I K; Bogatyi, S A
2008-01-01
We study certain properties of the group J(Z) of substitutions of formal power series in one variable with integer coefficients. We show that J(Z), regarded as a topological group, has four generators and cannot be generated by fewer elements. In particular, we show that the one-dimensional continuous homology of J(Z) is isomorphic to Z oplus Z oplus Z 2 oplus Z 2 . We study various topological and geometric properties of the coset space J(R)/J(Z). We compute the real cohomology H-tilde*(J(Z);R) with uniformly locally constant supports and show that it is naturally isomorphic to the cohomology of the nilpotent part of the Lie algebra of formal vector fields on the line
Non metrizable topologies on Z with countable dual group.
Directory of Open Access Journals (Sweden)
Daniel de la Barrera Mayoral
2017-04-01
Full Text Available In this paper we give two families of non-metrizable topologies on the group of the integers having a countable dual group which is isomorphic to a infinite torsion subgroup of the unit circle in the complex plane. Both families are related to D-sequences, which are sequences of natural numbers such that each term divides the following. The first family consists of locally quasi-convex group topologies. The second consists of complete topologies which are not locally quasi-convex. In order to study the dual groups for both families we need to make numerical considerations of independent interest.
SO(N) reformulated link invariants from topological strings
International Nuclear Information System (INIS)
Borhade, Pravina; Ramadevi, P.
2005-01-01
Large N duality conjecture between U(N) Chern-Simons gauge theory on S 3 and A-model topological string theory on the resolved conifold was verified at the level of partition function and Wilson loop observables. As a consequence, the conjectured form for the expectation value of the topological operators in A-model string theory led to a reformulation of link invariants in U(N) Chern-Simons theory giving new polynomial invariants whose integer coefficients could be given a topological meaning. We show that the A-model topological operator involving SO(N) holonomy leads to a reformulation of link invariants in SO(N) Chern-Simons theory. Surprisingly, the SO(N) reformulated invariants also has a similar form with integer coefficients. The topological meaning of the integer coefficients needs to be explored from the duality conjecture relating SO(N) Chern-Simons theory to A-model closed string theory on orientifold of the resolved conifold background
Topological gravity with minimal matter
International Nuclear Information System (INIS)
Li Keke
1991-01-01
Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)
Topological strings and quantum curves
Hollands, L.
2009-01-01
This thesis presents several new insights on the interface between mathematics and theoretical physics, with a central role for Riemann surfaces. First of all, the duality between Vafa-Witten theory and WZW models is embedded in string theory. Secondly, this model is generalized to a web of
Anti-levitation in integer quantum Hall systems
Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.
2014-01-01
The evolution of extended states of two-dimensional electron gas with white-noise randomness and field is numerically investigated by using the Anderson model on square lattices. Focusing on the lowest Landau band we establish an anti-levitation scenario of the extended states: As either the disorder strength W increases or the magnetic field strength B decreases, the energies of the extended states move below the Landau energies pertaining to a clean system. Moreover, for strong enough disorder, there is a disorder-dependent critical magnetic field Bc(W) below which there are no extended states at all. A general phase diagram in the W-1/B plane is suggested with a line separating domains of localized and delocalized states.
Luminet, Jean-Pierre
2015-08-01
Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.
Integer Set Compression and Statistical Modeling
DEFF Research Database (Denmark)
Larsson, N. Jesper
2014-01-01
enumeration of elements may be arbitrary or random, but where statistics is kept in order to estimate probabilities of elements. We present a recursive subset-size encoding method that is able to benefit from statistics, explore the effects of permuting the enumeration order based on element probabilities......Compression of integer sets and sequences has been extensively studied for settings where elements follow a uniform probability distribution. In addition, methods exist that exploit clustering of elements in order to achieve higher compression performance. In this work, we address the case where...
Integer programming of cement distribution by train
Indarsih
2018-01-01
Cement industry in Central Java distributes cement by train to meet daily demand in Yogyakarta and Central Java area. There are five destination stations. For each destination station, there is a warehouse to load cements. Decision maker of cement industry have a plan to redesign the infrastructure and transportation system. The aim is to determine how many locomotives, train wagons, and containers and how to arrange train schedules with subject to the delivery time. For this purposes, we consider an integer programming to minimize the total of operational cost. Further, we will discuss a case study and the solution the problem can be calculated by LINGO software.
HgTe based topological insulators
International Nuclear Information System (INIS)
Bruene, Christoph
2014-01-01
This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.
Schmidt, Gunther
2018-01-01
This book introduces and develops new algebraic methods to work with relations, often conceived as Boolean matrices, and applies them to topology. Although these objects mirror the matrices that appear throughout mathematics, numerics, statistics, engineering, and elsewhere, the methods used to work with them are much less well known. In addition to their purely topological applications, the volume also details how the techniques may be successfully applied to spatial reasoning and to logics of computer science. Topologists will find several familiar concepts presented in a concise and algebraically manipulable form which is far more condensed than usual, but visualized via represented relations and thus readily graspable. This approach also offers the possibility of handling topological problems using proof assistants.
DEFF Research Database (Denmark)
A. Kristensen, Anders Schmidt; Damkilde, Lars
2007-01-01
. A way to solve the initial design problem namely finding a form can be solved by so-called topology optimization. The idea is to define a design region and an amount of material. The loads and supports are also fidefined, and the algorithm finds the optimal material distribution. The objective function...... dictates the form, and the designer can choose e.g. maximum stiness, maximum allowable stresses or maximum lowest eigenfrequency. The result of the topology optimization is a relatively coarse map of material layout. This design can be transferred to a CAD system and given the necessary geometrically...... refinements, and then remeshed and reanalysed in other to secure that the design requirements are met correctly. The output of standard topology optimization has seldom well-defined, sharp contours leaving the designer with a tedious interpretation, which often results in less optimal structures. In the paper...
International Nuclear Information System (INIS)
Hudetz, T.
1989-01-01
As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)
Form factors and excitations of topological solitons
International Nuclear Information System (INIS)
Weir, David J.; Rajantie, Arttu
2011-01-01
We show how the interaction properties of topological solitons in quantum field theory can be calculated with lattice Monte Carlo simulations. Topologically nontrivial field configurations are key to understanding the nature of the QCD vacuum through, for example, the dual superconductor picture. Techniques that we have developed to understand the excitations and form factors of topological solitons, such as kinks and 't Hooft-Polyakov monopoles, should be equally applicable to chromoelectric flux tubes. We review our results for simple topological solitons and their agreement with exact results, then discuss our progress towards studying objects of interest to high energy physics.
Workshop on quantum stochastic differential equations for the quantum simulation of physical systems
2016-09-22
that would be complimentary to the efforts at ARL. One the other hand, topological quantum field theories have a dual application to topological...Witten provided a path-integral definition of the Jones polynomial using a three-dimensional Chern-Simons quantum field theory (QFT) based on a non...topology, quantum field theory , quantum stochastic differential equations, quantum computing REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT
Topological transitions in the theory of spacetime
International Nuclear Information System (INIS)
Konstantinov, M.Y.; Melnikov, V.N.
1986-01-01
Results of a realisation of the topological transitions hypothesis are presented. The basic difficulties in the construction of quantum topological transition theory are connected with a necessity to introduce a new non-local interaction defined on a space of topological states. So the general method of construction and study of topological transitions classical models is formulated as a necessary step towards a corresponding quantum description. Their local properties, including an asymptotic behaviour in the neighbourhood of the transition, are studied and applications to problems of gravitation and cosmology are given. The method used is shown to lead to a scalar-tensor theory of topological transitions. Different variants of this theory and its main features are discussed. (author)
International Nuclear Information System (INIS)
Brandt, R.A.; Neri, F.; Zwanziger, D.
1979-01-01
We establish the Lorentz invariance of the quantum field theory of electric and magnetic charge. This is a priori implausible because the theory is the second-quantized version of a classical field theory which is inconsistent if the minimally coupled charged fields are smooth functions. For our proof we express the generating functional for the gauge-invariant Green's functions of quantum electrodynamics: with or without magnetic charge: as a path integral over the trajectories of classical charged point particles. The electric-electric and electric-magnetic interactions contribute factors exp(JDJ) and exp(JD'K), where J and K are the electric and magnetic currents of classical point particles and D is the usual photon propagator. The propagator D' involves the Dirac string but exp(JD'K) depends on it only through a topological integer linking string and classical particle trajectories. The charge quantization condition e/sub i/g/sub j/ - g/sub i/e/sub j/ = integer then suffices to make the gauge-invariant Green's functions string independent. By implication our formulation shows that if the Green's functions of quantum electrodynamics are expressed as usual as functional integrals over classical charged fields, the smooth field configurations have measure zero and all the support of the Feynman measure lies on the trajectories of classical point particles
Warner, S
1993-01-01
This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.
Asymptotic behavior of observables in the asymmetric quantum Rabi model
Semple, J.; Kollar, M.
2018-01-01
The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.
S-parts of terms of integer linear recurrence sequences
Bugeaud, Y.; Evertse, J.H.
2017-01-01
Let S = {q1 , . . . , qs } be a finite, non-empty set of distinct prime numbers. For a non-zero integer m, write m = q1^ r1 . . . qs^rs M, where r1 , . . . , rs are non-negative integers and M is an integer relatively prime to q1 . . . qs. We define the S-part [m]_S of m by [m]_S := q1^r1 . . .
Network interdiction and stochastic integer programming
2003-01-01
On March 15, 2002 we held a workshop on network interdiction and the more general problem of stochastic mixed integer programming at the University of California, Davis. Jesús De Loera and I co-chaired the event, which included presentations of on-going research and discussion. At the workshop, we decided to produce a volume of timely work on the topics. This volume is the result. Each chapter represents state-of-the-art research and all of them were refereed by leading investigators in the respective fields. Problems - sociated with protecting and attacking computer, transportation, and social networks gain importance as the world becomes more dep- dent on interconnected systems. Optimization models that address the stochastic nature of these problems are an important part of the research agenda. This work relies on recent efforts to provide methods for - dressing stochastic mixed integer programs. The book is organized with interdiction papers first and the stochastic programming papers in the second part....
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
DEFF Research Database (Denmark)
Bendsøe, Martin P.; Sigmund, Ole
2007-01-01
Taking as a starting point a design case for a compliant mechanism (a force inverter), the fundamental elements of topology optimization are described. The basis for the developments is a FEM format for this design problem and emphasis is given to the parameterization of design as a raster image...
More on θ-compact fuzzy topological spaces
International Nuclear Information System (INIS)
Ekici, Erdal
2006-01-01
Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and ε ∞ theory. In 2005, Caldas and Jafari have introduced θ-compact fuzzy topological spaces. The purpose of this paper is to investigate further properties of θ-compact fuzzy topological spaces. Moreover, the notion of θ-closed fuzzy topological spaces is introduced and properties of it are obtained
Braiding knots with topological strings
International Nuclear Information System (INIS)
Gu, Jie
2015-08-01
For an arbitrary knot in a three-sphere, the Ooguri-Vafa conjecture associates to it a unique stack of branes in type A topological string on the resolved conifold, and relates the colored HOMFLY invariants of the knot to the free energies on the branes. For torus knots, we use a modified version of the topological recursion developed by Eynard and Orantin to compute the free energies on the branes from the Aganagic-Vafa spectral curves of the branes, and find they are consistent with the known colored HOMFLY knot invariants a la the Ooguri-Vafa conjecture. In addition our modified topological recursion can reproduce the correct closed string free energies, which encode the information of the background geometry. We conjecture the modified topological recursion is applicable for branes associated to hyperbolic knots as well, encouraged by the observation that the modified topological recursion yields the correct planar closed string free energy from the Aganagic-Vafa spectral curves of hyperbolic knots. This has implications for the knot theory concerning distinguishing mutant knots with colored HOMFLY invariants. Furthermore, for hyperbolic knots, we present methods to compute colored HOMFLY invariants in nonsymmetric representations of U(N). The key step in this computation is computing quantum 6j-symbols in the quantum group U q (sl N ).
International Nuclear Information System (INIS)
Dai, Hao; Si, Gangquan; Jia, Lixin; Zhang, Yanbin
2013-01-01
This paper investigates generalized function matrix projective lag synchronization between fractional-order and integer-order complex networks with delayed coupling, non-identical topological structures and different dimensions. Based on Lyapunov stability theory, generalized function matrix projective lag synchronization criteria are derived by using the adaptive control method. In addition, the three-dimensional fractional-order chaotic system and the four-dimensional integer-order hyperchaotic system as the nodes of the drive and the response networks, respectively, are analyzed in detail, and numerical simulation results are presented to illustrate the effectiveness of the theoretical results. (paper)
Energy Technology Data Exchange (ETDEWEB)
Sabad, E P; Lomsadze, Yu M [AN Ukrainskoj SSR, Kiev. Inst. Teoreticheskoj Fiziki
1980-01-01
It is proved that each of the classes PHI*(Rsup(4n),F) investigated by means of suitable local topologization can be transformed into a concrete realization of the abstract class SR(..cap omega..sub(f)sup(a) ..-->.. C/sup 1/) of complexly spread reducible generalized functions. The class PHI*(Rsup(4n),F) preset by a certain representation on the basis of signal ideology is proved to be a class of generalized functions over the Poincare-invariant complete topological locally convex linear involutive space (PHI(Rsup(4n),F),Q) of test functions with the topology Q preset by a countable number of norms. These results allow a correct formulation of the axiom of complexly broken microcausality.
Topological supersymmetric structure of hadron cross sections
International Nuclear Information System (INIS)
Gauron, P.; Nicolescu, B.; Ouvry, S.
1980-12-01
Recently a way of fully implementing unitarity in the framework of a Dual Topological Unitarization theory, including not only mesons but also baryons, was found. This theory consists in the topological description of hadron interactions involving confined quarks in terms of two 2-dimensional surfaces (a closed 'quantum' surface and a bounded 'classical' surface). We show that this description directly leads, at the zeroth order of the topological expansion, to certain relations between hadron cross-sections, in nice agreement with experimental data. A new topological suppression mechanism is shown to play an important dynamical role. We also point out a new topological supersymmetry property, which leads to realistic experimental consequences. A possible topological origin of the rho and ω universality relations emerges as a by-product of our study
Signatures of Majorana bound states in one-dimensional topological superconductors
International Nuclear Information System (INIS)
Pientka, Falko
2014-01-01
Topological states of matter have fascinated condensed matter physicists for the past three decades. Famous examples include the integer and fractional quantum Hall states exhibiting a spectacular conductance quantization as well as topological insulators in two and three dimensions featuring gapless Dirac fermions at the boundary. Very recently, novel topological phases in superconductors have been subject of intense experimental and theoretical investigation. One-dimensional topological superconductors are particularly intriguing as they host exotic Majorana end states. These are zero-energy bound states with nonabelian exchange statistics potentially useful for topologically protected quantum computing. Recent theoretical and experimental advances have put the realization of Majorana states within reach of current measurement techniques. In this thesis we investigate signatures of Majorana bound states in realistic experiments aiming to improve the theoretical understanding of ongoing experimental efforts and to design novel measurement schemes, which exhibit convincing signatures of Majoranas. In particular we account for nonideal experimental conditions which can lead to qualitatively new features. Possible signatures of Majoranas can be accessed in the Josephson current through a weak link between two topological superconductors although the signatures in the dc Josephson effect are typically obscured by inevitable quasiparticle relaxation in the superconductor. Here we propose a measurement scheme in mesoscopic superconducting rings, where Majorana signatures persist even for infinitely fast relaxation. In a separate project we outline an alternative to the standard Josephson experiment in topological superconductors based on quantum wires. We delineate how Majoranas can be detected, when the Josephson current is induced by noncollinear magnetic fields applied to the two banks of the junction instead of a superconducting phase difference. Another important
On Secure Two-Party Integer Division
DEFF Research Database (Denmark)
Dahl, Morten; Ning, Chao; Toft, Tomas
2012-01-01
{\\mathcal{O}}(\\ell)$ arithmetic operations on encrypted values (secure addition and multiplication) in $\\ensuremath{\\mathcal{O}}(1)$ rounds. This is the most efficient constant-rounds solution to date. The second protocol requires only $\\ensuremath{\\mathcal{O}} \\left( (\\log^2 \\ell)(\\kappa + \\operatorname{loglog} \\ell) \\right......We consider the problem of secure integer division: given two Paillier encryptions of ℓ-bit values n and d, determine an encryption of $\\lfloor \\frac{n}{d}\\rfloor$ without leaking any information about n or d. We propose two new protocols solving this problem. The first requires $\\ensuremath......)$ arithmetic operations in $\\ensuremath{\\mathcal{O}}(\\log^2 \\ell)$ rounds, where κ is a correctness parameter. Theoretically, this is the most efficient solution to date as all previous solutions have required Ω(ℓ) operations. Indeed, the fact that an o(ℓ) solution is possible at all is highly surprising....
Topological orders in rigid states
International Nuclear Information System (INIS)
Wen, X.G.
1990-01-01
The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation
Binary Positive Semidefinite Matrices and Associated Integer Polytopes
DEFF Research Database (Denmark)
Letchford, Adam N.; Sørensen, Michael Malmros
2012-01-01
We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature-the cut, boolean qua...
Garbage-free reversible constant multipliers for arbitrary integers
DEFF Research Database (Denmark)
Mogensen, Torben Ægidius
2013-01-01
We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants...
A fixed recourse integer programming approach towards a ...
African Journals Online (AJOL)
Regardless of the success that linear programming and integer linear programming has had in applications in engineering, business and economics, one has to challenge the assumed reality that these optimization models represent. In this paper the certainty assumptions of an integer linear program application is ...
Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum
Directory of Open Access Journals (Sweden)
Carlos Fernando Díaz Meza
2016-01-01
Full Text Available This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.
Fomenko, Anatoly
2016-01-01
This classic text of the renowned Moscow mathematical school equips the aspiring mathematician with a solid grounding in the core of topology, from a homotopical perspective. Its comprehensiveness and depth of treatment are unmatched among topology textbooks: in addition to covering the basics—the fundamental notions and constructions of homotopy theory, covering spaces and the fundamental group, CW complexes, homology and cohomology, homological algebra—the book treats essential advanced topics, such as obstruction theory, characteristic classes, Steenrod squares, K-theory and cobordism theory, and, with distinctive thoroughness and lucidity, spectral sequences. The organization of the material around the major achievements of the golden era of topology—the Adams conjecture, Bott periodicity, the Hirzebruch–Riemann–Roch theorem, the Atiyah–Singer index theorem, to name a few—paints a clear picture of the canon of the subject. Grassmannians, loop spaces, and classical groups play a central role ...
A General Approach for Orthogonal 4-Tap Integer Multiwavelet Transforms
Directory of Open Access Journals (Sweden)
Mingli Jing
2010-01-01
Full Text Available An algorithm for orthogonal 4-tap integer multiwavelet transforms is proposed. We compute the singular value decomposition (SVD of block recursive matrices of transform matrix, and then transform matrix can be rewritten in a product of two block diagonal matrices and a permutation matrix. Furthermore, we factorize the block matrix of block diagonal matrices into triangular elementary reversible matrices (TERMs, which map integers to integers by rounding arithmetic. The cost of factorizing block matrix into TERMs does not increase with the increase of the dimension of transform matrix, and the proposed algorithm is in-place calculation and without allocating auxiliary memory. Examples of integer multiwavelet transform using DGHM and CL are given, which verify that the proposed algorithm is an executable algorithm and outperforms the existing algorithm for orthogonal 4-tap integer multiwavelet transform.
Absence of even-integer ζ-function values in Euclidean physical quantities in QCD
Jamin, Matthias; Miravitllas, Ramon
2018-04-01
At order αs4 in perturbative quantum chromodynamics, even-integer ζ-function values are present in Euclidean physical correlation functions like the scalar quark correlation function or the scalar gluonium correlator. We demonstrate that these contributions cancel when the perturbative expansion is expressed in terms of the so-called C-scheme coupling αˆs which has recently been introduced in Ref. [1]. It is furthermore conjectured that a ζ4 term should arise in the Adler function at order αs5 in the MS ‾-scheme, and that this term is expected to disappear in the C-scheme as well.
Topological Aspects of Information Retrieval.
Egghe, Leo; Rousseau, Ronald
1998-01-01
Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)
Guillemin, Victor
2010-01-01
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea-transversality-the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main
COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES
Directory of Open Access Journals (Sweden)
A. S. Vroublevski
2015-01-01
Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.
Diversity and non-integer differentiation for system dynamics
Oustaloup, Alain
2014-01-01
Based on a structured approach to diversity, notably inspired by various forms of diversity of natural origins, Diversity and Non-integer Derivation Applied to System Dynamics provides a study framework to the introduction of the non-integer derivative as a modeling tool. Modeling tools that highlight unsuspected dynamical performances (notably damping performances) in an ""integer"" approach of mechanics and automation are also included. Written to enable a two-tier reading, this is an essential resource for scientists, researchers, and industrial engineers interested in this subject area. Ta
Topological insulators Dirac equation in condensed matter
Shen, Shun-Qing
2017-01-01
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...
Tunable topological phases in photonic and phononic crystals
Chen, Zeguo
2018-02-18
Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.
Topological charge algebra of optical vortices in nonlinear interactions.
Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V
2015-12-28
We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.
On the topology of untrapped surfaces
Energy Technology Data Exchange (ETDEWEB)
Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)
2009-03-07
Recently a simple proof of the generalizations of Hawking's black hole topology theorem and its application to topological black holes for higher dimensional (n >= 4) spacetimes was given by Racz I (2008 Class. Quantum Grav. 25 162001). By applying the associated new line of argument it is proven here that strictly stable untrapped surfaces possess exactly the same topological properties as strictly stable marginally outer trapped surfaces (MOTSs) are known to. In addition, a quasi-local notion of outwards and inwards pointing spacelike directions-applicable to untrapped and marginally trapped surfaces-is also introduced.
Nonperturbative summation over 3D discrete topologies
International Nuclear Information System (INIS)
Freidel, Laurent; Louapre, David
2003-01-01
The group field theories realizing the sum over all triangulations of all topologies of 3D discrete gravity amplitudes are known to be nonuniquely Borel summable. We modify these models to construct a new group field theory which is proved to be uniquely Borel summable, defining in an unambiguous way a nonperturbative sum over topologies in the context of 3D dynamical triangulations and spin foam models. Moreover, we give some arguments to support the fact that, despite our modification, this new model is similar to the original one, and therefore could be taken as a definition of the sum over topologies of 3D quantum gravity amplitudes
An extended topological Yang-Mills theory
International Nuclear Information System (INIS)
Deguchi, Shinichi
1992-01-01
Introducing infinite number of fields, we construct an extended version of the topological Yang-Mills theory. The properties of the extended topological Yang-Mills theory (ETYMT) are discussed from standpoint of the covariant canonical quantization. It is shown that the ETYMT becomes a cohomological topological field theory or a theory equivalent to a quantum Yang-Mills theory with anti-self-dual constraint according to subsidiary conditions imposed on state-vector space. On the basis of the ETYMT, we may understand a transition from an unbroken phase to a physical phase (broken phase). (author)
Lectures on quantum information
International Nuclear Information System (INIS)
Bruss, D.; Leuchs, G.
2007-01-01
Quantum Information Processing is a young and rapidly growing field of research at the intersection of physics, mathematics, and computer science. Its ultimate goal is to harness quantum physics to conceive - and ultimately build - 'quantum' computers that would dramatically overtake the capabilities of today's 'classical' computers. One example of the power of a quantum computer is its ability to efficiently find the prime factors of a large integer, thus shaking the supposedly secure foundations of standard encryption schemes. This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. With its series of exercises, this is ideal reading for students and lecturers in physics and informatics, as well as experimental and theoretical physicists, and physicists in industry. (orig.)
Chiodo formulas for the r-th roots and topological recursion
Lewanski, Danilo; Popolitov, Alexandr; Shadrin, Sergey; Zvonkine, Dimitri
2015-01-01
We analyze Chiodo's formulas for the Chern classes related to the r-th roots of the suitably twisted integer powers of the canonical class on the moduli space of curves. The intersection numbers of these classes with psi-classes are reproduced via the Chekhov-Eynard-Orantin topological recursion. As an application, we prove that the Johnson-Pandharipande-Tseng formula for the orbifold Hurwitz numbers is equivalent to the topological recursion for the orbifold Hurwitz numbers. In particular, t...
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Layered Architecture for Quantum Computing
Directory of Open Access Journals (Sweden)
N. Cody Jones
2012-07-01
Full Text Available We develop a layered quantum-computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface-code quantum error correction. In doing so, we propose a new quantum-computer architecture based on optical control of quantum dots. The time scales of physical-hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum-dot architecture we study could solve such problems on the time scale of days.
Topological phase in two flavor neutrino oscillations
International Nuclear Information System (INIS)
Mehta, Poonam
2009-01-01
We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between nonorthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.
Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.
Snow, Donald R.
1989-01-01
Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)
Fractal electrodynamics via non-integer dimensional space approach
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Margalef-Roig, J
1992-01-01
...there are reasons enough to warrant a coherent treatment of the main body of differential topology in the realm of Banach manifolds, which is at the same time correct and complete. This book fills the gap: whenever possible the manifolds treated are Banach manifolds with corners. Corners add to the complications and the authors have carefully fathomed the validity of all main results at corners. Even in finite dimensions some results at corners are more complete and better thought out here than elsewhere in the literature. The proofs are correct and with all details. I see this book as a reliable monograph of a well-defined subject; the possibility to fall back to it adds to the feeling of security when climbing in the more dangerous realms of infinite dimensional differential geometry. Peter W. Michor
Makarewicz, Emilia; Gordon, Agnieszka J; Mierzwicki, Krzysztof; Latajka, Zdzislaw; Berski, Slawomir
2014-06-05
Quantum chemistry methods have been applied to study the influence of the Xe atom inserted into the hydrogen-bromine bond (HBr → HXeBr), particularly on the nature of atomic interactions in the HBr···CO2 and HXeBr···CO2 complexes. Detailed analysis of the nature of chemical bonds has been carried out using topological analysis of the electron localization function, while topological analysis of electron density was used to gain insight into the nature of weak nonbonding interactions. Symmetry-adapted perturbation theory within the orbital approach was applied for greater understanding of the physical contributions to the total interaction energy.
Frozen density embedding with non-integer subsystems' particle numbers.
Fabiano, Eduardo; Laricchia, Savio; Della Sala, Fabio
2014-03-21
We extend the frozen density embedding theory to non-integer subsystems' particles numbers. Different features of this formulation are discussed, with special concern for approximate embedding calculations. In particular, we highlight the relation between the non-integer particle-number partition scheme and the resulting embedding errors. Finally, we provide a discussion of the implications of the present theory for the derivative discontinuity issue and the calculation of chemical reactivity descriptors.
Fockedey, N.
2005-01-01
The present chapter aims to be a literature review on the brackish water mysid Neomysis integer, with focus on its feeding ecology, life history aspects, behaviour, physiology, biochemical composition, bioenergetics and ecotoxico10gy. All records on the species, available from literature, are listed as an appendix. The review aims to identify the state-of-the-art and the gaps in our knowledge on the species. Abundant information is available on the distribution patterns of Neomysis integer in...
Integers without large prime factors in short intervals: Conditional ...
Indian Academy of Sciences (India)
α > 0 the interval (X, X +. √. X(log X)1/2+o(1)] contains an integer having no prime factor exceeding Xα for all X sufficiently large. Keywords. Smooth numbers; Riemann zeta function. 1. Introduction. Suppose P (n) denotes the largest prime factor of an integer n > 1 and let us declare. P(1) = 1. Given a positive real number y, ...
Unconventional Quantum Critical Points
Xu, Cenke
2012-01-01
In this paper we review the theory of unconventional quantum critical points that are beyond the Landau's paradigm. Three types of unconventional quantum critical points will be discussed: (1). The transition between topological order and semiclassical spin ordered phase; (2). The transition between topological order and valence bond solid phase; (3). The direct second order transition between different competing orders. We focus on the field theory and universality class of these unconventio...
Gauge symmetries, topology, and quantisation
International Nuclear Information System (INIS)
Balachandran, A.P.
1994-01-01
The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem
Induced topological pressure for topological dynamical systems
International Nuclear Information System (INIS)
Xing, Zhitao; Chen, Ercai
2015-01-01
In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure