WorldWideScience

Sample records for intake induces oxidative

  1. Maternal Fructose Intake Induces Insulin Resistance and Oxidative Stress in Male, but Not Female, Offspring

    Directory of Open Access Journals (Sweden)

    Lourdes Rodríguez

    2015-01-01

    Full Text Available Objective. Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10% wt/vol throughout gestation produces an impaired fetal leptin signalling. Therefore, we have investigated whether maternal fructose intake produces subsequent changes in their progeny. Methods. Blood samples from fed and 24 h fasted female and male 90-day-old rats born from fructose-fed, glucose-fed, or control mothers were used. Results. After fasting, HOMA-IR and ISI (estimates of insulin sensitivity were worse in male descendents from fructose-fed mothers in comparison to the other two groups, and these findings were also accompanied by a higher leptinemia. Interestingly, plasma AOPP and uricemia (oxidative stress markers were augmented in male rats from fructose-fed mothers compared to the animals from control or glucose-fed mothers. In contrast, female rats did not show any differences in leptinemia between the three groups. Further, insulin sensitivity was significantly improved in fasted female rats from carbohydrate-fed mothers. In addition, plasma AOPP levels tended to be diminished in female rats from carbohydrate-fed mothers. Conclusion. Maternal fructose intake induces insulin resistance, hyperleptinemia, and plasma oxidative stress in male, but not female, progeny.

  2. Does dietary fat intake influence oocyte competence and embryo quality by inducing oxidative stress in follicular fluid?

    Science.gov (United States)

    Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr-Esfahani, Mohammad Hosein; Saboor Yaraghi, Ali Akbar; Ahmadi, Mehdi

    2013-12-01

    Fat-rich diet may alter oocyte development and maturation and embryonic development by inducing oxidative stress (OS) in follicular environment. To investigate the relationship between fat intake and oxidative stress with oocyte competence and embryo quality. In observational study follicular fluid was collected from 236 women undergoing assisted reproduction program. Malon-di-aldehyde (MDA) levels and total antioxidant capacity (TAC) levels of follicular fluid were assessed as oxidative stress biomarkers. In assisted reproduction treatment cycle fat consumption and its component were assessed. A percentage of metaphase ΙΙ stage oocytes, fertilization rate were considered as markers of oocyte competence and non-fragmented embryo rate, mean of blastomer and good cleavage (embryos with more than 5 cells on 3 days post insemination) rate were considered as markers of embryo quality. The MDA level in follicular fluid was positively related to polyunsaturated fatty acids intake level (p=0.02) and negatively associated with good cleavage rate (p=0.045). Also good cleavage rate (p=0.005) and mean of blastomer (p=0.006) was negatively associated with polyunsaturated fatty acids intake levels. The percentage of metaphase ΙΙ stage oocyte was positively related to the TAC levels in follicular fluid (p=0.046). The relationship between the OS biomarkers in FF and the fertilization rate was not significant. These findings revealed that fat rich diet may induce the OS in oocyte environment and negatively influence embryonic development. This effect can partially be accounted by polyunsaturated fatty acids uptake while oocyte maturation is related to TAC and oocytes with low total antioxidant capacity have lower chance for fertilization and further development.

  3. Does dietary fat intake influence oocyte competence and embryo quality by inducing oxidative stress in follicular fluid?

    Science.gov (United States)

    Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr-Esfahani, Mohammad Hosein; Saboor Yaraghi, Ali Akbar; Ahmadi, Mehdi

    2013-01-01

    Background: Fat-rich diet may alter oocyte development and maturation and embryonic development by inducing oxidative stress (OS) in follicular environment. Objective: To investigate the relationship between fat intake and oxidative stress with oocyte competence and embryo quality. Materials and Methods: In observational study follicular fluid was collected from 236 women undergoing assisted reproduction program. Malon-di-aldehyde (MDA) levels and total antioxidant capacity (TAC) levels of follicular fluid were assessed as oxidative stress biomarkers. In assisted reproduction treatment cycle fat consumption and its component were assessed. A percentage of metaphase ΙΙ stage oocytes, fertilization rate were considered as markers of oocyte competence and non-fragmented embryo rate, mean of blastomer and good cleavage (embryos with more than 5 cells on 3 days post insemination) rate were considered as markers of embryo quality. Results: The MDA level in follicular fluid was positively related to polyunsaturated fatty acids intake level (p=0.02) and negatively associated with good cleavage rate (p=0.045). Also good cleavage rate (p=0.005) and mean of blastomer (p=0.006) was negatively associated with polyunsaturated fatty acids intake levels. The percentage of metaphase ΙΙ stage oocyte was positively related to the TAC levels in follicular fluid (p=0.046). The relationship between the OS biomarkers in FF and the fertilization rate was not significant. Conclusion: These findings revealed that fat rich diet may induce the OS in oocyte environment and negatively influence embryonic development. This effect can partially be accounted by polyunsaturated fatty acids uptake while oocyte maturation is related to TAC and oocytes with low total antioxidant capacity have lower chance for fertilization and further development. PMID:24639727

  4. Chronic wheel running reduces maladaptive patterns of methamphetamine intake: regulation by attenuation of methamphetamine-induced neuronal nitric oxide synthase

    Science.gov (United States)

    Engelmann, Alexander J.; Aparicio, Mark B.; Kim, Airee; Sobieraj, Jeffery C.; Yuan, Clara J.; Grant, Yanabel

    2013-01-01

    We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2′-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake

  5. Melatonin prevents maternal fructose intake-induced programmed hypertension in the offspring: roles of nitric oxide and arachidonic acid metabolites.

    Science.gov (United States)

    Tain, You-Lin; Leu, Steve; Wu, Kay L H; Lee, Wei-Chia; Chan, Julie Y H

    2014-08-01

    Fructose intake has increased globally and is linked to hypertension. Melatonin was reported to prevent hypertension development. In this study, we examined whether maternal high fructose (HF) intake causes programmed hypertension and whether melatonin therapy confers protection against the process, with a focus on the link to epigenetic changes in the kidney using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with HF (60% diet by weight) alone or with additional 0.01% melatonin in drinking water during the whole period of pregnancy and lactation. Male offspring were assigned to four groups: control, HF, control + melatonin (M), and HF + M. Maternal HF caused increases in blood pressure (BP) in the 12-wk-old offspring. Melatonin therapy blunted the HF-induced programmed hypertension and increased nitric oxide (NO) level in the kidney. The identified differential expressed gene (DEGs) that are related to regulation of BP included Ephx2, Col1a2, Gucy1a3, Npr3, Aqp2, Hba-a2, and Ptgs1. Of which, melatonin therapy inhibited expression and activity of soluble epoxide hydrolase (SEH, Ephx2 gene encoding protein). In addition, we found genes in arachidonic acid metabolism were potentially involved in the HF-induced programmed hypertension and were affected by melatonin therapy. Together, our data suggest that the beneficial effects of melatonin are attributed to its ability to increase NO level in the kidney, epigenetic regulation of genes related to BP control, and inhibition of SEH expression. The roles of DEGs by the NGS in long-term epigenetic changes in the adult offspring kidney require further clarification. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Combination Therapy with Losartan and Pioglitazone Additively Reduces Renal Oxidative and Nitrative Stress Induced by Chronic High Fat, Sucrose, and Sodium Intake

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2012-01-01

    Full Text Available We recently showed that combination therapy with losartan and pioglitazone provided synergistic effects compared with monotherapy in improving lesions of renal structure and function in Sprague-Dawley rats fed with a high-fat, high-sodium diet and 20% sucrose solution. This study was designed to explore the underlying mechanisms of additive renoprotection provided by combination therapy. Losartan, pioglitazone, and their combination were orally administered for 8 weeks. The increased level of renal malondialdehyde and expression of nicotinamide adenine dinucleotide phosphate oxidase subunit p47phox and nitrotyrosine as well as the decreased total superoxide dismutase activity and copper, zinc-superoxide dismutase expression were tangible evidence for the presence of oxidative and nitrative stress in the kidney of model rats. Treatment with both drugs, individually and in combination, improved these abnormal changes. Combination therapy showed synergistic effects in reducing malondialdehyde level, p47phox, and nitrotyrosine expression to almost the normal level compared with monotherapy. All these results suggest that the additive renoprotection provided by combination therapy might be attributed to a further reduction of oxidative and nitrative stress.

  7. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei, E-mail: xmma@bjut.edu.cn; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  8. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    International Nuclear Information System (INIS)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-01-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD 50 ) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in

  9. Fatty acid-induced astrocyte ketone production and the control of food intake.

    Science.gov (United States)

    Le Foll, Christelle; Levin, Barry E

    2016-06-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. Copyright © 2016 the American Physiological Society.

  10. High intake of heterocyclic amines from meat is associated with oxidative stress.

    Science.gov (United States)

    Carvalho, A M; Miranda, A M; Santos, F A; Loureiro, A P M; Fisberg, R M; Marchioni, D M

    2015-04-28

    High meat intake has been related to chronic diseases such as cancer and CVD. One hypothesis is that heterocyclic amines (HCA), which are formed during the cooking process of meat, can generate reactive species. These compounds can cause oxidation of lipids, proteins and DNA, resulting in oxidative stress, cell damage and loss of biological function. This association has been seen in vitro; however, it remains unclear in vivo. The aim of the present study was to investigate the association between oxidative stress and HCA intake, and oxidative stress and meat intake. Data were from the Health Survey for Sao Paulo--ISA-Capital (561 adult and elderly). Food intake was estimated by one 24-h dietary recall (24HR) complemented by a detailed FFQ with preferences of cooking methods and level of doneness for meat. HCA intake was estimated linking the meat from the 24HR to a database of HCA. Oxidative stress was estimated by malondialdehyde (MDA) concentration in the plasma, after derivatisation with thiobarbituric acid and quantification by HPLC/diode array. Analyses were performed using multivariate logistic regressions adjusted for smoking, sex, age, BMI, skin colour, energy intake, fruit and vegetable intake, and physical activity. A positive association between HCA intake and MDA concentration (OR 1·17; 95% CI 1·01, 1·38) was observed, showing that HCA from meat may contribute to increase oxidative stress, and may consequently increase the risk of chronic diseases.

  11. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  12. Prior intake of Brazil nuts attenuates renal injury induced by ischemia and reperfusion

    Directory of Open Access Journals (Sweden)

    Natassia Alberici Anselmo

    2018-04-01

    Full Text Available ABSTRACT Introduction: Ischemia-reperfusion (IR injury results from inflammation and oxidative stress, among other factors. Because of its anti-inflammatory and antioxidant properties, the Brazil nut (BN might attenuate IR renal injury. Objective: The aim of the present study was to investigate whether the intake of BN prevents or reduces IR kidney injury and inflammation, improving renal function and decreasing oxidative stress. Methods: Male Wistar rats were distributed into six groups (N=6/group: SHAM (control, SHAM treated with 75 or 150 mg of BN, IR, and IR treated with 75 or 150 mg of BN. The IR procedure consisted of right nephrectomy and occlusion of the left renal artery with a non-traumatic vascular clamp for 30 min. BN was given daily and individually for 7 days before surgery (SHAM or IR and maintained until animal sacrifice (48h after surgery. We evaluated the following parameters: plasma creatinine, urea, and phosphorus; proteinuria, urinary output, and creatinine clearance; plasmatic TBARS and TEAC; kidney expression of iNOS and nitrotyrosine, and macrophage influx. Results: Pre-treatment with 75 mg of BN attenuated IR-induced renal changes, with elevation of creatinine clearance and urinary output, reducing proteinuria, urea, and plasmatic phosphorus as well as reducing kidney expression of iNOS, nitrotyrosine, and macrophage influx. Conclusion: Low intake of BN prior to IR-induced kidney injury improves renal function by inhibition of macrophage infiltration and oxidative stress.

  13. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  14. The relations between dietary antioxidant vitamins intake and oxidative stress in follicular fluid and ART outcomes

    OpenAIRE

    Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr-Esfahani, Mohammad Hosein

    2015-01-01

    Background: Oxidative stress (OS) in the follicular environment may affect on oocyte competence and antioxidant vitamins may modify its effects. Objective: This study was conducted to examine the effect of dietary intake of vitamin A, C and E on OS in follicular environment and assisted reproduction technology (ART) outcomes. Materials and Methods: In this obsevationalprospective study, the intake levels of vitamin A, C, and E were matured by validated food frequency questionnaire and ...

  15. Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise

    Science.gov (United States)

    Trommelen, Jorn; Fuchs, Cas J.; Beelen, Milou; Lenaerts, Kaatje; Jeukendrup, Asker E.; Cermak, Naomi M.; van Loon, Luc J. C.

    2017-01-01

    Peak exogenous carbohydrate oxidation rates typically reach ~1 g·min−1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL·kg−1·min−1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g·min−1 of glucose (GLU), 1.2 g·min−1 glucose + 0.6 g·min−1 fructose (GLU + FRU), 0.6 g·min−1 glucose + 1.2 g·min−1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g·min−1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g·min−1: p exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g·min−1, respectively, p exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. PMID:28230742

  16. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    The effects of NO on alleviating arsenic-induced oxidative damage in tall fescue leaves were investigated. Arsenic (25 M) treatment induced significantly accumulation of reactive oxygen species (ROS) and led to serious lipid peroxidation in tall fescue leaves and the application of 100 M SNP before arsenic stress resulted ...

  17. Radiation induced lipid oxidation in fish

    International Nuclear Information System (INIS)

    Snauwaert, F.; Tobback, P.; Maes, E.; Thyssen, J.

    1977-01-01

    Oxidative rancidity in herring and redfish was studied as a function of the applied irradiation dose, the storage time and storage temperature and the packaging conditions. - Measurements of the TBA (thiobarbituric acid) value and the peroxide value were used to evaluate the degree of oxidation of lipids, and were related with sensory scores. - Especially for the fatty fish species (herring) irradiation accelerated lipid oxidation and induced oxidative rancidity. Irradiation of vacuum-packed herring fillets and subsequent storage at +2 C seems to be an interesting process. For the experiments conducted on a semi-fatty fish (redfish), oxidative rancidity was never the limiting factor for organoleptic acceptability. (orig.) [de

  18. Comparison of amino acid oxidation and urea metabolism in haemodialysis patients during fasting and meal intake

    NARCIS (Netherlands)

    Veeneman, JM; Kingma, HA; Stellaard, F; de Jong, PE; Reijngoud, DJ; Huisman, RM

    Background. The PNA (protein equivalent of nitrogen appearance) is used to calculate protein intake from urea kinetics. One of the essential assumptions in the calculation of PNA is that urea accumulation in haemodialysis (HD) patients is equivalent to amino acid oxidation. However, urea is

  19. Single pyruvate intake induces blood alkalization and modification of resting metabolism in humans.

    Science.gov (United States)

    Olek, Robert A; Luszczyk, Marcin; Kujach, Sylwester; Ziemann, Ewa; Pieszko, Magdalena; Pischel, Ivo; Laskowski, Radoslaw

    2015-03-01

    Three separate studies were performed with the aim to 1) determine the effect of a single sodium pyruvate intake on the blood acid-base status in males and females; 2) compare the effect of sodium and calcium pyruvate salts and establish their role in the lipolysis rate; and 3) quantify the effect of single pyruvate intake on the resting energy metabolism. In all, 48 individuals completed three separate studies. In all the studies, participants consumed a single dose of pyruvate 0.1 g/kg 60 min before commencing the measurements. The whole blood pH, bicarbonate concentration, base excess or plasma glycerol, free fatty acids, glucose concentrations, or resting energy expenditure and calculated respiratory exchange ratio were determined. The analysis of variance for repeated measurements was performed to examine the interaction between treatment and time. The single dose of sodium pyruvate induced blood alkalization, which was more marked in the male than in the female participants. Following the ingestion of sodium or calcium pyruvate, the blood acid-base parameters were higher than in the placebo trial. Furthermore, 3-h postingestion glycerol was lower in both pyruvate trials than in placebo. Resting energy expenditure did not differ between the trials; however, carbohydrate oxidation was increased after sodium pyruvate ingestion. Pyruvate intake induced mild alkalization in a sex-dependent fashion. Moreover, it accelerated carbohydrate metabolism and delayed the rate of glycerol appearance in the blood, but had no effect on the resting energy expenditure. Furthermore, sodium salt seems to have had a greater effect on the blood buffering level than calcium salt. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Influence of chronic ethanol intake on mouse synaptosomal aspartyl aminopeptidase and aminopeptidase A: relationship with oxidative stress indicators.

    Science.gov (United States)

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2012-08-01

    Aminopeptidase A (APA) and aspartyl aminopeptidase (ASAP) not only act as neuromodulators in the regional brain renin-angiotensin system, but also release N-terminal acidic amino acids (glutamate and aspartate). The hyperexcitability of amino acid neurotransmitters is responsible for several neurodegenerative processes affecting the central nervous system. The purpose of the present work was to study the influence of chronic ethanol intake, a well known neurotoxic compound, on APA and ASAP activity under resting and K(+)-stimulated conditions at the synapse level. APA and ASAP activity were determined against glutamate- and aspartate-β-naphthylamide respectively in mouse frontal cortex synaptosomes and in their incubation supernatant in a Ca(2+)-containing or Ca(2+)-free artificial cerebrospinal fluid. The neurotoxic effects were analyzed by determining free radical generation, peroxidation of membrane lipids and the oxidation of synaptosomal proteins. In addition, the bioenergetic behavior of synaptosomes was analyzed under different experimental protocols. We obtained several modifications in oxidative stress parameters and a preferential inhibitor effect of chronic ethanol intake on APA and ASAP activities. Although previous in vitro studies failed to show signs of neurodegeneration, these in vivo modifications in oxidative stress parameters do not seem to be related to changes in APA and ASAP, invalidating the idea that an excess of free acidic amino acids released by APA and ASAP induces neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    Science.gov (United States)

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  2. Effect of 3 modified fats and a conventional fat on appetite, energy intake, energy expenditure, and substrate oxidation in healthy men

    DEFF Research Database (Denmark)

    Bendixen, H.; Flint, A.; Raben, A.

    2002-01-01

    energy intake, meal-induced thermogenesis, and postprandial substrate oxidation.Design: Eleven healthy, normal-weight men (mean age: 25.1 +/-0.5 y) consumed 4 different test fats [conventional fat (rapeseed oil) and 3 modified fats (lipase-structured fat, chemically structured fat, and physically mixed...... fat)] in a randomized, double-blind, crossover design.Results: No significant differences in appetite sensations or ad libitum energy intakes were observed between the 4 test fats. Overall, the 4 fats exerted different effects on energy expenditure (meal effect: P...

  3. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    Science.gov (United States)

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  5. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  6. Laser induced single spot oxidation of titanium

    International Nuclear Information System (INIS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-01-01

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  7. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.B.R. Colombo

    2015-01-01

    Full Text Available The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

  8. Carbohydrate intake and glycemic index affect substrate oxidation during a controlled weight cycle in healthy men.

    Science.gov (United States)

    Kahlhöfer, J; Lagerpusch, M; Enderle, J; Eggeling, B; Braun, W; Pape, D; Müller, M J; Bosy-Westphal, A

    2014-09-01

    Because both, glycemic index (GI) and carbohydrate content of the diet increase insulin levels and could thus impair fat oxidation, we hypothesized that refeeding a low GI, moderate-carbohydrate diet facilitates weight maintenance. Healthy men (n=32, age 26.0±3.9 years; BMI 23.4±2.0 kg/m(2)) followed 1 week of controlled overfeeding, 3 weeks of caloric restriction and 2 weeks of hypercaloric refeeding (+50, -50 and +50% energy requirement) with low vs high GI (41 vs 74) and moderate vs high CHO intake (50% vs 65% energy). We measured adaptation of fasting macronutrient oxidation and the capacity to supress fat oxidation during an oral glucose tolerance test. Changes in fat mass were measured by quantitative magnetic resonance. During overfeeding, participants gained 1.9±1.2 kg body weight, followed by a weight loss of -6.3±0.6 kg and weight regain of 2.8±1.0 kg. Subjects with 65% CHO gained more body weight compared with 50% CHO diet (Pfat oxidation when compared with a low-GI diet (Pfat oxidation was associated with regain in fat mass (r=0.43, Pcarbohydrate content affect substrate oxidation and thus the regain in body weight in healthy men. These results argue in favor of a lower glycemic load diet for weight maintenance after weight loss.

  9. Alcohol dependence induced in rats by semivoluntary intermittent intake

    Directory of Open Access Journals (Sweden)

    M.S. Macieira

    1997-09-01

    Full Text Available The objective of the present experiment was to assess ethyl alcohol (ETOH dependence brought about by a semivoluntary intermittent intake regimen in rats. Male Wistar rats weighing 150-250 g at the onset of the experiment were assigned to the following groups: 0% ETOH (N = 11, 5% ETOH (N = 20, 20% ETOH (N = 20 and 40% ETOH (N = 18. ETOH solutions were offered at the end of the day and overnight from Monday to Friday, and throughout weekends, for 90 days. The concentration of the ETOH solutions was increased in a stepwise fashion allowing the rats to get used to the taste of alcohol. Reposition of pure water was permitted during 1-h water drinking periods in the morning. Daily volume intake (± SEM averaged 25.4 ± 0.4 ml (0% ETOH, 23.8 ± 0.6 ml (5% ETOH, 17.6 ± 0.7 ml (20% ETOH and 17.5 ± 0.6 ml (40% ETOH. ETOH consumption differed significantly (P<0.05 among groups, averaging 4.4 ± 0.2 g kg-1 day-1 (5% ETOH, 10.3 ± 0.3 g kg-1 day-1 (20% ETOH and 26 ± 1.2 g kg-1 day-1 (40% ETOH. Furthermore, ETOH detection in plasma 10-12 h after offering the solution indicated that its consumption in the 40% ETOH group was sufficient to override its metabolism. Overt signs of ETOH dependence, such as increased thirst, hyperactivity, puffing, hair ruffling and startle responsiveness as well as reduced drowsiness, were significantly increased in the 20% and 40% ETOH groups compared to the 0% and 5% groups. Accordingly, the model described here proved to be a useful tool for the evaluation of subtle or moderate behavioral and physical consequences of long-term ETOH intake

  10. Measurement of breast milk intake using deuterium oxide and fourier transformed infrared spectrophotometer - a pilot study

    International Nuclear Information System (INIS)

    Adom, T.; Bansa, D.; Boatin, R.; Vuore, T.; Datohe, D.; Timpo, S.; Asamoa-Tutu, P.

    2011-01-01

    The measurement of breast milk intake of infants is essential to the estimation of nutrient requirements during infancy and lactation. The conventional method, test-weighing procedure for measuring breast milk is time consuming, most often inaccurate and may interfere with the mother's normal activities. A more practical and accurate method is isotope dilution using stable isotope-labelled water. The accuracy and ready availability of deuterium oxide (D 2 O) have led to its extensive use in measuring body composition and breast milk intake of infants. The D 2 O turnover method was field-tested in 13 lactating Ghanaian mother-baby pairs. Maternal and baby anthropometric measurements were made. Baby milk intake and maternal body composition were measured with the dose-to-mother method. Pre-dose samples of saliva were taken from each mother-baby pair. A measured D 2 O dose (30g) was administered orally to the mother. Post-dose saliva samples were collected from mother and baby on days 1, 2, 3, 4, 13, and 14. Samples were analysed using Fourier Transformed Infrared Spectrophotometer (FTIR). The mean ± SD maternal age was 24 ± 5 years. Babies were aged 3.5 months on the average and weighed 6.7 ± 0.7 kg. Mean milk intake of babies was 828 ± 132 ml/day with a range of 610 to 1040 ml/day. Maternal fat free mass and % body fat were 44.8 ± 5.3 kg, 23.1 ± 5.1 respectively. This non-invasive and convenient method has been used successfully to measure breast milk intake of Ghanaian infants. (au)

  11. Allopregnanolone preferentially induces energy‐rich food intake in male Wistar rats

    Science.gov (United States)

    Holmberg, Ellinor; Johansson, Maja; Bäckström, Torbjörn; Haage, David

    2014-01-01

    Abstract Obesity is an increasing problem and identification of the driving forces for overeating of energy‐rich food is important. Previous studies show that the stress and sex steroid allopregnanolone has a hyperphagic effect on both bland food and palatable food. If allopregnanolone induces a preference for more palatable or for more energy‐rich food is not known. The aim of this study was to elucidate the influence of allopregnanolone on food preference. Male Wistar rats were subjected to two different food preference tests: a choice between standard chow and cookies (which have a higher energy content and also are more palatable than chow), and a choice between a low caloric sucrose solution and standard chow (which has a higher energy content and is less palatable than sucrose). Food intake was measured for 1 h after acute subcutaneous injections of allopregnanolone. In the choice between cookies and chow allopregnanolone significantly increased only the intake of cookies. When the standard chow was the item present with the highest caloric load, the chow intake was increased and allopregnanolone had no effect on intake of the 10% sucrose solution. The increased energy intakes induced by the high allopregnanolone dose compared to vehicle were very similar in the two tests, 120% increase for cookies and 150% increase for chow. It appears that in allopregnanolone‐induced hyperphagia, rats choose the food with the highest energy content regardless of its palatability. PMID:25501437

  12. Voluntary feed intake in rainbow trout is regulated by diet-induced differences in oxygen use.

    Science.gov (United States)

    Saravanan, Subramanian; Geurden, Inge; Figueiredo-Silva, A Cláudia; Kaushik, Sadasivam; Verreth, Johan; Schrama, Johan W

    2013-06-01

    This study investigated the hypothesis that the voluntary feed intake in fish is regulated by diet-induced differences in oxygen use. Four diets were prepared with a similar digestible protein:digestible energy ratio (18 mg/kJ), but which differed in the composition of nonprotein energy source. This replacement of fat (F) by starch (S) was intended to create a diet-induced difference in oxygen use (per unit of feed): diets F30-S70, F50-S50, F65-S35, and F80-S20 with digestible fat providing 28, 49, 65, and 81% of the nonprotein digestible energy (NPDE), respectively. Each diet was fed to satiation to triplicate groups of 20 rainbow trout for 6 wk. As expected, diet-induced oxygen use decreased linearly (R(2) = 0.89; P digestible and metabolizable energy intakes of trout slightly increased with increasing NPDE as fat (i.e., decreasing starch content) (R(2) = 0.30, P = 0.08; and R(2) = 0.34, P = 0.05, respectively). Oxygen consumption of trout fed to satiation declined with increasing dietary NPDE as fat (R(2) = 0.48; P = 0.01). The inverse relation between digestible energy intake of trout and the diet-induced oxygen use (R(2) = 0.33; P = 0.05) suggests a possible role of diet-induced oxygen use in feed intake regulation as shown by the replacement of dietary fat by starch.

  13. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  14. Smog induces oxidative stress and microbiota disruption.

    Science.gov (United States)

    Wong, Tit-Yee

    2017-04-01

    Smog is created through the interactions between pollutants in the air, fog, and sunlight. Air pollutants, such as carbon monoxide, heavy metals, nitrogen oxides, ozone, sulfur dioxide, volatile organic vapors, and particulate matters, can induce oxidative stress in human directly or indirectly through the formation of reactive oxygen species. The outermost boundary of human skin and mucous layers are covered by a complex network of human-associated microbes. The relation between these microbial communities and their human host are mostly mutualistic. These microbes not only provide nutrients, vitamins, and protection against other pathogens, they also influence human's physical, immunological, nutritional, and mental developments. Elements in smog can induce oxidative stress to these microbes, leading to community collapse. Disruption of these mutualistic microbiota may introduce unexpected health risks, especially among the newborns and young children. Besides reducing the burning of fossil fuels as the ultimate solution of smog formation, advanced methods by using various physical, chemical, and biological means to reduce sulfur and nitrogen contains in fossil fuels could lower smog formation. Additionally, information on microbiota disruption, based on functional genomics, culturomics, and general ecological principles, should be included in the risk assessment of prolonged smog exposure to the health of human populations. Copyright © 2017. Published by Elsevier B.V.

  15. Use of deuterium oxide to measure breast-milk intake in children aged 7 to 12 months receiving complementary foods

    International Nuclear Information System (INIS)

    Creed-Kanashiro, H.

    1999-01-01

    The present study is being conducted to pilot the use of the deuterium oxide method for the measurement of breast-milk intake in children 7 - 12 months of age receiving complementary foods. This will be applied to a community efficacy study to determine the effects on total energy and nutrient intake and on breast-milk consumption of an intensive education intervention using locally available, culturally acceptable complementary foods. In order to apply the methodology to this evaluation the washout period of deuterium from the mother and the child after the administration of a dose to the mother is being determined and the comparison of this methodology with the test weighing technique for breast-milk intake. The measurement of deuterium oxide using the infrared spectrometer of the Instituto de Investigacion Nutricional [IIN] is being compared with the IR Mass Spectrometer of INTA Chile. During the present period we have conducted a pilot study to measure breast-milk intake using deuterium oxide in 9 mother-child pairs of children aged 7 - 11 months of age; samples of saliva have been taken for analyses. One child has completed the 28 days of the study and 8 children are in process. Test weighing for 48 hours has been conducted on 5 children; unadjusted breast-milk intake ranges from 589 to 682 g per 24 hours. The samples are awaiting analysis for deuterium oxide. (author)

  16. Use of deuterium oxide to measure breast-milk intake in children aged 7 to 12 months receiving complementary foods

    Energy Technology Data Exchange (ETDEWEB)

    Creed-Kanashiro, H [Instituto de Investigacion Nutricional, La Molina, Lima (Peru)

    1999-09-01

    The present study is being conducted to pilot the use of the deuterium oxide method for the measurement of breast-milk intake in children 7 - 12 months of age receiving complementary foods. This will be applied to a community efficacy study to determine the effects on total energy and nutrient intake and on breast-milk consumption of an intensive education intervention using locally available, culturally acceptable complementary foods. In order to apply the methodology to this evaluation the washout period of deuterium from the mother and the child after the administration of a dose to the mother is being determined and the comparison of this methodology with the test weighing technique for breast-milk intake. The measurement of deuterium oxide using the infrared spectrometer of the Instituto de Investigacion Nutricional [IIN] is being compared with the IR Mass Spectrometer of INTA Chile. During the present period we have conducted a pilot study to measure breast-milk intake using deuterium oxide in 9 mother-child pairs of children aged 7 - 11 months of age; samples of saliva have been taken for analyses. One child has completed the 28 days of the study and 8 children are in process. Test weighing for 48 hours has been conducted on 5 children; unadjusted breast-milk intake ranges from 589 to 682 g per 24 hours. The samples are awaiting analysis for deuterium oxide. (author) 37 refs, 3 tabs

  17. Long-term soft drink and aspartame intake induces hepatic damage via dysregulation of adipocytokines and alteration of the lipid profile and antioxidant status.

    Science.gov (United States)

    Lebda, Mohamed A; Tohamy, Hossam G; El-Sayed, Yasser S

    2017-05-01

    Dietary intake of fructose corn syrup in sweetened beverages is associated with the development of metabolic syndrome and obesity. We hypothesized that inflammatory cytokines play a role in lipid storage and induction of liver injury. Therefore, this study intended to explore the expression of adipocytokines and its link to hepatic damage. Rats were assigned to drink water, cola soft drink (free access) and aspartame (240 mg/kg body weight/day orally) for 2 months. The lipid profiles, liver antioxidants and pathology, and mRNA expression of adipogenic cytokines were evaluated. Subchronic intake of soft drink or aspartame substantially induced hyperglycemia and hypertriacylglycerolemia, as represented by increased serum glucose, triacylglycerol, low-density lipoprotein and very low-density lipoprotein cholesterol, with obvious visceral fatty deposition. These metabolic syndromes were associated with the up-regulation of leptin and down-regulation of adiponectin and peroxisome proliferator activated receptor-γ (PPAR-γ) expression. Moreover, alterations in serum transaminases accompanied by hepatic oxidative stress involving induction of malondialdehyde and reduction of superoxide dismutase, catalase, and glutathione peroxidase and glutathione levels are indicative of oxidative hepatic damage. Several cytoarchitecture alterations were detected in the liver, including degeneration, infiltration, necrosis, and fibrosis, predominantly with aspartame. These data suggest that long-term intake of soft drink or aspartame-induced hepatic damage may be mediated by the induction of hyperglycemia, lipid accumulation, and oxidative stress with the involvement of adipocytokines. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Melamine Induces Oxidative Stress in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Dai

    Full Text Available Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPX were analyzed, and the concentration of malondialdehyde (MDA were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  19. Alleviation in the rat of a GABA-induced reduction in food intake and growth.

    Science.gov (United States)

    Tews, J K; Repa, J J; Harper, A E

    1984-07-01

    Cold exposure and diet dilution which stimulate food intake of normal rats lessened depressions of food intake and growth induced by dietary GABA. During a 3-day adaptation to the cold, rats fed a diet containing 4.5% GABA lost weight; thereafter, food intake and growth rate differed little from those of cold control rats and were usually greater than those of normal rats fed GABA. Hepatic GABA-aminotransferase activity of cold-exposed rats fed the GABA diet increased to about twice that of normal control rats. Rats fed a control diet diluted by half with cellulose ate 50% more of this diet than of the undiluted diet but gained only 20% less weight. Rats ate twice as much of a diluted, 9% GABA diet as of an undiluted, 4.5% GABA diet (thus doubling their GABA intake) and gained three times as much weight. A novel food (condensed milk) barely lessened the adverse responses to GABA. These results show that conditions requiring rats to increase their food intake in order to maintain body weight can also increase their acceptance of a diet high in GABA.

  20. High-Protein Intake during Weight Loss Therapy Eliminates the Weight-Loss-Induced Improvement in Insulin Action in Obese Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Gordon I. Smith

    2016-10-01

    Full Text Available High-protein (HP intake during weight loss (WL therapy is often recommended because it reduces the loss of lean tissue mass. However, HP intake could have adverse effects on metabolic function, because protein ingestion reduces postprandial insulin sensitivity. In this study, we compared the effects of ∼10% WL with a hypocaloric diet containing 0.8 g protein/kg/day and a hypocaloric diet containing 1.2 g protein/kg/day on muscle insulin action in postmenopausal women with obesity. We found that HP intake reduced the WL-induced decline in lean tissue mass by ∼45%. However, HP intake also prevented the WL-induced improvements in muscle insulin signaling and insulin-stimulated glucose uptake, as well as the WL-induced adaptations in oxidative stress and cell structural biology pathways. Our data demonstrate that the protein content of a WL diet can have profound effects on metabolic function and underscore the importance of considering dietary macronutrient composition during WL therapy for people with obesity.

  1. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  2. Symbiosis-induced adaptation to oxidative stress.

    Science.gov (United States)

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  3. No effect on oxidative stress biomarkers by modified intakes of polyunsaturated fatty acids or vegetables and fruit

    DEFF Research Database (Denmark)

    Freese, R; Dragsted, L O; Loft, S

    2007-01-01

    Diet may both increase and decrease oxidative stress in the body. We compared the effects of four strictly controlled isocaloric diets with different intakes of polyunsaturated fatty acids (PUFA, 11 or 3% of energy) and vegetables and fruit (total amount of vegetables and fruit 516 or 1059 g/10 MJ......) on markers associated with oxidative stress in 77 healthy volunteers (19-52 years). Plasma protein carbonyls (2-aminoadipic semialdehyde residues) and whole-body DNA and nucleotide oxidation (urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine excretion) tended to decrease in all treatment groups with no differences...... between the diets. The diets did not differ in their effects on red blood cell antioxidative enzyme activities, either. The results suggest that in healthy volunteers with adequate nutrient intakes, 6-week diets differing markedly in the amount of PUFA or vegetables and fruit do not differ...

  4. A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of wnt/beta-catenin signaling

    Science.gov (United States)

    The mechanisms by which chronic ethanol intake induces bone loss remain unclear. In females, the skeletal response to ethanol varies depending on physiologic status (viz. cycling, pregnancy, lactation). Ethanol-induced oxidative stress appears to be a key event leading to skeletal toxicity. In the c...

  5. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin

    Directory of Open Access Journals (Sweden)

    Danielle Ayr Tavares de Almeida

    2012-08-01

    Full Text Available The present study investigated the effect of supplementation of vitamin E on streptozotocin (STZ-induced diabetic rats by measuring blood glucose, changes in body weight, food and water intake, lipid profile, serum urea and creatinine level, and antioxidant enzyme activity. Male Wistar rats were divided into four groups: control rats (GI; rats receiving vitamin E (GII; STZ-induced diabetic rats (GIII and STZ-induced diabetic rats treated with vitamin E (GIV. Vitamin E reduced (p<0.05 blood glucose and urea, improved the lipid profile (decreased the serum levels of total cholesterol, LDL cholesterol, VLDL cholesterol and triacylglycerols, and increased HDL cholesterol and increased total protein in STZ-induced diabetic rats (GIV. Vitamin prevented changes in the activity of SOD and GSH-Px and in the concentration of lipid hydroperoxide. These results suggested that vitamin E improved hyperglycaemia and dyslipidaemia while inhibiting the progression of oxidative stress in STZ-induced diabetic rats.

  6. Exposure to polycyclic aromatic hydrocarbons, arsenic and environmental tobacco smoke, nutrient intake, and oxidative stress in Japanese preschool children.

    Science.gov (United States)

    Mori, Takuya; Yoshinaga, Jun; Suzuki, Kei; Mizoi, Miho; Adachi, Shu-Ichi; Tao, Hiroaki; Nakazato, Tetsuya; Li, Yun-Shan; Kawai, Kazuaki; Kasai, Hiroshi

    2011-07-01

    The association between oxidative stress and exposure to environmental chemicals was assessed in a group of Japanese preschool children. The concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 1-hydroxypyrene (1-OHP), inorganic arsenic (iAs) and monomethylarsonic acid (MMA), and cotinine in spot urine samples, collected from 134 children (3-6 yrs) from a kindergarten in Kanagawa, Japan, were measured as biomarkers of oxidative stress or exposure to environmental chemicals. For 76 subjects of the 134, intakes of anti-oxidant nutrients (vitamins A, C, and E, manganese, copper, zinc and selenium (Se)) were estimated from a food consumption survey carried out 2-4 weeks after urine sampling and by urine analysis (Se). The median (min-max) creatinine-corrected concentrations of urinary biomarkers were 4.45 (1.98-12.3), 0.127 (0.04-2.41), 4.78 (1.18-12.7), and 0.62 (iAs+MMA, and cotinine, respectively. Multiple regression analysis was carried out using 8-OHdG concentration as a dependent variable and urinary biomarkers of exposure and Se intake, intakes of vitamins and biological attributes of the subjects as independent variables. To explain 8-OHdG concentrations, intake of vitamin A and age were significant variables with negative coefficients, while 1-OHP concentration had a positive coefficient. These results indicated that oxidative stress of children is affected by chemical exposure at environmental levels, by nutrient intake and by physiological factors in a complex manner. On the other hand, unstable statistical results due to sub-grouping of subject, based on the availability of food consumption data, were found: the present results should further be validated by future studies with suitable research design. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Assessment of time interval between tramadol intake and seizure and second drug-induced attack

    Directory of Open Access Journals (Sweden)

    Bahareh Abbasi

    2015-11-01

    Full Text Available Background: Tramadol is a synthetic drug which is prescribed in moderate and severe pain. Tramadol overdose can induce severe complications such as consciousness impairment and convulsions. This study was done to determine the convulsions incidence after tramadol use until one week after hospital discharge. Methods: This prospective study was done in tramadol overdose patients without uncontrolled epilepsy and head injury history. All cases admitted in Loghman and Rasol Akram Hospitals, Tehran, Iran from 1, April 2011 to 1, April 2012 were included and observed for at least 12 hours. Time interval between tramadol intake and first seizure were record. Then, patients with second drug-induced seizure were recognized and log time between the first and second seizure was analyzed. The patients were transferred to the intensive care unit (ICU if clinical worsening status observed. One week after hospital discharge, telephone follow-up was conducted. Results: A total of 150 patients with a history of tramadol induced seizures (141 men, 9 women, age: 23.23±5.94 years were enrolled in this study. Convulsion was seen in 104 patients (69.3%. In 8 out of 104 patients (7.6% two or more convulsion was seen. Time interval between tramadol use and the onset of the first and second seizure were 0.93±0.17 and 2.5±0.75 hours, respectively. Tramadol induced seizures are more likely to occur in males and patients with a history of drug abuse. Finally, one hundred forty nine patients (99.3% were discharged with good condition and the only one patient died from tramadol overdose. Conclusion: The results of the study showed tramadol induced seizure most frequently occurred within the first 4 hours of tramadol intake. The chance of experiencing a second seizure exists in the susceptible population. Thus, 4 hours after drug intake is the best time for patients to be hospital discharged.

  8. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  9. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    Science.gov (United States)

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood.

  10. Use of deuterium oxide to measure breast milk intake in children aged 7-12 months receiving complementary foods

    International Nuclear Information System (INIS)

    Creed-Kanashiro, H.

    2000-01-01

    In the present study we performed a pilot study using deuterium oxide method to determine the breast-milk intake in children 7-12 months of age receiving complementary food. This is applied to a community efficacy study to determine the effects on total energy and nutrient intake and on breast-milk consumption of an intensive education intervention using locally available, culturally acceptable complementary foods. We determined the washout period for the deuterium finding a value of 21 days for the mother and child. This measurement was performed using the infrared spectrometer of the Instituto de Investigacion Nutricional and compared with the values obtained with the IR Mass Spectrometer of INTA Chile. The test weighing was conduced on 14 children and compared with the values obtained using the deuterium methodology. Our result suggest that the breast milk intake determined by the weighing test was lower with regard to the value obtained with the deuterium methodology. (author)

  11. Use of deuterium oxide to measure breast milk intake in children aged 7-12 months receiving complementary foods

    Energy Technology Data Exchange (ETDEWEB)

    Creed-Kanashiro, H [Instituto de Investigacion Nutricional, La Molina, Lima (Peru)

    2000-07-01

    In the present study we performed a pilot study using deuterium oxide method to determine the breast-milk intake in children 7-12 months of age receiving complementary food. This is applied to a community efficacy study to determine the effects on total energy and nutrient intake and on breast-milk consumption of an intensive education intervention using locally available, culturally acceptable complementary foods. We determined the washout period for the deuterium finding a value of 21 days for the mother and child. This measurement was performed using the infrared spectrometer of the Instituto de Investigacion Nutricional and compared with the values obtained with the IR Mass Spectrometer of INTA Chile. The test weighing was conduced on 14 children and compared with the values obtained using the deuterium methodology. Our result suggest that the breast milk intake determined by the weighing test was lower with regard to the value obtained with the deuterium methodology. (author)

  12. Tolerance to disulfiram induced by chronic alcohol intake in the rat.

    Science.gov (United States)

    Tampier, Lutske; Quintanilla, María Elena; Israel, Yedy

    2008-06-01

    Disulfiram, an inhibitor of aldehyde dehydrogenase used in the treatment of alcoholism, is an effective medication when its intake is supervised by a third person. However, its therapeutic efficacy varies widely, in part due to the fact that disulfiram is a pro-drug that requires its transformation into an active form and because it shows a wide range of secondary effects which often prevent the use of doses that ensure full therapeutic effectiveness. In this preclinical study in rats we report the development of tolerance to disulfiram induced by the chronic ingestion of ethanol, an additional source of variation for the actions of disulfiram with possible therapeutic significance, We also addresses the likely mechanism of this effect. Wistar-derived rats bred for generations as high ethanol drinkers (UChB) were trained for either 3 days (Group A) or 30 days (Group B) to choose between ethanol (10% v/v) or water, which were freely available from 2 bottles on a 24-hour basis. Subsequently, animals in both groups were administered disulfiram or cyanamide (another inhibitor of aldehyde dehydrogenase) and ethanol intake in this free choice paradigm was determined. Animals were also administered a standard dose of 1 g ethanol/kg (i.p) and arterial blood acetaldehyde was measured. Disulfiram (12.5 and 25 mg/kg) and cyanamide (10 mg/kg) markedly inhibited ethanol intake (up to 60 to 70%) in animals that had ethanol access for only 3 days (Group A). However both drugs were inactive in inhibiting ethanol intake in animals that had consumed ethanol for 30 days (Group B). Following the injection of 1 g ethanol/kg, arterial blood acetaldehyde levels reached levels of 150 and 300 microM for disulfiram and cyanamide respectively, values which were virtually identical regardless of the length of prior ethanol intake of the animals. Chronic ethanol intake in high-drinker rats leads to marked tolerance to the aversive effects of disulfiram and cyanamide on ethanol intake despite

  13. Oxidative modification of ferritin induced by methylglyoxal

    Directory of Open Access Journals (Sweden)

    Sung Ho An

    2012-03-01

    Full Text Available Methylglyoxal (MG was identified as an intermediate innon-enzymatic glycation and increased levels were reported inpatients with diabetes. In this study, we evaluated the effects ofMG on the modification of ferritin. When ferritin wasincubated with MG, covalent crosslinking of the proteinincreased in a time- and MG dose-dependent manner.Reactive oxygen species (ROS scavengers, N-acetyl-L-cysteineand thiourea suppressed the MG-mediated ferritinmodification. The formation of dityrosine was observed inMG-mediated ferritin aggregates and ROS scavengers inhibitedthe formation of dityrosine. During the reaction betweenferritin and MG, the generation of ROS was increased as afunction of incubation time. These results suggest that ROSmay play a role in the modification of ferritin by MG. Thereaction between ferritin and MG led to the release of ironions from the protein. Ferritin exposure to MG resulted in aloss of arginine, histidine and lysine residues. It was assumedthat oxidative damage to ferritin caused by MG may induce anincrease in the iron content in cells, which is deleterious tocells. This mechanism, in part, may provide an explanation orthe deterioration of organs under diabetic conditions. [BMBreports 2012; 45(3: 147-152

  14. A simplification of the deuterium oxide dilution technique using FT-IR analysis of plasma, for estimating piglet milk intake

    International Nuclear Information System (INIS)

    Glencross, B.D.; Tuckey, R.C.; Hartmann, P.E.; Mullan, B.P.

    1997-01-01

    Previous studies estimating milk intake using deuterium oxide (D 2 O) as a tracer have required sublimation of the sample fluid (usually plasma) to remove solids and retrieve total water. This procedure has been simplified by directly measuring the D 2 O content of plasma with a Fourier transform-infrared (FT-IR) spectrometer, removing the requirement for sample sublimation. Comparisons of samples that were split and then analysed as water of sublimation and as total plasma were performed. It was found that the direct analysis of the plasma could be achieved without a loss in fidelity of the results (sublimated v. plasma, r 2 = 0.976; n = 26). Linearity of assay standards was very high (r 2 > 0.997). The modified technique was used to determine the milk intake by piglets from litters of 7 sows during established lactation (Days 10-15). Water turnover (WTO) was shown to be the primary point by which differences in the piglet milk intakes were influenced. Differences in the milk composition had minimal effect on the milk intake determinations. Milk intake by each piglet was shown to be strongly correlated to piglet growth (r 2 = 0.59, P 2 = 0.84, P < 0.01). Copyright (1997) CSIRO Australia

  15. Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance

    DEFF Research Database (Denmark)

    Jothery, Aqeel H. Al; Vaanholt, Lobke M.; Mody, Nimesh

    2016-01-01

    bred for high (H) or low (L) food intake, which differ in their reproductive performance, i.e., H mice have increased milk energy output (MEO) and wean larger pups. Levels of oxidative damage were unchanged (liver) or reduced (brain and serum) in R versus N mice, and no differences in multiple measures......Oxidative damage caused by reactive oxygen species has been hypothesised to underpin the trade-off between reproduction and somatic maintenance, i.e., the life-history-oxidative stress theory. Previous tests of this hypothesis have proved equivocal, and it has been suggested that the variation...... in responses may be related to the tissues measured. Here, we measured oxidative damage (protein carbonyls, 8-OHdG) and antioxidant protection (enzymatic antioxidant activity and serum antioxidant capacity) in multiple tissues of reproductive (R) and non-reproductive (N) mice from two mouse strains selectively...

  16. Low sodium intake does not impair renal compensation of hypoxia-induced respiratory alkalosis.

    Science.gov (United States)

    Höhne, Claudia; Boemke, Willehad; Schleyer, Nora; Francis, Roland C; Krebs, Martin O; Kaczmarczyk, Gabriele

    2002-05-01

    Acute hypoxia causes hyperventilation and respiratory alkalosis, often combined with increased diuresis and sodium, potassium, and bicarbonate excretion. With a low sodium intake, the excretion of the anion bicarbonate may be limited by the lower excretion rate of the cation sodium through activated sodium-retaining mechanisms. This study investigates whether the short-term renal compensation of hypoxia-induced respiratory alkalosis is impaired by a low sodium intake. Nine conscious, tracheotomized dogs were studied twice either on a low-sodium (LS = 0.5 mmol sodium x kg body wt-1 x day-1) or high-sodium (HS = 7.5 mmol sodium x kg body wt-1 x day-1) diet. The dogs breathed spontaneously via a ventilator circuit during the experiments: first hour, normoxia (inspiratory oxygen fraction = 0.21); second to fourth hour, hypoxia (inspiratory oxygen fraction = 0.1). During hypoxia (arterial PO2 34.4 +/- 2.1 Torr), plasma pH increased from 7.37 +/- 0.01 to 7.48 +/- 0.01 (P respiratory alkalosis was not impaired by a low sodium intake. The increased sodium excretion during hypoxia seems to be combined with a decrease in plasma aldosterone and angiotensin II in LS as well as in HS dogs. Other factors, e.g., increased mean arterial blood pressure, minute ventilation, and renal blood flow, may have contributed.

  17. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Iyer, Smita S; Ramirez, Allan M; Ritzenthaler, Jeffrey D; Torres-Gonzalez, Edilson; Roser-Page, Susanne; Mora, Ana L; Brigham, Kenneth L; Jones, Dean P; Roman, Jesse; Rojas, Mauricio

    2009-01-01

    Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.

  18. High-sodium intake prevents pregnancy-induced decrease of blood pressure in the rat.

    Science.gov (United States)

    Beauséjour, Annie; Auger, Karine; St-Louis, Jean; Brochu, Michéle

    2003-07-01

    Despite an increase of circulatory volume and of renin-angiotensin-aldosterone system (RAAS) activity, pregnancy is paradoxically accompanied by a decrease in blood pressure. We have reported that the decrease in blood pressure was maintained in pregnant rats despite overactivation of RAAS following reduction in sodium intake. The purpose of this study was to evaluate the impact of the opposite condition, e.g., decreased activation of RAAS during pregnancy in the rat. To do so, 0.9% or 1.8% NaCl in drinking water was given to nonpregnant and pregnant Sprague-Dawley rats for 7 days (last week of gestation). Increased sodium intakes (between 10- and 20-fold) produced reduction of plasma renin activity and aldosterone in both nonpregnant and pregnant rats. Systolic blood pressure was not affected in nonpregnant rats. However, in pregnant rats, 0.9% sodium supplement prevented the decreased blood pressure. Moreover, an increase of systolic blood pressure was obtained in pregnant rats receiving 1.8% NaCl. The 0.9% sodium supplement did not affect plasma and fetal parameters. However, 1.8% NaCl supplement has larger effects during gestation as shown by increased plasma sodium concentration, hematocrit level, negative water balance, proteinuria, and intrauterine growth restriction. With both sodium supplements, decreased AT1 mRNA levels in the kidney and in the placenta were observed. Our results showed that a high-sodium intake prevents the pregnancy-induced decrease of blood pressure in rats. Nonpregnant rats were able to maintain homeostasis but not the pregnant ones in response to sodium load. Furthermore, pregnant rats on a high-sodium intake (1.8% NaCl) showed some physiological responses that resemble manifestations observed in preeclampsia.

  19. Changes in LDL Oxidative Status and Oxidative and Inflammatory Gene Expression after Red Wine Intake in Healthy People: A Randomized Trial

    Science.gov (United States)

    Di Renzo, Laura; Marsella, Luigi Tonino; Gualtieri, Paola; Gratteri, Santo; Tomasi, Diego; Gaiotti, Federica

    2015-01-01

    Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. Micronutrients modulate immune system and exert a protective action by reducing low density lipoproteins (LDL) oxidation via induction of antioxidant enzymes. We evaluated the gene expression of oxidative stress (HOSp), inflammasome (HIp), and human drug metabolism pathways (HDM) and ox-LDL level at baseline and after the intake of red wine naturally enriched with resveratrol (NPVRW), in association with or without a McDonald's meal (McDM). The ox-LDL levels significantly increase comparing baseline (B) versus McDM and decreased comparing McDM versus McDM + NPVRW (P ≤ 0.05). Percentages of significant genes expressed after each nutritional intervention were the following: (1) B versus McDM, 2.88% HOSp, 2.40% of HIp, and 3.37% of HDMp; (2) B versus McDM + NPVRW, 1.44% of HOSp, 4.81% of HIp, and 0.96% of HDMp; (3) McDM versus McDM + NPVRW, 2.40% of HOSp, 2.40% of HIp, and 5.77% of HDMp; (4) B versus NPVRW, 4.80% HOSp, 3.85% HIp, and 3.85% HDMp. NPVRW intake reduced postprandial ox-LDL and the expression of inflammation and oxidative stress related genes. Chronic studies on larger population are necessary before definitive conclusions. PMID:26101461

  20. Changes in LDL Oxidative Status and Oxidative and Inflammatory Gene Expression after Red Wine Intake in Healthy People: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Laura Di Renzo

    2015-01-01

    Full Text Available Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. Micronutrients modulate immune system and exert a protective action by reducing low density lipoproteins (LDL oxidation via induction of antioxidant enzymes. We evaluated the gene expression of oxidative stress (HOSp, inflammasome (HIp, and human drug metabolism pathways (HDM and ox-LDL level at baseline and after the intake of red wine naturally enriched with resveratrol (NPVRW, in association with or without a McDonald’s meal (McDM. The ox-LDL levels significantly increase comparing baseline (B versus McDM and decreased comparing McDM versus McDM + NPVRW (P≤0.05. Percentages of significant genes expressed after each nutritional intervention were the following: (1 B versus McDM, 2.88% HOSp, 2.40% of HIp, and 3.37% of HDMp; (2 B versus McDM + NPVRW, 1.44% of HOSp, 4.81% of HIp, and 0.96% of HDMp; (3 McDM versus McDM + NPVRW, 2.40% of HOSp, 2.40% of HIp, and 5.77% of HDMp; (4 B versus NPVRW, 4.80% HOSp, 3.85% HIp, and 3.85% HDMp. NPVRW intake reduced postprandial ox-LDL and the expression of inflammation and oxidative stress related genes. Chronic studies on larger population are necessary before definitive conclusions.

  1. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis.

    Science.gov (United States)

    Zhang, Rong-Huai; Gao, Jian-Yuan; Guo, Hai-Tao; Scott, Glenda I; Eason, Anna R; Wang, Xiao-Ming; Ren, Jun

    2013-01-01

    Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6weeks. Following 2weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)Ca(2+) exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH(2)-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na(+)Ca(2+) exchanger, cardiac contractile and intracellular Ca(2+) defects, cardiac fibrosis, overt O(2)(-) production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effect of Iron Enriched Bread Intake on the Oxidative Stress Indices in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sharareh Heidari

    2016-08-01

    Full Text Available Background Contrary to the proven benefits of iron, few concerns in producing the oxidative stress is remained problematic. Objectives The aim of the study was to evaluate the oxidative stress in the male Wistar rats fed bread supplemented with iron in different doses i.e., 35 (basic, 70 (two fold, 140 (four fold, and 210 mg/kg (six fold with or without NaHCO3 (250 mg/kg. Methods In this experimental study Iron, ceruloplasmin, ferritin, total iron binding capacity (TIBC, albumin, total protein, uric acid and plasma superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase (CAT, malondialdehyde (MDA, and total antioxidant capacity (TAC, were evaluated in 30 rats at the first and last day of the experiment (day 30. In addition, phytic acid levels were detected in all baked breads. The data were analyzed by ANOVA and t test procedure though SPSS statistical software version 20. Results Serum iron level in rats that received basic level of iron plus NaHCO3 decreased significantly in the last day of the trial. Higher level of serum iron was seen in rats that received iron twofold, fourfold and sixfold and rats that received iron fourfold plus NaHCO3. Serum ceruloplasmin and ferritin in groups of rats that received fourfold level of iron plus NaHCO3 and rats that received iron sixfold showed a significant increase (P ≤ 0.05. Serum total protein and uric acid in rats that received basic level of iron plus NaHCO3 and rats that received twofold level of iron showed a significant decrease. Serum total protein levels in rats that received fourfold level of iron showed a significant decrease. Bread with NaHCO3 showed higher phytic acid levels than other groups. Conclusions These results indicate that oxidative stress was not induced, whereas some antioxidant activities were significantly changed in rats that received iron-enriched bread.

  3. Adrenoceptors of the medial septal area modulate water intake and renal excretory function induced by central administration of angiotensin II

    Directory of Open Access Journals (Sweden)

    Saad W.A.

    2002-01-01

    Full Text Available We investigated the role of alpha-adrenergic antagonists and clonidine injected into the medial septal area (MSA on water intake and the decrease in Na+, K+ and urine elicited by ANGII injection into the third ventricle (3rdV. Male Holtzman rats with stainless steel cannulas implanted into the 3rdV and MSA were used. ANGII (12 nmol/µl increased water intake (12.5 ± 1.7 ml/120 min. Clonidine (20 nmol/µl injected into the MSA reduced the ANGII-induced water intake (2.9 ± 0.5 ml/120 min. Pretreatment with 80 nmol/µl yohimbine or prazosin into the MSA also reduced the ANGII-induced water intake (3.0 ± 0.4 and 3.1 ± 0.2 ml/120 min, respectively. Yohimbine + prazosin + clonidine injected into the MSA abolished the ANGII-induced water intake (0.2 ± 0.1 and 0.2 ± 0.1 ml/120 min, respectively. ANGII reduced Na+ (23 ± 7 µEq/120 min, K+ (27 ± 3 µEq/120 min and urine volume (4.3 ± 0.9 ml/120 min. Clonidine increased the parameters above. Clonidine injected into the MSA abolished the inhibitory effect of ANGII on urinary sodium. Yohimbine injected into the MSA also abolished the inhibitory effects of ANGII. Yohimbine + clonidine attenuated the inhibitory effects of ANGII. Prazosin injected into the MSA did not cause changes in ANGII responses. Prazosin + clonidine attenuated the inhibitory effects of ANGII. The results showed that MSA injections of alpha1- and alpha2-antagonists decreased ANGII-induced water intake, and abolished the Na+, K+ and urine decrease induced by ANGII into the 3rdV. These findings suggest the involvement of septal alpha1- and alpha2-adrenergic receptors in water intake and electrolyte and urine excretion induced by central ANGII.

  4. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    Science.gov (United States)

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  5. Strain induced anomalous red shift in mesoscopic iron oxide

    Indian Academy of Sciences (India)

    Nano magnetic oxides; red shift; magnetic storage. ... size and strain induced modifications of various physical properties viz. optical, magnetic and structural. ... ∼2, are synthesized by employing starch and ethylene glycol and starch and ...

  6. Protection of swimming-induced oxidative stress in some vital ...

    African Journals Online (AJOL)

    Protection of swimming-induced oxidative stress in some vital organs by the treatment of composite extract of Withania somnifera, Ocimum sanctum and Zingiber officinalis in male rat. D Misra, B Maiti, D Ghosh ...

  7. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  8. Pomegranate Intake Protects Against Genomic Instability Induced by Medical X-rays In Vivo in Mice.

    Science.gov (United States)

    Nallanthighal, Sameera; Shirode, Amit B; Judd, Julius A; Reliene, Ramune

    2016-01-01

    Ionizing radiation (IR) is a well-documented human carcinogen. The increased use of IR in medical procedures has doubled the annual radiation dose and may increase cancer risk. Genomic instability is an intermediate lesion in IR-induced cancer. We examined whether pomegranate extract (PE) suppresses genomic instability induced by x-rays. Mice were treated orally with PE and exposed to an x-ray dose of 2 Gy. PE intake suppressed x-ray-induced DNA double-strand breaks (DSBs) in peripheral blood and chromosomal damage in bone marrow. We hypothesized that PE-mediated protection against x-ray-induced damage may be due to the upregulation of DSB repair and antioxidant enzymes and/or increase in glutathione (GSH) levels. We found that expression of DSB repair genes was not altered (Nbs1 and Rad50) or was reduced (Mre11, DNA-PKcs, Ku80, Rad51, Rad52 and Brca2) in the liver of PE-treated mice. Likewise, mRNA levels of antioxidant enzymes were reduced (Gpx1, Cat, and Sod2) or were not altered (HO-1 and Sod1) as a function of PE treatment. In contrast, PE-treated mice with and without IR exposure displayed higher hepatic GSH concentrations than controls. Thus, ingestion of pomegranate polyphenols is associated with inhibition of x-ray-induced genomic instability and elevated GSH, which may reduce cancer risk.

  9. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  10. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  11. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  12. High salt intake enhances swim stress-induced PVN vasopressin cell activation and active stress coping.

    Science.gov (United States)

    Mitchell, N C; Gilman, T L; Daws, L C; Toney, G M

    2018-07-01

    Stress contributes to many psychiatric disorders; however, responsivity to stressors can vary depending on previous or current stress exposure. Relatively innocuous heterotypic (differing in type) stressors can summate to result in exaggerated neuronal and behavioral responses. Here we investigated the ability of prior high dietary sodium chloride (salt) intake, a dehydrating osmotic stressor, to enhance neuronal and behavioral responses of mice to an acute psychogenic swim stress (SS). Further, we evaluated the contribution of the osmo-regulatory stress-related neuropeptide arginine vasopressin (VP) in the hypothalamic paraventricular nucleus (PVN), one of only a few brain regions that synthesize VP. The purpose of this study was to determine the impact of high dietary salt intake on responsivity to heterotypic stress and the potential contribution of VPergic-mediated neuronal activity on high salt-induced stress modulation, thereby providing insight into how dietary (homeostatic) and environmental (psychogenic) stressors might interact to facilitate psychiatric disorder vulnerability. Salt loading (SL) with 4% saline for 7 days was used to dehydrate and osmotically stress mice prior to exposure to an acute SS. Fluid intake and hematological measurements were taken to quantify osmotic dehydration, and serum corticosterone levels were measured to index stress axis activation. Immunohistochemistry (IHC) was used to stain for the immediate early gene product c-Fos to quantify effects of SL on SS-induced activation of neurons in the PVN and extended amygdala - brain regions that are synaptically connected and implicated in responding to osmotic stress and in modulation of SS behavior, respectively. Lastly, the role of VPergic PVN neurons and VP type 1 receptor (V1R) activity in the amygdala in mediating effects of SL on SS behavior was evaluated by quantifying c-Fos activation of VPergic PVN neurons and, in functional experiments, by nano-injecting the V1R selective

  13. Induced dyadic stress and food intake: Examination of the moderating roles of body mass index and restraint.

    Science.gov (United States)

    Côté, Marilou; Gagnon-Girouard, Marie-Pierre; Provencher, Véronique; Bégin, Catherine

    2016-12-01

    Restrained eaters and overweight and obese people are prone to increase their food intake during stressful situations. This study examines the impact of a stressful couple discussion on food intake in both spouses, while simultaneously taking into account the effect of BMI and restraint on this association. For 15min, 80 heterosexual couples discussed an aspect that they wanted their partner to change followed by an individual bogus taste test for the purpose of measuring his or her stress-induced food intake. Prior to and after the discussion, subjective mood state was assessed, as well as appetite perceptions, and the mood change before and after the discussion was calculated. Multiple regression analyses with a three-way interaction between mood change, BMI, and restraint were used to predict food intake for both men and women, while controlling for appetite perceptions. Only restrained women with a high BMI ate more when their mood worsened. For men, only appetite perceptions significantly predicted food intake. These results suggest that an induced negative mood in the form of a stressful couple discussion impacts food intake differently for men and women, and that particular attention should be given to the concomitant effect of both restraint and BMI when studying stress-induced eating among women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  15. Quercitrin protects skin from UVB-induced oxidative damage

    International Nuclear Information System (INIS)

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries

  16. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... 1Department of Soil and Water Science, College of Resources and Environment, ... alleviated arsenic-induced electrolyte leakage and malondiadehyde (MDA) content in ..... gene construct for environmental arsenic detection.

  17. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    Science.gov (United States)

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. High sodium intake during postnatal phases induces an increase in arterial blood pressure in adult rats.

    Science.gov (United States)

    Moreira, M C S; da Silva, E F; Silveira, L L; de Paiva, Y B; de Castro, C H; Freiria-Oliveira, A H; Rosa, D A; Ferreira, P M; Xavier, C H; Colombari, E; Pedrino, Gustavo R

    2014-12-28

    Epigenetic studies suggest that diseases that develop in adulthood are related to certain conditions to which the individual is exposed during the initial stages of life. Experimental evidence has demonstrated that offspring born to mothers maintained on high-Na diets during pregnancy have higher mean arterial pressure (MAP) in adulthood. Although these studies have demonstrated the importance of prenatal phases to hypertension development, no evidence regarding the role of high Na intake during postnatal phases in the development of this pathology has been reported. Therefore, in the present study, the effects of Na overload during childhood on induced water and Na intakes and on cardiovascular parameters in adulthood were evaluated. Experiments were carried out in two groups of 21-d-old rats: experimental group, maintained on hypertonic saline (0.3 m-NaCl) solution and food for 60 d, and control group, maintained on tap water and food. Later, both groups were given water and food for 15 d (recovery period). After the recovery period, chronic cannulation of the right femoral artery was performed in unanaesthetised rats to record baseline MAP and heart rate (HR). The experimental group was found to have increased basal MAP (98.6 (sem 2.6) v. 118.3 (sem 2.7) mmHg, P< 0.05) and HR (365.4 (sem 12.2) v. 398.2 (sem 7.5) beats per min, P< 0.05). There was a decrease in the baroreflex index in the experimental group when compared with that in the control group. A water and Na intake test was performed using furosemide. Na depletion was found to induce an increase in Na intake in both the control and experimental groups (12.1 (sem 0.6) ml and 7.8 (sem 1.1), respectively, P< 0.05); however, this increase was of lower magnitude in the experimental group. These results demonstrate that postnatal Na overload alters behavioural and cardiovascular regulation in adulthood.

  19. Quantum confinement-induced tunable exciton states in graphene oxide.

    Science.gov (United States)

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology.

  20. The interaction between ApoA2 -265T>C polymorphism and dietary fatty acids intake on oxidative stress in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Zamani, Elham; Sadrzadeh-Yeganeh, Haleh; Sotoudeh, Gity; Keramat, Laleh; Eshraghian, Mohammadreza; Rafiee, Masoumeh; Koohdani, Fariba

    2017-08-01

    Apolipoprotein A2 (APOA2) -265T>C polymorphism has been studied in relation to oxidative stress and various dietary fatty acids. Since the interaction between APOA2 polymorphism and dietary fatty acids on oxidative stress has not yet discussed, we aimed to investigate the interaction on oxidative stress in type 2 diabetes mellitus (T2DM) patients. The subjects were 180 T2DM patients with known APOA2 genotype, either TT, TC or CC. Superoxide dismutase (SOD) activity was determined by colorimetric method. Total antioxidant capacity (TAC) and serum level of 8-isoprostane F2α were measured by spectrophotometry and ELISA, respectively. Dietary intake was collected through a food frequency questionnaire. Based on the median intake, fatty acids intake was dichotomized into high or low groups. The interaction between APOA2 polymorphism and dietary fatty acids intake was analyzed by ANCOVA multivariate interaction model. Higher than median intake of omega-6 polyunsaturated fatty acids (n-6 PUFA) was associated with increased serum level of 8-isoprostane F2α in subjects with TT/TC genotype (p = 0.004), and higher than median intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) was associated with increased serum SOD activity in CC genotype (p fatty acids intake on oxidative stress. More investigations on different populations are required to confirm the interaction.

  1. Oxidative stress and histopathological changes induced by ...

    African Journals Online (AJOL)

    These authors contributed equally to this work. Abstract: ... Oxidative stress has been proposed as a pos- sible mechanism involved .... to the Natural Health Institute of Health Guidelines for. Animal Care and ..... Journal of American College of.

  2. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  3. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  4. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  5. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2016; 15 (8): 1595-1603 ... Cellular inactivation of nitric oxide induces p53-dependent apoptosis in ... apoptosis induced by a selective iNOS inhibitor, N-[(3-aminomethyl) benzyl] acetamidine (1400W), .... and nitrate. ... Nitrite production was measured in culture media.

  6. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage

    OpenAIRE

    Venditti, Paola; Pamplona Gras, Reinald; Ayala, Victoria; Rosa, R. de; Caldarone, G.; Di Meo, S.

    2006-01-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T-3)- or thyroxine (T-4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most ex...

  7. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  8. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    Science.gov (United States)

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p GABA(A) receptor interaction on food intake in broiler cockerels.

  9. Omega3 Fatty Acids Intake Versus Diclofenac in Osteoarthritis Induced in Experimental rats

    Directory of Open Access Journals (Sweden)

    Mohammed M. El-Seweidy

    2017-04-01

    Full Text Available Background:Osteoarthritis(OAis a degenerative joint disease, characterized by abnormal remodeling pattern of joints driven by inflammatory mediators within the affected joints. Its symptoms are many like pain, stiffness,and decreased function. Objective:The present study mainly focused on the anti-inflammatory effect of omega 3 fatty acids (F.As versus diclofenac, non-steroidal anti-inflammatory drug in OA induced in rats Design: Intraarticular injection of monosodiumiodoacetate(MIA 24.6 mg/kg in 0.6 ml saline was used to induce OA. Diclofenac and omega-3 F. These were administered orally, daily for 21 days and after 24 hours of OA induction.Results:Osteoarthritis induction resulted in an increase in serum levels of IL-6(479.5%,TNF-α(545.5%, and CRP(754.2% along with IL-10 level decrease(70.3% as compared to normal group. Diclofenac intake demonstrated significant increase of IL-6 (24.9%,CRP (88.6%,and TNF-α(25.2% compared to the OA control group. Omega 3 FAs intake showed significant reduction in inflammatory markers along with IL-10 increase, in comparison toOA group.Both treatment demonstrated a significant increase in TIMP2 along with decreased MMP2 and MPO in comparison with OA control.Positive correlation of IL-6 with MPO(r = 0.7,P=0.002, and negative one with IL-10(r = 0.9,p<0.0001 and TIMP2 (r = -0.5,p<0.008 was observed.Interleukin-10 was negatively correlated with MMP2(r = -0.5, p<0.007 and MPO (r=-0.8,p<0.0001.Conclusion:Data derived from biochemical and histopathological results, indicated that omega3 FAs may be expressed as a natural anti-inflammatory agent of a significant potential in OA with evident remarkable effect.

  10. Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats.

    Science.gov (United States)

    Foletto, Kelly Carraro; Melo Batista, Bruna Aparecida; Neves, Alice Magagnin; de Matos Feijó, Fernanda; Ballard, Cíntia Reis; Marques Ribeiro, Maria Flávia; Bertoluci, Marcello Casaccia

    2016-01-01

    In a previous study, we showed that saccharin can induce weight gain when compared with sucrose in Wistar rats despite similar total caloric intake. We now question whether it could be due to the sweet taste of saccharin per se. We also aimed to address if this weight gain is associated with insulin-resistance and to increases in gut peptides such as leptin and PYY in the fasting state. In a 14 week experiment, 16 male Wistar rats received either saccharin-sweetened yogurt or non-sweetened yogurt daily in addition to chow and water ad lib. We measured daily food intake and weight gain weekly. At the end of the experiment, we evaluated fasting leptin, glucose, insulin, PYY and determined insulin resistance through HOMA-IR. Cumulative weight gain and food intake were evaluated through linear mixed models. Results showed that saccharin induced greater weight gain when compared with non-sweetened control (p = 0.027) despite a similar total caloric intake. There were no differences in HOMA-IR, fasting leptin or PYY levels between groups. We conclude that saccharin sweet taste can induce mild weight gain in Wistar rats without increasing total caloric intake. This weight gain was not related with insulin-resistance nor changes in fasting leptin or PYY in Wistar rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Oxidative stress and histopathological changes induced by ...

    African Journals Online (AJOL)

    Background: Methyl-thiophanate (MT), a fungicide largely used in agriculture throughout the world including Tunisia, protects many vegetables, fruits and field crops against a wide spectrum of fungal diseases. Oxidative stress has been proposed as a possible mechanism involved in MT toxicity on non-target organism.

  12. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  13. Hypochlorite-induced oxidation of thiols

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, C L

    2000-01-01

    -molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion......-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative...... to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented...

  14. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats.

    Science.gov (United States)

    Bielinska, Klaudia; Radkowski, Marek; Grochowska, Marta; Perlejewski, Karol; Huc, Tomasz; Jaworska, Kinga; Motooka, Daisuke; Nakamura, Shota; Ufnal, Marcin

    2018-03-22

    A high-salt diet is considered a cardiovascular risk factor; however, the mechanisms are not clear. Research suggests that gut bacteria-derived metabolites such as trimethylamine N-oxide (TMAO) are markers of cardiovascular diseases. We evaluated the effect of high salt intake on gut bacteria and their metabolites plasma level. Sprague Dawley rats ages 12-14 wk were maintained on either water (controls) or 0.9% or 2% sodium chloride (NaCl) water solution (isotonic and hypertonic groups, respectively) for 2 wk. Blood plasma, urine, and stool samples were analyzed for concentrations of trimethylamine (TMA; a TMAO precursor), TMAO, and indoxyl sulfate (indole metabolite). The gut-blood barrier permeability to TMA and TMA liver clearance were assessed at baseline and after TMA intracolonic challenge test. Gut bacterial flora was analyzed with a 16S ribosomal ribonucleic acid (rRNA) gene sequence analysis. The isotonic and hypertonic groups showed a significantly higher plasma TMAO and significantly lower 24-hr TMAO urine excretion than the controls. However, the TMA stool level was similar between the groups. There was no significant difference between the groups in gut-blood barrier permeability and TMA liver clearance. Plasma indoxyl concentration and 24-hr urine indoxyl excretion were similar between the groups. There was a significant difference between the groups in gut bacteria composition. High salt intake increases plasma TMAO concentration, which is associated with decreased TMAO urine excretion. Furthermore, high salt intake alters gut bacteria composition. These findings suggest that salt intake affects an interplay between gut bacteria and their host homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Koury Josely C

    2011-05-01

    Full Text Available Abstract Background Obesity is a chronic disease associated to an inflammatory process resulting in oxidative stress that leads to morpho-functional microvascular damage that could be improved by some dietary interventions. In this study, the intake of Brazil nuts (Bertholletia excelsa, composed of bioactive substances like selenium, α- e γ- tocopherol, folate and polyunsaturated fatty acids, have been investigated on antioxidant capacity, lipid and metabolic profiles and nutritive skin microcirculation in obese adolescents. Methods Obese female adolescents (n = 17, 15.4 ± 2.0 years and BMI of 35.6 ± 3.3 kg/m2, were randomized 1:1 in two groups with the diet supplemented either with Brazil nuts [BNG, n = 08, 15-25 g/day (equivalent to 3 to 5 units/day] or placebo [PG (lactose, n = 09, one capsule/day] and followed for 16 weeks. Anthropometry, metabolic-lipid profiles, oxidative stress and morphological (capillary diameters and functional [functional capillary density, red blood cell velocity (RBCV at baseline and peak (RBCVmax and time (TRBCVmax to reach it during post-occlusive reactive hyperemia, after 1 min arterial occlusion] microvascular variables were assessed by nailfold videocapillaroscopy at baseline (T0 and after intervention (T1. Results T0 characteristics were similar between groups. At T1, BNG (intra-group variation had increased selenium levels (p = 0.02, RBCV (p = 0.03 and RBCVmax (p = 0.03 and reduced total (TC (p = 0.02 and LDL-cholesterol (p = 0.02. Compared to PG, Brazil nuts intake reduced TC (p = 0.003, triglycerides (p = 0.05 and LDL-ox (p = 0.02 and increased RBCV (p = 0.03. Conclusion Brazil nuts intake improved the lipid profile and microvascular function in obese adolescents, possibly due to its high level of unsaturated fatty acids and bioactive substances. Trial Registration Clinical Trials.gov NCT00937599

  16. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity

    Science.gov (United States)

    Moran, M. M.; Stein, T. P.; Wade, C. E.

    2001-01-01

    A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  17. Metabolism and Whole-Body Fat Oxidation Following Post-Exercise Carbohydrate or Protein Intake

    DEFF Research Database (Denmark)

    Hall, Ulrika Andersson; Pettersson, Stefan; Edin, Fredrik

    2018-01-01

    : Protein supplementation immediately post-exercise did not affect the doubling in whole body fat oxidation seen during a subsequent exercise trial 2 hours later. Neither did it affect resting fat oxidation during the post-exercise period despite increased insulin levels and attenuated ketosis. Carbohydrate...

  18. Dietary Intake of Sulforaphane-Rich Broccoli Sprout Extracts during Juvenile and Adolescence Can Prevent Phencyclidine-Induced Cognitive Deficits at Adulthood.

    Directory of Open Access Journals (Sweden)

    Yumi Shirai

    Full Text Available Oxidative stress and inflammation play a role in cognitive impairment, which is a core symptom of schizophrenia. Furthermore, a hallmark of the pathophysiology of this disease is the dysfunction of cortical inhibitory γ-aminobutyric acid (GABA neurons expressing parvalbumin (PV, which is also involved in cognitive impairment. Sulforaphane (SFN, an isothiocyanate derived from broccoli, is a potent activator of the transcription factor Nrf2, which plays a central role in the inducible expressions of many cytoprotective genes in response to oxidative stress. Keap1 is a cytoplasmic protein that is essential for the regulation of Nrf2 activity. Here, we found that pretreatment with SFN attenuated cognitive deficits, the increase in 8-oxo-dG-positive cells, and the decrease in PV-positive cells in the medial prefrontal cortex and hippocampus after repeated administration of phencyclidine (PCP. Furthermore, PCP-induced cognitive deficits were improved by the subsequent subchronic administration of SFN. Interestingly, the dietary intake of glucoraphanin (a glucosinolate precursor of SFN during the juvenile and adolescence prevented the onset of PCP-induced cognitive deficits as well as the increase in 8-oxo-dG-positive cells and the decrease in PV-positive cells in the brain at adulthood. Moreover, the NRF2 gene and the KEAP1 gene had an epistatic effect on cognitive impairment (e.g., working memory and processing speed in patients with schizophrenia. These findings suggest that SFN may have prophylactic and therapeutic effects on cognitive impairment in schizophrenia. Therefore, the dietary intake of SFN-rich broccoli sprouts during the juvenile and adolescence may prevent the onset of psychosis at adulthood.

  19. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  20. High fructose intake fails to induce symptomatic adaptation but may induce intestinal carriers

    Directory of Open Access Journals (Sweden)

    Debra Heilpern

    2010-01-01

    Full Text Available Fructose has several interactions in man, including intolerance and promotion of some diseases. However, fructose in fruits and in prebiotics may be associated with benefits. Adaptation to regular fructose ingestion as defined for lactose could support a beneficial rather than a deleterious effect. This study was undertaken to evaluate symptomatic response and potential underlying mechanisms of fecal bacterial change and breath hydrogen response to short term regular fructose supplementation. Forty-five participants were recruited for a 3 day recall diet questionnaire and a 50 g fructose challenge. Breath hydrogen was measured for 4.5 hrs and symptoms were recorded. Thirty-eight subjects provided stool samples for analysis by selective culture of 4 groups of bacteria, including bifidobacteria and lactobacilli. Intolerant subjects returned a second time 15 days later. Ten of these served as controls and 16 received 30 g fructose twice a day. Ten of the latter returned 27 days later, after stopping fructose for a third challenge test. Student’s paired, unpaired t-tests and Pearson correlations were used. Significance was accepted at P<0.05. After fructose rechallenge there were no significant reductions in symptoms scores in volunteers in either the fructose supplemented or non supplemented groups. However, total breath hydrogen was reduced between test 1 and test 2 (P=0.03 or test 3 (P=0.04 in the group given fructose then discontinued, compared with controls. There were no statistically significant changes in bacterial numbers between test 2 and 1. This study shows that regular consumption of high dose fructose does not follow the lactose model of adaptation. Observed changes in hydrogen breath tests raise the possibility that intestinal carriers of fructose may be induced potentially aggravating medical problems attributed to fructose.

  1. Modulator effect of watercress against cyclophosphamide-induced oxidative stress in mice

    Directory of Open Access Journals (Sweden)

    Natalia A. Casanova

    2017-06-01

    Full Text Available Watercress (Nasturtium officinale, Cruciferae; W. Aiton is a vegetable widely consumed in our country, with nutritional and potentially chemopreventive properties. Previous reports from our laboratory demonstrated the protective effect of watercress juice against DNA damage induced by cyclophosphamide in vivo. In this study, we evaluated the in vivo effect of cress plant on the oxidative stress in mice. Animals were treated by gavage with different doses of watercress juice (0.5 and 1g/kg body weight for 15 consecutive days before intraperitoneal injection of cyclophosphamide (100 mg/kg body weight. After 24 h, mice were killed by cervical dislocation. The effect of watercress was investigated by assessing the following oxidative stress biomarkers: catalase activity, superoxide dismutase activity, lipid peroxidation, and glutathione balance. Intake of watercress prior to cyclophosphamide administration enhanced superoxide dismutase activity in erythrocytes with no effect on catalase activity. In bone marrow and liver tissues, watercress juice counteracted the effect of cyclophosphamide. Glutathione balance rose by watercress supplementation and lipid oxidation diminished in all matrixes when compared to the respective control groups. Our results support the role of watercress as a diet component with promising properties to be used as health promoter or protective agent against oxidative damage

  2. Nitrous oxide induced myeloneuropathy: a case report.

    Science.gov (United States)

    Rheinboldt, Matt; Harper, Derrick; Parrish, David; Francis, Kirenza; Blase, John

    2014-02-01

    We report the case of a 35-year-old male with a history of chronic, escalating nitrous oxide abuse who presented to the ER with a history of recent onset generalized weakness, altered sensorium, abnormal posturing of the hands, urinary complaints, and decreased balance. Physical examination was notable for pathologically brisk reflexes in all extremities, generalized flexion contracture of the fingers, decreased sensation in a stocking and glove distribution, and a weakly positive Babinski sign. The patient was noted to be a poor historian with decreased attention and concentration though otherwise generally alert and oriented. No discrete sensory level in the chest or trunk was detected, and the overall clinical appearance was felt to be most compatible with a mixed myeloneuropathic pattern of central and peripheral involvement. Laboratory findings were normal and noncontributory. Cervical spine MRI subsequently performed to rule out cord compression, intrinsic spinal cord mass, or demyelinating disease was notable for a long segment of increased T2 signal extending from C2-C3 to C6-C7 localizing to the dorsal columns of the cord in a typical "inverted V" fashion. No associated cord expansion was seen nor was there evidence of extrinsic compression; faint associated contrast enhancement was observed on post-gadolinium images. Further evaluation with nerve conduction velocity and electromyographic testing was deferred. Based on the exam findings, clinical history, and presentation, a diagnosis of nitrous oxide-related myeloneuropathy was made, and treatment with high-dose vitamin B12 supplementation was instituted. Recovery has been slow to date.

  3. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  4. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  5. Metoprolol induces oxidative damage in common carp (Cyprinus carpio).

    Science.gov (United States)

    Martínez-Rodríguez, Héctor; Donkor, Kingsley; Brewer, Sharon; Galar-Martínez, Marcela; SanJuan-Reyes, Nely; Islas-Flores, Hariz; Sánchez-Aceves, Livier; Elizalde-Velázquez, Armando; Gómez-Oliván, Leobardo Manuel

    2018-04-01

    During the last decade, β-blockers such as metoprolol (MTP) have been frequently detected in surface water, aquatic systems and municipal water at concentrations of ng/L to μg/L. Only a small number of studies exist on the toxic effects induced by this group of pharmaceuticals on aquatic organisms. Therefore, the present study aimed to evaluate the oxidative damage induced by MTP in the common carp Cyprinus carpio, using oxidative stress biomarkers. To this end, indicators of cellular oxidation such as hydroperoxide content (HPC), lipid peroxidation (LPX) and protein carbonyl content (PCC) were determined, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, concentrations of MTP and its metabolite O-desmethyl metoprolol were determined in water as well as carp gill, liver, kidney, brain and blood, along with the partial uptake pattern of these compounds. Results show that carp takes up MTP and its metabolite in the different organs evaluated, particularly liver and gill. The oxidative stress biomarkers, HPC, LPX, and PCC, as well as SOD and CAT activity all increased significantly at most exposure times in all organs evaluated. Results indicate that MTP and its metabolite induce oxidative stress on the teleost C. carpio and that the presence of these compounds may constitute a risk in water bodies for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Mixed chemical-induced oxidative stress in occupational exposure ...

    African Journals Online (AJOL)

    Mixed chemical-induced oxidative stress in occupational exposure in Nigerians. JI Anetor, SA Yaqub, GO Anetor, AC Nsonwu, FAA Adeniyi, S Fukushima. Abstract. Exposure to single chemicals and associated disorders in occupational environments has received significant attention. Understanding these events holds ...

  7. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes were selected ...

  8. Palladium induced oxidative stress and cell death in normal ...

    African Journals Online (AJOL)

    Our findings clearly indicate that Pd induces reactive oxygen species (ROS) formation and oxidative stress, mitochondrial and lysosomal injury and finally cell death. These effects are reversed by antioxidants and ROS scavengers, mitochondrial permeability transmission [1] pore sealing agent, ATP progenitor, and ...

  9. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the.

  10. Coping with Salt Water Habitats: Metabolic and Oxidative Responses to Salt Intake in the Rufous-Collared Sparrow

    Directory of Open Access Journals (Sweden)

    Pablo Sabat

    2017-09-01

    Full Text Available Many physiological adjustments occur in response to salt intake in several marine taxa, which manifest at different scales from changes in the concentration of individual molecules to physical traits of whole organisms. Little is known about the influence of salinity on the distribution, physiological performance, and ecology of passerines; specifically, the impact of drinking water salinity on the oxidative status of birds has been largely ignored. In this study, we evaluated whether experimental variations in the salt intake of a widely-distributed passerine (Zontotrichia capensis could generate differences in basal (BMR and maximum metabolic rates (Msum, as well as affect metabolic enzyme activity and oxidative status. We measured rates of energy expenditure of birds after 30-d acclimation to drink salt (SW or tap (fresh water (TW and assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase in skeletal muscle, heart, and kidney. Finally, we evaluated the oxidative status of bird tissues by means of total antioxidant capacity (TAC and superoxide dismutase activities and lipid oxidative damage (Malondialdehyde, MDA. The results revealed a significant increase in BMR but not Msum, which resulted in a reduction in factorial aerobic scope in SW- vs. TW-acclimated birds. These changes were paralleled with increased kidney and intestine masses and catabolic activities in tissues, especially in pectoralis muscle. We also found that TAC and MDA concentrations were ~120 and ~400% higher, respectively in the liver of animals acclimated to the SW- vs. TW-treatment. Our study is the first to document changes in the oxidative status in birds that persistently drink saltwater, and shows that they undergo several physiological adjustments that range that range in scale from biochemical capacities (e.g., TAC and MDA to whole organism traits (e.g., metabolic rates. We propose that the physiological changes observed

  11. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  12. Prednisolone reduces nitric oxide-induced migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, P; Daugaard, D; Lassen, L H

    2009-01-01

    BACKGROUND AND PURPOSE: Glyceryl trinitrate (GTN) induces delayed migraine attacks in migraine patients. The purpose of this study was to investigate whether pre-treatment with prednisolon could decrease this effect of GTN. METHODS: In this double-blind, randomized and placebo-controlled, crossover...... study 15 migraineurs with migraine without aura were pre-treated with 150 mg of prednisolone or placebo followed by a 20-min infusion of GTN (0.5 ug/kg/min). One hour after the GTN-infusion, the participants were sent home, but continued to rate headache and possible associated symptoms by filling out...... a headache diary every hour for 12 h. There were two equal primary efficacy end-points: frequency of delayed migraine and intensity of delayed headache. RESULTS: Nine patients experienced a GTN headache fulfilling the diagnostic criteria for migraine without aura on the placebo day compared with four...

  13. Nitrous oxide-induced slow and delta oscillations.

    Science.gov (United States)

    Pavone, Kara J; Akeju, Oluwaseun; Sampson, Aaron L; Ling, Kelly; Purdon, Patrick L; Brown, Emery N

    2016-01-01

    Switching from maintenance of general anesthesia with an ether anesthetic to maintenance with high-dose (concentration >50% and total gas flow rate >4 liters per minute) nitrous oxide is a common practice used to facilitate emergence from general anesthesia. The transition from the ether anesthetic to nitrous oxide is associated with a switch in the putative mechanisms and sites of anesthetic action. We investigated whether there is an electroencephalogram (EEG) marker of this transition. We retrospectively studied the ether anesthetic to nitrous oxide transition in 19 patients with EEG monitoring receiving general anesthesia using the ether anesthetic sevoflurane combined with oxygen and air. Following the transition to nitrous oxide, the alpha (8-12 Hz) oscillations associated with sevoflurane dissipated within 3-12 min (median 6 min) and were replaced by highly coherent large-amplitude slow-delta (0.1-4 Hz) oscillations that persisted for 2-12 min (median 3 min). Administration of high-dose nitrous oxide is associated with transient, large amplitude slow-delta oscillations. We postulate that these slow-delta oscillations may result from nitrous oxide-induced blockade of major excitatory inputs (NMDA glutamate projections) from the brainstem (parabrachial nucleus and medial pontine reticular formation) to the thalamus and cortex. This EEG signature of high-dose nitrous oxide may offer new insights into brain states during general anesthesia. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  15. Effect of atorvastatin on hyperglycemia-induced brain oxidative stress and neuropathy induced by diabetes

    Directory of Open Access Journals (Sweden)

    Nastaran Faghihi

    2015-04-01

    Conclusion: The findings of the present study reveal that atorvastatin is able to prevent hyperglycemia-induced diabetic neuropathy and inhibit brain oxidative stress during diabetes. It is probable that reduction of urea is one of the reasons for atorvastatin prevention of hyperglycemia-induced neuropathy.

  16. Phytosterol oxidation products (POP) in foods with added phytosterols and estimation of their daily intake: A literature review.

    Science.gov (United States)

    Lin, Yuguang; Knol, Diny; Trautwein, Elke A

    2016-10-01

    1To evaluate the content of phytosterol oxidation products (POP) of foods with added phytosterols, in total 14 studies measuring POP contents of foods with added phytosterols were systematically reviewed. In non-heated or stored foods, POP contents were low, ranging from (medians) 0.03-3.6 mg/100 g with corresponding oxidation rates of phytosterols (ORP) of 0.03-0.06%. In fat-based foods with 8% of added free plant sterols (FPS), plant sterol esters (PSE) or plant stanol esters (PAE) pan-fried at 160-200°C for 5-10 min, median POP contents were 72.0, 38.1, and 4.9 mg/100 g, respectively, with a median ORP of 0.90, 0.48, and 0.06%. Hence resistance to thermal oxidation was in the order of PAE > PSE > FPS. POP formation was highest in enriched butter followed by margarine and rapeseed oil. In margarines with 7.5-10.5% added PSE oven-heated at 140-200°C for 5-30 min, median POP content was 0.3 mg/100 g. Further heating under same temperature conditions but for 60-120 min markedly increased POP formation to 384.3 mg/100 g. Estimated daily upper POP intake was 47.7 mg/d (equivalent to 0.69 mg/kg BW/d) for foods with added PSE and 78.3 mg/d (equivalent to 1.12 mg/kg BW/d) for foods with added FPS as calculated by multiplying the advised upper daily phytosterol intake of 3 g/d with the 90% quantile values of ORP. In conclusion, heating temperature and time, chemical form of phytosterols added and the food matrix are determinants of POP formation in foods with added phytosterols, leading to an increase in POP contents. Practical applications: Phytosterol oxidation products (POP) are formed in foods containing phytosterols especially when exposed to heat treatment. This review summarising POP contents in foods with added phytosterols in their free and esterified forms reveals that heating temperature and time, the chemical form of phytosterols added and the food matrix itself are determinants of POP formation with heating

  17. Effect of Galactose Ingestion Before and During Exercise on Substrate Oxidation, Postexercise Satiety, and Subsequent Energy Intake in Females.

    Science.gov (United States)

    Duckworth, Lauren C; Backhouse, Susan H; O'Hara, John P; Stevenson, Emma J

    2016-01-01

    To examine the effects of consuming a galactose carbohydrate (CHO) drink on substrate oxidation, postexercise satiety, and subsequent energy intake. Nine recreationally active eumenorrheic females undertook 3 trials, each consisting of running for 60 minutes at 65% VO(2peak) followed immediately by a 90-minute rest period. Prior to (300 ml) and at 15-minute intervals during exercise (150 ml), participants consumed either a glucose (GLU: GI 89) or galactose (GAL: GI 20) drink, each of which contained 45 g of CHO, or an artificially sweetened placebo (PLA). Following the rest period, participants were provided with an ad libitum test lunch and asked to record food intake for the remainder of the day. Plasma glucose was significantly greater throughout exercise and rest following the GLU trial compared with the GAL and PLA trials (P Hunger was significantly lower (P solution containing GAL before and during exercise can positively impact postexercise satiety and energy balance throughout the day, compared to a more readily available and widely consumed form of CHO. Despite this, there appears to be no apparent benefit in consuming a CHO beverage on fuel utilization for this moderate exercise intensity and duration.

  18. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    Science.gov (United States)

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  19. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    Directory of Open Access Journals (Sweden)

    Laura Di Renzo

    2014-01-01

    Full Text Available Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald’s Meal (McD and a Mediterranean Meal (MM, with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox- LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P<0.05 and expression of antioxidant genes is increased, while CCL5 expression is decreased (P<0.05. SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P<0.001. GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070.

  20. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    Science.gov (United States)

    Di Renzo, Laura; Valente, Roberto; Colica, Carmen

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  1. Early Maternal Deprivation Enhances Voluntary Alcohol Intake Induced by Exposure to Stressful Events Later in Life

    Directory of Open Access Journals (Sweden)

    Sara Peñasco

    2015-01-01

    Full Text Available In the present study, we aimed to assess the impact of early life stress, in the form of early maternal deprivation (MD, 24 h on postnatal day, pnd, 9, on voluntary alcohol intake in adolescent male and female Wistar rats. During adolescence, from pnd 28 to pnd 50, voluntary ethanol intake (20%, v/v was investigated using the two-bottle free choice paradigm. To better understand the relationship between stress and alcohol consumption, voluntary alcohol intake was also evaluated following additional stressful events later in life, that is, a week of alcohol cessation and a week of alcohol cessation combined with exposure to restraint stress. Female animals consumed more alcohol than males only after a second episode of alcohol cessation combined with restraint stress. MD did not affect baseline voluntary alcohol intake but increased voluntary alcohol intake after stress exposure, indicating that MD may render animals more vulnerable to the effects of stress on alcohol intake. During adolescence, when animals had free access to alcohol, MD animals showed lower body weight gain but a higher growth rate than control animals. Moreover, the higher growth rate was accompanied by a decrease in food intake, suggesting an altered metabolic regulation in MD animals that may interact with alcohol intake.

  2. Transient light-induced intracellular oxidation revealed by redox biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kolossov, Vladimir L., E-mail: viadimer@illinois.edu [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Beaudoin, Jessica N. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Hanafin, William P. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); DiLiberto, Stephen J. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Kenis, Paul J.A. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (United States); Rex Gaskins, H. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61801 (United States); Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  3. Transient light-induced intracellular oxidation revealed by redox biosensor

    International Nuclear Information System (INIS)

    Kolossov, Vladimir L.; Beaudoin, Jessica N.; Hanafin, William P.; DiLiberto, Stephen J.; Kenis, Paul J.A.; Rex Gaskins, H.

    2013-01-01

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition

  4. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  5. The control of short-term feed intake by metabolic oxidation in late-pregnant and early lactating dairy cows exposed to high ambient temperatures.

    Science.gov (United States)

    Eslamizad, Mehdi; Lamp, Ole; Derno, Michael; Kuhla, Björn

    2015-06-01

    The objective of the present study was to integrate the dynamics of feed intake and metabolic oxidation in late pregnant and early lactating Holstein cows under heat stress conditions. On day 21 before parturition and again on day 20 after parturition, seven Holstein cows were kept for 7days at thermoneutral (TN) conditions (15°C; temperature-humidity-index (THI)=60) followed by a 7day heat stress (HS) period at 28°C (THI=76). On the last day of each temperature condition, gas exchange, feed intake and water intake were recorded every 6min in a respiration chamber. Pre- and post-partum cows responded to HS by decreasing feed intake. The reduction in feed intake in pre-partum cows was achieved through decreased meal size, meal duration, eating rate and daily eating time with no change in meal frequency, while post-partum cows kept under HS conditions showed variable responses in feeding behavior. In both pre- and post-partum cows exposed to heat stress, daily and resting metabolic heat production decreased while the periprandial respiratory quotient (RQ) increased. The prolonged time between meal and the postprandial minimum in fat oxidation and the postprandial RQ maximum, respectively, revealed that HS as compared to TN early-lactating cows have slower postprandial fat oxidation, longer feed digestion, and thereby showing a shift from fat to glucose utilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Training-induced adaptation of oxidative phosphorylation in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2003-08-15

    Muscle training/conditioning improves the adaptation of oxidative phosphorylation in skeletal muscles to physical exercise. However, the mechanisms underlying this adaptation are still not understood fully. By quantitative analysis of the existing experimental results, we show that training-induced acceleration of oxygen-uptake kinetics at the onset of exercise and improvement of ATP/ADP stability due to physical training are mainly caused by an increase in the amount of mitochondrial proteins and by an intensification of the parallel activation of ATP usage and ATP supply (increase in direct stimulation of oxidative phosphorylation complexes accompanying stimulation of ATP consumption) during exercise.

  7. [Acupuncture Intervention Reduced Weight Gain Induced by Hypoglycemic Agents through Food Intake-related Targets in Central Nervous System].

    Science.gov (United States)

    Jing, Xin-yue; Ou, Chen; Lu, Sheng-feng; Zhu, Bing-mei

    2015-12-01

    Clinical practice shows that thiazolidinediones (TZDs) induce weight gain in patients with type-II diabetes mellitus during treatment, which restrains its application and generalization clinically. It has been demonstrated that acupuncture therapy is useful in easing obesity in clinical trials. In the present paper, we summarize the underlying mechanism of weight gain induced by TZDs through food intake-related targets in the central nervous system and analyze the possible effects of acupuncture therapy. Acupuncture therapy is expected to reduce weight gain side effect of TZDs through 1) lowering permeability of blood brain barrier to reduce TZDs concentration in the brain, 2) upregulating the expression of hypothalamic leptin and inhibiting hypothalamic neuropiptide Y expression, and 3) down-regulating activities of peroxisome proliferator-activated receptor to reduce energy intake and fat syntheses.

  8. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  9. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  10. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Bosia, Amalia; Ghigo, Dario

    2006-01-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H 2 O 2 concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution

  11. Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory.

    Science.gov (United States)

    Tamano, Haruna; Fukura, Kotaro; Suzuki, Miki; Sakamoto, Kazuhiro; Yokogoshi, Hidehiko; Takeda, Atsushi

    2013-06-01

    Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. On the basis of the preventive effect of theanine intake after birth on mild stress-induced attenuation of hippocamapal CA1 long-term potentiation (LTP), the present study evaluated the effect of theanine intake after weaning on stress-induced impairments of LTP and recognition memory. Young rats were fed water containing 0.3% theanine for 3 weeks after weaning and subjected to water immersion stress for 30min, which was more severe than tail suspension stress for 30s used previously. Serum corticosterone levels were lower in theanine-administered rats than in the control rats even after exposure to stress. CA1 LTP induced by a 100-Hz tetanus for 1s was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor antagonist, in hippocampal slices from the control rats and was attenuated by water immersion stress. In contrast, CA1 LTP was not significantly inhibited in the presence of APV in hippocampal slices from theanine-administered rats and was not attenuated by the stress. Furthermore, object recognition memory was impaired in the control rats, but not in theanine-administered rats. The present study indicates the preventive effect of theanine intake after weaning on stress-induced impairments of hippocampal LTP and recognition memory. It is likely that the modification of corticosterone secretion after theanine intake is involved in the preventive effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Is nutrient intake a gender-specific cause for enhanced susceptibility to alcohol-induced liver disease in women?

    DEFF Research Database (Denmark)

    Wagnerberger, S.; Schäfer, C.; Schwarz, E.

    2008-01-01

    AIM: Women have a higher susceptibility to alcohol-induced liver disease (ALD) than men. Gender-related differences in food preference were described in previous studies for several populations, but not in alcohol abusers. As certain micronutrients are reported to take influence on the development......, the data of calculated daily macro- and micronutrient intake do not suggest any explicit influence of gender-specific nutrition in the development of ALD....

  13. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries.

    Science.gov (United States)

    Simplicio, Janaina A; Hipólito, Ulisses Vilela; Vale, Gabriel Tavares do; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R

    2016-11-01

    The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase

  14. Moderate acute intake of de-alcoholized red wine, but not alcohol, is protective against radiation-induced DNA damage ex vivo -- results of a comparative in vivo intervention study in younger men.

    Science.gov (United States)

    Greenrod, W; Stockley, C S; Burcham, P; Abbey, M; Fenech, M

    2005-12-11

    Moderate intake of wine is associated with reduced risk of cardiovascular disease and possibly cancer however it remains unclear whether the potential health benefits of wine intake are due to alcohol or the non-alcoholic fraction of wine. We therefore tested the hypothesis that the non-alcoholic fraction of wine protects against genome damage induced by oxidative stress in a crossover intervention study involving six young adult males aged 21-26 years. The participants adhered to a low plant phenolic compound diet for 48 h prior to consuming 300 mL of complete red wine, de-alcoholized red wine or ethanol on separate occasions 1 week apart. Blood samples were collected 0.5, 1.0 and 2.0 h after beverage consumption. Baseline and radiation-induced genome damage was measured using the cytokinesis-block micronucleus assay and total plasma catechin concentration was measured. Consumption of de-alcoholized red wine significantly decreased the gamma radiation-induced DNA damage at 1 and 2 h post-consumption by 20%. In contrast alcohol tended to increase radiation-induced genome damage and complete wine protected against radiation-induced genome damage relative to alcohol. The observed effects were only weakly correlated with the concentration of total plasma catechin (R=-0.23). These preliminary data suggest that only the non-alcoholic fraction of red wine protects DNA from oxidative damage but this effect cannot be explained solely by plasma catechin.

  15. Moderate acute intake of de-alcoholised red wine, but not alcohol, is protective against radiation-induced DNA damage ex vivo-Results of a comparative in vivo intervention study in younger men

    Energy Technology Data Exchange (ETDEWEB)

    Greenrod, W. [CSIRO Health Sciences and Nutrition, Genome Health and Nutrigenomics Laboratory, PO Box 10041, Adelaide BC, SA 5000 (Australia); Department of Clinical and Experimental Pharmacology, University of Adelaide, South Australia (Australia); Stockley, C.S. [Australian Wine Research Institute, South Australia (Australia); Burcham, P. [Department of Clinical and Experimental Pharmacology, University of Adelaide, South Australia (Australia); Abbey, M. [CSIRO Health Sciences and Nutrition, Genome Health and Nutrigenomics Laboratory, PO Box 10041, Adelaide BC, SA 5000 (Australia); Fenech, M. [CSIRO Health Sciences and Nutrition, Genome Health and Nutrigenomics Laboratory, PO Box 10041, Adelaide BC, SA 5000 (Australia)]. E-mail: michael.fenech@hsn.csiro.au

    2005-12-11

    Moderate intake of wine is associated with reduced risk of cardiovascular disease and possibly cancer however it remains unclear whether the potential health benefits of wine intake are due to alcohol or the non-alcoholic fraction of wine. We therefore tested the hypothesis that the non-alcoholic fraction of wine protects against genome damage induced by oxidative stress in a crossover intervention study involving six young adult males aged 21-26 years. The participants adhered to a low plant phenolic compound diet for 48 h prior to consuming 300 mL of complete red wine, dealcoholised red wine or ethanol on separate occasions 1 week apart. Blood samples were collected 0.5, 1.0 and 2.0 h after beverage consumption. Baseline and radiation-induced genome damage was measured using the cytokinesis-block micronucleus assay and total plasma catechin concentration was measured. Consumption of dealcoholised red wine significantly decreased the gamma radiation-induced DNA damage at 1 and 2 h post-consumption by 20%. In contrast alcohol tended to increase radiation-induced genome damage and complete wine protected against radiation-induced genome damage relative to alcohol. The observed effects were only weakly correlated with the concentration of total plasma catechin (R = -0.23). These preliminary data suggest that only the non-alcoholic fraction of red wine protects DNA from oxidative damage but this effect cannot be explained solely by plasma catechin.

  16. Moderate acute intake of de-alcoholised red wine, but not alcohol, is protective against radiation-induced DNA damage ex vivo-Results of a comparative in vivo intervention study in younger men

    International Nuclear Information System (INIS)

    Greenrod, W.; Stockley, C.S.; Burcham, P.; Abbey, M.; Fenech, M.

    2005-01-01

    Moderate intake of wine is associated with reduced risk of cardiovascular disease and possibly cancer however it remains unclear whether the potential health benefits of wine intake are due to alcohol or the non-alcoholic fraction of wine. We therefore tested the hypothesis that the non-alcoholic fraction of wine protects against genome damage induced by oxidative stress in a crossover intervention study involving six young adult males aged 21-26 years. The participants adhered to a low plant phenolic compound diet for 48 h prior to consuming 300 mL of complete red wine, dealcoholised red wine or ethanol on separate occasions 1 week apart. Blood samples were collected 0.5, 1.0 and 2.0 h after beverage consumption. Baseline and radiation-induced genome damage was measured using the cytokinesis-block micronucleus assay and total plasma catechin concentration was measured. Consumption of dealcoholised red wine significantly decreased the gamma radiation-induced DNA damage at 1 and 2 h post-consumption by 20%. In contrast alcohol tended to increase radiation-induced genome damage and complete wine protected against radiation-induced genome damage relative to alcohol. The observed effects were only weakly correlated with the concentration of total plasma catechin (R = -0.23). These preliminary data suggest that only the non-alcoholic fraction of red wine protects DNA from oxidative damage but this effect cannot be explained solely by plasma catechin

  17. Increased salt consumption induces body water conservation and decreases fluid intake.

    Science.gov (United States)

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  18. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Quaroni, Andrea [Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853–6401 (United States); Autore, Giuseppina [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Severino, Lorella [Department of Pathology and Animal Health, Division of Toxicology, School of Veterinary Medicine, University of Naples “Federico II”, Via Delpino 1, 80137 Naples (Italy); Marzocco, Stefania, E-mail: smarzocco@unisa.it [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy)

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  19. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes.

    Science.gov (United States)

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Rhouma, Khémais Ben

    2013-05-01

    The aim of the present study was to investigate the efficacy of Opuntia ficus indica f. inermis fruit juice (OFIj) on reversing oxidative damages induced by chronic ethanol intake in rat erythrocytes. OFIj was firstly analyzed with HPLC for phenolic and flavonoids content. Secondly, 40 adult male Wistar rats were equally divided into five groups and treated for 90 days as follows: control (C), ethanol-only 3 g/kg body weight (b.w) (E), low dose of OFIj 2 ml/100 g b.w+ethanol (Ldj+E), high dose of OFIj 4 ml/100 g b.w+ethanol (Hdj+E), and only a high dose of OFIj 4 ml/100g b.w (Hdj). HPLC analysis indicated high concentrations of phenolic acids and flavonoids in OFIj. Ethanol treatment markedly decreased the activities of erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the level of reduced glutathione (GSH). Changes in the erythrocyte's antioxidant ability were accompanied by enhanced oxidative modification of lipids (increase of malondialdeyde level) and proteins (increase in carbonyl groups). Interestingly, pre-administration of either 2 ml/100 g b.w or 4 ml/100 g b.w of OFIj to ethanol-intoxicated rats significantly reversed decreases in enzymatic as well as non enzymatic antioxidants parameters in erythrocytes. Also, the administration of OFIj significantly protected lipids and proteins against ethanol-induced oxidative modifications in rat erythrocytes. The beneficial effect of OFIj can result from the inhibition of ethanol-induced free radicals chain reactions in rat erythrocytes or from the enhancement of the endogenous antioxidants activities. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Heavy-ion induced current through an oxide layer

    International Nuclear Information System (INIS)

    Takahashi, Yoshihiro; Ohki, Takahiro; Nagasawa, Takaharu; Nakajima, Yasuhito; Kawanabe, Ryu; Ohnishi, Kazunori; Hirao, Toshio; Onoda, Shinobu; Mishima, Kenta; Kawano, Katsuyasu; Itoh, Hisayoshi

    2007-01-01

    In this paper, the heavy-ion induced current in MOS structure is investigated. We have measured the transient gate current in a MOS capacitor and a MOSFET induced by single heavy-ions, and found that a transient current can be observed when the semiconductor surface is under depletion condition. In the case of MOSFET, a transient gate current with both positive and negative peaks is observed if the ion hits the gate area, and that the total integrated charge is almost zero within 100-200 ns after irradiation. From these results, we conclude that the radiation-induced gate current is dominated by a displacement current. We also discuss the generation mechanism of the radiation-induced current through the oxide layer by device simulation

  1. Magnetism in graphene oxide induced by epoxy groups

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371 (Singapore); Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Zhu, Xi; Su, Haibin [Division of Materials Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Cole, Jacqueline M. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700S Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.

  2. A preliminary exploration of the potential of Eugenia uvalha Cambess juice intake to counter oxidative stress.

    Science.gov (United States)

    Lopes, J M M; Lage, N N; Guerra, J F C; Silva, M; Bonomo, L F; Paulino, A H S; Regis, A L R S; Pedrosa, M L; Silva, M E

    2018-03-01

    The ability of foods to aid in the prevention of chronic metabolic diseases, has recently become an area of increased interest. In addition, there is growing interest in exploring the benefits of consuming underutilized fruits as alternatives to commercially available fruits. Eugenia uvalha Cambess (uvaia) is a native fruit of Brazil with great market and phytotherapy potential. The present study was conducted to investigate the effects of uvaia juice (UJ) on the levels of protein carbonyls (PCO) and antioxidant enzymes in the livers of rats fed a high-fat diet. Thirty-two female rats were randomly assigned to four groups. The rats were fed either a standard diet (group C) or a high-fat diet (group HF). In addition, groups CUJ and HFUJ were treated with UJ (2mL/day) administered via gavage for 8weeks. In our study, UJ displayed high antioxidant activity (135.14±9.74 GAE/100g). Administration of UJ caused a significantly reduced concentration of rat liver PCO (47.4%), which was associated with a 29% increase in catalase activity. A significant increase in the concentration of oxidized glutathione (GSSG) (15.04±5.08nmol/ml) and a reduction in the reduced glutathione/oxidized glutathione ratio (GSH/GSSG) (11.30±2.68) were found in the HF group, whilst these changes were not observed in the HFUJ group (a result similar to that of group C). Our results demonstrate that UJ decreases oxidative damage by improving antioxidant efficiency and attenuating oxidative damage to proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  4. Training-induced adaptation of oxidative phosphorylation in skeletal muscles.

    OpenAIRE

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2003-01-01

    Muscle training/conditioning improves the adaptation of oxidative phosphorylation in skeletal muscles to physical exercise. However, the mechanisms underlying this adaptation are still not understood fully. By quantitative analysis of the existing experimental results, we show that training-induced acceleration of oxygen-uptake kinetics at the onset of exercise and improvement of ATP/ADP stability due to physical training are mainly caused by an increase in the amount of mitochondrial protein...

  5. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    OpenAIRE

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study,...

  6. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    International Nuclear Information System (INIS)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Yu, Yingchun; Aschner, Michael

    2009-01-01

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F 2 -isoprostanes (F 2 -IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 μM Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E 2 (PGE 2 ). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F 2 -IsoPs and PGE 2 in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  7. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    Science.gov (United States)

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Blue light-induced oxidative stress in live skin.

    Science.gov (United States)

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Anti-ghrelin Spiegelmer inhibits exogenous ghrelin-induced increases in food intake, hoarding, and neural activation, but not food deprivation-induced increases

    Science.gov (United States)

    Teubner, Brett J. W.

    2013-01-01

    Circulating concentrations of the stomach-derived “hunger-peptide” ghrelin increase in direct proportion to the time since the last meal. Exogenous ghrelin also increases food intake in rodents and humans, suggesting ghrelin may increase post-fast ingestive behaviors. Food intake after food deprivation is increased by laboratory rats and mice, but not by humans (despite dogma to the contrary) or by Siberian hamsters; instead, humans and Siberian hamsters increase food hoarding, suggesting the latter as a model of fasting-induced changes in human ingestive behavior. Exogenous ghrelin markedly increases food hoarding by ad libitum-fed Siberian hamsters similarly to that after food deprivation, indicating sufficiency. Here, we tested the necessity of ghrelin to increase food foraging, food hoarding, and food intake, and neural activation [c-Fos immunoreactivity (c-Fos-ir)] using anti-ghrelin Spiegelmer NOX-B11–2 (SPM), an l-oligonucleotide that specifically binds active ghrelin, inhibiting peptide-receptor interaction. SPM blocked exogenous ghrelin-induced increases in food hoarding the first 2 days after injection, and foraging and food intake at 1–2 h and 2–4 h, respectively, and inhibited hypothalamic c-Fos-ir. SPM given every 24 h across 48-h food deprivation inconsistently inhibited food hoarding after refeeding and c-Fos-ir, similarly to inabilities to do so in laboratory rats and mice. These results suggest that ghrelin may not be necessary for food deprivation-induced foraging and hoarding and neural activation. A possible compensatory response, however, may underlie these findings because SPM treatment led to marked increases in circulating ghrelin concentrations. Collectively, these results show that SPM can block exogenous ghrelin-induced ingestive behaviors, but the necessity of ghrelin for food deprivation-induced ingestive behaviors remains unclear. PMID:23804279

  10. Simultaneous Study of Intake and In-Cylinder IC Engine Flow Fields to Provide an Insight into Intake Induced Cyclic Variations

    International Nuclear Information System (INIS)

    Justham, T; Jarvis, S; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A

    2006-01-01

    Simultaneous intake and in-cylinder digital particle image velocimetry (DPIV) experimental data is presented for a motored spark ignition (SI) optical internal combustion (IC) engine. Two individual DPIV systems were employed to study the inter-relationship between the intake and in-cylinder flow fields at an engine speed of 1500 rpm. Results for the intake runner velocity field at the time of maximum intake valve lift are compared to incylinder velocity fields later in the same engine cycle. Relationships between flow structures within the runner and cylinder were seen to be strong during the intake stroke but less significant during compression. Cyclic variations within the intake runner were seen to affect the large scale bulk flow motion. The subsequent decay of the large scale motions into smaller scale turbulent structures during the compression stroke appear to reduce the relationship with the intake flow variations

  11. Simultaneous Study of Intake and In-Cylinder IC Engine Flow Fields to Provide an Insight into Intake Induced Cyclic Variations

    Energy Technology Data Exchange (ETDEWEB)

    Justham, T; Jarvis, S; Clarke, A; Garner, C P; Hargrave, G K; Halliwell, N A [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2006-07-15

    Simultaneous intake and in-cylinder digital particle image velocimetry (DPIV) experimental data is presented for a motored spark ignition (SI) optical internal combustion (IC) engine. Two individual DPIV systems were employed to study the inter-relationship between the intake and in-cylinder flow fields at an engine speed of 1500 rpm. Results for the intake runner velocity field at the time of maximum intake valve lift are compared to incylinder velocity fields later in the same engine cycle. Relationships between flow structures within the runner and cylinder were seen to be strong during the intake stroke but less significant during compression. Cyclic variations within the intake runner were seen to affect the large scale bulk flow motion. The subsequent decay of the large scale motions into smaller scale turbulent structures during the compression stroke appear to reduce the relationship with the intake flow variations.

  12. Simultaneous Study of Intake and In-Cylinder IC Engine Flow Fields to Provide an Insight into Intake Induced Cyclic Variations

    Science.gov (United States)

    Justham, T.; Jarvis, S.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.

    2006-07-01

    Simultaneous intake and in-cylinder digital particle image velocimetry (DPIV) experimental data is presented for a motored spark ignition (SI) optical internal combustion (IC) engine. Two individual DPIV systems were employed to study the inter-relationship between the intake and in-cylinder flow fields at an engine speed of 1500 rpm. Results for the intake runner velocity field at the time of maximum intake valve lift are compared to incylinder velocity fields later in the same engine cycle. Relationships between flow structures within the runner and cylinder were seen to be strong during the intake stroke but less significant during compression. Cyclic variations within the intake runner were seen to affect the large scale bulk flow motion. The subsequent decay of the large scale motions into smaller scale turbulent structures during the compression stroke appear to reduce the relationship with the intake flow variations.

  13. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    Science.gov (United States)

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  14. Apoptosis in rat gastric antrum: Evidence that regulation by food intake depends on nitric oxide synthase

    DEFF Research Database (Denmark)

    Cao, Bao-Hong; Mortensen, Kirsten; Tornehave, Ditte

    2000-01-01

    NOS was present in somatostatin cells, in nonendocrine cells predominating in the surface and pit epithelium, and in rare nerve fibers. Endothelial cell NOS was present in vessels, whereas the inducible isoform was barely detectable. Thus, endogenous NOS isoforms participate in regulating antropyloric...

  15. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  16. EPA:DHA 6:1 prevents angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase- and COX-derived oxidative stress.

    Science.gov (United States)

    Niazi, Zahid Rasul; Silva, Grazielle C; Ribeiro, Thais Porto; León-González, Antonio J; Kassem, Mohamad; Mirajkar, Abdur; Alvi, Azhar; Abbas, Malak; Zgheel, Faraj; Schini-Kerth, Valérie B; Auger, Cyril

    2017-12-01

    Eicosapentaenoic acid:docosahexaenoic acid (EPA:DHA) 6:1, an omega-3 polyunsaturated fatty acid formulation, has been shown to induce a sustained formation of endothelial nitric oxide (NO) synthase-derived NO, a major vasoprotective factor. This study examined whether chronic intake of EPA:DHA 6:1 prevents hypertension and endothelial dysfunction induced by angiotensin II (Ang II) in rats. Male Wister rats received orally corn oil or EPA:DHA 6:1 (500 mg kg -1 per day) before chronic infusion of Ang II (0.4 mg kg -1 per day). Systolic blood pressure was determined by tail cuff sphingomanometry, vascular reactivity using a myograph, oxidative stress using dihydroethidium and protein expression by immunofluorescence and western blot analysis. Ang II-induced hypertension was associated with reduced acetylcholine-induced relaxations of secondary branch mesenteric artery rings affecting the endothelium-dependent hyperpolarization (EDH)- and the NO-mediated relaxations, both of which were improved by the NADPH oxidase inhibitor VAS-2870. The Ang II treatment induced also endothelium-dependent contractile responses (EDCFs), which were abolished by the cyclooxygenase (COX) inhibitor indomethacin. An increased level of vascular oxidative stress and expression of NADPH oxidase subunits (p47 phox and p22 phox ), COX-1 and COX-2, endothelial NO synthase and Ang II type 1 receptors were observed in the Ang II group, whereas SK Ca and connexin 37 were downregulated. Intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction by improving both the NO- and EDH-mediated relaxations, and by reducing EDCFs and the expression of target proteins. The present findings indicate that chronic intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction in rats, most likely by preventing NADPH oxidase- and COX-derived oxidative stress.

  17. High dietary fat intake during lactation promotes development of diet-induced obesity in male offspring of mice.

    Science.gov (United States)

    Tsuduki, Tsuyoshi; Kitano, Yasuna; Honma, Taro; Kijima, Ryo; Ikeda, Ikuo

    2013-01-01

    The maternal nutritional status during pregnancy and lactation influences the risk of obesity in offspring, but the details of this phenomenon are unclear. In particular, there is little information on the influence on the offspring of the maternal nutritional status during lactation only. Therefore, in this study, we examined the influence of high dietary fat intake in dams during lactation on the risk of obesity in offspring, using C57BL/6J mice. The mice were fed a control diet (CD) during pregnancy. After birth, dams were fed a CD or a high-fat diet (HD) during lactation (3 wk). Fat and energy were significantly increased in milk from dams fed a HD during lactation. Male offspring were weaned at 3 wk old and fed a CD for 4 wk, which resulted in no significant difference in their physique. Four weeks after weaning, the offspring (7 wk old) were fed a CD or HD for 4 wk to induce obesity. High dietary fat intake in dams and offspring promoted lipid accumulation in white adipose tissue and adipocyte hypertrophy in male offspring. The underlying mechanism may involve an increase in expression of Lpl and a decrease in expression of Hsl in white adipose tissue of offspring. In conclusion, our results show that high dietary fat intake during lactation promotes development of diet-induced obesity in male offspring.

  18. Curcumin Attenuates Methotrexate-Induced Hepatic Oxidative Damage in Rats

    International Nuclear Information System (INIS)

    HEMEIDA, R.A.M.; MOHAFEZ, O.M.

    2008-01-01

    In the present study, we have addressed the ability of curcumin to suppress MTX-induced liver damage. Hepatotoxicity was induced by injection of a single dose of MTX (20 mg/kg I.P.). MTX challenge induced liver damage that was well characterized histopathologically and biochemically. MTX increased relative liver/body weight ratio. Histologically, MTX produced fatty changes in hepatocytes and sinusoidal lining cells, mild necrosis and inflammation. Biochemically, the test battery entailed elevated activities of serum ALT and AST. Liver activities of superoxide dismutase (SOD), catalase (CAT) and level of reduced glutathione (GSH), were notably reduced, while lipid peroxidation, expressed as malondialdhyde (MDA) level was significantly increased. Administration of curcumin (100mg/kg, I.P.) once daily for 5 consecutive days after MTX challenge mitigated the injurious effects of MTX and ameliorated all the altered biochemical parameters. These results showed that administration of curcumin decreases MTX-induced liver damage probably via regulation of oxidant/anti-oxidant balance. In conclusion, the present study indicates that curcumin may be of therapeutic benefit against MTX-cytotoxicity.

  19. Inhibition of serum cholesterol oxidation by dietary vitamin C and selenium intake in high fat fed rats.

    Science.gov (United States)

    Menéndez-Carreño, M; Ansorena, D; Milagro, F I; Campión, J; Martínez, J A; Astiasarán, I

    2008-04-01

    Cholesterol oxidation products (COPs) have been considered as specific in vivo markers of oxidative stress. In this study, an increased oxidative status was induced in Wistar rats by feeding them a high-fat diet (cafeteria diet). Another group of animals received the same diet supplemented with a combination of two different antioxidants, ascorbic acid (100 mg/kg rat/day) and sodium selenite (200 microg/kg rat/day) and a third group fed on a control diet. Total and individual COPs analysis of the different diets showed no differences among them. At the end of the experimental trial, rats were sacrificed and serum cholesterol, triglycerides and COPs were measured. None of the diets induced changes in rats body weight, total cholesterol and triglycerides levels. Serum total COPs in rats fed on the high-fat diet were 1.01 microg/ml, two times the amount of the control rats (0.47 microg/ml). When dietary antioxidant supplementation was given, serum total COPs concentration (0.44 microg/ml) showed the same levels than those of the rats on control diet. 7beta-hydroxycholesterol, formed non-enzymatically via cholesterol peroxidation in the presence of reactive oxygen species, showed slightly lower values in the antioxidant-supplemented animals compared to the control ones. This study confirms the importance of dietary antioxidants as protective factors against the formation of oxysterols.

  20. Beyond the "First Hit": Marked Inhibition by N-Acetyl Cysteine of Chronic Ethanol Intake But Not of Early Ethanol Intake. Parallel Effects on Ethanol-Induced Saccharin Motivation.

    Science.gov (United States)

    Quintanilla, María Elena; Rivera-Meza, Mario; Berríos-Cárcamo, Pablo; Salinas-Luypaert, Catalina; Herrera-Marschitz, Mario; Israel, Yedy

    2016-05-01

    A number of studies have shown that acetaldehyde synthesized in the brain is necessary to induce ethanol (EtOH) reinforcement in naïve animals (acquisition phase). However, after chronic intake is achieved (maintenance phase), EtOH intake becomes independent of acetaldehyde generation or its levels. Glutamate has been reported to be associated with the maintenance of chronic EtOH intake. The levels of brain extracellular glutamate are modulated by 2 glial processes: glutamate reabsorption via an Na(+) -glutamate transporter (GLT1) and a cystine-glutamate exchanger. Chronic EtOH intake lowers GLT1 levels and increases extracellular glutamate. The administration of N-acetyl cysteine (NAC), a precursor of cystine, has been shown to reduce the relapse of several drugs of abuse, while NAC has not been tested on chronic EtOH intake or on EtOH's influence on the motivation for another drug. These were investigated in the present study. (i) Rats bred for their high EtOH intake were allowed access to 10% EtOH and water up to 87 days. NAC was administered (30 and 60 mg/kg daily, intraperitoneally) for 14 consecutive days, either during the acquisition phase or the maintenance phase of EtOH drinking. (ii) In additional experiments, rats were allowed EtOH (10%) and water access for 61 days, after which EtOH was replaced by saccharin (0.3%) to determine both if chronic EtOH consumption influences saccharin intake and whether NAC modifies the post chronic EtOH saccharin intake. NAC did not influence the acquisition ("first hit") of chronic EtOH intake, but greatly inhibited (60 to 70%; p intake when NAC was administered to animals that were consuming EtOH chronically. NAC did not influence saccharin intake in naïve animals. In animals that had consumed EtOH chronically and were thereafter offered a saccharin solution (0.3%), saccharin intake increased over 100% versus that of EtOH-untreated animals, an effect that was fully suppressed by NAC. N-acetyl cysteine, a drug

  1. Rye bran bread intake elevates urinary excretion of ferulic acid in humans, but does not affect the susceptibility of LDL to oxidation ex vivo

    DEFF Research Database (Denmark)

    Harder, H.; Tetens, I.; Let, Mette Bruni

    2004-01-01

    Background Rye bread contributes an important part of the whole grain intake in the Scandinavian diet. Ferulic acid is the major phenolic compound in rye bran and is an antioxidant in vitro and may, therefore, contribute to cardioprotective effects of whole grain consumption. Aim of study Firstly...... had no influence on lag time or propagation rate of the LDL oxidation ex vivo. Conclusions The present study demonstrated that ferulic acid from rye bran is bioavailable and that the urinary concentration of ferulic acid reflects the dietary intake of this hydroxycinnamic acid. Within the period...

  2. Radiation-induced cationic polymerization of limonene oxide, α-pinene oxide, and β-pinene oxide

    International Nuclear Information System (INIS)

    Aikins, J.A.; Williams, F.

    1984-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25 0 C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the α-pinene and β-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the α-pinene oxide and β-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by 1 H and 13 C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the α-pinene and β-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer

  3. Dietary intake of Deepwater Horizon oil-injected live food fish by double-crested cormorants resulted in oxidative stress.

    Science.gov (United States)

    Pritsos, Karen L; Perez, Cristina R; Muthumalage, Thivanka; Dean, Karen M; Cacela, Dave; Hanson-Dorr, Katie; Cunningham, Fred; Bursian, Steven J; Link, Jane E; Shriner, Susan; Horak, Katherine; Pritsos, Chris A

    2017-12-01

    The Deepwater Horizon oil spill released 134 million gallons of crude oil into the Gulf of Mexico making it the largest oil spill in US history and exposing fish, birds, and marine mammals throughout the Gulf of Mexico to its toxicity. Fish eating waterbirds such as the double-crested cormorant (Phalacrocorax auritus) were exposed to the oil both by direct contact with the oil and orally through preening and the ingestion of contaminated fish. This study investigated the effects of orally ingestedMC252 oil-contaminated live fish food by double-crested cormorants on oxidative stress. Total, reduced, and oxidized glutathione levels, superoxide dismutase and glutathione peroxidase activities, total antioxidant capacity and lipid peroxidation were assessed in the liver tissues of control and treated cormorants. The results suggest that ingestion of the oil-contaminated fish resulted in significant increase in oxidative stress in the liver tissues of these birds. The oil-induced increase in oxidative stress could have detrimental impacts on the bird's life-history. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  5. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake.

    Science.gov (United States)

    van den Berg, Sjoerd A A; Heemskerk, Mattijs M; Geerling, Janine J; van Klinken, Jan-Bert; Schaap, Frank G; Bijland, Silvia; Berbée, Jimmy F P; van Harmelen, Vanessa J A; Pronk, Amanda C M; Schreurs, Marijke; Havekes, Louis M; Rensen, Patrick C N; van Dijk, Ko Willems

    2013-08-01

    Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, Pcentral regulation of food intake.

  6. Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress

    Science.gov (United States)

    2014-01-01

    Introduction A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects. Methods HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress. Results HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness. PMID:24886999

  7. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet

    Energy Technology Data Exchange (ETDEWEB)

    Ferramola, Mariana L.; Pérez Díaz, Matías F.F. [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina); Honoré, Stella M.; Sánchez, Sara S. [Department of Development Biology, INSIBIO, National University of Tucumán, CONICET-UNT, Tucumán (Argentina); Antón, Rosa I. [Department of Chemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, INQUISAL, CONICET, San Luis (Argentina); Anzulovich, Ana C. [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina); Giménez, María S., E-mail: mgimenez@unsl.edu.ar [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina)

    2012-12-15

    Cd exposure has been associated to an augmented risk for cardiovascular disease. We investigated the effects of 15 and 100 ppm of Cd on redox status as well as histological changes in the rat heart and the putative protective effect of a soy-based diet. Male Wistar rats were separated into 6 groups and treated during 60 days as follows: groups (1), (2) and (3) were fed a casein-based diet; groups (4), (5) and (6), a soy-based diet; (1) and (4) were given tap water; (2) and (5) tap water containing 15 ppm of Cd{sup 2+}; and (3) and (6) tap water containing 100 ppm of Cd{sup 2+}. Serum lipid peroxides increased and PON-1 activity decreased in group (3). Lipoperoxidation also increased in the heart of all intoxicated groups; however protein oxidation only augmented in (3) and reduced glutathione levels diminished in (2) and (3). Catalase activity increased in groups (3) and (6) while superoxide dismutase activity increased only in (6). Glutathione peroxidase activity decreased in groups (3) and (6). Nrf2 expression was higher in groups (3) and (6), and MTI expression augmented in (3). Histological examination of the heart tissue showed the development of hypertrophic and fusion of cardiomyocytes along with foci of myocardial fiber necrosis. The transmission electron microscopy analysis showed profound ultra-structural damages. No protection against tissue degeneration was observed in animals fed the soy-based diet. Our findings indicate that even though the intake of a soy-based diet is capable of ameliorating Cd induced oxidative stress, it failed in preventing cardiac damage. -- Highlights: ► Cd intoxication produces extracellular and ultrastructural damage in the myocardium. ► The intake of a soy-based diet ameliorated Cd-induced oxidative stress. ► Cd-induced myocardial damage wasn't prevented by the intake of a soy-based diet. ► Cd-induced myocardial degeneration may not be caused by oxidative stress generation. ► Histology evaluation is needed to

  8. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet

    International Nuclear Information System (INIS)

    Ferramola, Mariana L.; Pérez Díaz, Matías F.F.; Honoré, Stella M.; Sánchez, Sara S.; Antón, Rosa I.; Anzulovich, Ana C.; Giménez, María S.

    2012-01-01

    Cd exposure has been associated to an augmented risk for cardiovascular disease. We investigated the effects of 15 and 100 ppm of Cd on redox status as well as histological changes in the rat heart and the putative protective effect of a soy-based diet. Male Wistar rats were separated into 6 groups and treated during 60 days as follows: groups (1), (2) and (3) were fed a casein-based diet; groups (4), (5) and (6), a soy-based diet; (1) and (4) were given tap water; (2) and (5) tap water containing 15 ppm of Cd 2+ ; and (3) and (6) tap water containing 100 ppm of Cd 2+ . Serum lipid peroxides increased and PON-1 activity decreased in group (3). Lipoperoxidation also increased in the heart of all intoxicated groups; however protein oxidation only augmented in (3) and reduced glutathione levels diminished in (2) and (3). Catalase activity increased in groups (3) and (6) while superoxide dismutase activity increased only in (6). Glutathione peroxidase activity decreased in groups (3) and (6). Nrf2 expression was higher in groups (3) and (6), and MTI expression augmented in (3). Histological examination of the heart tissue showed the development of hypertrophic and fusion of cardiomyocytes along with foci of myocardial fiber necrosis. The transmission electron microscopy analysis showed profound ultra-structural damages. No protection against tissue degeneration was observed in animals fed the soy-based diet. Our findings indicate that even though the intake of a soy-based diet is capable of ameliorating Cd induced oxidative stress, it failed in preventing cardiac damage. -- Highlights: ► Cd intoxication produces extracellular and ultrastructural damage in the myocardium. ► The intake of a soy-based diet ameliorated Cd-induced oxidative stress. ► Cd-induced myocardial damage wasn't prevented by the intake of a soy-based diet. ► Cd-induced myocardial degeneration may not be caused by oxidative stress generation. ► Histology evaluation is needed to establish the

  9. Cobalt-deficiency-induced hyperhomocysteinaemia and oxidative status of cattle.

    Science.gov (United States)

    Stangl, G I; Schwarz, F J; Jahn, B; Kirchgessner, M

    2000-01-01

    In ruminants, Co is required for the synthesis of vitamin B12, which in turn is needed for the resynthesis of methionine by methylation of homocysteine and thus, cobalamin deficiency may induce hyperhomocysteinaemia which is brought into context with perturbations of the antioxidative-prooxidative balance. The present study was conducted to explore whether Co deficiency in cattle is also associated with homocysteine-induced disturbances of oxidative status. Co deficiency was induced in cattle by feeding two groups of animals on either a basal maize-silage-based diet that was moderately low in Co (83 micrograms Co/kg DM), or the same diet supplemented with Co to a total of 200 micrograms Co/kg DM, for 43 weeks. Co deficiency was apparent from a reduced vitamin B12 status in serum and liver and an accumulation of homocysteine in plasma which was in excess of 4.8 times higher in Co-deprived cattle than in controls. The much increased level of circulating homocysteine did not indicate severe disturbances in antioxidant-prooxidant balance as measured by individual markers of lipid peroxidation, protein oxidation, and the antioxidative defence system. There were no quantitative difference in plasma thiol groups, nor were there significant changes in concentrations of alpha-tocopherol, microsomal thiobarbituric acid-reactive substances and carbonyl groups in liver. However, there was a trend toward increased plasma carbonyl levels indicating a slight degradation of plasma proteins in the hyperhomocysteinaemic cattle. Analysis of the hepatic catalase (EC 1.11.1.6) activity revealed an 11% reduction in Co-deficient cattle relative to the controls. These results indicate that long-term moderate Co deficiency may induce a severe accumulation of plasma homocysteine in cattle, but considerable abnormalities in oxidative status failed to appear.

  10. Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

    Science.gov (United States)

    Adam, Clare L.; Thomson, Lynn M.; Williams, Patricia A.; Ross, Alexander W.

    2015-01-01

    Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity. PMID:26447990

  11. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  12. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  13. Oxidative Stress in Fish induced by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Anton Kováčik

    2017-05-01

    Full Text Available Environmental pollutants represent a risk factor for human and animals in all areas of occurrence. Environmental pollution caused by anthropogenic activities is a major problem in many countries. Numbers of studies deals with cumulation of xenobiotics in tissues but not all respond to the real impact on living organisms. Freshwater fishes are exposed to several anthropogenic contaminants. The most commonly studied are three metals: mercury (Hg, lead (Pb, cadmium (Cd. These contaminants could have several impacts to oxidative stress. In the normal healthy cell, ROS and pro-oxidant products are detoxified by antioxidant defences. Redox-active or Redox-inactive metals may cause an increase in production of reactive oxygen species (ROS. Mercury has a high affinity for thiol groups, and can non-specifically affect several enzymes, e. g. GSH (glutathione, which can induce GSH depletion and oxidative stress in tissue, also can induce lipid peroxidation, and mitochondrial dysfunction. The toxicity of Cd to aquatic species depends on speciation, with the free ion, Cd2+ concentration being proportional to bioavailability. Cadmium toxicity worsened of Ca, Na, and Mg ions homeostasis. Lead can be toxic to nervous and skeletal systems; at cellular level can cause apoptosis, also can affect mitochondria, neurotransmitters, and can substitute for Ca.

  14. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  15. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    Science.gov (United States)

    Vaidya, S. J.; Sharma, D. K.; Shaikh, A. M.; Chandorkar, A. N.

    2002-09-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co 60 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radiation performance of pyrogenic field oxides with respect to positive charge build up as well as interface state generation. Pyrogenic oxide nitrided in N 2O is found to be the best oxynitride as damage due to neutrons is the least.

  16. Bee products prevent agrichemical-induced oxidative damage in fish.

    Directory of Open Access Journals (Sweden)

    Daiane Ferreira

    Full Text Available In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™ and a group that was exposed to 0.88 mg L(-1 of TEB alone (corresponding to 16.6% of the 96-h LC50. We show that waterborne bee products, including royal jelly (RJ, honey (H, bee pollen (BP and propolis (P, reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD, catalase (CAT and glutathione-S-transferase (GST are increased.

  17. Bee products prevent agrichemical-induced oxidative damage in fish.

    Science.gov (United States)

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  18. Solubility of indium-tin oxide in simulated lung and gastric fluids: Pathways for human intake.

    Science.gov (United States)

    Andersen, Jens Christian Østergård; Cropp, Alastair; Paradise, Diane Caroline

    2017-02-01

    From being a metal with very limited natural distribution, indium (In) has recently become disseminated throughout the human society. Little is known of how In compounds behave in the natural environment, but recent medical studies link exposure to In compounds to elevated risk of respiratory disorders. Animal tests suggest that exposure may lead to more widespread damage in the body, notably the liver, kidneys and spleen. In this paper, we investigate the solubility of the most widely used In compound, indium-tin oxide (ITO) in simulated lung and gastric fluids in order to better understand the potential pathways for metals to be introduced into the bloodstream. Our results show significant potential for release of In and tin (Sn) in the deep parts of the lungs (artificial lysosomal fluid) and digestive tract, while the solubility in the upper parts of the lungs (the respiratory tract or tracheobronchial tree) is very low. Our study confirms that ITO is likely to remain as solid particles in the upper parts of the lungs, but that particles are likely to slowly dissolve in the deep lungs. Considering the prolonged residence time of inhaled particles in the deep lung, this environment is likely to provide the major route for uptake of In and Sn from inhaled ITO nano- and microparticles. Although dissolution through digestion may also lead to some uptake, the much shorter residence time is likely to lead to much lower risk of uptake. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells

    International Nuclear Information System (INIS)

    Saulsbury, Marilyn D.; Heyliger, Simone O.; Wang, Kaiyu; Johnson, Deadre J.

    2009-01-01

    There are increasing concerns regarding the relative safety of chlorpyrifos (CPF) to various facets of the environment. Although published works suggest that CPF is relatively safe in adult animals, recent evidence indicates that juveniles, both animals and humans, may be more sensitive to CPF toxicity than adults. In young animals, CPF is neurotoxic and mechanistically interferes with cellular replication and cellular differentiation, which culminates in the alteration of synaptic neurotransmission in neurons. However, the effects of CPF on glial cells are not fully elucidated. Here we report that chlorpyrifos is toxic to oligodendrocyte progenitors. In addition, CPF produced dose-dependent increases in 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCF-DA) and dihydroethidium (DHE) fluorescence intensities relative to the vehicle control. Moreover, CPF toxicity is associated with nuclear condensation and elevation of caspase 3/7 activity and Heme oxygenase-1 mRNA expression. Pan-caspase inhibitor QVDOPh and cholinergic receptor antagonists' atropine and mecamylamine failed to protect oligodendrocyte progenitors from CPF-induced injury. Finally, glutathione (GSH) depletion enhanced CPF-induced toxicity whereas nitric oxide synthetase inhibitor L-NAME partially protected progenitors and the non-specific antioxidant vitamin E (alpha-tocopherol) completely spared cells from injury. Collectively, this data suggests that CPF induced toxicity is independent of cholinergic stimulation and is most likely caused by the induction of oxidative stress.

  20. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  1. Laser-induced partial oxidation of cyclohexane in liquid phase

    International Nuclear Information System (INIS)

    Oshima, Y.; Wu, X.W.; Koda, S.

    1995-01-01

    A laser-induced partial oxidation of cyclohexane was studied in the liquid phase. With KrF excimer laser (248 nm) irradiation to neat liquid cyclohexane in which O 2 was dissolved, cyclohexanol and cyclohexanone were obtained with very high selectivities, together with cyclohexane as a minor product. Radical recombination reactions to produce dicyclohexyl ether and bicyclohexyl also took place, while these products were not observed in the gas phase reaction. These experimental results were considered to be due not only to higher concentration of cyclohexane but to the cage effect in the liquid phase oxidation. To clarify the reaction progress including the photoabsorption process, the effects of laser intensity and O 2 pressure on product distribution were studied. (author)

  2. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  3. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides

    International Nuclear Information System (INIS)

    Ceschia, M.; Paccagnella, A.; Cester, A.; Scarpa, A.

    1998-01-01

    Low-field leakage current has been measured in thin oxides after exposure to ionizing radiation. This Radiation Induced Leakage Current (RILC) can be described as an inelastic tunneling process mediated by neutral traps in the oxide, with an energy loss of about 1 eV. The neutral trap distribution is influenced by the oxide field applied during irradiation, thus indicating that the precursors of the neutral defects are charged, likely being defects associated to trapped holes. The maximum leakage current is found under zero-field condition during irradiation, and it rapidly decreases as the field is enhanced, due to a displacement of the defect distribution across the oxide towards the cathodic interface. The RILC kinetics are linear with the cumulative dose, in contrast with the power law found on electrically stressed devices

  4. Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress

    Science.gov (United States)

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states. PMID:23035112

  5. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats.

    Science.gov (United States)

    Fernandes, Sheila Marques; Cordeiro, Priscilla Mendes; Watanabe, Mirian; Fonseca, Cassiane Dezoti da; Vattimo, Maria de Fatima Fernandes

    2016-10-01

    The objective of this study was to evaluate the role of oxidative stress in an experimental model of streptozotocin-induced diabetic nephropathy in rats. Wistar, adult, male rats were used in the study. Animals were divided in the following groups: Citrate (control, citrate buffer 0.01M, pH 4.2 was administrated intravenously - i.v - in the caudal vein), Uninephrectomy+Citrate (left uninephrectomy-20 days before the study), DM (streptozotocin, 65 mg/kg, i.v, on the 20th day of the study), Uninephrectomy+DM. Physiological parameters (water and food intake, body weight, blood glucose, kidney weight, and relative kidney weight); renal function (creatinine clearance), urine albumin (immunodiffusion method); oxidative metabolites (urinary peroxides, thiobarbituric acid reactive substances, and thiols in renal tissue), and kidney histology were evaluated. Polyphagia, polydipsia, hyperglycemia, and reduced body weight were observed in diabetic rats. Renal function was reduced in diabetic groups (creatinine clearance, p < 0.05). Uninephrectomy potentiated urine albumin and increased kidney weight and relative kidney weight in diabetic animals (p < 0.05). Urinary peroxides and thiobarbituric acid reactive substances were increased, and the reduction in thiol levels demonstrated endogenous substrate consumption in diabetic groups (p < 0.05). The histological analysis revealed moderate lesions of diabetic nephropathy. This study confirms lipid peroxidation and intense consumption of the antioxidant defense system in diabetic rats. The association of hyperglycemia and uninephrectomy resulted in additional renal injury, demonstrating that the model is adequate for the study of diabetic nephropathy.

  6. Narciclasine attenuates diet-induced obesity by promoting oxidative metabolism in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sofi G Julien

    2017-02-01

    Full Text Available Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls, attenuates diet-induced obesity (DIO in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes.

  7. Comparison of radiation-induced and thermal oxidative aging of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1996-01-01

    Thermal oxidative and radiation-induced oxidative aging of inhibited polyethylene of commercial brands with known properties was studied at 60, 80 and 140 deg C. Radiation-induced oxidative aging was carried out under X-ray radiation with E max = 25 keV at dose rates providing specimen oxidation in kinetic conditions. The value of activation energy of thermal oxidative destruction of inhibited polyethylene under natural conditions of its employment at 60-140 deg C (E a = 60 kJ/mol) was obtained by comparison of data for radiation-induced and thermal oxidative destruction

  8. cis-Bifenthrin enantioselectively induces hepatic oxidative stress in mice.

    Science.gov (United States)

    Jin, Yuanxiang; Wang, Jiangcong; Pan, Xiuhong; Wang, Linggang; Fu, Zhengwei

    2013-09-01

    Bifenthrin (BF), as a chiral synthetic pyrethroid, is widely used to control field and household pests. In China, the commercial cis-BF contained two enantiomers including 1R-cis-BF and 1S-cis-BF. However, the difference in oxidative stress induced by the two enantiomers in mice still remains unclear. In the present study, 4 week-old adolescent male ICR mice were orally administered cis-BF, 1R-cis-BF or 1S-cis-BF daily for 2, 4 and 6 weeks at doses of 5 mg/kg/day, respectively. We found that the hepatic reactive oxygen species (ROS) levels, as well as the malondialdehyde (MDA) and glutathione (GSH) content both in the serum and liver increased significantly in the 4 or 6 weeks 1S-cis-BF treated groups. The activities of superoxide dismutase (SOD) and catalase (CAT) also changed significantly in the serum and liver of 1S-cis-BF treated mice. More importantly, the significant differences in MDA content and CAT activity both in the serum and liver, and the activities of total antioxidant capacity (T-AOC) and SOD in serum were also observed between the 1S-cis-BF and 1R-cis-BF treated groups. Moreover, the transcription of oxidative stress response related genes including Sod1, Cat and heme oxygenase-1(Ho-1) in the liver of 1S-cis-BF treated groups were also significant higher than those in 1R-cis-BF treated group. Thus, it was concluded that cis-BF induced hepatic oxidative stress in an enantiomer specific manner in mice when exposed during the puberty, and that 1S-cis-BF showed much more toxic in hepatic oxidative stress than 1R-cis-BF. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: A combined transcriptomics and metabolomics analysis

    NARCIS (Netherlands)

    Kleemann, R.; Verschuren, L.; Erk, M.J. van; Nikolsky, Y.; Cnubben, N.H.P.; Verheij, E.R.; Smilde, A.K.; Hendriks, H.F.J.; Zadelaar, A.S.M.; Smith, G.J.; Kaznacheev, V.; Nikolskaya, T.; Melnikov, A.; Hurt-Camejo, E.; Greef, J. van der; Ommen, B. van; Kooistra, T.

    2007-01-01

    Background: Increased dietary cholesterol intake is associated with atherosclerosis. Atherosclerosis development requires a lipid and an inflammatory component. It is unclear where and how the inflammatory component develops. To assess the role of the liver in the evolution of inflammation, we

  10. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  11. Investigations of botanicals on food intake, satiety, weight loss and oxidative stress: study protocol of a double-blind, placebo-controlled, crossover study.

    Science.gov (United States)

    Anton, Stephen D; Shuster, Jonathan; Leeuwenburgh, Christiaan

    2011-11-01

    Botanicals represent an important and underexplored source of potential new therapies that may facilitate caloric restriction and thereby may produce long-term weight loss. In particular, one promising botanical that may reduce food intake and body weight by affecting neuroendocrine pathways related to satiety is hydroxycitric acid (HCA) derived from Garcinia cambogia Desr. The objective of this article is to describe the protocol of a clinical trial designed to directly test the effects of Garcinia cambogia-derived HCA on food intake, satiety, weight loss and oxidative stress levels, and to serve as a model for similar trials. A total of 48 healthy, overweight or obese individuals (with a body mass index range of 25.0 to 39.9 kg/m(2)) between the ages of 50 to 70 will participate in this double-blind, placebo-controlled, crossover study designed to examine the effects of two doses of Garcinia cambogia-derived HCA on food intake, satiety, weight loss, and oxidative stress levels. Food intake represents the primary outcome measure and is calculated based on the total calories consumed at breakfast, lunch, and dinner meals during each test meal day. This study can be completed with far fewer subjects than a parallel design. Of the numerous botanical compounds, the compound Garcinia cambogia-derived HCA is selected for testing in the present study because of its potential to safely reduce food intake, body weight, and oxidative stress levels. We will review potential mechanisms of action and safety parameters throughout this clinical trial. ClinicalTrials.gov (Identifier: NCT01238887).

  12. Positron annihilation induced Auger electron spectroscopic studies of oxide surfaces

    Science.gov (United States)

    Nadesalingam, Manori

    2005-03-01

    Defects on oxide surfaces are well known to play a key role in catalysis. TiO2, MgO, SiO2 surfaces were investigated using Time-Of-Flight Positron induced Auger Electron Spectroscopy (TOF-PAES). Previous work in bulk materials has demonstrated that positrons are particularly sensitive to charged defects. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. Annealed samples in O2 environment show a strong Auger peak of Oxygen. The implication of these results will be discussed

  13. Oxidative stress in immature brain following experimentally-induced seizures

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava

    2013-01-01

    Roč. 62, Suppl.1 (2013), S39-S48 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR(CZ) GA309/08/0292; GA ČR(CZ) GAP303/10/0999; GA ČR(CZ) GAP302/10/0971; GA MŠk(CZ) LL1204 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : immature rats * experimentally-induced seizures * oxidative stress * mitochondrial dysfunction * antioxidant defense Subject RIV: FH - Neurology Impact factor: 1.487, year: 2013

  14. Photoexcited riboflavin induces oxidative damage to human serum albumin

    Science.gov (United States)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  15. Is nutrient intake a gender-specific cause for enhanced susceptibility to alcohol-induced liver disease in women?

    DEFF Research Database (Denmark)

    Wagnerberger, S.; Schafer, C.; Schwarz, E.

    2008-01-01

    Aim: Women have a higher susceptibility to alcohol-induced liver disease (ALD) than men. Gender-related differences in food preference were described in previous studies for several populations, but not in alcohol abusers. As certain micronutrients are reported to take influence on the development...... of ALD in animal experiments, the hypothesis of the present retrospective cross-sectional study was that gender-dependent (micro-) nutrient intake in patients with ALD may cause the higher susceptibility of women to this disease. Methods: In 210 patients (male: 158, female: 52) with different stages...

  16. A comparison of normal versus low dietary carbohydrate intake on substrate oxidation during and after moderate intensity exercise in women.

    Science.gov (United States)

    Patterson, Rachel; Potteiger, Jeffrey A

    2011-12-01

    We compared the effects of consuming a 2-day low-carbohydrate (CHO) diet (low-CHO; 20% CHO, 40% protein, 40% fat) versus an isocaloric 2-day moderate-CHO diet (mod-CHO; 55% CHO, 15% protein, 30% fat) on substrate oxidation during and after exercise in ten active, young women. Subjects were 24.9 ± 6.2% body fat with a VO(2max) of 68.8 ± 13.8 ml/kg FFM/min. For 2 days prior to exercise, subjects consumed either the mod-CHO or the low-CHO diet and then completed treadmill exercise at 55% of VO(2max) until 350 kcal of energy was expended. During exercise and for 2 h post-exercise, expired gases were analyzed to determine oxidation rates for CHO (CHO-OX) and fat (FAT-OX). Significant differences (p FAT-OX (mg/kg FFM/min) during exercise, 1 h post-ex, and 2 h post-ex. During exercise, FAT-OX was higher (low-CHO 8.7 ± 2.2 vs. mod-CHO 6.2 ± 2.2) and CHO-OX was lower (low-CHO 25.1 ± 5.6 vs. mod-CHO 31.1 ± 6.2) following the low-CHO diet. A similar trend was observed during 1 h post-ex for FAT-OX (low-CHO 2.2 ± 0.5 vs. mod-CHO 1.6 ± 0.5) and CHO-OX (low-CHO 2.5 ± 1.2 vs. mod-CHO 4.1 ± 1.9), as well as 2 h post-ex for FAT-OX (low-CHO vs. 1.9 ± 0.5 mod-CHO 1.7 ± 0.4) and CHO-OX (low-CHO 2.5 ± 0.9 vs. mod-CHO 3.1 ± 1.1). Significant positive correlations were observed between VO(2max) and CHO-OX during exercise and post-exercise, as well as significant negative correlations between VO(2max) and FAT-OX post-exercise in the low-CHO condition. Waist circumference and FAT-OX exhibited a significant negative correlation during exercise in the low-CHO condition. Dietary macronutrient intake influenced substrate oxidation in active young women during and after moderate intensity exercise.

  17. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  18. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    Science.gov (United States)

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2014-01-01

    A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation. PMID:24647074

  19. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    Directory of Open Access Journals (Sweden)

    Annie Bouchard-Mercier

    2014-03-01

    Full Text Available A large inter-individual variability in the plasma triglyceride (TG response to an omega-3 polyunsaturated fatty acid (n-3 PUFA supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208 participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA. Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187 and ACOX1 (rs17583163 genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation.

  20. Corn silk induces nitric oxide synthase in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Choi, Sang Kyu; Choi, Hye Seon

    2004-12-31

    Corn silk has been purified as an anticoagulant previously and the active component is a polysaccharide with a molecular mass of 135 kDa. It activates murine macrophages to induce nitric oxide synthase (NOS) and generate substantial amounts of NO in time and dose-dependent manners. It was detectable first at 15 h after stimulation by corn silk, peaked at 24 h, and undetectable by 48 h. Induction of NOS is inhibited by pyrolidine dithiocarbamate (PDTC) and genistein, an inhibitor of nuclear factor kappa B (NF-kappaB) and tyrosine kinase, respectively, indicating that iNOS stimulated by corn silk is associated with tyrosine kinase and NF-kappaB signaling pathways. IkappaB-alpha degradation was detectible at 10 min, and the level was restored at 120 min after treatment of corn silk. Corn silk induced nuclear translocation of NF-kappaB by phosphorylation and degradation of IkappaB-alpha.

  1. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  2. Nitric oxide mediated bystander responses induced by microbeam targeted cells

    International Nuclear Information System (INIS)

    Shao, C.; Prise, K.M.; Folkard, M.; Michael, B.D.

    2003-01-01

    Considerable evidence has recently been accumulated in support of the existence of a 'bystander effect', which cells having received no irradiation show biological consequences from their vicinal irradiated cells. The application of microbeams is providing new insights into the radiation-induced bystander effect. The present study found that when a fraction of radioresistant human glioblastoma cells were individually targeted with a precise number of helium ions generated from the Gray Cancer Institute Charged Particle Microbeam, micronucleus (MN) induction significantly exceeded the expected value that was calculated from the number of MN observed when all of the cells were targeted assuming no bystander effect occurring. Even when only a single cell within a population was hit by one helium ion, the MN induction in the population could be increased by 16%. These results provide direct evidence of radiation-induced bystander effect. Moreover, MN was effectively induced in the unirradiated primary human fibroblasts and glioblastoma cells either co-cultured with irradiated cells or treated with the medium harvested from irradiated cells, indicating a signal molecule was produced from the irradiated cells. However, when c-PTIO, a nitric oxide (NO)-specific scavenger, was present in the medium during and after irradiation until MN analysis, the production of MN in all of the above cases was reduced to low levels. Consequently, NO plays an important role in the radiation-induced bystander effect

  3. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  4. Pregnancy induces transcriptional activation of the peripheral innate immune system and increases oxidative DNA damage among healthy third trimester pregnant women.

    Directory of Open Access Journals (Sweden)

    Xinyin Jiang

    Full Text Available BACKGROUND: Pregnancy induces physiological adaptations that may involve, or contribute to, alterations in the genomic landscape. Pregnancy also increases the nutritional demand for choline, an essential nutrient that can modulate epigenomic and transcriptomic readouts secondary to its role as a methyl donor. Nevertheless, the interplay between human pregnancy, choline and the human genome is largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: As part of a controlled feeding study, we assessed the influence of pregnancy and choline intake on maternal genomic markers. Healthy third trimester pregnant (n = 26, wk 26-29 gestation and nonpregnant (n = 21 women were randomized to choline intakes of 480 mg/day, approximating the Adequate Intake level, or 930 mg/day for 12-weeks. Blood leukocytes were acquired at study week 0 and study week 12 for microarray, DNA damage and global DNA/histone methylation measurements. A main effect of pregnancy that was independent of choline intake was detected on several of the maternal leukocyte genomic markers. Compared to nonpregnant women, third trimester pregnant women exhibited higher (P<0.05 transcript abundance of defense response genes associated with the innate immune system including pattern recognition molecules, neutrophil granule proteins and oxidases, complement proteins, cytokines and chemokines. Pregnant women also exhibited higher (P<0.001 levels of DNA damage in blood leukocytes, a genomic marker of oxidative stress. No effect of choline intake was detected on the maternal leukocyte genomic markers with the exception of histone 3 lysine 4 di-methylation which was lower among pregnant women in the 930 versus 480 mg/d choline intake group. CONCLUSIONS: Pregnancy induces transcriptional activation of the peripheral innate immune system and increases oxidative DNA damage among healthy third trimester pregnant women.

  5. Radiation-induced changes in sodium preference and fluid intake in the rat

    International Nuclear Information System (INIS)

    Mossman, K.L.; Martini, A.J.; Henkin, R.I.

    1979-01-01

    An animal model has been used in an investigation of taste dysfunction, which is a side effect of radiotherapy of the head and neck. Rats were 60 Co γ-irradiated (1.5, 5 or 20 Gy) to the head, abdomen or tail, and fluid preference was measured with a two-bottle free choice technique up to 120 days post-irradiation. Doses of 1.5 or 5 Gy delivered to the head, abdomen or tail did not change fluid preference, body weight or total fluid intake, but there were significant differences in all three in 20 Gy head-irradiated rats only. There were differences in the changes with time after irradiation in fluid intake and preference for these head irradiated animals. (UK)

  6. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  7. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  8. Anesthetic-Induced Oxidative Stress and Potential Protection

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2010-01-01

    Full Text Available Prolonged exposure of developing mammals to general anesthetics affects the N-methyl-D-aspartate (NMDA–type glutamate or γ-aminobutyric acid (GABA receptor systems and enhances neuronal toxicity. Stimulation of immature neurons by NMDA antagonists or GABA agonists is thought to increase overall nervous system excitability and may contribute to abnormal neuronal cell death during development. Although the precise mechanisms by which NMDA antagonists or GABA agonists cause neuronal cell death are still not completely understood, up-regulation of the NMDA receptor subunit NR1 may be an initiative factor in neuronal cell death. It is increasingly apparent that mitochondria lie at the center of the cell death regulation process. Evidence for the role of oxidative stress in anesthetic-induced neurotoxicity has been generated in studies that apply oxidative stress blockers. Prevention of neuronal death by catalase and superoxide dismutase in vitro, or by M40403 (superoxide dismutase mimetic in vivo, supports the contention that the involvement of reactive oxygen species (ROS and the nature of neuronal cell death in rodents is mainly apoptotic. However, more evidence is necessary to in order verify the role of the NMDA receptor subunit NR1 and ROS in anesthetic-induced neurodegeneration.

  9. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T.

    2007-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  10. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  11. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    Science.gov (United States)

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  12. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    Science.gov (United States)

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L -1 ) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH -1 and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst. Copyright © 2016. Published by Elsevier Masson SAS.

  13. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  14. Radiation-induced cationic polymerization of limonene oxide, α-pinene oxide, and β-pinene oxide

    International Nuclear Information System (INIS)

    Aikins, J.A.; Williams, F.

    1985-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by 1 H and 13 C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the α-pinene and β-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain

  15. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  16. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S., E-mail: rozekl@umich.edu

    2014-05-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity.

  17. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    International Nuclear Information System (INIS)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S.

    2014-01-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity

  18. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (pAsparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  19. Breast milk intake and mother to infant pesticide transfer measured by deuterium oxide dilution in agricultural and urban areas of Mexico.

    Science.gov (United States)

    Limon-Miro, Ana Teresa; Aldana-Madrid, Maria Lourdes; Alvarez-Hernandez, Gerardo; Antunez-Roman, Lesley Evelyn; Rodriguez-Olibarria, Guillermo; Valencia Juillerat, Mauro E

    2017-08-01

    Vector-borne diseases have increased pesticide use in urban areas (UA) and agricultural areas (AA) in Mexico. Breast milk can be contaminated by pesticide exposure. The objective of the study was to measure breast milk intake by deuterium oxide dilution as well as organochlorine and pyrethroid transfer from mother to infant in AA and UA of Sonora, Mexico. Human milk intake was determined by the 'dose-to-mother' technique using deuterium oxide (D 2 O) dilution. Mothers' body composition was also assessed by this technique and the intercept method. Pyrethroids (deltamethrin, cypermethrin and cyhalothrin) and organochlorine pesticide residues (p,p'- DDT, p,p'- DDE, p,p'- DDD) in breast milk samples were measured by gas chromatography. Sixty-two lactating women and their infants participated in the study, 32 lived in the UA and 30 lived in the AA. Breast milk intake was approximately 100 mL higher in the AA than in the UA 799 ± 193 and 707 ± 201 mL/day, respectively (p pesticides studied surpassed the Acceptable Daily Intake (ADI) in milk for humans according to EPA and FAO/WHO. In conclusion, breast milk intake was higher in the AA compared to the UA. The p,p'- DDT and cypermethrin levels in breast milk were higher in the UA compared to the AA. Since pesticide levels in human milk did not exceed the ADI, breastfeeding is still a safe practice and should be encouraged. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of oxidative stress in D-serine induced nephrotoxicity

    International Nuclear Information System (INIS)

    Orozco-Ibarra, Marisol; Medina-Campos, Omar Noel; Sanchez-Gonzalez, Dolores Javier; Martinez-Martinez, Claudia Maria; Floriano-Sanchez, Esau; Santamaria, Abel; Ramirez, Victoria; Bobadilla, Norma A.; Pedraza-Chaverri, Jose

    2007-01-01

    It has been suggested that oxidative stress is involved in D-serine-induced nephrotoxicity. The purpose of this study was to assess if oxidative stress is involved in this experimental model using several approaches including (a) the determination of several markers of oxidative stress and the activity of some antioxidant enzymes in kidney and (b) the use of compounds with antioxidant or prooxidant effects. Rats were sacrificed at several periods of time (from 3 to 24 h) after a single i.p. injection of D-serine (400 mg/kg). Control rats were injected with L-serine (400 mg/kg) and sacrificed 24 h after. The following markers were used to assess the temporal aspects of renal damage: (a) urea nitrogen (BUN) and creatinine in blood serum, (b) kidney injury molecule (KIM-1) mRNA levels, and (c) tubular necrotic damage. In addition, creatinine clearance, proteinuria, and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) were measured 24 h after D-serine injection. Protein carbonyl content, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), fluorescent products of lipid peroxidation, reactive oxygen species (ROS), glutathione (GSH) content, and heme oxygenase-1 (HO-1) expression were measured as markers of oxidative stress in the kidney. Additional experiments were performed using the following compounds with antioxidant or pro-oxidant effects before D-serine injection: (a) α-phenyl-tert-butyl-nitrone (PBN), a spin trapping agent; (b) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) (FeTPPS), a soluble complex able to metabolize peroxynitrite; (c) aminotriazole (ATZ), a catalase (CAT) inhibitor; (d) stannous chloride (SnCl 2 ), an HO-1 inductor; (e) tin mesoporphyrin (SnMP), an HO inhibitor. In the time-course study, serum creatinine and BUN increased significantly on 15-24 and 20-24 h, respectively, and KIM-1 mRNA levels increased significantly on 6-24 h. Histological analyses revealed tubular necrosis at 12 h. The activity of antioxidant enzymes

  1. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    Science.gov (United States)

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  2. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption.

    Science.gov (United States)

    van't Hof, R J; Armour, K J; Smith, L M; Armour, K E; Wei, X Q; Liew, F Y; Ralston, S H

    2000-07-05

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFkappaB and in NFkappaB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFkappaB in osteoclast precursors.

  3. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  4. Peripheral Signals of Food Intake in Response to Low Leptin Levels Induced by Centrifugation

    Science.gov (United States)

    Moran, M. M.; Wade, Charles E.; Stein, T. P.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    The focus of the study was to examine leptin and other peripheral signals of energy balance, following hypergravity. The study was conducted in two experiments. In experiment 1 rats were centrifuged at either 1.5, 2, or remained at 1 G. During days 8 to 14 of experiment 1, mean body mass of the 1.5 and 2 G groups was significantly (p<0.05) lower than controls. No differences were found in food intake (g/day/100 g body mass). Epididymal fat in the 2 G group was 21% lower than controls and 14% lower than the 1.5 G group. Plasma leptin was reduced from controls in the 1.5 and 2 G groups by 45 and 63%, respectively. A significant correlation was found between G load and urinary catecholamines. In experiment 2, rats were centrifuged at either 1.25, 1.5, or remained at 1 G. During days 8 to 14, body mass and food intake were similar between the 1, 1.25, and 1.5 G groups. Epididymal fat was reduced from controls in the 1.25 (14%) and 1.5 (19%) G groups. Leptin was reduced from controls in the 1.25 (45%) and 1.5 (46%) G groups. No differences were found in urinary epinephrine. Urinary norepinephrine levels were significantly higher than controls in each centrifuge group. During hypergravity exposure, food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  5. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  6. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  7. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  8. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Doublier, Sophie; Miraglia, Erica; Polimeni, Manuela; Bosia, Amalia; Ghigo, Dario

    2008-01-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-κB and decreased intracellular level of its inhibitor IkBα. These effects, accompanied by increased production of H 2 O 2 , were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-κB activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed

  9. Brain-specific inactivation of the Crhr1 gene inhibits post-dependent and stress-induced alcohol intake, but does not affect relapse-like drinking

    DEFF Research Database (Denmark)

    Molander, Anna; Vengeliene, Valentina; Heilig, Markus

    2012-01-01

    , a conditional brain-specific Crhr1-knockout (Crhr1(NestinCre)) and a global knockout mouse line were studied for basal alcohol drinking, stress-induced alcohol consumption, deprivation-induced intake, and escalated alcohol consumption in the post-dependent state. In a second set of experiments, we tested CRHR1...... not affect relapse-like drinking after a deprivation period in rats. We conclude that CRH/CRHR1 extra-HPA and HPA signaling may have opposing effects on stress-related alcohol consumption. CRHR1 does not have a role in basal alcohol intake or relapse-like drinking situations with a low stress load.......Corticotropin-releasing hormone (CRH) and its receptor, CRH receptor-1 (CRHR1), have a key role in alcoholism. Especially, post-dependent and stress-induced alcohol intake involve CRH/CRHR1 signaling within extra-hypothalamic structures, but a contribution of the hypothalamic-pituitary-adrenal (HPA...

  10. Curcumin Attenuates Hepatotoxicity Induced by Zinc Oxide Nanoparticles in Rats

    Directory of Open Access Journals (Sweden)

    Layasadat Khorsandi

    2016-06-01

    Full Text Available Background: Zinc oxide nanoparticles (NZnO are increasingly used in modern life. Most metal nanoparticles have adverse effects on the liver. Aims: To explore the protective action of curcumin (Cur against hepatotoxicity induced by NZnO in rats. Study Design: Animal experimentation. Methods: Control group animals received normal saline, while the Cur group animals were treated with 200 mg/kg of Cur orally for 21 days. NZnO-intoxicated rats received 50 mg/kg of NZnO for 14 days by gavage method. In the NZnO+Cur group, rats were pretreated with Cur for 7 days before NZnO administration. Plasma activities of Alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP were measured as biomarkers of hepatotoxicity. Hepatic levels of malondialdehyde (MDA and superoxide dismutase (SOD and glutathione peroxidase (GPx activities were measured for detection of oxidative stress in liver tissue. Histological changes and apoptosis in liver tissue were studied by using Hematoxylin-eosin staining and the transferase dUTP nick end labeling (TUNEL method. Results: NZnO induced a significant increase in plasma AST (2.8-fold, ALT (2.7-fold and ALP (1.97-fold activity in comparison to the control group (p<0.01. NZnO increased MDA content and reduced SOD and GPx activities. NZnO caused liver damage including centrilobular necrosis and microvesicular steatosis. The percentage of apoptosis in hepatocytes was increased in NZnO-treated rats (p<0.01. Pre-treatment of Cur significantly reduced lipid peroxidation (39%, increased SOD (156% and GPx (26% activities, and attenuated ALT (47%, AST (41% and ALP (30% activities. Pre-treatment with Cur also decreased the histology changes and apoptotic index of hepatocytes (p<0.05. Conclusion: These findings indicate that Cur effectively protects against NZnO-induced hepatotoxicity in rats. However, future studies are required to propose Cur as a potential protective agent against hepatotoxicity

  11. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  12. Urea-induced oxidative damage in Elodea densa leaves.

    Science.gov (United States)

    Maleva, Maria; Borisova, Galina; Chukina, Nadezda; Prasad, M N V

    2015-09-01

    Urea being a fertilizer is expected to be less toxic to plants. However, it was found that urea at 100 mg L(-1) caused the oxidative stress in Elodea leaves due to the formation of reactive oxygen species (ROS) and lipid peroxidation that are known to stimulate antioxidant pathway. Urea at a concentration of 500 and 1000 mg L(-1) decreased low-molecular-weight antioxidants. In this case, the antioxidant status of plants was supported by the activity of antioxidant enzymes such as superoxide dismutase and guaiacol peroxidase. A significant increase in the soluble proteins and -SH groups was observed with high concentrations of urea (30-60 % of control). Thus, the increased activity of antioxidant enzymes, low-molecular-weight antioxidants, and induced soluble protein thiols are implicated in plant resistance to oxidative stress imposed by urea. We found that guaiacol peroxidase plays an important role in the removal of the peroxide in Elodea leaves exposed to 1000 mg L(-1)of urea.

  13. Strain-induced topological quantum phase transition in phosphorene oxide

    Science.gov (United States)

    Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.

  14. CIRRHOSIS INDUCES APOPTOSIS IN RENAL TISSUE THROUGH INTRACELLULAR OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Keli Cristina Simões da SILVEIRA

    2015-03-01

    Full Text Available Background Renal failure is a frequent and serious complication in patients with decompensated cirrhosis. Objectives We aimed to evaluate the renal oxidative stress, cell damage and impaired cell function in animal model of cirrhosis. Methods Secondary biliary cirrhosis was induced in rats by ligation of the common bile duct. We measured TBARS, ROS and mitochondrial membrane potential in kidney as markers of oxidative stress, and activities of the antioxidant enzymes. Relative cell viability was determined by trypan blue dye-exclusion assay. Annexin V-PE was used with a vital dye, 7-AAD, to distinguish apoptotic from necrotic cells and comet assay was used for determined DNA integrity in single cells. Results In bile duct ligation animals there was significant increase in the kidney lipoperoxidation and an increase of the level of intracellular ROS. There was too an increase in the activity of all antioxidant enzymes evaluated in the kidney. The percentage viability was above 90% in the control group and in bile duct ligation was 64.66% and the dominant cell death type was apoptosis. DNA damage was observed in the bile duct ligation. There was a decreased in the mitochondrial membrane potential from 71.40% ± 6.35% to 34.48% ± 11.40% in bile duct ligation. Conclusions These results indicate that intracellular increase of ROS cause damage in the DNA and apoptosis getting worse the renal function in cirrhosis.

  15. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  16. Emotion-induced eating and sucrose intake in children : The NHLBI growth and health study

    NARCIS (Netherlands)

    Striegel-Moore, RH; Morrison, JA; Schreiber, G; Schumann, BC; Crawford, PB; Obarzanek, E

    Objective: Emotion-induced eating has been implicated as a risk factor for the development of. obesity, yet no research has been done on emotion-induced eating in children. The National Heart, Lung, and Blood institute Growth and Health Study (NGHS) a multicenter collaborative study of risk factors

  17. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae).

    Science.gov (United States)

    Bezzar-Bendjazia, Radia; Kilani-Morakchi, Samira; Maroua, Ferdenache; Aribi, Nadia

    2017-11-01

    Botanical insecticides are a promising alternative to reduce the harmful effects of synthetic chemicals. Among the botanical biopesticides, azadirachtin obtained from the Indian neem tree Azadirachta indica A. Juss. (Meliaceae) is probably the biorational insecticide with greatest agriculture use nowadays due to its broad insecticide activity. The current study, evaluated the lethal and sublethal effects of azadirachtin on larval avoidance, food intake and digestive enzymes of Drosophila melanogaster larvae as biological model. Azadirachtin was applied topically at two doses LD 25 (0.28μg) and LD 50 (0.67μg) on early third instars larvae. Results evaluated 24h after treatment showed that larvae exhibited significant repellence to azadirachtin and prefer keeping in untreated arenas rather than moving to treated one. In addition, azadirachtin avoidance was more marked in larvae previously treated with this compound as compared with naïf larvae (controls). Moreover, azadirachtin treatment decreased significantly the amount of larval food intake. Finally, azadirachtin reduced significantly the activity of larval α-amylase, chitinase and protease and increased the activity of lipase. This finding showed that azadirachtin induced behavioral and physiological disruption affecting the ability of the insect to digest food. This rapid installation of avoidance and long term antifeedancy might reinforce the action of azadirachtin and provide a new behavioral strategy for integrated pest management programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Central administration of the anorexigenic peptide neuromedin U decreases alcohol intake and attenuates alcohol-induced reward in rodents.

    Science.gov (United States)

    Vallöf, Daniel; Ulenius, Lisa; Egecioglu, Emil; Engel, Jörgen A; Jerlhag, Elisabet

    2017-05-01

    By investigating the neurochemical mechanisms through which alcohol activates the brain reward systems, novel treatment strategies for alcohol use disorder (AUD), a chronic relapsing disease, can be developed. In contrast to the common view of the function of gut-brain peptides, such as neuromedin U (NMU), to regulate food intake and appetite, a novel role in reinforcement mediation has been implied. The anorexigenic effects of NMU are mediated via NMU2 receptors, preferably in the arcuate nucleus and paraventricular nucleus. The expression of NMU2 receptors is also expressed in several reward-related areas in the brain, suggesting a role in reward regulation. The present experiments were therefore set up to investigate the effect of intracerebroventricular administration of NMU on alcohol-mediated behaviors in rodents. We found that central administration of NMU attenuated alcohol-induced locomotor stimulation, accumbal dopamine release and the expression of conditioned place preference in mice. In addition, NMU dose dependently decreased alcohol intake in high, but not in low, alcohol-consuming rats. Central NMU administration did not alter the blood alcohol concentrations nor change the corticosterone levels in rodents. Given that AUD is a major health-care challenge causing an enormous cost to society and novel treatment strategies are warranted, our data suggest that NMU analogues deserve to be evaluated as novel treatment of AUD in humans. © 2016 The Authors Addiction Biology published by John Wiley & Sons Ltd.

  19. Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss.

    Science.gov (United States)

    Jamesdaniel, Samson; Rosati, Rita; Westrick, Judy; Ruden, Douglas M

    2018-08-01

    Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise. Blood lead levels were measured by inductively coupled plasma mass spectrometry analysis (ICP-MS) lead-induced cochlear oxidative stress signaling was assessed using targeted gene arrays, and the hearing thresholds were assessed by recording auditory brainstem responses. Chronic lead exposure downregulated cochlear Sod1, Gpx1, and Gstk1, which encode critical antioxidant enzymes, and upregulated ApoE, Hspa1a, Ercc2, Prnp, Ccl5, and Sqstm1, which are indicative of cellular apoptosis. Isolated exposure to lead or noise induced 8-12 dB and 11-25 dB shifts in hearing thresholds, respectively. Combined exposure induced 18-30 dB shifts, which was significantly higher than that observed with isolated exposures. This study suggests that chronic exposure to lead induces cochlear oxidative stress and potentiates noise-induced hearing impairment, possibly through parallel pathways. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans

    DEFF Research Database (Denmark)

    Søberg, Susanna; Sandholt, Camilla Helene; Z. Jespersen, Naja

    2017-01-01

    The liking and selective ingestion of palatable foods—including sweets—is biologically controlled, and dysfunction of this regulation may promote unhealthy eating, obesity, and disease. The hepatokine fibroblast growth factor 21 (FGF21) reduces sweet consumption in rodents and primates, whereas...... knockout of Fgf21 increases sugar consumption in mice. To investigate the relevance of these findings in humans, we genotyped variants in the FGF21 locus in participants from the Danish Inter99 cohort (n = 6,514) and examined their relationship with a detailed range of food and ingestive behaviors....... This revealed statistically significant associations between FGF21 rs838133 and increased consumption of candy, as well as nominal associations with increased alcohol intake and daily smoking. Moreover, in a separate clinical study, plasma FGF21 levels increased acutely after oral sucrose ingestion and were...

  1. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?

    Science.gov (United States)

    Xie, Heng; Zhou, Fubo; Liu, Ling; Zhu, Guannan; Li, Qiang; Li, Chunying; Gao, Tianwen

    2016-01-01

    Vitiligo is a common depigmentation disorder characterized by a loss of functional melanocytes and melanin from epidermis, in which the autoantigens and subsequent autoimmunity caused by oxidative stress play significant roles according to hypotheses. Various factors lead to reactive oxygen species (ROS) overproduction in the melanocytes of vitiligo: the exogenous and endogenous stimuli that cause ROS production, low levels of enzymatic and non-enzymatic antioxidants, disturbed antioxidant pathways and polymorphisms of ROS-associated genes. These factors synergistically contribute to the accumulation of ROS in melanocytes, finally leading to melanocyte damage and the production of autoantigens through the following ways: apoptosis, accumulation of misfolded peptides and cytokines induced by endoplasmic reticulum stress as well as the sustained unfolded protein response, and an 'eat me' signal for phagocytic cells triggered by calreticulin. Subsequently, autoantigens presentation and dendritic cells maturation occurred mediated by the release of antigen-containing exosomes, adenosine triphosphate and melanosomal autophagy. With the involvement of inducible heat shock protein 70, cellular immunity targeting autoantigens takes the essential place in the destruction of melanocytes, which eventually results in vitiligo. Several treatments, such as narrow band ultraviolet, quercetin and α-melanophore-stimulating hormone, are reported to be able to lower ROS thereby achieving repigmentation in vitiligo. In therapies targeting autoimmunity, restore of regulatory T cells is absorbing attention, in which narrow band ultraviolet also plays a role. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Lead induced oxidative stress: beneficial effects of Kombucha tea.

    Science.gov (United States)

    Dipti, P; Yogesh, B; Kain, A K; Pauline, T; Anju, B; Sairam, M; Singh, B; Mongia, S S; Kumar, G Ilavazhagan Devendra; Selvamurthy, W

    2003-09-01

    To evaluate the effect of oral administration of Kombucha tea (K-tea) on lead induced oxidative stress. Sprague Dawley rats were administered 1 mL of 3.8% lead acetate solution daily alone or in combination with K-tea orally for 45 d, and the antioxidant status and lipid peroxidation were evaluated. Oral administration of lead acetate to rats enhanced lipid peroxidation and release of creatine phosphokinase and decreased levels of reduced glutathione (GSH) and antioxidant enzymes (superoxide dismutase, SOD and glutathione peroxidase, GPx). Lead treatment did not alter humoral immunity, but inhibited DTH response when compared to the control. Lead administration also increased DNA fragmentation in liver. Oral administration of Kombucha tea to rats exposed to lead decreased lipid peroxidation and DNA damage with a concomitant increase in the reduced glutathione level and GPx activity. Kombucha tea supplementation relieved the lead induced immunosuppression to appreciable levels. The results suggest that K-tea has potent antioxidant and immunomodulating properties.

  3. Mechanistic model to predict colostrum intake based on deuterium oxide dilution technique data and impact of gestation and prefarrowing diets on piglet intake and sow yield of colostrum

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Flummer, Christine; Hurley, W L

    2014-01-01

    The aims of the present study were to quantify colostrum intake (CI) of piglets using the D2O dilution technique, to develop a mechanistic model to predict CI, to compare these data with CI predicted by a previous empirical predictive model developed for bottle-fed piglets, and to study how...... composition of diets fed to gestating sows affected piglet CI, sow colostrum yield (CY), and colostrum composition. In total, 240 piglets from 40 litters were enriched with D2O. The CI measured by D2O from birth until 24 h after the birth of first-born piglet was on average 443 g (SD 151). Based on measured...... CI, a mechanistic model to predict CI was developed using piglet characteristics (24-h weight gain [WG; g], BW at birth [BWB; kg], and duration of CI [D; min]: CI, g = –106 + 2.26 WG + 200 BWB + 0.111 D – 1,414 WG/D + 0.0182 WG/BWB (R2 = 0.944). This model was used to predict the CI for all colostrum...

  4. Lycopene Protects the Diabetic Rat Kidney Against Oxidative Stress-mediated Oxidative Damage Induced by Furan

    Directory of Open Access Journals (Sweden)

    Dilek Pandir

    2016-01-01

    Full Text Available Furan is a food and environmental contaminant and a potent carcinogen in animals. Lycopene is one dietary carotenoid found in fruits such as tomato, watermelon and grapefruit. The present study was designed to explore the protective effect of lycopene against furan-induced oxidative damage in streptozotocin (STZ-induced diabetic rat kidney. At the end of the experimental period (28 days, we found that lycopene markedly decreased the malondialdehide (MDA levels in the kidney, urea, uric acid and creatinine levels in the serum of furan-treated rats. The increase of histopathology in the kidney of furan-treated rats were effectively suppressed by lycopene. Furthermore, lycopene markedly restored superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and glutathione-S-transferase (GST activities in the kidney of furan-treated rats. In conclusion, these results suggested that lycopene could protect the rat kidney against furan-induced injury by improving renal function, attenuating histopathologic changes, reducing MDA production and renewing the activities of antioxidant enzymes.

  5. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-11-01

    Full Text Available It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2 in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.

  6. Low Nourishment of Vitamin C Induces Glutathione Depletion and Oxidative Stress in Healthy Young Adults.

    Science.gov (United States)

    Waly, Mostafa I; Al-Attabi, Zahir; Guizani, Nejib

    2015-09-01

    The present study was conducted to assess the status of vitamin C among healthy young adults in relation to serum antioxidant parameters [glutathione (GSH), thiols, and total antioxidant capacity, (TAC)], and oxidative stress markers [malondialdehyde (MDA), and nitrites plus nitrates (NN)]. A prospective study included 200 young adults, and their dietary intake was assessed by using food diaries. Fasting plasma vitamin C, serum levels of GSH, thiols, TAC, MDA, and NN were measured using biochemical assays. It was observed that 38% of the enrolled subjects, n=76, had an adequate dietary intake of vitamin C (ADI group). Meanwhile, 62%, n=124, had a low dietary intake of vitamin C (LDI group) as compared to the recommended dietary allowances. The fasting plasma level of vitamin C was significantly higher in the ADI group as compared to the LDI group. Oxidative stress in the sera of the LDI group was evidenced by depletion of GSH, low thiols levels, impairment of TAC, an elevation of MDA, and increased NN. In the ADI group, positive correlations were found between plasma vitamin C and serum antioxidant parameters (GSH, thiols, and TAC). Meanwhile, the plasma vitamin C was negatively correlated with serum MDA and NN levels. This study reveals a significant increase of oxidative stress status and reduced antioxidant capacity in sera from healthy young adults with low intake of the dietary antioxidant, vitamin C.

  7. Radioprotective efficacy of bisarylidene cyclopentanone on electron beam radiation induced oxidative stress in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Darshan Raj, C.G.; Sarojini, B.K.; Musthafa Khaleel, V.; Ramesh, S.R.; Ramakrishna, M.K.; Narayana, B.; Sanjeev, Ganesh

    2010-01-01

    Present study was carried out for evaluating the radioprotective effect of bischalcone (2E, 5E) - 2,5-bis (3-methoxy-4-hydroxy-benzylidene) cyclopentanone (curcumin analog (CA)), on electron beam radiation induced oxidative stress in Drosophila melanogaster adults. The oxidative stress markers and antioxidants included superoxide dismutase (SOD) and catalase (CAT). The oxidative stress was induced at 1.5 Gy. (author)

  8. Attenuated flow‐induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short‐term high salt diet

    Science.gov (United States)

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary

    2016-01-01

    Key points Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress.The objective of this study was to assess vascular response to flow‐induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS‐fed rats in vitro.The novelty of this study is in demonstrating impaired flow‐induced dilatation of MCAs and down‐regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID.In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake.Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. Abstract The aim of this study was to determine flow‐induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)‐fed rats. Healthy male Sprague‐Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10–Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N ω‐nitro‐l‐arginine methyl ester (l‐name). mRNA levels of antioxidative enzymes, NAPDH‐oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real‐time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma

  9. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    Science.gov (United States)

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    Science.gov (United States)

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  11. Mechanistic model to predict colostrum intake based on deuterium oxide dilution technique data and impact of gestation and prefarrowing diets on piglet intake and sow yield of colostrum.

    Science.gov (United States)

    Theil, P K; Flummer, C; Hurley, W L; Kristensen, N B; Labouriau, R L; Sørensen, M T

    2014-12-01

    The aims of the present study were to quantify colostrum intake (CI) of piglets using the D2O dilution technique, to develop a mechanistic model to predict CI, to compare these data with CI predicted by a previous empirical predictive model developed for bottle-fed piglets, and to study how composition of diets fed to gestating sows affected piglet CI, sow colostrum yield (CY), and colostrum composition. In total, 240 piglets from 40 litters were enriched with D2O. The CI measured by D2O from birth until 24 h after the birth of first-born piglet was on average 443 g (SD 151). Based on measured CI, a mechanistic model to predict CI was developed using piglet characteristics (24-h weight gain [WG; g], BW at birth [BWB; kg], and duration of CI [D; min]: CI, g=-106+2.26 WG+200 BWB+0.111 D-1,414 WG/D+0.0182 WG/BWB (R2=0.944). This model was used to predict the CI for all colostrum suckling piglets within the 40 litters (n=500, mean=437 g, SD=153 g) and was compared with the CI predicted by a previous empirical predictive model (mean=305 g, SD=140 g). The previous empirical model underestimated the CI by 30% compared with that obtained by the new mechanistic model. The sows were fed 1 of 4 gestation diets (n=10 per diet) based on different fiber sources (low fiber [17%] or potato pulp, pectin residue, or sugarbeet pulp [32 to 40%]) from mating until d 108 of gestation. From d 108 of gestation until parturition, sows were fed 1 of 5 prefarrowing diets (n=8 per diet) varying in supplemented fat (3% animal fat, 8% coconut oil, 8% sunflower oil, 8% fish oil, or 4% fish oil+4% octanoic acid). Sows fed diets with pectin residue or sugarbeet pulp during gestation produced colostrum with lower protein, fat, DM, and energy concentrations and higher lactose concentrations, and their piglets had greater CI as compared with sows fed potato pulp or the low-fiber diet (Pcoconut oil decreased lactose and increased DM concentrations of colostrum compared with other prefarrowing diets (P

  12. An Optimized IES Method and Its Inhibitory Effects and Mechanisms on Food Intake and Body Weight in Diet-Induced Obese Rats: IES for Obesity.

    Science.gov (United States)

    Wan, Xinyue; Yin, Jieyun; Foreman, Robert; Chen, Jiande D Z

    2017-12-01

    This paper aims to optimize stimulation parameters and durations for intestinal electrical stimulation (IES) and to explore the effects and mechanisms of chronic IES with optimized methodology in obesity rats. Sixteen diet-induced obese (DIO) rats were tested for food intake with four different sets of IES parameters each lasting 1 week. Then, another 12 DIO rats were used to test the effect of IES on food intake with different stimulation durations. Finally, 16 DIO rats were treated with IES or sham-IES for 4 weeks. Meal patterns, food intake, and body weight were observed. Mechanisms involving gastrointestinal motility, ghrelin, and glucagon-like peptide-1 (GLP-1) were studied. (1) Acute IES with different parameters showed different inhibitory effects on food intake, and the most effective parameters were 0.6 s on, 0.9 s off, 80 Hz, 2 ms, and 4 mA with which 26.3% decrease in food intake was noted (p fasting and postprandial plasma levels of GLP-1 but not ghrelin. Twelve-hour daily IES using optimized stimulation parameters reduces food intake and body weight in DIO rats by altering gastrointestinal motility and GLP-1. The IES methodology derived in this study may have a therapeutic potential for obesity.

  13. Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity

    OpenAIRE

    Kim, Jongwan; Yun, Eun-Young; Quan, Fu-Shi; Park, Seung-Won; Goo, Tae-Won

    2017-01-01

    The α-glucosidase inhibitor, 1-deoxynojirimycin (DNJ), is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Result...

  14. Platinum-induced structural collapse in layered oxide polycrystalline films

    International Nuclear Information System (INIS)

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2015-01-01

    Effect of a platinum bottom electrode on the SrBi 5 Fe 1−x Co x Ti 4 O 18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO 2 , which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO 2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO 2 , the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties

  15. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress.

    Science.gov (United States)

    Azevedo, Rosana F F; Souza, Roberta K F; Braga, Gilberto U L; Rangel, Drauzio E N

    2014-12-01

    Entomopathogenic fungi are predisposed to ROS induced by heat and UV-A radiation when outside the insect host. When inside the host, they are subject to phagocytic cells that generate ROS to eliminate invading pathogens. The oxidative stress tolerance of the entomopathogenic fungi Aschersonia aleyrodis (ARSEF 430 and 10276), Aschersonia placenta (ARSEF 7637), Beauveria bassiana (ARSEF 252), Isaria fumosorosea (ARSEF 3889), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium acridum (ARSEF 324), Metarhizium anisopliae (ARSEF 5749), Metarhizium brunneum (ARSEF 1187 and ARSEF 5626), Metarhizium robertsii (ARSEF 2575), Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), and Simplicillium lanosoniveum (ARSEF 6430 and ARSEF 6651) was studied based on conidial germination on a medium supplemented with menadione. Conidial germination was evaluated 24 h after inoculation on potato dextrose agar (PDA) (control) or PDA supplemented with menadione. The two Aschersonia species (ARSEF 430, 7637, and 10276) were the most susceptible fungi, followed by the two Tolypocladium species (ARSEF 3392 and 4877) and the M. acridum (ARSEF 324). Metarhizium brunneum (ARSEF 5626) and M. anisopliae (ARSEF 5749) were the most tolerant isolates with MIC 0.28 mM. All fungal isolates, except ARSEF 5626 and ARSEF 5749, were not able to germinate at 0.20 mM. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Role of oxidative stress in thuringiensin-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Liu, B.-L.; Hwang, J.-S.; Ho, S.-P.

    2006-01-01

    To understand the effect of thuringiensin on the lungs tissues, male Sprague-Dawley rats were administrated with thuringiensin by intratracheal instillation at doses 0.8, 1.6 and 3.2 mg/kg of body weight, respectively. The rats were sacrificed 4 h after treatment, and lungs were isolated and examined. Subsequently, an effective dose of 1.6 mg/kg was selected for the time course study (4, 8, 12, and 24 h). Intratracheal instillation of thuringiensin resulted in lung damage, as evidenced by increase in lung weight and decrease in alkaline phosphatase (10-54%), an enzyme localized primarily in pulmonary alveolar type II epithelial cells. Furthermore, the administration of thuringiensin caused increases in lipid peroxidation (21-105%), the indices of lung injury. In addition, the superoxide dismutase (SOD) and glutathione (GSH) activities of lung tissue extracts were measured to evaluate the effect of thuringiensin on antioxidant defense system. The SOD activity and GSH content in lung showed significant decreases in a dose-related manner with 11-21% and 15-37%, respectively. Those were further supported by the release of proinflammatory cytokines, as indicated by increases in IL-1β (229-1017%) and TNF-α (234%) levels. Therefore, the results demonstrated that changes in the pulmonary oxidative-antioxidative status might play an important role in the thuringiensin-induced lung injury

  17. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  18. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  19. Timing of fat and liquid sugar intake alters substrate oxidation and food efficiency in male Wistar rats

    NARCIS (Netherlands)

    Oosterman, Johanneke E; Foppen, Ewout; van der Spek, Rianne; Fliers, Eric; Kalsbeek, A.; la Fleur, Susanne E

    2015-01-01

    In addition to the amount of ingested calories, both timing of food intake and meal composition are determinants of body weight gain. However, at present, it is unknown if the inappropriate timing of diet components is responsible for body weight gain. In the present study, we therefore studied a

  20. Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Thais T Zampieri

    Full Text Available Leucine activates the intracellular mammalian target of the rapamycin (mTOR pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.

  1. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Atrial natriuretic peptide (ANP provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A, is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of

  2. p,p'-DDT induces testicular oxidative stress-induced apoptosis in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-05-26

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) is a known persistent organic pollutant and male reproductive toxicant. The present study is designed to test the hypothesis that oxidative stress mediates p,p'-DDT-induced apoptosis in testis. Male Wistar rats received an intraperitoneal (ip) injection of the pesticide at doses of 50 and 100mg/kg for 10 consecutive days. The oxidative stress was evaluated by biomarkers such lipid peroxidation (LPO) and metallothioneins (MTs) levels. Antioxidant enzymes activities was assessed by determination of superoxide dismutase (SOD), catalase (CAT) and hydrogen peroxide (H 2 O 2 ) production. In addition, glutathione-dependent enzymes and reducing power in testis was evaluated by glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione S-transferase (GST) activities and reduced and oxidized glutathione (GSH - GSSG) levels. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis. Germinal cells apoptosis and the apoptotic index was assessed through the TUNEL assay. After 10 days of treatment, an increase in LPO level and H 2 O 2 production occurred, while MTs level, SOD and CAT activities were decreased. Also, the Gpx, GR, GST, and GSH activities were decreased, whereas GSSG activity was increased. Testicular tissues of treated rats showed pronounced degradation of the DNA into oligonucleotides as seen in the typical electrophoretic DNA ladder pattern. Intense apoptosis was observed in germinal cells of DDT-exposed rats. In addition, the apoptotic index was significantly increased in testis of DDT-treated rats. These results clearly suggest that DDT sub-acute treatment causes oxidative stress in rat testis leading to apoptosis.

  3. Intake of Gnetum Africanum and Dacryodes Edulis, Imbalance of Oxidant/Antioxidant Status and Prevalence of Diabetic Retinopathy in Central Africans

    Science.gov (United States)

    Moise, Mvitu-Muaka; Benjamin, Longo-Mbenza; Etienne, Mokondjimobe; Thierry, Gombet; Ndembe Dalida, Kibokela; Doris, Tulomba Mona; Samy, Wayiza Masamba

    2012-01-01

    Objective To estimate the prevalence of DR and to correlate cardiometabolic, sociodemographic, and oxidant/antioxidant imbalance data to the prevalence of DR. Design This case-control study included type 2 DM (T2 DM) patients with DR (n = 66), T2 DM patients without DR (N = 84), and healthy controls (n = 45) without DR, in Kinshasa town. Diet, albuminemia, serum vitamins, and 8-isoprostane were examined. Results No intake of safou (OR = 2.7 95% CI 1.2–5.8; P = 0.014), low serum albumin <4.5 g/dL (OR-2.9 95% CI 1.4–5.9; P = 0.003), no intake of fumbwa (OR = 2.8 95% CI 1.2–6.5; P = 0.014), high 8-isoprostane (OR = 14.3 95% CI 4.5–46; P<0.0001), DM duration ≥5 years (OR = 3.8 95% CI 1.6–9.1; P = 0.003), and low serum vitamin C (OR = 4.5 95% CI 1.3–15.5; P = 0.016) were identified as the significant independent determinants of DR. Conclusion The important role of oxidant/antioxidant status imbalance and diet is demonstrated in DR. PMID:23226496

  4. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  5. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality.

    Science.gov (United States)

    Dias, Tânia R; Alves, Marco G; Rato, Luís; Casal, Susana; Silva, Branca M; Oliveira, Pedro F

    2016-11-01

    Prediabetes has been associated with alterations in male reproductive tract, especially in testis and epididymis. Moreover, in vitro studies described a promising action of tea (Camellia sinensis L.) against metabolic dysfunctions. Herein, we hypothesized that white tea (WTEA) ingestion by prediabetic animals could ameliorate the metabolic alterations induced by the disease in testicular and epididymal tissues, preserving sperm quality. WTEA infusion was prepared and its phytochemical profile was evaluated by 1 H-NMR. A streptozotocin-induced prediabetic rat model was developed and three experimental groups were defined: control, prediabetic (PreDM) and prediabetic drinking WTEA (PreDM+WTEA). Metabolic profiles of testis and epididymis were evaluated by determining the metabolites content ( 1 H-NMR), protein levels (western blot) and enzymatic activities of key metabolic intervenient. The quality of spermatozoa from cauda epididymis was also assessed. Prediabetes increased glucose transporter 3 protein levels and decreased lactate dehydrogenase activity in testis, resulting in a lower lactate content. WTEA ingestion led to a metabolic adaptation to restore testicular lactate content. Concerning epididymis, prediabetes decreased the protein levels of several metabolic intervenient, resulting in decreased lactate and alanine content. WTEA consumption restored most of the evidenced alterations, however, not lactate content. WTEA also improved epididymal sperm motility and restored sperm viability. Prediabetes strongly affected testicular and epididymal metabolic status and most of these alterations were restored by WTEA consumption, resulting in the improvement of sperm quality. Our results suggest that WTEA consumption can be a cost-effective strategy to improve prediabetes-induced reproductive dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The global lightning-induced nitrogen oxides source

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2007-07-01

    Full Text Available The knowledge of the lightning-induced nitrogen oxides (LNOx source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation emissions, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more than 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 44±5 s−1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a "typical" thunderstorm flash produces 15 (2–40×1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (5±3 Tg a−1 in this study. In spite of a smaller global flash rate, the best estimate is essentially the same as in some earlier reviews, implying larger flash-specific NO

  7. Protective effect of pomegranate juice on retinal oxidative stress in streptozotocin-induced diabetic rats

    OpenAIRE

    Betul Tugcu; Senay Asik Nacaroglu; Asuman Gedikbasi; Mehmet Uhri; Nur Acar; Hakan Ozdemir

    2017-01-01

    AIM: To investigate the effect of pomegranate juice (PJ) intake on overall oxidation status in retinas of diabetic rats. METHODS: Twenty-seven rats were divided into four groups as control (CO), diabetic (DM), control treated with PJ (CO-PJ), and diabetic treated with PJ (DM-PJ).The retina tissues were used to determine 8-hydroxy-2’-deoxyguanosine (8OHdG), malondialdehyde (MDA), reduced glutathione (GSH) levels, and the enzyme activities of superoxide dismutase (SOD) and glutathione peroxi...

  8. Prevention of spontaneous and radiation-induced tumors in rats by reduction of food intake

    International Nuclear Information System (INIS)

    Gross, L.; Dreyfuss, Y.

    1990-01-01

    In our previous studies carried out on inbred Sprague-Dawley rats, we reported a striking increase in the incidence of tumors following total-body gamma-irradiation [150 rads (1.5 Gy) five times at weekly intervals]. Subsequently, we observed that two or three irradiations, and to a lesser extent even a single irradiation, were sufficient to induce an impressive increase in the incidence of tumors, particularly in females. A significant reduction of the incidence of radiation-induced tumors resulted when the rats were placed on calorically restricted diet. In experiments reported here, we increased slightly the amount of food given to animals on restricted diet. In the new study, among 102 irradiated females on full diet, 91 (89%) developed tumors, as compared with 29 out of 128 female rats (23%) also irradiated but maintained on restricted diet and 43 out of 89 (48%) untreated control females. None of 77 nonirradiated females on restricted diet developed tumors. Among 65 irradiated male rats, 29 (45%) developed tumors, as compared with 5 out of 74 (7%) rats also irradiated but maintained on restricted diet. Of the 49 males in the nonirradiated groups, 2 (4%) developed tumors. There was a significant weight reduction in both females and males maintained on restricted diet; animals on restricted diet lived longer than those on full diet

  9. Vitamin A Oral Supplementation Induces Oxidative Stress and Suppresses IL-10 and HSP70 in Skeletal Muscle of Trained Rats

    Directory of Open Access Journals (Sweden)

    Lyvia Lintzmaier Petiz

    2017-04-01

    Full Text Available Exercise training intensity is the major variant that influences the relationship between exercise, redox balance, and immune response. Supplement intake is a common practice for oxidative stress prevention; the effects of vitamin A (VA on exercise training are not yet described, even though this molecule exhibits antioxidant properties. We investigated the role of VA supplementation on redox and immune responses of adult Wistar rats subjected to swimming training. Animals were divided into four groups: sedentary, sedentary + VA, exercise training, and exercise training + VA. Over eight weeks, animals were submitted to intense swimming 5 times/week and a VA daily intake of 450 retinol equivalents/day. VA impaired the total serum antioxidant capacity acquired by exercise, with no change in interleukin-1β and tumor necrosis factor-α levels. In skeletal muscle, VA caused lipid peroxidation and protein damage without differences in antioxidant enzyme activities; however, Western blot analysis showed that expression of superoxide dismutase-1 was downregulated, and upregulation of superoxide dismutase-2 induced by exercise was blunted by VA. Furthermore, VA supplementation decreased anti-inflammatory interleukin-10 and heat shock protein 70 expression, important factors for positive exercise adaptations and tissue damage prevention. Our data showed that VA supplementation did not confer any antioxidative and/or protective effects, attenuating exercise-acquired benefits in the skeletal muscle.

  10. The protective effect of N-acetylcysteine on oxidative stress in the brain caused by the long-term intake of aspartame by rats.

    Science.gov (United States)

    Finamor, Isabela A; Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Bressan, Caroline A; Scheid, Taína; Baldisserotto, Bernardo; Llesuy, Susana F; Partata, Wânia A; Pavanato, Maria A

    2014-09-01

    Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg(-1), i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg(-1)). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.

  11. The MAO-A inhibitor clorgyline reduces ethanol-induced locomotion and its volitional intake in mice.

    Science.gov (United States)

    Ledesma, Juan Carlos; Escrig, Miguel Angel; Pastor, Raúl; Aragon, Carlos M G

    2014-01-01

    Hydrogen peroxide is the co-substrate used by the enzyme catalase to form Compound I (the catalase-H2O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This acetaldehyde has been involved in many of the effects of EtOH. Previous research demonstrated that treatments that change the levels of cerebral H2O2 available to catalase modulate the locomotor-stimulating effects of EtOH and its volitional intake in rodents. However, the source of H2O2 which is used by catalase to form Compound I and mediates the psychoactive actions of EtOH is unknown. One cause of the generation of H2O2 in the brain comes from the deamination of biogenic amines by the activity of MAO-A. Here we explore the consequences of the administration of the MAO-A inhibitor clorgyline on EtOH-induced locomotion and voluntary EtOH drinking. For the locomotor activity tests, we injected Swiss (RjOrl) mice intraperitoneally (IP) with clorgyline (0-10mg/kg) and later (0.5-8h) with EtOH (0-3.75 g/kg; IP). Following these treatments, mice were placed in locomotor activity chambers to measure their locomotion. For the drinking experiments, mice of the C57BL/6J strain were injected IP with clorgyline prior to offering them an EtOH (20%) solution following a drinking-in-the-dark procedure. Additional experiments were performed to assess the selectivity of this compound in altering EtOH-stimulated locomotion and EtOH intake. Moreover, we indirectly tested the ability of clorgyline to reduce brain H2O2 levels. We showed that this treatment selectively reduced EtOH-induced locomotion and its self-administration. Moreover, this compound decreased central H2O2 levels available to catalase. We suggest that H2O2 derived from the deamination of biogenic amines by the activity of MAO-A could determine the formation of brain EtOH-derived acetaldehyde. This centrally-formed acetaldehyde within the neurons of the aminergic system could play a role in the

  12. Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy.

    Science.gov (United States)

    Sharma, Rachana D; Katkar, Gajanan D; Sundaram, Mahalingam S; Swethakumar, Basavarajaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2017-05-01

    Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Intake port

    Science.gov (United States)

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  14. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  15. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mariño, Mariana [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Rieu, Mathilde, E-mail: rieu@emse.fr [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Viricelle, Jean-Paul [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Garrelie, Florence [Université Jean Monnet, Laboratoire Hubert Curien, CNRS: UMR 5516, 42000 Saint-Etienne (France)

    2016-06-30

    Graphical abstract: - Highlights: • CGO surface densifications were induced by UV and IR laser irradiations. • Grain growth or densified cracked surfaces were observed by SEM. • UV laser treatments allow a decrease of gas permeation through electrolyte layer. • Electrical conductivity of the electrolyte was modified by laser treatments. • Grain growth of electrolyte induced by UV laser improved cell performances. - Abstract: In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface.

  16. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Kim

    2016-02-01

    Full Text Available Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS. The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549 against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1 signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.

  17. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  18. Cardio protective role of garlic (Allium Sativum) against oxidative stress induced by gamma radiation exposure

    International Nuclear Information System (INIS)

    Said, U.Z.; Azab, KH.SH.; And Soliman, A.M.

    2004-01-01

    Oxidative stress and free radicals play a crucial role in the pathophysiology of a broad spectrum of cardiovascular diseases. The need to identify agents with a potential for preventing such damage has assumed great importance. Therefore, the present study was designed to investigate the possible effect of raw garlic homogenate on cardiac endogenous antioxidants, lipid peroxidation and histopathological changes. Plasma lipid profile was also determined. Three different dosage levels (125, 250 and 500 mg/kg body weight) once daily for 20 days were evaluated. The results obtained showed that whole body gamma irradiation of rats at 6 Gy (single dose) resulted in significant increase in cardiac thiobarbituric acid reactive substances (TEARS) along with reduction in cardiac superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities 1, 2 and 4 weeks following radiation exposure. These changes were associated with subendocardial loss of muscles and accumulation of acute inflammatory cells surrounded by edema. Depletion of cardiac endogenous antioxidants and rise in TEARS were significantly less in the garlic treated rats. Also, histological examination of cardiac tissue showed less damage. Garlic treatment significantly diminished the radiation induced increase in the plasma content of triglycerides, total cholesterol and low density lipoprotein-cholesterol (LDL-C). Significant amelioration was also observed in the plasma content of high density lipoprotein- cholesterol (HDL-C) as compared to irradiated rats. Among the three garlic treated groups, 250 mg/kg group showed the best protection in terms of biochemical and histopathological evidences. It could be concluded that the intake dose plays an important role on endogenous antioxidants and cytoprotective effects on the heart

  19. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring.

    Directory of Open Access Journals (Sweden)

    Shona L Kirk

    2009-06-01

    Full Text Available Hypothalamic systems which regulate appetite may be permanently modified during early development. We have previously reported hyperphagia and increased adiposity in the adult offspring of rodents fed an obesogenic diet prior to and throughout pregnancy and lactation. We now report that offspring of obese (OffOb rats display an amplified and prolonged neonatal leptin surge, which is accompanied by elevated leptin mRNA expression in their abdominal white adipose tissue. At postnatal Day 30, before the onset of hyperphagia in these animals, serum leptin is normal, but leptin-induced appetite suppression and phosphorylation of STAT3 in the arcuate nucleus (ARC are attenuated; the level of AgRP-immunoreactivity in the hypothalamic paraventricular nucleus (PVH, which derives from neurones in the ARC and is developmentally dependent on leptin, is also diminished. We hypothesise that prolonged release of abnormally high levels of leptin by neonatal OffOb rats leads to leptin resistance and permanently affects hypothalamic functions involving the ARC and PVH. Such effects may underlie the developmental programming of hyperphagia and obesity in these rats.

  20. Heme-Induced Biomarkers Associated with Red Meat Promotion of colon Cancer Are Not Modulated by the Intake of Nitrite

    Science.gov (United States)

    Chenni, Fatima Z; Taché, Sylviane; Naud, Nathalie; Guéraud, Françoise; Hobbs, Ditte A; Kunhle, Gunter G C; Pierre, Fabrice H; Corpet, Denis E

    2013-01-01

    Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme/alcenal, heterocyclic amines or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate heme-induced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, salivary nitrite did not change the effect of hemoglobin on biochemical markers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitroso-compounds level, but their fecal concentration and their nature (iron-nitrosyl) would not be associated with an increased risk of cancer. The rat model could thus be relevant to study the effect of red meat on colon carcinogenesis in spite of the lack of nitrite recycling in rat’s saliva. PMID:23441609

  1. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats.

    Science.gov (United States)

    Farias Santos, Juliana; Suruagy Amaral, Monique; Lima Oliveira, Suzana; Porto Barbosa, Júnia; Rego Cabral, Cyro; Sofia Melo, Ingrid; Bezerra Bueno, Nassib; Duarte Freitas, Johnatan; Goulart Sant'ana, Antônio; Rocha Ataíde, Terezinha

    2015-05-01

    There are several standard diets for animals used in scientific research, usually conceived by scientific institutions. The AIN-93 diet is widely used, but there are some reports of fatty liver in Wistar rats fed this diet. We aimed to evaluate the hepatic repercussions of the AIN-93 diet intake in Wistar rats. Forty newly-weaned 21-day-old male Wistar rats were fed either the AIN-93 diet or a commercial diet for either 1 month or 4 months. Weight gain, serum biochemistry, hepatic histology, and hepatic fatty acid profile were analyzed. Hepatic steatosis was observed, especially in the group fed the AIN-93 diet. Serum blood glucose, absolute and relative liver weight and hepatic levels of oleic, palmitoleic, stearic, and palmitic fatty acids were related to the observed steatosis, while lipidogram and serum markers of liver function and injury were not. AIN-93 diet induced acute hepatic steatosis in Wistar rats, which may compromise its use as a standard diet for experimental studies with rodents. The hepatic fatty acid profile was associated with steatosis, with possible implications for disease prognosis. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Chronic Intake of Commercial Sweeteners Induces Changes in Feeding Behavior and Signaling Pathways Related to the Control of Appetite in BALB/c Mice.

    Science.gov (United States)

    Barrios-Correa, Alberto A; Estrada, José A; Martel, Caroline; Olivier, Martin; López-Santiago, Rubén; Contreras, Irazú

    2018-01-01

    Nonnutritive sweetener use is a common practice worldwide. Although considered safe for human consumption, accumulating evidence suggests these compounds may affect metabolic homeostasis; however, there is no consensus on the role of frequent sweetener intake in appetite and weight loss. We sought to determine whether frequent intake of commercial sweeteners induces changes in the JAK2/STAT3 signaling pathway in the brain of mice, as it is involved in the regulation of appetite and body composition. We supplemented adult BALB/c mice with sucrose, steviol glycosides (SG), or sucralose, daily, for 6 weeks. After supplementation, we evaluated body composition and expression of total and phosphorylated JAK2, STAT3, and Akt, as well as SOCS3 and ObRb, in brain tissue. Our results show that frequent intake of commercial SG decreases energy intake, adiposity, and weight gain in male animals, while increasing the expression of pJAK2 and pSTAT3 in the brain, whereas sucralose increases weight gain and pJAK2 expression in females. Our results suggest that chronic intake of commercial sweeteners elicits changes in signaling pathways that have been related to the control of appetite and energy balance in vivo , which may have relevant consequences for the nutritional state and long term health of the organism.

  3. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China)

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  4. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.; Ke, Zun-ji; Luo, Jia

    2017-01-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced

  5. Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress

    Directory of Open Access Journals (Sweden)

    Soghra Mehri

    2015-09-01

    Conclusion: The administration of crocin markedly improved behavioral and histopathological damages in Wistar rats exposed to ACR. Reduction of oxidative stress can be considered as an important mechanism of neuroprotective effects of crocin against ACR-induced toxicity.

  6. Preventive effect of zinc on nickel-induced oxidative liver injury in rats

    African Journals Online (AJOL)

    MIDOU

    2013-12-18

    Dec 18, 2013 ... induced oxidative liver injury and lipid peroxidation probably due to its antioxidant proprieties. ... enzyme in every enzyme classification (Coyle et al.,. 2002). Others .... control group had a regular histological structure with a.

  7. Modelling ionising radiation induced defect generation in bipolar oxides with gated diodes

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.; Schrimpf, R.D.; Kosier, St.; Fouillat, P.; Montagner, X.

    1999-01-01

    Radiation-induced oxide defects that degrade electrical characteristics of bipolar junction transistor (BJTs) can be measured with the use of gated diodes. The buildup of defects and their effect on device radiation response are modeled with computer simulation. (authors)

  8. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    NARCIS (Netherlands)

    Maarsingh, H; Tio, MA; Zaagsma, J; Meurs, H

    2005-01-01

    Background: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using

  9. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both...

  10. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  11. Protective role of flaxseed oil against lead acetate induced oxidative ...

    African Journals Online (AJOL)

    Even though the toxic effects of lead compounds had been studied over many years, inconsistent results have been obtained about their oxidative stress in the testes of adult rats. Lead acetate (20 mg/kg) alters the histology of testes as well as enhances lipid peroxidation and nitric oxide production in both serum and testes ...

  12. Influence of nitric oxide on histamine and carbachol – induced ...

    African Journals Online (AJOL)

    The study aimed to determine the influence of nitric oxide (NO) on the action of histamine and carbachol on acid secretion in the common African toad – Bufo regularis. Gastric acidity was determined by titration method. The acid secretion was determined when nitric oxide was absent following administration of NO synthase ...

  13. Dietary B Vitamin Intake Is Associated with Lower Urinary Monomethyl Arsenic and Oxidative Stress Marker 15-F2t-Isoprostane among New Hampshire Adults.

    Science.gov (United States)

    Howe, Caitlin G; Li, Zhigang; Zens, Michael S; Palys, Thomas; Chen, Yu; Channon, Jacqueline Y; Karagas, Margaret R; Farzan, Shohreh F

    2017-12-01

    Background: Arsenic exposure has been associated with an increased risk of cardiovascular disease (CVD). Growing evidence suggests that B vitamins facilitate arsenic metabolism and may protect against arsenic toxicity. However, to our knowledge, few studies have evaluated this in US populations. Objective: Our objective was to examine whether higher B vitamin intake is associated with enhanced arsenic metabolism and lower concentrations of preclinical markers of CVD among New Hampshire adults. Methods: We used weighted quantile sum (WQS) regression to evaluate the collective impact of 6 dietary B vitamins (thiamin, riboflavin, folate, niacin, and vitamins B-6 and B-12) on 1 ) the proportion of arsenic metabolites in urine and 2 ) 6 CVD-related markers [including urinary 15-F 2t -isoprostane (15-F 2t -IsoP)] among 418 participants (26-75 y of age) from the New Hampshire Health Study. Contributions of arsenic metabolites to B vitamin-CVD marker associations were also explored in structural equation models. Results: In WQS models, the weighted sum of B vitamin intakes from food sources was inversely associated with the proportion of monomethyl arsenic species in urine (uMMA) (β: -1.03; 95% CI: -1.91, -0.15; P = 0.02). Thiamin and vitamins B-6 and B-12 contributed the most to this association, whereas riboflavin had a negligible effect. Higher overall B vitamin intake was also inversely associated with 15-F 2t -IsoP (β: -0.21; 95% CI: -0.32, -0.11; P B vitamins, which was partially explained by differences in the proportion of uMMA (indirect effect β: -0.01; 95% CI: -0.04, -0.00). Conclusions: Among New Hampshire adults, higher intakes of certain B vitamins (particularly thiamin and vitamins B-6 and B-12 from food sources) may reduce the proportion of uMMA, an intermediate of arsenic metabolism that has been associated with an increased risk of CVD. Higher overall B vitamin intake may also reduce urinary 15-F 2t -IsoP, a marker of oxidative stress and potential risk

  14. Role of angiotensin II and vasopressin receptors within the supraoptic nucleus in water and sodium intake induced by the injection of angiotensin II into the medial septal area

    Directory of Open Access Journals (Sweden)

    Antunes V.R.

    1998-01-01

    Full Text Available In this study we investigated the effects of the injection into the supraoptic nucleus (SON of non-peptide AT1- and AT2-angiotensin II (ANG II receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP receptor antagonist d(CH25-Tyr(Me-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA. The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 ml over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01 and sodium intake (81%, N = 8, P<0.01 induced by the injection of ANG II (10 nmol into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. On the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01, ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01 following injection of the V1-type vasopressin antagonist d(CH25-Tyr(Me-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.

  15. Oxidation induced crack healing of Cr2(Al,Si)C max phase ceramic

    NARCIS (Netherlands)

    Shen, L.; Li, S.B.; Van der Zwaag, S.; Sloof, W.G.

    2013-01-01

    The oxidation crack healing of Cr2AlC and Cr2(Al,Si)C was studied and compared with known healing of Ti2AlC. The oxidation induced crack healing of Ti2AlC is relatively fast and leads to full strength recovery, but the oxidation product contains besides ?-Al2O3 also undesired TiO2. However, when

  16. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis

    NARCIS (Netherlands)

    Conde de la Rosa, Laura; Vrenken, Titia E; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    The majority of chronic liver diseases are accompanied by oxidative stress, which induces apoptosis in hepatocytes and liver injury. Recent studies suggest that oxidative stress and insulin resistance are important in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the

  17. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    Science.gov (United States)

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  18. Charging effects during focused electron beam induced deposition of silicon oxide

    NARCIS (Netherlands)

    de Boer, Sanne K.; van Dorp, Willem F.; De Hosson, Jeff Th. M.

    2011-01-01

    This paper concentrates on focused electron beam induced deposition of silicon oxide. Silicon oxide pillars are written using 2, 4, 6, 8, 10-pentamethyl-cyclopenta-siloxane (PMCPS) as precursor. It is observed that branching of the pillar occurs above a minimum pillar height. The branching is

  19. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles

    NARCIS (Netherlands)

    Wagner-Riddle, Claudia; Congreves, Katelyn A.; Abalos Rodriguez, Diego; Berg, Aaron A.; Brown, Shannon E.; Ambadan, Jaison Thomas; Gao, Xiaopeng; Tenuta, Mario

    2017-01-01

    Seasonal freezing induces large thaw emissions of nitrous oxide, a trace gas that contributes to stratospheric ozone destruction and atmospheric warming. Cropland soils are by far the largest anthropogenic source of nitrous oxide. However, the global contribution of seasonal freezing to nitrous

  20. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  1. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ayşin Akıncı; Mukaddes Eşrefoğlu; Elif Taşlıdere; Burhan Ateş

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino...

  2. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ak?nc?, Ay?in; E?refo?lu, Mukaddes; Ta?l?dere, Elif; Ate?, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were...

  3. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  4. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  5. Epigallocatechin-3-Gallate Protects Erythrocyte Ca2+-ATPase and Na+/K+-ATPase Against Oxidative Induced Damage During Aging in Humans

    Directory of Open Access Journals (Sweden)

    Prabhanshu Kumar

    2014-10-01

    Full Text Available Purpose: The main purpose of this study was to investigate the protective role of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced oxidative damage in erythrocyte during aging in humans. Methods: Human erythrocyte membrane bound Ca2+-ATPase and Na+/K+-ATPase activities were determined as a function of human age. Protective role of epigallocatechin-3-gallate was evaluated by in vitro experiments by adding epigallocatechin-3-gallate in concentration dependent manner (final concentration range 10-7M to 10-4M to the enzyme assay medium. Oxidative stress was induced in vitro by incubating washed erythrocyte ghosts with tertiary butyl hydroperoxide (10-5 M final concentration. Results: We have reported concentration dependent effect of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced damage on activities of Ca2+-ATPase and Na+/K+-ATPase during aging in humans. We have detected a significant (p < 0.001 decreased activity of Ca2+-ATPase and Na+/K+ -ATPase as a function of human age. Epigallocatechin-3-gallate protected ATPases against tertiary butyl hydroperoxide induced damage in concentration dependent manner during aging in humans. Conclusion: Epigallocatechin-3-gallate is a powerful antioxidant that is capable of protecting erythrocyte Ca2+-ATPase and Na+/K+ -ATPase against oxidative stress during aging in humans. We may propose hypothesis that a high intake of catechin rich diet may provide some protection against development of aging and age related diseases.

  6. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish.

    Directory of Open Access Journals (Sweden)

    Jin-Xiu Zhang

    Full Text Available β-Conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR, feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na(+,K(+-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-Conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD, catalase (CAT, glutathione-S-transferase (GST, glutathione peroxidase (GPx and glutathione reductase (GR activities and glutathione (GSH content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8, tumor necrosis factor-α (TNF-α, and transforming growth factor-β (TGF-β genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects.

  7. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    International Nuclear Information System (INIS)

    Brzóska, Malgorzata M.; Rogalska, Joanna

    2013-01-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  8. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzóska, Malgorzata M., E-mail: Malgorzata.Brzoska@umb.edu.pl; Rogalska, Joanna

    2013-10-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  9. Strain induced anomalous red shift in mesoscopic iron oxide ...

    Indian Academy of Sciences (India)

    Wintec

    pared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the ..... Shape control can also induce anisotropy and thus modify the coercivity of these ... ppines: Addison-Wesley Publishing Company).

  10. Inducible nitric oxide synthase mediates bone loss in ovariectomized mice.

    NARCIS (Netherlands)

    Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Genovese, T.; Paola, R. Di; Ruggeri, Z.; Vegeto, E.; Caputi, A.P.; Loo, F.A.J. van de; Puzzolo, D.; Maggi, A.

    2003-01-01

    Several clinical studies have shown that bone loss may be attributed to osteoclast recruitment induced by mediators of inflammation. In different experimental paradigms we have recently demonstrated that estrogen exhibits antiinflammatory activity by preventing the induction of inducible nitric

  11. Analysis of oxide formation induced by UV laser coloration of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.L., E-mail: zlli@SIMTech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Seng, H.L.; Yakovlev, N.L. [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-12-15

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  12. Analysis of oxide formation induced by UV laser coloration of stainless steel

    International Nuclear Information System (INIS)

    Li, Z.L.; Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C.; Seng, H.L.; Yakovlev, N.L.

    2009-01-01

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  13. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  14. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Halliday, Gary M.

    2005-01-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  15. Protective Effect of Wheat Peptides against Indomethacin-Induced Oxidative Stress in IEC-6 Cells

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  16. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Gao, Hong; Li, Na; Ma, Jiang; Xue, Junyi; Ye, Yang; Fu, Peter Pi-Cheng; Wang, Jiyao; Lin, Ge

    2017-12-01

    Pyrrolizidine alkaloids (PAs) are among the most potent phytotoxins widely distributed in plant species around the world. PA is one of the major causes responsible for the development of hepatic sinusoidal obstruction syndrome (HSOS) and exerts hepatotoxicity via metabolic activation to form the reactive metabolites, which bind with cellular proteins to generate pyrrole-protein adducts, leading to hepatotoxicity. PA N-oxides coexist with their corresponding PAs in plants with varied quantities, sometimes even higher than that of PAs, but the toxicity of PA N-oxides remains unclear. The current study unequivocally identified PA N-oxides as the sole or predominant form of PAs in 18 Gynura segetum herbal samples ingested by patients with liver damage. For the first time, PA N-oxides were recorded to induce HSOS in human. PA N-oxide-induced hepatotoxicity was further confirmed on mice orally dosed of herbal extract containing 170 μmol PA N-oxides/kg/day, with its hepatotoxicity similar to but potency much lower than the corresponding PAs. Furthermore, toxicokinetic study after a single oral dose of senecionine N-oxide (55 μmol/kg) on rats revealed the toxic mechanism that PA N-oxides induced hepatotoxicity via their biotransformation to the corresponding PAs followed by the metabolic activation to form pyrrole-protein adducts. The remarkable differences in toxicokinetic profiles of PAs and PA N-oxides were found and attributed to their significantly different hepatotoxic potency. The findings of PA N-oxide-induced hepatotoxicity in humans and rodents suggested that the contents of both PAs and PA N-oxides present in herbs and foods should be regulated and controlled in use.

  17. Smoking and gingivitis: focus on inducible nitric oxide synthase, nitric oxide and basic fibroblast growth factor.

    Science.gov (United States)

    Özdemir, B; Özmeric, N; Elgün, S; Barış, E

    2016-10-01

    Periodontal disease pathogenesis has been associated with smoking. Gingivitis is a mild and reversible form of periodontal disease and it tends to progress to periodontitis only in susceptible individuals. In the present study, we aimed to examine the impact of smoking on host responses in gingivitis and to evaluate and compare the inducible nitric oxide synthase (iNOS) activity in gingival tissue and NO and basic fibroblast growth factor (bFGF) levels in the gingival crevicular fluid of patients with gingivitis and healthy individuals. Forty-one participants were assigned to the gingivitis-smoker (n = 13), gingivitis (n = 13), healthy-smoker (n = 7) and healthy groups (n = 8). Clinical indices were recorded; gingival biopsy and gingival crevicular fluid samples were obtained from papillary regions. iNOS expression was evaluated by immunohistochemical staining. The immunoreactive cells were semiquantitatively assessed. For the quantitative determination of nitrite and nitrate in gingival crevicular fluid, the NO assay kit was used. The amount of bFGF in gingival crevicular fluid was determined by enzyme-linked immunosorbent assay. The gingivitis-smoker group demonstrated a stronger iNOS expression than the non-smoker gingivitis group. iNOS expression intensity was lower in the non-smoker healthy group compared to that in healthy-smokers. No significant gingival crevicular fluid NO and bFGF level changes were observed between groups. Among patients with gingivitis, a positive correlation was detected between gingival crevicular fluid NO and bFGF levels (r = 0.806, p = 0.001). Our data suggest that smoking has significant effects on iNOS expression but not on gingival crevicular fluid NO or bFGF levels in healthy and patients with gingivitis. However, our results suggest that bFGF might be involved in the regulation of NO production via iNOS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. extract attenuates MPTP-induced oxidative stress and behavioral

    African Journals Online (AJOL)

    on oxidative stress levels were assessed by estimating enzyme status, including superoxide dismutase. (SOD), catalase ... in both non-human primates and mice models. [12,13]. ..... Polyphenol composition and antioxidant activity of cumin.

  19. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... ... role in the protection of cell membranes aganist oxidative damage .... Differences were calculated using one way analysis of variance (ANOVA) .... via the formation of reactive oxygen species and the perturbation of ...

  20. EMERGING TECHNOLOGY PROJECT BULLETIN: LASER INDUCED PHOTOCHEMICAL OXIDATIVE DESTRUCTION

    Science.gov (United States)

    The process developed by Energy and Environmental Engineering, Incorporated, is designed to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an Excimer laser. The photochemical reactor can destroy low to moderate concentrations...

  1. Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review

    Directory of Open Access Journals (Sweden)

    Jodi J. D. Stookey

    2016-01-01

    Full Text Available Drinking water has heterogeneous effects on energy intake (EI, energy expenditure (EE, fat oxidation (FO and weight change in randomized controlled trials (RCTs involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management.

  2. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  3. Heat-induced redistribution of surface oxide in uranium

    International Nuclear Information System (INIS)

    Swissa, E.; Shamir, N.; Bloch, J.; Mintz, M.H.; Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev)

    1990-01-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450deg C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800deg C. The activation energy obtained was E a =15.4±1.9 kcal/mole and the pre-exponential factor, D 0 =1.1x10 -8 cm 2 /s. An internal oxidation mechanism is proposed to explain the results. (orig.)

  4. [Biological consequences of oxidative stress induced by pesticides].

    Science.gov (United States)

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  5. Heat-induced redistribution of surface oxide in uranium

    Science.gov (United States)

    Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph

    1990-09-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.

  6. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study.

    Science.gov (United States)

    Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C

    2013-05-02

    Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.

  7. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  8. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  9. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Directory of Open Access Journals (Sweden)

    James Haorah

    Full Text Available Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1 and cPT2 levels. The mitochondrial outer (cPT1 and inner (cPT2 membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function can cause a negative impact on ATP production (complex V function. Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2 prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10 was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  10. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Science.gov (United States)

    Haorah, James; Rump, Travis J; Xiong, Huangui

    2013-01-01

    Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC) that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v) and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1) and cPT2 levels. The mitochondrial outer (cPT1) and inner (cPT2) membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function) can cause a negative impact on ATP production (complex V function). Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence) and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2) prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10) was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  11. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  12. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  13. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  14. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  15. Cellular Automata Modelling of Photo-Induced Oxidation Processes in Molecularly Doped Polymers

    Directory of Open Access Journals (Sweden)

    David M. Goldie

    2016-11-01

    Full Text Available The possibility of employing cellular automata (CA to model photo-induced oxidation processes in molecularly doped polymers is explored. It is demonstrated that the oxidation dynamics generated using CA models exhibit stretched-exponential behavior. This dynamical characteristic is in general agreement with an alternative analysis conducted using standard rate equations provided the molecular doping levels are sufficiently low to prohibit the presence of safe-sites which are impenetrable to dissolved oxygen. The CA models therefore offer the advantage of exploring the effect of dopant agglomeration which is difficult to assess from standard rate equation solutions. The influence of UV-induced bleaching or darkening upon the resulting oxidation dynamics may also be easily incorporated into the CA models and these optical effects are investigated for various photo-oxidation product scenarios. Output from the CA models is evaluated for experimental photo-oxidation data obtained from a series of hydrazone-doped polymers.

  16. Isolation stress and chronic mild stress induced immobility in the defensive burying behavior and a transient increased ethanol intake in Wistar rats.

    Science.gov (United States)

    Vázquez-León, Priscila; Martínez-Mota, Lucía; Quevedo-Corona, Lucía; Miranda-Páez, Abraham

    2017-09-01

    Stress can be experienced with or without adverse effects, of which anxiety and depression are two of the most important due to the frequent comorbidity with alcohol abuse in humans. Historically, stress has been considered a cause of drug use, particularly alcohol abuse due to its anxiolytic effects. In the present work we exposed male Wistar rats to two different stress conditions: single housing (social isolation, SI), and chronic mild stress (CMS). We compared both stressed groups to group-housed rats and rats without CMS (GH) to allow the determination of a clear behavioral response profile related to their respective endocrine stress response and alcohol intake pattern. We found that SI and CMS, to a greater extent, induced short-lasting increased sucrose consumption, a transient increase in serum corticosterone level, high latency/immobility, and low burying behavior in the defensive burying behavior (DBB) test, and a transient increase in alcohol intake. Thus, the main conclusion was that stress caused by both SI and CMS induced immobility in the DBB test and, subsequently, induced a transient increased voluntary ethanol intake in Wistar rats with a free-choice home-cage drinking paradigm. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. γ-irradiation-induced oxidative stress and aging of cultured endothelial cells

    International Nuclear Information System (INIS)

    Van Uye, A.; Agay, D.; Drouet, M.; Chancerelle, Y.; Mathieu, J.; Kergonou, J.F.; Mestries, J.C.

    1995-01-01

    The aim of this work was to study aging of cultured vascular cells. In order to induce an oxidative stress, which is known to participate in aging process, we apply γ-induced peroxidation and is revealed by indirect immunofluorescence. (author)

  18. Protective Effect of Nicotine on Sepsis-Induced Oxidative Multiorgan Damage: Role of Neutrophils.

    Science.gov (United States)

    Özdemir-Kumral, Zarife N; Özbeyli, Dilek; Özdemir, Ahmet F; Karaaslan, Bugra M; Kaytaz, Kübra; Kara, Mustafa F; Tok, Olgu E; Ercan, Feriha; Yegen, Berrak Ç

    2017-07-01

    Despite its adverse health consequences, tobacco smoking is associated with lower incidence of several neurodegenerative and inflammatory diseases. The present study is aimed to show the effects of nicotine, major tobacco constituent, on five organs targeted by sepsis. Male Wistar albino rats received tap water with (5mg/kg) or without nicotine for 14 days. Under ketamine anesthesia, sepsis (n = 50) was induced by ligation and puncture of the cecum, while sham group (n = 8) had only laparotomy. In other rats, nicotine drink was withdrawn for 5 days before sepsis induction, while in acute nicotine group, rats were injected with nicotine (30mg/kg, i.p.) before sepsis, but had no oral intake. Rats were decapitated 24 hours after surgery to obtain lung, liver, ileum, heart, and kidney tissues to determine malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase (MPO) activities. Data were analyzed by one-way analysis of variance and Tukey multiple comparison tests or Student's t test. Chronic nicotine administration or its withdrawal reduced lipid peroxidation and MPO activity and prevented GSH depletion with some varying results in different target tissues. Nicotine injection prior to sepsis depressed MPO activity in all tissues and reduced MDA levels except for the lung, while GSH levels were elevated only in the hepatic and ileal tissues. Histologically observed injury was ameliorated by all nicotine treatments at varying degrees. The findings of the present study indicate that long-term nicotine administration reduces sepsis-induced oxidative damage in several tissues, which appears to involve inhibition of neutrophil activity in the inflamed tissues. Nicotine administration or its withdrawal reduced lipid peroxidation and neutrophil content and prevented GSH depletion with some varying results in different target tissues. A single injection prior to sepsis induction depressed MPO activity in all the tissues and reduced all tissue MDA levels except

  19. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.

    Science.gov (United States)

    Lanaspa, Miguel A; Sanchez-Lozada, Laura G; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y; Johnson, Richard J

    2012-11-23

    Uric acid is an independent risk factor in fructose-induced fatty liver, but whether it is a marker or a cause remains unknown. Hepatocytes exposed to uric acid developed mitochondrial dysfunction and increased de novo lipogenesis, and its blockade prevented fructose-induced lipogenesis. Rather than a consequence, uric acid induces fatty liver Hyperuricemic people are more prone to develop fructose-induced fatty liver. Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states.

  20. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  1. Ni-Si oxide as an inducing crystallization source for making poly-Si

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhiguo; Liu, Zhaojun; Li, Juan; Wu, Chunya; Xiong, Shaozhen [Institute of Photo-electronics, Nankai University, Tianjin (China); Zhao, Shuyun; Wong, Man; Kwok, Hoi Sing [Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong (China)

    2010-04-15

    Nickel silicon oxide mixture was sputtered on a-Si with Ni-Si alloy target with Ni:Si weight ratio of 1:9 and used as a new inducing source for metal induced lateral crystallization (MILC). The characteristics of the resulted poly-Si materials induced by Ni-Si oxide with different thickness were nearly the same. This means the metal induced crystallization with this new inducing source has wide processing tolerance to make MILC poly-Si. Besides, it reduced the residual Ni content in the resulted poly-Si film. The transfer characteristic curve of poly-Si TFT and a TFT-OLED display demo made with this kind of new inducing source were also presented in this paper. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. High altitude induced anorexia: effect of changes in leptin and oxidative stress levels.

    Science.gov (United States)

    Vats, Praveen; Singh, Vijay Kumar; Singh, Som Nath; Singh, Shashi Bala

    2007-01-01

    High altitude (HA) exposure usually leads to a significant weight loss in non-acclimatized humans. Anorexia is believed to be the main cause of this body weight loss. Appetite regulatory peptides, i.e. leptin and neuropeptide Y play a key role in food intake and energy homeostasis. Recent studies suggests increased oxidative stress during HA exposure. In present study effect of HA exposure on levels of leptin and NPY was evaluated along with N-acetyl cysteine (NAC) and vitamin E supplementation in relation to food intake and body weight changes. The study was conducted on 30 healthy male volunteers (age 19-29 years). Subjects were divided randomly into three groups of 10 each. Group 1 (placebo) supplemented with 400 mg of calcium gluconate, group 2 and 3 were supplemented with 400 mg of NAC and 400 mg vitamin E, respectively per day. The study was conducted at low altitude (320 m, Phase I), at HA 3600 m (Phase II) and at an altitude of 4580 m (Phase III). On HA exposure significant reduction in plasma leptin levels was observed in all the groups on day 2 (Phase II) along with decrease in food intake and reduction in body weight. Statistically significant increase in blood malondialdehyde (MDA) levels was seen in all the groups on HA exposure (Phase II, Day 2), but the maximum increase was in case of placebo group (65.1%) on day 2 (Phase II) in comparison to low altitude values. The decrease in energy intake was almost same in all the groups indicating that antioxidant supplementation did not provide any protection against HA anorexia. From the study, it may be concluded that leptin and oxidative stress possibly are not the key players for HA anorexia.

  4. Nutrient Intake During Diet-Induced Weight Loss and Exercise Interventions in a Randomized Trial in Older Overweight and Obese Adults.

    Science.gov (United States)

    Miller, G D; Beavers, D P; Hamm, D; Mihalko, S L; Messier, S P

    2017-01-01

    Dietary restriction in obese older adults undergoing weight loss may exacerbate nutrient deficiencies common in this group; the nutritional health of older adults is a factor in their quality of life, disability, and mortality. This study examined the effect of an 18-month weight loss program based in social cognitive theory incorporating partial meal replacements, on nutrient intake in older overweight and obese adults. The following analysis is from the Intensive Diet and Exercise for Arthritis (IDEA) trial, a single-blind, randomized controlled trial. Individuals were randomized into one of three 18-month interventions: exercise (E); intensive diet-induced weight loss (D); or intensive diet-induced weight loss plus exercise (D+E). The study setting was at a university research facility. Overweight and obese older adults (n=388; BMI=33.7±3.8 kg/m2; 65.8±6.1 years) were recruited. The D and D+E interventions (group mean goal of ≥10% loss by 18-months) utilized partial meal replacements (2 meal replacement shakes/day for 6-months). Exercise training for E and D+E was 3 days/week, 60 minutes/day. Three day food records were collected at baseline, 6-months, and 18-months and analyzed for total energy and macro- and micronutrient intake. Comparisons of dietary intake among treatment groups were performed at 6 and 18 months using mixed linear models. Weight loss at 18-months was 11.3±8.3% (D), 10.3±6.8% (D+E), and 1.2±4.2% (E). Meal replacements were used by more than 60% (6-months) and 50% (18-months) of D and D+E participants, compared to ≤15% for E. Both D and D+E consumed less energy and fat, and more carbohydrates and selected micronutrients than E during follow-up. More than 50% of all participants consumed less than the recommended intake of particular vitamins and minerals. The diet intervention improved intakes of several nutrients. However, inadequate intake of several vitamins and minerals of concern for older adults suggests they need further

  5. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  6. Annealing-induced Fe oxide nanostructures on GaAs

    OpenAIRE

    Lu, Y X; Ahmad, E; Xu, Y B; Thompson, S M

    2005-01-01

    We report the evolution of Fe oxide nanostructures on GaAs(100) upon pre- and post-growth annealing conditions. GaAs nanoscale pyramids were formed on the GaAs surface due to wet etching and thermal annealing. An 8.0-nm epitaxial Fe film was grown, oxidized, and annealed using a gradient temperature method. During the process the nanostripes were formed, and the evolution has been demonstrated using transmission and reflection high energy electron diffraction, and scanning electron microscopy...

  7. Saccharin and aspartame, compared with sucrose, induce greater weight gain in adult Wistar rats, at similar total caloric intake levels.

    Science.gov (United States)

    Feijó, Fernanda de Matos; Ballard, Cíntia Reis; Foletto, Kelly Carraro; Batista, Bruna Aparecida Melo; Neves, Alice Magagnin; Ribeiro, Maria Flávia Marques; Bertoluci, Marcello Casaccia

    2013-01-01

    It has been suggested that the use of nonnutritive sweeteners (NNSs) can lead to weight gain, but evidence regarding their real effect in body weight and satiety is still inconclusive. Using a rat model, the present study compares the effect of saccharin and aspartame to sucrose in body weight gain and in caloric intake. Twenty-nine male Wistar rats received plain yogurt sweetened with 20% sucrose, 0.3% sodium saccharin or 0.4% aspartame, in addition to chow and water ad libitum, while physical activity was restrained. Measurements of cumulative body weight gain, total caloric intake, caloric intake of chow and caloric intake of sweetened yogurt were performed weekly for 12 weeks. Results showed that addition of either saccharin or aspartame to yogurt resulted in increased weight gain compared to addition of sucrose, however total caloric intake was similar among groups. In conclusion, greater weight gain was promoted by the use of saccharin or aspartame, compared with sucrose, and this weight gain was unrelated to caloric intake. We speculate that a decrease in energy expenditure or increase in fluid retention might be involved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Protective effect of pomegranate juice on retinal oxidative stress in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Betul Tugcu

    2017-11-01

    Full Text Available AIM: To investigate the effect of pomegranate juice (PJ intake on overall oxidation status in retinas of diabetic rats. METHODS: Twenty-seven rats were divided into four groups as control (CO, diabetic (DM, control treated with PJ (CO-PJ, and diabetic treated with PJ (DM-PJ.The retina tissues were used to determine 8-hydroxy-2’-deoxyguanosine (8OHdG, malondialdehyde (MDA, reduced glutathione (GSH levels, and the enzyme activities of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px. RESULTS: The levels of 8OHdG and MDA were significantly increased in the retina of DM group compared to CO group (P=0.001, P<0.001 respectively. Both 8OHdG and MDA levels were decreased in PJ-DM group compared to DM group (P=0.004, P<0.001 respectively. The activities of antioxidant enzymes GSH, SOD, and GDH-Px were significantly decreased in the retina of DM group compared to CO group (P≤0.01. GSH and GSH-Px activities were higher in PJ-DM group compared with DM group (P=0.010, P=0.042, respectively but SOD activity was not statistically different (P=0.938. CONCLUSION: PJ intake is found to be effective in decreasing oxidative end products, and in increasing the activities of antioxidant enzymes in diabetic retinas of rats, which suggests it may be effective against oxidative stress in diabetic retinas.

  9. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  10. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    Science.gov (United States)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  11. Cigarette smoke-induced mitochondrial dysfunction and oxidative stress in

    NARCIS (Netherlands)

    Toorn, Marco van der

    2009-01-01

    In this thesis we studied the effects of cigarette smoke (CS) on mitochondrial function and oxidative stress in epithelial cells and discussed the potential of these phenomena in the pathogenesis of chronic obstructive pulmonary diseases (COPD). In the first three chapters we demonstrated that CS

  12. Phase change induced by polypyrrole in iron-oxide polypyrrole ...

    Indian Academy of Sciences (India)

    Unknown

    polymer. Polypyrrole, one of the conducting polymers, has received lot of attention in the preparation of nanocomposites due to its high stability in conducting oxidized form (Partch et al 1991; Huang and Matijevic. 1995; Maeda and Armes 1995). Nanocomposite materials based on nanosized magnetic materials have been ...

  13. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  14. Hypochlorite-induced oxidation of proteins in plasma

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1999-01-01

    Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 microM) with dil......Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 micro......M) with diluted fresh human plasma has been shown to generate material that oxidizes 5-thio-2-nitrobenzoic acid; these oxidants are believed to be chloramines formed from the reaction of HOCl with protein amine groups. Chloramines have also been detected with isolated plasma proteins treated with HOCl. In both...... more efficient. The reaction of fresh diluted plasma with HOCl also gives rise to protein-derived nitrogen-centred radicals in a time- and HOCl-concentration-dependent manner; these have been detected by EPR spin trapping. Identical radicals have been detected with isolated HOCl-treated plasma proteins...

  15. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    HP

    Won Chung, Jin Uk Oh, Sehyung Lee and Sung-Jin Kim* ... was determined by Western blot analysis for iNOS and COX-2 expression in LPS-stimulated RAW ..... Nitric oxide-scavenging and antioxidant effects ofUraria crinite root. Food.

  16. Microreactor as Efficient Tool for Light Induced Oxidation Reactions

    Czech Academy of Sciences Publication Activity Database

    Hejda, S.; Drhová, Magdalena; Křišťál, Jiří; Buzek, D.; Krystyník, Pavel; Klusoň, Petr

    2014-01-01

    Roč. 255, NOV 1 (2014), s. 178-184 ISSN 1385-8947 Grant - others:GA MŠMT(CZ) MŠk:CZ.1.07/2.2.00/28.0205 Institutional support: RVO:67985858 Keywords : photo microreactor * phthalocyanine * chlorophenol oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.321, year: 2014

  17. Efficacy of royal jelly on methotrexate-induced systemic oxidative ...

    African Journals Online (AJOL)

    The aim of this present study is to investigate the mucositis caused by methotrexate (MTX), as well as whether the application of royal jelly (RJ) has a protective effect on oxidative stress. This present study included six groups each consisted of 12 Wistar rats. Distilled water (po: peroral) was given to the 1st group as placebo ...

  18. Hypochlorite-induced oxidation of amino acids, peptides and proteins

    DEFF Research Database (Denmark)

    Hawkins, C L; Pattison, D I; Davies, Michael Jonathan

    2003-01-01

    Activated phagocytes generate the potent oxidant hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is known to react with a number of biological targets including proteins, DNA, lipids and cholesterol. Proteins are likely to be major targets for reactio...

  19. Melatonin inhibits endothelin-1 and induces endothelial nitric oxide ...

    African Journals Online (AJOL)

    Although, I/R augmented the endothelin-1 (ET-1) gene expression and the level of big endothelin-1 (big ET-1) in liver tissue, melatonin attenuated these increases. Conversely, non-significant decrease in endothelial nitric oxide synthase (eNOS) mRNA expression in I/R group was significantly elevated by melatonin in ...

  20. Sugar alcohols-induced oxidative metabolism in cotton callus culture

    African Journals Online (AJOL)

    Sugar alcohols (mannitol and sorbitol) may cause oxidative damage in plants if used in higher concentration. Our present experiment was undertaken to study physiological and metabolic responses in cotton (Gossypium hirsutum L.) callus against mannitol and sorbitol higher doses. Both markedly declined mean values of ...

  1. Synergist effects of n-acetylcysteine and deferoxamine treatment on behavioral and oxidative parameters induced by chronic mild stress in rats.

    Science.gov (United States)

    Arent, Camila O; Réus, Gislaine Z; Abelaira, Helena M; Ribeiro, Karine F; Steckert, Amanda V; Mina, Francielle; Dal-Pizzol, Felipe; Quevedo, João

    2012-12-01

    A growing body of evidence has pointed to a relationship between oxidative stress and depression. Thus, the present study was aimed at evaluating the effects of the antioxidants n-acetylcysteine (NAC), deferoxamine (DFX) or their combination on sweet food consumption and oxidative stress parameters in rats submitted to 40days of exposure to chronic mild stress (CMS). Our results showed that in stressed rats treated with saline, there was a decrease in sweet food intake and treatment with NAC or NAC in combination with DFX reversed this effect. Treatment with NAC and DFX decreased the oxidative damage, which include superoxide and TBARS production in submitochondrial particles, and also thiobarbituric acid reactive substances (TBARS) levels and carbonyl proteins in the prefrontal cortex, amygdala and hippocampus. Treatment with NAC and DFX also increased the activity of the antioxidant enzymes, superoxide dismutase and catalase in the same brain areas. Even so, a combined treatment with NAC and DFX produced a stronger increase of antioxidant activities in the prefrontal cortex, amygdala and hippocampus. The results described here indicate that co-administration may induce a more pronounced antidepressant activity than each treatment alone. In conclusion, these results suggests that treatment with NAC or DFX alone or in combination on oxidative stress parameters could have positive effects against neuronal damage caused by oxidative stress in major depressive disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.

    Science.gov (United States)

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-09-07

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.

  3. PYY(3-36) reduces food intake and body weight and improves insulin sensitivity in rodent models of diet-induced obesity

    DEFF Research Database (Denmark)

    Vrang, Niels; Madsen, Andreas Nygaard; Tang-Christensen, Mads

    2006-01-01

    The gut hormone peptide YY (PYY) was recently proposed to comprise an endogenous satiety factor. We have studied acute anorectic functions of PYY(3-36) in mice and rats, as well as metabolic effects of chronic PYY(3-36) administration to diet-induced obese (DIO) mice and rats. A single intraperit......The gut hormone peptide YY (PYY) was recently proposed to comprise an endogenous satiety factor. We have studied acute anorectic functions of PYY(3-36) in mice and rats, as well as metabolic effects of chronic PYY(3-36) administration to diet-induced obese (DIO) mice and rats. A single...... intraperitoneal injection of PYY(3-36) inhibited food intake in mice, but not in rats. We next investigated the effects of increasing doses (100, 300, and 1,000 microg.kg-1.day-1) of PYY(3-36) administered subcutaneously via osmotic minipumps on food intake and body weight in DIO C57BL/6J mice. Whereas only...... the highest dose (1,000 microg.kg-1.day-1) of PYY(3-36) significantly reduced food intake over the first 3 days, body weight gain was dose dependently reduced, and on day 28 the group treated with 1,000 microg.kg-1.day-1 PYY(3-36) weighed approximately 10% less than the vehicle-treated group. Mesenteric...

  4. Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance

    Directory of Open Access Journals (Sweden)

    El Mesallamy Hala O

    2010-06-01

    Full Text Available Abstract Background High intake of dietary fructose is accused of being responsible for the development of the insulin resistance (IR syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Methods Oral glucose tolerance tests (OGTT were carried out, homeostasis model assessment of insulin resistance (HOMA was calculated, homocysteine (Hcy, lipid concentrations and markers of oxidative stress were measured in male Wistar rats weighing 170-190 g. The rats were divided into four groups, kept on either control diet or high fructose diet (HFD, and simultaneously supplemented with 300 mg/kg/day taurine via intra-peritoneal (i.p. route for 35 days. Results Fructose-fed rats showed significantly impaired glucose tolerance, impaired insulin sensitivity, hypertriglyceridemia, hypercholesterolemia, hyperhomocysteinemia (HHcy, lower total antioxidant capacity (TAC, lower paraoxonase (PON activity, and higher nitric oxide metabolites (NOx concentration, when compared to rats fed on control diet. Supplementing the fructose-fed rats with taurine has ameliorated the rise in HOMA by 56%, triglycerides (TGs by 22.5%, total cholesterol (T-Chol by 11%, and low density lipoprotein cholesterol (LDL-C by 21.4%. Taurine also abolished any significant difference of TAC, PON activity and NOx concentration among treated and control groups. TAC positively correlated with PON in both rats fed on the HFD and those received taurine in addition to the HFD. Fructose-fed rats showed 34.7% increase in Hcy level. Taurine administration failed to prevent the observed HHcy in the current dosage and duration. Conclusion Our results indicate that HFD could induce IR which could further result in metabolic syndrome (MS, and that taurine has a protective role against

  5. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  6. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ.

    Science.gov (United States)

    Shin, Eun-Joo; Duong, Chu Xuan; Nguyen, Xuan-Khanh Thi; Li, Zhengyi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F; Kanthasamy, Anumantha G; Cadet, Jean Lud; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2012-06-15

    This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice.

    Science.gov (United States)

    Bahi, Amine; Sadek, Bassem; Nurulain, Syed M; Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2015-11-01

    It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    Science.gov (United States)

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  9. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  10. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  11. Effect on oxidative stress, hepatic chemical metabolizing parameters, and genotoxic damage of mad honey intake in rats.

    Science.gov (United States)

    Eraslan, G; Kanbur, M; Karabacak, M; Arslan, K; Siliğ, Y; Soyer Sarica, Z; Tekeli, M Y; Taş, A

    2017-01-01

    A total of 66 male Wistar rats were used and six groups (control: 10 animals and experimental: 12 animals) were formed. While a separate control group was established for each study period, mad honey application to the animals in the experimental group was carried out with a single dose (12.5 g kg -1 body weight (b.w.); acute stage), at a dose of 7.5 g kg -1 b.w. for 21 days (subacute stage), and at a dose of 5 g kg -1 b.w. for 60 days (chronic stage). Tissue and blood oxidative stress markers (malondialdehyde (MDA), nitric oxide (NO), 4-hydroxynonenal (HNE), superoxide dismutase, catalase, glutathione (GSH) peroxidase, and glucose-6-phosphate dehydrogenase), hepatic chemical metabolizing parameters in the liver (cytochrome P450 2E1, nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase, nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome c reductase (CYTC), GSH S-transferase (GST), and GSH), and micronucleus and comet test in some samples were examined. Findings from the study showed that single and repeated doses given over the period increased MDA, NO, and HNE levels while decreasing/increasing tissue and blood antioxidant enzyme activities. From hepatic chemical metabolizing parameters, GST activity increased in the subacute and chronic stages and CYTC activity increased in the acute period, whereas GSH level decreased in the subacute stage. Changes in tail and head intensities were found in most of the comet results. Mad honey caused oxidative stresses for each exposure period and made some significant changes on the comet test in certain periods for some samples obtained. In other words, according to the available research results obtained, careless consumption of mad honey for different medical purposes is not appropriate.

  12. Fourth ventricle injection of ghrelin decreases angiotensin II-induced fluid intake and neuronal activation in the paraventricular nucleus of the hypothalamus.

    Science.gov (United States)

    Plyler, Kimberly S; Daniels, Derek

    2017-09-01

    Ghrelin acts in the CNS to decrease fluid intake under a variety of dipsogenic and natriorexigenic conditions. Previous studies on this topic, however, focused on the forebrain as a site of action for this effect of ghrelin. Because the hindbrain contains neural substrates that are capable of mediating the well-established orexigenic effects of ghrelin, the current study tested the hypothesis that ghrelin applied to the hindbrain also would affect fluid intake. To this end, water and saline intakes were stimulated by central injection of angiotensin II (AngII) in rats that also received injections of ghrelin (0.5μg/μl) into either the lateral or fourth ventricle. Ghrelin injected into either ventricle reduced both water and 1.8% NaCl intake that was stimulated by AngII. The nature of the intake effect revealed some differences between the injection sites. For example, forebrain application of ghrelin reduced saline intake by a reduction in both the number of licking bursts and the size of each licking burst, but hindbrain application of ghrelin had a more selective effect on burst number. In an attempt to elucidate a brain structure in which hindbrain-administered ghrelin and forebrain-administered AngII interact to cause the ingestive response, we used Fos-immunohistochemistry in rats given the treatments used in the behavioral experiments. Although several brain areas were found to respond to either ghrelin or AngII, of the sites examined, only the paraventricular nucleus of the hypothalamus (PVN) emerged as a potential site of interaction. Specifically, AngII treatment caused expression of Fos in the PVN that was attenuated by concomitant treatment with ghrelin. These experiments provide the novel finding that the hindbrain contains elements that can respond to ghrelin and cause decreases in AngII-induced fluid intake, and that direct actions by ghrelin on forebrain structures is not necessary. Moreover, these studies suggest that the PVN is an important site

  13. Study on radioprotective efficacy of indazolone derivative on γ-radiation induced oxidative stress

    International Nuclear Information System (INIS)

    Mohan, B.J.; Sarojini, B.K.; Narayana, B.; Sanjeev, Ganesh

    2014-01-01

    The present study describes the potency of 6-(4-bromophenyl)-4-(4-fluorophenyl)-1,2,4,5-tetrahydro-3H-indazol-3-one (IND) as radioprotective agent. Drosophila melanogaster was used as a model organism for the study. Oxidative stress was induced by irradiating the flies with 6 Gy γ-radiation.The control and irradiated flies were assayed for oxidative stress markers namely, lipid peroxidation (MDA), SOD and CATenzyme. (author)

  14. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  15. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage

    Directory of Open Access Journals (Sweden)

    Jiaxiang Shao

    2016-03-01

    Full Text Available Abstract SIRT6 is a NAD+-dependent histone deacetylase and has been implicated in the regulation of genomic stability, DNA repair, metabolic homeostasis and several diseases. The effect of SIRT6 in cerebral ischemia and oxygen/glucose deprivation (OGD has been reported, however the role of SIRT6 in oxidative stress damage remains unclear. Here we used SH-SY5Y neuronal cells and found that overexpression of SIRT6 led to decreased cell viability and increased necrotic cell death and reactive oxygen species (ROS production under oxidative stress. Mechanistic study revealed that SIRT6 induced autophagy via attenuation of AKT signaling and treatment with autophagy inhibitor 3-MA or knockdown of autophagy-related protein Atg5 rescued H2O2-induced neuronal injury. Conversely, SIRT6 inhibition suppressed autophagy and reduced oxidative stress-induced neuronal damage. These results suggest that SIRT6 might be a potential therapeutic target for neuroprotection.

  16. Biofunctional activity of tortillas and bars enhanced with nopal. Preliminary assessment of functional effect after intake on the oxidative status in healthy volunteers.

    Science.gov (United States)

    Guevara-Arauza, Juan Carlos; Ornelas Paz, José de Jesús; Mendoza, Sergio Rosales; Guerra, Ruth Elena Soria; Paz Maldonado, Luz María Teresita; González, Diana Jaqueline Pimentel

    2011-03-03

    Prickly pear cactus stem (nopal) has been used in folk medicine and a raw material since ancient times. Stems have been proved to possess components with valuable biological activities: anti inflamatory, antioxidant, antiulcerogenic, hypoglycemic, and so forth. Nowadays, people consume foods not only to cover the nutritional requirements, they also demand for healty, natural and convenient foods that show biological activity. This study evaluated the bio-functional effects of consuming tortillas or bars (filled with prickly pear fruit jam) supplemented or not with nopal dietary fiber. The addition of nopal increased the fiber and polyphenols content in both tortillas (16.67%, 2.33 mg QE/L) and bars (13.79%, 1.99 mg QE/L). Furthermore the trolox equivalent antioxidant capacity (TEAC, 1.47 mmol/L), polyphenols (7.67 mg QE/L) and vitamin C (77.91 μmol/L) showed increased levels in volunteer's plasma after intake. Also lower levels of glucose (4.43 mmol/L), total cholesterol (4.27 mmol/L), LDL (1.96 mmol/L) and triglycerides (1.54 mmol/L) were observed in plasma after the supplementation scheme with nopal-based tortilla, while GSH:GSSG ratio in erythrocytes was higher. The results suggested that the intake of nopal-based tortillas with high content in fiber and antioxidant compounds can help to improve the overall oxidative status in healthy humans, which can reduce the risk of some chronic diseases. In addition, these products showed suitable physicochemical characteristics to be marketed.

  17. Biofunctional activity of tortillas and bars enhanced with nopal. Preliminary assessment of functional effect after intake on the oxidative status in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Paz Maldonado Luz

    2011-03-01

    Full Text Available Abstract Background Prickly pear cactus stem (nopal has been used in folk medicine and a raw material since ancient times. Stems have been proved to possess components with valuable biological activities: anti inflamatory, antioxidant, antiulcerogenic, hypoglycemic, and so forth. Nowadays, people consume foods not only to cover the nutritional requirements, they also demand for healty, natural and convenient foods that show biological activity. This study evaluated the bio-functional effects of consuming tortillas or bars (filled with prickly pear fruit jam supplemented or not with nopal dietary fiber. Results The addition of nopal increased the fiber and polyphenols content in both tortillas (16.67%, 2.33 mg QE/L and bars (13.79%, 1.99 mg QE/L. Furthermore the trolox equivalent antioxidant capacity (TEAC, 1.47 mmol/L, polyphenols (7.67 mg QE/L and vitamin C (77.91 μmol/L showed increased levels in volunteer's plasma after intake. Also lower levels of glucose (4.43 mmol/L, total cholesterol (4.27 mmol/L, LDL (1.96 mmol/L and triglycerides (1.54 mmol/L were observed in plasma after the supplementation scheme with nopal-based tortilla, while GSH:GSSG ratio in erythrocytes was higher. Conclusions The results suggested that the intake of nopal-based tortillas with high content in fiber and antioxidant compounds can help to improve the overall oxidative status in healthy humans, which can reduce the risk of some chronic diseases. In addition, these products showed suitable physicochemical characteristics to be marketed.

  18. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    Science.gov (United States)

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Inducible nitric oxide synthase catalyzes ethanol oxidation to α-hydroxyethyl radical and acetaldehyde

    International Nuclear Information System (INIS)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M.

    2006-01-01

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O 2 , affording superoxide (O 2 · - ) and hydrogen peroxide (H 2 O 2 ). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to α-hydroxyethyl radical (CH 3 ·CHOH). We now report that a competent NOS2 with L-arginine can, like NOS1, oxidize EtOH to CH 3 ·CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of α-hydroxyethyl radical when L-arginine is present

  20. Anti-oxidative effects of Rooibos tea (Aspalathus linearis on immobilization-induced oxidative stress in rat brain.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i reverse the increase in stress-related metabolites (5-HIAA and FFA, (ii prevent lipid peroxidation (LPO, (iii restore stress-induced protein degradation (PD, (iv regulate glutathione metabolism (GSH and GSH/GSSG ratio, and (v modulate changes in the activities of antioxidant enzymes (SOD and CAT.

  1. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    Directory of Open Access Journals (Sweden)

    Chi-Huang Chang

    2014-01-01

    Full Text Available Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12 cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H2O2, and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway.

  2. Vitamin E and Lycopene Reduce Coal Burning Fluorosis-induced Spermatogenic Cell Apoptosis via Oxidative Stress-mediated JNK and ERK Signaling Pathways.

    Science.gov (United States)

    Tian, Yuan; Xiao, Yuehai; Wang, Bolin; Sun, Chao; Tang, Kaifa; Sun, Fa

    2017-12-22

    Although fluoride has been widely used in toothpaste, mouthwash, and drinking water to prevent dental caries, the excessive intake of fluoride can cause fluorosis which is associated with dental, skeletal, and soft tissue fluorosis. Recent evidences have drawn the attention to its adverse effects on male reproductive system that include spermatogenesis defect, sperm count loss, and sperm maturation impairment. Fluoride induces oxidative stress through the activation of mitogen activated protein kinase (MAPK) cascade which can lead to cell apoptosis. Vitamin E (VE) and lycopene are two common anti-oxidants, being protective to reactive oxygen species (ROS)-induced toxic effects. However, whether and how these two anti-oxidants prevent fluoride-induced spermatogenic cell apoptosis are largely unknown. In the present study, a male rat model for coal burning fluorosis was established and the histological lesions and spermatogenic cell apoptosis in rat testes were observed. The decreased expression of clusterin, a heterodimeric glycoprotein reported to regulate spermatogenic cell apoptosis, is detected in fluoride-treated rat testes. Interestingly, the co-administration with VE or lycopene reduced fluorosis-mediated testicular toxicity and rescued clusterin expression. Further, fluoride caused the enhanced Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) phosphorylation, which was reduced by VE or lycopene. Thus, VE and lycopene prevent coal burning fluorosis-induced spermatogenic cell apoptosis through the suppression of oxidative stress-mediated JNK and ERK signaling pathway, which could be an alternative therapeutic strategy for the treatment of fluorosis. ©2017 The Author(s).

  3. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  4. A parametric study of laser induced ablation-oxidation on porous silicon surfaces

    International Nuclear Information System (INIS)

    De Stefano, Luca; Rea, Ilaria; Nigro, M Arcangela; Della Corte, Francesco G; Rendina, Ivo

    2008-01-01

    We have investigated the laser induced ablation-oxidation process on porous silicon layers having different porosities and thicknesses by non-destructive optical techniques. In particular, the interaction between a low power blue light laser and the porous silicon surfaces has been characterized by variable angle spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The oxidation profiles etched on the porous samples can be tuned as functions of the layer porosity and laser fluence. Oxide stripes of width less than 2 μm and with thicknesses between 100 nm and 5 μm have been produced, depending on the porosity of the porous silicon, by using a 40 x focusing objective

  5. Cardioprotective effect of amlodipine in oxidative stress induced by experimental myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Sudhira Begum

    2007-12-01

    Full Text Available The present study investigated whether the administration of amlodipine ameliorates oxidative stress induced by experimental myocardial infarction in rats. Adrenaline was administered and myocardial damage was evaluated biochemically [significantly increased serum aspertate aminotransferase (AST, lactate dehydrogenase (LDH and malondialdehyde (MDA levels of myocardial tissue] and histologically (morphological changes of myocardium. Amlodipine was administered as pretreatment for 14 days in adrenaline treated rats. Statistically significant amelioration in all the biochemical parameters supported by significantly improved myocardial morphology was observed in amlodipine pretreatment. It was concluded that amlodipine afforded cardioprotection by reducing oxidative stress induced in experimental myocardial infarction of catecholamine assault.

  6. Effect of Kombucha tea on chromate(VI)-induced oxidative stress in albino rats.

    Science.gov (United States)

    Sai Ram, M; Anju, B; Pauline, T; Dipti, P; Kain, A K; Mongia, S S; Sharma, S K; Singh, B; Singh, R; Ilavazhagan, G; Kumar, D; Selvamurthy, W

    2000-07-01

    The effect of Kombucha tea (KT) on oxidative stress induced changes in rats subjected to chromate treatment are reported. KT feeding alone did not show any significant change in malondialdehyde (MDA) and reduced glutathione (GSH) levels, but did enhance humoral response and delayed type of hypersensitivity (DTH) response appreciably over control animals. Chromate treatment significantly enhanced plasma and tissue MDA levels, decreased DTH response considerably, enhanced glutathione peroxidase and catalase activities; however, no change in GSH, superoxide dismutase and antibody titres was noticed. KT feeding completely reversed the chromate-induced changes. These results show that Kombucha tea has potent anti-oxidant and immunopotentiating activities.

  7. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  8. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    Science.gov (United States)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  10. Interstellar Ices and Radiation-induced Oxidations of Alcohols

    Science.gov (United States)

    Hudson, R. L.; Moore, M. H.

    2018-04-01

    Infrared spectra of ices containing alcohols that are known or potential interstellar molecules are examined before and after irradiation with 1 MeV protons at ∼20 K. The low-temperature oxidation (hydrogen loss) of six alcohols is followed, and conclusions are drawn based on the results. The formation of reaction products is discussed in terms of the literature on the radiation chemistry of alcohols and a systematic variation in their structures. The results from these new laboratory measurements are then applied to a recent study of propargyl alcohol. Connections are drawn between known interstellar molecules, and several new reaction products in interstellar ices are predicted.

  11. Oxidation-reduction induced roughening of platinum (111) surface

    International Nuclear Information System (INIS)

    You, H.; Nagy, Z.

    1993-06-01

    Platinum (111) single crystal surface was roughened by repeated cycles of oxidation and reduction to study dynamic evolution of surface roughening. The interface roughens progressively upon repeated cycles. The measured width of the interface was fit to an assumed pow law, W ∼t β , with β = 0.38(1). The results are compared with a simulation based on a random growth model. The fraction of the singly stepped surface apparently saturates to 0. 25 monolayer, which explains the apparent saturation to a steady roughness observed in previous studies

  12. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  13. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  14. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Tao; Luo, Peihua; Zhu, Hong; Zhao, Yuqin [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Wu, Honghai; Gai, Renhua; Wu, Youping [Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China); Yang, Bo [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaochun, E-mail: yangxiaochun@zju.edu.cn [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China); He, Qiaojun, E-mail: qiaojunhe@zju.edu.cn [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China)

    2012-06-15

    Dasatinib, a multitargeted inhibitor of BCR–ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague–Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 and cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. -- Highlights: ►Dasatinib shows potential hepatotoxicity both in vitro and in vivo. ►Apoptosis plays a vital role in Dasatinib-induced

  15. Radical-induced oxidation of RAFT agents : a kinetic study

    NARCIS (Netherlands)

    Li, Changxi; He, Junpo; Zhou, Yanwu; Gu, Yuankai; Yang, Yuliang

    2011-01-01

    Radical-induced oxidn. of reversible addn.-fragmentation chain transfer (RAFT) agents is studied with respect to the effect of mol. structure on oxidn. rate. The radicals are generated by homolysis of either azobisisobutyronitrile or alkoxyamine and transformed in situ immediately into peroxy

  16. Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity.

    Science.gov (United States)

    Kim, Jongwan; Yun, Eun-Young; Quan, Fu-Shi; Park, Seung-Won; Goo, Tae-Won

    2017-01-01

    The α -glucosidase inhibitor, 1-deoxynojirimycin (DNJ), is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Results showed that intracerebroventricular (ICV) administration of DNJ reduced hypothalamic ER stress, which activated the leptin-induced Janus-activated kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway to cause appetite suppression. We conclude that DNJ may reduce obesity by moderating feeding behavior and ER stress in the hypothalamic portion of the central nervous system (CNS).

  17. Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Jongwan Kim

    2017-01-01

    Full Text Available The α-glucosidase inhibitor, 1-deoxynojirimycin (DNJ, is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Results showed that intracerebroventricular (ICV administration of DNJ reduced hypothalamic ER stress, which activated the leptin-induced Janus-activated kinase 2 (JAK2/signal transducers and activators of transcription 3 (STAT3 signaling pathway to cause appetite suppression. We conclude that DNJ may reduce obesity by moderating feeding behavior and ER stress in the hypothalamic portion of the central nervous system (CNS.

  18. Radiation-induced oxidative injury of the ileum and colon is alleviated by glucagon-like peptide-1 and -2

    Directory of Open Access Journals (Sweden)

    Mustafa Deniz

    2015-04-01

    Conclusion: Current findings suggest that GLP-1 and GLP-2 appear to have protective roles in the irradiation-induced oxidative damage of the gut by inhibiting neutrophil infiltration and subsequent activation of inflammatory mediators that induce lipid peroxidation.

  19. Bisphenol A Induces Hepatotoxicity through Oxidative Stress in Rat Model

    Directory of Open Access Journals (Sweden)

    Zeinab K. Hassan

    2012-01-01

    Full Text Available Reactive oxygen species (ROS are cytotoxic agents that lead to significant oxidative damage. Bisphenol A (BPA is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to limited information concerning the effect of BPA on liver, this study investigates whether BPA causes hepatotoxicity by induction of oxidative stress in liver. Rats were divided into five groups: The first four groups, BPA (0.1, 1, 10, 50 mg/kg/day were administrated orally to rats for four weeks. The fifth group was taken water with vehicle. The final body weights in the 0.1 mg group showed a significant decrease compared to control group. Significant decreased levels of reduced glutathione, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and catalase activity were found in the 50 mg BPA group compared to control groups. High dose of BPA (50 mg/kg significantly increased the biochemical levels of ALT, ALP and total bilirubin. BPA effect on the activity of antioxidant genes was confirmed by real time PCR in which the expression levels of these genes in liver tissue were significantly decrease compared to control. Data from this study demonstrate that BPA generate ROS and reduce the antioxidant gene expression that causes hepatotoxicity.

  20. Thermal and radiation induced polymerisation of carbon sub-oxide

    International Nuclear Information System (INIS)

    Schmidt, Michel

    1964-03-01

    This research thesis addresses the study of the polymerisation of carbon sub-oxide (C 3 O 2 ) in gaseous phase. As this work is related to other researches dealing with the reactions of the graphite-CO 2 system which occur in graphite-moderated nuclear reactors, a first intention was to study the behaviour of C 3 O 2 when submitted to radiations. Preliminary tests showed that the most remarkable result of this action was the formation of a polymer. It was also noticed that the polymerisation of this gas was spontaneous however slower at room temperature. The research thus focused on this polymerisation, and on the formula of the obtained polymer. After some generalities, the author reports the preparation, purification and storage and conservation of the carbon sub-oxide. The next parts report the kinetic study of thermal polymerisation, the study of polymerisation under γ rays, the study of the obtained polymer by using visible, UV and infrared spectroscopy, electronic paramagnetic resonance, and semi-conductivity measurements [fr

  1. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  2. Long-term high-fat diet induces pancreatic injuries via pancreatic microcirculatory disturbances and oxidative stress in rats with hyperlipidemia

    International Nuclear Information System (INIS)

    Yan Mingxian; Li Yanqing; Meng Min; Ren Hongbo; Kou Yi

    2006-01-01

    Relations between hyperlipidemia and chronic pancreatitis remain unclear. Microcirculatory disturbances and oxidative stress are involved in pathogeneses of a high numbers of diseases. The objective of this study was to induce hyperlipidemia in rats by long-term high-fat diet intake, then investigate the biochemical, microcirculatory, and histological alterations in blood and pancreatic tissues of these animals, and discuss their potential significances. Pancreatic blood flow was detected by intravital microscope; malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured in pancreatic tissues for assessment of oxidative stress and α-smooth muscle actin (α-SMA) expression was determined by immunohistochemical staining and RT-PCR. The results showed that the velocity of pancreatic microvascular blood flow of rats with hyperlipidemia decreased significantly as compared to control value (p = 0.008). Pancreatic MDA content increased whereas SOD activity decreased in these rats (p = 0.022; p = 0.039, respectively). Histologically, microvesicles in acinar and islet cells, dilated rough endoplasmic reticulum, swollen mitochondrion and modified vascular endothelial cells were observed under light microscope and transmission electron microscope. In addition, α-SMA expression was up-regulated significantly (p < 0.05). These results suggest that long-term high-fat diet can induce chronic pancreatic injuries which could be considered as 'nonalcoholic fatty pancreatic disease', and pancreatic microcirculatory disturbances and oxidative stress may play an important part in the underlying pathogenesis

  3. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    Science.gov (United States)

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  4. Grapefruit juice intake does not enhance but rather protects against aflatoxin B1-induced liver DNA damage through a reduction in hepatic CYP3A activity.

    Science.gov (United States)

    Miyata, Masaaki; Takano, Hiroki; Guo, Lian Q; Nagata, Kiyoshi; Yamazoe, Yasushi

    2004-02-01

    Influence of grapefruit juice intake on aflatoxin B1 (AFB1)-induced liver DNA damage was examined using a Comet assay in F344 rats given 5 mg/kg AFB1 by gavage. Rats allowed free access to grapefruit juice for 5 days prior to AFB1 administration resulted in clearly reduced DNA damage in liver, to 65% of the level in rats that did not receive grapefruit juice. Furthermore, rats treated with grapefruit juice extract (100 mg/kg per os) for 5 days prior to AFB1 treatment also reduced the DNA damage to 74% of the level in rats that did not receive grapefruit juice. No significant differences in the portal blood and liver concentrations of AFB1 were observed between grapefruit juice intake rats and the controls. In an Ames assay with AFB1 using Salmonella typhimurium TA98, lower numbers of revertant colonies were detected with hepatic microsomes prepared from rats administered grapefruit juice, compared with those from control rats. Microsomal testosterone 6beta-hydroxylation was also lower with rats given grapefruit juice than with control rats. Immunoblot analyses showed a significant decrease in hepatic CYP3A content, but not CYP1A and CYP2C content, in microsomes of grapefruit juice-treated rats than in non-treated rats. No significant difference in hepatic glutathione S-transferase (GST) activity and glutathione content was observed in the two groups. GSTA5 protein was not detected in hepatic cytosol of the two groups. In microsomal systems, grapefruit juice extract inhibited AFB1-induced mutagenesis in the presence of a microsomal activation system from livers of humans as well as rats. These results suggest that grapefruit juice intake suppresses AFB1-induced liver DNA damage through inactivation of the metabolic activation potency for AFB1 in rat liver.

  5. Tunnel Oxides Formed by Field-Induced Anodisation for Passivated Contacts of Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Jingnan Tong

    2018-02-01

    Full Text Available Tunnel silicon oxides form a critical component for passivated contacts for silicon solar cells. They need to be sufficiently thin to allow carriers to tunnel through and to be uniform both in thickness and stoichiometry across the silicon wafer surface, to ensure uniform and low recombination velocities if high conversion efficiencies are to be achieved. This paper reports on the formation of ultra-thin silicon oxide layers by field-induced anodisation (FIA, a process that ensures uniform oxide thickness by passing the anodisation current perpendicularly through the wafer to the silicon surface that is anodised. Spectroscopical analyses show that the FIA oxides contain a lower fraction of Si-rich sub-oxides compared to wet-chemical oxides, resulting in lower recombination velocities at the silicon and oxide interface. This property along with its low temperature formation highlights the potential for FIA to be used to form low-cost tunnel oxide layers for passivated contacts of silicon solar cells.

  6. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress.

    Science.gov (United States)

    Poliandri, Ariel H B; Machiavelli, Leticia I; Quinteros, Alnilan F; Cabilla, Jimena P; Duvilanski, Beatriz H

    2006-02-15

    Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.

  7. Peripherally administered baclofen reduced food intake and body weight in db/db as well as diet-induced obese mice.

    Science.gov (United States)

    Sato, Ikuko; Arima, Hiroshi; Ozaki, Noriyuki; Ozaki, Nobuaki; Watanabe, Minemori; Goto, Motomitsu; Shimizu, Hiroshi; Hayashi, Masayuki; Banno, Ryouichi; Nagasaki, Hiroshi; Oiso, Yutaka

    2007-10-16

    Peripheral administration of baclofen significantly reduced food intake and body weight increase in both diabetic (db/db) and diet-induced obese mice for 5 weeks, whereas it had no significant effects on energy balance in their lean control mice. Despite the decreased body weight, neuropeptide Y expression in the arcuate nucleus was significantly decreased, whereas pro-opiomelanocortin expression was significantly increased by baclofen treatment. These data demonstrate that the inhibitory effects of baclofen on body weight in the obese mice were mediated via the arcuate nucleus at least partially, and suggest that GABA(B) agonists could be a new therapeutic reagent for obesity.

  8. Radiation-induced oxidative degradation of poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Hegazy, E.S.A.; Seguchi, T.; Machi, S.

    1981-01-01

    Gas evolution and oxygen consumption in the γ-irradiation of PVC were studied. The gas evolution and the oxidative degradation are retarded by the presence of plasticizers and stabilizers. The G(HCl) and G(H 2 ) are 8 and 0.24 for the irradiation of pure PVC under vacuum and 0.02 and 0.14 for that of plasticized PVC, respectively. Gas evolution increases in the presence of oxygen, specially for the pure PVC. The G(-O 2 ) values for the pure and plasticized PVC are 30 and 12, respectively. The dependence of gas evolution and oxygen consumption on the oxygen pressure is more pronounced for the plasticized PVC than pure PVC because the oxygen diffusion is controlled

  9. Nanosized zinc oxide particles induce neural stem cell apoptosis

    International Nuclear Information System (INIS)

    Deng Xiaoyong; Luan Qixia; Wu Minghong; Zhang Haijiao; Jiao Zheng; Chen Wenting; Wang Yanli

    2009-01-01

    Given the intensive application of nanoscale zinc oxide (ZnO) materials in our life, growing concerns have arisen about its unintentional health and environmental impacts. In this study, the neurotoxicity of different sized ZnO nanoparticles in mouse neural stem cells (NSCs) was investigated. A cell viability assay indicated that ZnO nanoparticles manifested dose-dependent, but no size-dependent toxic effects on NSCs. Apoptotic cells were observed and analyzed by confocal microscopy, transmission electron microscopy examination, and flow cytometry. All the results support the viewpoint that the ZnO nanoparticle toxicity comes from the dissolved Zn 2+ in the culture medium or inside cells. Our results highlight the need for caution during the use and disposal of ZnO manufactured nanomaterials to prevent the unintended environmental and health impacts.

  10. Xanthine Oxidase Inhibitor, Allopurinol, Prevented Oxidative Stress, Fibrosis, and Myocardial Damage in Isoproterenol Induced Aged Rats.

    Science.gov (United States)

    Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Alam, Md Ashraful

    2015-01-01

    We evaluated the preventive effect of allopurinol on isoproterenol (ISO) induced myocardial infarction in aged rats. Twelve- to fourteen-month-old male Long Evans rats were divided into three groups: control, ISO, and ISO + allopurinol. At the end of the study, all rats were sacrificed for blood and organ sample collection to evaluate biochemical parameters and oxidative stress markers analyses. Histopathological examinations were also conducted to assess inflammatory cell infiltration and fibrosis in heart and kidneys. Our investigation revealed that the levels of oxidative stress markers were significantly increased while the level of cellular antioxidants, catalase activity, and glutathione concentration in ISO induced rats decreased. Treatment with allopurinol to ISO induced rats prevented the elevated activities of AST, ALT, and ALP enzymes, and the levels of lipid peroxidation products and increased reduced glutathione concentration. ISO induced rats also showed massive inflammatory cells infiltration and fibrosis in heart and kidneys. Furthermore, allopurinol treatment prevented the inflammatory cells infiltration and fibrosis in ISO induced rats. In conclusion, the results of our study suggest that allopurinol treatment is capable of protecting heart of ISO induced myocardial infarction in rats probably by preventing oxidative stress, inflammation, and fibrosis.

  11. NMR relaxation induced by iron oxide particles: testing theoretical models.

    Science.gov (United States)

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  12. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    Science.gov (United States)

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  13. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats.

    Science.gov (United States)

    Benzer, Fulya; Kandemir, Fatih Mehmet; Ozkaraca, Mustafa; Kucukler, Sefa; Caglayan, Cuneyt

    2018-02-01

    Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR-induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR-induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK-MB, LDH, and cTn-I). Curcumin also attenuated activities of Caspase-3, cyclooxygenase-2, inducible nitric oxide synthase, and levels of nuclear factor kappa-B, tumor necrosis factor-α, and interleukin-1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8-OHdG and 3,3'-dityrosine. This study demonstrated that curcumin has a multi-cardioprotective effect due to its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2018 Wiley Periodicals, Inc.

  14. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome “Tor Vergata”, Rome (Italy); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, University of Rome “Tor Vergata”, Rome (Italy); Pietroiusti, Antonio [Department of Biopathology, University of Rome “Tor Vergata”, Rome (Italy); Fadeel, Bengt [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States); Kagan, Valerian E. [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States)

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  15. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    International Nuclear Information System (INIS)

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  16. Grapevine fruit extract protects against radiation-induced oxidative stress and apoptosis in human lymphocyte

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar

    2015-01-01

    Ionizing radiation (IR) causes oxidative stress through overwhelming generation of reactive oxygen species (ROS) in the living cells leading the oxidative damage further to biomolecules. Grapevine (Vitis vinifera L.) posses several bioactive phytochemicals and is the richest source of antioxidants. In this study, we investigated V. vinifera for its phytochemical content, enzymes profile and, ROS-and oxidant-scavenging activities. We have also studied the fruit extract of four different grapevine viz., Thompson seedless, Flame seedless, Kishmish chorni and Red globe for their radioprotective actions in human lymphocytes. The activities of ascorbic acid oxidase and catalase significantly (P < 0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuated the oxidative stress induced by 4 Gy γ-radiation in human lymphocytes in vitro. Further, γ-radiation-induced increase in caspase 3/7 activity was significantly attenuated by grape extracts. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars. (author)

  17. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    Science.gov (United States)

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Levi W. Evans

    2017-01-01

    Full Text Available Saliva is easily obtainable for medical research and requires little effort or training for collection. Because saliva contains a variety of biological compounds, including vitamin C, malondialdehyde, amylase, and proteomes, it has been successfully used as a biospecimen for the reflection of health status. A popular topic of discussion in medical research is the potential association between oxidative stress and negative outcomes. Systemic biomarkers that represent oxidative stress can be found in saliva. It is unclear, however, if saliva is an accurate biospecimen as is blood and/or plasma. Exercise can induce oxidative stress, resulting in a trend of antioxidant supplementation to combat its assumed detriments. Vitamin C is a popular antioxidant supplement in the realm of sports and exercise. One potential avenue for evaluating exercise induced oxidative stress is through assessment of biomarkers like vitamin C and malondialdehyde in saliva. At present, limited research has been done in this area. The current state of research involving exercise-induced oxidative stress, salivary biomarkers, and vitamin C supplementation is reviewed in this article.

  19. Neuromodulatory Effects of Hesperidin in Mitigating Oxidative Stress in Streptozotocin Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mohammad Ashafaq

    2014-01-01

    Full Text Available Oxidative stress has been implicated in pathogenesis of streptozotocin- (STZ- induced diabetes mellitus and its complication in central nervous system (CNS. Recent studies have provided insights on antioxidants and their emergence as potential therapeutic and nutraceutical. The present study examined the hypothesis that hesperidin (HP ameliorates oxidative stress and may be a limiting factor in the extent of CNS complication following diabetes. To test this hypothesis rats were divided into four groups: control, diabetic, diabetic-HP treated, and vehicle for HP treatment group. Diabetes mellitus was induced by a single injection of STZ (65 mg/kg body weight. Three days after STZ injection, HP was given (50 mg/kg b.wt. orally once daily for four weeks. The results of the present investigation suggest that the significant elevated levels of oxidative stress markers were observed in STZ-treated animals, whereas significant depletion in the activity of nonenzymatic antioxidants and enzymatic antioxidants was witnessed in diabetic rat brain. Neurotoxicity biomarker activity was also altered significantly. HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers. Our results demonstrate that HP exhibits potent antioxidant and neuroprotective effects on the brain tissue against the diabetic oxidative damage in STZ-induced rodent model.

  20. Oxidized low-density lipoproteins induced inflammatory process during atherogenesis with aging

    International Nuclear Information System (INIS)

    Larbi, Anis; Khalil, Abdelouahed; Douziech, Nadine; Guerard, Karl-Philippe; Fueloep, Tamas

    2005-01-01

    Atherosclerosis is a chronic disease developing through decades with two life-threatening complications: myocardial infarction and stroke. Oxidized low-density lipoproteins (oxLDL) produced by oxidative modifications of LDL in the subendothelial space have been demonstrated to be critically involved in atherogenesis through their intensive pro-inflammatory activity. Recently, it was shown that oxLDL have an apoptosis-inducing effect in T cells depending on time and degree of oxidation. The goal of the current study is to elucidate the molecular mechanisms underlying the apoptotic-inducing effects of oxLDL on T lymphocytes. T cells of young and elderly subjects were incubated for various periods of time with LDL oxidized to various degrees. The proliferation, the apoptosis, the MAPK ERK1/2 activation and the expression of the Bcl-2 protein family members were measured upon different LDL treatments. Thus, more the LDL are oxidized more they induce apoptosis and this effect is highly accentuated with aging. The oxLDL decrease the activation of the surviving molecule ERK1/2 and modulate the ratio of Bax/Bcl-2 towards a pro-apoptotic profile, which is also accentuated with aging. These results partly explain why atherosclerosis is increasing with aging concomitantly to its complications

  1. Embryotoxicity Caused by DON-Induced Oxidative Stress Mediated by Nrf2/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-06-01

    Full Text Available Deoxynivalenol (DON belongs to the type B group of trichothecenes family, which is composed of sesquiterpenoid metabolites produced by Fusarium and other fungi in grain. DON may cause various toxicities, such as cytotoxicity, immunotoxicity, genotoxicity as well as teratogenicity and carcinogenicity. In the present study, we focus on a hypothesis that DON alters the expressions of Nrf2/HO-1 pathway by inducing embryotoxicity in C57BL/6 mouse (5.0, 2.5, 1.0, and 0 mg/kg/day and BeWo cell lines (0 and 50 nM; 3 h, 12 h and 24 h. Our results indicate that DON treatment in mice during pregnancy leads to ROS accumulation in the placenta, which results in embryotoxicity. At the same time Nrf2/HO-1 pathway is up-regulated by ROS to protect placenta cells from oxidative damage. In DON-treated BeWo cells, the level of ROS has time–effect and dose–effect relationships with HO-1 expression. Moderate increase in HO-1 protects the cell from oxidative damage, while excessive increase in HO-1 aggravates the oxidative damage, which is called in some studies the “threshold effect”. Therefore, oxidative stress may be the critical molecular mechanism for DON-induced embryotoxicity. Besides, Nrf2/HO-1 pathway accompanied by the “threshold effect” also plays an important role against DON-induced oxidative damage in this process.

  2. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium.

    Science.gov (United States)

    Yoon, Jeong Hoon; Lim, Hyo Jin; Lee, Hwa Jin; Kim, Hee-Doo; Jeon, Raok; Ryu, Jae-Ha

    2008-03-15

    Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia.

  3. Dietary moderately oxidized oil induces expression of fibroblast growth factor 21 in the liver of pigs

    Directory of Open Access Journals (Sweden)

    Varady Juliane

    2012-03-01

    Full Text Available Abstract Background Fibroblast growth factor 21 (FGF21, whose expression is induced by peroxisome proliferator-activated receptor α (PPARα, has been recently identified as a novel metabolic regulator which plays a crucial role in glucose homeostasis, lipid metabolism, insulin sensitivity and obesity. Previous studies have shown that administration of oxidized fats leads to an activation of PPARα in the liver. Therefore, the present study investigated the hypothesis that feeding of oxidized fats causes an induction of FGF21 in the liver. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h. Results In pigs fed the oxidized fat mRNA abundance and protein concentrations of FGF21 in liver were significantly increased (P P P Conclusion The present study shows for the first time that administration of an oxidized fat induces the expression of FGF21 in the liver, probably mediated by activation of PPARα. Induction of FGF21 could be involved in several effects observed in animals administered an oxidized fat.

  4. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  5. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    Science.gov (United States)

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bursopentin (BP5 protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression.

    Directory of Open Access Journals (Sweden)

    Tao Qin

    Full Text Available Dendritic cells (DCs play a vital role in the regulation of immune-mediated inflammatory diseases. Thus, DCs have been regarded as a major target for the development of immunomodulators. However, oxidative stress could disturb inflammatory regulation in DCs. Here, we examined the effect of bursopentine (BP5, a novel pentapeptide isolated from chicken bursa of fabricius, on the protection of DCs against oxidative stress for immunosuppression. BP5 showed potent protective effects against the lipopolysaccharide (LPS-induced oxidative stress in DCs, including nitric oxide, reactive oxygen species and lipid peroxidation. Furthermore, BP5 elevated the level of cellular reductive status through increasing the reduced glutathione (GSH and the GSH/GSSG ratio. Concomitant with these, the activities of several antioxidative redox enzymes, including glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD, were obviously enhanced. BP5 also suppressed submucosal DC maturation in the LPS-stimulated intestinal epithelial cells (ECs/DCs coculture system. Finally, we found that heme oxygenase 1 (HO-1 was remarkably upregulated by BP5 in the LPS-induced DCs, and played an important role in the suppression of oxidative stress and DC maturation. These results suggested that BP5 could protect the LPS-activated DCs against oxidative stress and have potential applications in DC-related inflammatory responses.

  7. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice.

    Science.gov (United States)

    Al Mansouri, Shamma; Ojha, Shreesh; Al Maamari, Elyazia; Al Ameri, Mouza; Nurulain, Syed M; Bahi, Amine

    2014-09-01

    Several recent studies have suggested that brain CB2 cannabinoid receptors play a major role in alcohol reward. In fact, the implication of cannabinoid neurotransmission in the reinforcing effects of ethanol (EtOH) is becoming increasingly evident. The CB2 receptor agonist, β-caryophyllene (BCP) was used to investigate the role of the CB2 receptors in mediating alcohol intake and ethanol-induced conditioned place preference (EtOH-CPP) and sensitivity in mice. The effect of BCP on alcohol intake was evaluated using the standard two-bottle choice drinking method. The mice were presented with increasing EtOH concentrations and its consumption was measured daily. Consumption of saccharin and quinine solutions was measured following the EtOH preference tests. Finally, the effect of BCP on alcohol reward and sensitivity was tested using an unbiased EtOH-CPP and loss of righting-reflex (LORR) procedures, respectively. BCP dose-dependently decreased alcohol consumption and preference. Additionally, BCP-injected mice did not show any difference from vehicle mice in total fluid intake in a 24-hour paradigm nor in their intake of graded concentrations of saccharin or quinine, suggesting that the CB2 receptor activation did not alter taste function. More importantly, BCP inhibited EtOH-CPP acquisition and exacerbated LORR duration. Interestingly, these effects were abrogated when mice were pre-injected with a selective CB2 receptor antagonist, AM630. Overall, the CB2 receptor system appears to be involved in alcohol dependence and sensitivity and may represent a potential pharmacological target for the treatment of alcoholism. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    -adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...... not by itself causing fast transient increases in [Ca2+]i. In addition, we suggest that endogenously produced NO activated by ß-adrenergic receptor stimulation, plays an important role in signalling to the surrounding tissue....

  9. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    Directory of Open Access Journals (Sweden)

    Ye Han

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer and analyzed by high performance liquid chromatography (HPLC and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days drastically prevented the elevated activities of aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP and triglyceride (TG in serum and the levels of malondialdehyde (MDA, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β in liver tissue (p < 0.05. Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05. Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  10. Oxidative stress in a rat model of cotton smoke inhalation-induced ...

    African Journals Online (AJOL)

    Background: Smoke inhalation injury refers to airway and lung parenchyma injury and general chemical damage caused by inhaling toxic gases and substances. The aim of this study was to explore the oxidative stress mechanism of cotton smoke inhalation-induced pulmonary injury in a rat model. Materials and Methods: ...

  11. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  12. Effects of Cl+ and F+ implantation of oxidation-induced stacking faults in silicon

    NARCIS (Netherlands)

    Xu, J.Y.; Bronsveld, P.M.; Boom, G.; Hosson, J.Th.M. De

    1984-01-01

    Three implantation effects were investigated in floating-zone-grown silicon: (a) the effect of Cl+ implantation resulting in the shrinkage of oxidation-induced stacking faults; (b) the effect of F+ implantation giving rise to defaulting of the 1/3 [111] Frank dislocations into 1/2[110] perfect

  13. Bombardment-induced compositional change with alloys, oxides, and oxysalts. 1

    International Nuclear Information System (INIS)

    Kelly, R.

    1989-01-01

    A review of the role of surface binding energies in bombardment-induced compositional change with alloys, oxides and oxysalts is presented. The concepts of preferential sputtering and compositional change may or may not coincide; their differences are clarified. 77 refs.; 12 figs.; 4 tabs

  14. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    DEFF Research Database (Denmark)

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi

    2009-01-01

    to intralysosomal accumulation of Abeta in cultured neuroblastoma cells. We hypothesized that oxidative stress promotes AD by stimulating macroautophagy of Abeta that further may induce cell death by destabilizing lysosomal membranes. To investigate such possibility, we compared the effects of hyperoxia (40...

  15. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  16. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  17. Relationship between genotoxicity and oxidative stress induced by mercury on common carp (Cyprinus carpio) tissues.

    Science.gov (United States)

    García-Medina, Sandra; Galar-Martínez, Marcela; Gómez-Oliván, Leobardo Manuel; Ruiz-Lara, Karina; Islas-Flores, Hariz; Gasca-Pérez, Eloy

    2017-11-01

    Mercury is one of the most toxic metals in aquatic systems since it is able to induce neurobehavioral disorders as well as renal and gastrointestinal tract damage. The common carp Cyprinus carpio is an important species from both an ecological and economic viewpoint as it is consumed in many countries, the top producers being Mexico, China, India and Japan. The present study aimed to evaluate the relation between Hg-induced oxidative stress and genotoxicity in diverse tissues of C. carpio. Specimens were exposed to 0.01mgHg/L (the maximum permissible limit for aquatic life protection), and lipid peroxidation, protein carbonyl content and the activity of antioxidant enzymes were evaluated at 96h. Micronuclei frequency and DNA damage by comet assay were determined at 12, 24, 48, 72 and 96h. Hg induced oxidative stress and genotoxicity on exposed fish, since inhibition of antioxidant enzymes activity and increases in lipid peroxidation, DNA damage and micronuclei frequency occurred. Blood, gill and liver were more susceptible to oxidative stress, while blood were more sensitive to genotoxicity. In conclusion, Hg at concentrations equal to the maximum permissible limit for aquatic life protection induced oxidative stress and genotoxicity on C. carpio, and these two effects prove to be correlated. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Knockdown of cytosolic NADP(+) -dependent isocitrate dehydrogenase enhances MPP(+) -induced oxidative injury in PC12 cells.

    Science.gov (United States)

    Yang, Eun Sun; Park, Jeen-Woo

    2011-05-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP(+)) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP(+) -dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP(+) -induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP(+) -mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.

  19. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Tn5-induced pBS286 plasmid mutations blocking early stages of napthalene oxidation

    International Nuclear Information System (INIS)

    Kosheleva, I.A.; Tsoi, T.V.; Ivashina, T.V.; Selifonov, S.A.; Starovoitov, I.I.; Boronin, A.M.

    1988-01-01

    The authors present data on the further analysis of the structural and functional organization of the nah region of plasmid pBS286 controlling the constitutive oxidation of naphthalene by Pseudomonas putida cells. They have studied Tn5-induced mutations blocking early stages of naphthalene oxidation. They present and discuss data providing evidence that, in contrast to plasmid NAH7, the mechanism of regulation of the nahl operon of plasmid NPL-1, the parent plasmid of plasmid pBS286, with inducible synthesis of naphthalene dioxygenase can include elements of a negative control with participation of the regulatory locus R, located proximal to the structural nah genes and closely linked to or overlapped by the inverted control DNA segment (4.2 kb). They also present data on the possibility of regulation of the activity of the catechol-splitting meta-pathway genes with the participation of products of early stages of naphthalene oxidation

  1. Deletion of Metallothionein Exacerbates Intermittent Hypoxia-Induced Oxidative and Inflammatory Injury in Aorta

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2014-01-01

    Full Text Available The present study was to explore the effect of metallothionein (MT on intermittent hypoxia (IH induced aortic pathogenic changes. Markers of oxidative damages, inflammation, and vascular remodeling were observed by immunohistochemical staining after 3 days and 1, 3, and 8 weeks after IH exposures. Endogenous MT was induced after 3 days of IH but was significantly decreased after 8 weeks of IH. Compared with the wild-type mice, MT knock-out mice exhibited earlier and more severe pathogenic changes of oxidative damages, inflammatory responses, and cellular apoptosis, as indicated by the significant accumulation of collagen, increased levels of connective tissue growth factor, transforming growth factor β1, tumor necrosis factor-alpha, vascular cell adhesion molecule 1,3-nitrotyrosine, and 4-hydroxy-2-nonenal in the aorta. These findings suggested that chronic IH may lead to aortic damages characterized by oxidative stress and inflammation, and MT may play a pivotal role in the above pathogenesis process.

  2. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    Science.gov (United States)

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  3. DISTINCT FUNCTIONS OF JNK AND C-JUN IN OXIDANT-INDUCED HEPATOCYTE DEATH

    Science.gov (United States)

    Amir, Muhammad; Liu, Kun; Zhao, Enpeng; Czaja, Mark J.

    2013-01-01

    Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β-oxidation also sensitized cells to death from menadione, and supplementation with the β-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death. PMID:22644775

  4. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Heavy Metal-Induced Oxidative DNA Damage in Earthworms: A Review

    Directory of Open Access Journals (Sweden)

    Takeshi Hirano

    2010-01-01

    Full Text Available Earthworms can be used as a bio-indicator of metal contamination in soil, Earlier reports claimed the bioaccumulation of heavy metals in earthworm tissues, while the metal-induced mutagenicity reared in contaminated soils for long duration. But we examined the metal-induced mutagenicity in earthworms reared in metal containing culture beddings. In this experiment we observed the generation of 8-oxoguanine (8-oxo-Gua in earthworms exposed to cadmium and nickel in soil. 8-oxo-Gua is a major premutagenic form of oxidative DNA damage that induces GC-to-TA point mutations, leading to carcinogenesis.

  6. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  7. Lipid oxidation in human low-density lipoprotein induced by metmyoglobin/H2O2

    DEFF Research Database (Denmark)

    Witting, P K; Willhite, C A; Davies, Michael Jonathan

    1999-01-01

    Metmyoglobin (metMb) and H(2)O(2) can oxidize low-density lipoprotein (LDL) in vitro, and oxidized LDL may be atherogenic. The role of alpha-tocopherol (alpha-TOH) in LDL oxidation by peroxidases such as metMb is unclear. Herein, we show that during metMb/H(2)O(2)-induced oxidation of native LDL...... of CE-O(O)H is dependent on, and correlates with, LDL's alpha-TOH content, yet does not require preformed lipid hydroperoxides or H(2)O(2). This indicates that in native LDL alpha-TOH can act as a phase-transfer agent and alpha-TO(*) as a chain-transfer agent propagating LDL lipid peroxidation via...

  8. Developmental lead exposure induces opposite effects on ethanol intake and locomotion in response to central vs. systemic cyanamide administration.

    Science.gov (United States)

    Mattalloni, Mara Soledad; Deza-Ponzio, Romina; Albrecht, Paula Alejandra; Cancela, Liliana Marina; Virgolini, Miriam Beatriz

    2017-02-01

    Lead (Pb) is a developmental neurotoxicant that elicits differential responses to drugs of abuse. Particularly, ethanol consumption has been demonstrated to be increased as a consequence of environmental Pb exposure, with catalase (CAT) and brain acetaldehyde (ACD, the first metabolite of ethanol) playing a role. The present study sought to interfere with ethanol metabolism by inhibiting ALDH2 (mitochondrial aldehyde dehydrogenase) activity in both liver and brain from control and Pb-exposed rats as a strategy to accumulate ACD, a substance that plays a major role in the drug's reinforcing and/or aversive effects. To evaluate the impact on a 2-h chronic voluntary ethanol intake test, developmentally Pb-exposed and control rats were administered with cyanamide (CY, an ALDH inhibitor) either systemically or intracerebroventricularly (i.c.v.) on the last 4 sessions of the experiment. Furthermore, on the last session and after locomotor activity was assessed, all animals were sacrificed to obtain brain and liver samples for ALDH2 and CAT activity determination. Systemic CY administration reduced the elevated ethanol intake already reported in the Pb-exposed animals (but not in the controls) accompanied by liver (but not brain) ALDH2 inactivation. On the other hand, a 0.3 mg i.c.v. CY administration enhanced both ethanol intake and locomotor activity accompanied by brain ALDH2 inactivation in control animals, while an increase in ethanol consumption was also observed in the Pb-exposed group, although in the absence of brain ALDH2 blockade. No changes were observed in CAT activity as a consequence of CY administration. These results support the participation of liver and brain ACD in ethanol intake and locomotor activity, responses that are modulated by developmental Pb exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Arya A

    2013-11-01

    Full Text Available Aditya Arya,1 Niroj Kumar Sethy,1 Sushil Kumar Singh,2 Mainak Das,3 Kalpana Bhargava1 1Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, 2Functional Materials Division, Solid State Physics Laboratory, Defence Research and Development Organization, Delhi, 3Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India Background: Cerium oxide nanoparticles (nanoceria are effective at quenching reactive oxygen species (ROS in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. Methods: A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]. Animals were injected intraperitoneally with either a dose of 0.5 µg/kg body weight/week of nanoceria (T and T+H groups or vehicle (C and H groups for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Results: Spherical nanoceria of 7–10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated

  10. Inhibition of deprivation-induced food intake by GABA(A) antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms.

    Science.gov (United States)

    Kamatchi, Ganesan L; Rathanaswami, Palaniswami

    2012-07-01

    The role of gamma amino butyric acid A receptors/neurons of the hypothalamic, endocrine and alimentary systems in the food intake seen in hunger was studied in 20 h food-deprived rats. Food deprivation decreased blood glucose, serum insulin and produced hyperphagia. The hyperphagia was inhibited by subcutaneous or ventromedial hypothalamic administration of gamma amino butyric acid A antagonists picrotoxin or bicuculline. Although results of blood glucose was variable, insulin level was increased by picrotoxin or bicuculline. In contrast, lateral hypothalamic administration of these agents failed to reproduce the above changes. Subcutaneous administration of picrotoxin or bicuculline increased gastric content, decreased gastric motility and small bowel transit. In contrast, ventromedial or lateral hypothalamic administration of picrotoxin or bicuculline failed to alter the gastric content but decreased the small bowel transit. The results of alimentary studies suggest that gamma amino butyric acid neurons of both ventromedial and lateral hypothalamus selectively regulate small bowel transit but not the gastric content. It may be concluded that ventromedial hypothalamus plays a dominant role in the regulation of food intake and that picrotoxin or bicuculline inhibited food intake by inhibiting gamma amino butyric acid receptors of the ventromedial hypothalamus, increasing insulin level and decreasing the gut motility.

  11. Evaluation of radioprotective efficacy of pyrimidine-5-carboxylate derivative on radiation induced oxidative stress using Drosophila melanogaster

    International Nuclear Information System (INIS)

    Sarojini, B.K.; Mohan, B.J.; Narayana, B.; Sanjeev, Ganesh

    2014-01-01

    In the present study, radioprotection efficacy of Ethyl 4-(4-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetra hydropyrimidine-5-carboxylate (PYR) was evaluated against the gamma ray induced oxidative stress using drosophila melanogaster (Oregon K). The gamma ray irradiated flies were assayed for oxidative stress markers namely; Thiobarbituric acid reactive substances (TBARS) and enzymatic antioxidant SOD and CAT. The oxidative stress was induced at 6 Gy. (author)

  12. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  13. Cadmium induced oxidative stress in kidney epithelia cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    2007-01-01

    Cadmium (Cd) is an important industrial and environmental pollutant. In humans exposed to Cd via oral and/or pulmonary routes, the kidney is by far the primary organ affected adversely by Cd. It have been estimated that 7% of the human population may develop renal dysfunction from Cd exposure...... of generation of ROS in this pathway remains unclear.     The aim of the present study was to monitor, in real time, the rates of ROS generation to be able to directly determine their production dynamics in living cells in response to drugs. Initial studies were planed in to use 2,7-dichlorofluorescein...... production from mitochondria due to an increase in the intracellular calcium concentration. Visual inspection of cultured cells showed that the Cd induced destruction of the cell membrane after three hours was abolished when cells were pretreated with N-acetylcysteine or CCCP, indicating that ROS generation...

  14. Insulin detemir attenuates food intake, body weight gain and fat mass gain in diet-induced obese Sprague-Dawley rats.

    Science.gov (United States)

    Rojas, J M; Printz, R L; Niswender, K D

    2011-07-04

    Initiation and intensification of insulin therapy commonly causes weight gain, a barrier to therapy. A contrasting body of evidence indicates that insulin functions as an adiposity negative feedback signal and reduces food intake, weight gain and adiposity via action in the central nervous system. Basal insulin analogs, detemir (Det) and glargine (Glar), have been associated with less hypoglycemia compared with neutral protamine hagedorn insulin, and Det with less weight gain, especially in patients with higher body mass index (BMI). We sought to determine whether insulin therapy per se causes body weight and fat mass gain when delivered via a clinically relevant subcutaneous (SC) route in the absence of hypoglycemia and glycosuria in non-diabetic lean and diet-induced obese rats. Rats were exposed to either a low-fat diet (LFD; 13.5% fat) or high-fat diet (HFD; 60% fat), and received Det (0.5 U kg(-1)), Glar (0.2 U kg(-1)) or vehicle (Veh) SC once daily for 4 weeks. These dosages of insulin were equipotent in rats with respect to blood-glucose concentration and did not induce hypoglycemia. As predicted by current models of energy homeostasis, neither insulin Det nor Glar therapy affected food intake and weight gain in LFD rats. Det treatment significantly attenuated food intake, body weight gain and fat mass gain relative to the Glar and Veh in high-fat fed animals, mirroring observations in humans. That neither insulin group gained excess weight, suggests weight gain with SC basal insulin therapy may not be inevitable. Our data further suggest that Det possesses a unique property to attenuate the development of obesity associated with a HFD.

  15. Polyinosine-polycytidylic acid promotes excessive iodine intake induced thyroiditis in non-obese diabetic mice via Toll-like receptor 3 mediated inflammation.

    Science.gov (United States)

    Shi, Ya-nan; Liu, Feng-hua; Yu, Xiu-jie; Liu, Ze-bing; Li, Qing-xin; Yuan, Ji-hong; Zang, Xiao-yi; Li, Lan-ying

    2013-02-01

    Excessive iodine intake and viral infection are recognized as both critical factors associated with autoimmune thyroid diseases. Toll-like receptors (TLRs) have been reported to play an important role in autoimmune and inflammatory disorders. In this study, we aimed to clarify the possible mechanism of TLR3 involved in polyinosine-polycytidylic acid (poly(I:C)) promoting excessive iodine intake induced thyroiditis in non-obese diabetic (NOD) mice. Both NOD and BALB/c mice were randomly assigned to four groups: control group (n = 5), high iodine intake (HI) group (n = 7), poly(I:C) group (n = 7) and combination of excessive iodine and poly(I:C) injection (HIP) group (n = 7). After 8 weeks, mice were weighed and blood samples were collected. All the mice were sacrificed before dissection of spleen and thyroid gland. Then, thyroid histology, thyroid secreted hormone, expression of CD3(+) cells and TLR3 as well as inflammatory mRNA level were evaluated. Both NOD and BALB/c mice from HI and HIP group represented goiter and increasing thyroid relative weight. Thyroid histology evidence indicated that only HIP group of NOD mice showed severe thyroiditis with lymphocytes infiltration in majority of thyroid tissue, severe damage of follicles and general fibrosis. Immunofluorescence staining results displayed a large number of CD3(+) cells in HIP NOD mice. Real-time polymerase chain reaction (PCR) results suggested interferon (IFN)-α increased over 30 folds and IFN-γ expression was doubled compared with control group, but interleukin (IL)-4 remained unchanged in HIP group of NOD mice thyroid. Meanwhile, over one third decrease of blood total thyroxine (TT4) and increased thyroid-stimulating hormone (TSH) was observed in HIP group of NOD mice. Only HIP group of NOD mice represented significantly elevation of TLR3 expression. Poly(I:C) enhanced excessive dietary iodine induced thyroiditis in NOD mice through increasing TLR3 mediated inflammation.

  16. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    International Nuclear Information System (INIS)

    Tetz, Lauren M.; Cheng, Adrienne A.; Korte, Cassandra S.; Giese, Roger W.; Wang, Poguang; Harris, Craig; Meeker, John D.; Loch-Caruso, Rita

    2013-01-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  17. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tetz, Lauren M., E-mail: ltetz@umich.edu [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Cheng, Adrienne A.; Korte, Cassandra S. [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Giese, Roger W.; Wang, Poguang [Department of Pharmaceutical Sciences, Northeastern University, 360 Huntingon Ave, Boston, MA 02115 (United States); Harris, Craig; Meeker, John D.; Loch-Caruso, Rita [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)

    2013-04-01

    Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180 μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180 μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes. - Highlights: ► MEHP increased reactive oxygen species, oxidative DNA damage, and caspase activity. ► MEHP induced expression of PTGS2, a gene

  18. Probing the diffusion of vacuum ultraviolet ({lambda} = 172 nm) induced oxidants by nanoparticles immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, Om P.; Hatanaka, Takeshi; Murase, Kuniaki [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Sugimura, Hiroyuki, E-mail: hiroyuki.sugimura@materials.mbox.media.kyoto-u.ac.jp [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)

    2009-09-30

    Vacuum ultraviolet (VUV, {lambda} = 172 nm) patterning of alkyl monolayer on silicon surface has been demonstrated with emphasis on the diffusion of VUV induced oxygen-derived active species, which are accountable for the pattern broadening. The VUV photons photo-dissociates the atmospheric oxygen and water molecules into the oxygen-derived active species (oxidants). These oxidants photo-oxidize the hexadecyl (HD) monolayer in VUV irradiated regions (Khatri et al., Langmuir. 24 (2008) 12077), as well as the little concentration of oxidants diffuses towards the masked areas. In this study, we performed VUV patterning at a vacuum pressure of 10 Pa to track the diffusion pathways for the oxidants with help of gold nanoparticles (AuNPs; {phi} = 10 nm) immobilization. At VUV irradiated sites AuNPs are found as uniformly distributed, but adjacent to the pattern boundary we observed quasi-linear arrays of AuNPs, which are determined by diffusion pathways of the oxidants. The diffusion of oxidants plays vital role in pattern broadening. The site selective anchoring of AuNPs demonstrates the utility of VUV photons for the construction of functional materials with microstructural architecture.

  19. Medroxyprogesterone acetate attenuates estrogen-induced nitric oxide production in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Oishi, Akira; Ohmichi, Masahide; Takahashi, Kazuhiro; Takahashi, Toshifumi; Mori-Abe, Akiko; Kawagoe, Jun; Otsu, Reiko; Mochizuki, Yoshiko; Inaba, Noriyuki; Kurachi, Hirohisa

    2004-01-01

    We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17β estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner

  20. Crocin attenuates hemorrhagic shock-induced oxidative stress and organ injuries in rats.

    Science.gov (United States)

    Yang, Long; Dong, Xiujuan

    2017-06-01

    We aimed to evaluate the effect of natural antioxidant crocin in alleviating hemorrhagic shock (HS)-induced organ damages. HS rats were treated with crocin during resuscitation. Mortality at 12h and 24h post resuscitation was documented. HS and resuscitation induced organ injuries, as characterized by elevated wet/dry ratio, quantitative assessment ratio, blood urea nitrogen, creatinine, aspartate aminotransferase and alanine aminotransferase, whereas rats received crocin treatment demonstrated improvements in all the above characteristics. This protective effect coincided with reduced malondialdehyde and increased glutathione in both serum and lung tissues, indicating attenuated oxidative stress in crocin-treated rats. Myeloperoxide levels in lung, kidney and liver were also reduced. Crocin can potentially be used to protect organs from HS-induced damages during resuscitation due to its anti-oxidative role. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  2. Nitric Oxide-Induced Polycystic Ovaries in The Wistar Rat

    Directory of Open Access Journals (Sweden)

    Fatemeh Hassani

    2012-01-01

    Full Text Available Background: Nitric oxide (NO involves in polycystic ovary syndrome (PCOS, a causeof infertility in women during the reproductive age. The PCOS is now categorized as aninflammatory phenomenon. The aim of this study was to evaluate the role of NO, a proinflammatoryagent, in this syndrome at histological and biochemical levels.Materials and Methods: In this experimental study, animals were female Wistar rats(weighing 200-250 g kept under standard conditions. L-Arginine (50-200 mg/kg, a precursorof NO, was injected intra-peritoneally (i.p. through a period ranging from 9 to14 days/once a day. The rats' estrous cycle was studied using Papanicolaou test; those showing phaseof Diestrous were grouped into experimental and control groups. The control group solelyreceived saline (1 ml/kg, i.p. throughout all experiments. To evaluate the inflammatory effectof NO, the rats were treated an anti-inflammatory agent, naloxone hydrochloride (0.4 mg/kg,i.p., prior to L-arginine. At the end of the treatment period all animals’ ovaries were assessedfor histopathological and histochemical investigations. Also, activation of NO synthase (NOSin the experiments was studied using NADPH-diaphorase technique.Results: The ovaries of rats treated with L-arginine showed polycystic characteristics incontrast to those collected from control or naloxone pretreated groups, based on image analysis.A difference in enzyme activation was also shown in the sections that belonged to thegroups that received L-arginine when compared with the pre-naloxone and control groups.Conclusion: Based on these results, we believe that NO may play a major role in thepathophysiology of PCOS.

  3. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    Science.gov (United States)

    Litwak, Sara A.; Loh, Kim; Stanley, William J.; Pappas, Evan G.; Wali, Jibran A.; Selck, Claudia; Strasser, Andreas; Thomas, Helen E.; Gurzov, Esteban N.

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14–17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  4. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    Full Text Available Abstract The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB, resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2. Nrf2 then induces the transcription of antioxidant response elements (ARE. Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr, catalase (CAT, heme-oxygenase-1 (HO-1, NADPH-quinone-oxidoreductase (NQO-1, phase II enzymes of drug metabolism and heat shock proteins (HSP. Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT and activated protein-1 (AP-1. Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a, which is also induced via

  5. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis