WorldWideScience

Sample records for insulin significantly increased

  1. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    M. E. Hansen

    2014-01-01

    Full Text Available Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects.

  2. Insulin and insulin-like growth factor-1 increased in preterm neonates following massage therapy.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Dieter, John N I; Kumar, Adarsh M; Schanberg, Saul; Kuhn, Cynthia

    2008-12-01

    To determine if massage therapy increased serum insulin and insulin-like growth factor-1 (IGF-1) in preterm neonates. Forty-two preterm neonates who averaged 34.6 weeks (M = 29.5 wk gestational age; M birth weight = 1237 g) and were in the "grower" (step-down) nursery were randomly assigned to a massage therapy group (body stroking and passive limb movements for three, 15-minute periods per day for 5 days) or a control group that received the standard nursery care without massage therapy. On Days 1 and 5, the serum collected by clinical heelsticks was also assayed for insulin and IGF-1, and weight gain and kilocalories consumed were recorded daily. Despite similar formula intake, the massaged preterm neonates showed greater increases during the 5-day period in (1) weight gain; (2) serum levels of insulin; and (3) IGF-1. Increased weight gain was significantly correlated with insulin and IGF-1. Previous data suggested that preterm infant weight gain following massage therapy related to increased vagal activity, which suggests decreased stress and gastric motility, which may contribute to more efficient food absorption. The data from this study suggest for the first time that weight gain was also related to increased serum insulin and IGF-1 levels following massage therapy. Preterm infants who received massage therapy not only showed greater weight gain but also a greater increase in serum insulin and IGF-1 levels, suggesting that massage therapy might be prescribed for all growing neonates.

  3. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K

    1996-01-01

    is essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove...... is effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise...... to be additive stimuli of muscle glucose uptake at any plasma insulin level. In conclusion, the extent to which muscle glucose uptake is stimulated during exercise depends on various factors, including 1) the intensity of the contractile activity, 2) the magnitude of the exercise-associated increase in muscle...

  4. Increased prevalence of insulin-treated diabetes mellitus in Funen County, Denmark

    DEFF Research Database (Denmark)

    Eshøj, O; Green, A; Borch-Johnsen, K

    1994-01-01

    : There was a significant increase in the prevalence of insulin-treated diabetes mellitus in Funen County, Denmark from 1973 to 1987. Analysis of the data shows that an important factor for this increase is a liability to start insulin treatment of type 2 (non-insulin-dependent) diabetes mellitus at an earlier stage than...

  5. Parity Increases Insulin Requirements in Pregnant Women With Type 1 Diabetes.

    Science.gov (United States)

    Skajaa, Gitte Ø; Fuglsang, Jens; Kampmann, Ulla; Ovesen, Per G

    2018-06-01

    Tight glycemic control throughout pregnancy in women with type 1 diabetes is crucial, and knowledge about which factors that affect insulin sensitivity could improve the outcome for both mother and offspring. To evaluate insulin requirements in women with type 1 diabetes during pregnancy and test whether parity affects insulin requirements. Observational cohort study consisting of women with type 1 diabetes who gave birth at Aarhus University Hospital, Denmark, from 2004 to 2014. Daily insulin requirement (the hypothesis that parity could affect insulin resistance was formulated before data collection). A total of 380 women with a total of 536 pregnancies were included in the study. Mean age was 31.1 years, and prepregnancy hemoglobin A1c was 60 mmol/mol. Parity was as follows: P0, 43%; P1, 40%; P2, 14%; and P3+4, 3%. Insulin requirements from weeks 11 to 16 decreased significantly by 4% (P = 0.0004) and rose from week 19 to delivery with a peak of 70% (P insulin requirements increased significantly with parity. The unadjusted differences between P0 and P1, P2, and P3+4 were 9% (P insulin requirements from week to week in pregnancy and indicate that insulin requirements increase with parity. This suggests that the patient's parity probably should be considered in choosing insulin dosages for pregnant women with type 1 diabetes.

  6. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity....... Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured...... that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole...

  7. Exponential increase in postprandial blood-glucose exposure with increasing carbohydrate loads using a linear carbohydrate-to-insulin ratio.

    Science.gov (United States)

    Marran, K J; Davey, B; Lang, A; Segal, D G

    2013-04-10

    Postprandial glucose excursions contribute significantly to average blood glucose, glycaemic variability and cardiovascular risk. Carbohydrate counting is a method of insulin dosing that balances carbohydrate load to insulin dose using a fixed ratio. Many patients and current insulin pumps calculate insulin delivery for meals based on a linear carbohydrate-to-insulin relationship. It is our hypothesis that a non-linear relationship exists between the amounts of carbohydrate consumed and the insulin required to cover it. To document blood glucose exposure in response to increasing carbohydrate loads on fixed carbohydrate-to-insulin ratios. Five type 1 diabetic subjects receiving insulin pump therapy with good control were recruited. Morning basal rates and carbohydrate- to-insulin ratios were optimised. A Medtronic glucose sensor was used for 5 days to collect data for area-under-the-curve (AUC) analysis, during which standardised meals of increasing carbohydrate loads were consumed. Increasing carbohydrate loads using a fixed carbohydrate-to-insulin ratio resulted in increasing glucose AUC. The relationship was found to be exponential rather than linear. Late postprandial hypoglycaemia followed carbohydrate loads of >60 g and this was often followed by rebound hyperglycaemia that lasted >6 hours. A non-linear relationship exists between carbohydrates consumed and the insulin required to cover them. This has implications for control of postprandial blood sugars, especially when consuming large carbohydrate loads. Further studies are required to look at the optimal ratios, duration and type of insulin boluses required to cover increasing carbohydrate loads.

  8. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin.

    Science.gov (United States)

    Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E

    2008-11-15

    We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.

  9. Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance.

    Directory of Open Access Journals (Sweden)

    Mengliu Yang

    Full Text Available BACKGROUND: Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21 activity in High-fat diet (HFD fed ApoE(-/- mice with adiponectin (Acrp30 knockdown. METHOD: HFD-fed ApoE(-/- mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes. RESULTS: The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1 and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals. CONCLUSION: These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be

  10. Failure to increase insulin secretory capacity during pregnancy-induced insulin resistance is associated with ethnicity and gestational diabetes.

    Science.gov (United States)

    Mørkrid, Kjersti; Jenum, Anne K; Sletner, Line; Vårdal, Mari H; Waage, Christin W; Nakstad, Britt; Vangen, Siri; Birkeland, Kåre I

    2012-10-01

    To assess changes in insulin resistance and β-cell function in a multiethnic cohort of women in Oslo, Norway, from early to 28 weeks' gestation and 3 months post partum and relate the findings to gestational diabetes mellitus (GDM). Population-based cohort study of 695 healthy pregnant women from Western Europe (41%), South Asia (25%), Middle East (15%), East Asia (6%) and elsewhere (13%). Blood samples and demographics were recorded at mean 15 (V1) and 28 (V2) weeks' gestation and 3 months post partum (V3). Universal screening was by 75 g oral glucose tolerance test at V2, GDM with modified IADPSG criteria (no 1-h measurement): fasting plasma glucose (PG) ≥5.1 or 2-h PG ≥8.5 mmol/l. Homeostatic model assessment (HOMA)-β (β-cell function) and HOMA-IR (insulin resistance) were calculated from fasting glucose and C-peptide. Characteristics were comparable across ethnic groups, except age (South Asians: younger, Pinsulin resistant than Western Europeans at V1. From V1 to V2, the increase in insulin resistance was similar across the ethnic groups, but the increase in β-cell function was significantly lower for the East and South Asians compared with Western Europeans. GDM women compared with non-GDM women were more insulin resistant at V1; from V1 to V2, their β-cell function increased significantly less and the percentage increase in β-cell function did not match the change in insulin resistance. Pregnant women from East Asia and South Asia were more insulin resistant and showed poorer HOMA-β-cell function than Western Europeans.

  11. Plasma insulin levels are increased by sertraline in rats under oral glucose overload

    Directory of Open Access Journals (Sweden)

    Gomez R.

    2001-01-01

    Full Text Available Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10. Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

  12. Increased insulin sensitivity in intrauterine growth retarded newborns--do thyroid hormones play a role?

    Science.gov (United States)

    Setia, Sajita; Sridhar, M G; Koner, B C; Bobby, Zachariah; Bhat, Vishnu; Chaturvedula, Lata

    2007-02-01

    Thyroid hormones are necessary for normal brain development. We studied thyroid hormone profile and insulin sensitivity in intrauterine growth retarded (IUGR) newborns to find correlation between insulin sensitivity and thyroid status in IUGR newborns. Fifty IUGR and fifty healthy control infants were studied at birth. Cord blood was collected for determination of T(3), T(4), TSH, glucose and insulin levels. IUGR newborns had significantly lower insulin, mean+/-S.D., 5.25+/-2.81 vs. 11.02+/-1.85microU/ml, but significantly higher insulin sensitivity measured as glucose to insulin ratio (G/I), 9.80+/-2.91 vs. 6.93+/-1.08 compared to healthy newborns. TSH was also significantly higher 6.0+/-2.70 vs. 2.99+/-1.05microU/ml with significantly lower T(4), 8.65+/-1.95 vs. 9.77+/-2.18microg/dl, but similar T(3) levels, 100.8+/-24.36 vs. 101.45+/-23.45ng/dl. On stepwise linear regression analysis in IUGR infants, insulin sensitivity was found to have a significant negative association with T(4) and significant positive association with TSH. Thyroid hormones may play a role in increased insulin sensitivity at birth in IUGR.

  13. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs.

    Science.gov (United States)

    Cai, Chunbo; Qian, Lili; Jiang, Shengwang; Sun, Youde; Wang, Qingqing; Ma, Dezun; Xiao, Gaojun; Li, Biao; Xie, Shanshan; Gao, Ting; Chen, Yaoxing; Liu, Jie; An, Xiaorong; Cui, Wentao; Li, Kui

    2017-05-23

    Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn -/- ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn -/- pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn -/- pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn -/- pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn -/- skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.

  14. Efficacy and safety comparison between liraglutide as add-on therapy to insulin and insulin dose-increase in Chinese subjects with poorly controlled type 2 diabetes and abdominal obesity

    Directory of Open Access Journals (Sweden)

    Li Chun-jun

    2012-11-01

    Full Text Available Abstract Objective To assess the efficacy and safety of adding liraglutide to established insulin therapy in poorly controlled Chinese subjects with type 2 diabetes and abdominal obesity compared with increasing insulin dose. Methods A 12-week, randomized, parallel-group study was carried out. A total of 84 patients completed the trial who had been randomly assigned to either the liraglutide-added group or the insulin-increasing group while continuing current insulin based treatment. Insulin dose was reduced by 0-30% upon the initiation of liraglutide. Insulin doses were subsequently adjusted to optimized glycemic control. Glycosylated hemoglobin (HbA1c values, blood glucose, total daily insulin dose, body weight, waist circumference, and the number of hypoglycemic events and adverse events were evaluated. Results At the end of study, the mean reduction in HbA1c between the liraglutide-added group and the insulin-increasing group was not significantly different (1.9% vs. 1.77%, p>0.05. However, the percentage of subjects reaching the composite endpoint of HbA1c ≤ 7.0% with no weight gain and no hypoglycemia, was significantly higher in the liraglutide-added group than in the insulin-increasing group (67% vs. 19%, p2, p Conclusions Addition of liraglutide to abdominally obese, insulin-treated patients led to improvement in glycemic control similar to that achieved by increasing insulin dosage, but with a lower daily dose of insulin and fewer hypoglycemic events. Adding liraglutide to insulin also induced a significant reduction in body weight and waist circumference. Liraglutide combined with insulin may be the best treatment option for poorly controlled type 2 diabetes and abdominal obesity.

  15. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  16. Chronic exercise increases insulin binding in muscles but not liver

    International Nuclear Information System (INIS)

    Bonen, A.; Clune, P.A.; Tan, M.H.

    1986-01-01

    It has been postulated that the improved glucose tolerance provoked by chronic exercise is primarily attributable to increased insulin binding in skeletal muscle. Therefore, the authors investigated the effects of progressively increased training (6 wk) on insulin binding by five hindlimb skeletal muscles and in liver. In the trained animals serum insulin levels at rest were lower either in a fed or fasted state and after an oral glucose tolerance test. Twenty-four hours after the last exercise bout sections of the liver, soleus (S), plantaris (P), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG) muscles were pooled from four to six rats. Insulin binding to plasma membranes increased in S, P, and EDL but not in WG or in liver. There were insulin binding differences among muscles. Comparison of rank orders of insulin binding data with published glucose transport data for the same muscles revealed that these parameters do not correspond well. In conclusion, insulin binding to muscle is shown to be heterogeneous and training can increase insulin binding to selected muscles but not liver

  17. Insulin-mediated increases in renal plasma flow are impaired in insulin-resistant normal subjects

    NARCIS (Netherlands)

    ter Maaten, JC; Bakker, SJL; Serne, EH; Moshage, HJ; Gans, ROB

    2000-01-01

    Background Impaired vasodilatation in skeletal muscle is a possible mechanism linking insulin resistance to blood pressure regulation. Increased renal vascular resistance has been demonstrated in the offspring of essential hypertensives. We assessed whether insulin-mediated renal vasodilatation is

  18. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    and increased similarly in both legs during the clamp and L-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4...... and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand....

  19. Elevated fasting insulin levels increase the risk of abdominal obesity in Korean men.

    Science.gov (United States)

    Park, Sung Keun; Oh, Chang-Mo; Jung, Taegi; Choi, Young-Jun; Chung, Ju Youn; Ryoo, Jae-Hong

    2017-04-01

    This study was designed to investigate whether an elevated fasting insulin level predicts abdominal obesity. A cohort study was conducted with 13,707 non-obese Korean men. They were categorized into 4 groups according to the quartile of fasting insulin level, and followed up from 2005 to 2010. Incidence rates of obesity were compared among the 4 groups during follow-up, and a Cox proportional hazards model was used to calculate hazard ratios (HRs) for abdominal obesity according to fasting insulin level. The overall incidence rate of obesity was 16.2%, but the rate increased in proportion to the fasting insulin level (quartiles 1-4: 9.8%, 12.4%, 16.9%, 25.5%, Pobesity increased proportionally to baseline fasting insulin level in an unadjusted model. However, after adjustment for covariates, including baseline waist circumference (WC), only in the quartile 4 group was the statistical significance of the association maintained [quartile 2-4; abdominal obesity: 0.89 (0.76-1.02), 1.00 (0.86-1.14) and 1.24 (1.08-1.43), P for trend obesity was highest in the group with the highest fasting insulin levels, an overall proportional relationship between fasting insulin level and incident abdominal obesity was not found. Additionally, this association was largely accounted for by baseline WC. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes.

    Science.gov (United States)

    Farese, R V; Cooper, D R; Konda, T S; Nair, G; Standaert, M L; Davis, J S; Pollet, R J

    1988-01-01

    We previously suggested that insulin increases diacylglycerol (DAG) in BC3H-1 myocytes, both by increases in synthesis de novo of phosphatidic acid (PA) and by hydrolysis of non-inositol-containing phospholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). We have now evaluated these insulin effects more thoroughly, and several potential mechanisms for their induction. In studies of the effect on PA synthesis de novo, insulin stimulated [2-3H]glycerol incorporation into PA, DAG, PC/PE and total glycerolipids of BC3H-1 myocytes, regardless of whether insulin was added simultaneously with, or after 2 h or 3 or 10 days of prelabelling with, [2-3H]glycerol. In prelabelled cells, time-related changes in [2-3H]glycerol labelling of DAG correlated well with increases in DAG content: both were maximal in 30-60 s and persisted for 20-30 min. [2-3H]Glycerol labelling of glycerol 3-phosphate, on the other hand, was decreased by insulin, presumably reflecting increased utilization for PA synthesis. Glycerol 3-phosphate concentrations were 0.36 and 0.38 mM before and 1 min after insulin treatment, and insulin effects could not be explained by increases in glycerol 3-phosphate specific radioactivity. In addition to that of [2-3H]glycerol, insulin increased [U-14C]glucose and [1,2,3-3H]glycerol incorporation into DAG and other glycerolipids. Effects of insulin on [2-3H]glycerol incorporation into DAG and other glycerolipids were half-maximal and maximal at 2 nM- and 20 nM-insulin respectively, and were not dependent on glucose concentration in the medium, extracellular Ca2+ or protein synthesis. Despite good correlation between [3H]DAG and DAG content, calculated increases in DAG content from glycerol 3-phosphate specific radioactivity (i.e. via the pathway of PA synthesis de novo) could account for only 15-30% of the observed increases in DAG content. In addition to increases in [3H]glycerol labelling of PC/PE, insulin rapidly (within 30 s) increased PC

  1. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia.

    Science.gov (United States)

    Oh, Pyung Chun; Koh, Kwang Kon; Sakuma, Ichiro; Lim, Soo; Lee, Yonghee; Lee, Seungik; Lee, Kyounghoon; Han, Seung Hwan; Shin, Eak Kyun

    2014-10-20

    Experimental studies demonstrate that higher intake of omega-3 fatty acids (n-3 FA) improves insulin sensitivity, however, we reported that n-3 FA 2g therapy, most commonly used dosage did not significantly improve insulin sensitivity despite reducing triglycerides by 21% in patients. Therefore, we investigated the effects of different dosages of n-3 FA in patients with hypertriglyceridemia. This was a randomized, single-blind, placebo-controlled, parallel study. Age, sex, and body mass index were matched among groups. All patients were recommended to maintain a low fat diet. Forty-four patients (about 18 had metabolic syndrome/type 2 diabetes mellitus) in each group were given placebo, n-3 FA 1 (O1), 2 (O2), or 4 g (O4), respectively daily for 2 months. n-3 FA therapy dose-dependently and significantly decreased triglycerides and triglycerides/HDL cholesterol and improved flow-mediated dilation, compared with placebo (by ANOVA). However, each n-3 FA therapy did not significantly decrease high-sensitivity C-reactive protein and fibrinogen, compared with placebo. O1 significantly increased insulin levels and decreased insulin sensitivity (determined by QUICKI) and O2 significantly decreased plasma adiponectin levels relative to baseline measurements. Of note, when compared with placebo, each n-3 FA therapy did not significantly change insulin, glucose, adiponectin, glycated hemoglobin levels and insulin sensitivity (by ANOVA). We observed similar results in a subgroup of patients with the metabolic syndrome. n-3 FA therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation. Nonetheless, n-3 FA therapy did not significantly improve acute-phase reactants and insulin sensitivity in patients with hypertriglyceridemia, regardless of dosages. Copyright © 2014. Published by Elsevier Ireland Ltd.

  2. Clinical significance of determination of serum cortisol and insulin levels in neonates with asphyxia

    International Nuclear Information System (INIS)

    Yao Yingfei; Chen Linxing; Chen Sihong; Zhang Jinchi; Huang Hua

    2004-01-01

    Objective: To investigate the clinical significance of the changes of serum cortisol and insulin levels in neonates with asphyxia. Methods: Serum cortisol levels were determined with CLIA and serum insulin levels with RIA in 38 neonates with asphyxia (mild degree 20, advanced 18) and 30 controls. Results: 1) In mild cases, serum insulin levels were significantly higher than those in controls (p<0.01) and serum cortisol levels were very significantly higher (p<0.001). 2) In advanced cases, both serum insulin and cortisol levels were very significantly higher than those in the controls (p<0.001). Conclusion: Hypoxia in the neonates with asphyxia is a very severe stress and will induce hypersecretion of cortisol and hyperglycemia which is detrimental to the patients. However hypersecretion of insulin will result in hypoglycemia, which is also very damaging. Physicians in charge should be aware of these possibilities and deal with them appropriately

  3. C-Peptide, Baseline and Postprandial Insulin Resistance after a Carbohydrate-Rich Test Meal - Evidence for an Increased Insulin Clearance in PCOS Patients?

    Science.gov (United States)

    Stassek, J; Erdmann, J; Ohnolz, F; Berg, F D; Kiechle, M; Seifert-Klauss, V

    2017-01-01

    Introduction Known characteristics of patients with PCOS include infertility, menstrual disorders, hirsutism and also often insulin resistance. These symptoms increase with increasing body weight. In the LIPCOS study ( L ifestyle I ntervention for Patients with Polycystic Ovary Syndrome [ PCOS ]) long-term changes of the PCOS in dependence on pregnancy and parenthood were systematically assessed. In the framework of the LIPCOS study, PCOS patients were given a standardised carbohydrate-rich test meal in order to examine glucose homeostasis and insulin secretion. The results were compared with those of a eumenorrhoeic control group who all had corresponding BMI values and corresponding ages. Methods and Patients 41 PCOS patients (without diabetes) and 68 controls received a standardised carbohydrate-rich test meal (260 kcal, 62 % carbohydrates, 32 % fat, 6 % proteins) in order to generate a submaximal insulin and glucose stimulation. The values were determined at baseline and postprandial after 60, 120 and 180 minutes. In addition, the corresponding C-peptide levels were recorded. Results In the PCOS patients (n = 41), the insulin secretion test after a standardised test meal showed almost identical baseline and postprandial insulin levels when compared with those of the age- and BMI-matched eumenorrhoeic controls (n = 68). In the PCOS patients, the baseline and postprandial glucose levels were significantly elevated (92.88 ± 10.28 [PCOS] vs. 85.07 ± 9.42 mg/dL [controls]; p PCOS patients formally exhibit a higher fasting insulin resistance than controls. In spite of the higher stimulated C-peptide levels, the insulin levels did not increase more strongly with increasing glucose levels than in controls which may be indicative of a higher insulin clearance in PCOS patients.

  4. Increased secretion of insulin and proliferation of islet β-cells in rats with mesenteric lymph duct ligation

    International Nuclear Information System (INIS)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki; Kawata, Sumio

    2012-01-01

    Highlights: ► Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. ► Proliferation of islet β-cells was upregulated in lymph duct-ligated rats. ► Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet β-cells in rats. Methods: Male Sprague–Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of β-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of

  5. Exercise Increases Insulin Sensitivity and Skeletal Muscle AMPK Expression in Systemic Lupus Erythematosus: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Fabiana B. Benatti

    2018-04-01

    Full Text Available Systemic lupus erythematosus (SLE patients may show increased insulin resistance (IR when compared with their healthy peers. Exercise training has been shown to improve insulin sensitivity in other insulin-resistant populations, but it has never been tested in SLE. Therefore, the aim of the present study was to assess the efficacy of a moderate-intensity exercise training program on insulin sensitivity and potential underlying mechanisms in SLE patients with mild/inactive disease. A 12-week, randomized controlled trial was conducted. Nineteen SLE patients were randomly assigned into two groups: trained (SLE-TR, n = 9 and non-trained (SLE-NT, n = 10. Before and after 12 weeks of the exercise training program, patients underwent a meal test (MT, from which surrogates of insulin sensitivity and beta-cell function were determined. Muscle biopsies were performed after the MT for the assessment of total and membrane GLUT4 and proteins related to insulin signaling [Akt and AMP-activated protein kinase (AMPK]. SLE-TR showed, when compared with SLE-NT, significant decreases in fasting insulin [−39 vs. +14%, p = 0.009, effect size (ES = −1.0] and in the insulin response to MT (−23 vs. +21%, p = 0.007, ES = −1.1, homeostasis model assessment IR (−30 vs. +15%, p = 0.005, ES = −1.1, a tendency toward decreased proinsulin response to MT (−19 vs. +6%, p = 0.07, ES = −0.9 and increased glucagon response to MT (+3 vs. −3%, p = 0.09, ES = 0.6, and significant increases in the Matsuda index (+66 vs. −31%, p = 0.004, ES = 0.9 and fasting glucagon (+4 vs. −8%, p = 0.03, ES = 0.7. No significant differences between SLT-TR and SLT-NT were observed in fasting glucose, glucose response to MT, and insulinogenic index (all p > 0.05. SLE-TR showed a significant increase in AMPK Thr 172 phosphorylation when compared to SLE-NT (+73 vs. −12%, p = 0.014, ES = 1.3, whereas no

  6. Insulin analog with additional disulfide bond has increased stability and preserved activity

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Ribel, Ulla

    2013-01-01

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide...... bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin...... (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation...

  7. MICRONEEDLES AS A WAY TO INCREASE THE TRANSDERMAL INSULIN DELIVERY

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available Aim: to prove the possibility of increasing the diffusion of insulin through the skin in vitro with pre-applying microneedles.Materials and methods. Microemulsion for transdermal therapeutic system of insulin has been used in vitro studies. Genetically engineered human insulin has been used in this research. Applicators with silicon microneedles (40 and 150 microns long have been used to enhance the diffusion fl ux of drug substance. The dynamics of insulin release from the transdermal therapeutic systems through the rabbit skin has been studied in glass Franz diffusion cells in analyzer diffusion of drugs HDT 1000 (Copley Scientifi c Ltd., UK. Insulin has been labeled with fl uorescein isothiocyanate to separate the insulin absorption spectrum from the spectra of native skin proteins at spectrophotometer measurements.Results. The amounts of insulin delivered through the skin in vitro after previous application of microneedles of 40 and 150 microns are 282.5 ± 61.1 and 372.3 ± 7.0 microgram, respectively. This is 1.4 and 1.9 times more than in the transdermal system without microneedles.Conclusion. The conditions for increasing the diffusion of insulin through the skin in a model transdermal therapeutic system with microneedles (length – 150 microns, duration of pre-application – 1 hour have been found.

  8. Increased secretion of insulin and proliferation of islet {beta}-cells in rats with mesenteric lymph duct ligation

    Energy Technology Data Exchange (ETDEWEB)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Kawata, Sumio, E-mail: Sumio_Kawata@pref.hyogo.lg.jp [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya 662-0918 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2

  9. Starvation increases insulin sensitivity and reduces juvenile hormone synthesis in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Meritxell Perez-Hedo

    Full Text Available The interactions between the insulin signaling pathway (ISP and juvenile hormone (JH controlling reproductive trade-offs are well documented in insects. JH and insulin regulate reproductive output in mosquitoes; both hormones are involved in a complex regulatory network, in which they influence each other and in which the mosquito's nutritional status is a crucial determinant of the network's output. Previous studies reported that the insulin-TOR (target of rapamacyn signaling pathway is involved in the nutritional regulation of JH synthesis in female mosquitoes. The present studies further investigate the regulatory circuitry that controls both JH synthesis and reproductive output in response to nutrient availability.We used a combination of diet restriction, RNA interference (RNAi and insulin treatments to modify insulin signaling and study the cross-talk between insulin and JH in response to starvation. JH synthesis was analyzed using a newly developed assay utilizing fluorescent tags.Our results reveal that starvation decreased JH synthesis via a decrease in insulin signaling in the corpora allata (CA. Paradoxically, starvation-induced up regulation of insulin receptor transcripts and therefore "primed" the gland to respond rapidly to increases in insulin levels. During this response to starvation the synthetic potential of the CA remained unaffected, and the gland rapidly and efficiently responded to insulin stimulation by increasing JH synthesis to rates similar to those of CA from non-starved females.

  10. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  11. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    Science.gov (United States)

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  12. l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes.

    Science.gov (United States)

    Achari, Arunkumar E; Jain, Sushil K

    2017-09-15

    Diabetic patients have lower blood levels of l-cysteine (LC) and glutathione (GSH). This study examined the hypothesis that LC supplementation positively up regulates the effects of insulin on GSH and glucose metabolism in 3T3-L1 adipocyte model. 3T3L1 adipocytes were treated with LC (250 μM, 2 h) and/or insulin (15 or 30 nM, 2 h), and high glucose (HG, 25 mM, 20 h). Results showed that HG caused significant increase (95%) in ROS and reduction in the protein levels of DsbA-L (43%), adiponectin (64%), GCLC (20%), GCLM (21%), GSH (50%), and GLUT-4 (23%) in adipocytes. Furthermore, HG caused a reduction in total (35%) and HMW adiponectin (30%) secretion. Treatment with insulin alone significantly (p L, adiponectin, GCLC, GCLM, GSH, and GLUT-4 protein levels, glucose utilization, and improved total and HMW adiponectin secretion in HG treated adipocytes compared to HG alone. Interestingly, LC supplementation along with insulin caused greater reduction in ROS levels and significantly (p L (41% vs LC, 29% vs Insulin), adiponectin (92% Vs LC, 84% Vs insulin) protein levels and total (32% Vs LC, 22% Vs insulin) and HMW adiponectin (75% Vs LC, 39% Vs insulin) secretion compared with the either insulin or LC alone in HG-treated cells. In addition, LC supplementation along with insulin increased GCLC (21% Vs LC, 14% insulin), GCLM (28% Vs LC, 16% insulin) and GSH (25% Vs LC and insulin) levels compared with the either insulin or LC alone in HG-treated cells. Furthermore, LC and insulin increases GLUT-4 protein expression (65% Vs LC, 18% Vs Insulin), glucose utilization (57% Vs LC, 27% Vs insulin) compared with the either insulin or LC alone in HG-treated cells. Similarly, LC supplementation increased insulin action significantly in cells maintained in medium contained control glucose. To explore the beneficial effect of LC is mediated by the upregulation of GCLC, we knocked down GCLC using siRNA in adipoctyes. There was a significant decrease in DsbA-L and GLUT-4 m

  13. Fluvastatin increases insulin-like growth factor-1 gene expression in rat model of metabolic syndrome

    International Nuclear Information System (INIS)

    Mansy, Wael H.; Sourour, Doaa A.; Shaker, Olfat G.; Mahfouz, Mahmoud M.

    2008-01-01

    Insulin-like growth factor-1 (IGF-1) was found to have a role in both glucose homeostasis and cardiovascular diseases. The present study was designed to compare the effects of fluvastatin and metformin on IGF-1 mRNA expression within the liver and other individual components of the metabolic syndrome induced in rats by high fructose feeding. Rats fed 60% fructose in diet for 6 weeks were treated daily with fluvastatin (3.75 mg/kg/day) during the last two weeks and were compared with untreated fructose fed group. Fasting levels of plasma cholesterol, triglyceride, glucose, insulin, nitric oxide products, IGF-1 mRNA within the liver as well as systolic blood pressure and body weight were determined. Compared to control rats, the fructose fed group developed hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia and endothelial dysfunction as well as decreased levels of plasma IGF-1 and its mRNA within the liver. Fructose fed rats treated with fluvastatin or metformin for 2 weeks showed significant decrease in plasma cholesterol, triglyceride, insulin and glucose levels compared to untreated fructose fed group. Also, both drugs increased significantly plasma levels of nitric oxide products and IGF-1 together with significant increase in IGF-1 mRNA within the liver. However, only metformin treated rats showed significant decrease in systolic blood pressure compared to fructose fed group. This study showed that in a rat model of insulin resistance, fluvastatin improves the metabolic profile and increases plasma level of IGF-1 and its gene expression as effective as metformin. (author)

  14. Hyperinsulinemia is associated with increased soluble insulin receptors release from hepatocytes

    Directory of Open Access Journals (Sweden)

    Marcia eHiriart

    2014-06-01

    Full Text Available It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l-1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia the amount of this soluble receptor increases, this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  15. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  16. Relationship between increased serum tumor necrosis factor levels and insulin resistance in patients with essential hypertension

    International Nuclear Information System (INIS)

    Wang Weimin; Li Jinliang; Huang Yongqiang

    2010-01-01

    Objective: To investigate the relationship between serum tumor necrosis factor-α (TNF-α) levels and insulin resistance (IR) in patients with essential by pertension. Methods: Serum TNF-α and free insulin (fINS)levels were measured with RIA in 41 patients with essential hypertension and 38 controls. Insulin resistance was calculated with insulin resistance index (HOMA-IR). Results: The serum TNF-α levels were significantly higher in patients with essential hypertension than those in the controls (P<0.001). The HOMA-IR was also significantly higher in hypertension group than that in controls (P<0.001). Serum TNF-α levels was positively correlated with BMI, HOMA-IR and SBP both in hypertension group and control group (P<0.05). Conclusion: Serum TNF-α level was increased in hypertensive patients and positively correlated with obesity and IR. (authors)

  17. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    Science.gov (United States)

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  18. Insulin Increases Expression of TRPC6 Channels in Podocytes by a Calcineurin-Dependent Pathway

    DEFF Research Database (Denmark)

    Xia, Shengqiang; Liu, Ying; Li, Xinming

    2016-01-01

    and protein in podocytes. Insulin increased TRPC6 transcripts in a time and dose-dependent manner. The insulin-induced elevation of TRPC6 transcripts was blocked in the presence of tacrolimus, cyclosporine A, and NFAT-inhibitor (each p ANOVA and Bonferroni's multiple comparison test). Transcripts......, cyclosporine A, and NFAT-inhibitor blocked that insulin effect (p ANOVA). Immunofluorescence showed that insulin increased TRPC6-expression on the cell surface. Fluorescence-spectrophotometry and manganese quench experiments indicated that the increased TRPC6-expression after insulin...

  19. Increased prevalence of VNTR III of the insulin gene in women with gestational diabetes mellitus (GDM).

    Science.gov (United States)

    Litou, Hariklia; Anastasiou, Eleni; Thalassinou, Louminitsa; Sarika, Helen-Leda; Philippou, George; Alevizaki, Maria

    2007-05-01

    The VNTR polymorphism in the promoter region of the insulin gene (INS-VNTR) affects transcription rate and has been associated with insulin resistance and DM2. Gestational diabetes mellitus (GDM) is a multifactorial disorder, where both impaired insulin secretion and action may be involved. The aim of the study was to examine the distribution of the INS-VNTRs in women with GDM and to investigate possible associations with features of beta cell function and glycaemic control in this population. One hundred and sixty-one women with GDM and 111 normal pregnant women (n) were genotyped for INS-VNTR during the 24th-32nd pregnancy week. Glucose and insulin levels were determined during the diagnostic OGTT. The majority of the previous GDM women were also examined at 3-6 months post-partum. VNTR class III/III genotype was significantly more frequent in the GDM group 8.7% versus 2.7%, p=0.02 giving an OR of 3.97 (1.1-14.29). An increased frequency of the VNTR class III allele was found in those GDM women who required insulin for treatment compared to those controlled with diet alone (12.4% versus 4%, pwomen homozygous for the class III allele without reaching statistical significance (p=0.09). The INS-VNTR class III is more frequent in women who develop GDM, and may be associated with decreased ability of the beta cell to meet the increased insulin requirements as reflected by the need for insulin supplementation for adequate glycaemic control.

  20. Glucose tolerance, insulin release, and insulin binding to monocytes in kidney transplant recipients

    International Nuclear Information System (INIS)

    Briggs, W.A.; Wielechowski, K.S.; Mahajan, S.K.; Migdal, S.D.; McDonald, F.D.

    1982-01-01

    In order to evaluate glucose tolerance following renal transplantation, intravenous glucose tolerance tests (IVGTT), with evaluation of hormonal responses to the intravenous glucose load and percent specific 125 I-insulin binding to peripheral blood monocytes, were studied in eight clinically stable kidney transplant recipients. For comparison purposes, identical studies were done in eight control subjects and seven clinically stable hemodialysis patients. One transplant recipient was glucose intolerant, with fasting hyperglycemia, elevated HbA1C, and abnormal glucose decay constant. Impaired pancreatic insulin release appeared to be the major factor accounting for his glucose intolerance. The seven glucose-tolerant transplant recipients had significantly increased insulin release during IVGTT compared to control subjects, and significant correlations were found among insulin release, glucose decay constant, and fasting blood sugar in those patients. Insulin binding to monocytes was significantly greater in transplant recipients than control subjects due to an increase in insulin binding capacity per cell. A significant correlation was found between percent specific 125 I-insulin binding and steroid dose, expressed as mg/kg body weight/day, in those patients. Thus, chronic steroid administration does not cause glucose intolerance in transplant recipients who manifest steroid-associated increases in pancreatic insulin release and cellular insulin binding capacity

  1. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    Science.gov (United States)

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  2. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  3. Significance of glucagon for insulin secretion and hepatic glycogenolysis during exercise in rats

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H; Holst, J J

    1981-01-01

    The significance of glucagon and of the sympatho-adrenal system for insulin secretion and hepatic glycogen depletion during exercise was studied. Male rats were either adrenodemedullated and chemically sympathectomized with 6-hydroxydopamine (SX) or sham-treated (C). During light ether anesthesia......, cardiac blood for glucose analysis and a biopsy of the liver were obtained, and either antigen-stripped glucagon antibodies (A) or control gamma globulins (N) in saline were injected through the cardiac cannula. Subsequently, the rats swam in tepid water (33-34 degree C) for 100 minutes with a tail weight...... attached (2% of body weight). Then cardiac blood was drawn for analysis of glucose, insulin and glucagon, and a sample of the liver was collected. In both CA and CN rats, the blood glucose concentration tended to increase (p less than 0.1) during exercise, whereas hepatic glycogen depletion and the plasma...

  4. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1-40/42 and Phospho-Tau May Abet Alzheimer Development.

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret; Farese, Robert V

    2016-07-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat-fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1-40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1-40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Parity and increased risk of insulin resistance in postmenopausal women: the 2010 Korean National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Kim, Jin Hwi; Lee, Sung Jong

    2017-07-01

    The objective of this study was to assess the association between parity and insulin resistance in nondiabetic, postmenopausal women. This cross-sectional study was conducted using data from the 2010 Korean National Health and Nutrition Examination Survey administered by the Korean Ministry of Health and Welfare. A total of 1,243 nondiabetic postmenopausal women were included in this study and subdivided into three groups according to parity (1-2, 3-4, and ≥5 live births). Insulin resistance was measured using the homeostasis model assessment of insulin resistance (HOMA-IR) index. The relationship between parity and insulin resistance was investigated using analysis of covariance. HOMA-IR showed a positive relationship with parity. Mean HOMA-IR (geometric mean and 95% CI) increased according to increasing parity group (1-2, 3-4, and ≥5 live births) after adjustment for age, smoking, alcohol consumption, exercise, education, income, and body mass index as follows: 2.1 (2.0-2.2) insulin resistance was accompanied by obesity. The mean parity of the obese and insulin-resistant group was significantly higher than that of the nonobese insulin-sensitive group (3.6 ± 0.1 vs 3.2 ± 0.1, P = 0.047). Our study provides the first evidence that parity is significantly associated with insulin resistance in nondiabetic postmenopausal women. Further prospective longitudinal studies are needed to confirm the impact of parity on insulin resistance.

  6. Protein and fat meal content increase insulin requirement in children with type 1 diabetes – Role of duration of diabetes

    Directory of Open Access Journals (Sweden)

    M. van der Hoogt

    2017-12-01

    Full Text Available Background and objective: Hyperglycaemia remains a challenge in type 1 diabetes since current regimes used to determine meal insulin requirements prove to be ineffective. This is particularly problematic for meals containing high amounts of protein and fat. We aimed to determine the post-prandial glycaemic response and total insulin need for mixed meals, using sensor-augmented insulin pumps in children with type 1 diabetes. Methods: Twenty-two children with type 1 diabetes, aged 4–17 years on insulin pump therapy completed this home-based, cross-over, randomised controlled trial. Two meals with identical carbohydrate content – one with low fat and protein (LFLP and one with high fat and protein (HFHP contents – were consumed using normal insulin boluses. Blood glucose monitoring was done for 10 h post-meal, with correction bolus insulin given two-hourly if required. Results: The HFHP meal required significantly more total insulin (3.48 vs. 2.7 units as a result of increased post-meal correction insulin requirement (1.2 vs. 0.15 units spread over a longer duration (6 vs. 3 h. The HFHP meals significantly increased the time spent above target glucose level. Duration of diabetes and total daily insulin use significantly influenced the post-prandial blood glucose response to the two meals. Conclusion: When consuming carbohydrate-based mixed meals, children with type 1 diabetes on insulin pump therapy, required significantly more insulin over a longer period of time than the insulin requirement calculated using current regimes. This additional amount required is influenced by the duration of diabetes and total daily insulin use. Keywords: Carbohydrate, Protein and fat, Type 1 diabetes, Glucose, Insulin infusion systems

  7. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    Science.gov (United States)

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  8. GCKR variants increase triglycerides while protecting from insulin resistance in Chinese children.

    Science.gov (United States)

    Shen, Yue; Wu, Lijun; Xi, Bo; Liu, Xin; Zhao, Xiaoyuan; Cheng, Hong; Hou, Dongqing; Wang, Xingyu; Mi, Jie

    2013-01-01

    Variants in gene encoding glucokinase regulator protein (GCKR) were found to have converse effects on triglycerides and glucose metabolic traits. We aimed to investigate the influence of GCKR variants for triglycerides and glucose metabolic traits in Chinese children and adults. We genotyped two GCKR variants rs1260326 and rs1260333 in children and adults, and analyzed the association between two variants and triglycerides, glucose, insulin and HOMA-IR using linear regression model, and estimated the effect on insulin resistance using logistic regression model. Rs1260326 and rs1260333 associated with increased triglycerides in children and adults (ptriglycerides in Chinese children and adults. Triglycerides-increasing alleles of GCKR variants reduce insulin and HOMA-IR index, and protect from insulin resistance in children. Our results suggested GCKR has an effect on development of insulin resistance in Chinese children.

  9. Reversal of diet-induced obesity increases insulin transport into cerebrospinal fluid and restores sensitivity to the anorexic action of central insulin in male rats.

    Science.gov (United States)

    Begg, Denovan P; Mul, Joram D; Liu, Min; Reedy, Brianne M; D'Alessio, David A; Seeley, Randy J; Woods, Stephen C

    2013-03-01

    Diet-induced obesity (DIO) reduces the ability of centrally administered insulin to reduce feeding behavior and also reduces the transport of insulin from the periphery to the central nervous system (CNS). The current study was designed to determine whether reversal of high-fat DIO restores the anorexic efficacy of central insulin and whether this is accompanied by restoration of the compromised insulin transport. Adult male Long-Evans rats were initially maintained on either a low-fat chow diet (LFD) or a high-fat diet (HFD). After 22 weeks, half of the animals on the HFD were changed to the LFD, whereas the other half continued on the HFD for an additional 8 weeks, such that there were 3 groups: 1) a LFD control group (Con; n = 18), 2) a HFD-fed, DIO group (n = 17), and 3) a HFD to LFD, DIO-reversal group (DIO-rev; n = 18). The DIO reversal resulted in a significant reduction of body weight and epididymal fat weight relative to the DIO group. Acute central insulin administration (8 mU) reduced food intake and caused weight loss in Con and DIO-rev but not DIO rats. Fasting cerebrospinal fluid insulin was higher in DIO than Con animals. However, after a peripheral bolus injection of insulin, cerebrospinal fluid insulin increased in Con and DIO-rev rats but not in the DIO group. These data provide support for previous reports that DIO inhibits both the central effects of insulin and insulin's transport to the CNS. Importantly, DIO-rev restored sensitivity to the effects of central insulin on food intake and insulin transport into the CNS.

  10. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1–40/42 and Phospho-Tau May Abet Alzheimer Development

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret

    2016-01-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat–fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1–40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1–40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. PMID:26895791

  11. Role of increased insulin demand in the adaptation of the endocrine pancreas to pregnancy

    NARCIS (Netherlands)

    Nieuwenhuizen, AG; Schuiling, GA; Moes, H; Koiter, TR

    During gestation the demand for insulin increases due to a decrease in insulin sensitivity of the maternal tissues. Simultaneously, pancreatic islet-cell proliferation, as well as insulin production and secretion increase. Both phenomena appear to be caused by the actions of pregnancy hormones. We

  12. Clinical significance of changes of serum leptin and insulin levels in patients with polycystic ovary syndrome

    International Nuclear Information System (INIS)

    Chen Zhaojun; Zhang Lahong; Gao Ying; Ren Xiaohua

    2007-01-01

    Objective: To explore the relationship between the serum leptin, insulin levels and development of polycystic ovary syndrome (PCOS). Methods: Serum leptin and insulin levels (with RIA) were determined in 34 patients with PCOS and 30 controls. Results: The serum leptin and insulin levels in the 34 PCOS patients were significantly higher than those in controls (P<0. 01), and those in obese patients (n=22) were significantly higher than those in non-obese ones (n=12) too(P<0.01). Conclusion: Changes of serum leptin and insulin levels were closely related to the development of PCOS and leptin might be used as a diagnostic indicator for PCOS. (authors)

  13. DPP-4 inhibitor des-F-sitagliptin treatment increased insulin exocytosis from db/db mice {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagamatsu, Shinya, E-mail: shinya@ks.kyorin-u.ac.jp [Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611 (Japan); Ohara-Imaizumi, Mica; Nakamichi, Yoko; Aoyagi, Kyota; Nishiwaki, Chiyono [Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611 (Japan)

    2011-09-09

    Highlights: {yields} Anti-diabetic new drug, DPP-4 inhibitor, can affect the insulin exocytosis. {yields} DPP-4 inhibitor treatment altered syntaxin 1 expression. {yields} Treatment of db/db mice with DPP-4 inhibitor increased insulin release. -- Abstract: Incretin promotes insulin secretion acutely. Recently, orally-administered DPP-4 inhibitors represent a new class of anti-hyperglycemic agents. Indeed, inhibitors of dipeptidyl peptidase-IV (DPP-4), sitagliptin, has just begun to be widely used as therapeutics for type 2 diabetes. However, the effects of sitagliptin-treatment on insulin exocytosis from single {beta}-cells are yet unknown. We therefore investigated how sitagliptin-treatment in db/db mice affects insulin exocytosis by treating db/db mice with des-F-sitagliptin for 2 weeks. Perfusion studies showed that 2 weeks-sitagliptin treatment potentiated insulin secretion. We then analyzed insulin granule motion and SNARE protein, syntaxin 1, by TIRF imaging system. TIRF imaging of insulin exocytosis showed the increased number of docked insulin granules and increased fusion events from them during first-phase release. In accord with insulin exocytosis data, des-F-sitagliptin-treatment increased the number of syntaxin 1 clusters on the plasma membrane. Thus, our data demonstrated that 2-weeks des-F-sitagliptin-treatment increased the fusion events of insulin granules, probably via increased number of docked insulin granules and that of syntaxin 1 clusters.

  14. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  15. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  16. Elevated insulin and reduced insulin like growth factor binding protein-3/prostate specific antigen ratio with increase in prostate size in Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Sreenivasulu, Karli; Nandeesha, Hanumanthappa; Dorairajan, Lalgudi Narayanan; Rajappa, Medha; Vinayagam, Vickneshwaran

    2017-06-01

    Insulin and insulin like growth factor-1 (IGF-1) have growth promoting effects, while insulin like growth factor binding protein-3 (IGFBP-3) has growth inhibitory effects. The present study was designed to assess the concentrations of insulin, IGF-1, IGFBP-3 and their association with prostate size in patients with BPH. Ninety 90 BPH cases and 90 controls were enrolled in the study. Insulin, IGF-1, IGFBP-3, PSA, testosterone and estradiol were estimated in both the groups. Insulin, IGF-1 and estradiol were increased and IGFBP-3/PSA was decreased in BPH cases when compared with controls. Insulin (r=0.64, p=0.001) and IGF-1 (r=0.22, p=0.03) were positively correlated and IGFBP-3/PSA (r=-0.316, p=0.002) were negatively correlated with prostate size in BPH. Multivariate analysis showed that insulin (p=0.001) and IGFBP-3/PSA (p=0.004) predicts the prostate size in patients with BPH. Insulin was increased and IGFBP-3/PSA was reduced in BPH patients with increased prostate size. At a cutoff concentration of 527.52, IGFBP-3/PSA ratio was found to differentiate benign growth of prostate from normal prostate with 96% sensitivity and 96% specificity. Insulin is elevated and IGFBP-3/PSA is reduced with increase prostate size in BPH cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Nabilatul Hani Mohd-Radzman

    2013-01-01

    Full Text Available Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p<0.001 in normal conditions and up to 4.4 times (p<0.001 in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.

  18. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR

    Science.gov (United States)

    Lloyd, Jesse W.; Zerfass, Kristy M.; Heckstall, Ebony M.; Evans, Kristin A.

    2015-01-01

    Objectives: Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. Methods: We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Results: Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p diet-induced increases in insulin and HOMA-IR. Conclusion: Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin. PMID:26445641

  19. Low-fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women.

    Science.gov (United States)

    Young, Lindsay R; Kurzer, Mindy S; Thomas, William; Redmon, J Bruce; Raatz, Susan K

    2013-07-01

    The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in healthy individuals are not well defined. Three test diets-high-fat diet (40% energy as fat), low-fat diet (LF; 20% energy as fat), and a diet with low fat and high omega-3 fatty acid (LFn3; 23% energy as fat)--were tested in a randomized crossover designed controlled feeding trial in healthy postmenopausal women. Plasma IGF-I, IGF binding protein-3 (IGFBP-3), insulin, glucose, and ratio of IGF-I/IGFBP-3 concentrations were measured in response to diets. Insulin sensitivity was calculated using the homeostatic model assessment of insulin resistance We hypothesized that IGF-I, insulin, and glucose concentrations would decrease and IGFBP-3 concentration would increase in response to the low-fat diets. Eight weeks of the LFn3 diet increased circulating IGF-I (P diet increased IGFBP-3 (P = .04), resulting in trends toward an increased IGF-I/IGFBP-3 ratio with the LFn3 diet and a decreased IGF-I/IGFBP-3 ratio with the LF diet (P = .13 for both comparisons). No statistically significant differences were detected between treatments at baseline or 8 weeks for IGF-1, IGFBP-3, or the ratio of IGF-1/IGFBP-3. Insulin, glucose, and the homeostatic model assessment of insulin resistance were not altered by the interventions. Low-fat diet with high n-3 fatty acids may increase circulating IGF-I concentrations without adversely affecting insulin sensitivity in healthy individuals. Published by Elsevier Inc.

  20. Conversion from insulin glargine U-100 to insulin glargine U-300 or insulin degludec and the impact on dosage requirements.

    Science.gov (United States)

    Pearson, Scott M; Trujillo, Jennifer M

    2018-04-01

    We wanted to determine whether basal insulin requirements change when patients transition from insulin glargine U-100 (Gla-100) to insulin glargine U-300 (Gla-300) or insulin degludec. This study involved subjects seen in the University of Colorado Health Endocrine Clinic who were transitioned from Gla-100 to either Gla-300 ( n = 95) or insulin degludec ( n = 39). The primary outcome was the difference between baseline Gla-100 dose and dose of Gla-300 or insulin degludec prescribed after first follow-up visit within 1-12 months. Secondary outcomes included changes in glycemic control and empiric dose conversion from Gla-100 to Gla-300 or insulin degludec on the day of transition. Wilcoxon rank sum tests evaluated changes in insulin doses, and paired t tests assessed changes in glycemic control using GraphPad statistical software. Median daily basal insulin dose increased for individuals transitioned from Gla-100 to Gla-300 from 30 [19-60 interquartile range (IQR)] units at baseline to 34.5 (19-70 IQR) units after follow up ( p = 0.01). For patients transitioned to insulin degludec, dose changes from baseline to follow up were not significantly different ( p = 0.56). At the time of transition, the prescribed dose of Gla-300 or insulin degludec did not significantly differ from the previous dose of Gla-100 ( p = 0.73 and 0.28, respectively), indicating that empiric dose adjustments were not routinely prescribed. Patients who transitioned from Gla-100 to Gla-300 had increased basal insulin requirements between visits, while basal insulin requirements for those transitioned from Gla-100 to insulin degludec were not significantly different.

  1. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    Science.gov (United States)

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  2. Fluoxetine increases insulin action in obese type II (non-insulin dependent) diabetic patients

    NARCIS (Netherlands)

    Potter van Loon, B. J.; Radder, J. K.; Froelich, M.; Krans, H. Michiel J.; Zwinderman, A. H.; Meinders, A. E.

    1992-01-01

    Insulin resistance contributes to the metabolic defects in non-insulin dependent diabetes mellitus (NIDDM). Anorectic agents have been shown to improve insulin action in NIDDM, irrespective of weight reduction. In a double-blind placebo-controlled cross-over study, we examined hepatic and peripheral

  3. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity.

    Science.gov (United States)

    Baillargeon, Jean-Patrice; Carpentier, André

    2007-10-01

    To determine the effect of reducing insulin secretion on hyperandrogenemia in lean normoinsulinemic women with polycystic ovary syndrome (PCOS) and normal metabolic insulin sensitivity. Transversal assessment at baseline and prospective follow-up of lean PCOS group after 8 days of diazoxide, which reduces insulin secretion, and 1 month of leuprolide, which suppresses LH. Clinical research center of an academic hospital. Nine lean women (body mass index PCOS and normal insulin levels, as well as 17 lean healthy women. Lean PCOS women were reassessed after 8 days of diazoxide and after 1 month of leuprolide, which suppresses LH. Androgen levels and insulin-stimulated glucose disposal (metabolic insulin sensitivity), determined by euglycemic-hyperinsulinemic clamp (M-value). Mean M-value of lean PCOS women (48.5 micromol/kg.min) was similar to lean control subjects (52.9 micromol/kg.min). They also had comparable anthropometric measures, lipids, fibrinogen, and plasminogen activator inhibitor 1. The LH did not change significantly after diazoxide, but was almost suppressed after leuprolide in the PCOS group. Androstenedione decreased significantly after diazoxide and even more after leuprolide. However, free T significantly decreased only after diazoxide in lean PCOS women. Diazoxide also increased SHBG significantly in this group. In women with typical PCOS and normal insulin levels and metabolic insulin sensitivity, reducing insulin secretion significantly decreased androgen and increased SHBG levels. These results suggest that insulin contributes to hyperandrogenemia even in PCOS women with normal metabolic insulin sensitivity, which might be due to increased sensitivity of their androgenic insulin pathway.

  4. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  5. The effects of increasing doses of 2 preparations of long-acting insulin on short-term plasma profiles of glucose and insulin in lactating dairy cows.

    Science.gov (United States)

    Winkelman, L A; Overton, T R

    2012-12-01

    Two experiments were conducted to investigate effects of administering increasing doses of 2 different preparations of long-acting insulin on the 24-h profiles of plasma glucose and insulin concentrations in mid lactation dairy cows. The 2 separately analyzed experiments investigated the effects administering either Humulin N (H), a neutral protamine Hagedorn insulin, or insulin glargine (Lantus, L), an insulin analog, at doses of 0 (control), 0.1, 0.2, and 0.4 IU/kg of body weight in a randomized complete block design. Sixteen cows (237±11 d in milk for H; 213±10 d in milk for L; mean ± SD) were used for each insulin preparation, resulting in n=4 for each dose within insulin preparation. Cows were fitted with a single jugular catheter on the day before the study. On the day of the study, cows were given treatments by subcutaneous injection of either sterile water or the designated insulin type and dose. Blood samples were taken hourly from the jugular catheter. Subcutaneous injection of both H and L resulted in linear decreases in plasma glucose concentrations, increased area under the curve, and decreased nadir for plasma glucose following administration of the insulin preparations. Plasma insulin concentration linearly increased with increasing dose of H. Though elevated concentrations of insulin were measurable in cows treated with H, they were not measurable in cows treated with L. Attempts to measure overall insulin concentrations and metabolites of L by a commercially available ELISA and a commercially available RIA kit were not successful and did not retrieve values that we felt truly represented the amount of insulin activity exhibited during this treatment. Both long-acting insulin preparations elicited insulin-like activity in lactating dairy cows, as evidenced by reduced plasma glucose concentrations. Given these results, the potential exists to use both H and L to study the effects of insulin in mid lactation dairy cows without the confounding

  6. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2.

    Directory of Open Access Journals (Sweden)

    Cécile Pierre-Eugene

    Full Text Available BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R, present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3 production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in

  7. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR.

    Science.gov (United States)

    Lloyd, Jesse W; Zerfass, Kristy M; Heckstall, Ebony M; Evans, Kristin A

    2015-10-01

    Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p HOMA-IR; 846.5 ± 1723.3%, p HOMA-IR. Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin.

  8. Exercise Increases Insulin Content and Basal Secretion in Pancreatic Islets in Type 1 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Han-Hung Huang

    2011-01-01

    Full Text Available Exercise appears to improve glycemic control for people with type 1 diabetes (T1D. However, the mechanism responsible for this improvement is unknown. We hypothesized that exercise has a direct effect on the insulin-producing islets. Eight-week-old mice were divided into four groups: sedentary diabetic, exercised diabetic, sedentary control, and exercised control. The exercised groups participated in voluntary wheel running for 6 weeks. When compared to the control groups, the islet density, islet diameter, and β-cell proportion per islet were significantly lower in both sedentary and exercised diabetic groups and these alterations were not improved with exercise. The total insulin content and insulin secretion were significantly lower in sedentary diabetics compared to controls. Exercise significantly improved insulin content and insulin secretion in islets in basal conditions. Thus, some improvements in exercise-induced glycemic control in T1D mice may be due to enhancement of insulin content and secretion in islets.

  9. Insulin secretion and glucose uptake by isolated islets of the hamster. Effect of insulin, proinsulin and C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J C; McLaughlin, W J; Walsh, M F.J.; Foa, P P [Sinai Hospital of Detroit, Mich. (USA). Dept. of Research

    1976-01-01

    Isolated pancreatic islets of normal hamsters were perfused either in a closed or in a open system. When the buffer was recirculated and the endogenous insulin was allowed to accumulate, the islets secreted significantly less insulin than when the system was open and the endogenous insulin was washed away. The addition of monocomponent insulin or of proinsulin to the perfusion buffer significantly decreased insulin secretion. The inhibitory action of proinsulin was significantly greater than that of monocomponent insulin. C peptide had no effect. When pancreatic islets were incubated in a fixed volume of stationary buffer containing unlabeled glucose (1.0 mg or 3.0 mg/ml) and glucose-U-/sup 14/C (1.0 ..mu..C/ml), the amount of insulin secreted and the /sup 14/CO/sub 2/ produced by each islet decreased progressively as the number of islets in the sample increased. Under these conditions, the concentration of insulin required to inhibit insulin secretion increased with the concentration of glucose in the medium. Proinsulin did not alter the incorporation of leucine-4.5-/sup 3/H into total extractable insulin (insulin + proinsulin). Thus, insulin and proinsulin appear to inhibit insulin release, but not insulin synthesis.

  10. The Effects of Peripheral and Central High Insulin on Brain Insulin Signaling and Amyloid-β in Young and Old APP/PS1 Mice.

    Science.gov (United States)

    Stanley, Molly; Macauley, Shannon L; Caesar, Emily E; Koscal, Lauren J; Moritz, Will; Robinson, Grace O; Roh, Joseph; Keyser, Jennifer; Jiang, Hong; Holtzman, David M

    2016-11-16

    Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APP swe /PS1 dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections

  11. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss

    Directory of Open Access Journals (Sweden)

    J. Schmitz

    2016-05-01

    Conclusions: These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue inflammation and insulin resistance in mice as well as in a significant subpopulation of obese patients.

  12. Association of dyslipidemia, increased insulin resistance, and serum CA 15-3 with increased risk of breast cancer in urban areas of North and Central India

    Directory of Open Access Journals (Sweden)

    Poonam Kachhawa

    2018-01-01

    Full Text Available Objective: This study aims to determine the association of dyslipidemia and increased insulin resistance (IR with increased breast cancer (BC risk. Materials and Methods: The study group comprised 110 premenopausal and 143 postmenopausal, untreated female BC patients in the age range of 29–72 years. Control group consisted of 117 premenopausal and 141 postmenopausal healthy females in the age range of 23–75. Approximately 8-ml blood samples were drawn to measure various biochemical parameters. Serum glucose, total cholesterol, triglyceride (TG, and high-density lipoprotein-cholesterol were measured. Very low-density lipoprotein-cholesterol (VLDL-C and LDL-C were calculated using Friedewald's formula. Serum insulin and serum CA 15-3 were estimated by immune enzymatic assay. IR was assessed using homeostasis model assessment IR index (HOMA-IR. Results: Clinical variables in the case and control groups were compared using the unpaired Student's t-test. The crude and adjusted odds ratios (ORs and 95% confidence intervals (CIs were calculated by binary logistic regression analysis. Pearson's correlation analysis was used to determine the association between CA 15-3 and variables of interest. Total cholesterol, TG, LDL, VLDL, serum glucose, serum insulin, HOMA-IR, and serum CA 15-3 were significantly higher (P < 0.001 in BC patients compared to those in controls. Significant adjusted ORs with 95% CI were found to be fasting glucose, total cholesterol, and TGs. We also found a significant positive correlation between total cholesterol, TG, LDL, serum glucose, serum insulin, HOMA-IR, and serum CA 15-3. Conclusion: This study confirms the association between dyslipidemia, IR, and increased BC risk.

  13. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  14. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    , we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...... of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included...

  15. Diabetes but not insulin increases the risk of lung cancer: a Taiwanese population-based study.

    Directory of Open Access Journals (Sweden)

    Chin-Hsiao Tseng

    Full Text Available BACKGROUND: The trend of lung cancer incidence in Taiwan is unknown, and the association between type 2 diabetes/insulin use and lung cancer is rarely studied. METHODS: The trends of lung cancer incidence in 1979-2007 in the Taiwanese general population were calculated. A random sample of 1,000,000 subjects covered by the National Health Insurance in 2005 was recruited. A total of 494,002 men and 502,948 women and without lung cancer were followed for the annual cumulative incidence of lung cancer in 2005, with calculation of the risk ratios between diabetic and non-diabetic subjects. Logistic regression estimated the adjusted odds ratios for risk factors. RESULTS: The trends increased significantly in both sexes (P<0.0001. The sex-specific annual cumulative incidence increased with age in either the diabetic or non-diabetic subjects, but the risk ratios attenuated with age. In logistic regressions, diabetes was associated with a significantly higher risk, with odds ratios (95% confidence interval for diabetes duration <1, 1-3, 3-5 and ≥5 years versus non-diabetes of 2.189 (1.498-3.200, 1.420 (1.014-1.988, 1.545 (1.132-2.109, and 1.329 (1.063-1.660, respectively. Such an association was not related to a higher detection with chest X-ray examination. Insulin use and medications including oral anti-diabetic drugs, statin, fibrate, and anti-hypertensive agents were not significantly associated with lung cancer. Age, male sex, and chronic obstructive pulmonary disease were positively; but dyslipidemia, stroke and higher socioeconomic status were negatively associated with lung cancer. CONCLUSIONS: Diabetes is significantly associated with a higher risk of lung cancer, but insulin use does not increase the risk.

  16. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Treebak, Jonas Thue; Fentz, Joachim

    2015-01-01

    Acute exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise insulin sensitivity to increase glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood, but appear to involve an increased ...

  17. [Significance of insulin resistance in the pathogenesis of sarcopenia and chronic heart failure in elderly hypertensive patients].

    Science.gov (United States)

    Gorshunova, N K; Medvedev, N V

    2016-01-01

    To determine the pathogenic role of insulin resistance in the formation of involutive sarcopenia and chronic heart failure (CHF) were examined 88 elderly patients with arterial hypertension (AH) and 32 elderly patients without cardiovascular disease by methods of carbohydrate metabolism and the level of brain natriuretic peptide precursor evaluation, muscle mass and strength measuring, echocardiography, 6 minute walking test. It was found that in the group of hypertensive patients with low mass and muscle strength significantly increased indices of insulin resistance and more expressed signs of the left ventricle myocardial dysfunction and functional class of heart failure, probably as a result of disorders of energy homeostasis, resulting from the deterioration of glucose into the muscle cells of the heart and skeletal muscles.

  18. [Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy].

    Science.gov (United States)

    Pesić, Milica; Zivić, Sasa; Radenković, Sasa; Velojić, Milena; Dimić, Dragan; Antić, Slobodan

    2007-04-01

    Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin) for basal insulin supply in patients with type 1 diabetes. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IT) were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15); 2. NPH insulin twice daily (n = 15); 3. insulin glargine once daily (n = 18). Meal time insulin aspart was continued in all groups. Fasting blood glucose (FBG) was lower in the glargine group (7.30+/-0.98 mmol/1) than in the twice daily NPH group (7.47+/-1.06 mmol/1), but without significant difference. FBG was significantly higher in the once daily NPH group (8.44+/-0.85 mmol/l; p < 0.05). HbAlc after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72+/-0.86% to 6.87+/-0.50%), as well as in the twice daily NPH group (from 7.80+/-0.83% to 7.01+/-0.63%). Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56+/-2.09) than in both NPH groups (9.0+/-1.65 in twice daily NPH group and 8.13+/-1.30 in other NPH group) (episodes/patients-month, p < 0.05). Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbAlc and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  19. MECHANISMS IN ENDOCRINOLOGY: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review.

    Science.gov (United States)

    Trommelen, Jorn; Groen, Bart B L; Hamer, Henrike M; de Groot, Lisette C P G M; van Loon, Luc J C

    2015-07-01

    Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. To assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults. A systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects. From the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50, 000  pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults. © 2015 European Society of Endocrinology.

  20. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    Science.gov (United States)

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P intermittent hypoxia is dependent on the disruption of leptin pathways.

  1. Insulin resistance induced by hydrocortisone is increased in patients with abdominal obesity.

    Science.gov (United States)

    Darmon, Patrice; Dadoun, Frédéric; Boullu-Ciocca, Sandrine; Grino, Michel; Alessi, Marie-Christine; Dutour, Anne

    2006-11-01

    Glucocorticoids hypersensitivity may be involved in the development of abdominal obesity and insulin resistance. Eight normal weight and eight obese women received on two occasions a 3-h intravenous infusion of saline or hydrocortisone (HC) (1.5 microg x kg(-1) x min(-1)). Plasma cortisol, insulin, and glucose levels were measured every 30 min from time(-30) (min) (time(-30)) to time(240). Free fatty acids, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were measured at time(-30), time(180), and time(240). At time(240), subjects underwent an insulin tolerance test to obtain an index of insulin sensitivity (K(ITT)). Mean(30-240) cortisol level was similar in control and obese women after saline (74 +/- 16 vs. 75 +/- 20 microg/l) and HC (235 +/- 17 vs. 245 +/- 47 microg/l). The effect of HC on mean(180-240) insulin, mean(180-240) insulin resistance obtained by homeostasis model assessment (HOMA-IR), and K(ITT) was significant in obese (11.4 +/- 2.0 vs. 8.2 +/- 1.3 mU/l, P obese women (+25%) than in controls (+12%) (P obese women than in controls. These deleterious effects are correlated with the amount of visceral fat.

  2. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  3. Possible increase in insulin resistance and concealed glucose-coupled potassium-lowering mechanisms during acute coronary syndrome documented by covariance structure analysis.

    Science.gov (United States)

    Ito, Satoshi; Nagoshi, Tomohisa; Minai, Kosuke; Kashiwagi, Yusuke; Sekiyama, Hiroshi; Yoshii, Akira; Kimura, Haruka; Inoue, Yasunori; Ogawa, Kazuo; Tanaka, Toshikazu D; Ogawa, Takayuki; Kawai, Makoto; Yoshimura, Michihiro

    2017-01-01

    Although glucose-insulin-potassium (GIK) therapy ought to be beneficial for ischemic heart disease in general, variable outcomes in many clinical trials of GIK in acute coronary syndrome (ACS) had a controversial impact. This study was designed to examine whether "insulin resistance" is involved in ACS and to clarify other potential intrinsic compensatory mechanisms for GIK tolerance through highly statistical procedure. We compared the degree of insulin resistance during ACS attack and remission phase after treatment in individual patients (n = 104). During ACS, homeostasis model assessment of insulin resistance (HOMA-IR) values were significantly increased (Pcovariance structure analysis with a strong impact (β: 0.398, P = 0.015). Intriguingly, a higher incidence of myocardial infarction relative to unstable angina pectoris, as well as a longer hospitalization period were observed in patients with larger ΔK, indicating that ΔK also reflects disease severity of ACS. Insulin resistance most likely increases during ACS; however, ΔK was positively correlated with plasma glucose level, which overwhelmed insulin resistance condition. The present study with covariance structure analysis suggests that there are potential endogenous glucose-coupled potassium lowering mechanisms, other than insulin, regulating glucose metabolism during ACS.

  4. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    Science.gov (United States)

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. FLUOXETINE INCREASES INSULIN ACTION IN OBESE NONDIABETIC AND IN OBESE NON-INSULIN-DEPENDENT DIABETIC INDIVIDUALS

    NARCIS (Netherlands)

    Potter van Loon, B. J.; Radder, J. K.; Froelich, M.; Krans, H. M.; Zwinderman, A. H.; Meinders, A. E.

    1992-01-01

    Insulin resistance contributes to the metabolic defects in non-insulin-dependent diabetes mellitus (NIDDM). Anorectic agents have been shown to improve insulin action in NIDDM, irrespective of weight reduction. The serotonin-reuptake inhibiting agent fluoxetine has recently been recognized as an

  6. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Lipsø, Hans Kasper Wigh; Østergaard, Jakob Appel

    2014-01-01

    with insulin, resulting in poor glycemic control, has an additional effect on progression of late diabetic complications, than poor glycemic control on its own. We therefore compared renal metabolic alterations during conditions of poor glycemic control with and without suboptimal insulin administration, which...... administration increased pyruvate utilization and metabolic flux via both anaerobic and aerobic pathways in diabetic rats even though insulin did not affect kidney oxygen availability, HbA1c, or oxidative stress. These results imply direct effects of insulin in the regulation of cellular substrate utilization...... and metabolic fluxes during conditions of poor glycemic control. The study demonstrates that poor glycemic control in combination with suboptimal insulin administration accelerates metabolic alterations by increasing both anaerobic and aerobic metabolism resulting in increased utilization of energy substrates...

  7. CCK increases the transport of insulin into the brain.

    Science.gov (United States)

    May, Aaron A; Liu, Min; Woods, Stephen C; Begg, Denovan P

    2016-10-15

    Food intake occurs in bouts or meals, and numerous meal-generated signals have been identified that act to limit the size of ongoing meals. Hormones such as cholecystokinin (CCK) are secreted from the intestine as ingested food is being processed, and in addition to aiding the digestive process, they provide a signal to the brain that contributes to satiation, limiting the size of the meal. The potency of CCK to elicit satiation is enhanced by elevated levels of adiposity signals such as insulin. In the present experiments we asked whether CCK and insulin interact at the level of the blood-brain barrier (BBB). We first isolated rat brain capillary endothelial cells that comprise the BBB and found that they express the mRNA for both the CCK1R and the insulin receptor, providing a basis for a possible interaction. We then administered insulin intraperitoneally to another group of rats and 15min later administered CCK-8 intraperitoneally to half of those rats. After another 15min, CSF and blood samples were obtained and assayed for immunoreactive insulin. Plasma insulin was comparably elevated above baseline in both the CCK-8 and control groups, indicating that the CCK had no effect on circulating insulin levels given these parameters. In contrast, rats administered CCK had CSF-insulin levels that were more than twice as high as those of control rats. We conclude that circulating CCK greatly facilitates the transport of insulin into the brain, likely by acting directly at the BBB. These findings imply that in circumstances in which the plasma levels of both CCK and insulin are elevated, such as during and soon after meals, satiation is likely to be due, in part, to this newly-discovered synergy between CCK and insulin. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  9. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus.

    Science.gov (United States)

    Lee, Jaemeun; Kim, Kyungchan; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-03-08

    Insulin plays diverse roles in the brain. Although insulin produced by pancreatic β-cells that crosses the blood-brain barrier is a major source of brain insulin, recent studies suggest that insulin is also produced locally within the brain. However, the mechanisms underlying the production of brain-derived insulin (BDI) are not yet known. Here, we examined the effect of Wnt3a on BDI production in a hypothalamic cell line and hypothalamic tissue. In N39 hypothalamic cells, Wnt3a treatment significantly increased the expression of the Ins2 gene, which encodes the insulin isoform predominant in the mouse brain, by activating Wnt/β-catenin signaling. The concentration of insulin was higher in culture medium of Wnt3a-treated cells than in that of untreated cells. Interestingly, neurogenic differentiation 1 (NeuroD1), a target of Wnt/β-catenin signaling and one of transcription factors for insulin, was also induced by Wnt3a treatment in a time- and dose-dependent manner. In addition, the treatment of BIO, a GSK3 inhibitor, also increased the expression of Ins2 and NeuroD1. Knockdown of NeuroD1 by lentiviral shRNAs reduced the basal expression of Ins2 and suppressed Wnt3a-induced Ins2 expression. To confirm the Wnt3a-induced increase in Ins2 expression in vivo, Wnt3a was injected into the hypothalamus of mice. Wnt3a increased the expression of NeuroD1 and Ins2 in the hypothalamus in a manner similar to that observed in vitro. Taken together, these results suggest that BDI production is regulated by the Wnt/β-catenin/NeuroD1 pathway in the hypothalamus. Our findings will help to unravel the regulation of BDI production in the hypothalamus.

  11. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun

    2014-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conse......Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity...... is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved...... in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls...

  12. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    Science.gov (United States)

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy

    Directory of Open Access Journals (Sweden)

    Pešić Milica

    2007-01-01

    Full Text Available Background/Aim. Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin for basal insulin supply in patients with type 1 diabetes. Methods. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IIT were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15; 2. NPH insulin twice daily (n = 15; 3. insulin glargine once daily (n = 18. Meal time insulin aspart was continued in all groups. Results. Fasting blood glucose (FBG was lower in the glargine group (7.30±0.98 mmol/l than in the twice daily NPH group (7.47±1.06 mmol/l, but without significant difference. FBG was significantly higher in the once daily NPH group (8.44±0.85 mmol/l; p < 0.05. HbA1c after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72±0.86% to 6.87±0.50%, as well as in the twice daily NPH group (from 7.80±0.83% to 7.01±0.63%. Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56±2.09 than in both NPH groups (9.0±1.65 in twice daily NPH group and 8.13±1.30 in other NPH group (episodes/patients-month, p < 0.05. Conclusion. Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbA1c and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  14. Insulin sensitivity deteriorates after short-term lifestyle intervention in the insulin sensitive phenotype of obesity.

    Science.gov (United States)

    Gilardini, Luisa; Vallone, Luciana; Cottafava, Raffaella; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia

    2012-01-01

    To investigate the effects of a 3-month lifestyle intervention on insulin sensitivity and its related cardiometabolic factors in obese patients. Anthropometry, body composition, oral glucose tolerance test, lipids, alanine aminotransferase, insulin sensitivity (insulinogenic index (ISI), homeostasis model assessment, β-cell performance (disposition index)) were evaluated in 263 obese women and 93 obese men before and after 3 months of hypocaloric low fat/high protein diet associated with physical activity 30 min/day. Patients were divided into 3 groups according to the intervention-induced ISI changes: group 1 (decrease), group 2 (stability) and group 3 (increase). Insulin sensitivity and the disposition index were significantly higher before the intervention in group 1 than in group 3. BMI, waist circumference, and fat mass significantly decreased in groups 1 and 3 in both sexes. β-cell performance decreased in group 1 and increased in group 3. Metabolic variables improved in group 3, whereas glucose levels increased in women of group 1. The post-intervention insulin sensitivity was lower in group 1 than in group 3. Lifestyle intervention induces changes in insulin sensitivity and metabolic factors that depend on the pre-intervention degree of insulin sensitivity. Weight loss leads to metabolic benefits in insulin-resistant, obese patients, whereas it may paradoxically worsen the metabolic conditions in the insulin-sensitive phenotype of obesity. Copyright © 2012 S. Karger GmbH, Freiburg.

  15. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    Science.gov (United States)

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p protocol improves insulin sensitivity and mitochondrial

  16. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity.

    Directory of Open Access Journals (Sweden)

    Aprilianto E Wiria

    Full Text Available Given that helminth infections have been shown to improve insulin sensitivity in animal studies, which may be explained by beneficial effects on energy balance or by a shift in the immune system to an anti-inflammatory profile, we investigated whether soil-transmitted helminth (STH-infected subjects are more insulin sensitive than STH-uninfected subjects.We performed a cross-sectional study on Flores island, Indonesia, an area with high prevalence of STH infections.From 646 adults, stool samples were screened for Trichuris trichiura by microscopy and for Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, and Strongyloides stercoralis by qPCR. No other helminth was found. We collected data on body mass index (BMI, kg/m2, waist-to-hip ratio (WHR, fasting blood glucose (FBG, mmol/L, insulin (pmol/L, high sensitive C-reactive protein (ng/ml and Immunoglobulin E (IU/ml. The homeostatic model assessment for insulin resistance (HOMAIR was calculated and regression models were used to assess the association between STH infection status and insulin resistance.424 (66% participants had at least one STH infection. STH infected participants had lower BMI (23.2 vs 22.5 kg/m2, p value = 0.03 and lower HOMAIR (0.97 vs 0.81, p value = 0.05. In an age-, sex- and BMI-adjusted model a significant association was seen between the number of infections and HOMAIR: for every additional infection with STH species, the HOMAIR decreased by 0.10 (p for linear trend 0.01. This effect was mainly accounted for by a decrease in insulin of 4.9 pmol/L for every infection (p for trend = 0.07.STH infections are associated with a modest improvement of insulin sensitivity, which is not accounted for by STH effects on BMI alone.

  17. The increase of plasma galectin-9 in a patient with insulin allergy: a case report

    Directory of Open Access Journals (Sweden)

    Chagan-Yasutan Haorile

    2010-08-01

    Full Text Available Abstract Allergic reaction to insulin is known to be associated with eosinophilia and hyper IgE. Recent report showed that eosinophilia is related with the increased synthesis of galectin-9 (GAL-9 and osteopontin (OPN. Here, we examined plasma levels of GAL-9 and OPN first time in a case of 65-year old patient with insulin allergy. Insulin aspart & insulin aspart 30 mix were given to the patient and an elevation of the eosinophil count (8440/μl, 17.6 fold and a moderate increase of IgE (501 U/ml, reference range: 10-350 U/ml, eotaxin-3 (168 pg/ml, 2 fold, histamine (0.95 ng/ml, 5.3 fold were found 33 days later. The plasma levels of GAL-9 and OPN were 22.5 and 1.7 fold higher than the cut-off point, respectively. After one month cessation of insulin therapy, elevations of the eosinophil count (3,480/μl; 7.3 fold, and OPN (1.4 fold still occurred but the GAL-9 levels became normal. Therefore, we noted the increases of GAL-9 and OPN in plasma for the first time in a patient with insulin allergy and propose that GAL-9 reflects the conditions of allergy more accurately.

  18. A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals

    Directory of Open Access Journals (Sweden)

    Dorian S Houser

    2013-11-01

    Full Text Available Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris, which fasts from food and water for periods of up to three months. During this time, ~90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM. All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures

  19. A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals.

    Science.gov (United States)

    Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E

    2013-11-01

    Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies.

  20. Increased plasma ghrelin suppresses insulin release in wethers fed with a high-protein diet.

    Science.gov (United States)

    Takahashi, T; Sato, K; Kato, S; Yonezawa, T; Kobayashi, Y; Ohtani, Y; Ohwada, S; Aso, H; Yamaguchi, T; Roh, S G; Katoh, K

    2014-06-01

    Ghrelin is a multifunctional peptide that promotes an increase of food intake and stimulates GH secretion. Ghrelin secretion is regulated by nutritional status and nutrients. Although a high-protein (HP) diet increases plasma ghrelin secretion in mammals, the mechanisms and the roles of the elevated ghrelin concentrations due to a HP diet have not been fully established. To clarify the roles of elevated acylated ghrelin upon intake of a HP diet, we investigated the regulation of ghrelin concentrations in plasma and tissues in wethers fed with either the HP diet or the control (CNT) diet for 14 days, and examined the action of the elevated plasma ghrelin by using a ghrelin-receptor antagonist. The HP diet gradually increased the plasma acylated-ghrelin concentrations, but the CNT diet did not. Although the GH concentrations did not vary significantly across the groups, an injection of ghrelin-receptor antagonist enhanced insulin levels in circulation in the HP diet group. In the fundus region of the stomach, the ghrelin levels did not differ between the HP and CNT diet groups, whereas ghrelin O-acyltransferase mRNA levels were higher in the group fed with HP diet than those of the CNT diet group were. These results indicate that the HP diet elevated the plasma ghrelin levels by increasing its synthesis; this elevation strongly suppresses the appearance of insulin in the circulation of wethers, but it is not involved in GH secretion. Overall, our findings indicate a role of endogenous ghrelin action in secretion of insulin, which acts as a regulator after the consumption of a HP diet. © 2014 Society for Endocrinology.

  1. Insulin internalization in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Galan, J.; Trankina, M.; Noel, R.; Ward, W.

    1990-01-01

    This project was designed to determine whether neomycin, an aminoglycoside antibiotic, has a significant effect upon the pathways of ligand endocytosis in isolated rat hepatocytes. The pathways studied include receptor-mediated endocytosis and fluid-phase endocytosis. Neomycin causes a dose-dependent acceleration of 125 I-insulin internalization. Since fluid-phase endocytosis can also be a significant factor in 125 I-insulin internalization, lucifer yellow (LY), a marker for fluid-phase endocytosis, was incorporated into an assay similar to the 125 I-insulin internalization procedure. In the presence of 5 mM neomycin, a significant increase in LY uptake was evident at 0.2 and 0.4 mg/ml of LY. At 0.8 mg/ml, a decrease in LY uptake was observed. The increased rate of 125 I-insulin internalization in the presence of neomycin was intriguing. Since one action of neomycin is to inhibit phosphoinositidase C, it suggests that the phosphotidylinositol cycle may be involved in ligand internalization by hepatocytes. At low insulin concentrations, receptor-mediated uptake predominates. Fluid-phase uptake can become an important uptake route as insulin concentrations are increased. Since neomycin stimulates fluid-phase endocytosis, it must also be taken into account when measuring ligand internalization

  2. Increased retinol-free RBP4 contributes to insulin resistance in gestational diabetes mellitus.

    Science.gov (United States)

    Chen, Yanmin; Lv, Ping; Du, Mengkai; Liang, Zhaoxia; Zhou, Menglin; Chen, Danqing

    2017-07-01

    Retinol-binding protein 4 (RBP4) is a circulating retinol transporter that is strongly associated with insulin resistance. The aim of this study was to evaluate the RBP4 and retinol level in rat model of gestational diabetes mellitus and the relationship between retinol-free RBP4 (apo-RBP4), retinol-bound RBP4 (holo-RBP4) and insulin resistance. Pregnant rats were administered streptozotocin to induce diabetes. The RBP4 and retinol levels were evaluated in GDM and normal pregnant rats. After then, normal pregnant rats were divided into two groups to receive either apo-RBP4 or vehicle injection. The metabolic parameters and insulin signaling in adipose tissue, skeletal muscle and liver were determined in apo-RBP4 and control groups. Primary human adipocytes were cultured in vitro with different proportions of apo-RBP4 and holo-RBP4 for 24 h. The interaction between RBP4 and STRA6 was assessed by co-immunoprecipitation, and the expression of JAK-STAT pathway and insulin signaling were detected by Western blotting and immunofluorescence. We found increases in serum RBP4 levels and the RBP4:retinol ratio but not in the retinol levels in GDM rats. Exogenous apo-RBP4 injection attenuated insulin sensitivity in pregnant rats. In vitro, a prolonged interaction between RBP4 and STRA6 was observed when apo-RBP4 was present. In response to increased apo-RBP4 levels, cells showed elevated activation of the JAK2/STAT5 cascade and SOCS3 expression, decreased phosphorylation of IR and IRS1, and attenuated GLUT4 translocation and glucose uptake upon insulin stimulation. Apo-RBP4 is a ligand that activates the STRA6 signaling cascade, inducing insulin resistance in GDM.

  3. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Science.gov (United States)

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity). Circulating zonulin increased with body mass index (BMI), waist to hip ratio (WHR), fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002) contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01) contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  4. Nutrient Restriction Increases Circulating and Hepatic Ceramide in Dairy Cows Displaying Impaired Insulin Tolerance.

    Science.gov (United States)

    Davis, Amanda N; Clegg, J L; Perry, C A; McFadden, J W

    2017-09-01

    The progression of insulin resistance in dairy cows represents a maternal adaptation to support milk production during heightened energy demand; however, excessive adipose tissue lipolysis can develop. In diabetic non-ruminants, the mechanisms that mediate insulin resistance involve the sphingolipid ceramide. We tested the hypothesis that ceramide accumulates in dairy cows experiencing lipolysis and insulin resistance. Nine dairy cows were utilized in a replicated 3 × 3 Latin square design. Cows were ad libitum fed, nutrient-restricted (NR), or NR with nicotinic acid (NA; 5 mg of NA/h per kg BW; delivered i.v.) for 34 h. When provided access, cows were ad libitum fed a mixed ration of grass hay and ground corn to meet requirements. Intake for NR cows was limited to vitamins and minerals. Nicotinic acid was administered to suppress lipolysis. Saline was infused in cows not provided NA. At 32 and 33 h of treatment, a liver biopsy and insulin tolerance test were performed, respectively. Samples were analyzed using colorimetry, immunoassay, and mass spectrometry. Nutrient restriction increased serum fatty acids and ceramide levels, and impaired insulin sensitivity; however, NA infusion was unable to prevent these responses. We also show that NR increases hepatic ceramide accumulation, a response that was positively associated with serum ceramide supply. Our data demonstrate that circulating and hepatic 24:0-Cer are inversely associated with systemic insulin tolerance, an effect not observed for the 16:0 moiety. In conclusion, our results suggest that ceramide accrual represents a metabolic adaptation to nutrient restriction and impaired insulin action in dairy cows.

  5. An increase in insulin is important for the acquisition conditioned taste aversion in Lymnaea.

    Science.gov (United States)

    Mita, Koichi; Yamagishi, Miki; Fujito, Yutaka; Lukowiak, Ken; Ito, Etsuro

    2014-12-01

    Conditioned taste aversion (CTA) in Lymnaea is brought about by pairing a sucrose solution (the conditioned stimulus, CS) with an electric shock (the unconditioned stimulus, US). Following repeated CS-US pairings, CTA occurs and it is consolidated into long-term memory (LTM). The best CTA is achieved, if snails are food-deprived for 1 day before training commences. With a longer period of food deprivation (5 days), learning and memory formation does not occur. It has been hypothesized that the levels of insulin in the central nervous system (CNS) are very important for CTA to occur. To test his hypothesis, we injected insulin directly into 5-day food-deprived snails. The injection of insulin, as expected, resulted in a decrease in hemolymph glucose concentration. Consistent with our hypothesis with insulin injection, learning and memory formation of CTA occurred. That is, the 'insulin spike' is more important than an increase in hemolymph glucose concentration for CTA-LTM. If we injected an insulin receptor antibody into the snails before the insulin injection, learning was formed but memory formation was not, which is consistent with our previous study. Therefore, a rise in the insulin concentration (i.e., insulin spike) in the CNS is considered to be a key determining factor in the process of CTA-LTM. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Glucose delays the insulin-induced increase in thyroid hormone-mediated signaling in adipose of prolong-fasted elephant seal pups

    Science.gov (United States)

    Soñanez-Organis, José G.; Viscarra, Jose A.; Jaques, John T.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.

    2016-01-01

    Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition. PMID:26739649

  7. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  8. Role of PTEN in TNFα induced insulin resistance

    International Nuclear Information System (INIS)

    Bulger, David A.; Conley, Jermaine; Conner, Spencer H.; Majumdar, Gipsy; Solomon, Solomon S.

    2015-01-01

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2

  9. Role of PTEN in TNFα induced insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bulger, David A. [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ (United Kingdom); National Institute of Diabetes & Digestive & Kidney Disease, National Institutes of Health, Bethesda, MD 20892 (United States); Conley, Jermaine [Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Conner, Spencer H.; Majumdar, Gipsy [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Solomon, Solomon S., E-mail: ssolomon@uthsc.edu [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States)

    2015-06-05

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.

  10. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes

    DEFF Research Database (Denmark)

    Caruso, Michael; Ma, Danjun; Msallaty, Zaher

    2014-01-01

    Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health...... in obesity and T2D in humans, provides new insights into the molecular mechanism of insulin resistance and identifies new targets for T2D drug development....... and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel endogenous IRS1...

  11. Effects of turtle oil on insulin sensitivity and glucose metabolism in insulin resistant cell model

    International Nuclear Information System (INIS)

    Bai Jing; Tian Yaping; Guo Duo

    2007-01-01

    To evaluate the effects of turtle oil on insulin sensitivity and glucose metabolism in an insulin-resistant (IR) cell model which was established by the way of high concentration of insulin induction with HepG 2 cell in vitro culture. The IR cells were treated by turtle oil, the glucose consumption and 3 H-D-glucose incorporation rate in IR cells were detected by the way of glucose oxidase and 3 H-D-glucose incorporation assay respectively. The state of cell proliferation was tested by MTT method. The results showed that the incorporation rate of 3 H-D-glucose in IR cells was significantly lower than that in the control cells(P 3 H-D-glucose incorporation rate in either IR cells or control cells was increased with the increase of insulin concentration. Moreover, the 3 H-D-glucose incorporation rate of IR cells increased slower than that of control cells. The MTT assay showed that turtle oil can promote the proliferation of IR cell and control cell. The glucose uptake and glucose consumption in IR cell which treated with turtle oil was significantly increase than that in the control cells (P<0.05). Turtle oil can improve the insulin sensitivity and glucose metabolism in the IR cell model. (authors)

  12. Differential effects of insulin injections and insulin infusions on levels ...

    African Journals Online (AJOL)

    Studies have shown that while injections of insulin cause an increase in fat mass, infusions of insulin increase fat mass. The aim of this paper was to test the hypothesis that if an increase in glycogen is an indicator of an impending increase in adipose mass, then insulin infusions should not increase glycogen, while insulin ...

  13. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice.

    Science.gov (United States)

    Wei, Zhikui; Lei, Xia; Petersen, Pia S; Aja, Susan; Wong, G William

    2014-04-01

    Transgenic overexpression of CTRP9, a secreted hormone downregulated in obesity, confers striking protection against diet-induced obesity and type 2 diabetes. However, the physiological relevance of this adiponectin-related plasma protein remains undefined. Here, we used gene targeting to establish the metabolic function of CTRP9 in a physiological context. Mice lacking CTRP9 were obese and gained significantly more body weight when fed standard laboratory chow. Increased food intake, due in part to upregulated expression of hypothalamic orexigenic neuropeptides, contributed to greater adiposity in CTRP9 knockout mice. Although the frequency of food intake remained unchanged, CTRP9 knockout mice increased caloric intake by increasing meal size and decreasing satiety ratios. The absence of CTRP9 also resulted in peripheral tissue insulin resistance, leading to increased fasting insulin levels, impaired hepatic insulin signaling, and reduced insulin tolerance. Increased expression of lipogenic genes, combined with enhanced caloric intake, contributed to hepatic steatosis in CTRP9 knockout mice. Loss of CTRP9 also resulted in reduced skeletal muscle AMPK activation and mitochondrial content. Together, these results provide the genetic evidence for a physiological role of CTRP9 in controlling energy balance via central and peripheral mechanisms.

  14. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity. Circulating zonulin increased with body mass index (BMI, waist to hip ratio (WHR, fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002 contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01 contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  15. Insulin-like growth factor 1, liver enzymes, and insulin resistance in patients with PCOS and hirsutism.

    Science.gov (United States)

    Çakir, Evrim; Topaloğlu, Oya; Çolak Bozkurt, Nujen; Karbek Bayraktar, Başak; Güngüneş, Aşkın; Sayki Arslan, Müyesser; Öztürk Ünsal, İlknur; Tutal, Esra; Uçan, Bekir; Delıbaşi, Tuncay

    2014-01-01

    Hyperinsulinemia and insulin resistance are commonly seen in patients with hirsutism and polycystic ovary syndrome (PCOS), and are associated with cardiovascular disease risk. However, it is not yet known whether insulin-like growth factor I (IGF-I) and alanine transaminase (ALT) produced by the liver play roles in hyperinsulinemia and subclinical atherosclerotic process in patients with PCOS and idiopathic hirsutism (IH). This was a prospective case-controlled study. The study population consisted of 25 reproductive-age PCOS women, 33 women with IH, and 25 control subjects. Mean IGF-I levels and median ALT levels were higher in patients with IH and PCOS than controls, but these differences were not statistically significant. The participants who had a homeostasis model assessment insulin resistance index (HOMA-IR) greater than 2.7 had significantly higher IGF-1 and ALT levels. ALT levels were positively correlated with body mass index, FG, insulin and HOMA-IR. The study illustrated that IGF-1 and ALT levels were significantly higher in patients with increased insulin resistance. Due to short disease duration in younger participants, we did not observe any correlation between IGF-1 and hyperinsulinemia. These findings suggest that increased hepatic production of IGF-I and ALT might be an early indicator of insulin resistance in hirsutism.

  16. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss.

    Science.gov (United States)

    Schmitz, J; Evers, N; Awazawa, M; Nicholls, H T; Brönneke, H S; Dietrich, A; Mauer, J; Blüher, M; Brüning, J C

    2016-05-01

    Obesity represents a major risk factor for the development of type 2 diabetes mellitus, atherosclerosis and certain cancer entities. Treatment of obesity is hindered by the long-term maintenance of initially reduced body weight, and it remains unclear whether all pathologies associated with obesity are fully reversible even upon successfully maintained weight loss. We compared high fat diet-fed, weight reduced and lean mice in terms of body weight development, adipose tissue and liver insulin sensitivity as well as inflammatory gene expression. Moreover, we assessed similar parameters in a human cohort before and after bariatric surgery. Compared to lean animals, mice that demonstrated successful weight reduction showed increased weight gain following exposure to ad libitum control diet. However, pair-feeding weight-reduced mice with lean controls efficiently stabilized body weight, indicating that hyperphagia was the predominant cause for the observed weight regain. Additionally, whereas glucose tolerance improved rapidly after weight loss, systemic insulin resistance was retained and ameliorated only upon prolonged pair-feeding. Weight loss enhanced insulin action and resolved pro-inflammatory gene expression exclusively in the liver, whereas visceral adipose tissue displayed no significant improvement of metabolic and inflammatory parameters compared to obese mice. Similarly, bariatric surgery in humans (n = 55) resulted in massive weight reduction, improved hepatic inflammation and systemic glucose homeostasis, while adipose tissue inflammation remained unaffected and adipocyte-autonomous insulin action only exhibit minor improvements in a subgroup of patients (42%). These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue inflammation and insulin resistance in mice as

  17. Plasma adiponectin levels are increased despite insulin resistance in corticotropin-releasing hormone transgenic mice, an animal model of Cushing syndrome.

    Science.gov (United States)

    Shinahara, Masayuki; Nishiyama, Mitsuru; Iwasaki, Yasumasa; Nakayama, Shuichi; Noguchi, Toru; Kambayashi, Machiko; Okada, Yasushi; Tsuda, Masayuki; Stenzel-Poore, Mary P; Hashimoto, Kozo; Terada, Yoshio

    2009-01-01

    Adiponectin (AdN), an adipokine derived from the adipose tissue, has an insulin-sensitizing effect, and plasma AdN is shown to be decreased in obesity and/or insulin resistant state. To clarify whether changes in AdN are also responsible for the development of glucocorticoid-induced insulin resistance, we examined AdN concentration in plasma and AdN expression in the adipose tissue, using corticotropin-releasing hormone (CRH) transgenic mouse (CRH-Tg), an animal model of Cushing syndrome. We found, unexpectedly, that plasma AdN levels in CRHTg were significantly higher than those in wild-type littermates (wild-type: 19.7+/-2.5, CRH-Tg: 32.4+/-3.1 microg/mL, pAdN mRNA and protein levels were significantly decreased in the adipose tissue of CRH-Tg. Bilateral adrenalectomy in CRH-Tg eliminated both their Cushing's phenotype and their increase in plasma AdN levels (wild-type/sham: 9.4+/-0.5, CRH-Tg/sham: 15.7+/-2.0, CRH-Tg/ADX: 8.5+/-0.4 microg/mL). These results strongly suggest that AdN is not a major factor responsible for the development of insulin resistance in Cushing syndrome. Our data also suggest that glucocorticoid increases plasma AdN levels but decreases AdN expression in adipocytes, the latter being explained possibly by the decrease in AdN metabolism in the Cushing state.

  18. Poor zinc status is associated with increased risk of insulin resistance in Spanish children.

    Science.gov (United States)

    Ortega, R M; Rodríguez-Rodríguez, E; Aparicio, A; Jiménez, A I; López-Sobaler, A M; González-Rodríguez, L G; Andrés, P

    2012-02-01

    Zn plays a key role in the synthesis and action of insulin. The aim of the present work was to determine whether a poorer Zn status was associated with insulin resistance in a group of 357 Spanish schoolchildren. Zn intake was determined by using a 3 d food record (i.e. Sunday to Tuesday). The body weight, height and waist and hip circumferences of all subjects were recorded and fasting plasma glucose, insulin and Zn concentrations were determined. Insulin resistance was determined using the homoeostasis model assessment (HOMA) marker. Children (11·5 %) with Zn deficiency (serum Zn concentration 3·16 made a significantly smaller contribution to the coverage of those recommended (59·7 (sd 14·7) %) than observed in children with lower HOMA values (73·6 (sd 18·2) %; P health and nutritional status of these children, and thus contribute to diminish problems of insulin resistance.

  19. Targeting development of incretin-producing cells increases insulin secretion

    DEFF Research Database (Denmark)

    Petersen, Natalia; Reimann, Frank; van Es, Johan H

    2015-01-01

    the number of intestinal L cells, which produce GLP-1, is an alternative strategy to augment insulin responses and improve glucose tolerance. Blocking the NOTCH signaling pathway with the γ-secretase inhibitor dibenzazepine increased the number of L cells in intestinal organoid-based mouse and human culture...... of the development of incretin-producing cells in the intestine has potential as a therapeutic strategy to improve glycemic control....

  20. Current understanding of increased insulin sensitivity after exercise - emerging candidates

    DEFF Research Database (Denmark)

    Maarbjerg, Stine Just; Sylow, Lykke; Richter, Erik

    2011-01-01

    signaling component in the insulin signaling pathway such as aPKC, Rac1, TBC1D4 and TBC1D1 have been described. These are all affected by both insulin and exercise which means that they are likely converging points in promoting GLUT4 translocation and therefore possible candidates for regulating insulin...... sensitivity after exercise. Whereas TBC1D1 does not appear to regulate insulin sensitivity after exercise, correlative evidence in contrast suggests TBC1D4 to be a relevant candidate. Little is known about aPKC and Rac1 in relation to insulin sensitivity after exercise. Besides mechanisms involved...

  1. Relationship and significance of serum leptin with blood insulin and lipid in 6-13 years old obese children

    International Nuclear Information System (INIS)

    Sheng Chunyong; Wang Chunlan; Zhang Linong

    2005-01-01

    To explore relationship and significance of Serum Leptin with BMI, Insulin, triglyceride (TG) and total cholesterol (TC) in obese children aged 6-13 years. Serum Leptin of school-age children 118 (64 male, 54 female; normal non-obese 56 and obese 62) were deter- mined and compared with BMI, Insulin, TG and TC. The results showed that: (1) Each index of obese children was remarkably higher than that of non-obese children (P 0.05). (3) Leptin was poritinely corelation with BMI, insulin, TG and TC(P=0.001). Leptin level in serum may varied according to sex, BMI or blood lipid level. It is of great significance in prevention and treatment of obesity to use drug which may improve Leptin receptor effect. (authors)

  2. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  3. Intranasal insulin therapy: the clinical realities

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, Sten; Hvidberg, A

    1995-01-01

    To evaluate metabolic control and safety parameters (hypoglycaemia frequency and nasal mucosa physiology), 31 insulin-dependent diabetic patients were treated with intranasal insulin at mealtimes for 1 month and with subcutaneous fast-acting insulin at meals for another month in an open, crossover...... randomized trial. During both treatment periods the patients were treated with intermediate-acting insulin at bedtime. Six of the patients were withdrawn from the study during intranasal insulin therapy due to metabolic dysregulation. Serum insulin concentrations increased more rapidly and decreased more...... quickly during intranasal as compared with subcutaneous insulin administration. Metabolic control deteriorated, as assessed by haemoglobin A1c concentrations, slightly but significantly after intranasal as compared with subcutaneous insulin therapy. The bioavailability of intranasally applied insulin...

  4. Insulin increases transcription of rat gene 33 through cis-acting elements in 5[prime]-flanking DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadilla, C.; Isham, K.R.; Lee, K.L.; Ch' ang, L.Y.; Kenney, F.T. (Oak Ridge National Lab., TN (United States)); Johnson, A.C. (National Cancer Institute, Bethesda, MD (United States). Lab. of Molecular Biology)

    1992-01-01

    Gene 33 is a multihormonally-regulated rat gene whose transcription is rapidly and markedly enhanced by insulin in liver and cultured hepatoma cells. To examine the mechanism by which insulin regulates transcription, the authors have constructed chimeric plasmids in which expression of the bacterial cat gene, encoding chloramphenicol acetyltransferase (CAT), is governed by gene 33 promoter elements and contiguous sequence in DNA flanking the transcription start point (tsp). When transfected into H4IIE hepatoma cells, these constructs gave rise to stably transformed cell lines producing the bacterial CAT enzyme. This expression was increased by insulin treatment in a fashion resembling the effect of this hormone on transcription of the native gene. In vitro transcription assays in nuclear extracts also revealed increased transcription of the chimeric plasmids when the extracts were prepared from insulin-treated rat hepatoma cells. The results demonstrate that induction by insulin is mediated by cis-acting nucleotide sequences located between bp [minus]480 to +27 relative to the tsp.

  5. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression

    DEFF Research Database (Denmark)

    Bunprajun, Tipwadee; Henriksen, Tora Ida; Scheele, Camilla

    2013-01-01

    , and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact...

  6. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity.

    Science.gov (United States)

    Vaitheesvaran, B; LeRoith, D; Kurland, I J

    2010-10-01

    Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin

  7. Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review

    NARCIS (Netherlands)

    Trommelen, J.; Groen, B.; Hamer, H.M.; Groot, de C.P.G.M.; Loon, van L.J.C.

    2015-01-01

    Background Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. Objective To

  8. The insulin polymorphism -23Hph increases the risk for type 1 diabetes mellitus in the Romanian population

    Directory of Open Access Journals (Sweden)

    Danut Cimponeriu

    2010-01-01

    Full Text Available The insulin -23Hph and IGF2 Apa polymorphisms were genotyped in Romanian patients with T1DM (n = 204, T2DM (n = 215 or obesity (n = 200 and normoponderal healthy subjects (n = 750. The genotypes of both polymorphisms were distributed in concordance with Hardy-Weinberg equilibrium in all groups. The -23Hph AA genotype increased the risk for T1DM (OR: 3.22, 95%CI: 2.09-4.98, p < 0,0001, especially in patients without macroalbuminuria (OR: 4.32, 95%CI: 2.54-7.45, p < 0,0001. No other significant association between the alleles or genotypes of insulin -23Hph and IGF2 Apa and diabetes or obesity was identified.

  9. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal.

    Directory of Open Access Journals (Sweden)

    Mimi Z Chen

    Full Text Available Weight-loss after bariatric surgery improves insulin sensitivity, but the underlying molecular mechanism is not clear. To ascertain the effect of bariatric surgery on insulin signalling, we examined glucose disposal and Akt activation in morbidly obese volunteers before and after Roux-en-Y gastric bypass surgery (RYGB, and compared this to lean volunteers.The hyperinsulinaemic euglycaemic clamp, at five infusion rates, was used to determine glucose disposal rates (GDR in eight morbidly obese (body mass index, BMI=47.3 ± 2.2 kg/m(2 patients, before and after RYGB, and in eight lean volunteers (BMI=20.7 ± 0.7 kg/m2. Biopsies of brachioradialis muscle, taken at fasting and insulin concentrations that induced half-maximal (GDR50 and maximal (GDR100 GDR in each subject, were used to examine the phosphorylation of Akt-Thr308, Akt-473, and pras40, in vivo biomarkers for Akt activity.Pre-operatively, insulin-stimulated GDR was lower in the obese compared to the lean individuals (P<0.001. Weight-loss of 29.9 ± 4 kg after surgery significantly improved GDR50 (P=0.004 but not GDR100 (P=0.3. These subjects still remained significantly more insulin resistant than the lean individuals (p<0.001. Weight loss increased insulin-stimulated skeletal muscle Akt-Thr308 and Akt-Ser473 phosphorylation, P=0.02 and P=0.03 respectively (MANCOVA, and Akt activity towards the substrate PRAS40 (P=0.003, MANCOVA, and in contrast to GDR, were fully normalised after the surgery (obese vs lean, P=0.6, P=0.35, P=0.46, respectively.Our data show that although Akt activity substantially improved after surgery, it did not lead to a full restoration of insulin-stimulated glucose disposal. This suggests that a major defect downstream of, or parallel to, Akt signalling remains after significant weight-loss.

  10. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    Science.gov (United States)

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  11. Comparison of Subcutaneous Regular Insulin and Lispro Insulin in Diabetics Receiving Continuous Nutrition

    Science.gov (United States)

    Stull, Mamie C.; Strilka, Richard J.; Clemens, Michael S.; Armen, Scott B.

    2015-01-01

    Background: Optimal management of non–critically ill patients with diabetes maintained on continuous enteral feeding (CEN) is poorly defined. Subcutaneous (SQ) lispro and SQ regular insulin were compared in a simulated type 1 and type 2 diabetic patient receiving CEN. Method: A glucose-insulin feedback mathematical model was employed to simulate type 1 and type 2 diabetic patients on CEN. Each patient received 25 SQ injections of regular insulin or insulin lispro, ranging from 0-6 U. Primary endpoints were the change in mean glucose concentration (MGC) and change in glucose variability (GV); hypoglycemic episodes were also reported. The model was first validated against patient data. Results: Both SQ insulin preparations linearly decreased MGC, however, SQ regular insulin decreased GV whereas SQ lispro tended to increase GV. Hourly glucose concentration measurements were needed to capture the increase in GV. In the type 2 diabetic patient, “rebound hyperglycemia” occurred after SQ lispro was rapidly metabolized. Although neither SQ insulin preparation caused hypoglycemia, SQ lispro significantly lowered MGC compared to SQ regular insulin. Thus, it may be more likely to cause hypoglycemia. Analyses of the detailed glucose concentration versus time data suggest that the inferior performance of lispro resulted from its shorter duration of action. Finally, the effects of both insulin preparations persisted beyond their duration of actions in the type 2 diabetic patient. Conclusions: Subcutaneous regular insulin may be the short-acting insulin preparation of choice for this subset of diabetic patients. Clinical trial is required before a definitive recommendation can be made. PMID:26134836

  12. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance.

    Science.gov (United States)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun; Jakobsen, Marianne Antonius; Brusgaard, Klaus; Tan, Qihua; Gaster, Michael

    2014-09-05

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls. Glucose transport in myotubes was comparable in patients with PCOS vs. controls and was unchanged by testosterone treatment (p=0.21 PCOS vs. controls). These results suggest that testosterone treatment of myotubes increases the aromatase and androgen receptor gene expression without affecting insulin sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Clinical Significance of Inflammatory Markers in Polycystic Ovary Syndrome: Their Relationship to Insulin Resistance and Body Mass Index

    Directory of Open Access Journals (Sweden)

    Nervana Samy

    2009-01-01

    Full Text Available Background: Women with polycystic ovary syndrome (PCOS have an increased prevalence of insulin resistance (IR and related disorders. Elevated serum levels of high sensitivity CRP (hs-CRP, interleukin-6 (IL-6 and tumor necrosis factor α (TNF-α reflect low-grade chronic inflammation and have been associated with several insulin-resistant states; they are useful cardiovascular risk markers. The objective of this study was to investigate whether soluble inflammatory markers are altered in PCOS focusing on its relationship with obesity and indexes of insulin resistance.

  14. Clinical study on insulin receptors of mononuclear cells in diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Dalimunthe, D [Hiroshima Univ. (Japan). School of Medicine

    1980-12-01

    /sup 125/I-insulin binding activity to mononuclear cells was studied in 75 noninsulin-dependent diabetic subjects and 31 normal subjects and the following results were obtained. 1. /sup 125/I-insulin binding is directly proportional to the mononuclear cell concentrations. There is a linear increase of specific /sup 125/I-insulin binding. 2. The binding of /sup 125/I-insulin to mononuclear cells is displaced by the increasing concentration of native insulin. 3. The /sup 125/I-insulin degradation in the incubation medium after incubation of mononuclear cells for 24 hours at 4/sup 0/C was almost 5% in this study. 4. The insulin binding activity in diabetic subjects was lower than that in normal subjects (P < 0.001) without any significant difference in affinity constant. 5. The relationship of binding activity to age of diabetics (r = 0.06, N.S), relative body weitht (r = 0.06, N.S) and duration of diabetes from onset was not significant. 6. In untreated noninsulin-dependent diabetics the insulin binding activity was inversely correlated to fasting blood glucose level (r = 0.78, P < 0.001) and slightly inversely correlated to serum insulin level (r = 0.47, P < 0.01). A slight inverse correlation was also observed in serum triglyceride level (r = 0.53, P < 0.01) and in total cholesterol level (r = 0.29, P < 0.05). 7. No significant difference between the binding activity was observed by grade of diabetic retinopathy. 8. After treatment with diet and/or sulfonylurea, the diabetics exhibited a significant increase in insulin binding activity (P < 0.005) but no significant difference in plasma insulin level, body weight and plasma lipid levels was observed.

  15. [Hypertension and insulin treatment in type 2 diabetes].

    Science.gov (United States)

    Ben Salem Hachmi, L; Bouguerra, R; Maatki, O; Smadhi, H; Turki, Z; Hraoui, S; Ben Slama, C

    2007-08-01

    Insulin resistance and endogenous hyperinsulinemia are associated with blood hypertension. The aim of this analysis is to estimate the prevalence of blood hypertension one year after insulin treatment in type 2 diabetic patients. and methods: This is a retrospective clinical study of 178 type 2 diabetic patients (57 men and 121 women) insulin treated since at least one year. Mean age is 62 +/- 10 years and mean duration of diabetes is ten years. All patients had a clinical and biological control before treatment with insulin and at least three controls during the first year of insulin treatment (anthropometric measurements, blood pressure, fasting plasma glucose, HbA1C). WHO definition of hypertension is used (blood pressure >or=140 / 90 mmHg). At baseline, 48% of patients have hypertension. After insulin treatment, the prevalence of hypertension significantly increase to 53% (94 / 178) three months later (p=0.008), to 54.5% (98 / 178) six months later (p=0.001) and to 55.6% (99 / 178) twelve months later. This increase in hypertension frequency is associated with a significant weight gain and a better blood glucose control. Insulin therapy may contribute to the development of blood hypertension. It promotes renal sodium retention and increases sympathetic nervous system activity. In the UKPDS intensive blood glucose control with insulin is not associated with an increase of macro vascular complications. These observational data suggest the need for further study of the relationship between exogenous insulin and hypertension.

  16. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Bojsen-Møller, Kirstine N; Dirksen, Carsten; Jørgensen, Nils Bruun

    2014-01-01

    after RYGB. Participants were included after a preoperative diet induced total weight loss of -9.2±1.2%. Hepatic and peripheral insulin sensitivity were assessed using the hyperinsulinemic euglycemic clamp combined with glucose tracer technique and beta-cell function evaluated in response...... after surgery. Insulin mediated glucose disposal and suppression of fatty acids did not improve immediately after surgery but increased at 3 months and 1 year likely related to the reduction in body weight. Insulin secretion increased after RYGB, but only in patients with type 2 diabetes and only...

  17. Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin

    Science.gov (United States)

    Begg, Denovan P.; May, Aaron A.; Mul, Joram D.; Liu, Min; D’Alessio, David A.; Seeley, Randy J.

    2015-01-01

    Insulin detemir (DET) reduces glycemia comparably to other long-acting insulin formulations but causes less weight gain. Insulin signaling in the brain is catabolic, reducing food intake. We hypothesized that DET reduces weight gain, relative to other insulins, owing to increased transport into the central nervous system and/or increased catabolic action within the brain. Transport of DET and NPH insulin into the cerebrospinal fluid (CSF) was compared over several hours and after the administration of different doses peripherally in rats. DET and NPH had comparable saturable, receptor-mediated transport into the CSF. CSF insulin remained elevated significantly longer after intraperitoneal DET than after NPH. When administered acutely into the 3rd cerebral ventricle, both DET and NPH insulin reduced food intake and body weight at 24 h, and both food intake and body weight remained lower after DET than after NPH after 48 h. In direct comparison with another long-acting insulin, insulin glargine (GLAR), DET led to more prolonged increases in CSF insulin despite a shorter plasma half-life in both rats and mice. Additionally, peripheral DET administration reduced weight gain and increased CSF insulin compared with saline or GLAR in mice. Overall, these data support the hypothesis that DET has distinct effects on energy balance through enhanced and prolonged centrally mediated reduction of food intake. PMID:25667307

  18. Effect of insulin catheter wear-time on subcutaneous adipose tissue blood flow and insulin absorption in humans

    DEFF Research Database (Denmark)

    Clausen, Trine Schnedler; Kaastrup, Peter; Stallknecht, Bente

    2009-01-01

    blood flow (ATBF) and absorption of the rapid-acting insulin analog insulin aspart over a period of 4 days. METHODS: Teflon insulin catheters (Medtronic, Minneapolis, MN) were inserted into the abdominal SAT of 10 healthy men without diabetes (mean +/- SEM age, 23.0 +/- 1.1 years; body mass index, 22...... +/- 3 min on day 0 to 45 +/- 4 min on day 4 (P = 0.019). Neither peak plasma concentration nor area under the curve of insulin aspart changed significantly. CONCLUSIONS: Insertion of a Teflon insulin catheter into the SAT results in increased ATBF and faster absorption of insulin aspart in a period of 4...

  19. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  20. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    Science.gov (United States)

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  1. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    Science.gov (United States)

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  2. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level.

    Science.gov (United States)

    Yang, Yan; Ma, Delin; Xu, Weijie; Chen, Fuqiong; Du, Tingting; Yue, Wenzhu; Shao, Shiying; Yuan, Gang

    2016-01-01

    Type 2 diabetes (T2D) is a high risk factor for Alzheimer's disease (AD). Our previous study identified that hyperphosphorylation of tau protein, which is one of the pathophysiologic hallmarks of AD, also occurred in T2D rats' brain; while glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, could decrease the phosphorylation of tau, probably via augmenting insulin signaling pathway. The purpose of this study was to further explore the mechanisms that underlie the effect of exendin-4 (ex-4, a GLP-1 receptor agonist) in reducing tau phosphorylation. We found that peripheral ex-4 injection in T2D rats reduced hyperphosphorylation of tau protein in rat hippocampus, probably via increasing hippocampal insulin which activated insulin signaling. Furthermore, we found that ex-4 could neither activate insulin signaling, nor reduce tau phosphorylation in HT22 neuronal cells in the absence of insulin. These results suggested that insulin is required in reduction of tau hyperphosphorylation by ex-4 in brain rats with T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of ( 125 I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred

  4. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Science.gov (United States)

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  5. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    Science.gov (United States)

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    Science.gov (United States)

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  7. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management.

    Science.gov (United States)

    Wolpert, Howard A; Atakov-Castillo, Astrid; Smith, Stephanie A; Steil, Garry M

    2013-04-01

    Current guidelines for intensive treatment of type 1 diabetes base the mealtime insulin bolus calculation exclusively on carbohydrate counting. There is strong evidence that free fatty acids impair insulin sensitivity. We hypothesized that patients with type 1 diabetes would require more insulin coverage for higher-fat meals than lower-fat meals with identical carbohydrate content. We used a crossover design comparing two 18-h periods of closed-loop glucose control after high-fat (HF) dinner compared with low-fat (LF) dinner. Each dinner had identical carbohydrate and protein content, but different fat content (60 vs. 10 g). Seven patients with type 1 diabetes (age, 55 ± 12 years; A1C 7.2 ± 0.8%) successfully completed the protocol. HF dinner required more insulin than LF dinner (12.6 ± 1.9 units vs. 9.0 ± 1.3 units; P = 0.01) and, despite the additional insulin, caused more hyperglycemia (area under the curve >120 mg/dL = 16,967 ± 2,778 vs. 8,350 ± 1,907 mg/dL⋅min; P Carbohydrate-to-insulin ratio for HF dinner was significantly lower (9 ± 2 vs. 13 ± 3 g/unit; P = 0.01). There were marked interindividual differences in the effect of dietary fat on insulin requirements (percent increase significantly correlated with daily insulin requirement; R(2) = 0.64; P = 0.03). This evidence that dietary fat increases glucose levels and insulin requirements highlights the limitations of the current carbohydrate-based approach to bolus dose calculation. These findings point to the need for alternative insulin dosing algorithms for higher-fat meals and suggest that dietary fat intake is an important nutritional consideration for glycemic control in individuals with type 1 diabetes.

  8. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  9. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Nicolai J. Wewer Albrechtsen

    2017-11-01

    Full Text Available Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61 appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.

  10. A clinical study on insulin receptors of mononuclear cells in diabetes

    International Nuclear Information System (INIS)

    Dalimunthe, D.

    1980-01-01

    125 I-insulin binding activity to mononuclear cells was studied in 75 noninsulin-dependent diabetic subjects and 31 normal subjects and the following results were obtained. 1. 125 I-insulin binding is directly proportional to the mononuclear cell concentrations. There is a linear increase of specific 125 I-insulin binding. 2. The binding of 125 I-insulin to mononuclear cells is displaced by the increasing concentration of native insulin. 3. The 125 I-insulin degradation in the incubation medium after incubation of mononuclear cells for 24 hours at 4 0 C was almost 5% in this study. 4. The insulin binding activity in diabetic subjects was lower than that in normal subjects (P < 0.001) without any significant difference in affinity constant. 5. The relationship of binding activity to age of diabetics (r = 0.06, N.S), relative body weitht (r = 0.06, N.S) and duration of diabetes from onset was not significant. 6. In untreated noninsulin-dependent diabetics the insulin binding activity was inversely correlated to fasting blood glucose level (r = 0.78, P < 0.001) and slightly inversely correlated to serum insulin level (r = 0.47, P < 0.01). A slight inverse correlation was also observed in serum triglyceride level (r = 0.53, P < 0.01) and in total cholesterol level (r = 0.29, P < 0.05). 7. No significant difference between the binding activity was observed by grade of diabetic retinopathy. 8. After treatment with diet and/or sulfonylurea, the diabetics exhibited a significant increase in insulin binding activity (P < 0.005) but no significant difference in plasma insulin level, body weight and plasma lipid levels was observed. (author)

  11. INFLUENCE OF DIETARY FAT ON LEPTIN AND INSULIN IN MALE ALBINO RATS

    International Nuclear Information System (INIS)

    KASSAB, F.M.A.; ABDEL-KHALEK, L.G.; KAMAL, A.M.

    2008-01-01

    Sixty male albino rats were arranged into 5 equal groups which were used in this study to investigate the relation between leptin and insulin hormones under high fat intake and to assess the role of fresh vegetable intake on minimizing dyslipidemia.The results denoted that dietary fat caused significant increase in the levels of blood glucose and leptin hormone with significant decrease in insulin concentration and with prolonged high fat intake, insulin level was increased. However, the increased leptin and glucose indicated that prolonged fatty diet may cause insulin resistance. Addition of green vegetables to the diet normalized to a great extent the level of cholesterol, triglycerides, VLDL, glucose and insulin

  12. Clinical significance of determination of serum C-peptide levels

    International Nuclear Information System (INIS)

    Wang Guohong; Xu Ruiji; Zhang Zhongshu; Wang Xiaoji

    2006-01-01

    Objective: To study the clinical meanings of changes of serum C-peptide levels and insulin/C-peptide ratio. Methods: Serum insulin and C-peptide levels were determined with RIA in 171 patients with DM-2 of all ages (31-50, n= 50, 51-60, n=60, over 60, n=61) and 50 patients with renal insufficiency. The insulin/C-peptide ratio were calculated. Results: The serum C-peptide and insulin levels in patients with renal insufficiency were significantly higher than those in diabetics of all age groups and the insulin/C-peptide ratio were significantly lower than those in diabetics (P 0.05), but the serum C-peptide levels increased as the age of patients increased with decrease of insulin/C-peptide ratio (P<0.01). Conclusion: Abnormal changes of C-peptide levels and insulin/C-peptide ratio in diabetics (the age-factor corrected) might reflect renal dysfunction. (authors)

  13. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Greenfield, Jerry R; Farooqi, I Sadaf; Keogh, Julia M

    2008-01-01

    objective was to determine whether glutamine increases circulating GLP-1 and GIP concentrations in vivo and, if so, whether this is associated with an increase in plasma insulin. DESIGN: We recruited 8 healthy normal-weight volunteers (LEAN), 8 obese individuals with type 2 diabetes or impaired glucose...... plasma insulin concentrations. Glutamine stimulated glucagon secretion in all 3 study groups. CONCLUSION: Glutamine effectively increases circulating GLP-1, GIP, and insulin concentrations in vivo and may represent a novel therapeutic approach to stimulating insulin secretion in obesity and type 2......BACKGROUND: Incretin hormones, such as glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), play an important role in meal-related insulin secretion. We previously demonstrated that glutamine is a potent stimulus of GLP-1 secretion in vitro. OBJECTIVE: Our...

  14. Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans.

    Directory of Open Access Journals (Sweden)

    Dorit Samocha-Bonet

    Full Text Available Mitochondrial dysfunction and increased oxidative stress are associated with obesity and type 2 diabetes. High fat feeding induces insulin resistance and increases skeletal muscle oxidative stress in rodents, but there is controversy as to whether skeletal muscle mitochondrial biogenesis and function is altered.Forty (37 ± 2 y non-obese (25.6 ± 0.6 kg/m(2 sedentary men (n = 20 and women (n = 20 were overfed (+1040 ± 100 kcal/day, 46 ± 1% of energy from fat for 28 days. Hyperinsulinemic-euglycemic clamps were performed at baseline and day 28 of overfeeding and skeletal muscle biopsies taken at baseline, day 3 and day 28 of overfeeding in a sub cohort of 26 individuals (13 men and 13 women that consented to having all 3 biopsies performed. Weight increased on average in the whole cohort by 0.6 ± 0.1 and 2.7 ± 0.3 kg at days 3 and 28, respectively (P<0.0001, without a significant difference in the response between men and women (P = 0.4. Glucose infusion rate during the hyperinsulinemic-euglycemic clamp decreased from 54.8 ± 2.8 at baseline to 50.3 ± 2.5 µmol/min/kg FFM at day 28 of overfeeding (P = 0.03 without a significant difference between men and women (P = 0.4. Skeletal muscle protein carbonyls and urinary F2-isoprostanes increased with overfeeding (P<0.05. Protein levels of muscle peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α and subunits from complex I, II and V of the electron transport chain were increased at day 3 (all P<0.05 and returned to basal levels at day 28. No changes were detected in muscle citrate synthase activity or ex vivo CO(2 production at either time point.Peripheral insulin resistance was induced by overfeeding, without reducing any of the markers of mitochondrial content that were examined. Oxidative stress was however increased, and may have contributed to the reduction in insulin sensitivity observed.

  15. Impact of intensive insulin treatment on the development and consequences of oxidative stress in insulin-dependent diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Kocić Radivoj

    2007-01-01

    Full Text Available Background/Aim. The aim of this study, which included patients with insulin-dependent diabetes mellitus, was to determine the influence of the application of various treatment modalities (intensive or conventional on the total plasma antioxidative capacity and lipid peroxidation intensity expressed as malondialdehyde (MDA level, catalase and xanthine oxidase activity, erythrocyte glutatione reduced concentration (GSH RBC, erythrocyte MDA level (MDA RBC, as well as susceptibility of erythrocyte to H2O2-induced oxidative stress. Methods. This study included 42 patients with insulin-dependent diabetes mellitus. In 24 of the patients intensive insulin treatment was applied using the model of short-acting insulin in each meal and medium- acting insulin before going to bed, while in 18 of the patients conventional insulin treatment was applied in two (morning and evening doses. In the examined patients no presence of diabetes mellitus complications was recorded. The control group included 20 healthy adults out of a blood doner group. The plasma and erythrocytes taken from the blood samples were analyzed immediately. Results. This investigation proved that the application of intensive insulin treatment regime significantly improves total antioxidative plasma capacity as compared to the application of conventional therapy regime. The obtained results showed that the both plasma and lipoproteines apo B MDA increased significantly more in the patients on conventional therapy than in the patients on intensive insulin therapy, most probably due to intensified xanthine oxidase activity. The level of the MDA in fresh erythrocytes did not differ significantly between the groups on intensive and conventional therapy. The level of GSH and catalase activity, however, were significantly reduced in the patients on conventional therapy due to the increased susceptibility to H2O2-induced oxidative stress . Conclusion. The presented study confirmed positive effect of

  16. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin.

    Science.gov (United States)

    Wilson, Fiona A; Orellana, Renán A; Suryawan, Agus; Nguyen, Hanh V; Jeyapalan, Asumthia S; Frank, Jason; Davis, Teresa A

    2008-07-01

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.

  17. [Increasing cost of insulin therapy in Belgium. From a critical analysis of the situation to a search for practical solutions].

    Science.gov (United States)

    Scheen, A J

    2006-09-01

    Cost related to insulin therapy is markedly increasing in Belgium, as in other Eucopean countries. In the present paper, we will briefly analyze the main reasons for such aa increase, integrate such observation withIn the global context of diabetes management and suggest some solutions to provide best care to insulin-treated diabetic patients at a reasonable cost. The rise of the cost of insulin therapy has a multifactorial origin. It mainly results from an increase in the number of diabetic patients, a more intensive management, In both type 1 and type 2 diabetes, and a greater use of more expansive insulin analogues. It is important to analyze the increase of the cost of insulin therapy within the global burden of diabetes melitus. Only a better responsibility of all health care partners, patients, physicians, pharmaceutical companies, public health authorities, could provide solutions allowing diabetic people to profit from best treatments they should receive in order to prevent diabetic complications, by far the main cause of expenses.

  18. Clinical significance of changes of serum true insulin and proinsulin levels in relations of patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Tian Xiaoping; Huang Huijian; Huang Haibo; Wu Yan; He Haoming

    2004-01-01

    Objective: To explore the degree of insulin resistance and β-cell secretory function impairment in close (1st degree) relations of patients with type 2 diabetes (DMII). Methods: Serum true insulin (TI), pro-insulin (PI), immunoreactive insulin (IRI) levels at fasting and after oral 75g glucose loading were determined in: 1) patients with DM 2, n=65 2)relations of DM 2 patients with impaired glucose tolerance (IGT), n=34 3) relations of DM 2 patients with normal glucose tolerance (NGT), n=66 and 4) controls, n=48. HOMA-IR and HOMA-β cell secretory indices were calculated from the data. Results: Fasting serum PI levels were significantly higher in DM 2 patients, relations with IGT and NGT than those in the controls (t=2.38, t=2.16, t=1.95, P 1 C percentages were significantly higher in DM 2 patients and IGT, NGT groups than those in controls (t=3.67, t=2.45, t=1.97, P 1 C percentage, fasting TI and IRI levels. Conclusion: Insulin resistance was already obvious in those relations of DM 2 patients with normal glucose tolerance and β-cell secretory function impairment was also present. Early intervention in these subjects might be beneficial. (authors)

  19. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    Science.gov (United States)

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  20. Insulin secretion in lipodystrophic HIV-infected patients is associated with high levels of nonglucose secretagogues and insulin resistance of beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Storgaard, Heidi

    2004-01-01

    lipodystrophy (controls). Thirty minutes before start of the clamp, a bolus of glucose was injected intravenously to stimulate endogenous insulin secretion. Insulin sensitivity index (SiRd) was estimated from glucose tracer analysis. LIPO displayed increased basal ISR (69%), clamp ISR (114%), basal insulin (130......, and glucose (all r > 0.41, P triglyceride, and glucagon (all r > 0.51, P triglyceride (r = 0.45, P ...%), and clamp insulin (32%), all P 0.65, P glucose. In control subjects, ISR(basal) correlated significantly with insulin, glucagon...

  1. Subcutaneous insulin infusion: change in basal infusion rate has no immediate effect on insulin absorption rate

    International Nuclear Information System (INIS)

    Hildebrandt, P.; Birch, K.; Jensen, B.M.; Kuehl, C.

    1986-01-01

    Eight insulin-dependent diabetic patients were simultaneously given subcutaneous infusions (1.12 IU/h each) of 125 I-labeled Actrapid insulin in each side of the abdominal wall. After 24 h of infusion, the size of the infused insulin depots was measured by external counting for 5 h. The basal infusion rate was then doubled in one side and halved in the other for the next 4 h. Finally, 1.12 IU/h of insulin was given in both sides of the abdominal wall for an additional 3 h. The changes in the size of the depots were measured, and the absorption rates for each hour were calculated. During the first 5 h of infusion, the depot size was almost constant (approximately 5 IU) with an absorption rate that equaled the infusion rate. Doubling the infusion rate led to a significant increase in depot size, but the absorption rate remained unchanged for the first 3 h, and only thereafter was a significant increase seen. When the infusion rate was reduced to the initial 1.12 IU/h, the absorption rate remained elevated during the next 3 h. Correspondingly, when the infusion rate was decreased, the depot size also decreased, but the absorption rate remained unchanged for the first 3 h. The results show that a change in the basal insulin infusion rate does not lead to any immediate change in the insulin absorption rate. This should be considered when planning an insulin-infusion program that includes alteration(s) in the basal-rate setting

  2. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients.

    Science.gov (United States)

    Hu, Xiaolei; Chen, Fengling

    2018-01-01

    Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS. © 2018 The authors.

  3. Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Lale Ozcan

    2016-06-01

    Full Text Available Defective insulin signaling in hepatocytes is a key factor in type 2 diabetes. In obesity, activation of calcium/calmodulin-dependent protein kinase II (CaMKII in hepatocytes suppresses ATF6, which triggers a PERK-ATF4-TRB3 pathway that disrupts insulin signaling. Elucidating how CaMKII suppresses ATF6 is therefore essential to understanding this insulin resistance pathway. We show that CaMKII phosphorylates and blocks nuclear translocation of histone deacetylase 4 (HDAC4. As a result, HDAC4-mediated SUMOylation of the corepressor DACH1 is decreased, which protects DACH1 from proteasomal degradation. DACH1, together with nuclear receptor corepressor (NCOR, represses Atf6 transcription, leading to activation of the PERK-TRB3 pathway and defective insulin signaling. DACH1 is increased in the livers of obese mice and humans, and treatment of obese mice with liver-targeted constitutively nuclear HDAC4 or DACH1 small hairpin RNA (shRNA increases ATF6, improves hepatocyte insulin signaling, and protects against hyperglycemia and hyperinsulinemia. Thus, DACH1-mediated corepression in hepatocytes emerges as an important link between obesity and insulin resistance.

  4. Comparison of Subcutaneous Regular Insulin and Lispro Insulin in Diabetics Receiving Continuous Nutrition: A Numerical Study.

    Science.gov (United States)

    Stull, Mamie C; Strilka, Richard J; Clemens, Michael S; Armen, Scott B

    2015-06-30

    Optimal management of non-critically ill patients with diabetes maintained on continuous enteral feeding (CEN) is poorly defined. Subcutaneous (SQ) lispro and SQ regular insulin were compared in a simulated type 1 and type 2 diabetic patient receiving CEN. A glucose-insulin feedback mathematical model was employed to simulate type 1 and type 2 diabetic patients on CEN. Each patient received 25 SQ injections of regular insulin or insulin lispro, ranging from 0-6 U. Primary endpoints were the change in mean glucose concentration (MGC) and change in glucose variability (GV); hypoglycemic episodes were also reported. The model was first validated against patient data. Both SQ insulin preparations linearly decreased MGC, however, SQ regular insulin decreased GV whereas SQ lispro tended to increase GV. Hourly glucose concentration measurements were needed to capture the increase in GV. In the type 2 diabetic patient, "rebound hyperglycemia" occurred after SQ lispro was rapidly metabolized. Although neither SQ insulin preparation caused hypoglycemia, SQ lispro significantly lowered MGC compared to SQ regular insulin. Thus, it may be more likely to cause hypoglycemia. Analyses of the detailed glucose concentration versus time data suggest that the inferior performance of lispro resulted from its shorter duration of action. Finally, the effects of both insulin preparations persisted beyond their duration of actions in the type 2 diabetic patient. Subcutaneous regular insulin may be the short-acting insulin preparation of choice for this subset of diabetic patients. Clinical trial is required before a definitive recommendation can be made. © 2015 Diabetes Technology Society.

  5. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease

    DEFF Research Database (Denmark)

    Juul, Anders; Scheike, Thomas Harder; Davidsen, Michael

    2002-01-01

    Insulin-like growth factor I (IGF-I) has been suggested to be involved in the pathogenesis of atherosclerosis. We hypothesize that low IGF-I and high IGFBP-3 levels might be associated with increased risk of ischemic heart disease (IHD).......Insulin-like growth factor I (IGF-I) has been suggested to be involved in the pathogenesis of atherosclerosis. We hypothesize that low IGF-I and high IGFBP-3 levels might be associated with increased risk of ischemic heart disease (IHD)....

  6. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Hyo-Sup Kim

    Full Text Available BACKGROUND: It has been reported that peroxisome proliferator-activated receptor (PPAR-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS: Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. RESULTS: PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. CONCLUSION: These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.

  7. A tripeptide Diapin effectively lowers blood glucose levels in male type 2 diabetes mice by increasing blood levels of insulin and GLP-1.

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    Full Text Available The prevalence of type 2 diabetes (T2D is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1, require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion.

  8. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    Science.gov (United States)

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  9. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    Science.gov (United States)

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels.

  10. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1 and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    J. Abraham Domínguez Avila

    2017-05-01

    Full Text Available Type-2 diabetes mellitus (T2DM is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1, an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4, stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.

  11. Serum Is Not Necessary for Prior Pharmacological Activation of AMPK to Increase Insulin Sensitivity of Mouse Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Nicolas O. Jørgensen

    2018-04-01

    Full Text Available Exercise, contraction, and pharmacological activation of AMP-activated protein kinase (AMPK by 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR have all been shown to increase muscle insulin sensitivity for glucose uptake. Intriguingly, improvements in insulin sensitivity following contraction of isolated rat and mouse skeletal muscle and prior AICAR stimulation of isolated rat skeletal muscle seem to depend on an unknown factor present in serum. One study recently questioned this requirement of a serum factor by showing serum-independency with muscle from old rats. Whether a serum factor is necessary for prior AICAR stimulation to increase insulin sensitivity of mouse skeletal muscle is not known. Therefore, we investigated the necessity of serum for this effect of AICAR in mouse skeletal muscle. We found that the ability of prior AICAR stimulation to improve insulin sensitivity of mouse skeletal muscle did not depend on the presence of serum during AICAR stimulation. Although prior AICAR stimulation did not enhance proximal insulin signaling, insulin-stimulated phosphorylation of Tre-2/BUB2/CDC16- domain family member 4 (TBC1D4 Ser711 was greater in prior AICAR-stimulated muscle compared to all other groups. These results imply that the presence of a serum factor is not necessary for prior AMPK activation by AICAR to enhance insulin sensitivity of mouse skeletal muscle.

  12. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    Science.gov (United States)

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  13. Concentrated insulins: the new basal insulins

    Directory of Open Access Journals (Sweden)

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  14. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    Science.gov (United States)

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  15. Exogenous insulin antibody syndrome (EIAS: a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients

    Directory of Open Access Journals (Sweden)

    Xiaolei Hu

    2018-01-01

    Full Text Available Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs. IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS. The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS.

  16. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion

    DEFF Research Database (Denmark)

    Jensen, T; Richter, Erik; Feldt-Rasmussen, Bo

    1988-01-01

    To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal...... were not explained by differences in metabolic control or the degree of autonomic neuropathy. Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy...... or the duration of diabetes. Whether the reduced capacity is due to widespread microangiopathy or another pathological process affecting the myocardium remains to be established....

  17. Insulin sensitivity in post-obese women

    DEFF Research Database (Denmark)

    Toubro, S; Western, P; Bülow, J

    1994-01-01

    1. Both increased and decreased sensitivity to insulin has been proposed to precede the development of obesity. Therefore, insulin sensitivity was measured during a 2 h hyperinsulinaemia (100 m-units min-1 m-2) euglycaemic (4.5 mmol/l) glucose clamp combined with indirect calorimetry in nine weight......-1 kg-1, not significant). Basal plasma concentrations of free fatty acids were similar, but at the end of the clamp free fatty acids were lower in the post-obese women than in the control women (139 +/- 19 and 276 +/- 48 mumol/l, P = 0.02). 3. We conclude that the insulin sensitivity of glucose...... metabolism is unaltered in the post-obese state. The study, however, points to an increased antilipolytic insulin action in post-obese subjects, which may favour fat storage and lower lipid oxidation rate postprandially.(ABSTRACT TRUNCATED AT 250 WORDS)...

  18. Effect of chloroquine on insulin and glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Smith, G D; Amos, T A; Mahler, R; Peters, T J

    1987-01-01

    Plasma glucose, insulin, and C peptide concentrations were determined after an oral glucose load in normal subjects and in a group of patients with non-insulin-dependent diabetes mellitus before and during a short course of treatment with chloroquine. In the control group there was a small but significant reduction in fasting blood glucose concentration but overall glucose tolerance and hormone concentrations were unaffected. In contrast, the patients with non-insulin-dependent diabetes mellitus showed a significant improvement in their glucose tolerance, which paralleled the severity of their diabetes. This response seems to reflect decreased degradation of insulin rather than increased pancreatic output. These observations suggest that treatment with chloroquine or suitable analogues may be a new approach to the management of diabetes. PMID:3103729

  19. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    Science.gov (United States)

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  20. Oral contraceptives increase insulin-like growth factor binding protein-1 concentration in women with polycystic ovarian disease.

    Science.gov (United States)

    Suikkari, A M; Tiitinen, A; Stenman, U H; Seppälä, M; Laatikainen, T

    1991-05-01

    Insulin-like growth factor-I (IGF-I) stimulates ovarian androgen production. Insulin-like growth factor binding protein-1 (IGFBP-1) inhibits IGF actions in vitro. To investigate the effect of oral contraceptive (OC) pills, given for 3 months, on serum gonadotropin, androgen, IGF-I, and IGFBP-1 concentrations, and glucose tolerance in seven women with polycystic ovarian disease (PCOD) and in five healthy control subjects. Seven women with PCOD and five healthy control subjects. An oral glucose tolerance test (OGTT) was performed before and after treatment with OC. After treatment with OC, serum luteinizing hormone, androstenedione, and free testosterone levels decreased, and sex hormone-binding globulin concentration increased in the women with PCOD as well as in the control subjects. The cumulative response of serum insulin to OGTT was larger in the women with PCOD than in the control subjects both before and after treatment. Serum IGF-I concentration, which was unchanged during OGTT, decreased from basal level of 326 +/- 70 micrograms/L to 199 +/- 28 micrograms/L after treatment with OC in the women with PCOD, whereas no change was found in the control subjects (from 235 +/- 11 micrograms/L to 226 +/- 11 micrograms/L). Treatment with OC caused an increase of the mean basal IGFBP-1 concentration from 24 +/- 7 micrograms/L to 73 +/- 14 micrograms/L in the women with PCOD. This increase was constant during the OGTT. In the control subjects, treatment with OC did not result in any significant change in IGFBP-1 concentrations (from 44 +/- 11 micrograms/L to 61 +/- 9 micrograms/L). The combination of decreased total IGF-I concentration and increased IGFBP-1 concentration induced by OC may decrease ovarian androgen production in PCOD.

  1. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice.

    Science.gov (United States)

    Camporez, João-Paulo G; Petersen, Max C; Abudukadier, Abulizi; Moreira, Gabriela V; Jurczak, Michael J; Friedman, Glenn; Haqq, Christopher M; Petersen, Kitt Falk; Shulman, Gerald I

    2016-02-23

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease.

  2. Sustained Treatment with Insulin Detemir in Mice Alters Brain Activity and Locomotion.

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available Recent studies have identified unique brain effects of insulin detemir (Levemir®. Due to its pharmacologic properties, insulin detemir may reach higher concentrations in the brain than regular insulin. This might explain the observed increased brain stimulation after acute insulin detemir application but it remained unclear whether chronic insulin detemir treatment causes alterations in brain activity as a consequence of overstimulation.In mice, we examined insulin detemir's prolonged brain exposure by continuous subcutaneous (s.c. application using either micro-osmotic pumps or daily s.c. injections and performed continuous radiotelemetric electrocorticography and locomotion recordings.Acute intracerebroventricular injection of insulin detemir activated cortical and locomotor activity significantly more than regular insulin in equimolar doses (0.94 and 5.63 mU in total, suggesting an enhanced acute impact on brain networks. However, given continuously s.c., insulin detemir significantly reduced cortical activity (theta: 21.3±6.1% vs. 73.0±8.1%, P<0.001 and failed to maintain locomotion, while regular insulin resulted in an increase of both parameters.The data suggest that permanently-increased insulin detemir levels in the brain convert its hyperstimulatory effects and finally mediate impairments in brain activity and locomotion. This observation might be considered when human studies with insulin detemir are designed to target the brain in order to optimize treatment regimens.

  3. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury.

    Science.gov (United States)

    Brabazon, Fiona; Wilson, Colin M; Jaiswal, Shalini; Reed, John; Frey, William H; Byrnes, Kimberly R

    2017-09-01

    Traumatic brain injury (TBI) results in learning and memory dysfunction. Cognitive deficits result from cellular and metabolic dysfunction after injury, including decreased cerebral glucose uptake and inflammation. This study assessed the ability of intranasal insulin to increase cerebral glucose uptake after injury, reduce lesion volume, improve memory and learning function and reduce inflammation. Adult male rats received a controlled cortical impact (CCI) injury followed by intranasal insulin or saline treatment daily for 14 days. PET imaging of [18F]-FDG uptake was performed at baseline and at 48 h and 10 days post-injury and MRI on days three and nine post injury. Motor function was tested with the beam walking test. Memory function was assessed with Morris water maze. Intranasal insulin after CCI significantly improved several outcomes compared to saline. Insulin-treated animals performed better on beam walk and demonstrated significantly improved memory. A significant increase in [18F]-FDG uptake was observed in the hippocampus. Intranasal insulin also resulted in a significant decrease in hippocampus lesion volume and significantly less microglial immunolabeling in the hippocampus. These data show that intranasal insulin improves memory, increases cerebral glucose uptake and decreases neuroinflammation and hippocampal lesion volume, and may therefore be a viable therapy for TBI.

  4. Use of Insulin and Insulin Analogs and Risk of Cancer — Systematic Review and Meta-Analysis of Observational Studies

    Science.gov (United States)

    Karlstad, Øystein; Starup-Linde, Jacob; Vestergaard, Peter; Hjellvik, Vidar; T. Bazelier, Marloes; K. Schmidt, Marjanka; Andersen, Morten; Auvinen, Anssi; Haukka, Jari; Furu, Kari; de Vries, Frank; L. de Bruin, Marie

    2014-01-01

    Background: An association of insulin use and risk of cancer has been reported but evidence is conflicting and methodological issues have been identified. Objective: To summarize results regarding insulin use and cancer risk by a systematic review and meta-analysis of cohort and case-control studies examining risk of cancer associated with insulin use in patients with diabetes. Data Sources: Systematic literature search in 5 databases: PubMed, Embase, Web of Science, Scopus and Cochrane Library. Study Eligibility Criteria (PICOS): Population: diabetes patients. Exposure: Users of any exogenous insulin. Comparison: Diabetes patients with or without use of antidiabetic drugs. Outcome: Any incident cancer. Study Design: Cohort and case-control studies. Results: 42 eligible studies examined risk of any cancer and 27 site-specific cancers. Results of individual studies were heterogeneous. Meta-analyses were significant for: Insulin vs No Insulin: Increased risk for pancreas, liver, kidney, stomach and respiratory cancer, decreased risk for prostate cancer. Insulin vs Non-Insulin Antidiabetics: Increased risk for any, pancreatic and colorectal cancer. Glargine vs Non-Glargine Insulin: Increased risk for breast cancer, decreased risk for colon cancer. Limitations: Few studies available for most cancer sites and exposure contrasts, and few assess effect of dose and duration of exposure. Methodological issues in several studies. Availability of confounders. Conclusions: Insulin use was associated with risk of cancer at several sites. Cautious interpretation of results is warranted as methodological issues and limitations in several of the included studies have been identified. Choice of study design may have a profound effect on estimated cancer risk. PMID:24215311

  5. Influence of Grand Multiparity on the Levels of Insulin, Glucose and HOMA-IR in Comparison with Nulliparity and Primiparity.

    Science.gov (United States)

    Eldin Ahmed Abdelsalam, Kamal; Alobeid M Elamin, Abdelsamee

    2017-01-01

    It is to compare the levels of fasting glucose and insulin as well as insulin resistance in grand multiparas with primiparity and nulliparity. Fasting blood samples were collected from 100 non-pregnant ladies as control group, 100 primiparity pregnant women and 100 grand multiparity pregnant women. Glucose (FBS) and insulin (FSI) concentrations were measured by Hitachi 912 full automated Chemistry Analyzer (Roche Diagnostics, Germany) as manufacturer procedure. Insulin resistance was calculated following the formula: FBG (mg dL-1)×FSI (μU mL-1)/405. This study found a significant reduction in glucose level in primiparity when compared to control group but it was increased significantly in multiparity comparing to primiparity and control. Insulin level showed significant high concentrations in pregnant women and increased significantly in grand multiparas comparing to primiparas and controls. As a result of that, HOMA-IR was increased significantly by increasing of parity. Also, there was a significant increase in fasting insulin and a decrease in insulin sensitivity with parity with association to age and obesity. Grand multiparity is associated with an increased risk of subsequent clinical insulin resistance (HOMA-IR).

  6. Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance.

    Science.gov (United States)

    Haselton, Aaron; Sharmin, Effat; Schrader, Janel; Sah, Megha; Poon, Peter; Fridell, Yih-Woei C

    2010-08-01

    In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic beta cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.

  7. Depressive symptoms, insulin sensitivity and insulin secretion in the RISC cohort study

    DEFF Research Database (Denmark)

    Bot, M; Pouwer, F; De Jonge, P

    2013-01-01

    Sensitivity and Cardiovascular Disease Risk (RISC) study. Presence of significant depressive symptoms was defined as a Center for Epidemiologic Studies Depression Scale (CES-D) score ≥ 16. Standard oral glucose tolerance tests were performed. Insulin sensitivity was assessed with the oral glucose insulin......AIM: This study explored the association of depressive symptoms with indices of insulin sensitivity and insulin secretion in a cohort of non-diabetic men and women aged 30 to 64 years. METHODS: The study population was derived from the 3-year follow-up of the Relationship between Insulin...... sensitivity (OGIS) index. Insulin secretion was estimated using three model-based parameters of insulin secretion (beta-cell glucose sensitivity, the potentiation factor ratio, and beta-cell rate sensitivity). RESULTS: A total of 162 out of 1027 participants (16%) had significant depressive symptoms. Having...

  8. Plasma Asprosin Concentrations Are Increased in Individuals with Glucose Dysregulation and Correlated with Insulin Resistance and First-Phase Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Yuren Wang

    2018-01-01

    Full Text Available Background. Adipokines are reported to participate in many common pathologic processes of glucose dysregulation, such as insulin resistance, β-cell dysfunction, and chronic inflammation. Objective. To detect the concentrations of plasma asprosin in subjects with impaired glucose regulation (IGR and newly diagnosed type 2 diabetes (nT2DM and its relationship to parameters of glucose and lipid metabolism, insulin resistance, and pancreatic β-cell function. Methods. 143 eligible participants were included and were divided into three groups including normal glucose regulation (NGR, n=52, IGR (n=40, and nT2DM group (n=51. The intravenous glucose tolerance test (IVGTT and clinical and biochemical parameters were measured in all participants. Results. Plasma asprosin levels were higher in IGR (82.40 ± 91.06 ng/mL, P<0.001 and nT2DM (73.25 ± 91.69 ng/mL, P<0.001 groups compared with those in the NGR (16.22 ± 9.27 ng/mL group, especially in IGR subjects. Correlation analysis showed that plasma asprosin levels were positively correlated with waist circumference (Wc, fasting plasma glucose (FPG, postchallenge plasma glucose (2hPG, HbA1c, triglyceride (TG, and homeostasis model assessment for insulin resistance (HOMA-IR and negatively correlated with homeostasis model assessment for β-cell function (HOMA-β, area under the curve of the first-phase (0–10 min insulin secretion (AUC, acute insulin response (AIR, and glucose disposition index (GDI (all P<0.05. Multiple logistical regression analyses revealed that plasma asprosin concentrations were significantly correlated with IGR and nT2DM after controlling for age, sex, BMI, and WHR. Conclusions. Circulating asprosin might be a predictor of early diagnosis in DM and might be a potential therapeutic target for prediabetes and T2DM.

  9. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  10. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    OpenAIRE

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  11. NADPH Oxidase-Mediated ROS Production Determines Insulin's Action on the Retinal Microvasculature.

    Science.gov (United States)

    Kida, Teruyo; Oku, Hidehiro; Horie, Taeko; Matsuo, Junko; Kobayashi, Takatoshi; Fukumoto, Masanori; Ikeda, Tsunehiko

    2015-10-01

    To determine whether insulin induces nitric oxide (NO) formation in retinal microvessels and to examine the effects of high glucose on the formation of NO. Freshly isolated rat retinal microvessels were incubated in normal (5.5 mM) or high (20 mM) glucose with or without insulin (100 nM). The levels of insulin-induced NO and reactive oxygen species (ROS) in the retinal microvessels were determined semiquantitatively using fluorescent probes, 4,5-diaminofluorescein diacetate, and hydroethidine, respectively, and a laser scanning confocal microscope. The insulin-induced changes of NO in rat retinal endothelial cells and pericytes cultured at different glucose concentrations (5.5 and 25 mM) were determined using flow cytometry. Nitric oxide synthase (NOS) protein levels were determined by Western blot analysis; intracellular levels of ROS were determined using fluorescence-activated cell sorting (FACS) analysis of ethidium fluorescence; and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RNA expression was quantified using real-time PCR. Exposure of microvessels to insulin under normal glucose conditions led to a significant increase in NO levels; however, this increase was significantly suppressed when the microvessels were incubated under high glucose conditions. Intracellular levels of ROS were significantly increased in both retinal microvessels and cultured microvascular cells under high glucose conditions. The expression of NOS and NADPH oxidase were significantly increased in endothelial cells and pericytes under high glucose conditions. The increased formation of NO by insulin and its suppression by high glucose conditions suggests that ROS production mediated by NADPH oxidase is important by insulin's effect on the retinal microvasculature.

  12. Toward understanding insulin fibrillation.

    Science.gov (United States)

    Brange, J; Andersen, L; Laursen, E D; Meyn, G; Rasmussen, E

    1997-05-01

    Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

  13. Heart Rate Variability, Insulin Resistance, and Insulin Sensitivity in Japanese Adults: The Toon Health Study

    Directory of Open Access Journals (Sweden)

    Isao Saito

    2015-09-01

    Full Text Available Background: Although impaired cardiac autonomic function is associated with an increased risk of type 2 diabetes in Caucasians, evidence in Asian populations with a lower body mass index is limited. Methods: Between 2009–2012, the Toon Health Study recruited 1899 individuals aged 30–79 years who were not taking medication for diabetes. A 75-g oral glucose tolerance test was used to diagnose type 2 diabetes, and fasting and 2-h-postload glucose and insulin concentrations were measured. We assessed the homeostasis model assessment index for insulin resistance (HOMA-IR and Gutt’s insulin sensitivity index (ISI. Pulse was recorded for 5 min, and time-domain heart rate variability (HRV indices were calculated: the standard deviation of normal-to-normal intervals (SDNN and the root mean square of successive difference (RMSSD. Power spectral analysis provided frequency domain measures of HRV: high frequency (HF power, low frequency (LF power, and the LF:HF ratio. Results: Multivariate-adjusted logistic regression models showed decreased SDNN, RMSSD, and HF, and increased LF:HF ratio were associated significantly with increased HOMA-IR and decreased ISI. When stratified by overweight status, the association of RMSSD, HF, and LF:HF ratio with decreased ISI was also apparent in non-overweight individuals. The interaction between LF:HF ratio and decreased ISI in overweight individuals was significant, with the odds ratio for decreased ISI in the highest quartile of LF:HF ratio in non-overweight individuals being 2.09 (95% confidence interval, 1.41–3.10. Conclusions: Reduced HRV was associated with insulin resistance and lower insulin sensitivity. Decreased ISI was linked with parasympathetic dysfunction, primarily in non-overweight individuals.

  14. Increased serum chemerin concentrations in patients with polycystic ovary syndrome: Relationship between insulin resistance and ovarian volume.

    Science.gov (United States)

    Huang, Rong; Yue, Jiang; Sun, Yun; Zheng, Jun; Tao, Tao; Li, Shengxian; Liu, Wei

    2015-10-23

    Chemerin has been linked to adiposity, and insulin resistance (IR) which are the common characteristics of polycystic ovary syndrome (PCOS). Chemerin also shows inhibitory action on follicular steroidogenesis. We investigated the associations between chemerin and IR or polycystic ovary morphology in patients with PCOS. A total of 148 women with newly diagnosed PCOS using Rotterdam criteria and 88 healthy individuals were enrolled. The recruited patients with PCOS were further stratified by tertiles of serum chemerin concentrations as follows: Group 1 ( 30.27 ng/ml). Compared to controls, women with PCOS in each tertile had higher serum chemerin concentrations. By linear regression analysis, homeostasis model assessment-insulin resistance and ovarian volume showed significant associations with chemerin after adjusting for confounding factors (β = 0.257, P = 0.028; β = 0.276, P = 0.005, respectively). The odds ratios (ORs) for ovarian volume excess gradually increased across increasing tertiles of chemerin in the adjusted model [Group 1: reference; Group 2: OR 1.602; 95% confidence interval (CI): 1.170–2.194; Group 3: OR 1.857; 95% CI: 1.335-2.583]. Patients with PCOS showed increased serum chemerin concentrations as compared to healthy women. Individuals with higher chemerin tended to have higher risk for ovarian volume excess in patients with PCOS, regardless of adiposity.

  15. Injection related anxiety in insulin-treated diabetes.

    Science.gov (United States)

    Zambanini, A; Newson, R B; Maisey, M; Feher, M D

    1999-12-01

    The presence of injection related anxiety and phobia may influence compliance, glycaemic control and quality of life in patients with insulin-treated diabetes. Unselected consecutive, insulin-treated patients attending a diabetes clinic for follow-up, completed a standardised questionnaire providing an injection anxiety score (IAS) and general anxiety score (GAS). A total of 115 insulin-treated (80 Type 1 and 35 Type 2) diabetic patients completed the questionnaire. Injections had been avoided secondary to anxiety in 14% of cases and 42% expressed concern at having to inject more frequently. An IAS > or = 3 was seen in 28% of patients and of these, 66% injected insulin one to two times/day, 45% had avoided injections, and 70% would be bothered by more frequent injections. A significant correlation between IAS and GAS was seen (Kendall's tau-a 0.30, 95% CI 0.19-0.41, P < 0.001). GAS was significantly associated with both previous injection avoidance and expressed concern at increased injection frequency. No significant correlation was seen with HbA1c and injection or general anxiety scores. Symptoms relating to insulin injection anxiety and phobia have a high prevalence in an unselected group of diabetic patients requiring insulin injections and are associated with higher levels of general anxiety.

  16. Association of Serum Ferritin Levels with Metabolic Syndrome and Insulin Resistance.

    Science.gov (United States)

    Padwal, Meghana K; Murshid, Mohsin; Nirmale, Prachee; Melinkeri, R R

    2015-09-01

    The impact of CVDs and Type II DM is increasing over the last decade. It has been estimated that by 2025 their incidence will double. Ferritin is one of the key proteins regulating iron homeostasis and is a widely available clinical biomarker of iron status. Some studies suggest that prevalence of atherosclerosis and insulin resistance increases significantly with increasing serum ferritin. Metabolic syndrome is known to be associated with increased risk of atherosclerosis as well as insulin resistance. The present study was designed to explore the association of serum ferritin levels with metabolic syndrome and insulin resistance. The present study was prospective, cross sectional. The study protocol was approved by IEC. The study group consisted of 90 participants (50 cases of metabolic syndrome and 40 age and sex matched controls). Diagnosis of metabolic syndrome was done as per NCEP ATP III criteria. Estimation of serum Ferritin and Insulin was done by Chemiluminescence Immunoassay (CLIA) while Glucose by Glucose Oxidase and Peroxidase (GOD-POD) method. Insulin Resistance was calculated by HOMA IR score. Data obtained was statistically analysed by using student t-test. We found statistically significant rise in the levels of serum ferritin (p=syndrome as compared with controls. High serum ferritin levels though within normal range are significantly associated with both metabolic syndrome and insulin resistance.

  17. Increased CD19+CD24+CD27+ B regulatory cells are associated with insulin resistance in patients with type I Hashimoto's thyroiditis.

    Science.gov (United States)

    Yang, Min; Du, Changji; Wang, Yinping; Liu, Jun

    2017-06-01

    Hashimoto's thyroiditis (HT) is characterized by dysregulated immune responses and is commonly associated with insulin resistance. However, the mechanism of insulin resistance in HT remains to be fully elucidated. The aim of the present study was to investigate the correlation between the percentage of B regulatory lymphocytes (Bregs) and insulin resistance in patients with HT but with normal thyroid function (type I). A total of 59 patients with type I HT and 38 healthy volunteers were enrolled in the study. An oral glucose tolerance test was performed to measure insulin secretion and assess β‑cell functions. Flow cytometry was performed to examine the percentages of lymphocyte populations. The patients with HT exhibited normal fasting and postprandial glucose and fasting insulin secretion, but increased secretion of early‑phase and total insulin. The patients with HT also had insufficient β‑cell compensation for insulin resistance, indicated by a reduced disposition index, in the fasting state. An elevation in the percentage of CD19+CD24+CD27+ Bregs was also observed, which correlated positively with insulin secretion and insulin resistance in the fasting state. The patients with type I HT had postprandial insulin resistance and insufficient β‑cell compensation for fasting insulin resistance. Therefore, the increase in CD19+CD24+CD27+ Bregs was closely associated with fasting insulin secretion. These results provide novel insight into the mechanism of insulin resistance in HT.

  18. Leptin responses to bovine interferon- α and insulin in cattle

    African Journals Online (AJOL)

    Egyptian Journal of Biochemistry and Molecular Biology ... IFN- α injection produced a rapid increase in glucose and insulin levels but leptin levels did not show any alteration after the injection. ... Insulin levels rapidly increased in the blood and consequently a significant decrease in blood glucose level was recorded.

  19. Intranasal Insulin Restores Metabolic Parameters and Insulin Sensitivity in Rats with Metabolic Syndrome.

    Science.gov (United States)

    Derkach, K V; Ivantsov, A O; Chistyakova, O V; Sukhov, I B; Buzanakov, D M; Kulikova, A A; Shpakov, A O

    2017-06-01

    We studied the effect of 10-week treatment with intranasal insulin (0.5 IU/day) on glucose tolerance, glucose utilization, lipid metabolism, functions of pancreatic β cells, and insulin system in the liver of rats with cafeteria diet-induced metabolic syndrome. The therapy reduced body weight and blood levels of insulin, triglycerides, and atherogenic cholesterol that are typically increased in metabolic syndrome, normalized glucose tolerance and its utilization, and increased activity of insulin signaling system in the liver, thus reducing insulin resistance. The therapy did not affect the number of pancreatic islets and β cells. The study demonstrates prospects of using intranasal insulin for correction of metabolic parameters and reduction of insulin resistance in metabolic syndrome.

  20. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans.

    Science.gov (United States)

    Heni, Martin; Schöpfer, Patricia; Peter, Andreas; Sartorius, Tina; Fritsche, Andreas; Synofzik, Matthis; Häring, Hans-Ulrich; Maetzler, Walter; Hennige, Anita M

    2014-08-01

    Eating behavior, body weight regulation, peripheral glucose metabolism, and cognitive function depend on adequate insulin action in the brain, and recent studies in humans suggested that impaired insulin action in the brain emerges upon fat intake, obesity, and genetic variants. As insulin enters into the brain in a receptor-mediated fashion, we hypothesized that whole-body insulin sensitivity might affect the transport of insulin into the brain and contribute to the aversive effect of insulin resistance in the central nervous system. In this study, we aimed to determine the ratio of insulin in the cerebrospinal fluid and serum to whole-body insulin sensitivity. Healthy human subjects participated in an oral glucose tolerance test to determine whole-body insulin sensitivity and underwent lumbar puncture. Blood and CSF concentrations of insulin were significantly correlated. The CSF/serum ratio for insulin was significantly associated with whole body insulin sensitivity with reduced insulin transported into the CSF in insulin-resistant subjects. Together, our data suggest that transport of insulin into the CSF relates to peripheral insulin sensitivity and impairs insulin action in the brain. This underlines the need for sensitizing measures in insulin-resistant subjects.

  1. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Science.gov (United States)

    Everman, Sarah; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2015-01-01

    Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion. Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile - 3rd quartile)] between Control and BCAA in either the 40U ([199 (167-278) vs. 186 (94-308)] or 80 U ([491 (414-548) vs. 478 (409-857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P BCAA in either of the experiments (P > 0.05). Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  2. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Directory of Open Access Journals (Sweden)

    Sarah Everman

    Full Text Available Plasma branched-chain amino acids (BCAA are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5 to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5. In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U in association with the above BCAA infusion (N = 4 or under the same conditions without BCAA infusion (N = 3. Plasma glucose turnover was measured prior to and during insulin infusion.Insulin infusion completely suppressed the endogenous glucose production (EGP across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05. Insulin infusion stimulated whole-body glucose disposal rate (GDR across all groups. However, the increase (% in GDR was not different [median (1st quartile - 3rd quartile] between Control and BCAA in either the 40U ([199 (167-278 vs. 186 (94-308] or 80 U ([491 (414-548 vs. 478 (409-857] experiments (P > 0.05. Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P 0.05.Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  3. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Novel Simple Insulin Delivery Device Reduces Barriers to Insulin Therapy in Type 2 Diabetes

    Science.gov (United States)

    Hermanns, Norbert; Lilly, Leslie C.; Mader, Julia K.; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R.

    2015-01-01

    Background: The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. Methods: This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Results: Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = −5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = −2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. Conclusions: The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. PMID:25670847

  5. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  6. Endocrine determinants of changes in insulin sensitivity and insulin secretion during a weight cycle in healthy men.

    Directory of Open Access Journals (Sweden)

    Judith Karschin

    Full Text Available Changes in insulin sensitivity (IS and insulin secretion occur with perturbations in energy balance and glycemic load (GL of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear.In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2 followed 1wk of overfeeding (OF, 3wks of caloric restriction (CR containing either 50% or 65% carbohydrate (CHO and 2wks of refeeding (RF with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI, insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion were assessed.IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05. Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05 whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05 and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only. After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant.Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and ghrelin seem to be the major

  7. Insulin Initiation in Insulin-Naïve Korean Type 2 Diabetic Patients Inadequately Controlled on Oral Antidiabetic Drugs in Real-World Practice: The Modality of Insulin Treatment Evaluation Study

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    2015-12-01

    Full Text Available BackgroundThe Modality of Insulin Treatment Evaluation (MOTIV study was performed to provide real-world data concerning insulin initiation in Korean type 2 diabetes mellitus (T2DM patients with inadequate glycemic control with oral hypoglycemic agents (OHAs.MethodsThis multicenter, non-interventional, prospective, observational study enrolled T2DM patients with inadequate glycemic control (glycosylated hemoglobin [HbA1c] ≥7.0% who had been on OHAs for ≥3 months and were already decided to introduce basal insulin by their physician prior to the start of the study. All treatment decisions were at the physician's discretion to reflect real-world practice.ResultsA total of 9,196 patients were enrolled, and 8,636 patients were included in the analysis (mean duration of diabetes, 8.9 years; mean HbA1c, 9.2%. Basal insulin plus one OHA was the most frequently (51.0% used regimen. After 6 months of basal insulin treatment, HbA1c decreased to 7.4% and 44.5% of patients reached HbA1c <7%. Body weight increased from 65.2 kg to 65.5 kg, which was not significant. Meanwhile, there was significant increase in the mean daily insulin dose from 16.9 IU at baseline to 24.5 IU at month 6 (P<0.001. Overall, 17.6% of patients experienced at least one hypoglycemic event.ConclusionIn a real-world setting, the initiation of basal insulin is an effective and well-tolerated treatment option in Korean patients with T2DM who are failing to meet targets with OHA therapy.

  8. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J.; Kuhre, Rune E.; Hornburg, Daniel

    2017-01-01

    that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in......Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among...... which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated...

  9. Effects of switching from NPH insulin to insulin glargine in patients with type 2 diabetes: the retrospective, observational LAUREL study in Italy.

    Science.gov (United States)

    Bellia, Alfonso; Babini, Anna C; Marchetto, Paolo E; Arsenio, Leone; Lauro, Davide; Lauro, Renato

    2014-04-01

    The aim was to observe the effects of switching from neutral protamine Hagedorn (NPH) insulin to insulin glargine on glycaemic control in patients with type 2 diabetes mellitus (T2DM) in everyday clinical practice in Italy. This multicenter, observational, retrospective study included 1,011 patients with T2DM who switched from NPH insulin to glargine or were maintained on NPH insulin. The primary outcome was change in HbA1c over 4-8 months. Secondary outcomes included fasting blood glucose (FBG), insulin dose, and hypoglycaemia. The intention-to-treat population consisted of 996 patients (glargine 496; NPH 500). Prior to switching, HbA1c was higher in the glargine than the NPH group [mean (±SD) 8.8 ± 1.4 vs. 7.9 ± 1.2%; p < 0.001]. HbA1c decreased after 4-8 months with glargine (8.2 ± 1.4%; p < 0.001) but not with NPH (8.0 ± 1.4%; p = 0.20). Similar results were observed for FBG. The daily dose of glargine increased from 0.22 ± 0.10 U/kg at the switch to 0.26 ± 0.11 U/kg at study end, while the NPH dose remained stable (0.19 ± 0.09-0.20 ± 0.09 U/kg). While not statistically significant, the percentage of patients with hypoglycaemic episodes during the last month of treatment tended to be less with glargine. No significant change in body weight occurred in either group. Switching patients from NPH insulin to insulin glargine in a real-life setting was associated with significant improvement in glycaemic control. The increase in glargine dose was not accompanied by increased hypoglycaemia or weight gain.

  10. Effect of cholecalciferol and levo carnitine on plasma glucose, plasma insulin and insulin resistance in type 2 diabetic rats

    International Nuclear Information System (INIS)

    Anwar, M. K.; Hussain, M. M.; Khan, M. A.; Ahmad, T.

    2013-01-01

    Objective: To compare the effects of combined and individual supplementation of cholecalciferol and levo carnitine on plasma glucose, plasma insulin and insulin resistance in type 2 diabetic rats. Methods: The randomised controlled trial was conducted at the Department of Physiology, Army Medical College, Rawalpindi, between October 2010 and April 2011. It comprised 80 healthy Sprague Dawley rats who were divided into four groups (n = 20 each). Rats were fed high-fat diet for 2 weeks followed by an intraperitoneal injection of streptozocin to induce type 2 diabetes mellitus. Group I served as diabetic control; group II was given cholecalciferol; group III; levo carnitine; and group IV was administered cholecalciferol and levo carnitine together. After 6 days of supplementation, terminal intracardiac blood extraction was done and samples were analysed for fasting plasma glucose and plasma insulin. Insulin resistance was calculated by homeostatic model assessment for insulin resistance. SPSS 17.0 was used for statistical analysis. Results: Fasting plasma glucose levels were significantly decreased (p <0.001) in the combined supplementation group compared to the diabetic control and individual supplementation groups. Combined supplementation showed a significant increase in fasting plasma insulin levels when compared with diabetic control and levo carnitine groups (p <0.001), and the effect of combined supplementation on ameliorating insulin resistance was significantly better (p <0.001) as compared to the individual supplementation of cholecalciferol and levo carnitine. Conclusions: The combined supplementation of cholecalciferol and levo carnitine for 6 days markedly improved the glycaemic control, insulin secretion and insulin resistance in type 2 diabetic rats on high-fat diet. A prolonged supplementation by both the compounds along with caloric restriction may yield a more promising outcome. (author)

  11. Predictors of mortality in insulin dependent diabetes

    DEFF Research Database (Denmark)

    Rossing, P; Hougaard, P; Borch-Johnsen, K

    1996-01-01

    OBJECTIVE: To evaluate the prognostic significance of microalbuminuria and overt diabetic nephropathy and other putative risk factors for cardiovascular and all cause mortality in insulin dependent diabetes. DESIGN: Ten year observational follow up study. SETTING: Outpatient diabetic clinic...... in a tertiary referral centre. SUBJECTS: All 939 adults with insulin dependent diabetes (duration of diabetes five years or more) attending the clinic in 1984; 593 had normal urinary albumin excretion ( or = 300 mg...... and other potentially modifiable risk factors such as hypertension, smoking, poor glycaemic control, and social class predict increased mortality in insulin dependent diabetes. Microalbuminuria by itself confers only a small increase in mortality. The prognosis of patients with overt diabetic nephropathy...

  12. Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance.

    Science.gov (United States)

    Qiu, Jian; Bosch, Martha A; Meza, Cecilia; Navarro, Uyen-Vy; Nestor, Casey C; Wagner, Edward J; Rønnekleiv, Oline K; Kelly, Martin J

    2018-02-01

    Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17β-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation. Copyright © 2018 Endocrine Society.

  13. Improved Insulin Sensitivity despite Increased Visceral Adiposity in Mice Deficient for the Immune Cell Transcription Factor T-bet

    Science.gov (United States)

    Stolarczyk, Emilie; Vong, Chi Teng; Perucha, Esperanza; Jackson, Ian; Cawthorne, Michael A.; Wargent, Edward T.; Powell, Nick; Canavan, James B.; Lord, Graham M.; Howard, Jane K.

    2013-01-01

    Summary Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet−/− mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet−/− mice also lacking adaptive immunity (T-bet−/−xRag2−/−), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4+ T cells to Rag2−/− mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance. PMID:23562076

  14. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.

    Science.gov (United States)

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-11-01

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H 2 O 2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the

  15. Sulfonylurea in combination with insulin is associated with increased mortality compared with a combination of insulin and metformin in a retrospective Danish nationwide study

    DEFF Research Database (Denmark)

    Mogensen, Ulrik M; Andersson, Charlotte; Fosbøl, Emil L

    2015-01-01

    AIMS/HYPOTHESIS: Individual sulfonylureas (SUs) and metformin have, in some studies, been associated with unequal hypoglycaemic, cardiovascular and mortality risks when used as monotherapy in type 2 diabetes. We investigated the outcomes in patients treated with different combinations of SUs...... and insulin vs a combination of metformin and insulin in a retrospective nationwide study. METHODS: All Danish individuals using dual therapy with SU + insulin or metformin + insulin without prior myocardial infarction (MI) or stroke were followed from 1 January 1997 to 31 December 2009 in nationwide...... + insulin and 16,910 used metformin + insulin. Patients receiving metformin + insulin were younger and had less comorbidity and a longer history of glucose-lowering treatment. SU + insulin was associated with higher mortality rates compared with metformin + insulin (76-126 vs 23 per 1,000 person...

  16. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    Science.gov (United States)

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.

  17. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion

    DEFF Research Database (Denmark)

    Jensen, T; Richter, E A; Feldt-Rasmussen, B

    1988-01-01

    To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal...... urinary albumin excretion (less than 30 mg/24 h), group 2 comprised 10 with incipient diabetic nephropathy (urinary albumin excretion 30-300 mg/24 h, and group 3 comprised 10 with clinical diabetic nephropathy (urinary albumin excretion greater than 300 mg/24 h). Ten non-diabetic subjects matched for sex...... were not explained by differences in metabolic control or the degree of autonomic neuropathy. Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy...

  18. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan

    Directory of Open Access Journals (Sweden)

    Nicole M. Templeman

    2017-07-01

    Full Text Available The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1 signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2+/− mice to Ins2+/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2+/− mice. Halving Ins2 lowered circulating insulin by 25%–34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan.

  19. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan.

    Science.gov (United States)

    Templeman, Nicole M; Flibotte, Stephane; Chik, Jenny H L; Sinha, Sunita; Lim, Gareth E; Foster, Leonard J; Nislow, Corey; Johnson, James D

    2017-07-11

    The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1) signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2 +/- mice to Ins2 +/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2 +/- mice. Halving Ins2 lowered circulating insulin by 25%-34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. The Role of Taste in Cephalic Phase of Insulin Secretion

    Directory of Open Access Journals (Sweden)

    M. Dušková

    2013-01-01

    Full Text Available The effect of a short gustatory signal of a sweet solution was tested on 15 young male volunteers. The experiment consisted of mouth rinsing with either a sucrose or aspartate solution or pure water as a placebo. Blood was then taken in short intervals of 0, 5, 10, 15 and 20 min. Blood glucose, C-peptide, insulin and cortisol were determined. While C-peptide and glucose were unaffected, a short-term increase in insulin was observed after the sucrose, but not after the aspartate or placebo. The increase in insulin was significant, though it amounted to only 0.5 mIU/l and lasted approx. 15 min reaching then the starting value. The decline of cortisol level within 20 min of the experiment was approx. 40 nmol/l, although it was also observed after aspartate or placebo mouth rinsing and was probably caused by stress factors or anticipation. In conclusion, the contribution of taste to the cephalic phase of insulin secretion is small yet significant, and mouth rinsing with 5% sucrose causes an insulin increase of just under 1 IU/l, which returns to starting level within 15 min.

  1. Correlation of the secretion of insulin and C-peptide in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Modnikov, O P; Lomtev, N G [Kirgizskij Nauchno-Issledovatel' skij Inst. Onkologii i Radiologii, Frunze (USSR)

    1983-08-01

    Insulin and C-peptide levels were studied with a radioimmunoassay in the peripheral blood serum of 44 patients with gastric and cervical cancer and 22 healthy persons. Hyperfunction of the pancreatic insular apparatus was shown in cancer patients which was expressed in a statistically significant increase in the C-peptide level. In gastric cancer patients hyperfunction of the insular apparatus was accompanied by hypoinsulinemia, and in cervical cancer patients by hormoinsulinemia. An analysis has shown that the ratio insulin/C-peptide in gastric and cervical cancer patients was about the same and significantly lower than the control. A conclusion has been made that in spite of difference in the initial insulin concentration, the same phenomenon - acceleration of the metabolic clearance of insulin - occurs in patients with cancer of the above sites. The C-peptide level decreased, the ratio insulin/C-peptide increased, i.e. hyperfunction of the insular apparatus disappeared and the metabolic clearance of insulin slowed down.

  2. Correlation of the sectetion of insulin and C-peptide in cancer patients

    International Nuclear Information System (INIS)

    Modnikov, O.P.; Lomtev, N.G.

    1983-01-01

    Insulin and C-peptide levels were studied with a radioimmunoassay in the peripheral blood serum of 44 patients with gastric and cervical cancer and 22 healthy persons. Hyperfunction of the pancreatic insular apparatus was shown in cancer patients which was expressed in a statistically significant increase in the C-peptide level. In gastric cancer patients hyperfunction of the insular apparatus was accompanied by hypoinsulinemia, and in cervical cancer patients by hormoinsulinemia. An analysis has shown that the ratio insulin/C-peptide in gastric and cervical cancer patients was about the same and significantly lower than the control. A conclusion has been made that in spite of difference in the initial insulin concentration, the same phenomenon - acceleration of the metabolic clearance of insulin - occurs in patients with cancer of the above sites. The C-peptide level decreased, the ratio insulin/C-peptide increased, i.e. hyperfunction of the insular apparatus disappeared and the metabolic clearance of insulin slowed down

  3. Influence of insulin therapy on circulating ghrelin and insulin-like ghrelinowth factor-1(IGF-1) levels in children with type-1 diabetes mellitus

    International Nuclear Information System (INIS)

    Moawad, A.T.; Nassar, E.M.; Mostafa, A.M.; Mohammed, S.K.

    2009-01-01

    Diabetes mellitus type 1 (IDDM)is a chronic disease associated with alterations in the growth hormone/insulin -like growth factor (GH-IGF) system and ghrelin level which may lead to changes in metabolic control. This study aimed to evaluate the circulating levels of the gut-derived peptides (ghrelin and insulin-like growth factors (IGF s ) in children with IDDM and to link these two peptides with the glucose level in diabetic children at diagnoses and after insulin therapy. Design and methods: the studied group consisted of 30 newly diagnosed diabetic children (17 females and 13 males) diagnosed in paediatric diabetes unit, children's hospital, Ain shams university. Their age ranged from (6.2-11.8) years with mean of 10.10± 1.74 years. Twenty non diabetic healthy children matching in age and sex served as controls. Serum ghrelin was determined by enzyme linked immuno absorbanet assay (ELISA), while IGF-1 and insulin-like growth factors binding proteins -1 and 3 (IGFBP s ) were assessed by radioimmunoassay(RIA). Results: body mass index (BMI) in patients was significantly decreased in the diabetic group as compared to the healthy group at diagnosis. After insulin therapy BMI was significantly increase as compared to its value at diagnosis (p< 0.05) such increase was not significant on comparing to controls. Regarding blood glucose level there was very highly significant decrease in the level of HBAI (glycolated HB) in diabetic patients after insulin therapy (p<0.0001) than at diagnosis . The mean ghrelin level was highly significantly decreased in diabetic children at diagnosis and after insulin therapy as compared to controls (p<0.0001). No differences were found in the mean ghrelin levels in diabetic children at diagnosis or after insulin therapy.conclusions : the decrease in mean gherlin levels in this study at diagnosis and after therapy could reflect an attempt by the body to decrease the glucose level and thus may prevent hyperglycemia in diabetic patients

  4. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  5. Among Metabolic Factors, Significance of Fasting and Postprandial Increases in Acyl and Desacyl Ghrelin and the Acyl/Desacyl Ratio in Obstructive Sleep Apnea before and after Treatment.

    Science.gov (United States)

    Chihara, Yuichi; Akamizu, Takashi; Azuma, Masanori; Murase, Kimihiko; Harada, Yuka; Tanizawa, Kiminobu; Handa, Tomohiro; Oga, Toru; Mishima, Michiaki; Chin, Kazuo

    2015-08-15

    There are reports suggesting that obstructive sleep apnea (OSA) may itself cause weight gain. However, recent reports showed increases in body mass index (BMI) following continuous positive airway pressure (CPAP) treatments. When considering weight changes, changes in humoral factors that have significant effects on appetite such as acyl (AG) and desacyl ghrelin (DAG), leptin, insulin, and glucose and their interactions, examples of which are AG/DAG and AG/insulin, are important. The aim of this study was to test the hypothesis that some appetite-related factors had a specific profile before and after CPAP treatment. Metabolic parameters were measured cross-sectionally while fasting and 30, 60, 90, and 120 min following breakfast in no or mild OSA (apnea-hypopnea index fasting and postprandial glucose, insulin, and leptin levels did not differ between no or mild OSA and moderate-to-severe OSA participants, AG and DAG, including AG/DAG and AG/insulin, under fasting and postprandial conditions were significantly increased in the moderate-to-severe OSA patients (p continuous changes in ghrelin secretion in OSA patients existed at least within 3 months of CPAP treatment. Methods to prevent OSA as well as treatment in its early stage may be recommended. © 2015 American Academy of Sleep Medicine.

  6. Efficacy and safety of biphasic insulin aspart and biphasic insulin lispro mix in patients with type 2 diabetes: A review of the literature

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2016-01-01

    Full Text Available Type 2 diabetes (T2D represents an escalating burden worldwide, particularly in China and India. Compared with Caucasians, Asian people with diabetes have lower body mass index, increased visceral adiposity, and postprandial glucose (PPG/insulin resistance. Since postprandial hyperglycemia contributes significantly to total glycemic burden and is associated with heightened cardiovascular risk, targeting PPG early in T2D is paramount. Premixed insulin regimens are widely used in Asia due to their convenience and effectiveness. Data from randomized controlled trials and observational studies comparing efficacy and safety of biphasic insulin aspart 30 (BIAsp 30 with biphasic insulin lispro mix (LM 25/50 and versus other insulin therapies or oral antidiabetic drugs (OADs in T2D demonstrated that BIAsp 30 and LM 25/50 were associated with similar or greater improvements in glycemic control versus comparator regimens, such as basal–bolus insulin, in insulin-naÏve, and prior insulin users. Studies directly comparing BIAsp 30 and LM 25 provided conflicting glycemic control results. Safety data generally showed increased hypoglycemia and weight gain with premixed insulins versus basal–bolus insulin or OADs. However, large observational trials documented improvements in glycated hemoglobin, PPG, and hypoglycemia with BIAsp 30 in multi-ethnic patient populations. In summary, this literature review demonstrates that premixed insulin regimens are an appropriate and effective treatment choice in T2D.

  7. Uric Acid or 1-Methyl Uric Acid in the Urinary Bladder Increases Serum Glucose, Insulin, True Triglyceride, and Total Cholesterol Levels in Wistar Rats

    Directory of Open Access Journals (Sweden)

    T. Balasubramanian

    2003-01-01

    Full Text Available In animals deprived of food for a long period, a drop in the fat mass below 5% of the total body mass results in an increase in blood glucocorticoids and uric acid levels, followed by foraging activity. Since the glucocorticoids increase the uric acid excretion, an increase in the level of uric acid in the bladder urine could be the signal for this feeding behaviour and subsequent fat storage. Accumulation of fat is associated with hyperglycaemia, hyperinsulinaemia, hyperlipidaemia, and hypercholesterolaemia as seen in the metabolic syndrome or hibernation. It is hypothesized that uric acid or its structurally related compound, 1-methyl uric acid (one of the metabolites of the methyl xanthines namely caffeine, theophylline, and theobromine present in coffee, tea, cocoa, and some drugs, can act on the urinary bladder mucosa and increases the blood glucose, insulin, triglyceride, and cholesterol levels. In rats, perfusion of the urinary bladder with saturated aqueous solution of uric acid or 1-methyl uric acid results in a significant increase in the serum levels of glucose, insulin, true triglyceride, and total cholesterol in comparison with perfusion of the bladder with distilled water at 20, 40, and 80 min. The uric acid or the 1-methyl uric acid acts on the urinary bladder mucosa and increases the serum glucose, insulin, true triglyceride, and total cholesterol levels.

  8. Arterial Retention of Remnant Lipoproteins Ex Vivo Is Increased in Insulin Resistance Because of Increased Arterial Biglycan and Production of Cholesterol-Rich Atherogenic Particles That Can Be Improved by Ezetimibe in the JCR:LA-cp Rat

    Science.gov (United States)

    Mangat, Rabban; Warnakula, Samantha; Borthwick, Faye; Hassanali, Zahra; Uwiera, Richard R.E.; Russell, James C.; Cheeseman, Christopher I.; Vine, Donna F.; Proctor, Spencer D

    2012-01-01

    Background Literature supports the “response-to-retention” hypothesis—that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. Methods and Results Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. Conclusions Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS. PMID:23316299

  9. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels.

    Science.gov (United States)

    Ruiz, Henry H; Chi, Tiffany; Shin, Andrew C; Lindtner, Claudia; Hsieh, Wilson; Ehrlich, Michelle; Gandy, Sam; Buettner, Christoph

    2016-08-01

    Epidemiologic studies have demonstrated an association between diabetes and dementia. Insulin signaling within the brain, in particular within the hypothalamus regulates carbohydrate, lipid, and branched chain amino acid (BCAA) metabolism in peripheral organs such as the liver and adipose tissue. We hypothesized that cerebral amyloidosis impairs central nervous system control of metabolism through disruption of insulin signaling in the hypothalamus, which dysregulates glucose and BCAA homeostasis resulting in increased susceptibility to diabetes. We examined whether APP/PS1 mice exhibit increased susceptibility to aging or high-fat diet (HFD)-induced metabolic impairment using metabolic phenotyping and insulin-signaling studies. APP/PS1 mice were more susceptible to high-fat feeding and aging-induced metabolic dysregulation including disrupted BCAA homeostasis and exhibited impaired hypothalamic insulin signaling. Our data suggest that AD pathology increases susceptibility to diabetes due to impaired hypothalamic insulin signaling, and that plasma BCAA levels could serve as a biomarker of hypothalamic insulin action in patients with AD. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  10. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  11. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence?

    Science.gov (United States)

    Stanley, Molly; Macauley, Shannon L.

    2016-01-01

    Individuals with type 2 diabetes have an increased risk for developing Alzheimer’s disease (AD), although the causal relationship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils of amyloid-β (Aβ) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for AD. Conversely, elevated insulin levels (ins) are found in AD patients and high insulin has been reported to increase Aβ levels and tau phosphorylation, which could exacerbate AD pathology. Herein, we explore whether changes in ins and IS are a cause or consequence of AD. PMID:27432942

  12. Insulin pumps and insulin quality--requirements and problems.

    Science.gov (United States)

    Brange, J; Havelund, S

    1983-01-01

    In developing insulin solution suitable for delivery devices the chemical and biological stability, as well as the physical stability, must be taken into consideration. Addition of certain mono- and disaccharides increases the physical stability of neutral insulin solutions, but concurrently the chemical and biological stability decrease to an unacceptable degree. Addition of Ca-ions in low concentrations offers a physiologically acceptable method for stabilizing neutral insulin solutions against heat precipitation without affecting the quality, including the chemical and biological stability.

  13. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    Science.gov (United States)

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  14. Circulating complement-C1q TNF-related protein 1 levels are increased in patients with type 2 diabetes and are associated with insulin sensitivity in Chinese subjects.

    Directory of Open Access Journals (Sweden)

    Xuebo Pan

    Full Text Available BACKGROUND: Complement-C1q TNF-related protein 1 (CTRP1, a member of the CTRP superfamily, possesses anti-inflammatory and anti-diabetic effects in mice. However, the clinical relevance of CTRP1 has been seldom explored. The current study aimed to investigate the association of circulating CTRP1 and type 2 diabetes mellitus (T2DM in a Chinese population. DESIGN AND METHODS: Serum CTRP1 and adiponectin levels of 96 T2DM patients and 85 healthy subjects were determined by ELISA, and their associations with adiposity, glucose and lipid profiles were studied. In a subgroup of this study, the 75-g oral glucose tolerance test (OGTT was performed in 20 healthy and 20 T2DM subjects to evaluate the relationship among serum levels of CTRP1 and adiponectin, insulin secretion and insulin sensitivity. RESULTS: Serum CTRP1 levels were significantly increased in patients with T2DM, compared with healthy controls (p<0.001. Similar to adiponectin, serum levels of CTRP1 were significantly correlated to several parameters involved in glucose metabolism and insulin resistance, and independently associated with fasting glucose levels (p<0.05 after BMI and gender adjustments. Furthermore, CTRP1 levels were positively correlated to insulin secretion, while negatively to insulin sensitivity, as measured by OGTT. CONCLUSION: CTRP1 is a novel adipokine associated with T2DM in humans. The paradoxical increase of serum CTRP1 levels in T2DM subjects may be due to a compensatory response to the adverse glucose and lipid metabolism, which warrants further investigation.

  15. Erythrocytes 125I-Insulin Binding Studies in Viral Hepatitis and Schistosomiasis Patients

    International Nuclear Information System (INIS)

    Ahmed, A.M.

    2003-01-01

    The present study aims to evaluate the alterations of insulin binding sites in human erythrocytes in patients with chronic viral B and C hepatitis and in schistosomiasis. Fifty men with ages ranged from 20-45 years were diagnosed into five groups; hepatitis B virus, hepatitis C virus, mixed hepatitis B and C, schistosomiasis and normal healthy volunteers as a control group. Biochemical analyses as erythrocyte insulin radioreceptor, plasma insulin estimation, fasting and post prandial blood glucose levels and liver function tests were performed. The results revealed significant decrease in insulin binding sites/cell in patients with hepatitis C virus, mixed B and C viruses and in schistosomiasis compared to the control group. There were significant increase in fasting plasma glucose levels in groups of hepatitis C virus mixed B and C viruses, while there were highly significant increase in post prandial plasma glucose levels in patients with mixed B and C viruses and in schistosomiasis groups compared to the normal control. Also, fasting plasma insulin levels were significantly elevated in groups of hepatitis C mixed B and C viruses and in schistosomiasis group. The obtained results revealed the importance of laboratory follow up of glucose and insulin levels in patients with chronic liver diseases

  16. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance.

    Science.gov (United States)

    Potenza, Maria A; Marasciulo, Flora L; Tarquinio, Mariela; Quon, Michael J; Montagnani, Monica

    2006-12-01

    Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.

  17. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity.

    Science.gov (United States)

    Meex, Ruth C R; Schrauwen-Hinderling, Vera B; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K C

    2010-03-01

    Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P type 2 diabetic subjects (delta Rd 63% increase; P type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.

  18. In nondiabetic, human immunodeficiency virus-infected patients with lipodystrophy, hepatic insulin extraction and posthepatic insulin clearance rate are decreased in proportion to insulin resistance

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R

    2005-01-01

    In healthy, nondiabetic individuals with insulin resistance, fasting insulin is inversely correlated to the posthepatic insulin clearance rate (MCRi) and the hepatic insulin extraction (HEXi). We investigated whether similar early mechanisms to facilitate glucose homeostasis exist in nondiabetic...... endogenous insulin secretion, which was estimated by deconvolution of C-peptide concentrations. Hepatic extraction of insulin was calculated as 1 minus the ratio of fasting posthepatic insulin delivery rate to fasting endogenous insulin secretion rate. Compared with controls, LIPO displayed increased fasting...... insulin (130%, P Hepatic extraction of insulin was similar between groups (LIPO, 55%; controls, 57%; P > .8). In LIPO, HEXi and MCRi correlated inversely with fasting insulin (r = -0.56, P

  19. Insulin and the Brain

    Directory of Open Access Journals (Sweden)

    Grosu Cristina

    2017-12-01

    Full Text Available The brain represents an important site for the action of insulin. Besides the traditionally known importance in glucoregulation, insulin has significant neurotrophic properties and influences the brain activity: insulin influences eating behavior, regulates the storage of energy and several aspects concerning memory and knowledge. Insulin resistance and hyperinsulinism could be associated with brain aging, vascular and metabolic pathologies. Elucidating the pathways and metabolism of brain insulin could have a major impact on future targeted therapies.

  20. Chemical stability of insulin. 5. Isolation, characterization and identification of insulin transformation products.

    Science.gov (United States)

    Brange, J; Hallund, O; Sørensen, E

    1992-01-01

    During storage of insulin formulated for therapy, minor amounts of various degradation and covalent di- and polymerization products are formed [1-3]. The main chemical transformation products were isolated from aged preparations and characterized chemically and biologically. The most prominent products formed in neutral medium were identified as a mixture of deamidation products hydrolyzed at residue B3, namely isoAsp B3 and Asp B3 derivatives. A hydrolysis product formed only in crystals of insulin zinc suspensions containing a surplus of zinc ions in the supernatant was identified as an A8-A9 cleavage product. The small amounts of covalent insulin dimers (CID) formed in all formulations were shown to be a heterogenous mixture of 5-6 different CIDs with a composition dependent on the pharmaceutical formulation. The chemical characteristics of the CIDs indicate that they are formed through a transamidation reaction mainly between the B-chain N-terminal and one of the four amide side-chains of the A chain. GlnA15, AsnA18 and, in particular, AsnA21 participate in the formation of such isopeptide links between two insulin molecules. The covalent insulin-protamine products (CIPP) formed during storage of NPH preparations presumably originate from a similar reaction between the protamine N-terminal with an amide in insulin. Covalent polymerization products, mainly formed during storage of amorphously suspended insulin at higher temperature, were shown to be due to disulfide interactions. Biological in vivo potencies relative to native insulin were less than 2% for the split-(A8-A9)-product and for the covalent disulfide exchange polymers, 4% for the CIPP, approximately 15% for the CIDs, whereas the B3 derivatives exhibited full potency. Rabbit immunization experiments revealed that none of the insulin transformation products had significantly increased immunogenicity in rabbits.

  1. Effect of thiazolidinedione treatment on resistin levels in insulin resistant sprague dawley rats

    International Nuclear Information System (INIS)

    Yousaf, I.; Hameed, W.; Rajput, T.A.

    2015-01-01

    Insulin resistance is manifested by decreased effect of fixed quantity of insulin on glucose metabolism leading to type 2 diabetes mellitus. Visceral obesity has been positively correlated with insulin resistance but its mechanism is not fully defined. Insulin resistance may be the consequence of adipocytokines including visfatin and resistin. This study was designed to see the effect of thiazolidinediones on levels of resistin in insulin resistant rats. Methods: Ninety Sprague Dawley rats were randomly divided into three groups. Group I served as control. Rats in Group II and III were made insulin resistant diabetics. Group III was treated with rosiglitazone after development of diabetes. Plasma glucose, serum triglycerides, HDL, TG:HDL ratio and serum resistin levels were analysed. Results: Body weight and plasma glucose were significantly increased (p<0.05) along with TG:HDL ratio (p<0.05) in group II and group III at the end of 4th week. Serum resistin levels also increased significantly (p<0.05) in group II and III at the end of 4th week. Treatment of group III with rosiglitazone led to improvement in insulin resistance with decrease in serum resistin levels (p<0.05). Conclusion: Increased serum resistin level indicates insulin resistance and impending hyperglycaemia. Thiazolidinediones augment sensitivity of insulin to restore normoglycaemia by decreasing serum resistin level. (author)

  2. Insulin resistance in brain and possible therapeutic approaches.

    Science.gov (United States)

    Cetinkalp, Sevki; Simsir, Ilgin Y; Ertek, Sibel

    2014-01-01

    Although the brain has long been considered an insulin-independent organ, recent research has shown that insulin has significant effects on the brain, where it plays a role in maintaining glucose and energy homeostasis. To avoid peripheral insulin resistance, the brain may act via hypoinsulinemic responses, maintaining glucose metabolism and insulin sensitivity within its own confines; however, brain insulin resistance may develop due to environmental factors. Insulin has two important functions in the brain: controlling food intake and regulating cognitive functions, particularly memory. Notably, defects in insulin signaling in the brain may contribute to neurodegenerative disorders. Insulin resistance may damage the cognitive system and lead to dementia states. Furthermore, inflammatory processes in the hypothalamus, where insulin receptors are expressed at high density, impair local signaling systems and cause glucose and energy metabolism disorders. Excessive caloric intake and high-fat diets initiate insulin and leptin resistance by inducing mitochondrial dysfunction and endoplasmic reticulum stress in the hypothalamus. This may lead to obesity and diabetes mellitus (DM). Exercise can enhance brain and hypothalamic insulin sensitivity, but it is the option least preferred and/or continuously practiced by the general population. Pharmacological treatments that increase brain and hypothalamic insulin sensitivity may provide new insights into the prevention of dementia disorders, obesity, and type 2 DM in the future.

  3. Luminal uptake and intracellular transport of insulin in renal proximal tubules

    International Nuclear Information System (INIS)

    Hellfritzsch, M.; Christensen, E.I.; Sonne, O.

    1986-01-01

    It is generally accepted that proteins taken up from the renal tubular fluid are transported into lysosomes in proximal tubule cells. Recently, however, it has been postulated that insulin in isolated perfused rat kidneys did not accumulate in lysosomes but to a certain degree in the Golgi region. The present study was undertaken to investigate the intracellular handling of biologically unaltered insulin in rat renal proximal tubule cells. Rats were prepared for in vivo micropuncture and either a colloidal gold insulin complex or insulin monoiodinated in the A-14 position ( 125 I-insulin) was microinfused into proximal tubules. After 5, 10, 25 or 60 min the tubules were fixed by microinfusion of glutaraldehyde and processed for electron microscopy or electron microscope autoradiography. A qualitative analysis of tubules infused with colloidal gold insulin or 125 I-insulin showed that insulin was taken up by endocytosis and transported to lysosomes, and a quantitative autoradiographic analysis of the 125 I-insulin microinfused tubules showed that the grain density after five min was significantly increased for endocytic vacuoles and for lysosomes. After 60 min the grain density was still significant over lysosomes. The accumulation of grains was non-significant over all other areas analyzed at any time. This study shows that insulin is taken up from the luminal side of the proximal tubule by endocytosis and transported to the lysosomes. There was no significant transport to the Golgi region

  4. Insulin Resistance and Increased Muscle Cytokine Levels in Patients With Mitochondrial Myopathy

    DEFF Research Database (Denmark)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-01-01

    CONTEXT: Mitochondrial dysfunction has been proposed to cause insulin resistance and that might stimulate cytokine production. OBJECTIVE: The objective of the study was to elucidate the association between mitochondrial myopathy, insulin sensitivity, and cytokine levels in muscle. DESIGN......: The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. MAIN OUTCOME MEASURES: Glucose infusion rate during 90-120 minutes of insulin infusion...... was measured. Cytokine concentrations in dialysate were also measured. RESULTS: Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P insulin, C-peptide, and glucagon were higher...

  5. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues.

    Science.gov (United States)

    Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko

    2017-09-01

    The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.

  6. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    Science.gov (United States)

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  7. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects.

    Directory of Open Access Journals (Sweden)

    Kenji Ishibashi

    Full Text Available Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images.Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR was calculated.Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05, and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4-5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002, and no correlation with plasma insulin levels (r = 0.156, p = 0.12 or HOMA-IR (r = 0.096, p = 0.24.This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images.

  8. Fasting Ghrelin Levels Are Decreased in Obese Subjects and Are Significantly Related With Insulin Resistance and Body Mass Index

    Directory of Open Access Journals (Sweden)

    Dimitrios Papandreou

    2017-10-01

    CONCLUSION: Obese subjects have low fasting ghrelin levels that they are significantly related to insulin resistance and body mass index. More prospective studies are needed to establish the role of ghrelin in the pathogenesis of human obesity.

  9. Quinapril treatment increases insulin-stimulated endothelial function and adiponectin gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hermann, Thomas S; Li, Weijie; Dominguez, Helena

    2005-01-01

    OBJECTIVE: Angiotensin-converting enzyme inhibitors reduce cardiovascular mortality and improve endothelial function in type 2 diabetic patients. We hypothesized that 2 months of quinapril treatment would improve insulin-stimulated endothelial function and glucose uptake in type 2 diabetic subjects...... and simultaneously increase the expression of genes that are pertinent for endothelial function and metabolism. METHODS: Twenty-four type 2 diabetic subjects were randomized to receive 2 months of quinapril 20 mg daily or no treatment in an open parallel study. Endothelium-dependent and -independent vasodilation...... occlusion plethysmography. Gene expression was measured by real-time PCR. RESULTS: Quinapril treatment increased insulin-stimulated endothelial function in the type 2 diabetic subjects (P = 0.005), whereas forearm glucose uptake was unchanged. Endothelial function was also increased by quinapril (P = 0...

  10. Interaction between exogenous insulin, endogenous insulin, and glucose in type 2 diabetes patients.

    Science.gov (United States)

    Janukonyté, Jurgita; Parkner, Tina; Bruun, Niels Henrik; Lauritzen, Torsten; Christiansen, Jens Sandahl; Laursen, Torben

    2015-05-01

    Little is known about the influence of exogenous insulin and actual glucose levels on the release of endogenous insulin in insulin-treated type 2 diabetes mellitus (T2DM) patients. This study investigated the interaction among serum endogenous insulin (s-EI), serum exogenous insulin aspart (s-IAsp), and blood glucose levels in an experimental short-term crossover design. Eight T2DM patients (63.52 years old; range, 49-69 years; mean body mass index, 28.8±3.8 kg/m(2)) were randomized to treatment with individual fixed doses of insulin aspart (0.5-1.5 IU/h) as a continuous subcutaneous insulin infusion (CSII) during a 10-h period on two occasions with different duration of hyperglycemia: (1) transient hyperglycemia for 2 h (visit TH) and (2) continuous hyperglycemia for 12 h (visit CH). During steady state the variances of plasma glucose (p-glucose), s-IAsp, and s-EI were equal within visit TH and within visit CH, but variances were significantly higher during visit CH compared with visit TH. The s-IAsp reached lower levels at visit CH compared with visit TH (test for slope=1, P=0.005). The s-EI depended on p-glucose in a nonlinear fashion during the first 100 min of both visits when s-IAsp was undetectable (adjusted R(2)=0.9). A complex but statistically significant interaction among s-IAsp, s-EI, p-glucose, and patients was observed during measurable s-IAsp levels (adjusted R(2)=0.70). Endogenous and exogenous insulin showed higher variation during continuous hyperglycemia. Significantly lower levels of exogenous insulin were observed following CSII during continuous hyperglycemia compared with transient hyperglycemia. Endogenous insulin levels could in a complex way be explained by an individual interaction among p-glucose and serum exogenous insulin, if present.

  11. Exercise Protects Against Defective Insulin Signaling and Insulin Resistance of Glucose Transport in Skeletal Muscle of Angiotensin II-Infused Rat

    Directory of Open Access Journals (Sweden)

    Juthamard Surapongchai

    2018-04-01

    Full Text Available Objectives: The present study investigated the impact of voluntary exercise on insulin-stimulated glucose transport and the protein expression and phosphorylation status of the signaling molecules known to be involved in the glucose transport process in the soleus muscle as well as other cardiometabolic risks in a rat model with insulin resistance syndrome induced by chronic angiotensin II (ANGII infusion.Materials and Methods: Male Sprague-Dawley rats were assigned to sedentary or voluntary wheel running (VWR groups. Following a 6-week period, rats in each group were subdivided and subcutaneously administered either normal saline or ANGII at 100 ng/kg/min for 14 days. Blood pressure, glucose tolerance, insulin-stimulated glucose transport and signaling proteins, including insulin receptor (IR, insulin receptor substrate 1 (IRS-1, Akt, Akt substrate of 160 kDa (AS160, AMPKα, c-Jun NH2-terminal kinase (JNK, p38 MAPK, angiotensin converting enzyme (ACE, ANGII type 1 receptor (AT1R, ACE2, Mas receptor (MasR and oxidative stress marker in the soleus muscle, were evaluated.Results: Exercise protected against the insulin resistance of glucose transport and defective insulin signaling molecules in the soleus muscle; this effect was associated with a significant increase in AMPK Thr172 (43% and decreases in oxidative stress marker (31% and insulin-induced p38 MAPK Thr180/Tyr182 (45% and SAPK/JNK Thr183/Tyr185 (25%, without significant changes in expression of AT1R, AT2R, ACE, ACE2, and MasR when compared to the sedentary rats given ANGII infusion. At the systemic level, VWR significantly decreased body weight, fat weight, and systolic blood pressure as well as improved serum lipid profiles.Conclusion: Voluntary exercise can alleviate insulin resistance of glucose transport and impaired insulin signaling molecules in the soleus muscle and improve whole-body insulin sensitivity in rats chronically administered with ANGII.

  12. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    International Nuclear Information System (INIS)

    Salhanick, A.I.; Amatruda, J.M.

    1988-01-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5'-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable [ 14 C]sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus

  13. Diabetes, insulin and exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    The metabolic and hormonal adaptations to single exercise sessions and to exercise training in normal man and in patients with insulin-dependent as well as non-insulin-dependent diabetes mellitus are reviewed. In insulin-dependent (type I) diabetes good metabolic control is best obtained...... by a regular pattern of life which will lead to a fairly constant demand for insulin from day to day. Exercise is by nature a perturbation that makes treatment of diabetes difficult: Muscle contractions per se tend to decrease the plasma glucose concentration whereas the exercise-induced response of the so......-called counter-regulatory hormones tend to increase plasma glucose by increasing hepatic glucose production and adipose tissue lipolysis. If the pre-exercise plasma insulin level is high, hypoglycaemia may develop during exercise whereas hyperglycaemia and ketosis may develop if pre-exercise plasma insulin...

  14. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate.

    Science.gov (United States)

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Lippi, Cristina; Casale, Raffaele; Properzi, Giuliana; Blumberg, Jeffrey B; Ferri, Claudio

    2008-09-01

    Flavanols from chocolate appear to increase nitric oxide bioavailability, protect vascular endothelium, and decrease cardiovascular disease (CVD) risk factors. We sought to test the effect of flavanol-rich dark chocolate (FRDC) on endothelial function, insulin sensitivity, beta-cell function, and blood pressure (BP) in hypertensive patients with impaired glucose tolerance (IGT). After a run-in phase, 19 hypertensives with IGT (11 males, 8 females; 44.8 +/- 8.0 y) were randomized to receive isocalorically either FRDC or flavanol-free white chocolate (FFWC) at 100 g/d for 15 d. After a wash-out period, patients were switched to the other treatment. Clinical and 24-h ambulatory BP was determined by sphygmometry and oscillometry, respectively, flow-mediated dilation (FMD), oral glucose tolerance test, serum cholesterol and C-reactive protein, and plasma homocysteine were evaluated after each treatment phase. FRDC but not FFWC ingestion decreased insulin resistance (homeostasis model assessment of insulin resistance; P < 0.0001) and increased insulin sensitivity (quantitative insulin sensitivity check index, insulin sensitivity index (ISI), ISI(0); P < 0.05) and beta-cell function (corrected insulin response CIR(120); P = 0.035). Systolic (S) and diastolic (D) BP decreased (P < 0.0001) after FRDC (SBP, -3.82 +/- 2.40 mm Hg; DBP, -3.92 +/- 1.98 mm Hg; 24-h SBP, -4.52 +/- 3.94 mm Hg; 24-h DBP, -4.17 +/- 3.29 mm Hg) but not after FFWC. Further, FRDC increased FMD (P < 0.0001) and decreased total cholesterol (-6.5%; P < 0.0001), and LDL cholesterol (-7.5%; P < 0.0001). Changes in insulin sensitivity (Delta ISI - Delta FMD: r = 0.510, P = 0.001; Delta QUICKI - Delta FMD: r = 0.502, P = 0.001) and beta-cell function (Delta CIR(120) - Delta FMD: r = 0.400, P = 0.012) were directly correlated with increases in FMD and inversely correlated with decreases in BP (Delta ISI - Delta 24-h SBP: r = -0.368, P = 0.022; Delta ISI - Delta 24-h DBP r = -0.384, P = 0.017). Thus, FRDC

  15. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions.

    Science.gov (United States)

    Heni, M; Kullmann, S; Ketterer, C; Guthoff, M; Linder, K; Wagner, R; Stingl, K T; Veit, R; Staiger, H; Häring, H-U; Preissl, H; Fritsche, A

    2012-06-01

    Impaired insulin sensitivity is a major factor leading to type 2 diabetes. Animal studies suggest that the brain is involved in the regulation of insulin sensitivity. We investigated whether insulin action in the human brain regulates peripheral insulin sensitivity and examined which brain areas are involved. Insulin and placebo were given intranasally. Plasma glucose, insulin and C-peptide were measured in 103 participants at 0, 30 and 60 min. A subgroup (n = 12) was also studied with functional MRI, and blood sampling at 0, 30 and 120 min. For each time-point, the HOMA of insulin resistance (HOMA-IR) was calculated as an inverse estimate of peripheral insulin sensitivity. Plasma insulin increased and subsequently decreased. This excursion was accompanied by slightly decreased plasma glucose, resulting in an initially increased HOMA-IR. At 1 h after insulin spray, the HOMA-IR subsequently decreased and remained lower up to 120 min. An increase in hypothalamic activity was observed, which correlated with the increased HOMA-IR at 30 min post-spray. Activity in the putamen, right insula and orbitofrontal cortex correlated with the decreased HOMA-IR at 120 min post-spray. Central insulin action in specific brain areas, including the hypothalamus, may time-dependently regulate peripheral insulin sensitivity. This introduces a potential novel mechanism for the regulation of peripheral insulin sensitivity and underlines the importance of cerebral insulin action for the whole organism.

  16. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  17. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    Science.gov (United States)

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  18. Stimulation of protein synthesis by internalized insulin

    International Nuclear Information System (INIS)

    Miller, D.S.; Sykes, D.B.

    1991-01-01

    Previous studies showed that microinjected insulin stimulates transcription and translation in Stage 4 Xenopus oocytes by acting at nuclear and cytoplasmic sites. The present report is concerned with the question of whether hormone, internalized from an external medium, can act on those sites to alter cell function. Both intracellular accumulation of undegraded 125I-insulin and insulin-stimulated 35S-methionine incorporation into oocyte protein were measured. Anti-insulin antiserum and purified anti-insulin antibody were microinjected into the cytoplasm of insulin-exposed cells to determine if insulin derived from the medium acted through internal sites. In cells exposed for 2 h to 7 or 70 nM external insulin, methionine incorporation was stimulated, but intracellular hormone accumulation was minimal and microinjected antibody was without effect. In cells exposed for 24 h, methionine incorporation again increased, but now accumulation of undegraded, intracellular hormone was substantial (2.6 and 25.3 fmol with 7 and 70 nM, respectively), and microinjected anti-insulin antibody significantly reduced the insulin-stimulated component of incorporation; basal incorporation was not affected. For cells exposed to 70 nM insulin for 24 h, inhibition of the insulin-stimulated component was maximal at 39%. Thus under those conditions, about 40% of insulin's effects were mediated by the internal sites. Together, the data show that inhibition of insulin-stimulated protein synthesis by microinjected antibody was associated with the intracellular accumulation of insulin. They indicate that when oocytes are exposed to external insulin, hormone eventually gains access to intracellular sites of action and through these stimulates translation. Control of translation appears to be shared between the internal sites and the surface receptor

  19. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    Science.gov (United States)

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  20. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain.

    Directory of Open Access Journals (Sweden)

    Karyn J Catalano

    Full Text Available Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered 'insulin refractory' IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based 'memory' of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states.

  1. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  2. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  3. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

    Science.gov (United States)

    Wagenmakers, Anton J M; Strauss, Juliette A; Shepherd, Sam O; Keske, Michelle A; Cocks, Matthew

    2016-04-15

    This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. Insulin aspart in diabetic pregnancy

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R

    2008-01-01

    in insulin requirements during pregnancy necessitate short-acting insulins for postprandial control of hyperglycemia. The fast-acting insulin analogue insulin aspart has been tested in a large, randomized trial of pregnant women with Type 1 diabetes and offers benefits in control of postprandial...... hyperglycemia with a tendency towards fewer episodes of severe hypoglycemia compared with human insulin. Treatment with insulin aspart was associated with a tendency toward fewer fetal losses and preterm deliveries than treatment with human insulin. Insulin aspart could not be detected in the fetal circulation...... and no increase in insulin antibodies was found. Thus, the use of insulin aspart in pregnancy is regarded safe....

  5. Insulin resistance and increased muscle cytokine levels in patients with mitochondrial myopathy.

    Science.gov (United States)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-10-01

    Mitochondrial dysfunction has been proposed to cause insulin resistance and that might stimulate cytokine production. The objective of the study was to elucidate the association between mitochondrial myopathy, insulin sensitivity, and cytokine levels in muscle. This was an experimental, controlled study in outpatients. Eight overnight-fasted patients (P) with various inherited mitochondrial myopathies and eight healthy subjects (C) matched for sex, age, weight, height, and physical activity participated in the study. The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. Glucose infusion rate during 90-120 minutes of insulin infusion was measured. Cytokine concentrations in dialysate were also measured. Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P fatty acids and glycerol at 120 minutes were higher in P vs C (2P myopathies, insulin sensitivity of muscle, adipose tissue, and pancreatic A cells is reduced, supporting that mitochondrial function influences insulin action. Furthermore, a local, low-grade inflammation of potential clinical importance exists in the muscle of these patients.

  6. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    Science.gov (United States)

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  7. Glycosphingolipids and insulin resistance

    NARCIS (Netherlands)

    Langeveld, Mirjam; Aerts, Johannes M. F. G.

    2009-01-01

    Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple

  8. Using insulin pen needles up to five times does not affect needle tip shape nor increase pain intensity.

    Science.gov (United States)

    Puder, Jardena J; Atar, Michael; Muller, Beat; Pavan, Marco; Keller, Ulrich

    2005-02-01

    Reusing insulin pen needles could help to reduce the increasing economic burden of diabetes. We tested the hypothesis that reusing insulin pen needles leads to needle tip deformity and increased pain. Three blinded reviewers assessed 123 electron microscope pictures analyzing needle tip deformity of insulin pen needles used up to four times by diabetic subjects and up to five times by blinded non-diabetic volunteers. The estimated frequency of needle use was correlated to the actual number of needle use. Pain intensity and unpleasantness of each injection were measured by a visual analogue scale and their differences analyzed by Kruskal-Wallis analysis of variance. Unused needles could be differentiated visually from used needles. However, there was no correlation between the actual and guessed number of times a needle was used (r = 0.07, P = 0.2). Evaluating all 270 injections, neither pain intensity nor unpleasantness increased with repeated injections of the same needles in people with diabetes (P = 0.1 and 0.96) and in the volunteers (P = 0.63 and 0.92). Using pen needles four to five times does not lead to progressive needle tip deformity and does not increase pain intensity or unpleasantness, but could increase convenience and lead to substantial financial savings in Europe of around EUR 100 million/year.

  9. Novel simple insulin delivery device reduces barriers to insulin therapy in type 2 diabetes: results from a pilot study.

    Science.gov (United States)

    Hermanns, Norbert; Lilly, Leslie C; Mader, Julia K; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R

    2015-05-01

    The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = -5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = -2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. © 2015 Diabetes Technology Society.

  10. Insulin analogues: have they changed insulin treatment and improved glycaemic control?

    DEFF Research Database (Denmark)

    Madsbad, Sten

    2002-01-01

    To improve insulin therapy, new insulin analogues have been developed. Two fast-acting analogues with a more rapid onset of effect and a shorter duration of action combined with a low day-to-day variation in absorption rate are now available. Despite this favourable time-action profile most studies....... This is probably the main explanation for the absence of improvement in overall glycaemic control when compared with regular human insulin. A tendency to a reduction in hypoglycaemic events during treatment with fast-acting analogues has been observed in most studies. Recent studies have indicated that NPH insulin...... administered several times daily at mealtimes can improve glycaemic control without increasing the risk of hypoglycaemia. The fast-acting analogues are now also available as insulin mixed with NPH. Insulin glargine is a new long-acting insulin which is soluble and precipitates after injection, resulting...

  11. Bromocriptine and insulin sensitivity in lean and obese subjects

    Directory of Open Access Journals (Sweden)

    L Bahler

    2016-11-01

    Full Text Available Bromocriptine is a glucose-lowering drug, which was shown to be effective in obese subjects with insulin resistance. It is usually administered in the morning. The exact working mechanism of bromocriptine still has to be elucidated. Therefore, in this open-label randomized prospective cross-over mechanistic study, we assessed whether the timing of bromocriptine administration (morning vs evening results in different effects and whether these effects differ between lean and obese subjects. We studied the effect of bromocriptine on insulin sensitivity in 8 lean and 8 overweight subjects using an oral glucose tolerance test. The subjects used bromocriptine in randomized cross-over order for 2 weeks in the morning and 2 weeks in the evening. We found that in lean subjects, bromocriptine administration in the evening resulted in a significantly higher post-prandial insulin sensitivity as compared with the pre-exposure visit (glucose area under the curve (AUC 742 mmol/L * 120 min (695–818 vs 641 (504–750, P = 0.036, AUC for insulin did not change, P = 0.575. In obese subjects, both morning and evening administration of bromocriptine resulted in a significantly higher insulin sensitivity: morning administration in obese: insulin AUC (55,900 mmol/L * 120 min (43,236–96,831 vs 36,448 (25,213–57,711, P = 0.012 and glucose AUC P = 0.069; evening administration in obese: glucose AUC (735 mmol/L * 120 min (614–988 vs 644 (568–829, P = 0.017 and insulin AUC, P = 0.208. In conclusion, bromocriptine increases insulin sensitivity in both lean and obese subjects. In lean subjects, this effect only occurred when bromocriptine was administrated in the evening, whereas in the obese, insulin sensitivity increased independent of the timing of bromocriptine administration.

  12. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats.

    Directory of Open Access Journals (Sweden)

    Pascaline Aimé

    Full Text Available Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB contains the highest level of insulin and insulin receptors (IRs in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.

  13. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    Science.gov (United States)

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  14. Insulin and the brain.

    Science.gov (United States)

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  15. Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlate with salt sensitivity in normal subjects

    NARCIS (Netherlands)

    ter Maaten, JC; Bakker, SJL; Serne, EH; ter Wee, PM; Gans, ROB

    1999-01-01

    Background. Insulin induces increasing distal tubular sodium reabsorption. Opposite effects of insulin to offset insulin-induced sodium retention are supposedly increases in glomerular filtration rate (GFR) and decreases in proximal tubular sodium reabsorption. Defects in these opposing effects

  16. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  17. [Effectiveness of increased contents of dietary fiber in early stages of non-insulin-dependent diabetes mellitus].

    Science.gov (United States)

    Krashenitsa, G M; Botvineva, L A; Mogila, A V

    1994-01-01

    Patients with early NIDDM were put on routine diet N 9 (food fiber 25 g/day) and test diet (food fiber 55 g/day). The diet of both groups (group 1 and 2, respectively) was supplemented with oral mineral water Essentuki 17. High-fiber diets proved to be effective for the above patients as they induced positive trends in NIDDM clinical symptoms, body weight, lowering of basal insulin, an increase in insulin immediate pool. There was also a reduction of insulinemia and hyperglycemia later in the course of glucose tolerance test. The above shifts were more pronounced in 2 patients.

  18. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  19. [Primary study on characteristics of insulin secretion rate, metabolic clearance rate and sensitivity in non-insulin-dependent diabetic subjects from multiplex diabetic pedigrees].

    Science.gov (United States)

    Ran, J; Cheng, H; Li, F

    2000-01-01

    index (BMI) (P < 0.01), and MCR-I had significant negative correlation with AUCC (P < 0.01). There are obvious impaired first phase insulin secretion after glucose challenge in non-insulin-dependent diabetic subjects from MDP. Decrease in endogenous MCR-I might be an important factor to hyperinsulinemia and insulin resistance. Increased insulin secretion, decreased MCR-I and insulin sensitivity can be observed in abdominal obese subjects of control group.

  20. V-Go Insulin Delivery System Versus Multiple Daily Insulin Injections for Patients With Uncontrolled Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Winter, Abigail; Lintner, Michaela; Knezevich, Emily

    2015-04-21

    Type 2 diabetes mellitus affects over 29.1 million Americans, diagnosed and undiagnosed. Achieving and maintaining glycemic control for these patients is of extreme importance when working to prevent complications and improve quality of life for patients. The V-Go is a newly developed insulin delivery system. The push of a button inserts a needle into the patient once daily and remains attached for 24 hours. The V-Go is designed to release a set basal rate throughout the day, while allowing patients to provide up to 36 units of on-demand bolus insulin with the manual click of 2 buttons. It is a spring-loaded device filled daily with rapid-acting insulin that runs without the use of batteries or computer software. The main objective of this prospective active comparator study was to observe the A1C lowering effects of multiple daily insulin injections (MDII) versus the use of the V-Go insulin delivery system for patients with uncontrolled type 2 diabetes mellitus over a 3-month period. In addition, the effect on insulin requirement for these patients was assessed with secondary comparisons of weight, blood pressure, prevalence of hypoglycemic events, and quality of life before and after 3 months of intensified insulin therapy with regular monitoring by a clinical pharmacist at an internal medicine clinic. The average A1C lowering experienced by the 3 patients in the V-Go group was 1.5%, while the average A1C change in the 3 patients in the MDII group was an increase of 0.2%. All patients in the V-Go group experienced a decrease in insulin total daily dose (TDD), with an average decrease of 26.3 units. All patients in the MDII group experienced an increase in insulin TDD with an average of 15 units daily to achieve therapeutic goals individualized for each patient. All patients who underwent intensification of insulin therapy experienced an increase in subjective quality of life (QOL) as determined using the Diabetes-39 (D-39) questionnaire, though QOL results lacked

  1. The ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) attenuates insulin resistance through suppressing GLUT-2 in rat liver.

    Science.gov (United States)

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-05-01

    This study investigates the effect of the ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver.

  2. Brain insulin signaling and Alzheimer's disease: current evidence and future directions.

    Science.gov (United States)

    Schiöth, Helgi B; Craft, Suzanne; Brooks, Samantha J; Frey, William H; Benedict, Christian

    2012-08-01

    Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.

  3. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    Science.gov (United States)

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  4. Plasma Ascorbic Acid in Insulin and Non-insulin Dependent Diabetes

    African Journals Online (AJOL)

    Blood glucose, plasma ascorbic acid and haemoglobin levels were estimated in insulin dependent diabetics, non-insulin dependent diabetics and controls matched for number, sex and age. Significantly higher levels of these parameters were found in control group than in the other two groups. Statistically differences were ...

  5. Insulin increase in MAP kinase phosphorylation is shifted to early time-points by overexpressing APS, while Akt phosphorylation is not influenced.

    Science.gov (United States)

    Onnockx, Sheela; Xie, Jingwei; Degraef, Chantal; Erneux, Christophe; Pirson, Isabelle

    2009-09-10

    Upon insulin stimulation, the adaptor protein APS is recruited to the insulin receptor and tyrosine phosphorylated. APS initiates the insulin-induced TC10 cascade which participates to GLUT4 translocation to the plasma membrane. Nevertheless, the molecular mechanism that governs APS and its SH2 and PH domains action on the insulin transduction cascade is not yet fully understood. Here, we show that APS co-immunoprecipitates with the class I PI 3-kinase regulatory subunit p85, through its SH2 domain but that APS does not modulate neither PtdIns(3,4,5)P3 levels nor Akt phosphorylation provoked by insulin. We have confirmed a previously described positive effect of APS overexpression on insulin-induced MAPK phosphorylation upregulation. Consequently, we analyzed the role of SH2 and PH domains of APS in the APS increased MAPK phosphorylation observed upon insulin stimulation and correlated this with the membrane localization of the protein. The effect observed on MAPK phosphorylation requires the intact PH binding domain of APS as well as its SH2 domain.

  6. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin.

    Science.gov (United States)

    Chono, Sumio; Togami, Kohei; Itagaki, Shirou

    2017-11-01

    We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. The present study provides the useful information for development of noninvasive treatment of diabetes. Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.

  7. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation

    OpenAIRE

    Frank, N.; Hermida, P.; Sanchez?Londo?o, A.; Singh, R.; Gradil, C.M.; Uricchio, C.K.

    2017-01-01

    Background Octreotide is a somatostatin analog that suppresses insulin secretion. Hypothesis We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Animals Twelve horses, N = 5, ID = 7. Methods Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1....

  8. Insulin, cognition, and dementia

    Science.gov (United States)

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  9. Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin’s Metabolic Action in the Presence of Insulin Resistance

    Science.gov (United States)

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J.

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin’s metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  10. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  11. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  12. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeong, Jieun; Wi, Anjin; Park, Whoashig [Jeollanamdo Forest Resources Research Institute, Naju 520-833 (Korea, Republic of); Han, Ho-jae [College of Veterinary Medicine, Seoul National University, Seoul 151-741 (Korea, Republic of); Park, Soo-hyun, E-mail: parksh@chonnam.ac.kr [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2015-06-05

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.

  13. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    International Nuclear Information System (INIS)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee; Jeong, Jieun; Wi, Anjin; Park, Whoashig; Han, Ho-jae; Park, Soo-hyun

    2015-01-01

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

  14. Quantitative analysis of secretome from adipocytes regulated by insulin

    Institute of Scientific and Technical Information of China (English)

    Hu Zhou; Yuanyuan Xiao; Rongxia Li; Shangyu Hong; Sujun Li; Lianshui Wang; Rong Zeng; Kan Liao

    2009-01-01

    Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of pep-tides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (clCAT) and label-free quantitation approaches to identify and quantify secretory factors that are differen-tially secreted by 3T3-LI adipocytes with or without insulin treatment. Combination of clCAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipo-kines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting pat-terns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quanti-fied as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extra-cellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  15. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    Science.gov (United States)

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cold exposure potentiates the effect of insulin on in vivo glucose uptake

    International Nuclear Information System (INIS)

    Vallerand, A.L.; Perusse, F.; Bukowiecki, L.J.

    1987-01-01

    The effects of cold exposure and insulin injection on the rates of net 2-[ 3 H]deoxyglucose uptake (K i ) in peripheral tissues were investigated in warm-acclimated rats. Cold exposure and insulin treatment independently increased K i values in skeletal muscles, heart, white adipose tissue, and brown adipose tissue. The effects of cold exposure were particularly evident in brown adipose tissue where the K i increased >100 times. When the two treatments were combined, it was found that cold exposure synergistically enhanced the maximal insulin responses for glucose uptake in brown adipose tissue, all white adipose tissue depots, and skeletal muscles investigated. The results indicate that cold exposure induces an insulin-like effect on K i that does not appear to be specifically associated with shivering thermogenesis in skeletal muscles, because that effect was observed in all insulin-sensitive tissues. The data also demonstrate that cold exposure significantly potentiates the maximal insulin responses for glucose uptake in the same tissues. This potentialization may result from (1) an enhanced responsiveness of peripheral tissues to insulin, possibly occurring at metabolic steps lying beyond the insulin receptor and (2) an increased tissue blood flow augmenting glucose and insulin availability and thereby amplifying glucose uptake

  17. Combining two technologies: multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration.

    Science.gov (United States)

    Sakloetsakun, Duangkamon; Dünnhaupt, Sarah; Barthelmes, Jan; Perera, Glen; Bernkop-Schnürch, Andreas

    2013-10-01

    The aim of the study is to develop a self-nanoemulsifying drug delivery system (SNEDDS) based on thiolated chitosan for oral insulin administration. The preparations were characterized by particle size, entrapment efficiency, stability and drug release. Serum insulin concentrations were determined after oral administration of all formulations. Insulin SNEDDS formulation was served as control. The optimized SNEDDS consists of 65% (w/w) miglyol 840, 25% (w/w) cremophor EL, 10% (w/w) co-solvents (a mixture of DMSO and glycerol). The formulations in the presence or absence of insulin (5mg/mL) were spherical with the size range between 80 and 160 nm. Entrapment efficiency of insulin increased significantly when the thiolated chitosan was employed (95.14±2.96%), in comparison to the insulin SNEDDS (80.38±1.22%). After 30 min, the in vitro release profile of insulin from the nanoemulsions was markedly increased compared to the control. In vivo results showed that insulin/thiolated chitosan SNEDDS displayed a significant increase in serum insulin (p-value=0.02) compared to oral insulin solution. A new strategy to combine SNEDDS and thiolated chitosan described in the study would therefore be a promising and innovative approach to improve oral bioavailability of insulin. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Glucose and insulin dynamics associated with continuous rate infusion of dextrose solution or dextrose solution and insulin in healthy and endotoxin-exposed horses.

    Science.gov (United States)

    Han, Janet H; McKenzie, Harold C; McCutcheon, L Jill; Geor, Raymond J

    2011-04-01

    To investigate the effects of a continuous rate infusion (CRI) of dextrose solution or dextrose solution and insulin on glucose and insulin concentrations in healthy and endotoxin-exposed horses. 9 adult mares. During phase 1, treatments consisted of saline (0.9% NaCl) solution (control group; n = 4) or 20% dextrose solution (group 1; 4) administered IV as a 360-minute CRI. During phase 2, treatments consisted of 360-minute CRIs of 20% dextrose solution and insulin administered simultaneously at 367.6 mg/kg/h (30 kcal/kg/d) and 0.07 U/kg/h, respectively, in healthy horses (group 2; n = 4) or horses administered 35 ng of lipopolysaccharide/kg, IV, 24 hours before starting the dextrose solution and insulin CRIs (group 3; 4). A balanced crossover study design was used in both phases. Blood samples were collected for measurement of plasma glucose and insulin concentrations. Infusion of dextrose solution alone resulted in hyperglycemia for most of the 360-minute CRI. Insulin concentration increased significantly in group 1, compared with that in the control group. Mean insulin concentration of group 2 was significantly higher throughout most of the infusion period, compared with concentrations of the control group and group 1. Mean glucose concentration did not differ significantly between groups 2 and 3. Insulin infusion at a rate of 0.07 U/kg/h was found to be effective for the prevention of hyperglycemia when administered concurrently with dextrose solution. This rate was considered to be safe because horses did not become hypoglycemic during infusions of dextrose solution.

  19. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.

    Science.gov (United States)

    Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu

    2010-12-01

    Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  1. Clinical significance of measurement of serum insulin-like growth factor II and adrenomedulion levels in patients with essential hypertension

    International Nuclear Information System (INIS)

    Fan Bifu; Ji Naijun; Mei Yibin; Wang Chengyao; Chen Donghai; Li Fuyuan; Guan Lihua; Gao Meiying

    2003-01-01

    Objective: To investigate the changes of serum levels of insulin-like growth factor II (IGF II) and adrenomedullin (ADM) in patients with essential hypertension. Methods: Serum IGF II and ADM levels were measured in 62 cases of hypertension and 40 controls with RIA. Results: Serum IGF II and ADM levels were significantly bigger in hypertensive patients than those in the controls (t = 4.454, p < 0.01; t = 3.992, p < 0.01). The serum IGF II level was significantly positively correlated to the serum ADM levels (r = 0.379, p < 0.05) and both were significantly positively correlated to the mean arterial pressure (r = 0.346, r = 0.353, p < 0.05) but not with BMI. Serum ADM levels increased gradually as the disease progressed from stage I to stage III (p < 0.05) with levels in stage III markedly higher than those in stage I (p < 0.01). In EH patients with heart and/or brain and/or renal complications the serum ADM levels were significantly higher than those in EH patients without complications (t = 2.050, p < 0.05). Such differences did not exist in the case of IGF II. Conclusion: Serum IGF II and ADM levels were increased markedly in hypertensive patients. These two factors were mutually positively correlated and both were positively correlated to mean arterial pressure. ADM levels increased gradually as the disease progressing but IGF II levels remained stable

  2. Altered insulin response to an acute bout of exercise in pediatric obesity.

    Science.gov (United States)

    Tran, Brian D; Leu, Szu-Yun; Oliver, Stacy; Graf, Scott; Vigil, Diana; Galassetti, Pietro

    2014-11-01

    Pediatric obesity typically induces insulin resistance, often later evolving into type 2 diabetes. While exercise, enhancing insulin sensitivity, is broadly used to prevent this transition, it is unknown whether alterations in the exercise insulin response pattern occur in obese children. Therefore, we measured exercise insulin responses in 57 healthy weight (NW), 20 overweight (OW), and 56 obese (Ob) children. Blood samples were drawn before and after 30 min of intermittent (2 min on, 1 min off) cycling at ~80% VO2max. In a smaller group (14 NW, 6 OW, 15 Ob), a high-fat meal was ingested 45 min preexercise. Baseline glycemia was similar and increased slightly and similarly in all groups during exercise. Basal insulin (pmol/L) was significantly higher in Ob vs. other groups; postexercise, insulin increased in NW (+7± 3) and OW (+5 ± 8), but decreased in Ob (-15±5, p feeding caused a rapid rise in insulin, promptly corrected by exercise. In Ob, however, insulin rose again 30 min postexercise. Our data indicates a distinct pattern of exercise-induced insulin modulation in pediatric obesity, possibly modulated by basal insulin concentrations.

  3. Midkine, a potential link between obesity and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Nengguang Fan

    Full Text Available Obesity is associated with increased production of inflammatory mediators in adipose tissue, which contributes to chronic inflammation and insulin resistance. Midkine (MK is a heparin-binding growth factor with potent proinflammatory activities. We aimed to test whether MK is associated with obesity and has a role in insulin resistance. It was found that MK was expressed in adipocytes and regulated by inflammatory modulators (TNF-α and rosiglitazone. In addition, a significant increase in MK levels was observed in adipose tissue of obese ob/ob mice as well as in serum of overweight/obese subjects when compared with their respective controls. In vitro studies further revealed that MK impaired insulin signaling in 3T3-L1 adipocytes, as indicated by reduced phosphorylation of Akt and IRS-1 and decreased translocation of glucose transporter 4 (GLUT4 to the plasma membrane in response to insulin stimulation. Moreover, MK activated the STAT3-suppressor of cytokine signaling 3 (SOCS3 pathway in adipocytes. Thus, MK is a novel adipocyte-secreted factor associated with obesity and inhibition of insulin signaling in adipocytes. It may provide a potential link between obesity and insulin resistance.

  4. Insulin glargine does not increase the risk of malignancy.Synopsis of the article ?Combined randomised controlled trial experience of malignancies in studies using insulin glargine?byHome P.D. & Lagarenne P. (Diabetologia 2009, vol. 52 (12: 2499-2506

    Directory of Open Access Journals (Sweden)

    Marina Vladimirovna Shestakova

    2010-03-01

    Full Text Available Results of 31 controlled randomized studies of insulin glargine given to patients with diabetes mellitus are reviewed to evaluate the frequency of malignantneoplasms. 52 tumours were diagnosed in 45 (0.8% patients on insulin glargine therapy and 48 tumors in 46 (0.9% patients using other insulins(mostly NPX insulin. The incidence of breast cancer was equal (0.1% in both groups (4 and 6 cases respectively. These data indicate thatthe use of insuline glargine does not increase the risk of malignancy, e.g. breast cancer.

  5. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme.

    Science.gov (United States)

    Affholter, J A; Cascieri, M A; Bayne, M L; Brange, J; Casaretto, M; Roth, R A

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Cucurbita ficifolia Bouché increases insulin secretion in RINm5F cells through an influx of Ca(2+) from the endoplasmic reticulum.

    Science.gov (United States)

    Miranda-Perez, Maria Elizabeth; Ortega-Camarillo, Clara; Del Carmen Escobar-Villanueva, Maria; Blancas-Flores, Gerardo; Alarcon-Aguilar, Francisco Javier

    2016-07-21

    Cucurbita ficifolia Bouché(C. ficifolia) is a plant used in Mexican traditional medicine to control type 2 diabetes (T2D). The hypoglycemic effect of the fruit of C. ficifolia has been demonstrated in different experimental models and in T2D patients. It has been proposed that D-chiro-inositol (DCI) is the active compound of the fruit. Additionally, it has been reported that C. ficifolia increases the mRNA expression of insulin and Kir 6.2 (a component of the ATP-sensitive potassium (K(+)ATP) channel, which is activated by sulphonylurea) in RINm5F cells. However, it remains unclear whether C. ficifolia and DCI causes the secretion of insulin by increasing the concentration of intracellular calcium ([Ca(2+)]i) through K(+)ATP channel blockage or from the reservoir in the endoplasmic reticulum (ER). The aqueous extract of C. ficifolia was obtained and standardized with regard to its DCI content. RINm5F pancreatic β-cells were incubated with different concentrations (50, 100, 200 and 400μM) of DCI alone or C. ficifolia (9, 18, 36 and 72µg of extract/mL), and the [Ca(2+)]i of the cells was quantified. The cells were preloaded with the Ca(2+) fluorescent dye fluo4-acetoxymethyl ester (AM) and visualized by confocal microscopy. Insulin secretion was measured by an ELISA method. Subsequently, the effect of C. ficifolia on the K(+)ATP channel was evaluated. In this case, the blocker activator diazoxide was used to inhibit the C. ficifolia-induced calcium influx. In addition, the inositol 1,4,5-trisphosphate (IP3)-receptor-selective inhibitor 2-amino-thoxydiphenylborate (2-APB) was used to inhibit the influx of calcium from the ER that was induced by C. ficifolia. It was found that DCI alone did not increase [Ca(2+)]i or insulin secretion. In contrast, treatment with C. ficifolia increased [Ca(2+)]i 10-fold compared with the control group. Insulin secretion increased by 46.9%. In the presence of diazoxide, C. ficifolia decreased [Ca(2+)]i by 50%, while insulin secretion

  7. Insulin action in vivo: studies in control and exercise trained rats

    Energy Technology Data Exchange (ETDEWEB)

    James, D.E.

    1984-01-01

    This thesis is primarily concerned with in vivo insulin action and how this is modified by exercise training. The aims are; to define differential insulin action within the major insulin sensitive tissues; to characterize the relationship between these individual responses and whole body insulin action; and to examine the effect of exercise training on whole body and differential tissue insulin action. A technique, based on the euglycaemic clamp, is described for examining in vivo insulin action on glucose utilization and storage in individual tissues in the conscious, unrestrained rat. Tissue glucose metabolic rate (Rg') was estimated using (/sup 3/H)-2-deoxyglucose and glucose disposal was examined by measuring glycogen content and /sup 14/C-glucose incorporation into tissue glycogen or lipids. Elevating plasma insulin to 150 mU/l resulted in significant increases of glucose utilization in skeletal muscle and adipose tissue. Oxidative skeletal muscle could account for up to 70% of total glucose disposal whereas adipose tissue and liver could account for less than 3%. The following conclusions have been drawn from these studies. The whole body insulin response curve for glucose utilization closely reflects muscle glucose metabolism; mild elevations in plasma insulin will markedly elevate the glucose utilization rate in oxidative but not glycolytic skeletal muscle fibers; the increased whole body insulin sensitivity which is observed following exercise training is due to increased insulin sensitivity in skeletal muscle. These results indicate that exercise training will undoubtedly result in improved glucose disposal in the prandial state. This emphasises the potential benefit of exercise in obesity and Type II diabetes.

  8. Impact of diet on the efficacy of insulin lispro mix 25 and insulin lispro mix 50 as starter insulin in East Asian patients with type 2 diabetes: Subgroup analysis of the Comparison Between Low Mixed Insulin and Mid Mixed Insulin as Starter Insulin For Patients with Type 2 Diabetes Mellitus (CLASSIFY Study) randomized trial.

    Science.gov (United States)

    Chen, Wei; Qian, Lei; Watada, Hirotaka; Li, Peng Fei; Iwamoto, Noriyuki; Imori, Makoto; Yang, Wen Ying

    2017-01-01

    The pathophysiology of diabetes differs between Asian and Western patients in many ways, and diet is a primary contributor. The present study examined the effect of diet on the efficacy of 25% insulin lispro/75% insulin lispro protamine suspension (LM25) and 50% insulin lispro/50% insulin lispro protamine suspension (LM50) as starter insulin in Chinese and Japanese patients with type 2 diabetes and inadequate glycemic control with oral antidiabetic medication. This was a predefined subgroup analysis of a phase 4, open-label, 26-week, parallel-arm, randomized (computer-generated random sequence) trial (21 January 2013 to 22 August 2014). Nutritional intake was assessed from food records kept by participants before study drug administration. Outcomes assessed were changes from baseline in self-monitored blood glucose, 1,5-anhydroglucitol and glycated hemoglobin. In total, 328 participants were randomized to receive twice-daily LM25 (n = 168) or LM50 (n = 160). Median daily nutritional intake (by weight and percentage of total energy) was 230.8 g of carbohydrate (54%), 56.5 g of fat (31%) and 66 g of protein (15%). Improvements in self-monitored blood glucose were significantly greater (P ≤ 0.028) in the LM50 group than in the LM25 group, regardless of nutritional intake. When carbohydrate (by weight or percentage energy) or fat (by weight) intake exceeded median levels, LM50 was significantly more efficacious than LM25 (P ≤ 0.026) in improving 1,5-anhydroglucitol and glycated hemoglobin. Glycemic control improved in both LM25 and LM50 groups, but LM50 was significantly more efficacious under certain dietary conditions, particularly with increased carbohydrate intake. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  9. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  10. The interaction of insulin with phospholipids

    Science.gov (United States)

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholineInsulin decreased the [14C]glucose solubilized by phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid, but not by sphingomyelin. 5. The significance of these results and the molecular requirements for the formation of insulin–phospholipid complexes in chloroform are discussed. PMID:5158903

  11. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    Science.gov (United States)

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  12. Ethanolic Extract of Butea monosperma Leaves Elevate Blood Insulin Level in Type 2 Diabetic Rats, Stimulate Insulin Secretion in Isolated Rat Islets, and Enhance Hepatic Glycogen Formation

    Directory of Open Access Journals (Sweden)

    Mehdi Bin Samad

    2014-01-01

    Full Text Available We measured a vast range of parameters, in an attempt to further elucidate previously claimed antihyperglycemic activity of Butea monosperma. Our study clearly negates the possibility of antidiabetic activity by inhibited gastrointestinal enzyme action or by reduced glucose absorption. Reduction of fasting and postprandial glucose level was reconfirmed (P<0.05. Improved serum lipid profile via reduced low density lipoprotein (LDL, cholesterol, triglycerides (TG, and increased high density lipoprotein (HDL was also reestablished (P<0.05. Significant insulin secretagogue activity of B. monosperma was found in serum insulin assay of B. monosperma treated type 2 diabetic rats (P<0.01. This was further ascertained by our study on insulin secretion on isolated rat islets (P<0.05. Improved sensitivity of glucose was shown by the significant increase in hepatic glycogen deposition (P<0.05. Hence, we concluded that antihyperglycemic activity of B. monosperma was mediated by enhanced insulin secretion and enhanced glycogen formation in the liver.

  13. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: A randomised, crossover trial

    NARCIS (Netherlands)

    Joosten, M.M.; Beulens, J.W.J.; Kersten, S.; Hendriks, H.F.J.

    2008-01-01

    Aims/hypothesis: To determine whether 6 weeks of daily, moderate alcohol consumption increases expression of the gene encoding adiponectin (ADIPOQ) and plasma levels of the protein, and improves insulin sensitivity in postmenopausal women. Methods: In a randomised, open-label, crossover trial

  14. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion

    DEFF Research Database (Denmark)

    Lyssenko, Valeriya; Nagorny, Cecilia L F; Erdos, Michael R

    2009-01-01

    Genome-wide association studies have shown that variation in MTNR1B (melatonin receptor 1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype...... was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in beta cells in islets....... Nondiabetic individuals carrying the risk allele and individuals with T2D showed increased expression of the receptor in islets. Insulin release from clonal beta cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which...

  15. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  16. Insulin resistance: definition and consequences.

    Science.gov (United States)

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  17. Increased plasma levels of FABP4 and PTEN is associated with more severe insulin resistance in women with gestational diabetes mellitus.

    Science.gov (United States)

    Li, Yuan-yuan; Xiao, Rui; Li, Cai-ping; Huangfu, Jian; Mao, Jiang-feng

    2015-02-08

    The aim of this study was to investigate the relationship between plasma fatty acid binding protein 4 (FABP4), phosphatase and tensin homolog (PTEN), and insulin resistance in patients with gestational diabetes mellitus (GDM). Plasma FABP4 and PTEN were determined by ELISA in GDM patients (GDM group, n=30) and in euglycemic pregnant women (control group, n=30). The clinical features, body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR), and lipid profiles were compared between the 2 groups. The influence of risk factors on insulin resistance, including BMI, lipid profiles, FABP4, and PTEN, were further investigated by multiple-factor stepwise regression analysis. Higher levels of BMI, ΔBMI, triglyceride (TG), fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), fasting insulin, HOMA-IR, FABP4, PTEN, and lower level of high-density lipoprotein cholesterol (HDL-C) were found in the GDM patients than in the controls (all Pinsulin resistance. GDM patients have more severe insulin resistance compared to euglycemic pregnant women. Higher levels of plasma FABP4 and PTEN are associated with increased insulin resistance and may participate in the pathogenesis of insulin resistance during gestation.

  18. Glucose-lowering effect and glycaemic variability of insulin glargine, insulin detemir and insulin lispro protamine in people with type 1 diabetes.

    Science.gov (United States)

    Derosa, G; Franzetti, I; Querci, F; Romano, D; D'Angelo, A; Maffioli, P

    2015-06-01

    To compare, using a continuous glucose monitoring (CGM) system, the effect on glycaemic variability of insulin glargine, detemir and lispro protamine. A total of 49 white people with type 1 diabetes, not well controlled by three times daily insulin lispro, taken for at least 2 months before study and on a stable dose, were enrolled. The study participants were randomized to add insulin glargine, detemir or lispro protamine, once daily, in the evening. We used a CGM system, the iPro Digital Recorder (Medtronic MiniMed, Northridge, CA, USA) for 1 week. Glycaemic control was assessed according to mean blood glucose values, the area under the glucose curve above 3.9 mmol/l (AUC(>3.9)) or above 10.0 mmol/l (AUC(>10.0)), and the percentage of time spent with glucose values >3.9 or >10.0 mmol/l. Intraday glycaemic variability was assessed using standard deviation (s.d.) values, the mean amplitude of glycaemic excursions and continuous overlapping of net glycaemic action. Day-to-day glycaemic variability was assessed using the mean of daily differences. The s.d. was found to be significantly lower with insulin lispro protamine and glargine compared with insulin detemir. AUC(>3.9) was higher and AUC(>10.0) was lower with insulin lispro protamine and glargine compared with detemir. The mean amplitude of glycaemic excursions and continuous overlapping net glycaemic action values were lower with insulin lispro protamine and glargine compared with detemir. In addition, the mean of daily differences was significantly lower with insulin lispro protamine and glargine compared with detemir. Fewer hypoglycaemic events were recorded during the night-time with insulin lispro protamine compared with glargine and detemir. The results suggest that insulin lispro protamine and glargine are more effective than detemir in reducing glycaemic variability and improving glycaemic control in people with type 1 diabetes. Insulin lispro protamine seems to lead to fewer hypoglycaemic

  19. Clinical significance of determination of serum leptin, insulin levels and blood sugar in pregnant women with glucose metabolism disturbances

    International Nuclear Information System (INIS)

    Yu Suqing; Li Yusheng; Wang Lin; Chu Kaiqiu

    2006-01-01

    Objective: To investigate the changes of serum leptin, insulin levels and blood sugar contents in pregnant women with gestational glucose metabolism disturbances. Methods: Fasting and 3h after oral 50g glucose serum levels of leptin were measured with RIA in 36 pregnant women with glucose metabolism disturbances (gestational diabetes mellitus or gestational impaired glucose tolerance) and 34 controls. Also, fasting serum insulin levels (with CLIA) and blood sugar contents 1h after oral 50 glucose (with glucose oxidase method) were determined in all these subjects. Results: 1. Serum levels of leptin in pregnant women with glucose metabolism disturbances were 14.9 ± 4.3 μg/L (vs controls 9.8 ± 1.7 μg/L, P<0.01). 2. The serum levels of insulin and 1 h post - 50g glucose blood sugar contents in pregnant women with glucose metabolism disturbances were 12.9±4.3mU/L and 11.0±1.4mmol/L respectively, which were both significantly positively correlated with the serum leptin levels (r=0.835, r=0.758 respectively) (vs levels in controls: 8.45±3.0mU/L and 7.84±1.3mmol/L). Conclusion: Elevation of fasting serum levels of leptin was demonstrated in pregnant women with glucose metabolism disturbances and the level of leptin was positively correlated with that of insulin and blood sugar. (authors)

  20. Economic benefits of improved insulin stability in insulin pumps.

    Science.gov (United States)

    Weiss, Richard C; van Amerongen, Derek; Bazalo, Gary; Aagren, Mark; Bouchard, Jonathan R

    2011-05-01

    Insulin pump users discard unused medication and infusion sets according to labeling and manufacturer's instructions. The stability labeling for insulin aspart (rDNA origin] (Novolog) was increased from two days to six. The associated savings was modeled from the perspective of a hypothetical one-million member health plan and the total United States population. The discarded insulin volume and the number of infusion sets used under a two-day stability scenario versus six were modeled. A mix of insulin pumps of various reservoir capacities with a range of daily insulin dosages was used. Average daily insulin dose was 65 units ranging from 10 to 150 units. Costs of discarded insulin aspart [rDNA origin] were calculated using WAC (Average Wholesale Price minus 16.67%). The cost of pump supplies was computed for the two-day scenario assuming a complete infusion set change, including reservoirs, every two days. Under the six-day scenario complete infusion sets were discarded every six days while cannulas at the insertion site were changed midway between complete changes. AWP of least expensive supplies was used to compute their costs. For the hypothetical health plan (1,182 pump users) the annual reduction in discarded insulin volume between scenarios was 19.8 million units. The corresponding cost reduction for the plan due to drug and supply savings was $3.4 million. From the U.S. population perspective, savings of over $1 billion were estimated. Using insulin that is stable for six days in pump reservoirs can yield substantial savings to health plans and other payers, including patients.

  1. Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function.

    Science.gov (United States)

    Kołodziejski, Paweł A; Pruszyńska-Oszmałek, Ewa; Strowski, Mathias Z; Nowak, Krzysztof W

    2017-06-01

    Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. Obestatin reduced body weight and decreased serum glucose, fructosamine, and β-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.

  2. The effect of tubing dwell time on insulin adsorption during intravenous insulin infusions.

    Science.gov (United States)

    Thompson, Cecilia D; Vital-Carona, Jessica; Faustino, E Vincent S

    2012-10-01

    Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration-dwell time combination five times. Comparisons were performed using analyses of variance. For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy.

  3. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.

    Science.gov (United States)

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C; Dedmon, William L; Katsanos, Christos S

    2016-10-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA. Copyright © 2016 the American Physiological Society.

  4. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    Science.gov (United States)

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof

    2014-12-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  5. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    Directory of Open Access Journals (Sweden)

    Anna eMikulska

    2015-01-01

    Full Text Available Polymeric surfaces suitable for cell culture (DR/Pec were constructed from diazoresin (DR and pectin (Pec in a form of ultrathin films using the layer-by-layer (LbL technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2 to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  6. Insulin resistance and improvements in signal transduction.

    Science.gov (United States)

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  7. Effect of continuous subcutaneous insulin infusion on kidney function and size in IDDM patients

    DEFF Research Database (Denmark)

    Christensen, C K; Christiansen, J S; Schmitz, A

    1987-01-01

    insulin infusion (CSII) (n = 12) or unchanged conventional insulin treatment (CIT) (n = 12). GFR, RPF, and kidney volume were identical but significantly increased above normal values in the two groups at the start of the study. After 24 months of CSII treatment, significant reduction in GFR was seen...

  8. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. Published by Elsevier Ireland Ltd.

  9. Empagliflozin decreases remnant-like particle cholesterol in type 2 diabetes patients with insulin resistance.

    Science.gov (United States)

    Hattori, Sachiko

    2017-11-28

    Remnant lipoproteins are thought to be atherogenic. Remnant-like particle cholesterol (RLP-C), which reflects the levels of various kinds of remnant lipoproteins in the blood, has a significant correlation with insulin resistance. In the present study, we measured the effect of empagliflozin (EMPA) on the levels of RLP-C, and investigated whether EMPA-mediated change in RLP-C is associated with a change in insulin resistance in type 2 diabetes patients who have insulin resistance. Patients were allocated to receive a placebo (n = 51) or EMPA (n = 58) as an add-on treatment. Fasting blood samples were collected before and 12 weeks after this intervention. EMPA significantly decreased glycated hemoglobin, bodyweight, systolic blood pressure, plasma triglycerides, liver transaminases and estimated glomerular filtration rate, and increased high-density lipoprotein cholesterol. Furthermore, EMPA decreased RLP-C and homeostatic model assessment of insulin resistance. In the placebo group, there were no significant changes in these factors except for slight increases in liver transaminases. Multiple regression analysis showed that the change in homeostatic model assessment of insulin resistance (P = 0.0102) and the change in alanine aminotransferase (P = 0.0301) were significantly associated with the change in RLP-C in the EMPA group. The change in RLP-C significantly correlated with the change in homeostatic model assessment of insulin resistance (Pearson correlation coefficient 0.503, 95% confidence interval 0.199-0.719; P = 0.00241). EMPA decreases RLP-C levels, which is closely associated with amelioration of insulin sensitivity in diabetes patients who have insulin resistance. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  10. Effect of Postural Change on Plasma Insulin Concentration in Normal Volunteer

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ho Kyung; Koh, Joo Whan; Joo, Jong Koo; Kim, Jin Yong; Lee, Jang Kyu [Korea Atomic Research Institute, Seoul (Korea, Republic of)

    1974-03-15

    The concentrations of some blood constituents are known to be influenced by the postural change. The blood glucose and insulin concentrations were measured, first, in the supine, and then (30 minutes later) in the erect positions under the fasting state. The effects of a duretic, furose-mide, were also studied under the same condition for 5 consecutive days. The materials were 5 healthy volunteers aging 20-29 years old with out any diabetic past, or family histories. The blood glucose was measured by the Nelson's method, and plasma insulin by the radioimmunoassay method. Following are the results; 1) The plasma insulin concentration in the erect position is slightly higher than in the supine position, however, the increase is statistically insignificant because of the notable individual variations in the values of the supine position. 2) Four out of 5 cases show the increase of about 80% of plasma insulin in the erect position, which is statistically significant if analyzed on the basis of frequency distribution. 3) The blood glucose concentration showed no postural changes. 4) The increase of the plasma insulin concentration in the erect position seems to the result of limited extra vasation of insulin in the lower extremities.

  11. Comparison of insulin analogue B9AspB27Glu and soluble human insulin in insulin-treated diabetes.

    Science.gov (United States)

    Kang, S; Owens, D R; Vora, J P; Brange, J

    1990-02-10

    Postprandial plasma glucose excursions and plasma levels of free insulin after subcutaneous bolus injection of a rapidly absorbed monomeric insulin analogue (B9AspB27Glu) or soluble human insulin ('Actrapid HM' U100) were studied in six insulin-treated diabetic subjects. 10 U actrapid or an equimolar amount of the analogue were injected, in random order with an interval of 1 week, immediately before a 500 kcal test meal. Basal insulin levels were similar on the 2 study days (mean 74.1 [SE 5.1] pmol/l, actrapid; 79.7 [13.0] pmol/l, analogue). After injection of actrapid plasma free insulin levels rose slowly, reaching a plateau by 105 min at 222 (19) pmol/l. Injection of the analogue resulted in a rapid early peak at 30 min (798 [112] pmol/l), and levels were significantly higher than those after actrapid between 15 and 210 min. The more physiological plasma insulin levels achieved with the analogue were accompanied by a substantial reduction in postprandial plasma glucose excursions; the integrated area under the incremental plasma glucose curve was 45% lower after the analogue than after actrapid.

  12. The effects of two-week program of individually measured physical activity on insulin resistance in obese non-insulin-dependent diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Čizmić Milica

    2003-01-01

    Full Text Available It is well known that under the influence of regular, individually measured aerobic physical activity, it is possible to raise the biological efficiency of insulin by several mechanisms: by increasing the number of insulin receptors, their sensitivity and efficiency, as well as by increasing glucose transporters GLUT-4 on the level of cell membrane. The aim of this research was to examine whether decreased insulin resistance could be achieved under the influence of the program of individually measured aerobic physical activity in the 2-week period, in the obese type 2 diabetes patients with the increased aerobic capacity (VO2max. In 10 type 2 diabetes patients 47.6 ± 4.6 years of age (group E, in the 14-days period, program of aerobic training was applied (10 sessions - 35 min session of walking on treadmill, intensity 60.8 ± 5.7% (VO2max, frequency 5 times a week , as well as 1 600 kcal diet. At the same time, other 10 type 2 diabetes patients 45.9 ± 5.5 years of age (group C were on 1 600 kcal diet. Before and after this period the following was measured in both groups: insulin sensitivity (M/I by the method of hyperinsulin euglycemic clamp, and (VO2max by Astrand test on ergocycle. In contrast to the group C, in the second testing of E group subjects a significant increase was obtained in M/I (1.23 ± 0.78 vs. 2.42 ± 0.95 mg/kg/min/mU p<0.001, 96.75% as well as the increase of (VO2max (26.34 ± 4.26 vs. 29.16 ± 5.01 ml/kg/min p<0.05, 10.7%. The results had shown that 2-week program of aerobic training had had significant influence on the increased aerobic capacity and insulin sensitivity in the tested patients.

  13. Psychological insulin resistance in type 2 diabetes patients regarding oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin.

    Science.gov (United States)

    Petrak, Frank; Herpertz, Stephan; Stridde, Elmar; Pfützner, Andreas

    2013-08-01

    "Psychological insulin resistance" (PIR) is an obstacle to insulin treatment in type 2 diabetes, and patients' expectations regarding alternative ways of insulin delivery are poorly understood. PIR and beliefs regarding treatment alternatives were analyzed in patients with type 2 diabetes (n=532; mean glycated hemoglobin, 68±12 mmol/mol [8.34±1.5%]) comparing oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin. Questionnaires were used to assess barriers to insulin treatment (BIT), generic and diabetes-specific quality of life (Short Form 36 and Problem Areas in Diabetes, German version), diabetes knowledge, locus of control (Questionnaire for the Assessment of Diabetes-Specific Locus of Control, in German), coping styles (Freiburg Questionnaire of Illness Coping, 15-Items Short Form), self-esteem (Rosenberg Self-Esteem Scale, German version), and mental disorders (Patient Health Questionnaire, German version). Patients discussed treatment optimization options with a physician and were asked to make a choice about future diabetes therapy options in a two-step treatment choice scenario. Step 1 included oral antidiabetes drugs or subcutaneous insulin injection (SCI). Step 2 included an additional treatment alternative of inhaled insulin (INH). Subgroups were analyzed according to their treatment choice. Most patients perceived their own diabetes-related behavior as active, problem-focused, internally controlled, and oriented toward their doctors' recommendations, although their diabetes knowledge was limited. In Step 1, rejection of the recommended insulin was 82%, and in Step 2, it was 57%. Fear of hypoglycemia was the most important barrier to insulin treatment. Patients choosing INH (versus SCI) scored higher regarding fear of injection, expected hardship from insulin therapy, and BIT-Sumscore. The acceptance of insulin is very low in type 2 diabetes patients. The option to inhale insulin increases the acceptability for some but

  14. [Continuous insulin therapy versus multiple insulin injections in the management of type 1 diabetes: a longitutinal study].

    Science.gov (United States)

    Ribeiro, Maria Estela Bellini; Del Roio Liberatore Junior, Raphael; Custodio, Rodrigo; Martinelli Junior, Carlos Eduardo

    2016-01-01

    To compare multiple doses of insulin and continuous insulin infusion therapy as treatment for type 1 diabetes melito. 40 patients with type 1 diabetes melito (21 female) with ages between 10 and 20 years (mean=14.2) and mean duration of diabetes of 7 years used multiple doses of insulin for at least 6 months and after that, continuous insulin infusion therapy for at least 6 months. Each one of the patients has used multiple doses of insulin and continuous insulin infusion therapy. For analysis of HbA1c, mean glycated hemoglobin levels (mHbA1c) were obtained during each treatment period (multiple doses of insulin and continuous insulin infusion therapy period). Although mHbA1c levels were lower during continuous insulin infusion therapy the difference was not statistically significant. During multiple doses of insulin, 14.2% had mHbA1c values below 7.5% vs. 35.71% while on continuous insulin infusion therapy; demonstrating better glycemic control with the use of continuous insulin infusion therapy. During multiple doses of insulin, 15-40 patients have severe hypoglycemic events versus 5-40 continuous insulin infusion therapy. No episodes of ketoacidosis events were recorded. This is the first study with this design comparing multiple doses of insulin and continuous insulin infusion therapy in Brazil showing no significant difference in HbA1c; hypoglycemic events were less frequent during continuous insulin infusion therapy than during multiple doses of insulin and the percentage of patients who achieved a HbA1c less than 7.5% was greater during continuous insulin infusion therapy than multiple doses of insulin therapy. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    Science.gov (United States)

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (pprostatic tissue (pcancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (preceptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  16. Insulin use increases risk of asthma but metformin use reduces the risk in patients with diabetes in a Taiwanese population cohort.

    Science.gov (United States)

    Chen, Chiung-Zuei; Hsu, Chih-Hui; Li, Chung-Yi; Hsiue, Tzuen-Ren

    2017-12-01

    Recent reports have suggested that insulin promotes airway smooth muscle contraction and enhances airway hyperresponsiveness, which are cardinal features of asthma. In contrast, metformin can reduce both airway inflammatory and remodeling properties. However, these results are all from in vitro and animal studies. This study investigated whether diabetes and various antidiabetic agents associate with the risk of asthma. We used a retrospective population-based cohort study using Taiwan's National Health Insurance claim database from 2000 to 2010 and a Cox proportional hazards regression model to compare the incidence of asthma between patients with diabetes (n = 19,428) and a matched non-diabetic group (n = 38,856). We also used a case-control study nested from the above cohort including 1,982 incident cases of asthma and 1,982 age- and sex-matched controls. A time density sampling technique was used to assess the effects of various antidiabetic agents on the risk of asthma. The incidence of asthma was significantly higher in the diabetic cohort than that in the non-diabetic cohort after adjustment for age, sex, and obesity, with a hazard ratio of 1.30 (95% confidence interval [CI]: 1.24-1.38). Insulin was found to increase the risk of asthma among diabetic patients (odds ratio [OR] 2.23; 95% CI: 1.52-3.58). In contrast, the use of metformin correlated with a decreased risk of asthma (OR 0.75; 95% CI: 0.60-0.95). Individuals with diabetes are at an increased risk of asthma. Insulin may further increase the risk of asthma, but the risk could possibly be reduced by using metformin.

  17. Maternal Rat Diabetes Mellitus Deleteriously Affects Insulin Sensitivity and Beta-Cell Function in the Offspring

    Directory of Open Access Journals (Sweden)

    Abdel-Baset M. Aref

    2013-01-01

    Full Text Available This study was designed to assess the effect of maternal diabetes in rats on serum glucose and insulin concentrations, insulin resistance, histological architecture of pancreas and glycogen content in liver of offspring. The pregnant rat females were allocated into two main groups: normal control group and streptozotocin-induced diabetic group. After birth, the surviving offspring were subjected to biochemical and histological examination immediately after delivery and at the end of the 1st and 2nd postnatal weeks. In comparison with the offspring of normal control dams, the fasting serum glucose level of offspring of diabetic mothers was significantly increased at the end of the 1st and 2nd postnatal weeks. Serum insulin level of offspring of diabetic dams was significantly higher at birth and decreased significantly during the following 2 postnatal weeks, while in normal rat offspring, it was significantly increased with progress of time. HOMA Insulin Resistance (HOMA-IR was significantly increased in the offspring of diabetic dams at birth and after 1 week than in normal rat offspring, while HOMA insulin sensitivity (HOMA-IS was significantly decreased. HOMA beta-cell function was significantly decreased at all-time intervals in offspring of diabetic dams. At birth, islets of Langerhans as well as beta cells in offspring of diabetic dams were hypertrophied. The cells constituting islets seemed to have a high division rate. However, beta-cells were degenerated during the following 2 post-natal weeks and smaller insulin secreting cells predominated. Vacuolation and necrosis of the islets of Langerhans were also observed throughout the experimental period. The carbohydrate content in liver of offspring of diabetic dams was at all-time intervals lower than that in control. The granule distribution was more random. Overall, the preexisting maternal diabetes leads to glucose intolerance, insulin resistance, and impaired insulin sensitivity and

  18. Insulin resistance and serum parameters of iron status in type 2 diabetics

    International Nuclear Information System (INIS)

    Zafar, U.

    2011-01-01

    Background: Type 2 diabetes mellitus (T2DM) is a predominant public health concern worldwide, accounting for 90% of the cases of diabetes globally. Pathogenesis of T2DM involves insulin resistance, defective insulin secretion and increased glucose production by the liver. Subclinical haemochromatosis has been considered as one of the probable causes of insulin resistance and diabetes mellitus. The aim of this study was to determine and correlate insulin resistance and serum parameters of iron status (serum ferritin and transferrin saturation) in type 2 diabetics. Methods: It was a correlational study. This study was conducted on sixty male patients with type 2 diabetes mellitus. Fasting blood sample was taken from each subject and analysed for glucose, haemoglobin, insulin, iron, Total Iron Binding Capacity (TIBC) and ferritin. Insulin resistance was determined by HOMA-IR index. Transferrin saturation was calculated from serum iron and TIBC. Data was analysed using SPSS-17. Results: There was significant positive correlation between insulin resistance and transferrin saturation, but there was no significant correlation of insulin resistance with blood haemoglobin, serum iron and serum ferritin in type 2 diabetics. Conclusion: Correlation between insulin resistance and transferrin saturation reveals that iron has negative impact on insulin sensitivity in type 2 diabetics. (author)

  19. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    Science.gov (United States)

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  20. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Cheng, Chao; Nakamura, Akinobu; Minamimoto, Ryogo; Shinoda, Kazuaki; Tateishi, Ukihide; Terauchi, Yasuo; Inoue, Tomio; Goto, Atsuhi; Kadowaki, Takashi

    2011-01-01

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG). The biodistribution of [ 18 F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [ 18 F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [ 18 F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [ 18 F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [ 18 F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [ 18 F]-FDG uptake in the heart in normal daily conditions. IR was associated with

  1. Insulin-receptors in diabetes and altered thyroidal status

    International Nuclear Information System (INIS)

    Chaujar, Meena; Subramanian, G.B.V.; Yadav, H.S.; Chauhan, U.P.S.

    1991-01-01

    Rats were made hypothyroid by treating with a single dose of 800 μCi of 131 I and hyperthyroid condition was created by administering 90 μg of thyroxine daily for 2 weeks. Diabetes was produced by administering single dose of alloxan monohydrate. Hypothyroid rats showed significant increase in 125 I-insulin binding with its liver plasma membrane receptors with respect to normal rats. In the case of hypothyroid diabetic rats such binding was greater as compared to hypothyroid rats without diabetes. Hyperthyroid rats with respect to normal control rats showed a decrease in 125 I-insulin binding to its liver plasma membrane receptors. When hyperthyroid rats were made diabetic, 125 I-insulin binding to its receptors was further decreased. The study infers that hyper-thyrodism further decreases insulin binding to its receptors which has already been decreased in diabetes. Hypothyroidism, on the other hand, improves upon the decreased insulin binding to its receptors in diabetes. (author). 16 refs., 6 figs., 2 tabs

  2. Insulin Resistance of Puberty.

    Science.gov (United States)

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  3. Rapid changes in plasma androgens during insulin withdrawal in male type 1 (insulin-dependent) diabetics

    DEFF Research Database (Denmark)

    Madsbad, S; Gluud, C; Bennett, Patrick

    1986-01-01

    Plasma concentrations of testosterone, androstenedione and dihydrotestosterone were measured in 15 Type 1 (insulin-dependent) diabetics with (n = 8) and without (n = 7) B-cell function during 12 h of insulin withdrawal and compared with those of 8 normal subjects. Before insulin withdrawal......, testosterone and dihydrotestosterone concentrations were lower in the diabetics after 4 h of insulin withdrawal and remained so throughout the study. The concentrations of androstenedione were not significantly different between diabetics and normal subjects except after 4 h of insulin withdrawal. Despite...

  4. The Relationship among Smoking, Plasma Adiponectin, Leptin, Inflammatory Markers and Insulin Resistance

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.Et

    2012-01-01

    We aimed to study how smoking influences the relationship between fat mass ,soluble tumor necrosis factor-α, (TNF?) receptors 1 and 2 (sTNFR1 and sTNFR2),highly sensitive C-reactive protein(hs-CRP), adiponectin, leptin and insulin resistance.A total of 60 healthy men (age: 27-53 years, body mass index (BMI): 20-35 kg/m 2 ), 30 of whom were never-smokers and 30 smokers, matched for age, BMI and waist-to-hip ratio were included in this study. Those were subdivided into insulin resistant (IR) and insulin sensitive (IS) subgroups. Measures included circulating soluble fractions of the tumor necrosis factor α (TNF α) receptors (sTNFR1 and sTNFR2) and their relationship to fat mass, fasting plasma adiponectin, leptin, hs- CRP and insulin sensitivity index.Smokers had significantly lower fat mass, lower fasting glucose, insulin and leptin concentrations than nonsmokers. Despite lower fat mass, insulin and leptin, smokers showed significantly increased circulating sTNFR2 levels (3.7±0.8 vs. 2.9 ±0.8 ng/ml, π=0.03). Being either a smoker or having insulin resistance was independently associated with lower adiponectin concentrations (π = 0.046 and 0.001, respectively). No difference was detected in average hs- CRP concentrations between smokers and nonsmokers (π = 0.18) and between IR and IS subjects (π = 0.13).Both fat mass and smoking are related to increased activity of the TNFα axis. Plasma adiponectin concentrations are lower in smokers and IR subjects. These two mechanisms could be associated with increased cardiovascular risk in smokers

  5. The Relationship among Smoking, Plasma Adiponectin, Leptin, Inflammatory Markers and Insulin Resistance

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.Et.

    2011-01-01

    The study aimed to investigate how smoking influences the relationship between fat mass, soluble tumor necrosis factor-α , (TNFα ) receptors 1 and 2 (sTNFR1 and sTNFR2), highly sensitive C-reactive protein (hs-CRP), adiponectin, leptin and insulin resistance. A total of 60 healthy men (age: 27-53 years, body mass index (BMI): 20-35 kg/m2), 30 of whom were never-smokers and 30 smokers, matched for age, BMI and waist-to-hip ratio were included in this study. Those were subdivided into insulin resistant (IR) and insulin sensitive (IS) subgroups. Measures included circulating soluble fractions of the tumor necrosis factor α (TNFα ) receptors (sTNFR1 and sTNFR2) and their relationship to fat mass, fasting plasma adiponectin, leptin, hs-CRP and insulin sensitivity index. Smokers had significantly lower fat mass, lower fasting glucose, insulin and leptin concentrations than nonsmokers. Despite lower fat mass, insulin and leptin, smokers showed significantly increased circulating sTNFR2 levels (3.7±0.8 vs. 2.9±0.8 ng/ml, P=0.03). Being either a smoker or having insulin resistance was independently associated with lower adiponectin concentrations (P = 0.046 and 0.001, respectively). No difference was detected in average hs- CRP concentrations between smokers and nonsmokers (P = 0.18) and between IR and IS subjects (P = 0.13).Both fat mass and smoking are related to increased activity of the TNFα axis. Plasma adiponectin concentrations are lower in smokers and IR subjects. These two mechanisms could be associated with increased cardiovascular risk in smokers

  6. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    Science.gov (United States)

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    International Nuclear Information System (INIS)

    Su, Chien-Tien; Lin, Hsiu-Chen; Choy, Cheuk-Sing; Huang, Yung-Kai; Huang, Shiau-Rung; Hsueh, Yu-Mei

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA 5+ ) and dimethylarsinic acid (DMA 5+ ) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: ► This is the first to find that urinary total arsenic is related inversely to the BMI. ► Arsenic methylation capability may be associated with obesity and insulin. ► Obese adolescents with high insulin had low arsenic methylation capacity.

  8. Suppression of the Nuclear Factor Eny2 Increases Insulin Secretion in Poorly Functioning INS-1E Insulinoma Cells

    Directory of Open Access Journals (Sweden)

    P. Dames

    2012-01-01

    Full Text Available Eny2, the mammalian ortholog of yeast Sus1 and drosophila E(y2, is a nuclear factor that participates in several steps of gene transcription and in mRNA export. We had previously found that Eny2 expression changes in mouse pancreatic islets during the metabolic adaptation to pregnancy. We therefore hypothesized that the protein contributes to the regulation of islet endocrine cell function and tested this hypothesis in rat INS-1E insulinoma cells. Overexpression of Eny2 had no effect but siRNA-mediated knockdown of Eny2 resulted in markedly increased glucose and exendin-4-induced insulin secretion from otherwise poorly glucose-responsive INS-1E cells. Insulin content, cellular viability, and the expression levels of several key components of glucose sensing remained unchanged; however glucose-dependent cellular metabolism was higher after Eny2 knockdown. Suppression of Eny2 enhanced the intracellular incretin signal downstream of cAMP. The use of specific cAMP analogues and pathway inhibitors primarily implicated the PKA and to a lesser extent the EPAC pathway. In summary, we identified a potential link between the nuclear protein Eny2 and insulin secretion. Suppression of Eny2 resulted in increased glucose and incretin-induced insulin release from a poorly glucose-responsive INS-1E subline. Whether these findings extend to other experimental conditions or to in vivo physiology needs to be determined in further studies.

  9. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    Science.gov (United States)

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    International Nuclear Information System (INIS)

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-01-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [ 125 I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [ 125 I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less

  11. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).

    Science.gov (United States)

    Marunaka, Y; Hagiwara, N; Tohda, H

    1992-09-01

    Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.

  12. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    Science.gov (United States)

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  13. Variability of HOMA and QUICKI insulin sensitivity indices.

    Science.gov (United States)

    Žarković, Miloš; Ćirić, Jasmina; Beleslin, Biljana; Stojković, Mirjana; Savić, Slavica; Stojanović, Miloš; Lalić, Tijana

    2017-07-01

    Assessment of insulin sensitivity based on a single measurement of insulin and glucose, is both easy to understand and simple to perform. The tests most often used are HOMA and QUICKI. The aim of this study was to assess the biological variability of estimates of insulin sensitivity using HOMA and QUICKI indices. After a 12-h fast, blood was sampled for insulin and glucose determination. Sampling lasted for 90 min with an intersample interval of 2 min. A total of 56 subjects were included in the study, and in nine subjects sampling was done before and after weight reduction, so total number of analyzed series was 65. To compute the reference value of the insulin sensitivity index, averages of all 46 insulin and glucose samples were used. We also computed point estimates (single value estimates) of the insulin sensitivity index based on the different number of insulin/glucose samples (1-45 consecutive samples). To compute the variability of point estimates a bootstrapping procedure was used using 1000 resamples for each series and for each number of samples used to average insulin and glucose. Using a single insulin/glucose sample HOMA variability was 26.18 ± 4.31%, and QUICKI variability was 3.30 ± 0.54%. For 10 samples variability was 11.99 ± 2.22% and 1.62 ± 0.31% respectively. Biological variability of insulin sensitivity indices is significant, and it can be reduced by increasing the number of samples. Oscillations of insulin concentration in plasma are the major cause of variability of insulin sensitivity indices.

  14. Chitosan nanofibers for transbuccal insulin delivery.

    Science.gov (United States)

    Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu

    2017-05-01

    In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.

  15. Increased minimal vascular resistance and arteriolar hyalinosis in skin on the leg in insulin-dependent diabetic patients

    DEFF Research Database (Denmark)

    Kastrup, J; Nørgaard, T; Parving, H H

    1987-01-01

    Minimal vascular resistance (MVR) was determined in a paralysed cutaneous vascular bed at the dorsum of the foot in diabetic patients. Twelve long-term insulin-dependent diabetic (IDDM) patients with and nine short-term IDDM patients without nephropathy and retinopathy and eight control subjects......-wise increases of external counter pressure. The MVR was calculated from the reciprocal of the slope of the relationship between blood flow and applied pressure. The MVR was significantly increased in diabetic patients with (mean: 9.3 mmHg ml-1.100 g.min) and without nephropathy and retinopathy (8.5 mmHg ml-1.......100 g.min) compared with non-diabetic subjects (5.2 mmHg ml-1.100 g.min) (p less than 0.001 and p less than 0.005, respectively). Diabetic microangiopathy (increased hyalinosis of the basement membranes in the terminal arterioles) was found in skin biopsies in nine of the 12 long-term IDDM patients...

  16. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact

    DEFF Research Database (Denmark)

    Mulder, Hindrik; Sörhede-Winzell, Maria; Contreras, Juan Antonio

    2003-01-01

    of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin......-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance....... Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia....

  17. Nitric oxide is required for the insulin sensitizing effects of contraction in mouse skeletal muscle.

    Science.gov (United States)

    Zhang, Xinmei; Hiam, Danielle; Hong, Yet-Hoi; Zulli, Anthony; Hayes, Alan; Rattigan, Stephen; McConell, Glenn K

    2017-12-15

    People with insulin resistance or type 2 diabetes can substantially increase their skeletal muscle glucose uptake during exercise and insulin sensitivity after exercise. Skeletal muscle nitric oxide (NO) is important for glucose uptake during exercise, although how prior exercise increases insulin sensitivity is unclear. In the present study, we examined whether NO is necessary for normal increases in skeletal muscle insulin sensitivity after contraction ex vivo in mouse muscle. The present study uncovers, for the first time, a novel role for NO in the insulin sensitizing effects of ex vivo contraction, which is independent of blood flow. The factors regulating the increase in skeletal muscle insulin sensitivity after exercise are unclear. We examined whether nitric oxide (NO) is required for the increase in insulin sensitivity after ex vivo contractions. Isolated C57BL/6J mouse EDL muscles were contracted for 10 min or remained at rest (basal) with or without the NO synthase (NOS) inhibition (N G -monomethyl-l-arginine; l-NMMA; 100 μm). Then, 3.5 h post contraction/basal, muscles were exposed to saline or insulin (120 μU ml -1 ) with or without l-NMMA during the last 30 min. l-NMMA had no effect on basal skeletal muscle glucose uptake. The increase in muscle glucose uptake with insulin (57%) was significantly (P contraction (140% increase). NOS inhibition during the contractions had no effect on this insulin-sensitizing effect of contraction, whereas NOS inhibition during insulin prevented the increase in skeletal muscle insulin sensitivity post-contraction. Soluble guanylate cyclase inhibition, protein kinase G (PKG) inhibition or cyclic nucleotide phosphodiesterase inhibition each had no effect on the insulin-sensitizing effect of prior contraction. In conclusion, NO is required for increases in insulin sensitivity several hours after contraction of mouse skeletal muscle via a cGMP/PKG independent pathway. © 2017 The Authors. The Journal of Physiology

  18. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    Directory of Open Access Journals (Sweden)

    Xin-Yu Huang

    2016-01-01

    Full Text Available To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6, Zusanli (ST36, and Sanyinjiao (SP6; in contrast, acupuncture to Shenshu (BL23 was administered perpendicularly. For Neiguan (PC6 and Zusanli (ST36, needles were connected to an electroacupuncture (EA apparatus. Fasting blood glucose (FPG was measured by glucose oxidase method. Plasma fasting insulin (FINS and serum C peptide (C-P were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR, which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.

  19. Serum leptin and insulin tests in obesity

    International Nuclear Information System (INIS)

    Yang Yin; Jiang Xiaojin; Leng Xiumei

    2001-01-01

    Objective: To study the clinical significance and the relations of leptin and insulin on obesity group. Methods: Leptin and insulin were tested with radioimmunoassay (RIA) in pre-obesity group and obesity group respectively. Results: Serum leptin and insulin levels were significantly elevated in obesity group compare with the controls (P<0.01). Conclusion: Changing with insulin, the elevation of leptin in obesity group has been identified as an important agent of diabetes mellitus (DM)

  20. MODELS OF INSULIN RESISTANCE AND HEART FAILURE

    Science.gov (United States)

    Velez, Mauricio; Kohli, Smita; Sabbah, Hani N.

    2013-01-01

    The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models. PMID:23456447

  1. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Cortez-Navarrete, Marisol; Martínez-Abundis, Esperanza; Pérez-Rubio, Karina G; González-Ortiz, Manuel; Villar, Miriam Méndez-Del

    2018-02-12

    An improvement in parameters of glycemic control has been observed with Momordica charantia in patients with type 2 diabetes mellitus (T2DM). It is unknown whether this improvement is through a modification of insulin secretion, insulin sensitivity, or both. We hypothesized that M. charantia administration can improve insulin secretion and/or insulin sensitivity in patients with T2DM, without pharmacological treatment. The objective of the study was to evaluate the effect of M. charantia administration on insulin secretion and sensitivity. A randomized, double-blinded, placebo-controlled, clinical trial was carried out in 24 patients who received M. charantia (2000 mg/day) or placebo for 3 months. A 2-h oral glucose tolerance test (OGTT) was done before and after the intervention to calculate areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index). In the M. charantia group, there were significant decreases in weight, body mass index (BMI), fat percentage, waist circumference (WC), glycated hemoglobin A1c (A1C), 2-h glucose in OGTT, and AUC of glucose. A significant increase in insulin AUC (56,562 ± 36,078 vs. 65,256 ± 42,720 pmol/L/min, P = .043), in total insulin secretion (0.29 ± 0.18 vs. 0.41 ± 0.29, P = .028), and during the first phase of insulin secretion (557.8 ± 645.6 vs. 1135.7 ± 725.0, P = .043) was observed after M. charantia administration. Insulin sensitivity was not modified with any intervention. In conclusion, M. charantia administration reduced A1C, 2-h glucose, glucose AUC, weight, BMI, fat percentage, and WC, with an increment of insulin AUC, first phase and total insulin secretion.

  2. Body fat and insulin resistance independently predict increased serum C-reactive protein in hyperandrogenic women with polycystic ovary syndrome.

    Science.gov (United States)

    Tosi, Flavia; Dorizzi, Romolo; Castello, Roberto; Maffeis, Claudio; Spiazzi, Giovanna; Zoppini, Giacomo; Muggeo, Michele; Moghetti, Paolo

    2009-11-01

    Increased serum C-reactive protein (CRP), an independent predictor of coronary heart disease, was reported in women with polycystic ovary syndrome (PCOS). It remains unclear whether this finding is due to the association between PCOS and either insulin resistance, obesity, or androgen excess, which are all common features of this condition. The aims of this study were to assess whether increased serum CRP is a specific feature of PCOS and to investigate the mechanisms underlying this association. Serum high-sensitivity CRP (hs-CRP) was measured in 86 hyperandrogenic women (age 21.6+/-4.2 years, body mass index (BMI) 23.6+/-3.5 kg/m2), 50 with PCOS and 36 with idiopathic hyperandrogenism (HA). Thirty-five BMI-matched healthy women were also studied as controls. In these subjects, endocrine and metabolic profiles were assessed. In all hyperandrogenic subjects and 14 controls, insulin sensitivity was measured by the glucose clamp technique. Body fat was measured by bioelectrical impedance. Hs-CRP concentrations were higher in PCOS women (3.43+/-2.01 mg/l) than in HA subjects and healthy women (2.43+/-1.04, PPCOS). In multiple regression analyses, increased serum hs-CRP was independently predicted by higher body fat and lower insulin sensitivity. However, in lean women, serum-free testosterone was an additional, negative, predictive variable. PCOS is accompanied by a low-grade chronic inflammation. Body fat appears the main determining factor of this finding, which is only partly explained by insulin resistance. At least in lean women, androgen excess per se seems to play an additional, possibly protective, role in this association.

  3. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    Science.gov (United States)

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  4. Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats.

    Science.gov (United States)

    Foletto, Kelly Carraro; Melo Batista, Bruna Aparecida; Neves, Alice Magagnin; de Matos Feijó, Fernanda; Ballard, Cíntia Reis; Marques Ribeiro, Maria Flávia; Bertoluci, Marcello Casaccia

    2016-01-01

    In a previous study, we showed that saccharin can induce weight gain when compared with sucrose in Wistar rats despite similar total caloric intake. We now question whether it could be due to the sweet taste of saccharin per se. We also aimed to address if this weight gain is associated with insulin-resistance and to increases in gut peptides such as leptin and PYY in the fasting state. In a 14 week experiment, 16 male Wistar rats received either saccharin-sweetened yogurt or non-sweetened yogurt daily in addition to chow and water ad lib. We measured daily food intake and weight gain weekly. At the end of the experiment, we evaluated fasting leptin, glucose, insulin, PYY and determined insulin resistance through HOMA-IR. Cumulative weight gain and food intake were evaluated through linear mixed models. Results showed that saccharin induced greater weight gain when compared with non-sweetened control (p = 0.027) despite a similar total caloric intake. There were no differences in HOMA-IR, fasting leptin or PYY levels between groups. We conclude that saccharin sweet taste can induce mild weight gain in Wistar rats without increasing total caloric intake. This weight gain was not related with insulin-resistance nor changes in fasting leptin or PYY in Wistar rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Insulin resistance and chronic inflammation

    Directory of Open Access Journals (Sweden)

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  6. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hoda Y. Henein

    2011-01-01

    Full Text Available Type 2 diabetes mellitus is one of the common metabolic disorders that ultimately afflicts large number of individuals. Adrenomedullin (AM is a potent vasodilator peptide; previous studies reported development of insulin resistance in aged AM deficient mice. In this study, we employed a gene delivery approach to explore its potential role in insulin resistance. Four groups were included: control, diabetic, non-diabetic injected with the AM gene and diabetic injected with the AM gene. One week following gene delivery, serum glucose, insulin, triglycerides, leptin, adiponectin and corticosterone were measured as well as the insulin resistance index (HOMA-IR. Soleus muscle glucose uptake and RT-PCR of both AM and glucose transporter-4 (GLUT 4 gene expressions were assessed. A single tail vein injection of adrenomedullin gene in type 2 diabetic rats improved skeletal muscle insulin responsiveness with significant improvement of soleus muscle glucose uptake, HOMA-IR, serum glucose, insulin and triglycerides and significant increase in muscle GLUT 4 gene expression (P < 0.05 compared with the non-injected diabetic rats. The beneficial effects of AM gene delivery were accompanied by a significant increase in the serum level of adiponectin (2.95 ± 0.09 versus 2.33 ± 0.17 μg/ml in the non-injected diabetic group as well as a significant decrease in leptin and corticosterone levels (7.51 ± 0.51 and 262.88 ± 10.34 versus 10.63 ± 1.4 and 275.86 ± 11.19 ng/ml respectively in the non-injected diabetic group. The conclusion of the study is that AM gene delivery can improve insulin resistance and may have significant therapeutic applications in type 2 diabetes mellitus.

  7. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    Science.gov (United States)

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  8. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    Science.gov (United States)

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Suppression in growth hormone during overeating ameliorates the increase in insulin resistance and cardiovascular disease risk.

    Science.gov (United States)

    Cornford, Andrea S; Barkan, Ariel L; Hinko, Alexander; Horowitz, Jeffrey F

    2012-11-15

    Previously, we reported that overeating for only a few days markedly suppressed the secretion of growth hormone (GH). The purpose of the present study was to determine the role of this reduction in GH concentration on key metabolic adaptations that occur during 2 wk of overeating. Nine nonobese, healthy adults were admitted to the hospital for 2 wk, during which time they ate ∼4,000 kcal/day (70 kcal·kg fat-free mass(-1)·day(-1); 50% carbohydrate, 35% fat, and 15% protein), and their plasma GH concentration was allowed to decline naturally (control). An additional eight subjects underwent the same overeating intervention and received exogenous GH treatment (GHT) administered in four daily injections to mimic physiological GH secretion throughout the 2-wk overeating period. We measured plasma insulin and glucose concentrations in the fasting and postprandial state as well as fasting lipolytic rate, proteolytic rate, and fractional synthetic rate (FSR) using stable-isotope tracer methods. GHT prevented the fall in plasma GH concentration, maintaining plasma GH concentration at baseline levels (1.2 ± 0.2 ng/ml), which increased fasting and postprandial assessments of insulin resistance (P overeating also blunted the increase in systemic proteolysis (P overeating. In conclusion, our main findings suggest that the suppression in GH secretion that naturally occurs during the early stages of overeating may help attenuate the insulin resistance and hyperlipidemia that typically accompany overeating.

  11. An observational study comparing continuous subcutaneous insulin infusion (CSII) and insulin glargine in children with type 1 diabetes.

    Science.gov (United States)

    Schiaffini, Riccardo; Ciampalini, Paolo; Spera, Sabrina; Cappa, Marco; Crinó, Antonino

    2005-01-01

    The advantages of continuous subcutaneous insulin infusion (CSII) or insulin glargine have been demonstrated both in adult and paediatric diabetic patients; however, as no data comparing these two approaches during childhood are available, we have examined the efficacy of these two intensive approaches. We retrospectively evaluated data from 36 diabetic children, who had changed their previous insulin regimen [with isophane insulin (NPH) at bedtime] because of HbA1c levels >8.0%. Twenty patients underwent CSII, while the other 16 (significantly younger for age) started insulin glargine at bedtime. At 6 and 12 months, CSII-treated patients showed a significant reduction in HbA1c values from 8.5 +/- 1.8 to 7.4 +/- 1.1% and to 7.6 +/- 1.2%, respectively. The insulin requirement significantly decreased from 0.93 +/- 0.2 IU/kg to 0.73 +/- 0.2 IU/kg of body weight and to 0.74 +/- 0.15 IU/kg of body weight, respectively, while no significant differences were observed for BMI SDS, fructosamine and severe hypoglycaemic events. The patients treated with glargine showed a small decline in HbA1c values from 8.9 +/- 1.7 to 8.3 +/- 0.9% (not significant) in the first 6 months of treatment and to 8.2 +/- 0.9% after 12 months. The basal insulin supplementation can be supplied effectively in children with type 1 diabetes by either CSII or insulin glargine. As previously reported for adults, it is confirmed that CSII is the best current intensive approach aimed to the improvement of glycaemic control.

  12. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    Science.gov (United States)

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Sodium retention and insulin treatment in insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Nørgaard, K; Feldt-Rasmussen, B

    1994-01-01

    subcutaneously, contributes to the increased ENa. Three studies were performed. Study 1 was a cross-sectional study comprising 28 type 1 diabetic men (aged 18-35 years) with short-duration diabetes (diabetic complications, and 22 control subjects. Study 2 was a prospective study of 17...... subcutaneous insulin infusion for improvement of glycaemic control or to remain on conventional insulin treatment. In study 1, ENa was higher in short-duration type 1 diabetic men than in controls (3003 +/- 325 vs 2849 +/- 207 mEq/1.73 m2, P ...The hypothesis that total body exchangeable sodium (ENa) is elevated in type 1 (insulin-dependent) diabetic patients with short-duration diabetes and no signs of microangiopathy was tested. Also tested was whether peripheral hyperinsulinaemia, in terms of the amounts of insulin injected...

  14. Change in body mass index and insulin resistance after 1-year treatment with gonadotropin-releasing hormone agonists in girls with central precocious puberty

    Directory of Open Access Journals (Sweden)

    Jina Park

    2017-03-01

    Full Text Available PurposeGonadotropin-releasing hormone agonist (GnRHa is used as a therapeutic agent for central precocious puberty (CPP; however, increased obesity may subsequently occur. This study compared body mass index (BMI and insulin resistance during the first year of GnRHa treatment for CPP.MethodsPatient group included 83 girls (aged 7.0–8.9 years with developed breasts and a peak luteinizing hormone level of ≥5 IU/L after GnRH stimulation. Control group included 48 prepubertal girls. BMI and insulin resistance-related indices (homeostasis model assessment of insulin resistance [HOMA-IR] and quantitative insulin sensitivity check index [QUICKI] were used to compare the groups before treatment, and among the patient group before and after GnRHa treatment.ResultsNo statistical difference in BMI z-score was detected between the 2 groups before treatment. Fasting insulin and HOMA-IR were increased in the patient group; fasting glucose-to-insulin ratio and QUICKI were increased in the control group (all P<0.001. In normal-weight subjects in the patient group, BMI z-score was significantly increased during GnRHa treatment (−0.1±0.7 vs. 0.1±0.8, P<0.001, whereas HOMA-IR and QUICKI exhibited no differences. In overweight subjects in the patient group; BMI z-score and HOMA-IR were not significantly different, whereas QUICKI was significantly decreased during GnRHa treatment (0.35±0.03 vs. 0.33±0.02, P=0.044.ConclusionGirls with CPP exhibited increased insulin resistance compared to the control group. During GnRHa treatment, normal-weight individuals showed increased BMI z-scores without increased insulin resistance; the overweight group demonstrated increased insulin resistance without significantly altered BMI z-scores. Long-term follow-up of BMI and insulin resistance changes in patients with CPP is required.

  15. White bread enriched with polyphenol extracts shows no effect on glycemic response or satiety, yet may increase postprandial insulin economy in healthy participants.

    Science.gov (United States)

    Coe, Shelly; Ryan, Lisa

    2016-02-01

    Extracts from different plant sources have been shown to modify starch digestion from carbohydrate-rich foods and lower resulting glycemia. It was hypothesized that extracts rich in polyphenols, added to white bread, would improve the glycemic response and insulin response and increase satiety in healthy participants. An in vitro dose-response analysis was performed to determine the optimal dose of a variety of extracts (baobab fruit extract, green tea extract, grape seed extract, and resveratrol) for reducing rapidly digestible starch in white bread. The 2 extracts with the greatest sugar reducing potential were then used for the human study in which 13 volunteers (9 female and 4 male) were recruited for a crossover trial of 3 different meals. On separate days, participants consumed a control white bread, white bread with green tea extract (0.4%), and white bread with baobab fruit extract (1.88%). Glycemic response, insulin response, and satiety were measured 3 hours postprandially. Although enriched breads did not reduce glycemic response or hunger, white bread with added baobab fruit extract significantly (P bread to improve insulin economy in healthy adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of alcohol on insulin secretion and viability of human pancreatic islets

    Directory of Open Access Journals (Sweden)

    Nikolić Dragan

    2017-01-01

    Full Text Available Introduction/Objective. There are controversial data in the literature on the topic of effects of alcohol on insulin secretion, apoptosis, and necrosis of the endocrine and exocrine pancreas. The goal of this research was to determine how alcohol affects the insulin secretion and viability of human adult pancreatic islets in vitro during a seven-day incubation. Methods. Human pancreatic tissue was digested with Collagenase XI, using a non-automated method. Cultures were incubated in Roswell Park Memorial Institute (RPMI medium containing alcohol (10 μl of alcohol in 100 ml of medium. Insulin stimulation index (SI and viability of the islets were determined on the first, third, and seventh day of cultivation. Results. Analysis of the viability of the islets showed that there wasn’t significant difference between the control and the test group. In the test group, viability of the cultures declined with the time of incubation. SI of the test group was higher compared to the control group, by 50% and 25% on the first and third day of cultivation, respectively. On the seventh day, insulin secretion was reduced by 25%. The difference was not statistically significant (p > 0.05. In the test group, significant decline in insulin secretion was found on the third and seventh day of incubation (p ≤ 0.05. Conclusion. Alcohol can increase or decrease insulin secretion of islets cultures, which may result in an inadequate response of pancreatic β-cells to blood glucose, leading to insulin resistance, and increased risk of developing type 2 diabetes. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 41002

  17. Simple Protein Modification Using Zwitterionic Polymer to Mitigate the Bioactivity Loss of Conjugated Insulin.

    Science.gov (United States)

    Xie, Jinbing; Lu, Yang; Wang, Wei; Zhu, Hui; Wang, Zhigang; Cao, Zhiqiang

    2017-06-01

    Polymer-protein conjugation has been extensively explored toward a better protein drug with improved pharmacokinetics. However, a major problem with polymer-protein conjugation is that the polymers drastically reduce the bioactivity of the modified protein. There is no perfect solution to prevent the bioactivity loss, no matter the polymer is conjugated in a non-site specific way, or a more complex site-specific procedure. Here the authors report for the first time that when zwitterionic carboxybetaine polymer (PCB) is conjugated to insulin through simple conventional coupling chemistry. The resulting PCB-insulin does not show a significant reduction of in vitro bioactivity. The obtained PCB-insulin shows two significant advantages as a novel pharmaceutical agent. First, its therapeutic performance is remarkable. For PCB-insulin, there is a 24% increase of in vivo pharmacological activity of lowering blood glucose compared with native insulin. Such uncommonly seen increase has rarely been reported and is expected to be due to both the improved pharmacokinetics and retained bioactivity of PCB-insulin. Second, the production is simple from manufacturing standpoints. Conjugation procedure involves only one-step coupling reaction without complex site-specific linkage technique. The synthesized PCB-insulin conjugates do not require chromatographic separation to purify and obtain particular isoforms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Hsiu-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Choy, Cheuk-Sing [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Emergency Department, Taipei Hospital, Department of Health, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shiau-Rung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA{sup 5+}) and dimethylarsinic acid (DMA{sup 5+}) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: Black-Right-Pointing-Pointer This is the first to find that urinary total arsenic is related inversely to the BMI. Black-Right-Pointing-Pointer Arsenic methylation capability may be associated with obesity and insulin. Black-Right-Pointing-Pointer Obese adolescents with high insulin had low arsenic methylation capacity.

  19. Gender differences in factors influencing insulin resistance in elderly hyperlipemic non-diabetic subjects

    Directory of Open Access Journals (Sweden)

    Hrebícek Jirí

    2002-10-01

    Full Text Available Abstract Background The increase in the prevalence of insulin resistance-related metabolic syndrome, a disorder that greatly increases the risk of diabetes, heart attack and stroke, is alarming. One of the most frequent and early symptoms of metabolic syndrome is hypertriglyceridemia. We examined the gender differences between various metabolic factors related to insulin resistance in elderly non-diabetic men and postmenopausal women of comparable age suffering from hypertriglyceridemia, and compared them with healthy subjects of equal age. Results The indexes of insulin resistance HOMA IR and QUICKI were significantly higher in both hyperlipemic men and women than in controls; 95% confidence limits of hyperlipemic subjects did not overlap with controls. In both normolipemic and hyperlipemic men and women serum leptin correlated significantly with insulin resistance, while HDL-cholesterol correlated inversely with HOMA-IR only in women (both normo- and hyperlipemic, and serum tumor necrosis factor α (TNFα only in hyperlipemic women. According to results of multiple regression analysis with HOMA-IR as a dependent variable, leptin played a significant role in determining insulin resistance in both genders, but – aside from leptin – triglycerides, TNFα and decreased HDL-cholesterol were significant determinants in women, while body mass index and decreased HDL-cholesterol were significant determinants in men. The coefficient of determination (R2 of HOMA IR by above mentioned metabolic variables was in women above 60%, in men only about 40%. Conclusion The significant role of serum leptin in determination of insulin resistance in both elderly men and postmenopausal women of equal age was confirmed. However, the study also revealed significant gender differences : in women a strong influence of triglycerides, TNFα and decreased HDL-cholesterol, in men only a mild role of BMI and decreased HDL-cholesterol.

  20. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  1. The Effects of Reduction Mammaplasty on Serum Leptin Levels and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hakan Uzun

    2015-01-01

    Full Text Available Background. The reduction mammaplasty has been a well-executed and known procedure in which considerable amount of fatty tissue is removed from the body. The authors aimed to show the effects of the reduction mammaplasty on serum leptin levels and insulin resistance. Methods. 42 obese female patients who had gigantomastia were operated on. We recorded patients’ demographic and preoperative data, including age, weight, height, and body mass index. Fasting serum leptin, glucose, and insulin levels were noted. Homeostasis model assessment scores were calculated. At the postoperative 8th week, patients were reevaluated in terms of above parameters assessing the presence of any difference. Results. Serum leptin levels were decreased postoperatively and the decrease was statistically significant. We were able to show a decrease in homeostasis model assessment score, which indicated an increase in insulin sensitivity, and this change was statistically significant. A significant correlation between body mass index and leptin change was found postoperatively. Conclusion. Reduction mammaplasty is not solely an aesthetic procedure but it decreases serum leptin levels and increases insulin sensitivity, which may help obese women to reduce their cardiovascular risk.

  2. Effects of B Vitamins Overload on Plasma Insulin Level and Hydrogen Peroxide Generation in Rats.

    Science.gov (United States)

    Sun, Wuping; Zhai, Mingzhu; Zhou, Qian; Qian, Chengrui; Jiang, Changyu

    2017-08-31

    It has been reported that nicotinamide-overload induces oxidative stress associated with insulin resistance, the key feature of type 2 diabetes mellitus (T2DM). This study aimed to investigate the effects of B vitamins in T2DM. Glucose tolerance tests were carried out in adult Sprague-Dawley rats treated with or without cumulative doses of B vitamins. More specifically, insulin tolerance tests were also carried out in adult Sprague-Dawley rats treated with or without cumulative doses of Vitamin B3. We found that cumulative Vitamin B1 and Vitamin B3 administration significantly increased the plasma H₂O₂ levels associated with high insulin levels. Only Vitamin B3 reduced muscular and hepatic glycogen contents. Cumulative administration of nicotinic acid, another form of Vitamin B3, also significantly increased plasma insulin level and H₂O₂ generation. Moreover, cumulative administration of nicotinic acid or nicotinamide impaired glucose metabolism. This study suggested that excess Vitamin B1 and Vitamin B3 caused oxidative stress and insulin resistance.

  3. The correlations between insulin-like growth factor I, insulin and gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Xu Yongle; Yang Weiwen; Pu Xiangke

    2006-01-01

    Objectives; To research the correlation between insulin-like growth factor I (IGF-I), insulin and gestational diabetes mellitus (GDM). Methods: Thirty cases of GDM are taken as the GDM group. Thirty cases of normal pregnant women were taken as the control group. The insulin in maternal serum of these two groups were measured at 31 ± 1 weeks gestational age by radioimmunity. The IGF-I in maternal serum at 31 ± 1 weeks gestational age and IGF-I in umbilical serum at term delivery were measured by ELISA. results: There was no significant difference in IGF-I level in maternal serum between the GDM group and the control group (P>0.05) and there was significant difference between these two groups maternal LnIRI, IGF-I in umbilical serum and weight of newborn baby (P<0.01). In the GDM group, the IGF-I in maternal serum positively correlated with the LnIRI (r=0.424, P<0.05) and IGF-I in umbilical serum positively correlated with the weight of new-born baby (r=0.434, P<0.05). Conclusion: GDM has serious insulin resistance. The IGF-I in maternal serum correlated with the IR in GDM. IGF-I in umbilical serum plays a role in the pathology and physiology process of fetal macrosomia. Abnormality of the axis of growth hormone-insulin-insulin-like growth factor caused by IGF-I might be through the way of insulin resistance, and GDM is resulted. (authors)

  4. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    Directory of Open Access Journals (Sweden)

    Orison O Woolcott

    Full Text Available Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia.To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets.Dogs were fed a high-fat diet (n = 9 for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7.Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, P<0.01. In vivo insulin sensitivity decreased by 31.3±12.1% (P<0.05, concomitant with a decrease in plasma 2-arachidonoyl glycerol (from 39.1±5.2 to 15.7±2.0 nmol/L but not anandamide, oleoyl ethanolamide, linoleoyl ethanolamide, or palmitoyl ethanolamide. In control-diet animals (body weight: 28.8±1.0 kg, islets incubated with anandamide had a higher basal and glucose-stimulated insulin secretion as compared with no treatment. Islets from fat-fed animals (34.5±1.3 kg; P<0.05 versus control did not exhibit further potentiation of anandamide-induced insulin secretion as compared with control-diet animals. Glucagon but not somatostatin secretion in vitro was also increased in response to anandamide, but there was no difference between groups (P = 0.705. No differences in gene expression of CB1R or CB2R between groups were found.In canines, high-fat diet

  5. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  6. Association between omentin levels and insulin resistance in pregnancy.

    Science.gov (United States)

    Aktas, G; Alcelik, A; Ozlu, T; Tosun, M; Tekce, B K; Savli, H; Tekce, H; Dikbas, O

    2014-03-01

    Omentin is a new adipokine secreted mainly from visceral adipose tissue. Serum omentin is found to be reduced in patients with impaired glucose tolerance, type 2 diabetes mellitus, obesity and insulin resistant states. Despite the fact that pregnancy is also characterized with hyperinsulinemia, literature is lacking about data of omentin levels and its association with insulin resistance in pregnant women. We aimed to evaluate the association of omentin levels and insulin resistance in pregnant women and to compare these levels with those of non-pregnant, non-diabetic women. Uncomplicated pregnant women who admit to our outpatient clinics for routine follow-up were included in the study group. Non-pregnant women without diabetes mellitus were served as control group. Fasting glucose, insulin, omentin levels and HOMA IR were recorded. SPSS 15.0 for Windows was used for statistical analysis. There were 36 pregnant women in the study group and 37 healthy, non-pregnant women in the control group. Serum omentin and fasting glucose levels were significantly decreased and fasting insulin was significantly increased in the study group compared to control group. Omentin might be an indicator of insulin resistance in pregnant women. Larger prospective studies are needed to claim whether omentin can have a clinical use for diagnosis of gestational diabetes mellitus. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  7. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence.

    Science.gov (United States)

    Kesten, Dov; Horovitz-Fried, Miriam; Brutman-Barazani, Tamar; Sampson, Sanford R

    2018-04-01

    Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Observation of the imbalance among insulin, true insulin and leptin in type 2 diabetes mellitus patients

    International Nuclear Information System (INIS)

    Wang Susu; Zhang Zhaofu; Peng Chaosheng; Cao Ruian; Ma Xiaobing; Zang Guiming; Xia Qing; Long Nanzhan; Zhang Baohe; Wang Hongying

    2005-01-01

    To observe the imbalance among immunoreactive insulin (IRI), true insulin (TI) and leptin (LEP) in type 2 diabetes mellitus (DM)patients, 39 subjects with type 2 DM patients and 31 normal control subjects were studied. IRI was measured with RIA, while TI and LEP were determined by BA-ELISA. In type 2 DM patients the IRI concentration (16.87±1.22 mIU/L) was higher than that of normal subjects(12.33±l.31 mIU/L), and the ratio of IRI/TI(11.10±1.98) was significantly increased, but the insulin sensitivity index was obviously reduced. There was good positive correlation between IRI, TI and LEP in control individuals(r value for IRI and TI was 0.553, for IRI and LEP was 0.631 and for LEP and TI was 0.483; P<0.001 for all), where as similar correlation was not observed in the cases of type 2 DM. The results suggest that there is a good modulation among IRI, TI and LEP in normal individuals, but there exist insulin resistance, relative lack of TI and imbalance of IRI-TI-LEP axis in type 2 DM patients. (authors)

  9. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    Science.gov (United States)

    Woolcott, Orison O; Richey, Joyce M; Kabir, Morvarid; Chow, Robert H; Iyer, Malini S; Kirkman, Erlinda L; Stefanovski, Darko; Lottati, Maya; Kim, Stella P; Harrison, L Nicole; Ionut, Viorica; Zheng, Dan; Hsu, Isabel R; Catalano, Karyn J; Chiu, Jenny D; Bradshaw, Heather; Wu, Qiang; Kolka, Cathryn M; Bergman, Richard N

    2015-01-01

    Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia. To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets. Dogs were fed a high-fat diet (n = 9) for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7). Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, Pcanines, high-fat diet-induced insulin resistance does not alter plasma anandamide levels or further potentiate the insulinotropic effect of anandamide in vitro.

  10. The effect of different doses of vitamin D supplementation on insulin resistance during pregnancy.

    Science.gov (United States)

    Soheilykhah, Sedigheh; Mojibian, Mahdieh; Moghadam, Maryam Jannati; Shojaoddiny-Ardekani, Ahmad

    2013-04-01

    Low serum vitamin D levels are correlated with insulin resistance during pregnancy. We have assessed the effects of different doses of vitamin D on insulin resistance during pregnancy. A randomized clinical trial was done on 120 women with a gestational age of less than 12 weeks. The women were divided into three groups randomly. Group A received 200 IU vitamin D daily, group B 50,000 IU vitamin D monthly and group C 50,000 IU vitamin D every 2 weeks from 12 weeks of pregnancy until delivery. The serum levels of fasting blood sugar (FBS), insulin, calcium and 25-hydroxyvitamin D were measured before and after intervention. We used the homeostatic model assessment of insulin resistance (HOMA-IR) as a surrogate measure of insulin resistance. The mean ± standard deviation of serum 25-hydroxyvitamin D increased in group C from 7.3 ± 5.9 to 34.1 ± 11.5 ng/ml and in group B it increased from 7.3 ± 5.3 to 27.23 ± 10.7 ng/ml, but the level of vitamin D in group A increased from 8.3 ± 7.8 to 17.7 ± 9.3 ng/ml (p insulin and HOMA-IR before and after intervention in groups A and C were significant (p = 0.01, p = 0.02). This study has shown that supplementation of pregnant women with 50 000 IU vitamin D every 2 weeks improved insulin resistance significantly.

  11. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Dissecting the role of disulfide bonds on the amyloid formation of insulin

    International Nuclear Information System (INIS)

    Li, Yang; Gong, Hao; Sun, Yue; Yan, Juan; Cheng, Biao; Zhang, Xin; Huang, Jing; Yu, Mengying; Guo, Yu; Zheng, Ling; Huang, Kun

    2012-01-01

    Highlights: ► We dissect how individual disulfide bond affects the amyloidogenicity of insulin. ► A controlled reduction system for insulin is established in this study. ► Disulfide breakage is associated with unfolding and increased amyloidogenicity. ► Breakage of A6-A11 is associated with significantly increased cytotoxicity. ► Analogs without A6-A11 have a higher potency to form high order toxic oligomers. -- Abstract: Disulfide bonds play a critical role in the stability and folding of proteins. Here, we used insulin as a model system, to investigate the role of its individual disulfide bond during the amyloid formation of insulin. Tris(2-carboxyethyl)phosphine (TCEP) was applied to reduce two of the three disulfide bonds in porcine insulin and the reduced disulfide bonds were then alkylated by iodoacetamide. Three disulfide bond-modified insulin analogs, INS-2 (lack of A6-A11), INS-3 (lack of A7-B7) and INS-6 (lack of both A6-A11 and A7-B7), were obtained. Far-UV circular dichroism (CD) spectroscopy results indicated that the secondary structure of INS-2 was the closest to insulin under neutral conditions, followed by INS-3 and INS-6, whereas in an acidic solution all analogs were essentially unfolded. To test how these modifications affect the amyloidogenicity of insulin, thioflavin-T (ThT) fluorescence and transmission electronic microscopy (TEM) were performed. Our results showed that all analogs were more prone to aggregation than insulin, with the order of aggregation rates being INS-6 > INS-3 > INS-2. Cross-linking of unmodified proteins (PICUP) assay results showed that analogs without A6-A11 (INS-2 and INS-6) have a higher potential for oligomerization than insulin and INS-3, which is accompanied with a higher cytotoxicity as the hemolytic assays of human erythrocytes suggested. The results indicated that breakage of A7-B7 induced more unfolding of the insulin structure and a higher amyloidogenicity than breakage of A6-A11, but breakage of A6

  13. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I

    International Nuclear Information System (INIS)

    Barac-Nieto, M.; Lui, S.M.; Spitzer, A.

    1991-01-01

    Is increased synthesis of proteins responsible for the hypertrophy of kidney cells in diabetes mellitus? Does the lack of insulin, and/or the effect of insulin-like growth factor I (IGFI) on renal tubule protein synthesis play a role in diabetic renal hypertrophy? To answer these questions, we determined the rates of 3H-valine incorporation into tubule proteins and the valine-tRNA specific activity, in the presence or absence of insulin and/or IGFI, in proximal tubule suspension isolated from kidneys of streptozotocin diabetic and control rats. The rate of protein synthesis increased, while the stimulatory effects of insulin and IGFI on tubule protein synthesis were reduced, early (96 hours) after induction of experimental diabetes. Thus, hypertrophy of the kidneys in experimental diabetes mellitus is associated with increases in protein synthesis, rather than with decreases in protein degradation. Factor(s) other than the lack of insulin, or the effects of IGFI, must be responsible for the high rate of protein synthesis present in the hypertrophying tubules of diabetic rats

  14. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children

    International Nuclear Information System (INIS)

    Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavare, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth

    2005-01-01

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNFα exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h(3) versus 69 h(4); P = 0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P = 0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P = 0.014) and further elevated by acute exposure to TNFα (+230(52)%; P = 0.019 versus +123(24)%; P = 0.025, respectively). TNFα also significantly increased basal glucose transport rates (+44(14)%; P = 0.006 versus +34(11)%; P = 0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNFα exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation

  15. Hyperglucagonemia during insulin deficiency accelerates protein catabolism

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Matthews, D.E.; Welle, S.L.

    1987-01-01

    Hyperglucagonemia coexists with insulin deficiency or insulin resistance in many conditions where urinary nitrogen excretion is increased, but the precise role of glucagon in these conditions is controversial. The purpose of this study was to evaluate the effect of hyperglucagonemia on protein metabolism in insulin-deficient subjects. The authors used the stable isotope of an essential amino acid (L-[1- 13 C]leucine) as a tracer of in vivo protein metabolism. A combined deficiency of insulin and glucagon was induced by intravenous infusion of somatostatin. Hyperglucagonemia and hypoinsulinemia were induced by infusions of somatostatin and glucagon. When somatostatin alone was infused leucine flux increased, indicating a 6-17% increase in proteolysis. When somatostatin and glucagon were infused, leucine flux increased, indicating a 12-32% increase in proteolysis. The increase in leucine flux during the infusion of somatostatin and glucagon was higher than the increase during infusion of somatostatin alone. Somatostatin alone did not change leucine oxidation, whereas the somatostatin plus glucagon increased leucine oxidation 100%. They conclude that hyperglucagonemia accelerated proteolysis and leucine oxidation in insulin-deficient humans

  16. Microcirculatory Improvement Induced by Laparoscopic Sleeve Gastrectomy Is Related to Insulin Sensitivity Retrieval.

    Science.gov (United States)

    Ministrini, Stefano; Fattori, Chiara; Ricci, Maria Anastasia; Bianconi, Vanessa; Paltriccia, Rita; Boni, Marcello; Paganelli, Maria Teresa; Vaudo, Gaetano; Lupattelli, Graziana; Pasqualini, Leonella

    2018-05-12

    Microvascular dysfunction is a potential factor explaining the association of obesity, insulin resistance, and vascular damage in morbidly obese subjects. The purpose of the study was to evaluate possible determinants of microcirculatory improvement 1 year after laparoscopic sleeve gastrectomy (LSG) intervention. Thirty-seven morbidly obese subjects eligible for bariatric surgery were included in the study. Post-occlusive reactive hyperemia (PORH) of the forearm skin was measured as area of hyperemia (AH) by laser-Doppler flowmetry before LSG and after a 1-year follow-up. After intervention, we observed a significant reduction in BMI, HOMA index, HbA1c, and a significant increase of AH in all patients after surgery; this variation was significant only in those patients having insulin resistance or prediabetes/diabetes. Although significant correlation between the increase of AH and the reduction of both BMI, HOMA index, and HbA1c was observed, BMI was the only independent predictor of AH variation after LSG at the linear regression analysis. Our study shows that LSG intervention is correlated with a significant improvement in the microvascular function of morbidly obese subjects; this improvement seems to be related to the baseline degree of insulin-resistance and to the retrieval of insulin-sensitivity post-intervention.

  17. Increased chemerin concentrations in fetuses of obese mothers and correlation with maternal insulin sensitivity.

    Science.gov (United States)

    Barker, Gillian; Lim, Ratana; Rice, Gregory E; Lappas, Martha

    2012-11-01

    The aim of this study was to determine the effect of maternal obesity and gestational diabetes mellitus (GDM) on (i) the circulating concentrations of chemerin in cord and maternal plasma, and (ii) gene expression and release of chemerin from human placenta and adipose tissue. Chemerin concentrations were measured in maternal and cord plasma from 62 normal glucose tolerant women (NGT) and 69 women with GDM at the time of term elective Caesarean section. Placenta and adipose tissue expression and release of chemerin was measured from 22 NGT and 22 GDM women. There was no effect of maternal obesity or GDM on maternal chemerin concentrations. Chemerin concentrations were significantly higher in cord plasma from women with maternal obesity. Cord chemerin concentrations in NGT women negatively correlated with the concentrations of maternal insulin sensitivity. There was no effect of GDM on maternal and cord chemerin concentrations, and on the release of chemerin from placenta and adipose tissue. At the time of term Caesarean section, preexisting maternal obesity, and its associated insulin resistance, is associated with higher cord plasma chemerin concentrations.

  18. Effect of Avocado Soybean Unsaponifiables on Insulin Secretion and Insulin Sensitivity in Patients with Obesity

    Directory of Open Access Journals (Sweden)

    Esperanza Martínez-Abundis

    2013-10-01

    Full Text Available Aim: To evaluate the effect of avocado soybean unsaponifiables (ASU on insulin secretion and insulin sensitivity in patients with obesity. Methods: A randomized, double-blind, placebo-controlled, clinical trial was carried out in 14 obese adult volunteers. After random allocation of the intervention, 7 patients received 300 mg of ASU or placebo during a fasting state for 3 months. A metabolic profile including IL-6 and high-sensitivity C-reactive protein (hs-CRP levels was carried out prior to the intervention. A hyperglycemic-hyperinsulinemic clamp technique was used to assess insulin secretion and insulin sensitivity phases. Mann-Whitney U test and Wilcoxon test were performed for statistical analyses. The study was approved by the local ethics committee of our institution. Results: At baseline, both groups were similar according to clinical and laboratory characteristics. There was no significant difference in insulin secretion and insulin sensitivity with ASU. Conclusions: ASU administration for 3 months did not modify insulin secretion and insulin sensitivity in patients with obesity.

  19. Substantial replacement of lactose with fat in a high-lactose milk replacer diet increases liver fat accumulation but does not affect insulin sensitivity in veal calves.

    Science.gov (United States)

    Pantophlet, A J; Gerrits, W J J; Vonk, R J; van den Borne, J J G C

    2016-12-01

    In veal calves, the major portion of digestible energy intake originates from milk replacer (MR), with lactose and fat contributing approximately 45 and 35%, respectively. In veal calves older than 4 mo, prolonged high intakes of MR may lead to problems with glucose homeostasis and insulin sensitivity, ultimately resulting in sustained insulin resistance, hepatic steatosis, and impaired animal performance. The contribution of each of the dietary energy sources (lactose and fat) to deteriorated glucose homeostasis and insulin resistance is currently unknown. Therefore, an experiment was designed to compare the effects of a high-lactose and a high-fat MR on glucose homeostasis and insulin sensitivity in veal calves. Sixteen male Holstein-Friesian calves (120±2.8kg of BW) were assigned to either a high-lactose (HL) or a high-fat (HF) MR for 13 consecutive weeks. After at least 7 wk of adaptation, whole-body insulin sensitivity and insulin secretion were assessed by euglycemic-hyperinsulinemic and hyperglycemic clamps, respectively. Postprandial blood samples were collected to assess glucose, insulin, and triglyceride responses to feeding, and 24-h urine was collected to quantify urinary glucose excretion. At the end of the trial, liver and muscle biopsies were taken to assess triglyceride contents in these tissues. Long-term exposure of calves to HF or HL MR did not affect whole-body insulin sensitivity (averaging 4.2±0.5×10 -2 [(mg/kg∙min)/(μU/mL)]) and insulin secretion. Responses to feeding were greater for plasma glucose and tended to be greater for plasma insulin in HL calves than in HF calves. Urinary glucose excretion was substantially higher in HL calves (75±13g/d) than in HF calves (21±6g/d). Muscle triglyceride content was not affected by treatment and averaged 4.5±0.6g/kg, but liver triglyceride content was higher in HF calves (16.4±0.9g/kg) than in HL calves (11.2±0.7g/kg), indicating increased hepatic fat accumulation. We conclude that

  20. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations.

    Science.gov (United States)

    Mahjub, Reza; Radmehr, Moojan; Dorkoosh, Farid Abedin; Ostad, Seyed Naser; Rafiee-Tehrani, Morteza

    2014-12-01

    The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan. Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined. Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24 h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared

  1. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Affholter, J.A.; Roth, R.A. (Stanford Univ. School of Medicine, CA (USA)); Cascieri, M.A.; Bayne, M.L. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA)); Brange, J. (Novo Research Institute, Bagsvaerd (Denmark)); Casaretto, M. (Deutsches Wollforschungsinstitut an der Technischen, Aachen (West Germany))

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants (B25-Asp)insulin and (B25-His)insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants (B1-24-His{sup 25}-NH{sub 2})insulin and (B1-24-Leu{sup 25}-NH{sub 2})insulin, but not (B1-24-Trp{sup 25}-NH{sub 2})insulin and (B1-24-Tyr{sup 25}-NH{sub 2})insulin. The truncated analogue with the lowest affinity for IDE ((B1-24-His{sup 25}-NH{sub 2})insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ.

  2. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    International Nuclear Information System (INIS)

    Affholter, J.A.; Roth, R.A.; Cascieri, M.A.; Bayne, M.L.; Brange, J.; Casaretto, M.

    1990-01-01

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants [B1-24-His 25 -NH 2 ]insulin and [B1-24-Leu 25 -NH 2 ]insulin, but not [B1-24-Trp 25 -NH 2 ]insulin and [B1-24-Tyr 25 -NH 2 ]insulin. The truncated analogue with the lowest affinity for IDE ([B1-24-His 25 -NH 2 ]insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ

  3. Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture

    International Nuclear Information System (INIS)

    Formby, B.; Schmid-Formby, F.; Grodsky, G.M.

    1984-01-01

    In short-term batch-incubation or perfusion experiments, we studied insulin release and associated 65 Zn efflux from rat pancreatic islets loaded with 65 Zn by 24-h tissue culture in low-glucose medium. The fractional basal insulin release and 65 Zn efflux were 0.4% and 3% of total content/h/islet, respectively. Thus, basal 65 Zn efflux was much greater than that to be accounted for if zinc was released proportionally with insulin release only; extragranular zinc flux was suggested. Two millimolar glucose, with or without 1 mM 3-isobutyl-1-methylxanthine (IBMX), affected neither insulin release nor associated 65 Zn efflux. Twenty-five millimolar glucose produced a significant threefold increase in insulin release above baseline, but somewhat decreased 65 Zn efflux at marginal significance. Glucose (25 mM) plus 1 mM IBMX provoked a high increase in insulin release and an associated 30% increase in fractional 65 Zn efflux over basal. Calculations based on previous estimations of 65 Zn distribution and equilibrium with islet zinc indicated that molar zinc efflux was more than sufficient to account for a 2-zinc-insulin hexamer. L-Leucine (2 or 20 mM) plus 1 mM IBMX caused far greater 65 Zn efflux for the amount of insulin released, indicating additional 65 Zn mobilization not directly related to insulin secretion. To evaluate 65 Zn efflux during inhibited insulin secretion, batch incubations were performed in 100% D 2 O or at 27 degrees C, conditions that inhibited insulin release stimulated by high glucose plus IBMX. These agents decreased the 65 Zn efflux far below the basal value (35% and 50%, respectively) and greater than could be accounted for by the attendent inhibition of insulin secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    Science.gov (United States)

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  5. Normocaloric Diet Restores Weight Gain and Insulin Sensitivity in Obese Mice

    Directory of Open Access Journals (Sweden)

    Giovanni Enrico Lombardo

    2016-05-01

    Full Text Available An increased incidence of obesity is registered worldwide, and its association with insulin resistance and type 2 diabetes is closely related with increased morbidity and mortality for cardiovascular diseases. A major clinical problem in the management of obesity is the non-adherence or low adherence of patients to a hypo-caloric dietetic restriction. In this study we evaluated in obese mice the effects on insulin sensitivity of shifting from high-calorie foods to normal diet. Male C57BL/6JolaHsd mice (n=20 were fed with high fat diet for a 24 weeks period. Afterwards, body weight, energy and food intake were measured in all animals, together with parameters of insulin sensitivity by homeostatic model assessment of insulin resistance and plasma glucose levels in response to insulin administration. Moreover, in half of these mice, Glut4 mRNA levels were measured in muscle at the end of the high fat treatment, whereas the rest of the animals (n=10 were shifted to normocaloric diet for 10 weeks, after which the same analyses were carried out. A significant reduction of body weight was found after the transition from high to normal fat diet, and this decrease correlated well with an improvement in insulin sensitivity. In fact, we found a reduction in serum insulin levels and the recovery of insulin responsiveness in terms of glucose disposal measured by insulin tolerance test and Glut4 mRNA and protein expression. These results indicate that obesity related insulin resistance may be rescued by shifting from high fat diet to normocaloric diet.

  6. Reversal of the toxic effects of cachectin by concurrent insulin administration.

    Science.gov (United States)

    Fraker, D L; Merino, M J; Norton, J A

    1989-06-01

    Rats treated with recombinant human tumor necrosis factor-cachectin, 100 micrograms/kg ip twice daily for 5 consecutive days, had a 56% decrease in food intake, a 54% decrease in nitrogen balance, and a 23-g decrease in body weight gain vs. saline-treated controls. Concurrent neutral protamine hagedorn insulin administration of 2 U/100 g sc twice daily reversed all of these changes to control levels without causing any treatment deaths. The improvement seen with insulin was dose independent. Five days of cachectin treatment caused a severe interstitial pneumonitis, periportal inflammation in the liver, and an increase in wet organ weight in the heart, lungs, kidney, and spleen. Concurrent insulin treatment led to near total reversal of these histopathologic changes. Cachectin treatment did not significantly change blood glucose levels from control values of 130-140 mg/dl, but insulin plus cachectin caused a significant decrease in blood glucose from 1 through 12 h after injection. Administration of high-dose insulin can near totally reverse the nutritional and histopathologic toxicity of sublethal doses of cachectin in rats.

  7. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  8. Levels of betatrophin decrease during pregnancy despite increased insulin resistance, beta-cell function and triglyceride levels.

    Science.gov (United States)

    Zielińska, A; Maciulewski, R; Siewko, K; Popławska-Kita, A; Lipińska, D; Kozłowska, G; Górska, M; Szelachowska, M

    2016-12-01

    Evidence in support of an association between betatrophin and insulin resistance (IR) is mounting, with studies demonstrating that betatrophin is elevated in patients with type 2 diabetes, obesity and gestational diabetes. The aim of this study was to evaluate the role of betatrophin in IR and physiological proliferation of beta cells during pregnancy in healthy women. Eighty healthy pregnant women were examined at each trimester [T1 (first), T2 (second), T3 (third)], with a subgroup (n=45) that was also examined at 3 months postpartum (3MPP). The controls comprised 30 non-pregnant healthy women (HW) of reproductive age. Also measured were levels of betatrophin (ELISA), glucose (enzymatic method with hexokinase), insulin (IRMA), C-peptide (EASIA) and HbA 1c (HPLC), while HOMA-IR and HOMA-β scores were calculated. Betatrophin concentration was highest at T1, and differed significantly from T2 and T3 (1.84 [Q 1 =1.16, Q 3 =2.67]ng/mL vs 1.46 [Q 1 =0.96, Q 3 =2.21]ng/mL; Pindex scores increased during gestation, peaking at T3 (2.3 [Q 1 =1.66, Q 3 =2.72] and 227.7 [Q 1 =185.49, Q 3 =326.31], respectively) and returning to levels similar to those of HW at 3MPP (1.53 [Q 1 =1.12, Q 3 =2.41] and 88.86 [Q 1 =62.73, Q 3 =130.45] vs 1.35 [Q 1 =1.02, Q 3 =1.62] and 92.5 [Q 1 =74.20, Q 3 =111.47], respectively). Concentrations of betatrophin decrease during pregnancy, suggesting that the hormone does not play a significant role in the expansion of beta-cell mass and IR during pregnancy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. An acute bout of whole body passive hyperthermia increases plasma leptin, but does not alter glucose or insulin responses in obese type 2 diabetics and healthy adults.

    Science.gov (United States)

    Rivas, Eric; Newmire, Dan E; Crandall, Craig G; Hooper, Philip L; Ben-Ezra, Vic

    2016-07-01

    Acute and chronic hyperthermic treatments in diabetic animal models repeatedly improve insulin sensitivity and glycemic control. Therefore, the purpose of this study was to test the hypothesis that an acute 1h bout of hyperthermic treatment improves glucose, insulin, and leptin responses to an oral glucose challenge (OGTT) in obese type 2 diabetics and healthy humans. Nine obese (45±7.1% fat mass) type 2 diabetics (T2DM: 50.1±12y, 7.5±1.8% HbA1c) absent of insulin therapy and nine similar aged (41.1±13.7y) healthy non-obese controls (HC: 33.4±7.8% fat mass, Pwhole body passive hyperthermia treatment via head-out hot water immersion (1h resting in 39.4±0.4°C water) that increased internal temperature above baseline by ∆1.6±0.4°C or a control resting condition. Twenty-four hours post treatments, a 75g OGTT was administered to evaluate changes in plasma glucose, insulin, C-peptide, and leptin concentrations. Hyperthermia itself did not alter area under the curve for plasma glucose, insulin, or C-peptide during the OGTT in either group. Fasting absolute and normalized (kg·fat mass) plasma leptin was significantly increased (P<0.01) only after the hyperthermic exposure by 17% in T2DM and 24% in HC groups (P<0.001) when compared to the control condition. These data indicate that an acute hyperthermic treatment does not improve glucose tolerance 24h post treatment in moderate metabolic controlled obese T2DM or HC individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Increased insulin-like growth factor-1 in relation to cardiovascular function in polycystic ovary syndrome: friend or foe?

    Science.gov (United States)

    Desai, Namrata Ajaykumar; Patel, Snehal S

    2015-10-01

    The incidence of cardiovascular disease (CVD) in patients with polycystic ovary syndrome (PCOS) is very high and conventional risk factors only partially explain excessive risk of developing CVD in patients of PCOS. The pathophysiology of PCOS is very unique, and several hormonal and metabolic changes occur. Several observations suggest that serum IGF-1 levels decrease in insulin resistance, which results in IGF-1 deficiency. In patient of PCOS, close relationships have been demonstrated between insulin resistance and serum IGF-1 levels. Hyperinsulinemic insulin resistance results in a general augmentation of steroidogenesis and LH release in PCOS. The action of IGF-1 varies in different tissues possibly via autocrine or paracrine mechanisms. The increase or decrease in IGF-1 in different tissues results in differential outcomes. Several studies suggest that lowered circulating IGF-1 levels play important role in the initiation of the cardiac hypertrophic response which results in the risk of cardiovascular disease. While recent results suggests that individual with elevated IGF-1 is protected against cardiovascular disease. Thus IGF-1 shows versatile pleiotropic actions. This review provides a current perspective on increased level of IGF-1 in PCOS and also adds to the current controversy regarding the roles of IGF-1 in cardiovascular disease.

  12. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes

    International Nuclear Information System (INIS)

    Rufinatscha, Kerstin; Radlinger, Bernhard; Dobner, Jochen; Folie, Sabrina; Bon, Claudia; Profanter, Elisabeth; Ress, Claudia; Salzmann, Karin; Staudacher, Gabriele; Tilg, Herbert; Kaser, Susanne

    2017-01-01

    Dipeptidyl-peptidase 4 [DPP-4) has evolved into an important target in diabetes therapy due to its role in incretin hormone metabolism. In contrast to its systemic effects, cellular functions of membranous DPP-4 are less clear. Here we studied the role of DPP-4 in hepatic energy metabolism. In order to distinguish systemic from cellular effects we established a cell culture model of DPP-4 knockdown in human hepatoma cell line HepG2. DPP-4 suppression was associated with increased basal glycogen content due to enhanced insulin signaling as shown by increased phosphorylation of insulin-receptor substrate 1 (IRS-1), protein kinase B/Akt and mitogen-activated protein kinases (MAPK)/ERK, respectively. Additionally, glucose-6-phosphatase cDNA expression was significantly decreased in DPP-4 deficiency. Reduced triglyceride content in DPP-4 knockdown cells was paralleled by enhanced expressions of peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase −1 (CPT-1) while sterol regulatory element-binding protein 1c (SREBP-1c) expression was significantly decreased. Our data suggest that hepatic DPP-4 induces a selective pathway of insulin resistance with reduced glycogen storage, enhanced glucose output and increased lipid accumulation in the liver. Hepatic DPP-4 might be a novel target in fatty liver disease in patients with glucose intolerance. - Highlights: • DPP-IV knockdown results in increased insulin signaling in hepatocytes. • Increased fatty acid oxidation and decreased lipogenesis result in reduced hepatic triglyceride content in DPP-IV deficiency. • Hepatic DPP-IV induces a selective pathway of insulin resistance with increased triglyceride accumulation in the liver.

  13. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance.

    Science.gov (United States)

    Cheng, Pei-Wen; Lin, Yu-Te; Ho, Wen-Yu; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn; Liu, Chun-Peng

    2017-11-01

    Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1 S307 ) and suppressed Akt S473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Biphasic modulation of insulin receptor substrate-1 during goitrogenesis

    Directory of Open Access Journals (Sweden)

    R. Grozovsky

    2007-05-01

    Full Text Available Insulin receptor substrate-1 (IRS-1 is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI 21d = 51.02 ± 6.02 ng/mL, N = 12 rats, when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group. Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an

  15. Dietary Fat Acutely Increases Glucose Concentrations and Insulin Requirements in Patients With Type 1 Diabetes

    OpenAIRE

    Wolpert, Howard A.; Atakov-Castillo, Astrid; Smith, Stephanie A.; Steil, Garry M.

    2013-01-01

    OBJECTIVE Current guidelines for intensive treatment of type 1 diabetes base the mealtime insulin bolus calculation exclusively on carbohydrate counting. There is strong evidence that free fatty acids impair insulin sensitivity. We hypothesized that patients with type 1 diabetes would require more insulin coverage for higher-fat meals than lower-fat meals with identical carbohydrate content. RESEARCH DESIGN AND METHODS We used a crossover design comparing two 18-h periods of closed-loop gluco...

  16. Vitamin D deficiency is associated with insulin resistance in nondiabetics and reduced insulin production in type 2 diabetics.

    Science.gov (United States)

    Esteghamati, A; Aryan, Z; Esteghamati, Ar; Nakhjavani, M

    2015-04-01

    It is not known whether the association of serum 25-hydroxyvitamin D [25(OH)D] with glycemic measurements of individuals without diabetes is similar to those with diabetes or not. This study is aimed to investigate the association of serum 25(OH)D with glycemic markers of diabetics, nondiabetics, and prediabetics. A case-control study was conducted on age and sex matched 1,195 patients with type 2 DM, 121 prediabetics, and 209 healthy controls. Anthropometric variables, lipid profile, glycemic measurements, and serum 25(OH)D levels were recorded. Serum insulin and C-peptide levels were also measured. All glycemic measurements were compared between diabetics and nondiabetics and prediabetics at different vitamin D status. Patients with DM had lower serum 25(OH)D compared to prediabetics and healthy controls. Endogenous insulin production in response to food intake and in fasting was significantly lower in vitamin D deficient patients with DM compared to those with serum 25(OH)D>40 ng/ml. Diabetic women with serum 25(OH)D40 ng/ml. Healthy individuals with serum 25(OH)D<20 ng/ml had signs of insulin resistance as estimated by significant increase of HOMA-IR, HbA1c, and fasting plasma glucose (FPG). In addition, we found that serum 25(OH)D was inversely associated with insulin resistance. Vitamin D deficiency is associated with insulin resistance in nondiabetics, which is independent of obesity. Furthermore, vitamin D deficiency is associated with reduced insulin production in type 2 diabetics, which was mainly observed in men. Accordingly, a gender disparity also exists in association of serum 25(OH)D with glycemic measurements. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Experiments on the inclusion of insulin in lecithin microvesicles using 125I insulin and 131I lecithin as indicators

    International Nuclear Information System (INIS)

    Sarrach, D.; Lachmann, U.; Zipper, J.; Axt, J.; Akademie der Wissenschaften der DDR, Berlin. Inst. fuer Wirkstofforschung)

    1980-01-01

    Egg lecithin was labelled with 131 ICl and used together with 125 I insulin for studying the insulin inclusion in lecithin monolayer liposomes. The application of ultrasonics led to the formation of insulin-containing microvesicles which were characterized by electron microscopy and gel chromatography. With growing insulin concentration the yield of bound insulin increased to a value comparable to the included water volume. In the presence of lecithin insulin disintegration by ultrasonics was strongly reduced The bound insulin proved to be in good immunological state. (author)

  18. Studies on insulin receptor, 2. Studies on the influence of starvation and high fat diet on insulin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y [Hiroshima Univ. (Japan). School of Medicine

    1979-08-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using /sup 125/I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia.

  19. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation.

    Science.gov (United States)

    Hoy, Andrew J; Brandon, Amanda E; Turner, Nigel; Watt, Matthew J; Bruce, Clinton R; Cooney, Gregory J; Kraegen, Edward W

    2009-07-01

    Type 2 diabetes is characterized by hyperlipidemia, hyperinsulinemia, and insulin resistance. The aim of this study was to investigate whether acute hyperlipidemia-induced insulin resistance in the presence of hyperinsulinemia was due to defective insulin signaling. Hyperinsulinemia (approximately 300 mU/l) with hyperlipidemia or glycerol (control) was produced in cannulated male Wistar rats for 0.5, 1 h, 3 h, or 5 h. The glucose infusion rate required to maintain euglycemia was significantly reduced by 3 h with lipid infusion and was further reduced after 5 h of infusion, with no difference in plasma insulin levels, indicating development of insulin resistance. Consistent with this finding, in vivo skeletal muscle glucose uptake (31%, P muscle diacylglyceride and ceramide content over the same time course. However, there was an increase in cumulative exposure to long-chain acyl-CoA (70%) with lipid infusion. Interestingly, although muscle pyruvate dehydrogenase kinase 4 protein content was decreased in hyperinsulinemic glycerol-infused rats, this decrease was blunted in muscle from hyperinsulinemic lipid-infused rats. Decreased pyruvate dehydrogenase complex activity was also observed in lipid- and insulin-infused animals (43%). Overall, these results suggest that acute reductions in muscle glucose metabolism in rats with hyperlipidemia and hyperinsulinemia are more likely a result of substrate competition than a significant early defect in insulin action or signaling.

  20. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    Science.gov (United States)

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  1. Walnut consumption increases satiation but has no effect on insulin resistance or the metabolic profile over a 4-day period.

    Science.gov (United States)

    Brennan, Aoife M; Sweeney, Laura L; Liu, Xiaowen; Mantzoros, Christos S

    2010-06-01

    Obesity and diabetes have been associated with increased consumption of highly processed foods, and reduced consumption of whole grains and nuts. It has been proposed, mainly on the basis of observational studies, that nuts may provide superior satiation, may lead to reduced calorie consumption, and may decrease the risk of type 2 diabetes; but evidence from randomized, interventional studies is lacking. A total of 20 men and women with the metabolic syndrome participated in a randomized, double-blind, crossover study of walnut consumption. Subjects had two 4-day admissions to the clinical research center where they were fed an isocaloric diet. In addition, they consumed shakes for breakfast containing either walnuts or placebo (shakes were standardized for calories, carbohydrate, and fat content). Appetite, insulin resistance, and metabolic parameters were measured. We found an increased level of satiety (overall P value = 0.0079) and sense of fullness (P = 0.05) in prelunch questionnaires following the walnut breakfast as compared to the placebo breakfast, with the walnut effect achieving significance on day 3 and 4 (P = 0.02 and P = 0.03). We did not find any change in resting energy expenditure, hormones known to mediate satiety, or insulin resistance when comparing the walnut vs. placebo diet. Walnut consumption over 4 days increased satiety by day 3. Long-term studies are needed to confirm the physiologic role of walnuts, the duration of time needed for these effects to occur, and to elucidate the underlying mechanisms.

  2. Insulin resistance and delayed clearance of peptide hormones in cirrhotic rat liver

    International Nuclear Information System (INIS)

    Shankar, T.P.; Drake, S.; Solomon, S.S.

    1987-01-01

    Clearance of porcine insulin, glucagon, and human growth hormone was measured in intact perfused cirrhotic and normal rat livers. Binding and degradation of 125 I-insulin by hepatocytes isolated from cirrhotic and normal livers were also studied. The half-lives (t/sub 1/2/) of immunoreactive insulin and glucagon were 14.0 +/- 3.1 and 9.6 +/- 2.1 min in normal livers and 26.0 +/- 6.1 and 25.0 +/- 7.1 min in cirrhotic livers. Insulin binding and degradation by hepatocytes from control and cirrhotic livers showed no significant differences. Intraportal insulin infusion in perfusion studies suppressed glucagon-stimulated increases in glucose output from control livers but failed to suppress glucose production by cirrhotic livers, suggesting the presence of hepatic insulin resistance in cirrhosis. Impaired clearance of insulin and glucagon by the intact cirrhotic liver and normal binding and degradation of insulin by isolated hepatocytes suggest that factors such as intrahepatic fibrosis and shunting and postbinding defects may be responsible for the impaired hormone clearance and hepatic insulin resistance

  3. Is Shift Work Associated with Lipid Disturbances and Increased Insulin Resistance?

    Science.gov (United States)

    Alefishat, Eman; Abu Farha, Rana

    2015-11-01

    Shift work is associated with higher risk of metabolic disturbances and cardiovascular diseases. There are contradictory reports on the effect of shift work on lipid parameters in the literature. No studies have investigated any possible association between shift work and the ratio of serum triglyceride to high density lipoprotein cholesterol (TG/HDL-C ratio). This ratio can be used as a predictor for insulin resistance. The main aim of the present cross-sectional study was to investigate the association between shift work and serum TG/HDL-C ratio, TG level, and HDL-C level. One hundred and forty adult Jordanian employees were recruited. Demographic data, lifestyle habits, clinical parameters, and working patterns data were documented through a well-structured questionnaire. Serum TG and HDL-C levels were measured after at least 9 hours fasting using enzymatic assay procedure. Compared with daytime workers (58 subjects), shift workers (82 subjects) displayed higher TG/HDL-C ratio (r = 0.217, P = 0.013), higher serum TG levels (r = 0.220, P = 0.012), and lower HDL-C levels (r = -0.200, P = 0.016). Among shift workers, 30.5% were found to have a TG/HDL-C ratio >3.5 compared with 8.6% of daytime workers (P = 0.002). In the present study, shift work was shown to be associated with higher TG/HDL-C ratio, higher serum TG, and lower HDL-C levels. These findings might indicate that shift work is associated with increased insulin resistance and consequently higher risk of metabolic syndrome and cardiovascular diseases.

  4. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  5. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    Science.gov (United States)

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  6. Treatment of severe insulin resistance in pregnancy with 500 units per milliliter of concentrated insulin.

    Science.gov (United States)

    Mendez-Figueroa, Hector; Maggio, Lindsay; Dahlke, Joshua D; Daley, Julie; Lopes, Vrishali V; Coustan, Donald R; Rouse, Dwight J

    2013-07-01

    To evaluate glycemic control and pregnancy outcomes among pregnant women with severe insulin resistance treated with 500 units/mL concentrated insulin. Retrospective analysis of gravid women with severe insulin resistance (need for greater than 100 units of insulin per injection or greater than 200 units/d) treated with either 500 units/mL concentrated insulin or conventional insulin therapy. We performed a two-part analysis: 1) between gravid women treated with and without 500 units/mL concentrated insulin; and 2) among gravid women treated with 500 units/mL concentrated insulin, comparing glycemic control before and after its initiation. Seventy-three pregnant women with severe insulin resistance were treated with 500 units/mL concentrated insulin and 78 with conventional insulin regimens. Patients treated with 500 units/mL concentrated insulin were older and more likely to have type 2 diabetes mellitus. Average body mass index was comparable between both groups (38.6 compared with 40.4, P=.11) as were obstetric and perinatal outcomes and glycemic control during the last week of gestation. Within the 500 units/mL concentrated insulin cohort, after initiation of this medication, fasting and postprandial blood glucose concentrations improved. However, the rates of blood glucose values less than 60 mg/dL and less than 50 mg/dL were higher in the 500 units/mL concentrated insulin group after initiation than before, 4.8% compared with 2.0% (Pinsulin in severely obese insulin-resistant pregnant women confers similar glycemic control compared with traditional insulin regimens but may increase the risk of hypoglycemia. II.

  7. Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance.

    Science.gov (United States)

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively. Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, Pinsulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM. Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.

  8. Elevated C-peptide and insulin predict increased risk of colorectal adenomas in normal mucosa

    International Nuclear Information System (INIS)

    Vidal, Adriana C; Keku, Temitope O; Lund, Pauline Kay; Hoyo, Cathrine; Galanko, Joseph; Burcal, Lauren; Holston, Rachel; Massa, Berri; Omofoye, Oluwaseun; Sandler, Robert S

    2012-01-01

    Lower concentrations of the insulin–like growth factor binding protein-1 (IGFBP-1) and elevated concentrations of insulin or C-peptide have been associated with an increase in colorectal cancer risk (CRC). However few studies have evaluated IGFBP-1 and C-peptide in relation to adenomatous polyps, the only known precursor for CRC. Between November 2001 and December 2002, we examined associations between circulating concentrations of insulin, C-peptide, IGFBP-1 and apoptosis among 190 individuals with one or more adenomatous polyps and 488 with no adenomatous polyps using logistic regression models. Individuals with the highest concentrations of C-peptide were more likely to have adenomas (OR = 2.2, 95% CI 1.4-4.0) than those with the lowest concentrations; associations that appeared to be stronger in men (OR = 4.4, 95% CI 1.7-10.9) than women. Individuals with high insulin concentrations also had a higher risk of adenomas (OR = 3.5, 95% CI 1.7-7.4), whereas higher levels of IGFBP-1 were associated with a reduced risk of adenomas in men only (OR = 0.3, 95% CI 0.1-0.7). Overweight and obese individuals with higher C-peptide levels (>1 st Q) were at increased risk for lower apoptosis index (OR = 2.5, 95% CI 0.9-7.1), an association that remained strong in overweight and obese men (OR = 6.3, 95% CI 1.0-36.7). Higher levels of IGFBP-1 in overweight and obese individuals were associated with a reduced risk of low apoptosis (OR = 0.3, 95% CI 0.1-1.0). Associations between these peptides and the apoptosis index in overweight and obese individuals, suggest that the mechanism by which C-peptide could induce adenomas may include its anti-apoptotic properties. This study suggests that hyperinsulinemia and IGF hormones predict adenoma risk, and that outcomes associated with colorectal carcinogenesis maybe modified by gender

  9. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    Science.gov (United States)

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND (p = 0.0002) but not in cognitively impaired (p = 0.884) subjects, indicating potentially important

  10. Trajectories of BMI change impact glucose and insulin metabolism.

    Science.gov (United States)

    Walsh, E I; Shaw, J; Cherbuin, N

    2018-03-01

    The aim of this study was to examine, in a community setting, whether trajectory of weight change over twelve years is associated with glucose and insulin metabolism at twelve years. Participants were 532 community-living middle-aged and elderly adults from the Personality and Total Health (PATH) Through Life study. They spanned the full weight range (underweight/normal/overweight/obese). Latent class analysis and multivariate generalised linear models were used to investigate the association of Body Mass Index (BMI, kg/m 2 ) trajectory over twelve years with plasma insulin (μlU/ml), plasma glucose (mmol/L), and HOMA2 insulin resistance and beta cell function at follow-up. All models were adjusted for age, gender, hypertension, pre-clinical diabetes status (normal fasting glucose or impaired fasting glucose) and physical activity. Four weight trajectories were extracted; constant normal (mean baseline BMI = 25; follow-up BMI = 25), constant high (mean baseline BMI = 36; follow-up BMI = 37), increase (mean baseline BMI = 26; follow-up BMI = 32) and decrease (mean baseline BMI = 34; follow-up BMI = 28). At any given current BMI, individuals in the constant high and increase trajectories had significantly higher plasma insulin, greater insulin resistance, and higher beta cell function than those in the constant normal trajectory. Individuals in the decrease trajectory did not differ from the constant normal trajectory. Current BMI significantly interacted with preceding BMI trajectory in its association with plasma insulin, insulin resistance, and beta cell function. The trajectory of preceding weight has an independent effect on blood glucose metabolism beyond body weight measured at any given point in time. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier

  11. Childhood obesity and insulin resistance: how should it be managed?

    Science.gov (United States)

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  12. The effects of insulin and hyperglycemia on surfactant phospholipid synthesis in organotypic cultures of type II pneumocytes.

    Science.gov (United States)

    Engle, M J; Langan, S M; Sanders, R L

    1983-08-29

    Organotypic cultures of fetal type II epithelial cells were incubated in media containing insulin at concentrations ranging from 10 to 400 microunits/ml. Exposure to insulin resulted in increased glucose uptake from the media and in the rate of glucose conversion to CO2. Furthermore, both glucose uptake and CO2 production were dependent on the glucose concentration in the media. Surfactant and residual phosphatidylcholine fractions were isolated from the organotypic cultures by sucrose density centrifugation. The presence of low doses of insulin (10-25 microunits/ml) caused a significant increase in the incorporation of glucose into both surfactant and residual phosphatidylcholine. Insulin at levels of 100 microunits/ml or higher resulted in a significant decrease in glucose incorporation into both phosphatidylcholine fractions. Increasing the media glucose concentration from 5.6 to 20 mM caused a 2- to 2.5-fold increase in glucose utilization for surfactant and residual phospholipid synthesis, but did not produce any significant changes in choline incorporation into either surfactant or residual phosphatidylcholine. The addition of 400 microunits/ml of insulin to media containing 20 mM glucose, however, resulted in a 20% decrease in choline incorporation into surfactant phosphatidylcholine but had no effect on choline incorporation into residual phosphatidylcholine. These results suggest that insulin is an important hormone regulating fetal lung maturation and that hyperinsulinemia may be responsible for the delayed lung development in infants of diabetic mothers.

  13. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju; Hwang, Dae Youn

    2011-06-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may

  14. Obese but not normal-weight women with polycystic ovary syndrome are characterized by metabolic and microvascular insulin resistance.

    Science.gov (United States)

    Ketel, Iris J G; Stehouwer, Coen D A; Serné, Erik H; Korsen, Ted J M; Hompes, Peter G A; Smulders, Yvo M; de Jongh, Renate T; Homburg, Roy; Lambalk, Cornelis B

    2008-09-01

    Polycystic ovary syndrome (PCOS) and obesity are associated with diabetes and cardiovascular disease, but it is unclear to what extent PCOS contributes independently of obesity. The objective of the study was to investigate whether insulin sensitivity and insulin's effects on the microcirculation are impaired in normal-weight and obese women with PCOS. Thirty-five women with PCOS (19 normal weight and 16 obese) and 27 age- and body mass index-matched controls (14 normal weight and 13 obese) were included. Metabolic Insulin sensitivity (isoglycemic-hyperinsulinemic clamp) and microvascular insulin sensitivity [endothelium dependent (acetylcholine [ACh])] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation with laser Doppler flowmetry was assessed at baseline and during hyperinsulinemia. Metabolic insulin sensitivity (M/I value) and the area under the response curves to ACh and SNP curves were measured to assess microcirculatory function at baseline and during insulin infusion (microvascular insulin sensitivity). Obese women were more insulin resistant than normal-weight women (P PCOS women were more resistant than obese controls (P = 0.02). In contrast, normal-weight women with PCOS had similar insulin sensitivity, compared with normal-weight women without PCOS. Baseline responses to ACh showed no difference in the four groups. ACh responses during insulin infusion were significantly greater in normal-weight PCOS and controls than in obese PCOS and controls. PCOS per se had no significant influence on ACh responses during insulin infusion. During hyperinsulinemia, SNP-dependent vasodilatation did not significantly increase, compared with baseline in the four groups. PCOS per se was not associated with impaired metabolic insulin sensitivity in normal-weight women but aggravates impairment of metabolic insulin sensitivity in obese women. In obese but not normal-weight women, microvascular and metabolic insulin sensitivity are decreased, independent

  15. Fasting Plasma Insulin at 5 Years of Age Predicted Subsequent Weight Increase in Early Childhood over a 5-Year Period—The Da Qing Children Cohort Study

    Science.gov (United States)

    Chen, Yan Yan; Wang, Jin Ping; Jiang, Ya Yun; Li, Hui; Hu, Ying Hua; Lee, Kok Onn; Li, Guang Wei

    2015-01-01

    Background The association between hyperinsulinemia and obesity is well known. However, it is uncertain especially in childhood obesity, if initial fasting hyperinsulinemia predicts obesity, or obesity leads to hyperinsulinemia through insulin resistance. Objective To investigate the predictive effect of fasting plasma insulin on subsequent weight change after a 5-year interval in childhood. Methods 424 Children from Da Qing city, China, were recruited at 5 years of age and followed up for 5 years. Blood pressure, anthropometric measurements, fasting plasma insulin, glucose and triglycerides were measured at baseline and 5 years later. Results Fasting plasma insulin at 5 years of age was significantly correlated with change of weight from 5 to 10 years (ΔWeight). Children in the lowest insulin quartile had ΔWeight of 13.08±0.73 kg compare to 18.39±0.86 in the highest insulin quartile (P<0.0001) in boys, and similarly 12.03±0.71 vs 15.80±0.60 kg (P<0.0001) in girls. Multivariate analysis showed that the predictive effect of insulin at 5 years of age on subsequent weight gain over 5 years remained statistically significant even after the adjustment for age, sex, birth weight, TV-viewing time and weight (or body mass index) at baseline. By contrast, the initial weight at 5 years of age did not predict subsequent changes in insulin level 5 years later. Children who had both higher fasting insulin and weight at 5 years of age showed much higher levels of systolic blood pressures, fasting plasma glucose, the homeostasis model assessment for insulin resistance (HOMA-IR) and triglycerides at 10 years of age. Conclusions Fasting plasma insulin at 5 years of age predicts weight gain and cardiovascular risk factors 5 year later in Chinese children of early childhood, but the absolute weight at 5 years of age did not predict subsequent change in fasting insulin. PMID:26047327

  16. Fasting Plasma Insulin at 5 Years of Age Predicted Subsequent Weight Increase in Early Childhood over a 5-Year Period-The Da Qing Children Cohort Study.

    Directory of Open Access Journals (Sweden)

    Yan Yan Chen

    Full Text Available The association between hyperinsulinemia and obesity is well known. However, it is uncertain especially in childhood obesity, if initial fasting hyperinsulinemia predicts obesity, or obesity leads to hyperinsulinemia through insulin resistance.To investigate the predictive effect of fasting plasma insulin on subsequent weight change after a 5-year interval in childhood.424 Children from Da Qing city, China, were recruited at 5 years of age and followed up for 5 years. Blood pressure, anthropometric measurements, fasting plasma insulin, glucose and triglycerides were measured at baseline and 5 years later.Fasting plasma insulin at 5 years of age was significantly correlated with change of weight from 5 to 10 years (ΔWeight. Children in the lowest insulin quartile had ΔWeight of 13.08±0.73 kg compare to 18.39±0.86 in the highest insulin quartile (P<0.0001 in boys, and similarly 12.03±0.71 vs 15.80±0.60 kg (P<0.0001 in girls. Multivariate analysis showed that the predictive effect of insulin at 5 years of age on subsequent weight gain over 5 years remained statistically significant even after the adjustment for age, sex, birth weight, TV-viewing time and weight (or body mass index at baseline. By contrast, the initial weight at 5 years of age did not predict subsequent changes in insulin level 5 years later. Children who had both higher fasting insulin and weight at 5 years of age showed much higher levels of systolic blood pressures, fasting plasma glucose, the homeostasis model assessment for insulin resistance (HOMA-IR and triglycerides at 10 years of age.Fasting plasma insulin at 5 years of age predicts weight gain and cardiovascular risk factors 5 year later in Chinese children of early childhood, but the absolute weight at 5 years of age did not predict subsequent change in fasting insulin.

  17. Insulin promotes diacylglycerol kinase activation by different mechanisms in rat cerebral cortex synaptosomes.

    Science.gov (United States)

    Zulian, Sandra E; Ilincheta de Boschero, Mónica G; Giusto, Norma M

    2006-10-01

    The mechanism by which insulin increases diacylglycerol kinase (DAGK) activity has been studied in cerebral cortex (CC) synaptosomes from adult (3-4 months of age) rats. The purpose of this study was to identify the role of phospholipases C and D (PLC and PLD) in DAGK activation by insulin. Neomycin, an inhibitor of PLC phosphatidylinositol-bisphosphate (PIP2) specific; ethanol, an inhibitor of phosphatidic acid (PA) formation by the promotion of a transphosphatidyl reaction of phosphatidylcholine phospholipase D (PC-PLD); and DL propranolol, an inhibitor of phosphatidate phosphohydrolase (PAP), were used in this study. Insulin (0.1 microM) shielded an increase in PA synthesis by [32P] incorporation using [gamma-32P]ATP as substrate and endogenous diacylglycerol (DAG) as co-substrate. This activated synthesis was strongly inhibited either by ethanol or DL propranolol. Pulse chase experiments also showed a PIP2-PLC activation within 1 min exposure to insulin. When exogenous unsaturated 18:0-20:4 DAG was present, insulin increased PA synthesis significantly. However, this stimulatory effect was not observed in the presence of exogenous saturated (di-16:0). In the presence of R59022, a selective DAGK inhibitor, insulin exerted no stimulatory effect on [32P]PA formation, suggesting a strong relationship between increased PA formation by insulin and DAGK activity. These data indicate that the increased synthesis of PA by insulin could be mediated by the activation of both a PC-PLD pathway to provide DAG and a direct DAGK activation that is associated to the use of 18:0-20:4 DAG species. PIP2-PLC activation may contribute at least partly to the insulin effect on DAGK activity. Copyright 2006 Wiley-Liss, Inc.

  18. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets.

    Science.gov (United States)

    Vilches-Flores, Alonso; Tovar, Armando R; Marin-Hernandez, Alvaro; Rojas-Ochoa, Alberto; Fernandez-Mejia, Cristina

    2010-07-01

    Besides its role as a carboxylase prosthetic group, biotin has important effects on gene expression. However, the molecular mechanisms through which biotin exerts these effects are largely unknown. We previously found that biotin increases pancreatic glucokinase expression. We have now explored the mechanisms underlying this effect. Pancreatic islets from Wistar rats were treated with biotin, in the presence or absence of different types of inhibitors. Glucokinase mRNA and 18s rRNA abundance were determined by real-time PCR. Adenosine triphosphate (ATP) content was analyzed by fluorometry. Biotin treatment increased glucokinase mRNA abundance approximately one fold after 2 h; the effect was sustained up to 24 h. Inhibition of soluble guanylate cyclase or protein kinase G (PKG) signalling suppressed biotin-induced glucokinase expression. The cascade of events downstream of PKG in biotin-mediated gene transcription is not known. We found that inhibition of insulin secretion with diazoxide or nifedipine prevented biotin-stimulated glucokinase mRNA increase. Biotin treatment increased islet ATP content (control: 4.68+/-0.28; biotin treated: 6.62+/-0.26 pmol/islet) at 30 min. Inhibition of PKG activity suppressed the effects of biotin on ATP content. Insulin antibodies or inhibitors of phosphoinositol-3-kinase/Akt insulin signalling pathway prevented biotin-induced glucokinase expression. The nucleotide 8-Br-cGMP mimicked the biotin effects. We propose that the induction of pancreatic glucokinase mRNA by biotin involves guanylate cyclase and PKG activation, which leads to an increase in ATP content. This induces insulin secretion via ATP-sensitive potassium channels. Autocrine insulin, in turn, activates phosphoinositol-3-kinase/Akt signalling. Our results offer new insights into the pathways that participate in biotin-mediated gene expression. (c) 2010 Elsevier Inc. All rights reserved.

  19. Effectiveness of basal-supported oral therapy (BOT) using insulin glargine in patients with poorly controlled type 2 diabetes.

    Science.gov (United States)

    Suzuki, Daisuke; Umezono, Tomoya; Miyauchi, Masaaki; Kimura, Moritsugu; Yamamoto, Naoyuki; Tanaka, Eitaro; Kuriyama, Yusuke; Sato, Hiroki; Miyatake, Han; Kondo, Masumi; Toyoda, Masao; Fukagawa, Masafumi

    2012-07-20

    To determine the clinical usefulness of basal-supported oral therapy (BOT) using insulin glargine in Japanese patients with type 2 diabetes. We compared HbA1c levels, body weight, and insulin doses before the introduction of BOT and in the final month of the observation period in 122 patients with type 2 diabetes who received BOT with insulin glargine between October 2007 and July 2009. To exclude the possible effects of seasonal changes in glycemic control, 57 of the 122 patients were followed-up for one year and examined for changes in HbA1c levels, body weight, and insulin dose. Examination of all cases (n=122) showed a significant decrease in HbA1c (before BOT: 8.7±1.8, after: 7.1±1.1%), but no significant change in body weight (before: 63.1±16.1, after: 63.8±17.0 kg). The mean observation period was 10.5±6.4 months. Insulin doses were significantly increased during the study. HbA1c levels improved significantly in patients on non-insulin-secreting drugs (biguanide, α-glucosidase inhibitor and thiazolidine derivatives) than those on insulin-secreting drugs (SU agents and glinides). BOT with insulin glargine is a useful strategy that can achieve good glycemic control in clinical practice without causing serious hypoglycemia. The introduction of BOT before exhaustion of pancreatic β cells may increase its effectiveness.

  20. [Reliability of HOMA-IR for evaluation of insulin resistance during perioperative period].

    Science.gov (United States)

    Fujino, Hiroko; Itoda, Shoko; Sako, Saori; Matsuo, Kazuki; Sakamoto, Eiji; Yokoyama, Takeshi

    2013-02-01

    Hyperglycemia due to increase in insulin resistance (IR) is often observed after surgery in spite of normal insulin secretion. To evaluate the degree of IR, the golden standard method is the normoglycemic hyperinsulinemic clamp technique (glucose clamp: GC). The GC using the artificial pancreas, STG-22 (Nikkiso, Tokyo, Japan), was established as a more reliable method, since it was evaluated during steady-state period under constant insulin infusion. Homeostasis model assessment insulin resistance (HOMA-IR), however, is frequently employed in daily practice because of its convenience. We, therefore, investigated the reliability of HOMA-IR in comparison with the glucose clamp using the STG-22. Eight healthy patients undergoing maxillofacial surgery were employed in this study after obtaining written informed consent. Their insulin resistance was evaluated by HOMA-IR and the GC using the STG-22 before and after surgery. HOMA-IR increased from 0.81 +/- 0.48 to 1.17 +/- 0.50, although there were no significant differences between before and after surgery. On the other hand, M-value by GC significantly decreased after surgery from 8.82 +/- 2.49 mg x kg(-1) x min(-1) to 3.84 +/- 0.79 mg x kg(-1) x min(-1) (P = 0.0003). In addition, no significant correlation was found between the values of HOMA-IR and the M-value by GC. HOMA-IR may not be reliable to evaluate IR for perioperative period.

  1. Increased Incretin But Not Insulin Response after Oral versus Intravenous Branched Chain Amino Acids.

    Science.gov (United States)

    Gojda, Jan; Straková, Radka; Plíhalová, Andrea; Tůma, Petr; Potočková, Jana; Polák, Jan; Anděl, Michal

    2017-01-01

    Branched chain amino acids (BCAAs) are known to exert an insulinotropic effect. Whether this effect is mediated by incretins (glucagon like peptide 1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) is not known. The aim of this study was to show whether an equivalent dose of BCAA elicits a greater insulin and incretin response when administered orally than intravenously (IV). Eighteen healthy, male subjects participated in 3 tests: IV application of BCAA solution, oral ingestion of BCAA and placebo in an equivalent dose (30.7 ± 1.1 g). Glucose, insulin, C-peptide, glucagon, GLP-1, GIP, valine, leucine and isoleucine concentrations were measured. Rise in serum BCAA was achieved in both BCAA tests, with incremental areas under the curve (iAUC) being 2.1 times greater for IV BCAA compared with those of the oral BCAA test (p BCAA induced comparable insulin response greater than placebo (240 min insulin iAUC: oral 3,411 ± 577 vs. IV 2,361 ± 384 vs. placebo 961.2 ± 175 pmol/L, p = 0.0006). Oral BCAA induced higher GLP-1 (p BCAA tests with no change in the placebo group. An equivalent dose of BCAA elicited a comparable insulin and greater incretin response when administered orally and not when administered through IV. We conclude that insulinotropic effects of BCAA are partially incretin dependent. © 2017 S. Karger AG, Basel.

  2. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  3. Spirulina vesicolor Improves Insulin Sensitivity and Attenuates Hyperglycemia-Mediated Oxidative Stress in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Walaa Hozayen

    2016-03-01

    Full Text Available Aim: The current study aimed to investigate the anti-hyperglycemic, anti-hyperlipidemic and insulin sensitizing effects of the cyanobacterium Spirulina vesicolor extract in fructose-fed rats. Materials and Methods: Rats were fed 30% fructose solution in drinking water for 4 weeks. Animals exhibited hyperglycemia and hyperinsulinemia were selected for further investigations. Diabetic and control rats were orally supplemented with 50 mg/kg body weight S. vesicolor extract for 4 weeks. Results: At the end of 8 weeks, fructose-fed rats showed significant increase in serum glucose, insulin, cholesterol, triglycerides, cardiovascular risk indices and insulin resistance. Treatment of the fructose-fed rats with S. vesicolor extract improved this metabolic profile. Fructose feeding produced a significant increase in serum tumor necrosis factor alpha (TNF-α and a decrease in adiponectin levels. In addition, fructose-fed rats exhibited a significant increase in liver, kidney and heart lipid peroxidation levels, and declined antioxidant defenses. Supplementation of the fructose-fed rats with S. vesicolor extract reversed these alterations. Conclusion: S. vesicolor attenuates hyperglycemia-mediated oxidative stress and inflammation, and is thus effective in improving insulin sensitivity in fructose-fed rats. [J Complement Med Res 2016; 5(1.000: 57-64

  4. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L.

    1990-01-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle

  5. Insulin and 20-hydroxyecdysone action in Bombyx mori: Glycogen content and expression pattern of insulin and ecdysone receptors in fat body.

    Science.gov (United States)

    Keshan, Bela; Thounaojam, Bembem; Kh, Sanathoibi D

    2017-01-15

    Insulin and ecdysone signaling play a critical role on the growth and development of insects including Bombyx mori. Our previous study showed that Bombyx larvae reached critical weight for metamorphosis between day 3.5 and 4 of the fifth larval instar. The present study showed that the effect of insulin on the accumulation of glycogen in fat body of Bombyx larvae depends on the critical growth period. When larvae are in active growth period (before reaching critical weight), insulin caused increased accumulation of glycogen, while its treatment in larvae at terminal growth period (after critical period) resulted in an increased mobilization of glycogen. During terminal growth period, insulin and 20-hydroxyecdysone (20E) showed an antagonistic effect on the accumulation of fat body glycogen in fed, food deprived and decapitated larvae as well as in isolated abdomens. Insulin treatment decreased the glycogen content, whereas, 20E increased it. Food deprivation and decapitation caused an increase in the transcript levels of insulin receptor (InR) and this increase in InR expression might be attributed to a decrease in synthesis/secretion of insulin-like peptides, as insulin treatment in these larvae showed a down-regulation in InR expression. However, insulin showed an up-regulation in InR in isolated abdomens and it suggests that in food deprived and decapitated larvae, the exogenous insulin may interact with some head and/or thoracic factors in modulating the expression of InR. Moreover, in fed larvae, insulin-mediated increase in InR expression indicates that its regulation by insulin-like peptides also depends on the nutritional status of the larvae. The treatment of 20E in fed larvae showed an antagonistic effect on the transcript levels since a down-regulation in InR expression was observed. 20E treatment also led to a decreased expression of InR in food deprived and decapitated larvae as well as in isolated abdomens. Insulin and 20E also modulated the

  6. Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: results of a phase I/II clinical trial in NASH

    Directory of Open Access Journals (Sweden)

    Mizrahi M

    2012-12-01

    Full Text Available Meir Mizrahi,1 Yehudit Shabat,1 Ami Ben Ya'acov,1 Gadi Lalazar,1 Tomer Adar,1 Victor Wong,2 Brian Muller,2 Grant Rawlin,2 Yaron Ilan11Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel; 2Immuron Limited, North Melbourne, AustraliaBackground: Nonalcoholic steatohepatitis (NASH is considered to be part of the nonalcoholic fatty liver disorders and its incidence is increasing. Imm124-E (Immuron Ltd, Melbourne, Australia, containing hyperimmune bovine colostrum, has been shown to exert an immunomodulatory effect and to alleviate target organ damage in animal models of NASH. The aim of our study was to determine the safety and efficacy of oral administration of Imm124-E to patients with insulin resistance and NASH.Methods: In an open-label trial, ten patients with biopsy-proven NASH and insulin resistance were orally treated with Imm124-E for 30 days.Results: Oral administration of Imm124-E was safe, and no side effects were noted. Alleviation of insulin resistance was reflected by significantly improved hemoglobin A1c (HbA1c values in all ten treated patients. For between five and eight responders, the following effects were noted: a decrease in fasting glucose levels; improved oral glucose tolerance test (OGGT and homeostatic model assessment insulin resistance (HOMA scores; and alleviation in lipid profile. These effects were accompanied by increased serum levels of glucagon-like peptide 1 (GLP-1, adiponectin and T regulatory cells.Conclusion: Hyperimmune colostrum alleviates NASH.Keywords: NASH, anti-LPS, diabetes, adipokines, regulatory T cells

  7. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    Directory of Open Access Journals (Sweden)

    Maria A Matuszek

    Full Text Available To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities.Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians.There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000, triglycerides (P = .050, low density lipoprotein (P = .009 and non-fasting blood glucose (15 min (P = .024 were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC. Non-fasting insulin in South Asians (15-120 min, in South East/East Asians (60-120 min, and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006. The molar ratio of C-peptide AUC/Insulin AUC (P = .045 and adiponectin (P = .037 were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022 and rs10830963 (P = 0.009, which are both near the melatonin receptor MTNR1B.Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  8. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    Science.gov (United States)

    Matuszek, Maria A; Anton, Angelyn; Thillainathan, Sobana; Armstrong, Nicola J

    2015-01-01

    To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities. Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians. There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC). Non-fasting insulin in South Asians (15-120 min), in South East/East Asians (60-120 min), and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin receptor MTNR1B. Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  9. Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.

    Science.gov (United States)

    Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-02-01

    The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Adipokines and Hepatic Insulin Resistance

    Science.gov (United States)

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  11. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    Science.gov (United States)

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  12. Insulin Signaling and Heart Failure

    Science.gov (United States)

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  13. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Eunhui Seo

    2015-04-01

    Full Text Available The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old were maintained on a regular diet (CON or a regular diet supplemented with 0.05% ginseng berry extract (GBD for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016 and insulin resistance scores (HOMA-IR (p = 0.012, suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007. Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS-1 (p = 0.047, and protein kinase B (AKT (p = 0.037, were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1 (p = 0.036 and peroxisome proliferator-activated receptor gamma (PPARγ (p = 0.032, which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice.

  14. The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure

    DEFF Research Database (Denmark)

    Gaster, M; Schrøder, H D; Handberg, A

    2001-01-01

    results show that chronic exposure of human myotubes to high insulin with or without high glucose did not affect the basal kinetic parameters but abolished the reactivity of GS to acute insulin stimulation. We suggest that insulin induced insulin resistance of GS is caused by a failure of acute insulin......There is no consensus regarding the results from in vivo and in vitro studies on the impact of chronic high insulin and/or high glucose exposure on acute insulin stimulation of glycogen synthase (GS) kinetic parameters in human skeletal muscle. The aim of this study was to evaluate the kinetic...... parameters of glycogen synthase activity in human myotube cultures at conditions of chronic high insulin combined or not with high glucose exposure, before and after a subsequent acute insulin stimulation. Acute insulin stimulation significantly increased the fractional activity (FV(0.1)) of GS, increased...

  15. Differential Effects of Camel Milk on Insulin Receptor Signaling – Towards Understanding the Insulin-like Properties of Camel Milk

    Directory of Open Access Journals (Sweden)

    Abdulrasheed O Abdulrahman

    2016-01-01

    Full Text Available Previous studies on the Arabian camel (Camelus dromedarius showed beneficial effects of its milk reported in diverse models of human diseases including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293 cells using bioluminescence resonance energy transfer (BRET technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1 and the growth factor receptor-bound protein 2 (Grb2. Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

  16. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  17. Non-insulin drugs to treat hyperglycaemia in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Frandsen, Christian Seerup; Dejgaard, Thomas Fremming; Madsbad, Sten

    2016-01-01

    Insulin treatment of individuals with type 1 diabetes has shortcomings and many patients do not achieve glycaemic and metabolic targets. Consequently, the focus is on novel non-insulin therapeutic approaches that reduce hyperglycaemia and improve metabolic variables without increasing the risk...... with few participants; evidence for the efficacy of concomitant treatments is scarce and largely clinically insignificant. A subgroup of patients with type 1 diabetes for whom non-insulin antidiabetic drugs could significantly benefit glycaemic control cannot yet be defined, but we suggest that obese...... of hypoglycaemia or other adverse events. Several therapies given in conjunction with insulin have been investigated in clinical trials, including pramlintide, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-glucose co-transporter inhibitors, metformin, sulfonylureas...

  18. Evaluation of Total Daily Dose and Glycemic Control for Patients on U-500 Insulin Admitted to the Hospital

    Science.gov (United States)

    2016-05-20

    regular insulin has significantly increased in recent years. These patients are severely insulin resistant requiring high doses of insulin to achieve...on U-500 Insulin Admitted to the Hospital presented at SURF Conference, San Antonio, TX 20 May 201 6 with MDWI 41-108, and has been assigned local...59th CSPG/SGVU) C.201 4 . I 52d PROTOCOL TITLE Evaluation of Total Dai ly Dose and Glycemic Control for Patients on U-500 Insulin Admitted to the

  19. Association between insulin resistance and c-reactive protein among Peruvian adults

    Directory of Open Access Journals (Sweden)

    Gelaye Bizu

    2010-05-01

    Full Text Available Abstract Objective Insulin resistance (IR, a reduced physiological response of peripheral tissues to the action of insulin, is one of the major causes of type 2 diabetes. We sought to evaluate the relationship between serum C-reactive protein (CRP, a marker of systemic inflammation, and prevalence of IR among Peruvian adults. Methods This population based study of 1,525 individuals (569 men and 956 women; mean age 39 years old was conducted among residents in Lima and Callao, Peru. Fasting plasma glucose, insulin, and CRP concentrations were measured using standard approaches. Insulin resistance was assessed using the homeostasis model (HOMA-IR. Categories of CRP were defined by the following tertiles: 2.53 mg/l. Logistic regression procedures were employed to estimate odds ratios (OR and 95% confidence intervals (CI. Results Elevated CRP were significantly associated with increased mean fasting insulin and mean HOMA-IR concentrations (p 2.53 mg/l (upper tertile had a 2.18-fold increased risk of IR (OR = 2.18 95% CI 1.51-3.16 as compared with those in the lowest tertile ( Conclusion Our observations among Peruvians suggest that chronic systemic inflammation, as evidenced by elevated CRP, may be of etiologic importance in insulin resistance and diabetes.

  20. Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity

    NARCIS (Netherlands)

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H.; Bouwman, Freek G.; Moors, Chantalle C.; Boekschoten, Mark; Afman, Lydia; Muller, Michael; Mariman, Edwin C.; Blaak, Ellen E.

    2012-01-01

    Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin

  1. Effect of zinc supplementation on insulin resistance, energy and macronutrients intakes in pregnant women with impaired glucose tolerance.

    Science.gov (United States)

    Roshanravan, Neda; Alizadeh, Mohammad; Hedayati, Mehdi; Asghari-Jafarabadi, Mohammad; Mesri Alamdari, Naimeh; Anari, Farideh; Tarighat-Esfanjani, Ali

    2015-02-01

    Hyperglycemia and gestational diabetes mellitus are complications of pregnancy. Both mothers and newborns are typically at increased risk for complications. This study sought to determine effect of zinc supplementation on serum glucose levels, insulin resistance, energy and macronutrients intakes in pregnant women with impaired glucose tolerance. In this clinical trial 44 pregnant women with impaired glucose tolerance, from December 2012 -April 2013 were randomly divided into zinc (n=22) and placebo (n=22) groups and recived 30mg/day zinc gluconate and (n=22), and placebo for eight consecutive weeks respectively. Dietary food intake was estimated from 3-days diet records. Serum levels of zinc, fasting blood sugar, and insulin were measured by conventional methods. Also homeostatic model assessment of insulin resistance was calculated. Serumlevels of fasting blood sugar, insulin and homeostatic model assessment of insulin resistance slightly decreased in zinc group, but these changes were not statistically significant. Serum zinc levels (P =0.012), energy (P=0.037), protein (P=0.019) and fat (P=0.017) intakes increased statistically significant in the zinc group after intervention but not in the placebo group. Oral supplementation with zinc could be effective in increasing serum zinc levels and energy intake with no effects on fasting blood sugar, homeostatic model assessment of insulin resistance and insulin levels.

  2. Novel insulin from the bullfrog: its structure and function in protein secretion by hepatocytes

    International Nuclear Information System (INIS)

    Hulsebus, J.J.

    1987-01-01

    Bullfrog insulin was extracted and purified from the pancreas of Rana catesbeiana adults using gel filtration and reverse phase high performance liquid chromatography. Amino acid analysis of bullfrog insulin revealed 52 amino acids instead of the most common number of 51. The most unique features of bullfrog insulin is a two amino acid extension on the amino terminus (A1) of the A chain. This is the only insulin to date that has an extension at this position. Bullfrog and porcine insulin increase protein secretion from bullfrog adult and three developmental stages of tadpole hepatocytes in a totally defined, serum-free culture system. The hormone slightly stimulates protein secretion by premetamorphic and early prometamorphic tadpoles. Late prometamorphic tadpoles respond to bullfrog and porcine insulin with higher concentrations of secreted protein than either of the two previous developmental stages. Insulin treated adult hepatocytes secrete significantly higher concentrations of protein than any of the tadpole stages. 35 S-methionine and 35 S-cysteine were added to the culture medium for twelve hours. Proteins secreted into the medium were separated using SDS polyacrylamide linear gradient gels. Densitometer scans of autoradiograms did not show an increases in any specific proteins, but did show a generalized increase in all secreted proteins for both adults, and tadpoles

  3. Exposure of Pregnant Mice to Triclosan Causes Insulin Resistance via Thyroxine Reduction.

    Science.gov (United States)

    Hua, Xu; Cao, Xin-Yuan; Wang, Xiao-Li; Sun, Peng; Chen, Ling

    2017-11-01

    Exposure to triclosan (TCS), an antibacterial agent, during pregnancy is associated with hypothyroxinemia and decreases in placental glucose transporter expression and activity. The objective of this study was to investigate the influence of TCS on glucose homeostasis and insulin sensitivity in gestational mice (G-mice) and nongestational female mice (Ng-mice) as a control. Herein, we show that the exposure of G-mice to TCS (8 mg/kg) from gestational day (GD) 5 to GD17 significantly increased their levels of fasting plasma glucose and serum insulin, and insulin content in pancreatic β-cells with reduced homeostasis model assessment (HOMA)-β index and increased HOMA-IR index. Area under curve (AUC) of glucose and insulin tolerance tests in TCS (8 mg/kg)-treated G-mice were markedly larger than controls. When compared with controls, TCS (8 mg/kg)-treated G-mice showed a significant decrease in the levels of thyroxine and triiodothyroninelevels, PPARγ and glucose transporter 4 (GLUT4) expression, and Akt phosphorylation in adipose tissue and muscle. Replacement of L-thyroxine in TCS (8 mg/kg)-treated G-mice corrected their insulin resistance and recovered the levels of insulin, PPARγ and GLUT4 expression, and Akt phosphorylation. Activation of PPARγ by administration of rosiglitazone recovered the decrease in Akt phosphorylation, but not GLUT4 expression. Although exposure to TCS (8 mg/kg) in Ng-mice reduced thyroid hormones levels, it did not cause the insulin resistance or affect PPARγ and GLUT4 expression, and Akt phosphorylation. The findings indicate that the exposure of gestational mice to TCS (≥8 mg/kg) results in insulin resistance via thyroid hormones reduction. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  5. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  6. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  7. Labelling of insulin with 99mTc and its evaluation in rabbits

    International Nuclear Information System (INIS)

    Bhelose, A.; Raju, A.; Ramamoorthy, N.; George, R.; Soni, P.S.

    1998-01-01

    Full text: In order to assess the feasibility of administering insulin into the respiratory tract as aerosol and determining its efficacy for drug treatment, as an alternative to intramuscular injection, we have studied the labelling of insulin with 99m Tc. 99m Tc insulin was evaluated in rabbits by i.v. injection. Reduction of insulin was carried out with 2 mercaptoethanol (2-ME) at different molar ratios of 3250:1 to 100:1 of insulin 2-ME. The reduced insulin was purified over Sephadex G-75 (7 x 1 cm) column. The fractions were identified and estimated for insulin content by spectrophotometry (280 nm). The labelling of this reduced, purified insulin was carried out using the standard Sn-GHA kit of BRIT. The R.C. purity was determined using ITLC/ normal saline which was found to be 68% at molar ratio 3250:1 of insulin:2-ME and increased to >85% at 100:1 insulin:2-ME. Bioactivity of insulin, after labelling was confirmed by injecting i.v. 99m Tc-insulin in rabbits. The blood sugar level dropped from 96 mg % to 88 % within 30 min which indicated that no significant alteration to the biomolecule structure took place during labelling. This approach thus seems to be promising and further studies with 99m Tc-insulin aerosols are warranted to establish the efficacy

  8. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  9. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  10. Consumption of a liquid high-fat meal increases triglycerides but decreases high-density lipoprotein cholesterol in abdominally obese subjects with high postprandial insulin resistance.

    Science.gov (United States)

    Wang, Feng; Lu, Huixia; Liu, Fukang; Cai, Huizhen; Xia, Hui; Guo, Fei; Xie, Yulan; Huang, Guiling; Miao, Miao; Shu, Guofang; Sun, Guiju

    2017-07-01

    Abdominal obesity is associated with an increased risk of insulin resistance, which may be a potential contributor to dyslipidemia. However, the relationship between postprandial insulin resistance and lipid metabolism in abdominally obese subjects remains unknown. We hypothesized that postprandial dyslipidemia would be exaggerated in abdominally obese subjects with high postprandial insulin resistance. To test this hypothesis, serum glucose, insulin, triglycerides, total cholesterol, high-density lipoprotein cholesterol, and apolipoprotein B were measured at baseline and postprandial state at 0.5, 1, 2, 4, 6, and 8 hours after a liquid high-fat meal in non-abdominally obese controls (n=44) and abdominally obese subjects with low (AO-LPIR, n=40), middle (n=40), and high postprandial insulin resistance (AO-HPIR, n=40) based on the tertiles ratio of the insulin to glucose areas under the curve (AUC). Their serum adipokines were tested at baseline only. Fasting serum leptin was higher (Pinsulin resistance and controls. The present study indicated that the higher degree of postprandial insulin resistance, the more adverse lipid profiles in abdominally obese subjects, which provides insight into opportunity for screening in health. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Whole-blood viscosity and the insulin-resistance syndrome.

    Science.gov (United States)

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E

    1998-02-01

    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  12. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    Science.gov (United States)

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    Science.gov (United States)

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  14. Significance of platelet-activating factor acetylhydrolase in patients with non-insulin-dependent (type 2) diabetes mellitus.

    Science.gov (United States)

    Serban, M; Tanaseanu, Cristina; Kosaka, T; Vidulescu, Cristina; Stoian, Irina; Marta, Daciana S; Tanaseanu, S; Moldoveanu, Elena

    2002-01-01

    Non-insulin dependent diabetes mellitus (NIDDM) represents an independent risk factor for cardiovascular diseases (CVD), being characterized by a continuous low-grade inflammation and endothelial activation state. Plasma platelet - activating factor - acetylhydrolases (PAF-AHs) are a subgroup of Ca(2+)-independent phospholipase A(2) family (also known as lipoprotein-associated phospholipases A(2)) that hydrolyze and inactivate the lipid mediator platelet-activating factor (PAF) and/or oxidized phospholipids. This enzyme is considered to play an important role in inflammatory diseases and atherosclerosis. The present study aims to investigate the relations between the levels of PAF-AH activity and LDL-cholesterol / HDL-cholesterol (LDL-ch / HDL-ch) ratio in NIDDM patients as compared to controls. serum PAF-AH activity was measured in 50 patients with dyslipidemia, in 50 NIDDM patients and in 50 controls (normal lipid and glucose levels). Total cholesterol, LDL-ch, HDL-ch, triglyceride and blood glucose were determined in all subjects. All NIDDM patients display hiperlipidemia, with increased LDL-ch and triglyceride levels. There is a significant correlation between LDL-ch levels (especially LDL-ch / HDL-ch ratio) and PAF-AH activity in dyslipidemic and NIDDM patients. Diabetic and dyslipidemic patients have an increased plasma PAF-AH activity correlated with their LDL-ch levels and mainly with LDL-ch / HDL-ch ratio. Plasma PAF-AH high levels appear to be important as a risk marker for endothelial dysfunction in patients with NIDDM.

  15. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in sceletal muscle membrane phospholipids of obese subjects. Inplications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Madsbad, Sten; Høy, C-E

    2006-01-01

    . Insulin resistance was estimated by the homeostasis model assessment (HOMA-IR). RESULTS The mean weight loss was 5.1 kg (range -15.3 to +1.3 kg). BMI decreased from 36.5 to 34.9 kg/m(2) (P=0.003). Saturated FA (SFA) decreased 11% (P=0.0001). Polyunsaturated FA (PUFA)n-6 increased 4% (P =0.003). Long......-chain PUFAn-3 increased 51% (P= 0.0001), mainly due to a 75% increase (PHOMA-IR correlated significantly with changes in long-chain PUFAn-3 (R=-0.57, P... that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R(2)=0.33, P

  16. Insulin analogues with improved absorption characteristics.

    Science.gov (United States)

    Brange, J; Hansen, J F; Langkjaer, L; Markussen, J; Ribel, U; Sørensen, A R

    1992-01-01

    The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.

  17. Data in support of fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Directory of Open Access Journals (Sweden)

    Du-Qiang Luo

    2015-09-01

    Full Text Available This data article contains data related to the research article entitled “Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice” in the Toxicology and Applied Pharmacology [1]. Fumosorinone (FU is a new inhibitor of protein phosphatase 1B inhibitor, which was isolated from insect pathogenic fungi Isaria fumosorosea. FU was found to inhibit PTP1B activity in our previous study [2]. PTP1B is the physiological antagonist of the insulin signalling pathway. Inhibition of PTP 1B may increase insulin sensitivity [3]. PTP1B has been considered promising as an insulin-sensitive drug target for the prevention and the treatment of insulin-based diseases [4]. We determined the effect of FU on the glucose consumption of IR HepG2 cells. FU caused significant enhancement in glucose consumption by insulin-resistant HepG2 cells compared with control cells.

  18. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons.

    Science.gov (United States)

    Vogeser, Michael; König, Daniel; Frey, Ingrid; Predel, Hans-Georg; Parhofer, Klaus Georg; Berg, Aloys

    2007-09-01

    Lifestyle changes with increased physical activity and balanced energy intake are recognized as the principal interventions in obesity and insulin resistance. Only few prospective studies, however, have so far addressed the potential role of routine biochemical markers of insulin sensitivity in the monitoring of respective interventions. Fasting insulin and glucose was measured in 33 obese individuals undergoing a lifestyle modification program (MOBILIS) at baseline and after 1 year. The HOMA-IR index (homeostasis model of insulin resistance) was calculated as [fasting serum glucose*fasting serum insulin/22.5], with lower values indicating a higher degree of insulin sensitivity. While the median body mass index (BMI) and waist circumference decreased by 10% and 11%, respectively, the HOMA-IR index decreased in an over-proportional manner by 45% within 1 year (BMI baseline, median 35.7, interquartile range (IQR) 33.7-37.7; after 1 year, median 32.2, IQR 29.6-35.1. HOMA-IR baseline, median 2.9, IQR 1.5-4.6; after 1 year 1.6, IQR 0.9-2.7). In contrast to HOMA-IR and fasting serum insulin, no significant changes in fasting serum glucose were observed. Baseline and post-intervention HOMA-IR showed a high degree of inter-individual variation with eight individuals maintaining high HOMA-IR values despite weight loss after 1 year of intervention. Individual changes in the carbohydrate metabolism achieved by a lifestyle intervention program were displayed by fasting serum insulin concentrations and the HOMA-IR but not by fasting glucose measurement alone. Therefore, assessment of the HOMA-IR may help to individualize lifestyle interventions in obesity and to objectify improvements in insulin sensitivity after therapeutic lifestyle changes.

  19. Supplementation of Diet With Galacto-oligosaccharides Increases Bifidobacteria, but Not Insulin Sensitivity, in Obese Prediabetic Individuals

    DEFF Research Database (Denmark)

    Canfora, Emanuel E; van der Beek, Christina M; Hermes, Gerben D A

    2017-01-01

    on peripheral insulin sensitivity, measured by the hyperinsulinemic-euglycemic clamp method. RESULTS: Supplementation of diets with GOS, but not placebo, increased the abundance of Bifidobacterium species in feces by 5-fold (P = .009; q = 0.144). Microbial richness or diversity in fecal samples were...

  20. Analysis of the effect of diabetes type 2 duration on beta cell secretory function and insulin resistance

    Directory of Open Access Journals (Sweden)

    Popović Ljiljana

    2006-01-01

    Full Text Available Diabetes type 2 is a chronic metabolic disorder. Pathogenesis of diabetes type 2 results from the impaired insulin secretion, impaired insulin action and increased endogenous glucose production. Diabetes evolves through several phases characterized by qualitative and quantitative changes of beta cell secretory function. The aim of our study was to analyze the impact of diabetes duration on beta cell secretory function and insulin resistance. The results indicated significant negative correlation of diabetes duration and fasting insulinemia, as well as beta cell secretory function assessed by HOMA β index. Our study also found significant negative correlation of diabetes duration and insulin resistance assessed by HOMA IR index. Significant positive correlation was established between beta cell secretory capacity (fasting insulinemia and HOMA β and insulin resistance assessed by HOMA IR index, independently of diabetes duration. These results indicate that: beta cell secretory capacity, assessed by HOMA β index, significantly decreases with diabetes duration. In parallel with decrease of fasting insulinemia, reduction of insulin resistance assessed by HOMA IR index was found as well.

  1. Insulin regulation of Na/K pump activity in rat hepatoma cells

    International Nuclear Information System (INIS)

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-01-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by 3 H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of 22 Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes

  2. Intralipid decreases apolipoprotein M levels and insulin sensitivity in rats.

    Directory of Open Access Journals (Sweden)

    Lu Zheng

    Full Text Available BACKGROUND: Apolipoprotein M (ApoM is a constituent of high-density lipoproteins (HDL. It plays a crucial role in HDL-mediated reverse cholesterol transport. Insulin resistance is associated with decreased ApoM levels. AIMS: To assess the effects of increased free fatty acids (FFAs levels after short-term Intralipid infusion on insulin sensitivity and hepatic ApoM gene expression. METHODS: Adult male Sprague-Dawley (SD rats infused with 20% Intralipid solution for 6 h. Glucose infusion rates (GIR were determined by hyperinsulinemic-euglycemic clamp during Intralipid infusion and plasma FFA levels were measured by colorimetry. Rats were sacrificed after Intralipid treatment and livers were sampled. Human embryonic kidney 293T cells were transfected with a lentivirus mediated human apoM overexpression system. Goto-Kakizaki (GK rats were injected with the lentiviral vector and insulin tolerance was assessed. Gene expression was assessed by real-time RT-PCR and PCR array. RESULTS: Intralipid increased FFAs by 17.6 folds and GIR was decreased by 27.1% compared to the control group. ApoM gene expression was decreased by 40.4% after Intralipid infusion. PPARβ/δ expression was not changed by Intralipid. Whereas the mRNA levels of Acaca, Acox1, Akt1, V-raf murine sarcoma 3611 viral oncogene homolog, G6pc, Irs2, Ldlr, Map2k1, pyruvate kinase and RBC were significantly increased in rat liver after Intralipid infusion. The Mitogen-activated protein kinase 8 (MAPK8 was significantly down-regulated in 293T cells overexpressing ApoM. Overexpression of human ApoM in GK rats could enhance the glucose-lowering effect of exogenous insulin. CONCLUSION: These results suggest that Intralipid could decrease hepatic ApoM levels. ApoM overexpression may have a potential role in improving insulin resistance in vivo and modulating apoM expression might be a future therapeutic strategy against insulin resistance in type 2 diabetes.

  3. Pitfalls of Insulin Pump Clocks

    Science.gov (United States)

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  4. Insulin sensitivity and insulin secretion at birth in intrauterine growth retarded infants.

    Science.gov (United States)

    Setia, Sajita; Sridhar, M G; Bhat, Vishnu; Chaturvedula, Lata; Vinayagamoorti, R; John, Mathew

    2006-06-01

    To study insulin sensitivity, secretion and relation of insulin levels with birth weight and ponderal index in intrauterine growth retarded (IUGR) infants at birth. We studied 30 IUGR and 30 healthy newborns born at term by vaginal delivery in Jipmer, Pondicherry, India. Cord blood was collected at the time of delivery for measurement of plasma glucose and insulin. When compared with healthy newborns, IUGR newborns had lower plasma glucose levels (mean 2.3+/-0.98 versus 4.1+/-0.51 mmol/L, p<0.001); lower plasma insulin levels (mean 4.5+/-2.64 versus 11.03+/-1.68 microU/L, p<0.001); higher insulin sensitivity calculated using G/I ratio (mean 11.6+/-5.1 versus 6.7+/-0.31, p<0.001), HOMA IS (mean 5.5+/-6.0 versus 0.53+/-0.15, p<0.001), and QUICKI (mean 0.47+/-0.12 versus 0.34+/-0.02, p<0.001); and decreased pancreatic beta-cell function test measured as I/G (mean 0.10+/-0.037 versus 0.15+/-0.006, p<0.001). A positive correlation was identified between insulin levels and birth weight in both the healthy control group (r2 = 0.17, p = 0.024) and IUGR group (r2 = 0.13, p = 0.048). However correlation of insulin levels with ponderal index was much more confident in both healthy control (r2 = 0.90, p<0.001) and IUGR groups (r2 = 0.28, p = 0.003). Insulin status correlated both with birth weight and ponderal index more confidently in control group than in IUGR group. At birth, IUGR infants are hypoglycaemic, hypoinsulinaemic and display increased insulin sensitivity and decreased pancreatic beta-cell function. Insulin levels correlate with ponderal index much more confidently than with birth weight.

  5. Polyethyleneglycol RIA (radioimmunoassay) insulin

    International Nuclear Information System (INIS)

    1988-01-01

    Insulin is a polypeptide hormone of M.W. 6,000 composed of two peptide chains, A and B, jointed by two cross-linked disulphide bonds and synthesized by the beta-cells of the islets of Langerhans of the pancreas. Insulin influences most of the metabolic functions of the body. Its best known action is to lower the blood glucose concentration by increasing the rate at which glucose is converted to glycogen in the liver and muscles and to fat in adipose tissue, by stimulating the rate of glucose metabolism and by depressing gluconeogenesis. Insulin stimulates the synthesis of proteins, DNA and RNA in cells generally, and promotes the uptake of aminoacids and their incorporation into muscle protein. It increases the uptake of glucose in adipose tissue and its conversion into fat and inhibits lipolysis. Insulin primary action is on the cell membrane, where it probably facilitates the transport of glucose and aminoacids into the cells. At the same time it may activate intracellular enzymes such as glycogen synthetase, concerned with glycogen synthesis. (Author) [es

  6. Icodextrine and insulin resistance in continuous ambulatory peritoneal dialysis patients.

    Science.gov (United States)

    Canbakan, Mustafa; Sahin, Gülizar Manga

    2007-01-01

    Insulin resistance is commonly observed in uremic patients. Glucose-based peritoneal dialysis solutions have long-term metabolic complications like hyperinsulinemia, hyperlipidemia, and obesity. The purpose of this study was to examine the insulin resistance in patients undergoing continuous ambulatory peritoneal dialysis (CAPD) with standard glucose and icodextrin containing solutions. The entire non diabetic CAPD patients of our center were studied: forty-four patients in all who were on CAPD treatment for 36.2 +/- 23.7 months. Twenty-seven of them (11 male and 16 female) with a mean age of 46 +/- 16 years were treated with standard glucose solutions (glucose group). The other 17 patients (10 male and 7 female) with a mean age of 49 +/- 16 years were treated with standard glucose solutions during the day and icodextrin dwell during the night, for a median of 12 +/- 6.3 months (icodextrin group). Morning fasting serum insulin levels were 20.59 +/- 17.86 in the glucose group and 10.15 +/- 6.87 in the icodextrin group (p = 0.0001). Homeostasis Model Assessment Method scores of the glucose group were significantly higher (4.8+/-4.1 vs 2.3+/- 1.7; p = 0.025) than the icodextrin group. A significant positive correlation of HOMA score with insulin, fasting plasma glucose, and triglyceride levels were found in HOMA (IR+) patients. Twenty patients of the icodextrin group (74%) and 15 patients of the glucose group (88%) were hypertensive, but there was no statistically significant difference between the two groups (p = 0.13). The groups showed no significant differences for body mass index and serum levels of glucose, total cholesterol, LDL cholesterol, VLDL cholesterol, HDL cholesterol, triglyceride, intact parathyroid hormone (iPTH), and fibrinogen. In conclusion, the use of icodextrin in the long nighttime dwell can reduce serum insulin levels and increase insulin sensitivity in CAPD patients.

  7. Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic KKAy-mice after feeding with a soy bean protein rich diet high in isoflavone content.

    Science.gov (United States)

    Nordentoft, I; Jeppesen, P B; Hong, J; Abudula, R; Hermansen, K

    2008-06-25

    High content isoflavone soy protein (SBP) (Abalon) has been found in animal studies to possess beneficial effects on a number of the characteristic features of the insulin resistance syndrome. The aim of this study was to investigate whether SBP exerts beneficial effects on metabolism in the diabetic KKAy-mouse. Furthermore, we investigated the long-term in vivo effect of SBP on the expression profile in islets of key insulin regulatory genes. Twenty KKAy-mice, aged 5 weeks, were divided into 2 groups and treated for 9 weeks with either (A) standard chow diet (control) or (B) chow + 50% SBP. Twenty normal C57BL-mice fed with standard chow diet served as nondiabetic controls (C). Blood samples were collected and analyzed before and after intervention. Gene expression was determined in islets by quantitative real-time RT-PCR and Affymetrix microarray. It was demonstrated that long-term treatment with SBP improves glucose homeostasis, increases insulin sensitivity, and lowers plasma triglycerides in diabetic KKAy-mice. SBP reduces fasting plasma glucose, insulin, triglycerides, and total cholesterol. Furthermore, SBP markedly changes the gene expression profile of key insulin regulatory genes GLUT2, GLUT3, Ins1, Ins2, IGF1, Beta2/Neurod1, cholecystokinin, and LDLr, and proliferative genes in islets isolated from KKAy-mice. After 9 weeks of treatment with SBP, plasma glucose and insulin homeostasis was normalized compared to start levels. The results indicate that SBP improves glucose and insulin sensitivity and up-regulates the expression of key insulin regulatory genes.

  8. Degludec insulin: A novel basal insulin

    OpenAIRE

    Kalra, Sanjay; Unnikrishnan, Ambika Gopalakrishnan; Baruah, Manash; Kalra, Bharti

    2011-01-01

    This paper reviews a novel insulin analogue, degludec, which has the potential to emerge as an ideal basal insulin. It reviews the limitations of existing basal insulin and analogues, and highlights the need for a newer molecule. The paper discusses the potential advantages of degludec, while reviewing its pharmacologic and clinical studies done so far. The paper assesses the potential role of insulin degludec and degludec plus in clinical diabetes practice.

  9. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury.

    Science.gov (United States)

    La Fountaine, Michael F; Cirnigliaro, Christopher M; Azarelo, Frank; Hobson, Joshua C; Tascione, Oriana; Swonger, Kirsten N; Dyson-Hudson, Trevor; Bauman, William A

    2017-09-01

    What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml -1 ) or insulin sensitivity (IS; insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log 10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the SCI subgroups were significantly lower than those in the ABIS group. The proportional BPU responses of NetIns to acetylcholine in the IS cohorts (i.e. ABIS and SCIS) were significantly greater (P < 0.05) than that of each IR subgroup. The presence of IR

  10. Jejunal gluconeogenesis associated with insulin resistance level and its evolution after Roux-en-Y gastric bypass.

    Science.gov (United States)

    Gutierrez-Repiso, Carolina; Garcia-Serrano, Sara; Moreno-Ruiz, Francisco J; Alcain-Martinez, Guillermo; Rodriguez-Pacheco, Francisca; Garcia-Fuentes, Eduardo

    2017-04-01

    Intestinal gluconeogenesis (GNG) may play an important role in glucose homeostasis, but there is little information about the condition in humans. To study the relationship between intestinal GNG and insulin resistance, its association with the evolution of morbidly obese patients after bariatric surgery, and the effect of insulin and or leptin. Regional university hospital, Malaga (Spain). Jejunal mRNA expression of genes involved in GNG was analyzed in 3 groups of morbidly obese patients who underwent Roux-en-Y gastric bypass: with low insulin resistance (MO-low-IR), with high insulin resistance (MO-high-IR), and with type 2 diabetes treated with metformin (MO-metf-T2D). Also, intestinal epithelial cells (IEC) from MO-low-IR were incubated with different doses of insulin and or leptin. In MO-high-IR, glutaminase, phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6 Pase), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 α), and sterol regulatory element-binding proteins 1 c (SREBP-1 c) expressions were significantly higher than in MO-low-IR. In MO-metf-T2 D, only PEPCK was significantly lower than in MO-high-IR. In IEC, an incubation with a high glucose and insulin dose produced an increase of PEPCK and SREBP-1 c, and a decrease of glutaminase, fructose 1,6-bisphosphatase (FBPase), and PGC-1 α expression. At high doses of leptin, G6 Pase and FBPase were significantly increased. The improvement of insulin resistance 3 months after bariatric surgery was positively associated with high G6 Pase and FBPase expression. mRNA expression of genes involved in GNG is increased in the jejunum of MO-high-IR, and regulated by insulin and or leptin. High mRNA expression of genes involved in GNG is associated with a better evolution of insulin resistance after bariatric surgery. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  11. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  12. Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance.

    Directory of Open Access Journals (Sweden)

    Qiuwei Wang

    Full Text Available OBJECTIVE: The aim of this study was to determine the effect of gestational diabetes mellitus (GDM on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. MEASUREMENTS: Maternal fasting blood and venous cord blood samples (reflecting fetal condition were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function were calculated in maternal and cord blood respectively. RESULTS: Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively. Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019, in the pregnant women with GDM. CONCLUSIONS: Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.

  13. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens J

    2003-01-01

    We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp...... Intralipid infusion. At LI, glucose oxidation decreased by 10%, whereas glucose disposal, glycolytic flux, glucose storage, and glucose production were not significantly altered. At HI, glucose disposal, and glucose oxidation decreased by 12% and 24%, respectively, during Intralipid infusion. Glycolytic flux......, glucose storage, and glucose production were unchanged. Insulin secretion rates increased in response to Intralipid infusion, but disposition indices (DI = insulin action.insulin secretion) were unchanged. In conclusion, a 24-h low-grade Intralipid infusion caused insulin resistance in the oxidative (but...

  14. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    Science.gov (United States)

    Vora, J P; Owens, D R; Dolben, J; Atiea, J A; Dean, J D; Kang, S; Burch, A; Brange, J

    1988-11-12

    To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. Study in normal people at a diabetes research unit and a university department of medical physics. Seven healthy male volunteers aged 20-39 not receiving any other drugs. After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and

  15. Association of insulin resistance with obesity in children

    International Nuclear Information System (INIS)

    Siddiqui, S.A.; Bashir, S.; Shabbir, I.; Sherwani, M.K.; Aasim, M.

    2011-01-01

    Background: Insulin resistance is the primary metabolic disorder associated with obesity. Little is known about its role as a determinant of the metabolic syndrome in obese children. Objectives: To assess the association of insulin resistance with metabolic syndrome in obese and non obese children. Study type and settings: Cross sectional analytical study conducted among children of ten Municipal Corporation high schools of Data Ganj Buksh Town Lahore. Subjects and Methods: A total of 46 obese and 49 non obese children with consent were recruited for the study. Fasting blood glucose, serum insulin, high density lipoprotein in cholesterol, triglycerides, cholesterol, non HDL-cholesterol LDL-cholesterol were measured using standard methods. Data were analyzed by using statistical software SPSS-Version 15. Results: A total of 95 children 49 obese and 46 non obese were recruited for the study. A significant association of serum triglyceride(p<0.001), high density lipoprotein cholesterol(p<0.001), fasting blood glucose(p<0.001), and insulin levels (p<0.001) , was seen between the two groups. For each component of metabolic syndrome, when insulin resistance increased so did odds ratios for cardio metabolic risk factors. Conclusions: Insulin resistance was seen in 34.7% children. Metabolic syndrome was found in 31.6% children reflecting that obese children are at high risk for metabolic syndrome and have low HDL-cholesterol and high triglycerides levels. (author)

  16. Effect of naloxone on plasma insulin, insulin-like growth factor I, and its binding protein 1 in patients with polycystic ovarian disease.

    Science.gov (United States)

    Laatikainen, T; Anttila, L; Suikkari, A M; Ruutiainen, K; Erkkola, R; Seppälä, M

    1990-09-01

    Insulin and insulin-like growth factors (IGFs) stimulate ovarian steroidogenesis, and hyperinsulinemia is often accompanied by hyperandrogenemia in women with polycystic ovarian disease (PCOD). Because opioid peptides are involved in the regulation of insulin secretion, we studied the effect of naloxone-induced opiate receptor blockade on the circulating levels of insulin, IGF-I, and IGF binding protein 1 (IGFBP-1) in 13 nonobese and 7 obese PCOD patients and in 6 healthy subjects. In obese PCOD patients, the mean basal insulin concentration was significantly higher and the IGFBP-1 concentration lower than in nonobese PCOD patients. Plasma IGF-I levels were elevated both in obese and nonobese PCOD patients. After an intravenous bolus of 10 mg naloxone, no significant changes were found in the circulating insulin or IGF-I levels, whereas IGFBP-1 levels decreased in nonobese PCOD patients and remained low in obese PCOD patients. No significant decrease was found in healthy subjects. These results suggest that, in addition to insulin, endogenous opioids are involved in the regulation of serum IGFBP-1 level.

  17. Partial disruption of lipolysis increases postexercise insulin sensitivity in skeletal muscle despite accumulation of DAG

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck; Alsted, Thomas Junker; Jordy, Andreas Børsting

    2016-01-01

    reactivity in vitro, we investigated if the described function of DAGs as mediators of lipid-induced insulin resistance was depending on the different DAG-isomers. We measured insulin stimulated glucose uptake in hormone sensitive lipase (HSL) knock out (KO) mice after treadmill exercise to stimulate...

  18. Efficacy of 2-hour post glucose insulin levels in predicting insulin resistance in polycystic ovarian syndrome with infertility

    Directory of Open Access Journals (Sweden)

    Pikee Saxena

    2011-01-01

    Full Text Available Background : Insulin resistance (IR is central to the pathogenesis of polycystic ovarian syndrome (PCOS, but tests for determining IR are elaborate, tedious and expensive. Aims : To evaluate if "2-hour post-glucose insulin level" is an effective indicator of IR and can aid in diagnosing IR in infertile PCOS women. Settings and Design : Observational study at infertility clinic of a tertiary care center. Materials and Methods : 50 infertile women with PCOS and 20 females with tubal/male factor infertility were evaluated for the presence of IR, as defined by the fasting/2-hour post-glucose insulin levels cutoffs of >25/>41 μU/mL, respectively. The clinical, metabolic and endocrinologic profile was determined in both the groups. Statistical Analysis : Statistical analysis was performed using SPSS (Chicago, IL, USA. Results : Body mass index, post load glucose, insulin, glucose/insulin ratio, area under curve (AUC of glucose and insulin and insulinogenic index were significantly lower in the controls as compared to the PCOS group. "2-hour post-glucose insulin levels" were elevated in 88% of PCOS individuals but were normal in all females not suffering from PCOS. These levels significantly correlated with AUC of glucose and insulin, and insulinogenic index and inversely correlated with 2-hour glucose to insulin ratio (r=0.827, 0.749 and −0.732, respectively. Conclusions : "2-hour post-glucose insulin levels" appears to be a good indicator of IR. It can be a useful tool, especially in low resource setting where a single sample can confirm the diagnosis, thus reducing cost and repeat visits.

  19. Related Factors of Insulin Resistance in Korean Children: Adiposity and Maternal Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Kang-Sook Lee

    2011-12-01

    Full Text Available Increased adiposity and unhealthy lifestyle augment the risk for type 2 diabetes in children with familial predisposition. Insulin resistance (IR is an excellent clinical marker for identifying children at high risk for type 2 diabetes. This study was conducted to investigate parental, physiological, behavioral and socio-economic factors related to IR in Korean children. This study is a cross-sectional study using data from 111 children aged 7 years and their parents. Homeostasis model assessment of insulin resistance (HOMA-IR was calculated using fasting glucose and insulin level as a marker of IR. All children’s adiposity indices (r = 0.309–0.318, all P-value = 0.001 and maternal levels of fasting insulin (r = 0.285, P-value = 0.003 and HOMA-IR (r = 0.290, P-value = 0.002 were positively correlated with children’s HOMA-IR level. There was no statistical difference of children’s HOMA-IR level according to children’s lifestyle habits and socioeconomic status of families. An increase of 1 percentage point in body fat was related to 2.7% increase in children’s HOMA-IR (P-value < 0.001 and an increase of 1% of maternal level of HOMA-IR was related to 0.2% increase in children’s HOMA-IR (P-value = 0.002. This study shows that children’s adiposity and maternal IR are positively associated with children’s IR.

  20. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Science.gov (United States)

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950